
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LUCAS LEANDRO NESI

Strategies for Distributing Task-Based
Applications on Heterogeneous Platforms

Thesis prepared under a co-tutelle agreement and
presented in partial fulfillment of the requirements
for the degree of Doctor of Computer Science at
the Federal University of Rio Grande do Sul and the
University Grenoble Alpes

Advisor (UFRGS): Prof. Dr. Lucas Mello Schnorr
Advisor (UGA): Dr. Arnaud Legrand

Porto Alegre
September 2023

CIP — CATALOGING-IN-PUBLICATION

Leandro Nesi, Lucas

Strategies for Distributing Task-Based Applications on Het-
erogeneous Platforms / Lucas Leandro Nesi. – Porto Alegre:
PPGC da UFRGS, 2023.

240 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor (UFRGS): Lucas Mello Schnorr; Advisor
(UGA): Arnaud Legrand.

1. HPC, Heterogeneity, Task-Based, Distribution, Partitioning,
Multi-Phase. I. Mello Schnorr, Lucas. II. Legrand, Arnaud.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“All we have to decide is what to do

with the time that is given us”

— J. R. R. Tolkien, The Fellowship of the Ring

ACKNOWLEDGEMENTS

To my advisors, Lucas Mello Schnorr and Arnaud Legrand, who accepted and guided

me during this journey. I am very grateful for all the opportunities, time, and motivation you

gave me. All the advice, tips, and enthusiastic discussions were essential to realizing this work.

I could never have wished for better advisors than you two, to whom I am infinitely grateful. I

am certain that you two will continue to inspire your future students as you inspired me.

To the jury members for all the time dedicated to the review of this work.

To the research funding agencies: CNPq (Conselho de Desenvolvimento Científico e

Tecnológico), scholarship grant number 141971/2020-7, and CAPES (Coordenação de Aper-

feiçoamento de Pessoal de Nível Superior) - Finance Code 001, for grating the scholarships,

and permitting that I could conduct this work. And the projects: FAPERGS (Data Science –

19/711-6), Inria (Associated Team ReDas), and CAPES (Cofecub 04/2017).

To the three main computational environments used in this thesis. Grid5000, SDumont

supercomputer, and PCAD. Some experiments were carried out using Grid’5000, supported

by a scientific interest group hosted by Inria and including CNRS, RENATER, and several

Universities as well as other organizations (see <https://www.grid5000.fr>). Some experiments

in this work used the PCAD infrastructure, <http://gppd-hpc.inf.ufrgs.br>, at INF/UFRGS. This

work acknowledges the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil)

for providing HPC resources of the SDumont supercomputer, which have contributed to the

research results reported within this thesis (<http://sdumont.lncc.br>).

To the authors, contributors, and the community of the following libraries and applica-

tions: StarPU, Chameleon, Simgrid, Diodon, ExaGeoStat, R, and Tidyverse.

To all my friends in GPPD, Porto Alegre, LIG, and Grenoble. Thanks for all the in-lab

time, and especially the out-lab one. Some ideas and inspiration came from such moments.

Para minha amada Gabriela Stahl, que me apoiou durante toda a realização deste trabalho.

A tua motivação, paciência e companheirismo foram fundamentais para que eu pudesse alcançar

este objetivo. Obrigado por todos os maravilhosos momentos que tivemos e que teremos.

E finalmente, para meus pais, Eliane e Lirio, que sempre foram modelos de pessoas para

mim e que jamais mediram esforços para me ajudar nesta jornada.

https://www.grid5000.fr
http://gppd-hpc.inf.ufrgs.br
http://sdumont.lncc.br

Strategies for Distributing Task-Based Applications on Heterogeneous Platforms

ABSTRACT

HPC platforms are vastly heterogeneous because of intra-node resources like accelerators and

inter-node heterogeneity when there are different machines. The applications that use these re-

sources are already very complex, with many distinct operations and phases, and developers must

consider all sets of diverse computational resources. The task-based programming paradigm

is a modern alternative to increase the computational efficiency of intra-node heterogeneous

resources while maintaining relative development simplicity. The application defines a Directed

Acyclic Graph of tasks and a dynamic runtime asynchronously schedules them to the resources

respecting task dependencies. However, handling different types of nodes requires new specific

strategies to distribute an application in this asynchronous and heterogeneous environment. This

thesis studies the problem of distributing this type of complex task-based applications over those

diverse system-level resources, proposing strategies to divide their load correctly, considering

computational heterogeneity, multiple-phase asynchronism, and adaptability. This work uses

real applications to validate its results with experiments conducted in large testbeds and a su-

percomputer. The thesis’ main contributions are the following. (i) Strategies for distributing

a single application operation considering the trade-off of communication, critical path, and

heterogeneous load balancing. (ii) A set of optimizations for improving asynchronous phase

overlap in applications. (iii) A methodology for computing the relative power of each phase on

each heterogeneous group of nodes considering the phase overlap. (iv) A distribution strategy for

an antecedent phase reducing communication redistribution. (v) A strategy for the application

dynamically adapts during execution to decide the best subset of nodes for each phase. (vi) An

extended comprehensive analysis of the experiments that include a methodology to analyze the

application progress per node resilient to heterogeneity and that can cluster nodes with similar

behavior. Ultimately, this thesis is a step toward efficiently exploiting and combining any of these

diverse resources, using them to handle applications’ distinct necessities better, and improving

their overall performance.

Keywords: HPC, Heterogeneity, Task-Based, Distribution, Partitioning, Multi-Phase.

Estratégias para a Distribuição de Aplicações Baseadas em Tarefas
em Plataformas Heterogêneas

RESUMO

As plataformas de HPC são heterogêneas devido aos recursos intra-nó, como os aceleradores, e a

heterogeneidade inter-nó, quando existem máquinas diferentes. As aplicações que utilizam estes

recursos já são complexas, com muitas operações e fases distintas, e os programadores podem

considerar todos os conjuntos de recursos computacionais diversos. O paradigma de programa-

ção baseado em tarefas é uma alternativa moderna para aumentar a eficiência computacional

dos recursos heterogêneos intra-nó, mantendo uma relativa simplicidade de desenvolvimento.

A aplicação define um grafo acíclico dirigido de tarefas e um runtime os escalona de forma

assíncrona para os recursos, respeitando as dependências das tarefas. No entanto, o tratamento

de diferentes tipos de nós requer novas estratégias específicas para distribuir uma aplicação neste

ambiente assíncrono e heterogêneo. Esta tese estuda o problema da distribuição deste tipo de

aplicações complexas baseadas em tarefas nesses recursos heterogêneos ao nível do sistema,

propondo estratégias para dividir corretamente a sua carga, considerando a heterogeneidade

computacional, o assincronismo em múltiplas fases e a adaptabilidade. Este trabalho utiliza

aplicações reais para validar os resultados com experimentos realizados em grandes testbeds e

num supercomputador. As principais contribuições da tese são as seguintes. (i) Estratégias para

distribuir uma única operação considerando a razão de comunicação, caminho crítico e balance-

amento de carga heterogêneo. (ii) Um conjunto de optimizações para melhorar a sobreposição

de fases assíncronas em aplicações. (iii) Uma metodologia para calcular a velocidade relativa de

cada fase em cada grupo heterogêneo de nós, tendo em conta a sobreposição de fases. (iv) Uma

estratégia de distribuição para uma fase antecedente que reduza a redistribuição de comunica-

ções. (v) Uma estratégia para a aplicação se adaptar dinamicamente durante a execução para

decidir o melhor subconjunto de nós para cada fase. (vi) Uma análise abrangente e aprofun-

dada dos experimentos que inclui uma metodologia para analisar o progresso da aplicação por

nó considerando a heterogeneidade e que pode agrupar nós com comportamento semelhante.

Finalmente, esta tese é um passo no sentido de explorar e combinar eficientemente qualquer

um destes diversos recursos, utilizando-os para melhor acomodar as necessidades distintas das

aplicações e melhorar o seu desempenho.

Palavras-chave: PAD, Heterogeneidade, Tarefas, Distribuição, Particionamento, Multi-Fase.

Stratégies de distribution d’applications basées sur des tâches
sur des plates-formes hétérogènes

RÉSUMÉ

Les plates-formes HPC sont amplement hétérogènes en raison des ressources intra-nœuds,

comme les accélérateurs, et de l’hétérogénéité inter-nœuds lorsqu’il y a différentes machines. Les

applications qui utilisent ces ressources sont déjà très complexes, avec de nombreuses opérations

et phases distinctes, et les développeurs doivent prendre en compte tous les diverses ressources

informatiques. Le paradigme de la programmation basée sur les tâches est une alternative

moderne pour augmenter l’efficacité de calcul des ressources hétérogènes intra-nœud tout en

maintenant une relative simplicité de développement. L’application définit un graphe acyclique

direct de tâches et un moteur d’exécution dynamique les planifie de manière asynchrone sur les

ressources en respectant les dépendances des tâches. Cependant, la gestion de différents types

de nœuds nécessite de nouvelles stratégies spécifiques pour distribuer une application dans cet

environnement asynchrone et hétérogène. Cette thèse étudie le problème de la distribution de

ce type d’applications complexes basées sur des tâches sur ces diverses ressources au niveau du

système, en proposant des stratégies pour diviser leur charge correctement, en tenant compte

de l’hétérogénéité de calcul, de l’asynchronisme à phases multiples et de l’adaptabilité. Ce

travail utilise des applications réelles pour valider ses résultats avec des expériences menées

dans de grands testbeds et un superordinateur. Les principales contributions de la thèse sont les

suivantes. (i) Stratégies de distribution d’une opération d’application unique en tenant compte du

compromis entre la communication, le chemin critique et l’équilibrage de la charge hétérogène.

(ii) Un ensemble d’optimisations pour améliorer le chevauchement des phases asynchrones dans

les applications. (iii) Une méthodologie pour calculer la puissance relative de chaque phase

sur chaque groupe hétérogène de nœuds en tenant compte du chevauchement des phases. (iv)

Une stratégie de distribution pour une phase antérieure réduisant des communications. (v) Une

stratégie d’adaptation dynamique de l’application pendant l’exécution pour décider du meilleur

sous-ensemble de nœuds pour chaque phase. (vi) Une analyse des expériences qui inclut une

méthodologie pour analyser la progression de l’application par nœud qui résiste à l’hétérogénéité

et qui peut regrouper les nœuds ayant un comportement similaire. En fin, cette thèse constitue

une étape vers l’exploitation et la combinaison efficaces de ces ressources, pour mieux gérer les

besoins distincts des applications et améliorer leurs performances.

Palavras-chave: HPC, Hétérogénéité, Tâches, Distribution, Partitionnement, Multiphase.

LIST OF ABBREVIATIONS AND ACRONYMS

ABE Area-Bound Estimator

AMT Asynchronous Many Task

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BC Block-Cyclic

BIC Bayesian Information Criterion

BLAS Basic Linear Algebra Subprograms

BLR Block Low Rank

BSP Bulk Synchronous Parallel

CFD Computational Fluid Dynamics

CPB Critical Path Bound

CoA Correspondence Analysis

DAG Directed Acyclic Graph

DC Divide and Conquer

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

G5K Grid5000 infrastructure (Inria/France)

GMM Gaussian Mixture Models

GP Gaussian Process

GPGPU General Purpose Graphics Processing Units

HPC High-Performance Computing

HPL High-Performance Linpack

LP Linear Program

LU LU (Lower Upper) Factorization

MDS Multidimensional Scaling

ML Machine learning

MPI Message Passing Interface

MTU Maximum Transmission Unit

MVN Multivariate Normal Distribution

MPI Message Passing Interface

MSA Modular Supercomputer Architecture

NIC Network Interface Controller

NTP Network Time Protocol

NUMA Non-Uniform Memory Access

PCA Principal Component Analysis

PCAD PCAD infrastructure (UFRGS/Brazil)

PCAM Partitioning, Communication, Agglomeration, Mapping

PIM Processing In Memory

PTG Parameterized Task Graphs

PTP Precision Time Protocol

RAPL Running Average Power Limit

RL Reinforced Learning

rSVD Randomized Singular Value Decomposition

SD Santos Dumont supercomputer (LNCC/Brazil)

SIMD Single Instruction, Multiple Data

STF Sequential Task Flow

SVD Singular Value Decomposition

TPU Tensor Processing Unit

UCB Upper Confidence Bound

LIST OF FIGURES

Figure 1.1 Sites of the TOP500 that have multiple systems between 2017/11 and 2022/11 ... 29
Figure 1.2 Main thesis contributions on the task-based application using heterogeneous

resources .. 35

Figure 2.1 Examples of tasks submission and the respective DAG structure 38
Figure 2.2 The LU algorithm data regions of matrix A updated at iteration k (left) and

the DAG for the tiled version with nb = 3 (right) ... 39
Figure 2.3 The Cholesky algorithm data regions of matrix A updated at iteration k (left)

and the DAG for the tiled version with nb = 4 (right) .. 40
Figure 2.4 StarPU stack over node resources ... 44
Figure 2.5 Example of matrix ownership and DAG distribution among nodes 46
Figure 2.6 ExaGeoStat iteration DAG for nb = 3 .. 50
Figure 2.7 Diodon MDS DAG for nb = 2.. 52

Figure 3.1 The LU algorithm (left) without pivoting and the regions of A updated at
iteration k (right) ... 57

Figure 3.2 Matrix access progress of the LU factorization tile-based algorithm..................... 57
Figure 3.3 Two-dimensional block-cyclic distribution with different PxQ values 58
Figure 3.4 Taxonomy of unit-square partitions .. 60
Figure 3.5 The 1D-1D partition (left) and the reciprocal 1D-1D distribution for 14 slow

and 7 fast nodes (total of 21 nodes) ... 63

Figure 4.1 Summary of the analysis and experimental methodology 72
Figure 4.2 The sysctl.conf configuration used for G5K experiments....................................... 74
Figure 4.3 The 3×5 BC partitioning using 15 identical CPU-only nodes to compare the

behavior of a real execution (left) against the simulation (right) 75
Figure 4.4 The 1D-1D partitioning using 14 CPU-only nodes plus 7 GPU-equipped nodes

to compare the behavior of a real execution (left) against the simulation (right) 77
Figure 4.5 StarVZ original workers Gantt Chart for application tasks 82
Figure 4.6 StarVZ node aggregated Gantt Chart version for application tasks........................ 83

Figure 5.1 Strong scaling for a 100×100 matrix with 50 homogeneous Chetemis 88
Figure 5.2 The 1D-1D partition (left) and the reciprocal 1D-1D distribution for 14 slow

and 7 fast nodes (total of 21 nodes) .. 89
Figure 5.3 The 1D-1D partitioning using 14 CPU-only nodes plus 7 GPU-equipped nodes

(simulation) ... 90
Figure 5.4 The progression of the 1D-1D constrained partition from one to four sections 93
Figure 5.5 The 1D-1D C metrics (CPB(k), ABE(k) and ABE-INT (k)) for 7+14 machines

from iteration 100 to 60 with four sections.. 94
Figure 5.6 Execution with 14 CPU-only nodes plus 7 GPU-equipped nodes, with the

distribution (top) and behavior (bottom) of the 1D-1D C (left) and the 1D-1D C+S
(right) runs .. 95

Figure 5.7 Cumulative ABE (CABE) per node prior and after two shufflings 96
Figure 5.8 Execution time (Y-axis) as a function of combinations of number of machines

(X-axis) and distributions (lines) ... 99
Figure 5.9 Total machine utilization time (Y-axis) for different number of machines (X-

axis) and data distributions (lines) ... 100
Figure 5.10 GFlops performance (Y-axis) for different matrix sizes (X-axis) and distribu-

tions (lines) for a case with 16+30 nodes... 101

Figure 5.11 TFlops performance (Y-axis) for different matrix sizes (X) and distributions
(lines) with 100 nodes where one node is 25% slower (left) and 68 nodes are twice
slower (right).. 103

Figure 6.1 Iteration, Node occupation, and Memory panels for the synchronous version
of the ExaGeoStat iteration .. 106

Figure 6.2 Node occupation, and Memory panels for the synchronous version of the
Diodon complete execution.. 107

Figure 6.3 Generation and Factorization distributions for two nodes (1, 2) without and
two (3, 4) with GPUs ... 119

Figure 6.4 Performance comparison of our phase overlap improvement strategies against
the synchronous version of ExaGeoStat .. 123

Figure 6.5 Cholesky Iteration, Node occupation, and Memory utilization panels using 4
Chifflet for one ExaGeoStat iteration in three cases: Asynchronous, Async + New
solve + Memory optimizations, All optimizations... 124

Figure 6.6 Performance comparison of our phase overlap improvement strategies against
the Diodon synchronous version.. 126

Figure 6.7 Node occupation using 4 Chifflet for Diodon: Asynchronous, Async + Allo-
cation + Split Gram, All optimizations .. 128

Figure 6.8 ExaGeoStat makespan for homogeneous and heterogeneous distributions in
18 machine sets configurations .. 129

Figure 6.9 Cholesky Iteration, Node occupation, and Memory utilization panels of the
ExaGeoStat iteration using the LP HetDist Constrained distribution for three sets of
machines: 6+6, 6+6+2, and 6+6+2 restricting factorization to GPU-only nodes.......... 131

Figure 6.10 Diodon time to Gram operation for homogeneous and heterogeneous distri-
butions in 18 machine sets configurations ... 133

Figure 7.1 Three iterations of ExaGeoStat: the first using a eight homogeneous nodes
for both phases (8-8). The second increasing the number of nodes (with CPU-only
nodes) and using all 23 for both generation and factorization (23-23), the third
restricting the factorization to the eight fast nodes (23-8) ... 138

Figure 7.2 Behavior using different heterogeneous nodes setups (Table 7.1) by varying
the number of factorization nodes.. 140

Figure 7.3 An example of the GP fit with eight measurements over cos function................. 144
Figure 7.4 Behavior using different heterogeneous nodes setups (Table 7.1) by varying

the number of factorization nodes.. 148
Figure 7.5 Step-by-step of (A) GP-UCB in G5K 2L-6M-6S 101, (B) GP-UCB in G5K

6L-30S 101, and (C) GP-discontinuous in G5K 6L-30S 101.. 149
Figure 7.6 Comparison of different methods in 16 scenarios .. 151
Figure 7.7 Overhead of GP in function of iterations.. 153
Figure 7.8 Iteration makespan with different number of generation and factorization nodes 154
Figure 7.9 Power consumption from RAPL and Wattmeter in the first two panels, and the

traditional Gantt Chart for a one-node ExaGeoStat execution....................................... 156
Figure 7.10 Energy and time of a ExaGeoStat iteration varying the number of machines

among eight Chiclet, five Chifflot (P100), and two Chifflot (V100).............................. 157

Figure 8.1 Gantt chart with nodes’ resources aggregation of the Chameleon LU Factor-
ization execution with 30 nodes where two are misbehaving .. 162

Figure 8.2 Progression heterogeneous metric applied to the Chameleon simulation of the
LU Factorization on 30 nodes.. 165

Figure 8.3 Kernel density estimations of the first ten time-steps with the Gaussian kernel
and bandwidth 0.01 for all steps considering metrics of Figure 8.2 167

Figure 8.4 Progression visualization strategy applied to the Chameleon simulation of the
LU factorization on 30 nodes... 168

Figure 8.5 Progression visualization strategy and aggregated Gantt chart of Chameleon’s
LU factorization simulation over 30 nodes where the first node has a slower network . 171

Figure 8.6 Progression visualization strategy and aggregated Gantt chart of Chameleon’s
LU factorization simulation over 30 nodes where the first and second nodes received
50% and 25% more load, respectively... 172

Figure 8.7 Progression visualization strategy of Chameleon’s LU factorization simulation
over 30 nodes where, on the left, all nodes have slow networks, and on the right,
regular networks... 173

Figure 8.8 Progression visualization strategy (with a bandwidth of 0.15) and aggregated
Gantt chart of ExaGeoStat real execution iteration on eight heterogeneous nodes 174

Figure 8.9 Traditional Gantt chart of selected nodes of Figure 8.8 execution 176

LIST OF TABLES

Table 1.1 Supercomputers’ sites examples at TOP500 containing heterogeneous systems..... 31

Table 4.1 Compute nodes available for experiments.. 73
Table 4.2 StarVZ application data table ... 84
Table 4.3 StarVZ link data table... 84
Table 4.4 Critical path data example from execution traces and R data manipulation 85

Table 5.1 Machines configurations used .. 99

Table 7.1 Computational nodes used in the performance evaluation..................................... 139
Table 7.2 Summary of exploration strategies and expected behavior 146

LIST OF ALGORITHMS

Algorithm 1 Tile-based algorithm for the LU decomposition ... 39

Algorithm 2 Tile-based algorithm for the Cholesky decomposition 40

Algorithm 3 Basic C application using StarPU API.. 45

Algorithm 4 Task-based LU factorization.. 57

Algorithm 5 Shuffling a 1D partition into a 1D distribution ... 63

Algorithm 6 Basic R script to select events of the applications table that were executed

between 10000ms and 15000ms ... 84

Algorithm 7 1D-1D constrained .. 92

Algorithm 8 Shuffling algorithm ... 97

Algorithm 9 Local solve algorithm.. 109

Algorithm 10 Generation of a target (data generation) distribution (dist(2)) from a source

(computational intensive) distribution (dist(1)) .. 121

CONTENTS

1 INTRODUCTION.. 27
1.1 The Heterogeneous HPC Universe ... 28
1.2 Applications’ Perspective of such Complex Heterogeneous Systems 32
1.3 This Thesis Contributions and Structure .. 34
2 TASK-BASED PROGRAMMING AND SELECTED HPC APPLICATIONS............. 37
2.1 Application Structure .. 37
2.2 Tasks Scheduling and Runtimes ... 41
2.3 Application Benefits ... 43
2.4 The StarPU Ecosystem .. 44
2.4.1 The Chameleon Linear Algebra Library... 47
2.4.2 The ExaGeoStat Unified GeoStatistics Framework .. 48
2.4.3 The Diodon library for large datasets.. 50
2.5 Opportunities in the Heterogeneous Context .. 53
3 RELATED WORK: LOAD DISTRIBUTION .. 55
3.1 Data Distribution for Linear Algebra .. 55
3.1.1 Homogeneous Distributions.. 56
3.1.2 Heterogeneous Distributions... 59
3.2 Heterogeneous Dynamic Load Balancing Algorithms and Strategies 64
3.3 Multi-Distributions and Redistribution on Multi-Phase Applications 67
3.4 Reinforcement Learning for optimizing HPC behavior ... 68
3.5 Contributions opportunities.. 69
4 ANALYSIS AND EXPERIMENTAL METHODS ... 71
4.1 Experimental Methodology... 71
4.1.1 Computational Resources and Software Stack.. 72
4.1.2 Real Experiments Setup.. 73
4.1.3 Simulation Setup and Evaluation.. 74
4.2 Performance Analysis Methodology... 78
4.2.1 Trace data collection and transformation.. 78
4.2.2 Performance metrics ... 79
4.2.3 Visualizations of performance behavior ... 81
4.2.4 Interpreting traces data.. 83
4.3 Improving performance process ... 85
5 HETEROGENEOUS DISTRIBUTIONS STRATEGIES FOR LINEAR ALGEBRA . 87
5.1 Strong Scaling in a Homogeneous Context.. 87
5.2 Problem: The Communications and Load-Balance Trade-off 88
5.3 Proposal: Communication and Load-Balance Trade-off Aware Distributions.......... 91
5.3.1 Constraining an Heterogeneous Distribution.. 91
5.3.2 Shuffling Blocks.. 96
5.4 Performance Evaluation.. 98
5.4.1 Strong Scaling in a Heterogeneous Context.. 99
5.4.2 Performance Gain over a Larger Heterogeneous Cluster .. 101
5.4.3 Performance Gain over Different Levels of Heterogeneity... 102
5.5 Discussion ... 103
6 HETEROGENEOUS STRATEGIES FOR MULTI-PHASE APPLICATIONS 105
6.1 Problem: Asynchronous Multi-phase distributions ... 106
6.2 Multi-phase Partitioning in Heterogeneous Clusters.. 108
6.2.1 Improving Application’s Phase Overlap ... 108
6.2.2 Load Balancing across Application Phases .. 115

6.2.3 Multi-Partitioning for distinct phases ... 118
6.3 Performance Evaluation.. 121
6.3.1 Improving ExaGeoStat Phases Overlap .. 122
6.3.2 Improving Diodon Phases Overlap ... 125
6.3.3 ExaGeoStat phases partitioning in heterogeneous clusters... 127
6.3.4 Analysis of a case when using too many fast nodes.. 130
6.3.5 Diodon phases partitioning in heterogeneous clusters.. 132
6.4 Discussion ... 134
7 LEARNING AND ADAPTING IN COMPLEX HETEROGENEOUS SYSTEMS 137
7.1 Problem: Varying Heterogeneous Nodes per Phase ... 137
7.2 Proposal: Exploration Strategies Candidates ... 141
7.2.1 Naive Heuristics .. 141
7.2.2 Classical continuous minimization approaches .. 141
7.2.3 Multi-armed bandits.. 142
7.2.4 Gaussian Process... 143
7.2.5 Summary of Strategies.. 146
7.3 Experimental Evaluation... 147
7.3.1 Behavior on different setups ... 147
7.3.2 Depicting the GP exploration/exploitation step-by-step ... 148
7.3.3 Results Overview: GP and existing Exploration Strategies.. 150
7.3.4 GP Computation Overhead Evaluation... 153
7.3.5 Optimizing considering all phases.. 153
7.4 Energy Perspectives ... 154
7.5 Discussion ... 158
8 SUMMARIZING APPLICATIONS’ BEHAVIOR... 161
8.1 Problem: Limited space to plot complex behaviors.. 161
8.2 Proposal: Node Progression visualization through clustering................................... 163
8.2.1 Progression Metrics .. 163
8.2.2 Summarizing by Clustering .. 166
8.2.3 Progression Visualization ... 168
8.3 Evaluation on Real Applications .. 169
8.3.1 System and Software... 169
8.3.2 Chameleon predefined abnormal behaviors.. 169
8.3.3 A multi-phase application over heterogeneous nodes... 174
8.4 Discussion ... 175
9 FINAL DISCUSSION AND CONCLUSION .. 179
9.1 Deciding when to stop optimizing... 182
9.2 Future Works.. 184
9.3 Publications .. 185
REFERENCES.. 189
APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS 201
A.1 Contribuições da Tese ... 204
A.2 Paradigma de Programação Baseado em Tarefas.. 206
A.3 Trabalhos Relacionados: Distribuição de Carga ... 207
A.4 Métodos Experimentais e de Análise... 208
A.5 Estratégias de Distribuições Heterogêneas para Álgebra Linear............................. 209
A.6 Estratégias Heterogêneas para Aplicações Multifásicas ... 210
A.7 Aprendendo e Adaptando em Sistemas Heterogêneos Complexos 212
A.8 Resumindo o Comportamento das Aplicações ... 213
A.9 Discussão Final e Conclusão .. 214

APPENDIX B — RÉSUMÉ DÉTAILLÉ EN FRANÇAIS.. 221
B.1 Apports de la thèse .. 224
B.2 Paradigme de Programmation Basé sur les Tâches ... 226
B.3 Travail connexe : Répartition de la charge ... 227
B.4 Méthodes d’analyse et d’expérimentation... 228
B.5 Stratégies de distributions hétérogènes pour l’algèbre linéaire 229
B.6 Stratégies Hétérogènes pour les Applications Multi-phases...................................... 231
B.7 Apprentissage et Adaptation dans les Systèmes Hétérogènes Complexes 233
B.8 Résumé du Comportement des Applications.. 234
B.9 Discussion Finale et Conclusion ... 235

27

1 INTRODUCTION

High-Performance Computing (HPC) provides the means for complex applications to

use massive computational power and conclude in a feasible time. Until the beginning of the

2000 decade, the growth of transistors per chip followed the Moore law, which stated it would

double each two years (MOORE et al., 1965; MOORE et al., 1975). This growth allowed an

exponential increase in computational power, as pointed out by Dennard performance scaling

(DENNARD et al., 1974). However, limits in heat dissipation held the increase of chips’ clock in

the 2000s (HENNESSY; PATTERSON, 2017), stopping the exponential performance increase

of individual cores (DONGARRA et al., 2017).

Many alternatives for continuing the computational power growth appeared. Multicore

microprocessors allow single chips to possess multiple cores (HENNESSY; PATTERSON,

2017). Manycore systems enable many CPUs on the same board while sharing the same memory

space using the Non-Uniform Memory Access (NUMA) (HENNESSY; PATTERSON, 2017).

And other processing hardware emerged besides CPUs for specific purposes, such as accelerators

like General Purpose Graphics Processing Units (GPGPU)1 (SANDERS; KANDROT, 2010),

other vectorial accelerators (KOMATSU et al., 2018), Field-Programmable Gate Array (FPGA)

(UNDERWOOD; HEMMERT; ULMER, 2009), and Application-Specific Integrated Circuit

(ASIC), like Tensor Processing Units (TPU) (JOUPPI et al., 2017).

The combination of a subset of these resources results in a single heterogeneous compu-

tational node. This intra-node heterogeneity has been widely employed in recent years in many

applications by the HPC community (SANDERS; KANDROT, 2010; AUGONNET et al., 2011;

MENG et al., 2017; PINTO, 2018). However, exploiting this heterogeneity is complex, as it re-

quires the correct application division into those multiple and diverse resources, considering the

adaptability and performance of the algorithm in each resource (SANDERS; KANDROT, 2010;

AUGONNET et al., 2011). For example, computational kernels with many distinct branches

(many if-else statements, for example) are more appropriate for CPUs, while algorithms that

repeat the same instruction over data (like the matrix-matrix multiplication operation) are well

suitable for GPUs.

From the developers’ perspective, handling such heterogeneity requires extensive knowl-

edge of the target system and the anticipation of the application behavior. In traditional pro-

gramming methods and tools such as Message Passing Interface (MPI) and Bulk Synchronous

Parallel (BSP) applications, using heterogeneous resources is complicated, as the programming

1Hereby only called GPUs, as it is the most common use in literature.

28

style is entirely imperative. These programming approaches specify statically where a workload

executes, with barriers and synchronous communications to control the flow of the application’s

multiple operations or phases. With this level of synchronism, a small error in the workload

division would result in non-ideal performance with idle resources. One problem is that such a

mistake is almost inevitable, as systems and applications are complex. Also, ensuring the appli-

cation’s capability (portability) to execute on different systems requires extensive modifications

to its source code, increasing the chance of mistakes.

Nevertheless, the availability of distinct processors and the diversity of applications

necessities encourage heterogeneity in a system-level (HPE et al., 2022). It is thus increasingly

common that HPC systems comprise many machines with diverse hardware configurations

organized into homogeneous clusters or partitions to accommodate applications’ necessities

better. If used correctly, this heterogeneity enables the application to adjust particular internal

behavior and improve performance, exploiting heterogeneity instead of suffering from it. The

structure of this chapter follows. Section 1.1 details the presence of heterogeneity on HPC

platforms, notably system-level heterogeneous resources in many supercomputers’ sites. Section

1.2 discusses the application’s challenges and perspectives when using heterogeneous resources.

Finally, Section 1.3 details the problems tackled by this Thesis, opportunities, and goals.

1.1 The Heterogeneous HPC Universe

The heterogeneity in HPC is vast (HPE et al., 2022). There are different processor units,

CPUs, GPUs, vector Processors, and very specialized devices such as TPUs, each ideal for

specific applications and algorithms. There are even CPUs with specialized and distinct cores

available (Intel Corporation, 2021b). However, this heterogeneity is not limited to processing

units. The expanded hierarchy with non-volatile units or the studied Processing In Memory (PIM)

are examples in the memory field (HPE et al., 2022). Heterogeneity is also present in both storage

devices with Solid State Drives (SSD), Hard Disk Drives (HDD), and long-term storage tapes;

and in the interconnection layer with dozens of proprietary and custom hardware and links. All

those choices lead to a combinatorial explosion of the possible configurations when designing

system architectures. Combining different nodes enables a more robust accommodation of

different applications with various needs. In this context, the notion of Modular Supercomputer

Architecture (MSA) appeared (HPE et al., 2022), with separate modular homogeneous clusters

targeting a kind or a particular phase of the HPC applications workflow.

Traditionally, HPC applications require supercomputers, usually located in large research

29

centers, both in academia and industry. The sites (the infrastructure facilities) can host different

systems, as pointed out by the TOP500 (DONGARRA et al., 1997) list of supercomputers.

Figure 1.1 shows the number of sites with different numbers of homogeneous systems (partitions,

homogeneous clusters) that appeared in the TOP500 list between 2017/11 and 2022/11. For

example, there were 86 sites with precisely two distinct homogeneous systems. The colors

represent the heterogeneous type of the site. Sites in green have systems that only differ in the

CPU, while red differs for GPUs and orange only for the interconnection. Sites in blue have

multiple heterogeneous systems (CPU, GPU, and interconnection). For example, from the 86

sites with two different systems, the two systems in four sites (red) have the same CPU and

interconnection but different accelerators. In the same case, the two systems of 69 sites (blue)

have multiple sources of difference (CPUs, interconnections, and accelerators), 12 sites (green)

have both systems with the same interconnection and accelerators but have different CPUs, and

only one site (orange) have two systems that have the same CPU and accelerators but have

different interconnections. The number of sites with multiple systems is significant, as less

than 40 sites have only one system that appeared on the TOP500 list. Also, systems below the

500 positions in the ranking since 2017/11 are absent, meaning that these sites can have less

powerful supercomputers that are still operational and could be used in conjunction with the

more powerful systems.

Figure 1.1 – Sites of the TOP500 that have multiple systems between 2017/11 and 2022/11

10+
10

9
8
7
6
5
4
3
2
1

0 25 50 75

Sites

S
ys

te
m

s
pe

r
S

ite

Case
Same CPU and interconnection but different accelerators Different CPUs, accelerators, and interconnections

Same interconnection and accelerators but different CPUs Only one homogeneous system

Same CPU and accelerators but different interconnections

Source: The Author.

The reasons behind the heterogeneity of these supercomputer’s sites are three-fold: (i)

by design, when the infrastructure possesses such configurations to target diverse workloads; (ii)

financial limitations, when, for example, only a subset of nodes receives accelerators because of

30

budget constraints; and (iii) the natural infrastructure upgrades over time.

The TOP 500 list only considers and ranks a homogeneous set of nodes as a system.

This restriction comes from a limitation in the adopted HPC benchmark, HPL (DONGARRA;

LUSZCZEK; PETITET, 2003), as it can not run adequately in system-level heterogeneous

setups. Table 1.1 presents selected examples of sites with multiple systems. An example is the

Santos Dumont Supercomputer2 installed at the National Laboratory for Scientific Computing

(LNCC)3. The 2015 Santos Dumont site was split into three major groups, GPU, Hybrid (with

Intel KNL), and CPU, describing their accelerators’ capabilities. This division is both a case

of design (multiple accelerators for different purposes and applications) and probably financial

limitations (not all nodes received them). Recently, LNCC enhanced Santos Dumont with an

extended partition containing a new processor and accelerator, a natural upgrade over time.

Only this last extension partition was measured and present in the 2020/11 TOP 500 list. Santos

Dumont is a clear example of multiple homogeneous systems that applications could use together,

taking advantage of a more diverse, larger, and powerful system. As a matter of fact, the Santos

Dumont position in the TOP 500 list (276º) would probably improve if the benchmark could

use the totality of heterogeneous system-level resources, as computational power from different

systems would combine.

Other remarkable examples in Table 1.1 are the Chinese PAI-ASystem/PAI-BSystem, the

Saudi Arabian Dammam-7/Unizah-II, and the Swiss Piz Daint/Piz Daint Multicore. In all these

cases, both systems have identical hardware specifications except for the accelerator. While

one of the systems in each site has an accelerator, the other does not. Financial limitations

could explain this. Examples of upgrades over time are the Australians Gadi and Raĳin, and

the Germans COBRA and DRACO. It is possible to observe a considerable difference in the

systems’ launch years. The American Selene/DGX SuperPOD may be a case of design choice,

as both systems launched in 2020 with different hardware (processors and accelerators).

The full utilization of these systems over many years is desirable, as they are costly plat-

forms and usually require significant construction time and effort. In this way, the application’s

ability to use and adapt to all the system resources is not just a matter of performance but also re-

duces these expensive systems’ idleness. The old systems shutdown should be carefully studied

when organizations upgrade their infrastructures. The resources could still be operational, and

the inappropriate disposal or premature retirement is also an environmental challenge (WID-

MER et al., 2005; ROBINSON, 2009; LYNAR et al., 2010). Simply replacing all machines

often for homogeneity is an expedient decision.

2<https://sdumont.lncc.br/machine.php?pg=machine>
3<https://www.gov.br/mcti/pt-br/rede-mcti/lncc>

https://sdumont.lncc.br/machine.php?pg=machine
https://www.gov.br/mcti/pt-br/rede-mcti/lncc

31

Table 1.1 – Supercomputers’ sites examples at TOP500 containing heterogeneous systems

Site System Processor Accelerator Year TOP 500
2020/11

LNCC SDumont Intel Xeon NVIDIA 2019 276
(Brazil) Gold 6252 Tesla V100

Santos Dumont GPU Intel Xeon Nvidia K40 2015 Below
E5-2695v2 500

Santos Dumont Hybrid Intel Xeon Intel Xeon 2015 Below
E5-2695v2 Phi 7120P 500

Santos Dumont CPU Intel Xeon - 2015 Below
E5-2695v2 500

CNRS/IDRIS Jean Zay (with GPU) Intel Xeon NVIDIA 2019 64
(France) Gold 6248 Tesla V100

Jean Zay (no GPU) Intel Xeon 2019 108
Gold 6248

NCI Gadi Intel Xeon NVIDIA 2020 27
(Australia) 8274/8268 Tesla V100

Raĳin Intel Xeon NVIDIA 2012 Below
E5-2690v4 Tesla P100 500

CMA PAI-BSystem Intel Xeon NVIDIA 2018 147
(China) Gold 6142 Tesla P100

PAI-ASystem Intel Xeon - 2017 159
Gold 6142

MPG COBRA Intel Xeon - 2018 51
(Germany) Gold 6148

DRACO Intel Xeon - 2016 Below
E5-2698v3 500

NVIDIA Corp. Selene AMD EPYC NVIDIA A100 2020 5
(US) 7742

DGX SuperPOD Intel Xeon NVIDIA 2020 26
8174 Tesla V100

Saudi Aramco Dammam-7 Intel Xeon NVIDIA 2020 10
(Saudi Arabia) Gold 6248 Tesla V100

Unizah-II Intel Xeon - 2020 86
Gold 6248

CSCS Piz Daint Intel Xeon NVIDIA 2017 12
(Switzerland) E5-2690v3 Tesla P100

Piz Daint Multicore Intel Xeon - 2016 266
E5-2695v4

Source: Selection of TOP500 (DONGARRA et al., 1997) list of supercomputers.

The presentation of these heterogeneous supercomputers’ sites shows that the HPC

computational world is heterogeneous, both intra-node and inter-node. The challenge is enabling

applications to use any combination of these systems efficiently. The decision about how many

https://www.top500.org/site/50576/
https://www.top500.org/site/50403/
https://www.top500.org/site/47369/
https://www.top500.org/site/47551/
https://www.top500.org/site/48331/
https://www.top500.org/site/48448/
https://www.top500.org/site/48751/
https://www.top500.org/site/50422/

32

nodes and what clusters to use should consider performance and efficiency. However, before

this decision can be made, the application must cope and adapt to the system-level heterogeneity

and exploit it to satisfy internal heterogeneous behaviors.

1.2 Applications’ Perspective of such Complex Heterogeneous Systems

HPC supports many scientific applications built upon linear algebra kernels; these are the

type of applications studied in this thesis. Traditional versions of these MPI applications equally

divide their computational load by distributing their data into homogeneous nodes. Usually,

homogeneous data distribution strategies rely on static partitioning to minimize communication

(BLACKFORD et al., 1997). Because of the uniform nodes’ power in the homogeneous case,

the final distribution is usually cyclic with a pattern. Usually, the data-to-node assignment uses

simple heuristics like equal volume division or round-robin alike techniques.

Many algorithmic challenges appear when transitioning to heterogeneous scenarios

(DONGARRA; LASTOVETSKY, 2006; BEAUMONT et al., 2019). First, the ideal amount of

data per node will be different. Depending on the application’s data structure, this division may

not be trivial. Although a simple division would be enough in one-dimensional data structures,

with all data portions having an identical computational cost, specialized strategies are needed

for higher dimensions or when particular data have different behavior or computational power

needs (BEAUMONT et al., 2001a). Moreover, having different amounts of data per node re-

sults in various quantities of inter-node communication, as nodes that process more will need

to communicate more. This communication difference means that the ideal trade-off between

communication and computation per node is more critical in heterogeneous scenarios than in

homogeneous ones. The same applies if the amount of computation per data element differs,

resulting in a critical path that the nodes’ heterogeneous capabilities will influence. Finally, there

is a technical programming perspective. Simpler distributions, like cyclic ones, are easier to

implement in traditional paradigms like MPI, and broadcast functions are more clearly applied.

However, irregular communication patterns appear when dealing with arbitrary distributions,

and other paradigms or middlewares may be necessary to reduce the developing complexity and

application maintainability.

Furthermore, applications may compound different phases that have different computa-

tional needs and would admit distinct ideal data distributions. These phases could also exploit

node resources differently, changing the perfect distribution for each one even more. For exam-

ple, phases comprising data generation are typically more appropriate to traditional CPUs, while

33

some Single Instruction, Multiple Data (SIMD) compute-intensive operations, such as classical

linear algebra kernels, could use accelerators to increase performance.

Classical BSP applications with strongly coupled MPI or MPI+X situations have barriers

between phases, creating a synchronous execution. However, if the phases could overlap

(an asynchronous scenario), each phase could use its best resource (with the better speedup

ratio) instead of trying to use them all. This distinct computational demand per phase makes

system-level heterogeneity a natural choice to improve load partitioning. Although overlapping

phases increase possibilities in the overall node distribution, they entail more development and

algorithmic challenges. These challenges of finding efficient distributions for heterogeneous

nodes while considering communication and improving asynchronous executions make most

applications only use homogeneous resources and miss an enormous opportunity. In this way,

traditional programming paradigms, like BSP, are improper for these complex systems.

The limitations of the traditional paradigm include poor intra-node heterogeneity han-

dling, low programming efficiency, unnecessary synchronism, and limited resource portability.

Together, they suggest the resurgence of the task-based programming paradigm (BOSILCA et

al., 2013; DURAN et al., 2011; AUGONNET et al., 2011; WU et al., 2015; THIBAULT, 2018).

This paradigm adopts a more declarative way of programming and uses a runtime to make

decisions, including dynamically scheduling work (tasks) during execution. The application

describes individual tasks and data dependencies and structures them into a Directed Acyclic

Graph (DAG). This approach’s benefits include relieving the programming complexity of explic-

itly handling irregular communications and computational flow using a runtime and improving

the cooperation of heterogeneous intra-node resources.

The runtime is responsible for scheduling tasks respecting the dependencies using many

possible heuristics. This approach also allows easy overlap of single and multiple operations

tasks. Also, some runtimes perform data transfers inter and intra-node automatically based on

the DAG structure, reducing the development burden. The application developer still needs to

give many hints to the runtime to assist it during execution, but once formulated, the code is

highly portable to multiple systems. Examples of such runtimes are ParSEC (BOSILCA et al.,

2013), OmpSS (DURAN et al., 2011), and StarPU (AUGONNET et al., 2011), the latter used

in this work. These modern task-based runtimes provide a high-level programming abstraction

with the required flexibility, facilitating the research and development of sophisticated static

data distribution strategies across heterogeneous nodes. This approach seems more elegant and

adequate to handle and combine heterogeneity from systems architecture and application needs.

Hence, the task-based programming paradigm provides many opportunities to implement

34

elaborated algorithmic strategies and refined distributions required to address the challenges

of utilizing heterogeneous resources. Moreover, this work uses DAG-related and task-based

information to guide the strategies and the performance analysis.

1.3 This Thesis Contributions and Structure

HPC applications require considerable computational power provided by supercomput-

ers. These computational resources may present a system-level heterogeneity when there are

two or more groups of nodes, each group with different hardware and computational power.

Moreover, applications may show internal heterogeneous behavior because of distinct opera-

tions or multiple phases that can run differently at each intra-node resource. The increase of the

intra-node heterogeneity in supercomputers and the difficulty of programming them encourage

the use of robust parallel programming paradigms like the task-based one. While this paradigm

provides enough flexibility, portability, and dynamism to handle such a complex scenario, many

problems still need to be solved. All these circumstances make the problem of distribut-
ing these task-based applications among heterogeneous nodes challenging, although many

opportunities for improving performance and resource usage arise.

The main goal of this work is to provide strategies and methods to improve distributions

of task-based applications over system-level heterogeneous resources. Many challenges should

be considered for an application to achieve the correct performance. The challenges tackled in

this Thesis are: (1) The distributions for each application phase should consider not only the

load balancing but the trade-off between communication and critical path as well; (2) Creating

several distributions for multi-phase applications with different needs while considering their

overlapping interaction; and (3) finding the ideal number of nodes per type for each phase.

Each challenge requires and uses the solution of the previous one. Ultimately, an

optimized application would use all strategies to reach its full potential. Figure 1.2 presents the

contributions highlighted on the application stack while showing the hierarchical structure of

the challenges. The application executes using a task-based runtime and over a series of system-

level (multiple partitions) heterogeneous resources. The application must inform the runtime

about the data distribution, tailoring each one for each phase (operation). The contributions

chapters organization of this thesis follows a natural order from the smallest element, a phase

(distribution of just one operation), to the interaction of multiple phases (overlap and various

distributions), to the application as a whole (adapting it as it goes and performance analysis).

The main structure of this thesis follows.

35

Figure 1.2 – Main thesis contributions on the task-based application using heterogeneous resources

Application

Resources

Partition 1

Distribution 1 Distribution n

Adjusting the number of nodes with
reinforcement learning

Partition 2 Partition 3

Computing a single heterogeneous
distribution; considering communication

and critical path

Improving phases overlap, computing the
relative power per phase per resource

partition, and computing a heterogeneous
distribution that optimizes the redistribution

Partition n

Analyzing the application execution

Phase 1 Phase 2 Phase n

(With system-level
heterogeneity)

Task-based runtime

Chapter Contribution Asynchronous

Comm. Comm.

5

6

7

8

Distribution 2

Source: The Author.

Preliminary Chapters. Chapter 2 presents the background for Task-Based applications, run-

times characteristics, and the StarPU ecosystem. It focuses on the applications’ DAG structure

from the base algorithms and how the runtime schedules tasks into many resources. The chapter

also presents the applications that will be used in the remaining chapters. The first is the linear

algebra library Chameleon, the second is the GeoStatistics application ExaGeoStat, and the third

is the large datasets analysis library Diodon.

Chapter 3 presents many state-of-the-art related works. It starts with the general problem

of distributing an application (primarily linear algebra 2D structured ones) on both homogeneous

and heterogeneous scenarios. After, it introduces classical work and techniques on load balanc-

ing, followed by a presentation of related work on the management of multi-phase applications

considering both multiple distributions and communication. Finally, we briefly present how

some machine learning and reinforcement learning algorithms have been used in related HPC

problems.

Methodology. Chapter 4 presents the methodology used in this work to perform controlled

experiments and comprehensive performance analysis. The methodology builds on real execu-

tions with careful experimental control, simulations evaluating their reliability in this context,

and analysis of these experiments using analytic metrics, traces, and visualization.

Contributions. Chapter 5 studies distributions for one possible operation, the LU factorization,

which could be expanded to similar linear algebra ones. It provides the following contributions.

36

(a) A strategy that improves the performance of applications by reducing communications in the

critical path. This situation occurs when the parallelism in the DAG diminishes. The approach

constrains the distribution to use fewer resources toward the end of the algorithm. (b) A strategy

to improve the computational load balancing of a given static distribution considering multiple

tasks and heterogeneous resources while increasing communication. (c) A methodology to

combine (a) and (b).

Chapter 6 considers the problem of multi-phase applications involving possibly multiple

heterogeneous distributions. The case study relies on the multi-phase applications Exageostat

and Diodon. The Chapter has the following contributions. (d) Optimizations to improve appli-

cation phase asynchronism and enhance multi-distributions. (e) Strategy to generate efficient

heterogeneous distributions for multi-phase applications with different resource performance

affinities while considering phase overlap. (f) A technique to derive other distributions from a

major one that reduces communications when performing the redistribution.

Chapter 7 presents strategies for the application to actively learn and adapt to the best

heterogeneous nodes it can access. The Chapter has the following contributions. (g) An anal-

ysis of this problem’s main characteristics and explain why generic optimization and learning

techniques will likely fail. This analysis motivates the design of specific variations of a rein-

forcement learning technique based on the Gaussian process. (h) A comprehensive performance

evaluation with 16 different heterogeneous machines and workloads that compare the proposed

solutions with other generic optimization methods (Brent, Bandits, GP-UCB). Among these var-

ious methods, the GP-based variant is the only robust and parsimonious method to quickly reach

the optimal configuration in multiple scenarios. (i) An actual implementation of the method to

enable the application to adapt during execution, demonstrating the low overhead.

Chapter 8 discusses techniques and methods to analyze the behavior of task-based ap-

plications. Specifically, (j) techniques with extra focus on the platform and application hetero-

geneity and the actual progress of the application.

Chapter 9 concludes this thesis with the major contributions, the next directions, and the

list of publications.

Finally, a companion for the thesis is publicly available4. It includes the data, scripts,

and experiments’ traces to replicate the analysis and figures.

4<https://gitlab.com/lnesi/thesis-companion>

https://gitlab.com/lnesi/thesis-companion

37

2 TASK-BASED PROGRAMMING AND SELECTED HPC APPLICATIONS

The Task-based programming paradigm (THIBAULT, 2018), also known as the Data

Flow Scheduling (DONGARRA et al., 2017) or the Asynchronous Many Task (AMT) paradigm

and runtimes (HUMPHREY; BERZINS, 2019), uses a more descriptive approach, not imper-

ative, to define an application. Applications express their internal algorithms with tasks and

dependencies without explicitly defining where the parallelism is and where and when those

tasks execute. A runtime decides the tasks’ scheduling and placement during execution using

internal algorithms and heuristics. Because of this flexibility and loose coupling on the platform,

Dongarra et al. (2017) points out that Task-based programming will be the desired paradigm for

exaflop systems. Although utilizing tasks and dynamic scheduling is an old concept (CODD,

1960), it is attracting popularity in many new and modern projects (DONGARRA et al., 2017;

THIBAULT, 2018; HOUSSAM-EDDINE et al., 2020).

This Chapter has four Sections to cover the background of the Task-based paradigm.

Section 2.1 describes the principles and structure of a common task-based application, giv-

ing examples of typical algorithms, parallelism, and asynchronous opportunities. Section 2.2

presents a brief discussion about task-based runtimes, examples, and traditional scheduling algo-

rithms. Sections 2.3 introduces some application benefits when using this paradigm, including

runtime management of data transfers, communication and computation overlap, and seamlessly

dynamic asynchronous phases execution. Finally, Section 2.4 describes the runtime used in this

thesis, StarPU, and its ecosystem, showing some internal operations and particularities that made

it the desired runtime for this work. This last Section also covers applications that rely on the

StarPU runtime and will be used to evaluate, in other chapters, the thesis proposed strategies.

2.1 Application Structure

The elementary component of the application is a Task. The OpenMP specification, for

multi-platform shared-memory parallel programming, defines a task as “A specific instance of

executable code and its data environment that the OpenMP implementation can schedule for

execution by threads” (OpenMP Architecture Review Board, 2020). This definition captures

the essence of tasks also for other runtimes. However, this is a restricted definition in some

situations, including runtimes with heterogeneous resources or ones that enable tasks to run

over multiple a group of workers (like StarPU). Therefore, a possible task characterization is:

"A collection of implementations of one particular algorithm and its data dependencies that a

38

runtime can schedule to one or a group of workers associated with computational resources."

The other main component of this paradigm is the data dependencies, which are the

data inputs or outputs of a task. The successive data usage through multiple tasks will create a

flow that expresses the application progress and constructs the task DAG. In the Sequential Task

Flow (STF) strategy (AGULLO et al., 2016), the application only has one thread and submits

the tasks sequentially, using the flow method to construct the DAG. In a simple example, with

tasks TA and TB, if task TA generates a data D that TB will read and write, there will be a direct

dependency from TA to TB. When scheduling these tasks, TB will only be ready to be scheduled

when TA finishes and saves its data D modifications. In this way, we define that TB depends on

TA (TA → TB), and TB is ready only when all its dependencies are satisfied (when other tasks

that modify shared data dependencies conclude). Different workers (resources) can execute two

tasks in parallel if they are not dependent on each other.

When describing the application, one can solely create tasks informing data input and

output and submit them to the runtime. There is no need to denote task dependencies explicitly

(although some runtimes allow it). The runtime can infer the DAG structure, using Bernstein

conditions (BERNSTEIN, 1966), from the submitted tasks’ order and the data access level (read,

write, or both). Considering our earlier example and this non-explicit dependency declaration,

if TB was submitted before TA, the dependency would be TB → TA and not TA → TB, as the

submission order suggests that the data D will be modified by TB and TA will use this updated

data. Figure 2.1 presents other sequences of submission and access examples (data access and

data block in parenthesis), showing the resultant DAG.

Figure 2.1 – Examples of tasks submission and the respective DAG structure

TA

Submit TA(RW, D)
Submit TB(RW, D)

TB

TB

Submit TB(RW, D)
Submit TA(RW, D)

TA

Submit TA(RW, D)
Submit TB(RW, D)
Submit TC(RW, D)

TA

TB

TC

Submit TA(RW, D)
Submit TB(R, D)
Submit TC(R, D)

TA

TB TC

Source: The Author.

Many algorithms already have task-based versions. For example, those using tile de-

composition for their data are easy to express. The LU decomposition is one classical algorithm

of linear algebra that decomposes the matrix A into the triangular lower matrix L and triangular

39

upper matrix U , A = LU . It is widely used to solve systems of linear equations, as one of the

resultant triangular matrices can be easily used with the right-hand matrix to solve the linear

system. Algorithm 1 presents the LU decomposition tile-based version. It has three main

kernels, all part of Basic Linear Algebra Subprograms (BLAS), dgetrf-nopiv, dtrsm, and

dgemm. Each kernel accesses one or more tiles with a specific permission type (read or both

read and write). The task-based version can use this algorithm to naturally unroll the DAG and

submit the tasks with the correct dependencies to the runtime.

Algorithm 1: Tile-based algorithm for the LU decomposition
1 Input: nb Number of blocks

n Number of Matrix cells
A[1...n][1...n] Matrix divided and accessed through nb× nb blocks

2 Output: A[1...n][1...n] Storing L and U
3 for k = 0; k < nb; k++ do
4 dgetrf-nopiv(RW, A[k][k]);
5 for i = k+1; i < nb; i++ do
6 dtrsm(RW, A[i][k], R, A[k][k]);
7 dtrsm(RW, A[k][i], R, A[k][k]);
8 end
9 for j = k+1; j < nb; j++ do

10 for i = k+1; i < nb; i++ do
11 dgemm(RW, A[i][j], R, A[i][k], R, A[k][j]);
12 end
13 end
14 end

Figure 2.2 presents the LU tile-based data structure on the right with nb arbitrary number

of tiles, each with size bs, and on the left, the DAG whennb = 3. Although the data representation

Figure 2.2 – The LU algorithm data regions of matrix A updated at iteration k (left) and the DAG for the
tiled version with nb = 3 (right)

Matrix:

bs

L

U

A

n

0,0

1,0

2,0

dgetrf dtrsm dgemm

1,1

0,1

0,2

1,2

2,1

2,2

1,1 1,2

2,1

2,2 2,2

Source: The Author.

40

shows one iteration of the data structure update and where tasks are working, the flexibility of

the task-based approach enables the computation of many iterations simultaneously, provided

that task dependencies are satisfied.

Another classic algorithm is the Cholesky factorization. It is a linear algebra algorithm

that decomposes a hermitian, positive-definite matrix A into a triangular matrix L and its

transpose LT , A = LLT . Algorithm 2 presents the Cholesky tiled version with its four kernels:

dpotrf, dtrsm, dsyrk, and dgemm. Similar to the LU case, one task-based application can use

this algorithm to unroll the DAG and submit tasks with the correct data and permissions. The

runtime will infer all the parallelism.

Algorithm 2: Tile-based algorithm for the Cholesky decomposition
1 Input: nb Number of blocks

n Number of Matrix cells
A[1...n][1...n] Matrix divided and accessed through nb× nb blocks

2 Output: A[1...n][1...n]
3 for k = 0; k < nb; k++ do
4 dpotrf(RW, A[k][k]);
5 for i = k+1; i < nb; i++ do
6 dtrsm(RW, A[i][k], R, A[k][k]);
7 end
8 for i = k+1; i < nb; i++ do
9 dsyrk(RW, A[i][i], R, A[i][k]);

10 for j = i+1; j < nb; j++ do
11 dgemm(RW, A[j][i], R, A[i][k], R, A[j][k]);
12 end
13 end
14 end

Figure 2.3 presents the data structure at one iteration for the Cholesky, the tasks which

Figure 2.3 – The Cholesky algorithm data regions of matrix A updated at iteration k (left) and the DAG
for the tiled version with nb = 4 (right)

Matrix:

bs

L

LT

A

n

0,0

1,0

2,0
1,1

2,2

2,1

3,0

3,3

3,1

3,2

1,1

2,1

3,1

2,2

3,3

3,2

2,2
3,2

3,3 3,3

dpotrf dtrsm dsyrk dgemm

Source: The Author.

41

write on parts of its data (left), and the resultant DAG with nb = 4 (right). Again, different

iterations of the Cholesky algorithm can execute concurrently, having tasks of various iterations

running simultaneously because of the DAG guiding an asynchronous execution. These asyn-

chronous iterations happen if the tasks of a particular block coordinate are ready and advanced

more than other positions. This multiple-iteration execution can be beneficial in accelerating

specific tasks or paths in the DAG, especially the critical path, which is composed of different

iterations.

2.2 Tasks Scheduling and Runtimes

The task-based runtimes enable optimizations and adaptive behaviors for the dynamic and

stochastic conditions they may face (THIBAULT, 2018; BOSILCA et al., 2013). The runtime

will schedule tasks following an algorithm that usually accepts parameter customization. These

scheduling algorithms can generally follow a centralized or per-resource queue of tasks. In the

centralized case, all the resources will pull tasks from one queue. The scheduling algorithms

will operate in how to populate it, considering different heuristics, like task priorities. In the one

queue per resource approach, each resource will pull a task from its queue, and the scheduling

procedures will decide to which resource queue each task should go. An example of this approach

is the work-stealing strategy, where one worker can steal one task from another worker’s queue

when its own is empty. Other techniques use information about task duration, considering

historical data or other models. One popular algorithm is HEFT (TOPCUOGLU; HARIRI;

WU, 2002), which considers task duration for heterogeneous resources. After prioritizing the

tasks by the upward or downward ranking, HEFT will decide about scheduling one task to a

given resource queue by choosing the one that minimizes the overall application time. This

operation can be formalized by:

rchosen = argmin
r

(er + wt,r) (2.1)

where rchosen is the chosen resource, er is the expected ending time of resource r queue, and wt,r

is the expected time duration of task t on resource r. One possible variant of this algorithm is

the DMDAS present in StarPU (AUGONNET et al., 2011) that this work extensively uses. This

algorithm also considers data transfers. First, ready tasks will be sorted by their priorities and

then scheduled into workers. The equation will have another component, the total data transfer

time. Many other variants may exist, considering other attributes, including but not limited to

42

energy usage, data locality in the memory hierarchy, and even multiple priorities per resource

type (BRAMAS, 2019).

The development of task-based runtimes is active, and there are design and execution

differences in all. Some of the differences are: (i) the application’s approach to express tasks and

dependencies; (ii) the inner workings for scheduling, data organization, and communication;

(iii) features like support for heterogeneous resources, running in distributed machines, and

fault-tolerance.

Some examples of runtime are the following. Cilk (BLUMOFE et al., 1996) is one of

the first ones that spread DAG of tasks concepts and inspired other runtimes. Intel Threading

Building Block (Intel TBB) (ROBISON, 2011) was also another older approach for multicore

usage. Intel refurbished and renamed it to Intel oneAPI Threading Building Blocks (oneTBB)

(Intel Corporation, 2021a). All these examples solely consider one computational node and

CPUs. The usage of multiple nodes and accelerators is only possible with other frameworks.

Another interesting case is OpenMP (OpenMP Architecture Review Board, 2020), which is

widely used to program shared-memory systems. It started offering task support in version 3,

and it is in constant development with the addition of the depend clause in version 4, which

allows data dependencies. Also, since version 4, it allows the usage of heterogeneous systems,

with the target clause. Charm++ (KALE; KRISHNAN, 1993) is another popular framework

that uses a declarative approach slightly different from the DAG-oriented one. The main feature

of Charm++ is balancing work through many resources in many nodes during runtime in BSP-

like applications, not in a full asynchronous case. It uses the over-decomposition of work into

units and the migration of them. The support for GPUs is also integrated (VASUDEVAN et al.,

2013).

Other projects released almost together by the high-performance linear algebra com-

munity are: ParSEC (BOSILCA et al., 2012), OmpSs (DURAN et al., 2011), and StarPU

(AUGONNET et al., 2011). ParSEC uses Parameterized Task Graphs (PTG) to describe the

application’s tasks’ structure, providing the traditional STF as well. The PTG interface enables

a static definition of the algorithm that does not require the whole and memory-costly unrolling

of the DAG in all machines. To control the distribution of work in different nodes, the data

distribution in ParSEC follows a user-defined function. OmpSs uses code annotations similar to

OpenMP tasks. The application must use MPI to execute through multiple nodes, and all com-

munication is its responsibility. StarPU uses STF with an API to create and insert tasks. It has the

flexibility to control data and task placement and has an active development ecosystem. Section

2.4 presents further information about StarPU and why it was chosen to be the runtime of this

43

work. Nevertheless, other similar initiatives include Uintah (MENG; HUMPHREY; BERZINS,

2012), which focuses on fluid-structured problems; HPX (KAISER et al., 2014), which focuses

on providing the facilities of the C++ standard; the Minos framework (GIOIOSA et al., 2020),

which focuses on the workflow of independent applications; and the Chameleon programming

environment (KLINKENBERG et al., 2020) which focuses on the reactive load-balancing given

a performance metric.

2.3 Application Benefits

Applications that carefully use and explore the task-based programming paradigm have

many benefits. One example is the ability to program complex applications, expressing them

more declaratively. It only requires a description of small recurrent tasks and dependencies

that will become a complete dependency graph and can be divided into many nodes smoothly.

This declarative structure can have additional information like task priorities, and the runtime

can infer their performance models, improving the dynamic scheduling. Another benefit is the

dynamic scheduling during execution time. While some argue that the overhead generated by the

scheduler may cause a slowdown when there are too many tasks, a dynamic scheduler presents

improved portability to different resources without the need to change applications’ source code

or explicit tune for a set of resources (THIBAULT, 2018).

Nevertheless, the runtime can take care of many operations that, in traditional paradigms,

would be the programmer’s responsibility. One significant and impacting one is memory

management, especially the automatic communication and computation overlap. In this seamless

management for the programmer, the runtime can use the DAG as a reference to prefetch data

for different resources (GPUs) and nodes. This management can also provide other features,

including out-of-core memory and cache behaviors. Memory management can also operate in

multi-node executions. Because of the DAG and the distributions, the runtime can infer when

other nodes need data and handle all inter-node communications internally.

As discussed in the LU and the Cholesky case, the asynchronous execution of multiple

iterations or even steps is possible because the DAG has all the necessary information to control

the flow. This behavior differs significantly from traditional applications that follow BSP or

similar approaches. In classical BSP Cholesky and LU applications, there will be a synchronous

barrier at each iteration, reducing the possible total amount of task parallelism. When the

number of available tasks reduces at each iteration’s end, the application phase may not have

sufficient computational work for all resources, creating idleness until a new iteration begins.

44

Also, applications with many operations or steps can exploit the asynchronism the task-based

design provides. While traditional applications would synchronize at the end of each operation,

the task-based approach is naturally asynchronous since the runtime has the application DAG to

control the execution flow correctly.

2.4 The StarPU Ecosystem

The StarPU task-based runtime (AUGONNET et al., 2011), developed at Inria1, is a

library designed to work on heterogeneous resources. In StarPU, each task can provide multiple

implementations, and it is the responsibility of the runtime during execution to decide which

one to use based on the scheduling heuristic. The runtime assigns each resource to an entity

called a worker, which is the entity that effectively executes the tasks. Figure 2.4 presents the

internal structure of the StarPU runtime over a computational node. The application interacts

with the runtime submitting tasks with many implementations that may access external libraries

(OpenBLAS, cuBLAS, for example).

Figure 2.4 – StarPU stack over node resources

algorithms skeletons routines

kernels libraries components

architecture

runtime

compilationcompilation

tasks submission tasks implementations

application

binary

Source: Thibault (2018).

StarPU has an API for C, Fortran, and Julia programming languages. The standard usage

of the API starts with a call to the starpu_init function to initialize the runtime. The developer

can define tasks as a starpu_codelet struct containing the implementation’s functions for the

1<https://www.inria.fr/>

https://www.inria.fr/

45

task. The starpu_task_insert function inserts a task and the starpu_task_wait_for_all

one waits for all submitted tasks to finish (a blocking call). After the end of the program, a call to

the starpu_shutdown function is necessary to close the runtime. Algorithm 3 presents a basic

example of a C application using the StarPU API, defining one task named hello_world with

a CPU implementation using the func_cpu function. The application initializes the runtime,

submits and waits for one task, and then shutdowns it.

Algorithm 3: Basic C application using StarPU API
1 void func_cpu (void *buffers[], void *args) {
2 printf("Hello World!");
3 }
4 struct starpu_codelet codelet_world = {
5 .cpu_funcs = {func_cpu},
6 .nbuffers = 0,
7 .name = "hello_world",
8 };
9 int main () {

10 starpu_init(NULL);
11 starpu_task_insert(&codelet_world, 0);
12 starpu_task_wait_for_all();
13 starpu_shutdown();
14 }

The StarPU follows the STF strategy (AGULLO et al., 2016). In this approach, the DAG

construction is easy, and after inserting all tasks, no extra work is necessary from the application.

Usually, the application will unroll the DAG and wait for all tasks with a synchronization wait

call. Nevertheless, in this approach, the runtime can block one insertion and stop task submission

in specific situations, like when no more memory is available, or a particular threshold of tasks

is reached.

Some of the scheduling algorithms of StarPU can use a performance model of the tasks’

duration. The application can define a model for each task based on parameterized equations or

historical data. In the history-based performance model, StarPU will save the task’s execution

time in an auxiliary sampling directory each time it executes it, associating the sampling with

a task type and input size. One can compute the mean and variance of the tasks’ duration

after many executions. This approach requires the tasks’ duration calibration, running them a

minimum of times to have a decent duration model. The default calibration amount in StarPU is

ten times. However, this historical method may not work in complex scenarios where the task’s

duration is influenced by factors other than type and size. In the parameterized equations method,

StarPU will use an application-defined function to get the expected task duration. This function

46

can receive arbitrary parameters, such as the data input structure particularities (MILETTO et

al., 2022).

The StarPU MPI (AUGONNET et al., 2012) module provides the distributed execution

of StarPU across multiple nodes. In this module, each node will have a unique StarPU process

without a global scope. There are no control messages to synchronize or inform the complete

application DAG. It actuates in an entirely decentralized method. The application has to submit

in each node all the tasks that require data that this particular node should receive or send.

This partial DAG unrolling enables the runtime to concretize all unilateral communications

functions. When the application unrolls the DAG, and StarPU notices that another node’s

task requires local data, StarPU will create a send requisition, more specifically, a MPI_isend.

When it unrolls a task that will execute locally and requires external data, it will issue a MPI_-

irecv. There are some situations where other nodes send data before the irecv. These

earlier requests are possible because there is a handshake message per communication, so the

process does know when different nodes intend to send data. All this request control moves the

communication responsibility from the MPI implementation to StarPU. Moreover, StarPU offers

the traditional MPI API backend plus a specialized backend for the NewMadeleine (DENIS,

2019) MPI implementation. One big difference is that the NewMadeleine implementation has

message priorities informed on the isend.

The data in StarPU-MPI is spread across the nodes using a static distribution because of

scalability concerns, and each data has a node owner. When tasks are submitted, the developer

does not inform where (node) the task will execute. The runtime will verify which data the

task writes and which node owns this data, selecting the appropriate node to execute this task.

Figure 2.5 illustrates this approach, where blocks of the matrix are spread (owned) across four

nodes, and the tasks that write on one particular data will execute on the respective node owner.

Figure 2.5 – Example of matrix ownership and DAG distribution among nodes

Node 1

Matrix Distribution over Nodes
Node 2 Node 3 Node 4

Application DAG over Nodes
Task writes on

data from:Block owner:

Node 1

Node 2

Node 3

Node 4

Node 1

Node 2

Node 3

Node 4

Source: The Author.

47

Although StarPU initializes data with a static node distribution, this does not limit the

runtime’s flexibility to execute any particular task on any node, as the application can change

data ownership during the execution. However, an important technical aspect in StarPU is that,

because of the STF, if the developer wants to move one task from one node to another, the

application should inform this movement before this particular task insertion. In this way, to

create dynamic decisions about data movement during execution, the movements should be

submitted earlier than the submission of the desired task to change. Moreover, every node that

contains this data should also inform the movement to make all instances of the runtime in every

node know the new data ownership.

Another valuable feature of StarPU is the simulation of its applications over arbi-

trary infrastructures using the Simgrid (CASANOVA et al., 2014) framework, enabling the

StarPU+Simgrid module (STANISIC et al., 2015b). In these simulations, StarPU will use the

performance models of the tasks on arbitrary infrastructures to simulate the application behav-

ior. Executing the actual task function is unnecessary, and the simulation can only account for

its duration. The StarPU internal operations, like task scheduling, are performed over a host

machine that can collect execution traces. The distributed version of StarPU is handled naturally

as an MPI application running over Simgrid.

Reasons for selecting StarPU. Although this work selects the StarPU runtime because of its

features and ecosystem convenience, there is no known restriction of the proposed strategies to

other runtimes as long as they provide the flexibility of redistribution capabilities. However,

this work uses StarPU among the various systems because its features include: its capacity

to use heterogeneous intra-node resources, its task declarative C-like programming style, its

ability to run over many distributed nodes using StarPU-MPI, the simulation feature with the

StarPU+Simgrid module, the capability of using a developer-informed distribution and its ability

to do data redistribution in a declarative manner. StarPU is generally very flexible when building

applications, providing all the necessary features this work needs. The comprehensive tools for

performance analysis of applications, the ecosystem containing other scientific applications, and

the extensive documentation are also reasons for this choice.

2.4.1 The Chameleon Linear Algebra Library

Chameleon (AGULLO et al., 2010) is a state-of-the-art dense linear algebra library that

provides most of the BLAS/LAPACK operations and others through a task-based version, tar-

geting heterogeneous and modern infrastructures. Chameleon offers a unified API to use its

48

operations while preserving the ability to rely on different runtimes, including ParSEC, StarPU,

and OpenMP. The library can perform its operations in heterogeneous intra-node resources,

including CPUs and GPUs, and mostly let the runtime decide where to schedule such tasks. For

this, each task may admit multiple implementations in Chameleon. Examples of operations that

Chameleon provides are matrix-matrix multiplication, LU factorization, Cholesky decomposi-

tion, and QR factorization2. Each operation is a function submitting the tasks in the correct

sequence to the runtimes.

The library relies on a definition of a matrix structure that helps in runtime flexibility.

The matrix is divided into blocks, and the tasks use those blocks. Users of Chameleon should

construct such a matrix to utilize the operations. Chameleon uses the traditional block-cyclic

distribution (further explained in Section 3.1) for homogeneous nodes of ScaLAPACK (BLACK-

FORD et al., 1997). Also, Chameleon provides a set of control functions that will call the

low-level runtime ones. For example, the ability to change the owner node of a block in StarPU

is abstracted on a similar function of Chameleon. However, the Chameleon one updates its

structure and implements it using the appropriate runtime function (when available). With such

flexibility, Chameleon is an excellent library to be used as a starting point for other applications

that may require its BLAS/LAPACK operations.

2.4.2 The ExaGeoStat Unified GeoStatistics Framework

ExaGeoStat is a machine learning application for GeoStatistical data that relies on the

Gaussian process (GP) framework and can predict missing observations (ABDULAH et al.,

2018). It is developed using the task-based programming paradigm and relies on the Chameleon

task-based dense linear solver and StarPU. ExaGeoStat can rely on different runtimes like

StarPU or ParSEC. ExaGeoStat interpolates spatial data (X,Z), where X corresponds to the

measurement locations and Z corresponds to the measurements, with a Gaussian process whose

smoothness and scale are controlled by a set of parameters θ that requires adjustments to the data.

Therefore, the application iteratively optimizes the log-likelihood of θ through Equation (2.2):

l(θ) = −N

2
log(2π)− 1

2
log |Σθ| −

1

2
ZTΣ−1

θ Z, (2.2)

where Σθ is an n × n covariance matrix built from X representing the similarity between

measurement locations, which is computed through a covariance function Kθ (i.e., Σθ[m,n] =

2The complete operations list is available at: <https://gitlab.inria.fr/solverstack/chameleon>.

https://gitlab.inria.fr/solverstack/chameleon

49

Kθ(Xm, Xn)). Although Machine Learning commonly uses the squared exponential (Gaussian)

covariance function, the Matérn covariance function is more appropriate for geostatistics data,

which can be relatively rough.

Therefore, this optimization requires the computation of the determinant and the inversion

of a large, dense, symmetric, and positive definite matrix Σθ at each optimization iteration. To

this end, this matrix is first decomposed using Cholesky factorization (Σθ = F TF) and used

through a triangular solve (F−1Z) and a dot product to compute the last term of Equation 2.2.

The diagonal blocks of the factorization give the determinant of the matrix. Each optimization

iteration has five phases as depicted in Figure 2.6: (1) Covariance matrix generation by Matérn

function with complexity O(n2); (2) Cholesky decomposition with complexity O(n3) using

the Chameleon library; (3) Matrix determinant with complexity O(n); (4) Triangular solve

with complexity O(n2) also using the Chameleon library; and (5) the dot product of the solve

vector with complexity O(n). Figure 2.6 depicts the DAG corresponding to one iteration. Also,

ExaGeoStat authors reported excellent performance and scalability results with homogeneous

multi-core systems (ABDULAH et al., 2018).

Usually, applications focus on their most computationally intensive phase, in this case,

the Cholesky factorization, setting up distributions and scheduling priorities based solely on it.

However, each phase has a different computational necessity and suitability with accelerators.

ExaGeoStat distributes the data for all operations using the traditional block-cyclic distribution

for homogeneous nodes of ScaLAPACK (BLACKFORD et al., 1997), the default option in

the Chameleon library. Where the matrix n × n is divided into nb × nb blocks and cyclically

attributed to the nodes. Although the principal operation of the Cholesky factorization, the

general matrix multiplication kernelgemm, performs well in GPUs, the generation’s main task, the

Matérn covariance function, is only available through a costly CPU implementation. Therefore,

the generation phase makespan can be longer than the Cholesky factorization in small and

medium cases (GRAMACY, 2020), even with one complexity order of difference. ExaGeoStat

official public repository3 version presents two options for execution: (1) Synchronous, with a

synchronization point between each phase, and (2) Asynchronous, where the synchronizations’

barriers between factorization and determinant, and solve with the dot product disappear. Yet,

this second option is not a fully asynchronous version.

As we will show in this work, when considering hybrid nodes (CPU+GPU), the Matérn

covariance function raises severe load-balancing issues. Indeed, some phases better employ

GPUs while others better utilize CPUs. Thus, it is natural to exploit system-level heterogeneity

3<https://github.com/ecrc/exageostat>

https://github.com/ecrc/exageostat

50

Figure 2.6 – ExaGeoStat iteration DAG for nb = 3

0 0

0 0

1 0 2 0

1 0 1 1 2 0 2 1 2 2

0 1 2
0

1

2

1 1 2 22 1

1 1

2 2

2 2

Cholesky
Iteration 1

Cholesky
Iteration 2

Cholesky
Iteration 3

0 0 2 2

determinant

0 0

1 1 2 2

1 0

2 1

2 0

1 1

solve
vector

0 1 2

dot product

2 1

Tasks
dcmg dpotrf dtrsm dsyrk dgemm dmdet

(2) Cholesky O(n³)

(1) Generation O(n²)

(3) Determinant O(n)

(4) Solve O(n²)

(5) Dot product O(n)

Source: The Author.

by mixing different node types to process each phase as efficiently as possible. However, a hetero-

geneous set of computing nodes will require different distribution strategies than the traditional

block-cyclic distribution. Such heterogeneity would even imply different data distributions for

each phase, with data redistribution occurring during the execution of the phases.

2.4.3 The Diodon library for large datasets

Diodon is a C++ library to compute multivariate data analysis of large datasets. It pro-

vides the methods of Principal Component Analysis (PCA), Multidimensional Scaling (MDS),

and Correspondence Analysis (CoA). These methods rely on the Singular Value Decomposition

(SVD), which unfortunately does not scale well with matrix dimension and is quite hard to

51

distribute and parallelize. However, it can be accelerated using the Randomized Singular Value

Decomposition (rSVD) approximation. This work focuses on the MDS operation that takes as

an input the matrix of dissimilarities D between n elements and finds n vectors xi ∈ Rm such

that ∀i, j ∈ 1..n Di,j ≈ ∥xi − xy∥. Being m much smaller than the dimension of the original

elements. This abstract mapping allows for simpler data visualization.

The sequence of operations for the approximation of the MDS method using the rSVD

is presented in Figure 2.7, depicting the Diodon DAG. The matrix D is structured into nb× nb

blocks of size bs × bs. The first phase is the (1) read of D through hdf5 files. This step may

assume a different distribution because the hdf5 files may be organized in a different grid than

the one used by the linear algebra operations. If the hdf5 file has n columns, each read task will

read a complete set of rows (each set with bs rows). Otherwise, there will be a task for each set

of rows on each file, totaling rb read blocks per bs rows. In the next step (2), copypaneltotile

tasks will be responsible for mapping this grid system to the final one, generating nb × nb

blocks into the matrix D. Diodon will then apply the (3) Gram operation, which requires

computing the sum of squares of each block, aggregating them for each row (and columns for

other operations), and finally, for the whole matrix. Then, with these values, it is possible to

compute the Gramian of each block. While this happens, Diodon can (4) generate the random

Gaussian Ω (of dimension n× r) matrix used for the rSVD. Finally, a (5) matrix multiplication

operation is performed with D and Ω, followed by a (6) QR factorization and a synchronization.

Subsequently, it performs another matrix multiplication and QR factorization, and Diodon can

apply the SVD in this matrix (which is much smaller than the original D). Since the SVD is not

yet available in the task-based paradigm, a call to the traditional BLAS library is made. After

the SVD, post-processing operations extract and adjust the eigenvalues and eigenvectors.

The read phase of Diodon uses the hdf5 library (FOLK et al., 2011); hence, only

CPU workers perform the read tasks. The original version of Diodon performs IO with only

one read task at a time, as the library hdf5 is not thread-safe. We enabled multiple read

tasks simultaneously by instantiating hdf5 with dlopen several times, so each worker has a

unique and isolated library copy. The ideal number of parallel reads may vary per node and

storage resource, as multiple simultaneous tasks create contention. In our experiments (with

computational nodes equipped with SSDs), the performance improvements reach a plateau in

reading data after five or six concurrent reads, which means that the contention generated when

adding a new worker degrades performance slightly. In the rest of the paper, the experiments

use five read workers for all SSD and distributed file-system machines.

An interesting remark when analyzing the structure of Diodon’s DAG is that there is an

52

Figure 2.7 – Diodon MDS DAG for nb = 2

0 0/1 1 0 1 1

0 1
0

1

Tasks
read copy gramsum sq dgemm

(1) Read D O(n²)

0 0 0 1 1 0 1 1

0 0 1 0

0 0

0 0

1 0

1 0

0 0 0 1 1 0 1 1

0 0 0 1 1 0 1 1

0

0

1

1

SO

(2) CopyToTiles O(n²)

(3) GRAM O(n²)

(4) Generation Ω O(nr)

(5) GEMM O(n²r)

QR

GEMM

QR

SVD

(6) Other Phases

sum sq
rows

sum sq
all matrix

=

gem

D

G ← Gram(D)

Ω

Y ← GΩ

QYRY ← Y

C ← GTQy

QCRC ← C

UC Σ VC
T← RC

GEMM U ← QYVC

Source: The Author.

algorithmic synchronization point when the sum of squares is computed for the whole matrix

(task SO in Figure 2.7). All the Gram operation tasks and following phases (except for the

low-cost Ω generation) need to wait for the computation of the SO task. Another problem is

that this task requires a complete read of matrix A. This synchronization limits resource usage

because all tasks before SO do not use GPUs, and the read operation may take some time,

effectively making all GPUs idle until the complete read of the matrix.

Another remark is that in the original version of Diodon, the QR operation was syn-

53

chronous because of the temporary memory workspace allocation for this operation. Anyway,

the synchronization point in the Gram operation before already limits the overlap, so any op-

timization in the QR synchronization would have limited improvement. In this work, we will

focus on the overlap and the performance of the first five phases plus the first QR factorization

when its termination will require a synchronization barrier.

Moreover, the SVD operation is performed directly by the BLAS libraries and not

handled by the Task-Based Chameleon, requiring an entire synchronization point. Finally,

although MDS uses a symmetric matrix, we study operations that use the complete matrix

computation to further consider the other methods, including PCA and CoA. The authors of

Diodon focused on achieving performance with homogeneous nodes with large matrices in

double and single precision. We aim in this thesis to further improve performance by exploiting

system-level heterogeneity and application phase requirements.

2.5 Opportunities in the Heterogeneous Context

Task-based applications and runtimes offer many capabilities to exploit computational

resources. However, the applications need to define the load distribution, and this problem

should consider each particular case, such as application characteristics, intra-node resources,

inter-node communication, and system-level heterogeneity.

While the runtimes may technically support the execution over system-level heteroge-

neous resources, their performance depends on how the application is structured (DAG, for

example) and how the developer distributes it across the nodes. In both cases, the knowl-

edge of how an application with asynchronous operations runs over system-level heterogeneous

resources is limited and has great potential to be explored. As this thesis will show, many

challenges appear that require application-based solutions. In this way, approaches or strategies

that help task-based applications over heterogeneous system-level resources are desirable.

54

55

3 RELATED WORK: LOAD DISTRIBUTION

This thesis evolves across a broad spectrum of problems related to data distribution and

load balancing of HPC applications over system-level heterogeneous resources. Section 3.1

introduces the problem of distributing data across homogeneous and heterogeneous resources,

focusing on linear algebra problems, especially considering the 2D matrix partition and distri-

bution case. Section 3.2 discusses dynamic strategies to balance the computational load after

one initial distribution. Section 3.3 presents the case when applications have multiple steps

or phases, and each has an ideal distribution, with the necessity of redistribution or multiple

distributions among phases. Section 3.4 introduces the usage of reinforcement learning or other

adaptive methods for optimizing HPC behavior, including parameters, configurations, and sys-

tems. Finally, Section 3.5 presents problems and opportunities for contributions in all these

fields.

3.1 Data Distribution for Linear Algebra

The division of data and computation for distributed nodes is a fundamental element

in parallel programming. Partitioning is an essential step in classical parallel applications

design methodologies like PCAM (FOSTER, 1995). This methodology consists of four stages:

Partitioning, Communication, Agglomeration, and Mapping, with the division of data and work

occurring in the Partitioning and Mapping steps. The load distribution can optimize multiple

objectives. The most common goals are improving the application performance (makespan) by

decreasing idle times or balancing the load of the processors, reducing the total communication

to avoid network contention, or increasing the available parallel computations. However, other

objectives are possible, like reducing energy consumption or the cost of platform utilization.

The strategies for distributing data and computation among resources can be a static,

a dynamic, or a hybrid approach (SHIRAZI; KAVI; HURSON, 1995). The static partition is

performed once before all the computation and remains stationary during the execution of the

application. This partitioning problem is dependent on the application domain. For example,

classical algebra linear operations must partition a 2D matrix among the resources. However,

the optimal solution for the static 2D strategy is an NP-complete problem (BEAUMONT et

al., 2002a). Dynamic strategies rely on distributing the workload during the execution of the

application. Most task-based runtimes, including StarPU (AUGONNET et al., 2011), adopt

this approach for intra-node resource scheduling. Finally, a hybrid approach has both static

56

and dynamic techniques. A hybrid example is the StarPU-MPI module, which uses dynamic

scheduling for intra-node tasks and static data distribution among different nodes mainly because

of scalability concerns. The application must inform this static distribution, while one of many

heuristic algorithms of StarPU performs the dynamic intra-node scheduling of tasks.

The following subsections present the distribution problem and state-of-the-art solutions

for homogeneous and heterogeneous computational resources.

3.1.1 Homogeneous Distributions

Homogeneous distributions refer to mapping a set of computational tasks or data into

resources of equal computational capacity. That means a task has the same duration in any pos-

sible computational resource. There are polynomial and exact algorithms to solve this problem

if there is prior knowledge of tasks’ time and no dependencies (KLEINBERG; TARDOS, 2006).

In many applications, parallelism is achieved by concurrently processing the application domain

data. Therefore, partitioning data is one way of distributing the load. For example, linear alge-

bra problems, like matrix multiplication, LU, and Cholesky factorizations, rely on a matrix and

structured data access. By distributing this matrix data, one distributes the computational tasks

as well. The static partitioning of data can optimize several objectives, including improving

load balancing across resources, reducing communications, and maintaining load balance across

different iterations and data structures.

The de facto standard library for high-performance dense linear algebra routines over

parallel distributed memory machines is ScaLAPACK (BLACKFORD et al., 1997), which

provides efficient and scalable implementations for Cholesky, LU, and QR factorization. For

simpler algorithms, like the matrix-matrix multiplication, where each output cell has the same

amount of updates, the partitions of the matrix can be continuous and usually are 2D sub-matrices

(blocks) to reduce communication. However, complex algorithms that may have various update

iterations and a different number of accesses per block require more robust strategies. This

subsection focuses on the LU factorization to explain 2D homogeneous distributions, as most

other operations lead to similar parallelization challenges and need the same kind of strategies.

Figure 3.1 presents the blocked version of the LU factorization algorithm by relying on

three LAPACK kernels: dgetrf, dtrsm, and dgemm. The first characteristic of this algorithm

in terms of parallelization is that when nb is large, the two inner loops (i and j) surrounding the

(nb−k)2 dgemm constitute the significant part of computations and are fully parallel since every

A[i][j] should be updated independently from the others. In contrast, there are dependencies

57

between the different outer loop iterations. The second characteristic is that the portion of the

matrix updated at each iteration of the outer loop gradually decreases. Therefore, one should

ensure that every sub-matrix A[k . . . nb][k . . . nb] is well distributed between the computation

nodes and that all nodes can efficiently participate in each update. This necessity for cyclicality

is further evident in Figure 3.2, which presents the access patterns over different iterations of a

matrix with size nb = 4. Because the matrix area reduces during the algorithm progression, a

given iteration’s performance would benefit if its right-lower matrix is balanced across all the

resources.
Figure 3.1 – The LU algorithm (left) without pivoting and the regions of A updated at iteration k (right)

Algorithm 4: Task-based LU factorization
1 Input: nb Number of blocks

n Number of Matrix cells
A[1...n][1...n] Matrix divided and accessed

through nb× nb blocks
2 Output: A[1...n][1...n] Storing L and U
3 for k = 0; k < nb; k++ do
4 dgetrf-nopiv(RW, A[k][k]);
5 for i = k+1; i < nb; i++ do
6 dtrsm(RW, A[i][k], R, A[k][k]);
7 dtrsm(RW, A[k][i], R, A[k][k]);
8 end
9 for j = k+1; j < nb; j++ do

10 for i = k+1; i < nb; i++ do
11 dgemm(RW, A[i][j], R, A[i][k], R,

A[k][j]);
12 end
13 end
14 end

bs

L

U

A

n

Source: The Author.

Figure 3.2 – Matrix access progress of the LU factorization tile-based algorithm

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Source: The Author.

For homogeneous resources, there is a good understanding of the needs of this load

balancing throughout the execution, employing a 2D block-cyclic distribution (BC for short).

58

Popularized by ScaLAPACK (BLACKFORD et al., 1997), BC takes advantage of the gradual

decrease of sub-matrices to provide a good load balance. Two parameters, P and Q, are

used to distribute the data and intercalate it into the resources. Figure 3.3 presents the matrix

distribution using different values of P and Q for a complete matrix. In each case, the matrix

is divided into a series of blocks (tiles), with the block’s coordinate appearing on both axes.

The color of the block represents the node it is assigned. The block-cyclic feature allows a

regular balance (a pattern on any P ×Q case) of columns and rows and hence of the sub-matrix

A[k . . . nb][k . . . nb] over the nodes. In contrast, the 2D feature (P > 1 and Q > 1) provides

relatively low communication during the update (proportional to the square root of the total

number of nodes) compared to a 1D distribution (where it would be proportional to the total

number of nodes). There are also further studies of communication-avoiding algorithms relying

on 3D and 2.5D data distributions (GRIGORI; DEMMEL; XIANG, 2008) that can reduce even

further the communication amount by replicating data. However, they also come at the cost of

higher memory usage and extra flop counts.

Figure 3.3 – Two-dimensional block-cyclic distribution with different PxQ values

Source: The Author.

There may be better distributions than the block-cyclic one, which focuses on cyclicality

and blocks with many updates, for other operations present in the applications. The operation data

access pattern, communication, and cost will determine the ideal distribution. As discussed,

partitions (continuous divisions for each resource) for matrix-matrix multiplication are not

directly applied to the LU or Cholesky factorization, as these algorithms require cyclicality

that matrix-matrix multiplication does not need. Similarly, distributions can be tailored to

specific operations, improving certain proprieties. For example, in the Cholesky case, some

works consider the triangular shape and design a homogeneous cyclic distribution to reduce

communication (BEAUMONT et al., 2022).

59

Another example that requires a tailored distribution is when the function applied on

each block varies depending on the data. This condition is observed in sparse matrix oper-

ations (MILETTO, 2021) and algorithms using compressed matrices like Block Low Rank

(BLR) (AMESTOY et al., 2015). Compression cases require specialized distributions, where

some works propose a cyclical algorithm that considers the block operation’s time (BEAU-

MONT; EYRAUD-DUBOIS; VÉRITÉ, 2020). Although all these distributions work very well

on homogeneous resources, different distribution algorithms are required for heterogeneous

environments.

3.1.2 Heterogeneous Distributions

The definition of the general problem of distributing an HPC parallel application using

heterogeneous resources considers a set of resources (processing units) with different computer

capabilities, speeds, or any other characteristic. Then, a problem is parallelized by simulta-

neously computing different parts of its data domain. The goal is to partition the data across

the resources with a one-to-one mapping from one data entity to one computational unit. The

amount of data assigned to each process should be relative to its capability (DONGARRA;

LASTOVETSKY, 2006). In most cases, this partition may satisfy additional restrictions while

minimizing a function, like application total makespan.

HPC Applications require different distribution strategies depending on their data struc-

ture and access patterns, considering the heterogeneity of the cluster (RACA; MEHOFER, 2020).

Different applications’ domains can take into account the heterogeneous case. The distribution

of parallel loops into heterogeneous machines can use compiler time scheduling algorithms

to handle the system heterogeneity (CIERNIAK; ZAKI; LI, 1997). Image processing can use

a genetic algorithm to distribute applications (AALI; BAGHERZADEH, 2020). MapReduce

operations can divide a 1D domain and map the partitions considering a dynamic calibrated

measure of computer capabilities, equalizing the load between all computing nodes (FAN et

al., 2012). Linear algebra kernels can use specialized distributions for heterogeneous resources

(KALINOV; LASTOVETSKY, 2001; BEAUMONT et al., 2002b).

In linear algebra operations, 2D matrix partitioning is usually the main problem. The

LU factorization is a great example to understand some of the work done in this problem with

heterogeneous resources. Figure 3.1 (right) shows the A[k . . . nb][k . . . nb] sub-matrix, which is

updated with the product of the row and column k (computed by the dtrsm). When all nodes

have different processing speeds, one should ensure that each node receives a fraction of the sub-

60

matrix, which is proportional to its speed. Nevertheless, since every node requires fragments of

the row and column k to perform this update, this requirement induces communication with the

nodes owning these blocks. One should thus ensure that the total amount of communications

is not too large. This problem, known as the Peri-Sum problem, has been widely studied in the

2000s.

Peri-Sum: Given P nodes, let si denote the relative speed of nodes so that
∑

i si = 1.

Partition the unit square into P rectangles Ri of dimension (hi, vi) so that hi × vi = si and∑
i hi + vi is minimal.

Kalinov and Lastovetsky (2001) first introduced this problem, and it was proven to be

strong NP-hard in the general case (BEAUMONT et al., 2002b). Figure 3.4 illustrates particular

classes of partitions for which a solution can be found. Restricting to 1D partitioning is trivial

but leads to tall rectangles, producing terrible communication costs. Conversely, restricting to

2D partitioning leads to optimal communication costs but rarely allows optimal load balancing.

Beaumont et al. (2001b) proposed an asymptotically optimal dynamic programming algorithm

for column-based partitions. The resulting partition has the good property of grouping the

faster nodes together (nodes are sorted by speed before being arranged in columns). Later,

Nagamochi and Abe (2007) proposed a recursive splitting algorithm based on a Divide-and-

Conquer approach.

Figure 3.4 – Taxonomy of unit-square partitions

One-Dimensional Collumn-based Recursive UnconstrainedTwo-Dimensional

Source: Beaumont et al. (2001a).

The problem can accept some restrictions to reduce its complexity. The cases for re-

stricting the number of resources to three heterogeneous clusters or processors and finding the

optimal shapes for the 2D matrix are present in Becker and Lastovetsky (2007) and DeFlumere

and Lastovetsky (2014). Further, Patton et al. (2019) provides real experimental evaluations with

the non-rectangular shapes for three resources. Additional investigation considers improving the

communications functions over a homogeneous network for matrix-matrix multiplication, and

the three resource cases (MALIK; LASTOVETSKY, 2020). Moreover, there are extensions for

this work regarding the energy for those communications (MALIK; LASTOVETSKY, 2021).

Beaumont et al. (2019) proposes two sub-optimal algorithms, Simple Non-Rectangular Recur-

61

sive Partitioning (SNRPP) and Non-Rectangular Recursive Partitioning (NRPP). The authors

state that both algorithms work for any number of partitions. However, because of the uncer-

tainty of the optimal shapes and ratios for four or more partitions, the authors only compare

NRPP with the optimal approach for the two and three cases. The authors also state that the

three-case complexity increases significantly compared to the two-case and believe that the same

thing would occur for the four-case.

The problem for partitioning a matrix on high heterogeneous setups that contains multiple

clusters where each cluster’s node also has multiple devices is studied by Clarke et al. (2012).

The authors propose a hierarchical way of first distributing inter-node and then intra-node. The

work experiments applied the final distributions on matrix-matrix multiplication, where there is

no need for cyclicality, with good results.

Another interesting case is when the speed capacities of the resources are not constant

but presented as a continuous function of block sizes (CLARKE; LASTOVETSKY; RYCHKOV,

2012). Moreover, the makespan increase by size may not be linear, and architectural aspects,

including resource contention, may influence it. The distribution problem is further expanded,

and its solution involves optimizing the ideal kernel size when multiple heterogeneous resources

exist. The authors in Clarke, Lastovetsky and Rychkov (2012) present an algorithm to generate a

column-based distribution considering these continuous functions. Khaleghzadeh, Manumachu

and Lastovetsky (2018) designed a branch-and-bound algorithm, HPOPTA, which receives

functional performance models for the resources and computes a 1D distribution. It can also

model some 2D cases that can be relaxed as 1D distributions. The authors study the algorithm

using matrix-matrix multiplication and FFT and do not consider communication for this work.

Because of problems in the HPOPTA algorithm for a larger number of homogeneous

machines, Khaleghzadeh, Manumachu and Lastovetsky (2020) expands the algorithm with

a hierarchical version, HiPOPTA, that works for identical nodes comprising heterogeneous

resources and a version, HiPOPTAX, designed for a wholly different set of nodes. The work is

adapted for energy optimization, presenting HEOPTA (KHALEGHZADEH et al., 2020); and

for a Bi-Objective of performance and energy, making HEPOPTA (KHALEGHZADEH et al.,

2021) that considers the Pareto front. Again, the authors state that communication is out of the

scope of these versions. The authors show that most optimal solutions are imbalanced over the

resources’ load in all algorithm versions; however, they provide a better makespan or objective

function than the entirely balanced one.

A critical aspect of the distributions is the total communication they cause. Rico-

Gallego, Lastovetsky and DÍaz-MartÍn (2017) adapted a communication cost model (τ -Lop)

62

from homogeneous settings to heterogeneous ones considering synchronous applications, where

the communication occurs in phases and starts simultaneously. They evaluate the model in the

matrix-matrix multiplications and a 2D wave equation solver. However, because of τ -Lop

decouple from computation, its applicability on asynchronous and overlapping communication

and computation environments is limited. Rico-Gallego et al. (2020) adapted Beaumont et

al. (2001b) column-based algorithm for matrix-matrix multiplication using τ -Lop instead of

the sum of half perimeters in the same conditions as above. Another work proposes a tool to

construct and evaluate the τ -Lop expressions’ communication cost (RICO-GALLEGO et al.,

2019).

The distribution can also be done dynamically using a runtime scheduler. Beaumont

et al. (2015) compares static, dynamic, and hybrid approaches. The authors show that static

distributions for matrix-matrix multiplication can greatly reduce communication, and dynamic

scheduling consistently provides a lower makespan while increasing communication. The hybrid

approach’s usage presents both worlds’ benefits, indicating that the general hybrid approach offers

advantages over the pure static or pure dynamic.

Although a lot of work focuses on correctly producing the partitions with continuous

areas, many times using the Peri-sum problem for optimizing communications, much work still

can be done to distribute these partitions in a discrete setting. Moreover, some algorithms,

including the LU and Cholesky factorizations, would benefit from a distribution optimized to be

balanced at all iterations, with cyclicality, not necessarily using a partition computed for matrix

multiplication that would only be valid for iteration one (the only that uses the whole matrix).

Partitions that allow for processing a single update operation efficiently are thus available.

However, a correct shuffling of columns and rows is required to obtain a proper load balancing

throughout the whole execution of the LU algorithm. Beaumont et al. (2001a) proposed a simple

shuffling procedure (1D-1D), which is asymptotically optimal, regardless of the initial rectangle

partition, and which is briefly described below.

Consider a 1D partition (a division for only one dimension). The optimal allocation

A of columns to nodes can be built through Algorithm 5. It consists of greedily selecting

the processor that minimizes the processing time of the sub-matrix A[k . . . nb][k . . . nb]. This

algorithm produces an optimal allocation for every k ∈ {1, . . . , nb}, and hence optimal overall.

An almost optimal distribution can quickly be built from arbitrary partitions by extending

processor boundaries (Figure 3.5 left) and applying the previous algorithm for 1D partitions

independently to virtual rows and virtual columns. The resulting distribution (Figure 3.5 right)

is no more optimal for every k ∈ {1, . . . , nb}. However, it is asymptotically optimal, i.e., its

63

execution time is at most 1 +O(1/nb) times the one achieved by an ideal distribution.

Algorithm 5: Shuffling a 1D partition into a 1D distribution
1 (c1, . . . , cP) = (0, . . . , 0)
2 for k = nb down to 1 do
3 p = argmin1≤j≤P

(cj+1)

sj

4 A[k] = p
5 cp = cp + 1

6 end

Figure 3.5 – The 1D-1D partition (left) and the reciprocal 1D-1D distribution for 14 slow and 7 fast
nodes (total of 21 nodes)

Source: The Author.

So far, most of the presented heterogeneous strategies focus on a partition that could not be

applied directly to the LU or Cholesky algorithms because they are not cyclical. Our work relies

on state-of-the-art partitionings but focuses on distributing these partitions into discrete cyclic

distributions, also considering multi-phase applications when multiple distributions should exist.

In Chapter 5, we propose two algorithms to balance the linear algebra operations that require it

at any iteration considering the ratio of communication and load. The first algorithm converts

a continuous partition into a discrete cyclic distribution for factorizations, extending the 1D-1D

algorithm. The goal of the first algorithm is to gradually restrict the end of the distribution

to reduce communication on parts of the DAG that do not have enough parallelism by using

only the fastest nodes. This method also helps on the critical path. The second algorithm is a

general load-balancing distribution algorithm for any distribution to increase balance in favor of

communication, using load computed from the application DAG.

64

Moreover, all examined works here focus on partitioning and distributing a matrix

considering one operation. That is not the case for multi-phase applications that Chapter 6

discusses. The proposed solutions show that these applications require extra considerations

when distributing data. Also, all works consider a partition using all machines. Chapter 7

discusses and demonstrates that sometimes the application can drop the utilization of some

computational nodes in favor of less communication and better critical path executions.

3.2 Heterogeneous Dynamic Load Balancing Algorithms and Strategies

For this work, the definition of dynamic load balancing is a strategy that changes,

during the application execution, the computation load of the processing units through moving

data or processing elements (tasks, for example). Usually, these strategies recognize that the

initial distribution is wrong because of incorrectly assuming resources’ computational power,

processing times of the application elements (including irregularity), or other performance issues

like communication. These reasons also include node performance uncertainty, as if it is highly

present on the target machines, online adjustments may be necessary (PEI et al., 2019). The

works presented in this Section give perspective on dynamic load balancing and the differences

with computing distributions for asynchronous task-based applications.

One common approach is to measure the time between two synchronization points and

try to redivide the load to balance it. Resources that were slower to reach the synchronous barrier

should yield some work. Some strategies rely on dynamic programming algorithms to load bal-

ancing on multi-GPU systems (ACOSTA; BLANCO; ALMEIDA, 2012). Others use a threshold

of difference between the lower and highest loaded to trigger a load balancing (ACOSTA et al.,

2010). In Cabrera et al. (2020), the authors develop a multi-objective (for example, energy

and performance) heuristic algorithm for heterogeneous clusters. This strategy requires that the

application have a gathering phase where work will be re-balanced following the established cri-

teria, considering the chosen metric for solving a problem of a given size. BeltrÁn and GuzmÁn

(2009) presents a method to balance independent processes (non-communicant) at heteroge-

neous nodes using the four stages of load balancing of Xu and Lau (1996). Other strategies

(CLARKE; LASTOVETSKY; RYCHKOV, 2011; MANUMACHU; LASTOVETSKY, 2019)

rely on the adaptive construction of the speed or energy functions concerning the problem size

to balance the load.

Nevertheless, these approaches disregard communication and always try to use all the

resources, endeavoring that all resources’ computational time should be equal. As a result,

65

these solutions may present performance problems in communication-bound applications. The

amount of data transfer, even intra-node, could cause contention and slow down the system,

even if the load is correctly balanced across the resources. Possible solutions are changing

the algorithm to reduce communication (DONGARRA et al., 2017; BALLARD et al., 2011;

MOHIYUDDIN et al., 2009) or following an execution flow that enables more data-reuse

(HERAULT et al., 2019).

Perfect load balancing may not be the best situation, as imbalanced loads can lead to better

performance if they improve other behavior aspects. One concern is when the environment has

considerable performance variability in some computational resources. In iterative applications

where one resource should not lag the whole execution, one proposed approach penalizes and

reduces the load on high variance resources, favoring reliability (YANG; SCHOPF; FOSTER,

2003). This approach does not necessarily divide the load equally but results in an improvement

in the overall performance.

Like the distribution strategies, dynamic load balancing can be tailored to the application

and requires analyzing its characteristics. For example, a case for a CFD application that the

load-balancing techniques use domain-specific information (BORRELL et al., 2020). Another

example is the Ondes3D application (DUPROS et al., 2010), which may present an irregular

imbalance because of the algorithm particularities and case study (TESSER et al., 2017). Both

require the study of a particular behavior to design load-balancing techniques.

One popular runtime for dynamic load balancing is Charm++ (KALE; KRISHNAN,

1993), and its extension for MPI applications AMPI (KALE; ZHENG, 2009). Charm++ is

based on the migratable-objects programming model and the actor execution model, where

the application is decomposed into computational units called chares. Its ancestor, Charm

(FENTON et al., 1991), was studied in the context of heterogeneous low-cost workstations shared

in a multi-user environment subjected to variable load (SALETORE; JACOB; PADALA, 1994).

The authors propose a load-balancing technique based on load migration by forecasting the

makespan, which considers the processing capacity. The under-loaded processing units demand

extra work if they fall below a metric threshold. Other works show that topology-aware mapping

in Charm++ of an application can reduce contention (BHATELÉ; BOHM; KALÉ, 2011). Also,

load-balancers that model the topology of the cluster intro tree-structures topologies are proposed

(JEANNOT et al., 2013). In heterogeneous settings, Gammel et al. (2017) shows some of the

available algorithms provide worse results than no balancing. Because of scalability concerns,

some works propose load balancers that avoid centralized information for iterative applications

and homogeneous processors (MENON; KALÉ, 2013). Charm++ was extended to use GPUs

66

with G-Charm. It can use a static CPU and GPU chares partition or provide one simple dynamic

scheduling. In the dynamic approach, a chare is assigned to a GPU if its CPU time is greater

than the combined GPU time and movement (VASUDEVAN et al., 2013), similar to HEFT.One

popular runtime for dynamic load balancing is Charm++ (KALE; KRISHNAN, 1993), and

its extension for MPI applications AMPI (KALE; ZHENG, 2009). Charm++ is based on the

migratable-objects programming model and the actor execution model, where the application

is decomposed into computational units called chares. Its ancestor, Charm (FENTON et al.,

1991), was studied in the context of heterogeneous low-cost workstations shared in a multi-user

environment subjected to variable load (SALETORE; JACOB; PADALA, 1994). The authors

propose a load-balancing technique based on load migration by forecasting the makespan, which

considers the processing capacity. The under-loaded processing units demand extra work if they

fall below a metric threshold. Other works show that topology-aware mapping in Charm++ of

an application can reduce contention (BHATELÉ; BOHM; KALÉ, 2011). Also, load-balancers

that model the topology of the cluster intro tree-structures topologies are proposed (JEANNOT

et al., 2013). In heterogeneous settings, Gammel et al. (2017) shows some of the available

algorithms provide worse results than no balancing. Because of scalability concerns, some

works propose load balancers that avoid centralized information for iterative applications and

homogeneous processors (MENON; KALÉ, 2013). Charm++ was extended to use GPUs with

G-Charm. It can use a static CPU and GPU chares partition or provide one simple dynamic

scheduling. In the dynamic approach, a chare is assigned to a GPU if its CPU time is greater

than the combined GPU time and movement (VASUDEVAN et al., 2013), similar to HEFT.

Most of the described strategies require an iterative application and measure imbalance

in one iteration to redistribute the load for the next. When considering multi-phase asynchronous

applications, such strategies would not work over overlapping phases, as they require a check-

point. We show that static distributions designed to deal with such multi-phase context work

well in situations that have regular task performance (Chapter 6). When considering possible

application adjustments, we also consider that yielding some resources for particular phases is

beneficial. Also, instead of using thresholds of imbalance, we train a reinforcement learning

method that is a surrogate for inferring the overall application behavior. The surrogate guides

the decisions of which best heterogeneous resources to use (Chapter 7).

67

3.3 Multi-Distributions and Redistribution on Multi-Phase Applications

Applications with multiple operations may use a distinct distribution for each, leading

to a data redistribution between them. These multi-distributions with redistribution are neces-

sary because each phase’s best load division is probably different (WALKER; OTTO, 1996).

Prylli and Tourancheau (1996) proposed algorithms to reduce the scheduling redistribution cost

between block-cyclic distributions with different block sizes used in various application phases.

Many works consider the problem over homogeneous scenarios with different application char-

acteristics. These works study, for example, situations where the granularity of the block-cyclic

distribution should change across application phases (LIM; BHAT; PRASANNA, 1996; PARK;

PRASANNA; RAGHAVENDRA, 1999), as each phase may admit a better granularity. Irregular

applications may require better balancing over algorithms that divide data into a grid (HOF-

MANN; RÜNGER, 2018). Some works consider the communication redistribution phase of

data moving between two distinct clusters (JEANNOT; WAGNER, 2006).

All these works consider the problem of redistribution as discovering the communica-

tions patterns that minimize the transition duration from a given origin distribution to a target

distribution. These solutions assume a given origin and target distribution and focus on reducing

communication time because of contention. The work Li and Yu (2019) considers irregular

distributions and uses bi-planar graphs to formulate three different coloring-based problems.

They propose an approximation algorithm to solve one of these problems, which translated into

a reduced communication redistribution.

Moreover, with MPI, such data redistribution typically occurs synchronously between

the different phases, which could be more efficient. This situation is no longer an option with

the scale of supercomputers, as a synchronization point will hold too many resources. Hence

the rising popularity of the data flow algorithms that minimize the number of synchronization

points (DONGARRA et al., 2017). The redistribution problem focusing on the flexibility of tiles

proprieties (such as size and formats) of irregular data is studied in the context of the task-based

applications using ParSEC (CAO et al., 2020), assuming a given source and target distribution.

Some linear algebra solvers, like Chameleon, leverage this asynchronous capability

by overlapping different tasks and iterations and exploiting more parallelism (AGULLO et

al., 2010; GATES et al., 2019). A possible multi-phase strategy consists of finding the best

distribution per phase while minimizing the overall communication cost when changing them,

which can be challenging. Some works point out that, even in simple situations, the target

distribution may present many possible permutations corresponding to similar homogeneous

68

nodes (HERAULT et al., 2014; HERRMANN et al., 2016). The problem is further expanded

to minimize communication while generating another distribution that minimizes computation

when only given the source or target distribution. In the homogeneous case, one approach

is searching for a permutation of the ideal minimal computation distribution that minimizes

communication. Finding the ideal distribution (of the many permutations) while minimizing

the computation and the total communication cost is NP-hard (HERRMANN et al., 2016).

In this situation of minimizing computation and communication, the problem of comput-

ing distributions for different phases when considering heterogeneous resources should consider

the transition from one to the other. Minimizing the communication between two heterogeneous

distributions and the following computation is desirable. However, there is a gap in the lit-

erature when considering heterogeneous resources with asynchronous task-based applications.

This situation is a relevant problem when studying heterogeneous distributions on multi-phase

applications that will be addressed in Chapter 6.

3.4 Reinforcement Learning for optimizing HPC behavior

The number of parameters and possible configurations in HPC applications that can

impact performance is enormous. Applications can have different algorithms, heuristic param-

eters, and problem divisions. Also, runtimes can usually employ distinct schedulers or have

customized configurations while using heterogeneous infrastructures. When a developer faces

so many options, it is desirable to have strategies to automatically discover the best configurations

during execution and reduce all the developer’s burden. However, finding the best configurations

may involve evaluating time-expensive cases by executing the application repeatedly throughout

the search space. More intelligent strategies would prune the search space or construct surro-

gates for unknown functions, reducing the cost of discovering the best configurations. Bruel

(2021) conducted studies presenting many techniques and strategies for modeling surrogates for

the HPC’s configuration parameters tuning search spaces.

Autotuning can be used to select code variants and parameter configurations in different

architectures (BALAPRAKASH et al., 2018). Moreover, Silvano et al. (2018) presents a toolbox

for autotuning considering Energy Efficient. Other works include constructing surrogate models

using Bayesian Optimization for finding parameters (MENON; BHATELE; GAMBLIN, 2020).

Autotuning was also applied to the Chameleon linear algebra library, and StarPU (AGULLO

et al., 2020). The authors analyze parameters, including tile size and the number of intra-

node resources, by extensively or partially executing the search space possibilities before the

69

execution. Also, these authors augmented the search space results with simulation.

Some works study the problem of optimizing the best number of nodes for an HPC

application. Applications such as Deep Neural Networks may present many challenges when

strong scaling on homogeneous nodes (KEUPER; PREUNDT, 2016). The issues range from

communication overhead to the number of parallel operations. The number of choices can

also be essential in performance and energy. In some applications, it is possible to use more

homogeneous nodes with slower frequencies and different voltages and improve performance

while reducing energy consumption (FREEH et al., 2007).

A study for HPC checkpoint fault-tolerant environments (JIN et al., 2010) shows convex-

like curves for makespan as a function of the number of homogeneous processes. They use

Newton’s Method to find the best number of processes to use. In another work, the authors used

the Gaussian process to search for the best homogeneous cloud instance for a given application

considering performance and cost (ROSARIO et al., 2021). They restrict to particular numbers

(powers of 2 from 1 to 32) of homogeneous nodes. In all of these works, the focus was on using

homogeneous resources.

This thesis explores the usage of reinforcement learning to optimize during the execution

of an iterative application the ideal number of nodes to use on a phase (Chapter 7). This

problem arises as precisely modeling communication or other unforeseen behaviors is complex,

especially in the heterogeneous scenario. Using real execution behavior to construct a surrogate

iteratively would aid the decision, as the application would learn how it behaves in different

configurations, ideally without exploring them all.

3.5 Contributions opportunities

The problems of (i) distributing an operation on heterogeneous resources; (ii) multiple

distributions and redistributions for multi-phase applications; and (iii) learning and adapting

for unexpected behavior like node scalability; are mostly studied with homogeneous nodes and

separately in the literature, missing an opportunity to combine them all. This work shows that

these problems are challenges when distributing task-based applications on system-level hetero-

geneous resources. Therefore, one must solve all these problems to improve the application’s

performance. This thesis presents its load distribution contributions from a micro to a macro

perspective. It starts by computing one operation distribution (Chapter 5) that will be later used

when studying multiple distributions in multiple operations (Chapter 6). Then, such strategies

will be again employed when tuning the number of nodes to use per phase (Chapter 7).

70

71

4 ANALYSIS AND EXPERIMENTAL METHODS

This Chapter describes the collection of this work‘s experimental and analysis methods.

Figure 4.1 summarizes the general workflow employed, consisting of three stages. The first

stage (Experimental Methodology) is conducting experiments in controlled environments, using

real and simulation executions. The execution generates traces that describe in detail each

experiment performed. The next stage (Performance Analysis Methodology) is the analysis of

these traces using metrics, visualizations, and data science tools. This analysis leads to the final

stage, the proposal of solutions and methods to improve behavior. A restart of the methodology

occurs with new optimization candidates, the loop in the figure. The strategies offered in this

thesis reflect this iterative circle of experimenting, analyzing, and proposing solutions.

The following sections will explain the experimental and analysis steps in detail, re-

flecting all the boxes in Figure 4.1. Section 4.1 presents the experimental methodology, listing

the complete environment of physical machines with the software stack, including all custom

configurations for tuning the experiments. Moreover, it explains the experimental methodology

when using simulations with StarPU+Simgrid, a powerful tool to test new scenarios easily.

Section 4.2 describes the analyses of task-based applications, the methodologies to collect exe-

cution information, metrics to give a fast overview of the application performance, pre-defined

visualization techniques with the StarVZ package, and finally, traces data analysis. Ultimately,

Section 4.3 discusses the step of proposing solutions and the methodology repetition.

4.1 Experimental Methodology

The experiments of this work are divided into two categories: real executions and simu-

lations. In the former, a real platform directly executes the application. The program effectively

computes and accomplishes its purpose, reaching an actual and correct algorithm solution. Dif-

ferently, the simulation case may replace some computation with statistical models, focusing on

approximating the performance behavior and not the final algorithm solution. This work uses

Simgrid (CASANOVA et al., 2014) as the framework to simulate distributed HPC platforms, en-

abled in StarPU with its StarPU+Simgrid module (STANISIC et al., 2015b). StarPU+Simgrid

generates traces that faithfully approximate the application behavior and resource utilization

(STANISIC et al., 2015a). However, StarPU+Simgrid does not perform computations (tasks)

and can replace data with dummy information. The remaining of this Section explains the

resources, the real experiments, and the simulation ones.

72

Figure 4.1 – Summary of the analysis and experimental methodology

Computational Resources Selection
and Software Stack Instalation

Real Experiments Setup

Simulation Experiments
Setup

Real Experiments

Simulation Experiments

Validation

Trace Data
Collection/Transformation

Stored Experiments

Exploratory/First
Analysis

Performance Summary (Metrics)

Performance Visualizations (StarVZ)

Coarse Trace Data Investigation (R)

Problem
Identification/Hypotesis

Propose Solutions Deciding When to Stop
Optimizing Done

Experimental Methodology

Performance Analysis Methodology

Solutions Proposal Process

Source: The Author.

4.1.1 Computational Resources and Software Stack

The real and simulation experiments use resources from the High-Performance Com-

puting Park (PCAD) infrastructure1, the Grid5000 (G5K) testbed2, and the SDumont (SD)

supercomputer3. Table 4.1 shows the machines used in the experiments. The network of PCAD

is a 1Gb/s Ethernet. The network for Chetemi and Chifflet Grid5000 resources is a 10Gb/s

Ethernet, while for Chifflot and Chiclet, it is a 25Gb/s Ethernet. A 2x100Gb/s Ethernet network

connects both partitions. In SDumont, the base partition has an Infiniband FDR 56Gb/s network.

1<http://gppd-hpc.inf.ufrgs.br/>
2<https://www.grid5000.fr/>
3<https://sdumont.lncc.br/>

http://gppd-hpc.inf.ufrgs.br/
https://www.grid5000.fr/
https://sdumont.lncc.br/

73

Table 4.1 – Compute nodes available for experiments

Infrastructure Machine CPU Memory GPU

Grid5000 Chetemi (Che) 2× Intel Xeon E5-2630 v4 256 GiB –
Grid5000 Chifflet (Chi) 2× Intel Xeon E5-2680 v4 768 GiB 2× GTX 1080
Grid5000 Chifflot (Cho) 2× Intel Xeon Gold 6126 192 GiB 2× Tesla P100
Grid5000 Chiclet (Cle) 2× AMD EPYC 7301 128 GiB –
Grid5000 Troll (Tro) 2× Intel Xeon Gold 5218 384 GiB –
PCAD Hype 2× Intel Xeon E5-2650 v3 128 GiB 2× Tesla K80
PCAD Tupi Intel Xeon E5-2620 v4 80 GiB 2× GTX 1080
SDumont B715 (SDC) 2× Xeon E5-2695v2 64 Gib –
SDumont B715 (SDG) 2× Xeon E5-2695v2 64 Gib 2× K40

Source: The Author.

All experiments use the StarPU version 1.3 development branch, and experimental

groups use the same commit (usually per chapter). However, because of the iterative process of

this work, including contributions proposed to software, the commits may be different between

experimental groups. The specific software information is present explicitly in each experimental

evaluation section.

4.1.2 Real Experiments Setup

The experiments use the following configurations to control the environment: (a) Intel

hyper-threading off; (b) performance frequency governor; (c) Maximum frequency set per

core; (d) NVIDIA GPUs set to persistence mode and maximum frequency when possible.

The following configuration for G5K: (e) network cards with an MTU of 9000; (f) network

interruptions only to cores of the same network card’s NUMA node; (g) the sysctl.conf

configurations present in Figure 4.2 for tuning network configurations and disabling the kernel

NUMA memory balancing; (h) NTP synchronized before experiments and turned off to not cause

any interference. After some study, all the experiments converged to using the NewMadeline

MPI and the respective StarPU MPI backend for real experiments.

The experiments mainly use the StarPU’s DMDAS scheduler with two reserved CPU cores:

one for the MPI thread and the other for the application thread responsible for task submissions;

unless stated otherwise for specific experiments. The experiments bound the MPI and GPU

workers’ threads to the cores belonging to the NUMA nodes of the hardware resource (NIC or

GPU). StarPU configuration includes a trace buffer size of 1.5GiB to minimize the flush of traces.

However, not all experiments collect traces, and when only the final makespan is of interest,

74

Figure 4.2 – The sysctl.conf configuration used for G5K experiments

net.ipv4.tcp_rmem = 4096 87380 1147483647
net.ipv4.tcp_wmem = 4096 65536 1147483647

net.core.rmem_max = 1147483647
net.core.wmem_max = 1147483647

net.core.netdev_max_backlog = 250000
net.core.rmem_default = 16777216
net.core.wmem_default = 16777216

net.core.busy_poll = 50
net.core.busy_read = 50

kernel.numa_balancing = 0
net.ipv4.tcp_mem = 16777216 16777216 16777216
net.ipv4.tcp_slow_start_after_idle=0
net.ipv4.tcp_mtu_probing=1

Source: The Author.

trace generation is disabled. The following parameters are set: STARPU_MPI_COOP_SENDS=0

to disable the experimental cooperative MPI sends, STARPU_NWORKER_PER_CUDA=1 to enable

only one worker per CUDA device, STARPU_CALIBRATE=1 to update the performance models

continuously. One of our works also studies other StarPU and platform configuration options in

these experimental scenarios (NESI; SCHNORR, 2020), including workers’ bindings to cores

and StarPU NUMA configurations.

4.1.3 Simulation Setup and Evaluation

The simulation experiments use StarPU with Simgrid, where a real machine emulates

the behavior of another platform using task and network models. Because the goal is to simulate

the overall application, it is unnecessary to execute tasks if StarPU already has a task duration

model for each platform. Although resulting elements like makespan, resource usage, and

scheduling are similar to the real case, the simulation does not provide the actual application

numeric solution.

The distributed version of StarPU+Simgrid uses the Simgrid MPI simulator smpi. Only

one process exists in smpi that executes all MPI processes; in StarPU default behavior, one

MPI process per computational node. Many works (STANISIC et al., 2015a; STANISIC et al.,

2015b) show the precision of StarPU+Simgrid. However, this work double-checks the accuracy

75

of StarPU+Simgrid in its cases. An example is shown below.

The usage of simulations depends on their accuracy against the real counterpart. A

first validation of the simulation executions of Chameleon/StarPU-MPI over homogeneous

and heterogeneous clusters is performed using the state-of-the-art block-cyclic and 1D-1D

distributions (described in Section 3.1). Figure 4.3 depicts the behavior of two runs considering

the 15 Chetemi nodes, first in reality (left part) and then in simulation (right).

Figure 4.3 – The 3×5 BC partitioning using 15 identical CPU-only nodes to compare the behavior of a
real execution (left) against the simulation (right)

Source: The Author.

Figure 4.3 presents the Application Workers panel, a Gantt Chart with individual re-

sources (CPU workers in this case) on its Y-axis. The Y-axis labels highlight the nodes (0 are

76

resources of node 0, and so on). Each state (rectangle) represents a task, where the color is the

task type. An empirical visualization analysis of these plots indicates that both executions are

very similar. First, the makespan presents a difference of 246ms out of a 74s execution (0.3%),

on which the simulation is longer. This slightly longer result might come from the performance

models if the dgemms’ mean of the real execution got a smaller negative variability than the

simulation’s performance models.

Figure 4.4 depicts a second example where the behavior of another two runs considering

a 7+14 node platform (7 fast Chifflet nodes with GPUs and 14 slower Chetemi nodes) in a

real configuration (left) and in simulation (right). The Figure presents the same Gantt Chart

as already described for Figure 4.3. The difference is that the last seven machines (from id 14

to 20) have 2× GPUs, each depicted as taller resources on the Y-axis at the end of the node’s

vertical list of resources. This case uses the 1D-1D, which considers such heterogeneity.

Similar to the other case, the simulation faithfully approximates the real execution. This

case with GPUs, though, presents more differences. First, the makespan difference is 1074ms

out of a 40s execution (2%), with the simulation being the optimistic version. In nodes with

GPUs, there is a difference in how tasks are scheduled on the execution’s end. While there is

a more progressive reduction of CPUs usage in the real version with more idle times in GPUs,

the simulated version preferred to schedule all those remaining last tasks in GPUs, keeping the

CPUs idle. Although some difference exists, the simulations present a faithful and cheap way

to verify the performance of the configurations. It is faithful because proprieties are correctly

simulated, like nodes with the lower loads are the same in both executions, like node 15, which

has lower usage. It is cheap because while real execution requires the reservation of very

powerful nodes, simulation only requires one node without expensive and powerful accelerators

like GPUs. These experiments show that simulation is sufficiently faithful to conduct studies

as it captures essential details of load imbalance and approximates the makespan. During this

work, we performed many experiments that continued to show the validation of the simulation

with respect to real experiments.

Moreover, the usage of smpi gdb debug approach is much easier because it has only

one process (with complete memory access to all simulated processes). Another advantage

of debugging with simulation is that StarPU-Simgrid scheduling is deterministic, so stochastic

scheduling behaviors of real execution are absent, and the execution will be the same for the

same input parameters. Of course, some experimental situations will require real executions, but

many performance-related what-if scenarios could be discarded upfront, reducing the burden

and amount of cases for real executions.

77

Figure 4.4 – The 1D-1D partitioning using 14 CPU-only nodes plus 7 GPU-equipped nodes to compare
the behavior of a real execution (left) against the simulation (right)

Source: The Author.

If simulation performs much better than real life, one can infer that an external problem

from StarPU and the application is impacting the overall performance. One possible analysis

approach is to use simulation as the best-case scenario, as a lower bound, to detect external

problems from the runtime and application. The analyst could compute divergences of the

78

real execution from the simulation and understand why the simulation model does not capture

it. Moreover, instead of approximating simulation to reality, one could approximate reality

to simulation. Understanding simulation divergences may indicate a real problem that can be

solved, not necessarily an unfaithful simulation model.

We tried to approximate real executions to simulation many times, as it emulates a real

controlled scenario that, most times, is impossible to achieve in the noisy and problematic reality.

The conclusions taken from this approximation will, of course, improve the real experiments.

For example, we study many NUMA and communication parameters impacting StarPU (NESI;

SCHNORR, 2020). The divergence between real and simulation experiments motivated this

study, as the simulation was way better than real life. In the end, we discover that the MPI

middleware and some NUMA hardware contention (that simulation does not model) were the

reason for the bad results. Changing the MPI layer and correctly configuring the NUMA-related

configurations made the real execution match the simulation performance. Without this powerful

simulation tool, one could miss such optimizations because the analyst might never know the

best case and behavior possible.

4.2 Performance Analysis Methodology

This Section presents the analysis process to identify problems in the task-based applica-

tions. The foundation for the analysis methodology is execution traces and complementary data

that the runtime and the application collect. The following sections describe the data collection,

computation of performance metrics, application performance behavior visualization, and direct

data investigation.

4.2.1 Trace data collection and transformation

The StarPU trace system generates trace events by placing hardcoded functions strategi-

cally in the runtime source code. If the necessity to trace a new event emerges, it is required to

edit the runtime code and add the designated trace-related macros. StarPU will save the execu-

tion trace for each compute node locally in FxT4 files. It is possible to select only related events

when aiming for tracing specific elements, reducing trace file size. After the trace generation, an

internal StarPU tool (starpu_fxt_tool) can convert these FxT files into Paje ones. Paje is a

4<https://savannah.nongnu.org/projects/fkt>

https://savannah.nongnu.org/projects/fkt

79

structured and widely used trace file format that an analyst can directly investigate, analyze indi-

vidual events, and apply specific procedures (SCHNORR; STEIN; KERGOMMEAUX, 2013).

Instead of using the crude Paje trace data, this work uses a specialized auxiliary framework for

task-based applications, StarVZ (GARCIA PINTO et al., 2018; NESI et al., 2019; PINTO et al.,

2021), maintained on our research group5, that process the data and generates visualizations.

StarVZ is an R CRAN available package6 that operates on StarPU paje files to generate

R tibble data.frames7, and visualizations (GARCIA PINTO et al., 2018). The work of this thesis

incorporated many elements of the methodology on the package, making many contributions

to StarVZ. The analysis process using StarVZ consists of running the workflow over the FxT

files to generate R-friendly data and generate visualizations. StarVZ comprises two phases:

(i) data cleaning that generates intermediate trace data into R tibbles and (ii) the generation of

pre-defined visualizations. After producing these intermediate data, one can compute metrics,

generate custom visualizations, or work directly with them.

4.2.2 Performance metrics

One way of quickly obtaining an overview of the execution is to employ global metrics,

which can estimate the makespan and be a lower bound connected to some proprieties. These

metrics will summarize the whole application execution into one number that an analyst can

compare against the real makespan. Depending on the algorithm, these metrics’ distance from

the actual execution can indicate possible problems. One of these metrics is Critical Path Bound

(CPB), which is the total amount of time in the critical path (WILSON, 1979) of the DAG

considering that particular execution. The critical path bound uses information of one particular

execution because of the scheduling decisions regarding the task to resource placement. For

example, if a given path runs entirely on CPUs, it is probably the critical path (takes longer)

compared to a path with the same number of tasks that use GPUs. First, it is necessary to

compute the latest parent of a task, which is the last dependency executed, given by

Latest Parent(t) = argmax
p∈parents(t)

TE(p) (4.1)

where TE(p) is the ending time of task p. The recursive computation of the graph path comprised

of the latest parents from the last task to the first one is the critical path. The critical path bound

5<https://github.com/schnorr/starvz>
6<https://cran.r-project.org/package=starvz>
7Tibble is a form of data table from the R package tibble (<https://tibble.tidyverse.org/>) part of tidyverse

https://github.com/schnorr/starvz
https://cran.r-project.org/package=starvz
https://tibble.tidyverse.org/

80

is merely the summation of the task’s duration in the critical path given by

CPB =
∑

t∈critical path

TD(t) (4.2)

where TD(t) is the task duration of task t. If CPB is closer to the real makespan, but there are

still idle resources, this probably indicates that there are not enough tasks to run concurrently.

One possible solution is to change the data granularity of tasks, directly increasing the number

of parallel tasks. However, when the application exploits the resources well with small idleness

detected, but the CPB is not near the actual makespan, it is not necessarily a problem. The

DAG may have many parallel paths, and such time would inevitably be necessary. However, one

problem is if the runtime chooses another less import path to execute instead of the critical path.

Another metric that estimates the makespan and considers the totality of tasks (and

indirectly all paths in the DAG) is the Area-Bound Estimator (ABE). ABE computes the hypo-

thetical situation where tasks do not have dependencies, and the runtime optimally partitions

them across heterogeneous resources considering the speedup per task type per resource. The

following linear program can compute ABE:

Minimize T s.t. : (4.3)

∀t ∈ T :
∑
r∈R

αt,r = Nt (4.4)

∀r ∈ R :
∑
t∈T

αt,rwt,r ≤ T (4.5)

where T is the application estimated makespan (ABE), T andR are respectively the sets of tasks

types and resources,wt,r is the expected duration of task t on resource r,Nt is the number of tasks

of type t, and αt,r is one of the optimized variables describing how many tasks of type t executes

on resource r. If the ABE is distant from the original makespan, it is a possible indication of

idle resources in the execution. However, this idleness is expected in some situations because

of missing parallel opportunities in the DAG. For example, the Cholesky or LU DAG lacks

parallelism at the beginning and end of the execution. Also, ABE can offer an estimate per

node or globally. RestrictingR with only resources for one particular node and Nt for the tasks

that the current distribution assigns to that specific node gives the per-node ABE for this chosen

node. It is global if there is no such restriction.

These metrics provide a summary of the application behavior. The application makespan

will always be greater than CPB and ABE, considering that the duration of the tasks is stable,

making both metrics a lower bound.

81

4.2.3 Visualizations of performance behavior

Another approach for analyzing these task-based applications is with visualizations

(KERGOMMEAUX; STEIN, 2003). A common practice is to translate the logged events into

a visual representation. Performance analysis with visual representations comes in different

flavors, such as histograms, call graphs, scatter plots, line charts, or treemaps (SCHNORR;

LEGRAND, 2013; ISAACS et al., 2014). Regardless of this assortment, the most prevailing

views are Gantt-like charts (WILSON, 2003) where one axis is the time, and the other represents

resources or entities with application states being mapped on such space.

StarVZ offers many different visualizations considering the task-based paradigm and the

StarPU runtime, which can contemplate memory management, application-specific visualiza-

tion, and node aggregation information to reduce the size of visualizations (PINTO et al., 2021).

This thesis will constantly show visualizations with three panels that are present in Figure 4.5.

The X-axis in all panels is time in milliseconds (ms). First, the top one, the Iteration Panel,

presents the application iteration over time, the Cholesky iterations in this particular example.

This panel can represent any other applications’ iterations. For instance, many linear algebra

operations have outer loops. The left-most black line represents the start of the iteration, and the

right-most the end. The second panel, Application Workers, describes the traditional Gantt chart

of tasks, where the Y-axis is the resources, and the rectangles represent the tasks (start and end).

This particular case visualization only selects the resources of node 3. The right-most number is

the total makespan of the application. Some metrics can appear on this panel, including global

and per node ABE, CPB, and other bounds (EYRAUD-DUBOIS, 2019). Moreover, StarVZ

can compute outlier tasks using a simple detection rule when the task’s duration is superior to

the third quartile plus 1.5× the interquartile range (IQR). These outlier tasks appear with the

same task color yet an intenser tonality, while the regular tasks have an opacity of 50% (lighter

colors). The third panel is a generic variable over time visualization, in this case, ready tasks.

Further details about these panels are available in Garcia Pinto et al. (2018).

In situations with many resources, aggregation is one strategy to reduce visualization

required space. Figure 4.6 is the aggregated version of the second panel of the previous Figure,

now considering all nodes, where instead of resources, the Y-axis is the utilization (%) per task

on each node resource group. This version divides the data into timeslices and computes the

utilization per task. For example, One green bar that reaches 80% on Node 1 CPUs indicates

that all CPUs of Node 1 spent 80% of the time on that slice computing the dgemm task.

The visualizations are often responsible for many insights and the first way to look at

82

execution behavior. Since traces can have terabytes of data containing millions and millions of

events, visualizations can compact all this information in a small space. However, an analyst

should study behaviors requiring constant data manipulations in some complex situations. Using

pre-defined graphical visualizations for all hypotheses that appear may be slower and more

limiting than directly working with the data.

Figure 4.5 – StarVZ original workers Gantt Chart for application tasks

Source: The Author.

83

Figure 4.6 – StarVZ node aggregated Gantt Chart version for application tasks

Source: The Author.

4.2.4 Interpreting traces data

When metrics and pre-defined visualizations are insufficient to understand application

behavior, one may have to analyze the direct individual events of the traces. This thesis uses the

R language with its established data science ecosystem to analyze the trace data. This ecosystem

comprises tidyverse, a meta-package that provides procedures to work and query tidy data.

Some famous packages present in tidyverse are readr (for reading many data formats), dplyr

(a grammar for data manipulation), and ggplot (for visualization). Finally, StarVZ prepares

the raw trace data to an R-friendly structure during the first phase. With all these packages, it

is possible to conduct a micro-analysis, filtering events with specific rules. For example, one

example of StarVZ data is a table of the application tasks. The tidyverse framework enables

simple queries like filtering all tasks with particular properties, for example, duration superior

to duration percentile 0.95.

Considering an anomalous behavior at a specific time, it is possible to find associate

events related to it, like memory transfers or allocations, scheduling decisions, or any other

runtime inner work. In some situations, we discovered runtime memory-related operations, like

late allocation, responsible for task lateness. It was absent from the normal critical path (as the

latter is just composed of tasks), but we matched the allocation events using the R environment

with custom-designed functions.

The StarVZ data structure comprises tables that contain structured trace data. The most

notable ones are Application, containing application tasks data; and Links, containing memory

transfer data. There are more than 20 data tables on StarVZ containing other information,

84

but these two are almost always present in all analysis situations. Tables 4.2 and 4.3 present

small slices of the respective tables’ real data with a selected representative set of columns.

For example, Table 4.2 has tasks-related information, including the resource where it executed

(ResourceId), the start, end, and duration of the task, the type of the task (Value), the JobId

responsible for it, and the X and Y coordinates of data it writes. With this information, one can

use the tidyverse verbs to filter for a given timeslice. For example, Algorithm 6 presents a

filter for tasks that started after time 10000ms and ended before time 15000ms.

Table 4.2 – StarVZ application data table

ResourceId Start End Duration Value JobId X Y

0_CPU0 0 14.49 14.49 dpotrf 0_2461 0 0
0_CPU1 14.73 50.48 35.75 dtrsm 0_2474 0 22
0_CPU0 19.11 54.85 35.75 dtrsm 0_2473 0 20
0_CUDA1_0 19.87 24.65 4.78 dtrsm 0_2467 0 8
0_CUDA0_0 20.54 25.32 4.78 dtrsm 0_2464 0 2
0_CPU1 55.07 94.76 39.7 dsyrk 0_2677 6 6
0_CPU0 59.46 117.73 58.27 dgemm 0_2597 2 20
0_CPU0 122.31 180.58 58.27 dgemm 0_2853 14 22
0_CPU0 185.15 224.85 39.7 dsyrk 0_3261 38 38
0_CPU0 229.43 287.7 58.27 dgemm 0_2894 16 26

Source: The Author.

Table 4.3 – StarVZ link data table

Type Start End Duration Key Origin Dest

MPI communication 14.49 21.81 7.31 mpicom_0 0_mpict 1_mpict
Intra-node TaskPreFetch 14.91 19.68 4.77 com_1 0_MEM0 0_MEM2
Intra-node TaskPreFetch 15.1 19.68 4.59 com_2 0_MEM0 0_MEM2
Intra-node TaskPreFetch 15.58 20.35 4.77 com_3 0_MEM0 0_MEM1
Intra-node Fetch 29.78 34.93 5.15 com_12 0_MEM2 0_MEM0
Intra-node Fetch 30.45 35.25 4.79 com_16 0_MEM1 0_MEM0
Intra-node Fetch 34.93 39.53 4.59 com_20 0_MEM2 0_MEM0
MPI communication 34.93 92.1 57.17 mpicom_2 0_mpict 2_mpict
MPI communication 34.93 94.03 59.09 mpicom_1 0_mpict 1_mpict

Source: The Author.

Algorithm 6: Basic R script to select events of the applications table that were
executed between 10000ms and 15000ms

1 data$Application %>%
2 filter(Start > 10000, End < 15000)

Another more robust analysis is checking the critical path lateness over multi-node (with

individual local clocks) executions. The lateness of a task is the time between the end of the last

85

dependency and when the task de facto started. StarVZ provides functions to compute the critical

path, considering that multi-node executions can have a similar or virtual global time. NTP,

PTP, or even minor corrections within traces using the last barrier as a synchronization point can

adjust the precision of the time. An inter-node global time is hard to obtain. However, in our

practical case, lateness is usually two, three, or more times the order of magnitude of the inter-

node time inaccuracy. This precision is enough for our purposes as lateness is huge compared

with the possible inter-node time maximum inaccuracy (provided by the NTP or PTP systems).

Table 4.4 presents an example of a critical path displaying JobId, Node, Resource, Name, Start,

End, Duration, and Lateness from a task. It is then possible to track back lateness problems to

a responsible event. If MPI communications start late, more investigation in the StarPU MPI

module or the machine network stack would be ideal. If there is lateness in communications

between intra-node resources, there can be a problem in StarPU data management. This latter

problem is the case of JobId 2_34751 lateness in Table 4.4, where it waited for a data transfer.

However, there are some situations where lateness is inevitable. For example, the resources

are busy when there are more high-priority tasks. This last situation could indicate that the

application would benefit from expanding its resources.

Table 4.4 – Critical path data example from execution traces and R data manipulation

JobId Node ResourceId Value Start End Duration Lateness

0_29507 0.0 0_CUDA1_0 dgemm 4850.54 4851.02 0.48 2.34
0_31384 0.0 0_CPU0 dtrsm 4851.65 4876.45 24.81 0.63
mpicom_5774 1.0 1_mpict nil 4876.47 5263.13 386.66 0.02
1_31041 1.0 1_CUDA0_0 dgemm 5266.51 5266.97 0.46 3.38
1_32894 1.0 1_CPU0 dtrsm 5267.72 5292.16 24.43 0.75
mpicom_6274 2.0 2_mpict nil 5292.18 5304.11 11.94 0.02
2_32924 2.0 2_CUDA0_0 dgemm 5305.00 5305.49 0.49 0.89
2_34751 2.0 2_CPU1 dtrsm 5329.28 5356.29 27.02 23.78
mpicom_6331 0.0 0_mpict nil 5356.32 5522.86 166.54 0.03
0_35835 0.0 0_CUDA1_0 dgemm 5524.86 5525.35 0.49 2.00
0_37639 0.0 0_CPU1 dtrsm 5525.97 5551.79 25.82 0.62

Source: The Author.

4.3 Improving performance process

With the analysis methodology, it is possible to check some problems like underutilization

of resources at a given point, resource imbalance, the lack of ready tasks, synchronization

points in application iterations, inadequate values for any presented metrics, and memory-

86

related operations. All these analysis insights enable the analyst to propose possible solutions

in some execution entities (application, runtime, library, system). These solutions require

experimentation, analysis validation, and the repetition of the methodology. This process was

applied to all problems in the following Chapters, with the results leading to the next study

object, resulting in an iterative process.

87

5 HETEROGENEOUS DISTRIBUTIONS STRATEGIES FOR LINEAR ALGEBRA

This chapter focuses on a single operation and proposes strategies for generating static

cyclic distributions for linear algebra procedures that must balance the load across many iter-

ations. However, thanks to the flexibility of task-based runtimes, these iterations occur asyn-

chronously in a hybrid fashion. The distribution among different computational nodes is static,

and a dynamic scheduler handles intra-node imbalances. Although state-of-the-art cyclic and

heterogeneous distribution algorithms like 1D-1D provide asymptotically optimal results, they

still leave some opportunities for improvements and the creation of more refined distributions.

Moreover, having a perfect balance load does not guarantee the best performance. Because of

the critical path and nodes’ heterogeneity, sometimes it may be better to have some imbalance

with the extra load on the fastest nodes. The strategies discussed in this chapter actuate on a

single operation, and their ideas are essential when examining multiple-phase interaction with

multiple distributions in Chapters 6 and 7.

The experimental evaluation in this Chapter uses the LU operation, as most other linear

algebra operations lead to similar parallelization challenges and require the same strategies. The

remainder of the Chapter is organized as follows. Section 5.1 presents an analysis of strong scal-

ing with state-of-the-art distributions over a homogeneous context. It compares the traditional

homogeneous block-cyclic distribution, the standard in most libraries, and another heteroge-

neous distribution 1D-1D. Section 5.2 discusses the problems and available opportunities to

refine this heterogeneous distribution over heterogeneous resources. Section 5.3 presents the

proposed algorithms to generate distributions considering application moments with low paral-

lelism and communication and load balance trade-offs. Section 5.4 presents the performance

evaluation of a traditional heterogeneous algorithm against the block-cyclic distribution and the

proposed distributions in heterogeneous environments. Section 5.5 finalizes the Chapters with

a discussion and perspectives.

5.1 Strong Scaling in a Homogeneous Context

The BC strategy is common for homogeneous platforms. Unfortunately, it is known

that when the number of machines does not nicely decompose in smaller prime numbers, the

communication overhead may lead to significant performance degradation. Indeed, for any

prime number of machines, one ends up with a pure one-dimensional distribution. Instead, as

illustrated in Figure 5.1, the 1D-1D distribution handles such situations gracefully and scales

88

perfectly. This analysis adopts a fixed matrix size of 100×100 blocks of 960×960, gradually

increasing the number of Chetemi computing nodes from 16 to 50 using simulation. Although

1D-1D distributions originated 20 years ago, to the best of our knowledge, it is the first time

they appear in a real solver stack. Interestingly, the distance between makespans of the 1D-1D

distribution and the (very optimistic) ABE bound of all resources is constant, corresponding to

the end of the execution that cannot efficiently exploit all computing nodes.

Figure 5.1 – Strong scaling for a 100×100 matrix with 50 homogeneous Chetemis

Source: The Author.

5.2 Problem: The Communications and Load-Balance Trade-off

Generally, the heterogeneous distributions (1D-1D of Chapter 3.1) want to minimize

communication while maximizing load balance. However, decisions made to reduce communi-

cation may generate imbalance, while decisions to balance the load may increase communication.

This situation creates a trade-off scenario between minimizing communications or improving

load balance in these distributions. Considering the 1D-1D algorithm, there are two problems

from a theoretical perspective that can be further enhanced: reducing communications further

and improving balance.

The first problem is that the algorithm is asymptotically optimal, which means that while

it does a good job balancing load, it may not be perfect at all iterations. These imbalances may

cause cumulative bad behavior across iterations. For example, node A at iteration x lacked work.

Still, no subsequent iterations got overloaded to compensate for the possible idleness of iteration

x. The asynchronous execution may mitigate some of the imbalance by advancing through the

89

iterations and its critical path. However, because the other nodes still receive more tasks to

do, idle time will appear at some point. This slight imbalance comes from the asymptotically

optimal behavior in which the algorithm tried to shuffle and distribute a column-based partition

to minimize the peri-sum problem and, subsequently, the communication. Figure 5.2 illustrates

the distribution construction using the partition, where node 17 of the partition is mapped to

blocks of a cyclical distribution. There is not much to do considering the column-based partition

with virtual columns and lines that a node will only communicate with other nodes that share

the same virtual column and line. However, if the final distribution relaxed such constraints and

allowed extra communications, one could improve the balance.

Figure 5.2 – The 1D-1D partition (left) and the reciprocal 1D-1D distribution for 14 slow and 7 fast
nodes (total of 21 nodes)

Source: The Author.

The second problem is that while the algorithm may try to balance the load across all

iterations, a balanced workload may not deliver the best performance. For example, considering

the end of the LU factorization, there is no reason to spread a few tasks across many nodes. This

lack of parallelism at the end of the algorithm is also observed in other operations, including

Cholesky. There is also the problem of who will execute these fewer tasks. When the system-level

heterogeneity includes nodes with only CPUs and ones with GPUs plus GPUs, the remaining

tasks should go to nodes with GPUs to advance the critical path faster.

Figure 5.3 shows the simulated execution of the LU factorization using 1D-1D with 21

nodes, where 15 nodes are slower (the Chetemis, which are CPU-only) than the other seven

faster (the Chifflets). The performance ratio of these two node types is almost 2:1, considering

the number of gemm operations per second. The solid red line is the per-node ABE, which is

very different per machine and shows an imbalance. This situation reinforces that the 1D-1D

distribution is only asymptotically optimal, and the power per node used when computing the

90

column-based partition considered only the dgemm computation kernels. Another problem is that

all the fastest nodes (those with GPUs) are not only slightly less loaded but mostly idle toward

the end of the execution. Using all 21 nodes toward the end incurs many synchronizations and

communications. The computation would end sooner if only the faster nodes worked, gathering

the low ending load towards faster nodes. Furthermore, using slow nodes toward the end may

also negatively impact the progression along the critical path, as the critical dgemms would use

CPUs on the slower nodes and GPUs on the fastest ones.

Figure 5.3 – The 1D-1D partitioning using 14 CPU-only nodes plus 7 GPU-equipped nodes (simulation)

Source: The Author.

The analysis of the 1D-1D algorithm showed opportunities to refine the distributions in

crucial moments. First, considering a cyclic distribution, there is no need to balance work across

91

all iterations equally, as in some parts of the DAG (end, for example), there is limited parallelism

that a node can handle, reducing communication. Figure 5.3 shows this by presenting a low

usage "tail" on all the resources, where the tasks are gradually being executed in the first CPUs

or only in GPUs on each node, as there are not enough tasks to distribute among all resources.

Also, these algorithms are not optimal across nodes, as the per-node ABE estimations pointed

out. One could expect that per-node ABEs, computed after the load partitioning, would be very

similar. These results indicate that increasing communication in favor of load balancing may

present benefits.

5.3 Proposal: Communication and Load-Balance Trade-off Aware Distributions

Considering the analysis of the last section, this Chapter proposes two strategies. First,

using DAG information and metrics to reduce communication by concentrating load in powerful

nodes in low-parallelism moments (Section 5.3.1). Effectively, not using some nodes at the

end of the operation. Second, improving inter-node per iteration balance by changing the

balance-communication trade-off and collaterally increasing communications (Section 5.3.2).

5.3.1 Constraining an Heterogeneous Distribution

The proposal’s main idea is to constrain the final iterations of the linear algebra operation

to use only the faster nodes, thereby extending and adapting the original 1D-1D algorithm. The

allocation is built incrementally similarly to the 1D-1D algorithm by picking the best virtual

row and column of processors for each line and column k from nb (the right-bottom part of

the matrix) down to 1 (the left-top part of the matrix). However, we restrict the selection of

possible columns and rows using an incremental number variable section. The heuristic applied

to this case is to use a maximum of section and section² faster entities for columns and rows,

respectively. This choice comes from the idea that the partition usually has more rows than

columns, and the most powerful nodes are in the right-most columns. Using all rows of some

columns would result in using faster nodes, but it would perform excessive communication as

using a 1D pattern communicates more than a 2D one. For example, for a given k, and a

partition with five columns and ten rows, the 1D-1D algorithm could select among all columns

and rows if there was no such restriction. In the constrained version, the variable /section/starts

with the value of 1. Then, the constrained version would only be able to select among the largest

92

(faster) 1 column and 12 row. When section updates to 2, the algorithm could choose among the

fastest 2 columns and the fastest 4 rows. Algorithm 7 presents the pseudo-code for this 1D-1D

constrained version (1D-1D C).

Algorithm 7: 1D-1D constrained
1 Input: partition Base distribution to apply the procedure

nb Matrix size in blocks
Result: Distribution

2 section← 1
3 for Each iteration backwards from nb to 1 do
4 available_columns← last section columns from partition
5 Find the available column that less increase the load if selected and add in

selected_columns
6 available_rows← section2 largest rows from partition
7 Find the available row that less increase the load if selected and add in

selected_rows
8 if section < number of columns in partition or section2 < number of rows in

partition then
9 Compute CPB_MPI of iteration

10 Compute total ABE of iteration
11 if ABE > CPB_MPI then
12 section++
13 Discard last selected row/column
14 end
15 end
16 end
17 Distribution← Expand selected rows/columns

Algorithm 7 starts with a section made of a single virtual column (the right-most column

on the partition, with the fastest nodes) and a single virtual row (the largest one from the

fastest node). The minimum time required to process iteration k on node p is given by the

inner-node ABE with the number of tasks of iteration k assigned to p, defined as ABE-INp(k).

Also, ABE-INT (k) = maxp ABE-INp(k) is the minimum time required to process iteration k

for a given distribution. Since we do not redistribute the matrix during the factorization, this

maximum ABE-INT (k) is always larger than the absolute ABE(k) defined as the ABE of using

all nodes with all the tasks of iteration k. This way, ABE(k) expresses a fully balanced case

using all nodes, while ABE-INT (k) points to the maximum individual load per node. The

algorithm also uses the critical path bound CPB(k) of this iteration, i.e., the duration of the

largest sequence of tasks in the DAG (considering communications). The metric would be the

optimal processing time of iteration k if an infinite number of resources were available. If

CPB(k) is larger than ABE(k), that means that iteration k has a significant critical path that

93

inevitably will take longer than the time required if was possible to divide all the iteration work

to the resources equally (relative to powers). In this way, if CPB(k) > ABE(k), there will be idle

resources. Moreover, there is the opposite situation, ABE(k) > CPB(k) means that the time to

process all tasks is longer than the critical path, so if more resources are added, the performance

could be improved. Since initially (when k ≈ nb, as the algorithm processes it backward), there

is very little work in the sub-matrix A[k . . . nb][k . . . nb]. The distribution metrics starts with

ABE-INT (k) = ABE(k) < CPB(k). When ABE(k) becomes larger than CPB(k), some work

of k will have to wait for resources, and the application would benefit from adding new nodes.

The algorithm increments the variable section when ABE(k) > CPB(k), adding one

new column of processors from the right to the left of the partition. This selection results from

the Beaumont et al. (2001b) column-based partitions that sort nodes by their processing speed.

Also, the rows are sorted by decreasing height and involving the fastest possible nodes. As the

partition usually has many more virtual rows than columns, it benefits from releasing them faster

than columns to obtain a better load balance. Figure 5.4 presents the progress of the constrained

algorithm partition with a different number of sections. First, with section = 1, it releases node

20, then with section = 2, it releases nodes 14 – 16, 18, 19; then nodes 6 – 11, 12, 13, 17; and

finally all the nodes.

Figure 5.4 – The progression of the 1D-1D constrained partition from one to four sections

Source: The Author.

After adding the new virtual columns and lines, the algorithm keeps allocating rows

and columns of the matrix using the 1D-1D procedure while updating ABE(k) and CPB(k).

Figure 5.5 illustrates the progression of these metrics, where the blue line is the CPB(k) metric,

the green line is the ABE(k) per iteration considering all available resources, the red line is

the ABE-INT (k), and the gray vertical lines point whenever ABE(k) would become larger

than CPB(k) to create a new section. The ABE(k) increases quadratically within a section,

proportionally to the sub-matrix, until it exceeds the CPB(k), as indicated by dashed lines.

Therefore, we always have ABE(k) ≤ CPB(k) unless we run out of processors and cannot

94

create a new section, as it happens with four sections.

Figure 5.5 – The 1D-1D C metrics (CPB(k), ABE(k) and ABE-INT (k)) for 7+14 machines from
iteration 100 to 60 with four sections

Source: The Author.

In the example of Figure 5.5, it allocates a 100 × 100 matrix on 14 (slow) Chetemi

and 7 (fast) Chifflet, which leads to four sections. The first section corresponds to iterations

100-96 and contains only one Chifflet. Then, the section from iterations 95-85 contains six

Chifflet nodes, followed by the section from iterations 84-68 that contains seven Chifflet and

eight Chetemi nodes. Finally, the section from iterations 67-1 contains all the nodes. In Figure

5.5, one may note that the CPB varies from one iteration to another, which may seem surprising

since the longest path in the sub-DAG corresponding to iteration k remains the same throughout

iterations. However, the CPB is per iteration and not cumulative. The MPI communications

incur using several nodes justify the first increase of CPB in the second section. The second (and

much larger) increase of CPB in the third section appears because of the addition of slow nodes

(Chetemi). Small differences in the tasks’ execution times between machines cause remaining

fluctuations.

The upper left part of Figure 5.6 depicts the final resulting data distribution, called 1D-

1D C, which is way less regular than the original 1D-1D distribution (Figure 5.2) and favors

the use of the faster nodes toward the end. In contrast, the distribution of the upper parts of

the matrix remains relatively similar. The bottom left part of Figure 5.6 depicts the execution

obtained with this constrained distribution. A first notable difference with the execution of a

1D-1D distribution (see Figure 5.3) is that now, as indicated by the rightmost white rectangles

on each node (A), the slower processors stop working almost instantaneously instead of vainly

contributing to the end of the computation. Unfortunately, even though slower nodes finish their

95

Figure 5.6 – Execution with 14 CPU-only nodes plus 7 GPU-equipped nodes, with the distribution (top)
and behavior (bottom) of the 1D-1D C (left) and the 1D-1D C+S (right) runs

Source: The Author.

96

work much sooner, the load is still very imperfectly imbalanced (as illustrated by the red lines).

The faster nodes still exhibit critical idle periods (B), indicating room for improvement.

5.3.2 Shuffling Blocks

When using the 1D-1D, there were some idle times in the middle of execution, relatively

early. Further investigation identified that the work imbalance among nodes in the earlier

iterations is the cause of these idle times. Remember that with a runtime like StarPU, there is

no synchronization between each iteration. Nevertheless, if some nodes progress faster across

iterations than others, they may quickly run out of work. Let us consider the cumulative ABE per

node up to iteration k, i.e., CABEp(k) =
∑k

j=1 ABEp(j). As illustrated on the left of Figure 5.7,

where the group of lines represents the CABE per node, and the red bottom line represents the

difference of the maxp CABEp(k) and minp CABEp(k). There is a significant imbalance for

some iterations, so the nodes with less work have to wait for the most loaded ones.

Figure 5.7 – Cumulative ABE (CABE) per node prior and after two shufflings

Source: The Author.

To alleviate this load imbalance, we propose a Shuffling mechanism that moves data

blocks around, potentially inducing more communications since node alignments (in the parti-

tion) may become broken. Shuffling occurs within a section, say iteration k1 to k2, and aims

at balancing the total work of this section (remember 1D-1D is only asymptotically optimal),

SABEp,k1,k2 =
∑k2

j=k1
ABEp(j). Algorithm 8 presents the shuffling algorithm. The idea is that

the fastest node gets the right-bottom most block of the slower node once we determine (lines

5-6) the least and most loaded node. This process repeats (line 4) until one of the two possible

conditions becomes true. (i) The difference between the SABE of the nodes falls under a thresh-

old (lines 16-19). In our experiments, we use 20ms. (ii) The fastest node does not have more

97

Algorithm 8: Shuffling algorithm
1 Input: Distribution Base distribution to apply the procedure

k2 Factorization iteration cap to consider
k1 Minimum factorization iteration to consider
max_it Limit of iterations to move blocks
similar_time Threshold of difference to stop changing

Result: Distribution
2 SABE← Compute SABE from k1 until iteration k2 for selected nodes
3 Zone← List of select blocks between k1 and k2, reversed sorted by min(x, y)
4 moving← True
5 while moving and max_it do
6 max_it - -
7 slow_node, slow_time← Select slowest node by SABE and its SABE time
8 fast_node, fast_time← Select fastest node by SABE and its SABE time
9 target← mean(SABE)

10 possible_blocks← Select blocks on Zone owned by slow_node
11 searching← True
12 if sizeof(possible_blocks) == 0 then
13 # No more blocks to move
14 break
15 end
16 if slow_time - fast_time < similar_time then
17 # Reached the similarity
18 break
19 end
20 while searching do
21 selected_block← Next block in possible_blocks
22 Duplicate the distribution and change this block to the fast node.
23 new_slow_abe, new_fast_abe← compute new SABE for these two nodes

using the duplicated distribution
24 if new_slow_abe > target or new_fast_abe < target then
25 searching← False
26 Commit differences on Zone, Distribution and ABE
27 end
28 if this was the last block in possible_blocks then
29 searching← False
30 moving← False
31 end
32 end
33 end

blocks to be moved in this section. The SABE may be exceptionally high because of blocks from

previous sections (lines 12-15 and 28-31). Moving blocks from two nodes (line 20) continues

until a move results in trespassing the average SABEp,k1,k2 (line 24). The right of Figure 5.7

shows how cumulative CABE evolves after two shuffling operations are applied, where the red

98

line represents the difference between the maximum and minimum CABE(k). The top right

of Figure 5.6 depicts the resulting irregular distribution, called 1D-1D C+S, with the runtime

behavior.

The general proposed methodology first applies this shuffling to the largest section (in

the number of iterations it spans). Usually, if the work is sufficient for the total amount of

blocks, it will be the first section containing all nodes. It may be the case that after a shuffling,

the cumulative load imbalance (maxp CABEp(k) − minp CABEp(k)) remains high, in which

case the methodology incurs an additional shuffling at this spike. When applied carefully, this

shuffling operation allows smooth progression across iterations and reduces idle periods.

The upper right part of Figure 5.6 depicts the block shuffled distribution, where small

disturbed areas (the one between rows 50 and 75, for example) exist and correspond to the

few blocks allotted to faster nodes. A noteworthy aspect of the corresponding execution,

depicted in the bottom right of Figure 5.6, is that now the ABE of each node is almost perfectly

balanced (for example, the comparison of A areas for the first six nodes). In this example,

the makespan improvement is insignificant: 39.30 seconds compared to 39.94 for the original

1D-1D distribution. However, the activity period of all slow nodes now matches their ABE,

which may allow putting these nodes into a deep sleep mode to save energy or do some other

operation. Idle periods (see B areas) on the faster nodes are significantly reduced compared to

the distribution without block shuffling. Idling corresponds to the small load imbalance, which

is maximum for iteration 84 and visible in Figure 5.7. They appear because of the lack of ready

tasks. Our experiences in balancing this load further indicate how difficult it is (there is very

little work) and that shuffling should be applied with much care as it involves balancing the total

load from the beginning with the remaining one.

5.4 Performance Evaluation

This Section evaluates the efficiency of BC, 1D-1D, 1D-1D C, and 1D-1D C+S distri-

butions in three different scenarios. Section 5.4.1 shows the gains brought by 1D-1D C and

1D-1D C+S when strong scaling on a heterogeneous platform. Section 5.4.2 presents results

on a larger heterogeneous cluster. Finally, Section 5.4.3 presents how distributions compare in

two setups with different heterogeneous node configurations to depict GFlops when growing

the matrix size. Note that these experiments use simulation and employ all available cores, as

detailed in Chapter 4.

99

5.4.1 Strong Scaling in a Heterogeneous Context

This evaluation considers the progressive scenario of adding more nodes. First, it only

uses Chifflet nodes as they contain GPUs, and then, gradually, it adds Chetemi nodes, forming

a heterogeneous platform at the end. Table 5.1 depicts all the studied configurations.

Table 5.1 – Machines configurations used

Case Identification Chifflet Chetemi Total Machines

6 (6+0) 6 0 6
8 (8+0) 8 0 8
10 (8+2) 8 2 10
12 (8+4) 8 4 12
16 (8+8) 8 8 16
22 (8+14) 8 14 22

Source: The Author.

Figure 5.8 presents the performance of every distribution in terms of execution time

(Y-axis) as a function of the platform size (X-axis). As expected, when slower nodes participate

in the computation, the time required by the BC distribution dramatically increases since the

whole execution progresses at the speed of the slower nodes. In contrast, 1D-1D distributions

gracefully handle the addition of new nodes and are all very close to the optimal (the ABE

with all resources). Although the gain is small (1 to 2 seconds), 1D-1D C and 1D-1D C+S

improve systematically upon 1D-1D. The inset zoom with the (8+2) node configuration shows

Figure 5.8 – Execution time (Y-axis) as a function of combinations of number of machines (X-axis) and
distributions (lines)

Source: The Author.

100

differences between strategies. For larger configurations, the difference between 1D-1D and

1D-1D C decreases while 1D-1D C+S maintains a constant gain of about 2 seconds over 1D-1D.

This constant gain appears because 1D-1D C+S manages to ensure smooth progress throughout

iterations and to optimize the end of the execution (where the gain in this context is limited

anyway). Such behavior of constraining the end of the execution will be useful in Chapter 6.

A consequence of the 1D-1D C distribution to use fewer nodes toward the end of the

computation allows releasing nodes earlier. Figure 5.9 presents the total utilization time per

configuration. In the (8+14) case, the 1D-1D C (695s) and 1D-1D C+S (722s) significantly

improve upon 1D-1D (768s). This resource idleness can be further used for two situations. (i)

Reducing energy consumption, assuming nodes can enter a deep sleep mode when fully idle.

(ii) Advancing other operations, this is the case on multi-phase applications.

Figure 5.9 – Total machine utilization time (Y-axis) for different number of machines (X-axis) and data
distributions (lines)

Source: The Author.

Finally, evaluating how much these distributions incur communication is also interesting.

Although both strategies are derived from the column-based Peri-Sum partition, the constraining

and the shuffling ideas trade off some communications for better load balancing throughout the

execution. When factorizing a 100×100matrix with 8+14 nodes, a pure BC requires transferring

55 329 blocks, while the 1D-1D reduces this down to 35 417 blocks, and 1D-1D C+S requires

the transfer of 42 632 blocks. It is thus important to understand that although the 1D-1D C+S

allows for better exploitation of computing resources, some communication overhead costs may

become problematic at a larger scale.

101

5.4.2 Performance Gain over a Larger Heterogeneous Cluster

This evaluation now uses a 46-node cluster made of 16 fast Chifflet nodes and 30

slow Chetemis nodes and using discrete matrix sizes. The goal is to evaluate how quickly

it reaches the maximum performance (in GFlops). Figure 5.10 presents the performance of

each distribution for matrix sizes ranging from 25×25 blocks (which is very small since each

node gets less than 14 blocks on average for a BC distribution) to 150×150 blocks. Similarly

to the previous evaluation, it depicts the maximum achievable performance computed from

the ABE (considering all resources) and the CPB (without communication). As expected, the

best performance achieved by a BC distribution is far smaller than the peak performance, and

the BC distribution is still far from it even for the 150×150 matrix (about 40% less). The

rather unfavorable geometry for BC distributions (46 = 2× 23) has too many communications,

explaining these results. Variants of the 1D-1D distribution remain undisturbed by the prime

decomposition of the number of nodes, getting quickly closer to the peak performance (within

6% for the 150×150 matrix).

Figure 5.10 – GFlops performance (Y-axis) for different matrix sizes (X-axis) and distributions (lines)
for a case with 16+30 nodes

Source: The Author.

Again, the 1D-1D C+S distribution obtains systematic gains over both 1D-1D C and

1D-1D distributions. It is interesting to note that for small 25×25 matrices, 1D-1D C+S and

102

1D-1D C distributions are equivalent (there are not enough blocks to shuffle) and significantly

improve upon the 1D-1D distribution (32.5% gain). For large 150×150 matrices, 1D-1D C and

1D-1D C obtain a similar performance, which reflects the asymptotically optimal but imperfect

load balance. Also, the duration of the factorization is rather significant than the possible critical

path gains at the end of the execution. Contrarily, the 1D-1D C+S improves the overall load

balancing, resulting in performance gains. Last, regarding communications, the factorization of

a 150x150 matrix requires the communication of 129 164 blocks for 1D-1D. Constraining the

execution on fewer nodes towards the end allows it to decrease this amount to 123 780 blocks, but

shuffling blocks to achieve a better load balancing increases this amount up to 149 474 blocks.

This result indicates that the methodology adopted in the shuffling may be too aggressive, and

this could become a problem if communication is the main downing factor.

5.4.3 Performance Gain over Different Levels of Heterogeneity

The final analysis presents two cases with Chetemis machines. First, it uses a 100-node

cluster where one node is 25% slower on computing dgemms (Figure 5.11 left). This scenario

is typical of a mild heterogeneity where one node may, unfortunately, create a significant load

imbalance. Second, a 100-node cluster where 68 nodes are twice slower for the same operation

(right). The second scenario is representative of a strong heterogeneity with an approximate

difference of 2× between nodes because of GPUs. In both cases, it gradually increases the

matrix size, ranging from 80×80 blocks (which is very small since each node gets 64 blocks for

a BC distribution) to 300×300 blocks. The goal is thus to evaluate how quickly we reach the

peak TFlops performance.

Similarly to the previous evaluation, the ABE (considering all resources) and the CPB

(disregarding communication cost) present the possible peak performance. In both scenarios,

the performance achieved by a BC distribution degrades as the matrix size increases, as the

slowest machine limits it, and is far smaller than the peak performance. For the 300×300 matrix

size and first scenario (a single node is 25% slower), BC is 14.5% slower than 1D-1D and

17.1% more than 1D-1D C+S. For the second scenario, BC is 31.4% slower than 1D-1D and

32.7% slower than 1D-1D C+S. The excessive work on the slower nodes explains these results,

as all other nodes are waiting for data dependencies in these nodes. Variants of the 1D-1D

distribution remain undisturbed even in the presence of slower nodes, getting much closer to

peak performance.

The 1D-1D C+S distribution demonstrates slightly better performance than other distri-

103

butions for large matrix sizes in both scenarios and shuffling always improves the constrained

version. For smaller matrix sizes, 1D-1D C presents lower performance than 1D-1D. For matrix

sizes near 100×100, we observe that the 1D-1D is better than the others, which indicates that the

methodology adopted for this constrained version is too aggressive in limiting resources at the

end of the execution. Last, regarding communications, the factorization of a 300×300 matrix

on the first scenario requires the communication of 812 370 blocks for 1D-1D. Constraining the

execution on fewer nodes towards the end allows us to decrease this amount to 798 434 blocks,

but shuffling blocks to achieve a better load balancing increases this amount up to 904 714 blocks.

Still, the concentration of load and better load balancing justify this communication increase.

Figure 5.11 – TFlops performance (Y-axis) for different matrix sizes (X) and distributions (lines) with
100 nodes where one node is 25% slower (left) and 68 nodes are twice slower (right)

Source: The Author.

5.5 Discussion

This Chapter studied static cyclic data distribution techniques for homogeneous and

heterogeneous sets of nodes in the context of dynamic task-based runtimes. Experiments with

the LU factorization demonstrate how the 1D-1D distributions can be beneficial even for a

homogeneous group of hybrid nodes when compared against BC, presenting much more stable

scalability. Considering a heterogeneous set of hybrid machines, for which the 1D-1D is also

near-optimal, we propose two new strategies. The first uses fewer nodes towards the end of the

operation, gradually intensifying the computation in the powerful machines. The second applies

additional shuffling of blocks to level out the cumulative work. The constraining technique allows

104

for optimizing the end of the execution, while block shuffling enables the reach of a quasi-optimal

load balance across iterations but increases communication. A careful combination of these

techniques provides selective performance improvements against the original 1D-1D, both in

load balancing and execution time.

This study also indicates that the 1D-1D distributions are an excellent starting point,

which is not so easy to improve. In practice, when only considering one linear algebra operation,

it is unclear whether a systematic use of 1D-1D C and 1D-1D C+S is beneficial as it requires

a good performance model and may induce communication overhead. However, those two

strategies are tools that can be applied to specific situations. When problems at the end of the

execution arise because of limited parallelism, excessive communication, or wrong scheduled

critical path, the constraining-like strategy may help. Further reshuffling may be beneficial for

cases where the balancing provided by the 1D-1D could be improved, and communication is not

a problem (in a high-speed, low-latency network, for example). This first study identifies general

communication and critical path trade-offs and the consequences of irregular distributions on

the overall execution. Also, this study shows that non-perfect balanced distributions (like the

constrained version) may present benefits in some situations.

Finally, applications may have several algorithm phases that require different hetero-

geneous distributions. The interaction between these distributions should be carefully studied

when using a fully asynchronous system, like task-based runtimes. The time gained on some

resources by deactivating them at the end of the algorithm could be used for the subsequent

phases, meaning that imbalance distributions for phases could be compatible in generating a

complete, balanced execution. If the idle resources of one phase are intelligently used for the

subsequent phases, one could expect performance improvements. Nevertheless, the constrained

strategy can be used to optimize the critical path at the distribution end. When having both

nodes with and without GPUs, critical path tasks that better exploit GPUs would benefit from

an uneven distribution concentrated on nodes with these accelerators. This is further shown in

the next Chapter, which studies these cases with multi-phase applications.

This chapter’s main contributions and results were published in ICPADS 2020 (NESI;

SCHNORR; LEGRAND, 2020).

105

6 HETEROGENEOUS STRATEGIES FOR MULTI-PHASE APPLICATIONS

Many applications have different phases, each one having different computational needs.

For example, phases comprising data input and generation are generally more suited to CPUs,

while compute-intensive operations, such as classical linear algebra kernels, can efficiently ex-

ploit accelerators. This inner application heterogeneity can be better balanced when combined

with the system heterogeneity, where more distribution options can improve load balance. Be-

cause the individual phases do not use all resources equally, an application requires certain

freedom to execute the phases concurrently to improve resource usage and performance. The

challenges to making phase overlapping possible include programming and algorithmic diffi-

culties. From the programmer’s perspective, phase overlapping is usually hard to obtain in

traditional bulk synchronous parallel applications. However, in the task-based paradigm, certain

asynchronism is seamless if the DAG is correctly structured. But even after the phase over-

lapping gets implemented, the application would still face the algorithmic challenge of finding

an efficient distribution for the available nodes. Combining these challenges makes most ap-

plications miss an enormous opportunity to use system-level heterogeneousness. The distinct

computational demand of phases makes system heterogeneity an interesting choice to improve

load distribution.

This Chapter studies and proposes strategies for distributing these multi-phase applica-

tions over resources with system-level heterogeneity. The investigation uses the ExaGeoStat

and Diodon applications, discussed in Section 2.4. First, Section 6.1 presents the problems

and opportunities when considering multi-phases and the possible multiple distributions. Then,

Section 6.2 presents optimizations to improve the task-based asynchronous execution of both

applications’ phases. In both applications, the same ideas of improving specific DAG structures

like priorities, hints, and dependencies lead to performance gains. In ExaGeoStat, five opera-

tions overlap, while in Diodon, there is a potential overlap between the reading phase, the Gram

operation, and the first matrix multiplication. With the correct overlap, this Section continues

and offers strategies for generating a heterogeneous system-level static distribution that con-

siders the phases’ computational cost and overlap. The Section also provides an algorithm to

infer a distribution of a particular phase by using the following phase distribution, maintaining

the regional balance and reducing redistribution overhead. All these strategies are evaluated

in Section 6.3, with many different system-level heterogeneous scenarios. Finally, Section 6.4

ends this Chapter with a discussion.

106

6.1 Problem: Asynchronous Multi-phase distributions

The first step to understanding the opportunities for improvement is to characterize the

application’s behavior. To this end, we use visualizations from the performance analysis tool

StarVZ (GARCIA PINTO et al., 2018). Figure 6.1 presents three panels for one iteration of the

synchronous version of ExaGeoStat. In all panels, the X-axis is the time in milliseconds. A

Gantt chart is the middle panel, showing the aggregated utilization per resource type per node

(for example, CPU 0 is the aggregated utilization in % of all CPUs in node 0). The makespan

is the number position on the right end. The upper panel shows the computational intensity of

each iteration of the Cholesky factorization on the Y-axis, with generation tasks mapped to 0

and post-factorization mapped to the last subsequent iteration. Two supplementary lines show

each iteration’s beginning (left) and end (right). This plot depicts how the factorization unfolds

and gives a signature to the execution. The last panel shows the resource memory utilization per

memory node, where RAM and each GPU have a memory node.

Figure 6.1 – Iteration, Node occupation, and Memory panels for the synchronous version of the
ExaGeoStat iteration

Source: The Author.

In the Figure, there is a distinction between the main three phases of ExaGeoStat. The

yellow area (A), in the beginning, reflects the dcmg tasks of the generation phase that only

107

run on CPUs because the Matérn covariance function relies on the modified Bessel function

whose implementation is complex and which is not available for GPUs. The (B) mostly green

area represents the Cholesky factorization with its predominant dgemm tasks. Finally, the (C)

area is the post-factorization operations (determinant, solve, and dot product, whose dominant

operations are the dgemm tasks (in green) from the solve. Considering the whole execution, the

resource usage can be improved, especially at the beginning (where only the CPU cores work

because of the generation constraint) and toward the end (where there is not enough work for all

nodes). Yet, the DAG should enable large amounts of parallelism that could shift a lot of green

tasks to the beginning of the execution and improve the execution time.

Diodon’s behavior shares similarities with ExaGeoStat. Figure 6.2 presents the StarVZ

visualization (similar to the ExaGeoStat one) of this application behavior using the same four

homogeneous nodes. The figure also clearly shows all Diodon’s phases: the read phase with the

yellow IO tasks and the orange copypaneltotile tasks (A annotation); the sum of squares

(purple) and the gram tasks (blue) (B); the first and second pair of matrix multiplication (dgemm)

in green and QR factorization tasks in red (C and D); the external untraced SVD call (E); and

the post-processing operations (F). The resource utilization is small in the read phase, as the

Figure 6.2 – Node occupation, and Memory panels for the synchronous version of the Diodon complete
execution

Source: The Author.

108

number of reading workers is limited for IO reasons. Because there is a synchronization point

between all phases, GPUs remain completely idle until the matrix multiplication phase starts,

very late in the application. Finally, the SVD and post-processing operations for this particular

workload size are minimal.

In both applications, the lack of overlap between phases makes the application miss an

enormous performance opportunity: powerful resources (GPU) could work more. With the cor-

rect execution of the generation phase, earlier GPU tasks could become ready sooner, increasing

their utilization. Nevertheless, when the overlap is corrected, the phases have different needs

that could exploit different sets of nodes to improve performance. This heterogeneity means that

multi-phase distributions must consider this overlap, and a particular phase’s distribution must

acknowledge the performance of other phases’ tasks in the heterogeneous node’s resources.

6.2 Multi-phase Partitioning in Heterogeneous Clusters

This Section presents the strategies to partition multi-phase applications load correctly

into system-level heterogeneous resources. Before aiming for heterogeneous resources, we had

to improve the asynchronous execution of the phases. Section 6.2.1 presents a categorization

of phase overlap optimizations that can be applied to task-based applications, following a set of

detailed improvements carried out for both applications. With such optimizations, Section 6.2.2

presents the strategies to compute the relative load distribution power per node, considering all

major phases into heterogeneous partitions. This power information is the input for traditional

heterogeneous distributions. Finally, Section 6.2.3 shows how to compute a distribution for a

phase while minimizing communication, using the following phase distribution as a reference.

6.2.1 Improving Application’s Phase Overlap

Applications with synchronous phases lose an opportunity to adapt their workload and

increase resource usage. In ExaGeoStat, the factorization could start as soon as the matrix

upper part is generated and exploit the GPUs while the generation proceeds. A similar situation

happens in Diodon since the Gram and matrix multiplication phases can proceed with only

a portion of the data. This way, our first optimization removes the synchronization points

between all internal operations and makes a fully asynchronous execution. This optimization

allows StarPU to control the tasks’ order and flow. However, a correct phase overlap requires

109

extra information passed to the runtime, like priorities and the leverage of non-computational

operations, including large amounts of communication and allocation costs.

Although these hints and collateral effects may vary depending on the algorithm and

application structure, they share the same goals and principles. We globally organize these

optimizations into the following categories. [I] Algorithm asynchronism optimizations to

improve the number of parallel operations and remove possible synchronization points in the

program. [II] Memory optimizations to improve memory allocation and utilization between

phases and the best time to do those operations. [III] Communication optimizations to reduce

data transfers between phases and enable the earlier start and correct overlap. [IV] Scheduling
hints and artifacts optimizations to tweak and give information to the scheduler (like task

priorities considering the whole application) to maximize phases’ overlap and induce the earliest

execution of the critical path. The rest of the Section presents each one of the optimizations on

each application, indicating their categories.

Considering the ExaGeoStat application:

Local solve algorithm [I, III]: The behavior depicted in Figure 6.1 (D annotation)

shows an increased memory consumption with associated idle times. Further investigation

revealed that a collateral effect of the solve phase caused it. The original Chameleon’s solve

algorithm performs its dgemm operation on the node that owns the solution vector (the right-hand

vector) that follows the distribution of the main matrix. Consequently, many matrix blocks are

moved between nodes to complete a simple dgemv operation, demanding extra allocation and

communication between nodes. The number of allocations and communication, especially in a

non-optimal order, will cause idle time, which can be considerable depending on the machines’

configuration and matrix size. The solution was to replace the Chameleon solve algorithm with

a version (Algorithm 9) that improves locality by performing all possible dgemv operations

locally (that the node already has the data). This is done by accumulating its outputs in a local

vector G of each node and communicating only it to perform a reduction on Z.

Algorithm 9: Local solve algorithm
1 for k = 0 up to nb do
2 dtrsv(M(k,k), Zk)
3 for i = k + 1 up to nb do
4 dgemv(M(i,k), Zk, G(i,node of Mi,k))
5 end
6 foreach updated G(k+1,j) do
7 dgeadd(G(k+1,j), Zk+1)
8 end
9 end

110

Memory optimizations [II]: In an asynchronous environment, the maximum memory

consumption and operations will not be the individual phases but a mixture of all. This

mixture can cause problems. We perform four optimizations to mitigate memory management

issues by changing runtime functionality alongside the application’s DAG and tasks. The first

optimization is to transfer the RAM allocation from the task submission function and perform

it as other allocations, as a management task in the DAG. The second optimization is to enable

cache for the StarPU’s chunk memory system when using RAM, causing possible chunk reuse

between phases and iterations. The third optimization is related to a slow memory allocation

provided by the CUDA API, which GPU workers can originally perform. To maximize GPU

throughput, we disable such operations on GPU workers. The last optimization is pre-allocating

some memory chunks during application initialization so the first iteration can also use them as

a cache.

New priority equations [IV]: One of the possible hints the application can pass to the

runtime is priorities, which will play a role in the scheduler decisions. The original Chameleon

implementation defined priorities for the Cholesky Factorization tasks ranged from 2n to −n

with an order following roughly the anti-diagonal. Other operations did not specify priorities,

which StarPU interprets as 0. That means that non-defined priorities procedures, like the

generation or solve, had effectively priority 0, all preferably executing in the middle of the

factorization. For this reason, we propose new priorities for all tasks, considering all phases

to guarantee a smoother transition between them all. Such priorities follow the natural DAG

critical path with a unit execution cost (i.e., starting from the last tasks and going backward to the

first generation’s tasks). The new priorities equations for each task are in Equation 6.1, which

considers a task that writes on a block of coordinate (i, j) on iteration k. Because the Cholesky

DAG is essentially the basis, the generation priorities align with the first factorization iteration

(k = 0), and to force an earlier execution, the negative component is divided by 2. Because the

other operations (determinant and dot product) are leaves of the DAG and can be interchanged

without any consequence, they are attributed a priority of 0.

[Generation] dcmg = 3nb− i+j
2

(6.1)

[Cholesky] dpotrf = 3 (nb− k)

[Cholesky] dtrsm = 3 (nb− k)− (i− k)

[Cholesky] dsyrk = 3 (nb− k)− 2 (j − k)

[Cholesky] dgemm = 3 (nb− k)− (j − k)− (i− k)

111

[Solve] dtrsm = 2 (nb− k)

[Solve] dgemm = 2 (nb− k)− i

[Solve] dgeadd = 2 (nb− k)

[Determinant] dmdet = 0

[Dot] dgemm = 0

Submission order [IV]: Although the scheduler will try to follow the priorities order,

in practice, an artifact can occur and lead to a low-priority task execution before a higher one.

Because schedulers cannot foresee the future, tasks will start immediately if the application

submits a low-priority task with idle resources. In this way, if the following task submitted has

a higher priority, it will have to wait for the previous one to finish. This problem can be easily

overcome by submitting tasks following their priorities. Because this artifact mostly appears in

the generation phase, only this one had the order modified.

Oversubscribe [IV]: Another possible runtime artifact is the delay of high-priority tasks

because of longer ones. If all workers have longer tasks, and a high-priority one becomes ready,

it may have to wait for an available resource (without preemption procedures). This situation

may be a problem if the task is part of the critical path and is responsible for releasing a lot

of other tasks. This is the case of dpotrf, which can only execute on CPUs that may have to

wait because generation tasks (dcmg) are much longer. Also, the dpotrf tasks are the ones that

release many dgemm tasks in the Cholesky, tasks that can use powerful resources like GPUs. We

use the idea of oversubscribing a CPU core with a dedicated worker for critical tasks over the core

that StarPU dedicates to task submission. While tasks are being submitted, their computation

will suffer from contention; however, the collateral impact is small relative to the possible gains

of advancing the critical path faster.

Considering the Diodon application:

Memory optimizations [II]: Data allocation was also a problem at Diodon. Similar

optimizations conducted in ExaGeoStat also apply here, including not making all allocations

at submission time and turning off slow allocations on GPU workers and critical workers (the

workers that perform the read). Another optimization was to pre-allocate the blocks for reading

panels. In the default behavior, StarPU would make all allocations in nodes with CUDA GPUs,

employing the CUDA API. This API pins the memory to accelerate future transfers. However,

these allocations are slow. The read panels will never be transferred to GPU, as Diodon will

first break those panels into blocks and redistribute them for the computational phase. This

redistribution into other memory regions means that those panels are not required to be pinned.

112

Asynchronous Gram and Matrix multiplication workflow [I, III]: One of the original

operations performed in the Diodon MDS is the Gram one. Diodon makes this operation by

first computing the sum of squares to each row and the whole matrix and then applying the

gram centralizing kernel. However, this situation implies a global synchronization point during

the Gram operation as all gram tasks require the whole matrix sum of squares. Because the

order of operations starts with the read followed by the Gram, and both do not use GPUs,

these powerful resources would continue to idle until Diodon computes the whole matrix sum

of squares, which requires reading the entire matrix. This synchronization implies a waste of

GPU power during matrix reading. To overcome this problem, we propose a new Gram and

Matrix multiplication workflow to improve parallelism and start the subsequent phases that can

use GPU during matrix reading. We use associativity properties to break and modify the Gram

and first matrix multiplication operations. The original Gram operation computes the Gramian

block Gij of the original matrix block Dij using c (a constant coefficient), m (number of rows),

n (number of columns), SR, SC, and SO, which are the sum of squares of the row, column,

and the overall matrix respectively. Then, with a random generation matrix for the rSVD Ω, it

performs the matrix multiplication Y = GΩ. The following equations describe this operation

in an expanded form for each block of the final Y matrix.

Gij =c(D2
ij −

SR2
i

n
−

SC2
j

m
+

SO2

nm
) (6.2)

Yij =
∑
k

(GikΩkj) (6.3)

=
∑
k

(c(D2
ik −

SR2
i

n
− SC2

k

m
+

SO2

nm
)Ωkj)

=
∑
k

(c(D2
ik)Ωkj) + c(−SR2

i

n
+

SO2

nm
)
∑
k

(Ωkj)− c(
∑
k

(
SC2

k

m
Ωkj))

The goal here is to perform the costlier (O(n2r)) operation Y = GΩ earlier. In this way,

we reorganize the equations so that the first task only computes the matrix powering square G′,

followed by multiplying such matrix to omega Y ′ = G′Ω. The difference of Y ′ to Y for each

column j is SR2
i

n
and SO2

nm
multiplied by the j column sum of the matrix Ω and

∑
k(

SC2
k

m
Ωkj). This

way, after submitting the generation tasks for the matrixΩ, we submit tasks that will compute the

sum of each column of Ω and store it in Aj . Because the generation of Ω and these summations

are independent of D, such tasks can run during D’s read while the system load is relatively

low. We also submit tasks to compute the
∑

k(
SC2

k

m
Ωkj) component for each column j and store

113

it in Bj . Those tasks will gradually execute as SC becomes available. Finally, we submit two

new tasks, gram_gemm_post, which will correct the value of Y ′ (and become the original Y)

by using A and B, and gram_post that will fix the value of G′ to G.

G′
ij =c(D2

ij) (6.4)

Y ′
ij =

∑
k

(G′
ikΩkj) (6.5)

=
∑
k

(c(D2
ik)Ωkj)

Aj =
∑
k

Ωkj (6.6)

Bj =
∑
k

SC2
k

m
Ωkj (6.7)

Yij =Y ′
ij + c(−SR2

i

n
+

SO2

nm
)Aj − cBj (6.8)

Gij =G′
ij + c(−SR2

i

n
−

SC2
j

m
+

SO2

nm
) (6.9)

Commutable tasks [I, IV]: Another interesting scheduler artifact is task dependencies

that establish a strict task sequence that, in reality, can occur in any order. One example of such

behavior is matrix multiplication. A final result block of coordinate (i, j) will be computed by

the sum of the M(i, k)N(k, j) blocks. This sum is commutable and can happen in any order.

However, during submission time, the default behavior of StarPU is to create a dependency

between a later submitted task that uses a block with RW (read and write) permission to any

previous task that has used that block. When Chameleon submits the dgemm tasks from k = 1

to nb, the dgemm task of k = 2 will depend on the k = 1 task, when in reality, they can be

commuted. The commutability notion is known and possible to StarPU; however, it requires that

such tasks be submitted with the permission RWC. Such optimization a priori may appear small.

However, in our case, without the optimization, the dgemm tasks of local M and Ns (already

in the local memory of the node) with a larger k would need to wait for the communication of

other M and Ns of lower k, reducing possible ready tasks and then resource usage. Thus, the

optimization removes this unnecessary dependency, increasing the number of ready tasks.

Read phase distribution [III]: The original Diodon reads the matrix panels in a sequen-

tial node order, which means that for x nodes, the first one will receive a continuous n
x

area to

read. Although this may benefit IO read purposes on specific disks, it can generate too many data

transfers when reorganizing the blocks’ distributions for the computationally intensive phases.

114

At this point, this optimization only matches the read phase distribution to the computation

phase. However, in the next Section, when discussing heterogeneous nodes, this optimization

is replaced with our read distribution calculated from the computation-intensive phases. The

latter considers an ideal read distribution while reducing communications to the next phase.

New priority equations [IV]: In the same situation as ExaGeoStat, we have to improve

the phases overlap by hinting to the scheduler the tasks that should execute first with priorities.

This is important as the submission order differs from the ideal execution order. Because there

will be an inevitable synchronization point before the gram_post operation, the priorities for

this optimization are only defined for the following tasks: read, copypaneltotile, gram_pre,

dgemm, and tasks related to the sum of squares. Because the generation reads the whole line of

each hdf5 file and the matrix multiplication operation requires a complete line of D to calculate

each final block, we follow the order of the rows in all phases, i.e., the block index i of most

operations. A high priority task dlaset for initializing the block is set to the highest priority

n (number of rows). The priority for the matrix multiplication operation follows its intra-loop

k, so it will aim to follow the left to right order of the matrix D for the available blocks. The

complete list of priorities is on Equation 6.10.

[Generation] inittile = nb− i (6.10)

[Generation] read = nb− i

[Generation] copypaneltotile = nb− i

[Computation] dlaset = nb

[Computation] syssq = nb− i

[Computation] gessq = nb− i

[Computation] plssq = nb− i

[Computation] gram_pre = nb− i

[Computation] dgemm = nb− k

The correct overlap of the phases in a smooth way is a requirement for better load distri-

bution thought strategies that consider their interaction. These optimizations will help improve

performance locally, and when using non-standard distributions, computational-intensive late

DAG tasks with a higher priority can run earlier.

115

6.2.2 Load Balancing across Application Phases

When distributing asynchronous multi-phase applications into multiple node partitions,

we must consider the phases’ overlap. This situation happens because essential tasks from a

further phase could and should start earlier and use idle resources from previous phases. The

standard literature procedure to compute a distribution is to use the relative power of the machines

involved, as shown in Section 3.1. In this context, the overlap length should be considered when

computing the relative machine powers for a phase. Consider ExaGeoStat, for example; while

the two main phases generation and factorization are relatively long, the generation cannot use

GPUs. If the computation of the relative machines’ powers for the factorization only considers

itself, the actual distribution for GPU machines would be undersized, as factorization tasks can

start earlier during generation. This means CPU-only machines would always work, but GPU

machines can receive more load than the exact relative machines’ power. Moreover, as powerful

as the GPU is, the more load it can receive, alleviating work from CPU-only machines. A similar

situation happens in Diodon, as the read phase is IO and performed in the CPUs. At the same

time, the next matrix multiplication and Gram can occur asynchronously (the computational

intensive phases). However, in Diodon, there will be an inevitable synchronization at the end

of the gram_post tasks, as the whole matrix is necessary to finalize the operation. In this

sense, the strategies of this Section for phase overlap only occur between the read phase, Gram

operations, and the first matrix multiplication.

The proposed strategy is to use a linear program to correctly estimate the node groups’

powers in task-based applications considering the interaction of two phases. Since phases

overlap and depend on each other, the central concept is to divide the phases into virtual

steps and relate the duration of each virtual phase step to dependencies and resource usage.

The job scheduling Graham notation (GRAHAM et al., 1979) for the approximate problem is

Rm |prec; pij ∈ {pj,∞}|Cmax. Where there are m unrelated machines (in our case, general

resources like CPUs and GPUs) and tasks have arbitrary durations pij , and sometimes not all

machines can execute all tasks pij ∈ {pj,∞}. Some jobs have precedences; in the same step,

we model the dependency between phases. Finally, the goal is to minimize the overall makespan

of the application.

The linear program model uses the following notations. The task type t corresponds

to the different tasks in the application (dgemm, dcmg, dgram). A virtual step s represents a

set of approximately independent tasks. In ExaGeoStat, the first phase is the generation, and

we decide that each generation step will correspond to an anti-diagonal in the matrix (all the

116

blocks of coordinates i and j such as s = i+j
2

), which corresponds to the priorities in Equations

of the previous Section. For the second phase, a factorization task of step s was created by

a generation task of the same step s. In Diodon, we consider the matrix’s natural read order,

and each step is composed of the total number of parallel read tasks (based on the maximum of

workers that can perform them, in this case, five) and the computationally intensive tasks they

release (Gram and matrix multiplication ones). In this way, considering that each row has rb

read blocks, and bs rows are grouped into nb blocks, a read block of coordinate i (1 ≤ i ≤ nb)

and j (1 ≤ j ≤ rb) is on step s such as s = i×rb+j
5

, as five is the number of parallel read workers

used in the experiments. Because the generation of the matrix Ω is very low cost and can be

done mainly during the first read step, we do not add it to the LP calculation.

The linear programming model takes as an input Ns,t, the total number of tasks of type

t at step s, and their respective processing duration. A resource group r corresponds to, for

example, all CPUs of a homogeneous set of nodes. We denote by wt,r the duration that a task of

type t takes on resource group r (tasks that cannot execute on a given resource r have their cost

set to infinity wt,r =∞). Finally, we will denote possible resources, steps, and task types byR,

S, and T . The sets P1 and P2 denote the task types of each phase and are disjoint.

The fractional number of tasks αs,t,r of type t of step s placed on resource group r is

the main output of the program. Dependencies among phase are accounted by introducing the

variables τ (1)s and τ
(2)
s , which represent the ending times of step s at the first and second phase

respectively. The following linear program approximates ExaGeoStat and Diodon behavior,

where αs,t,r, τ
(1)
s , and τ

(2)
s are all positive fractional variables:

Minimize
∑
s∈S

(τ (1)s + τ (2)s) s.t. : (6.11)

∀t ∈ T , ∀s ∈ S :
∑
r∈R

αs,t,r = Ns,t (6.11a)

∀s > 1,∀r ∈ R :τ
(1)
s−1 +

∑
t∈P1

αs,t,rwt,r ≤ τ (1)s (6.11b)

∀s ∈ S,∀r ∈ R :τ (1)s +
∑
t∈P2

αs,t,rwt,r ≤ τ (2)s (6.11c)

∀s > 1,∀r ∈ R :τ
(2)
s−1 +

∑
t∈P2

αs,t,rwt,r ≤ τ (2)s (6.11d)

∀r ∈ R,∀s ∈ S :
∑

z≤s,t∈T

αz,t,rwt,r ≤ τ (2)s (6.11e)

min
r∈R,t∈P1

(wt,r) ≤ τ
(1)
1 (6.11f)

117

The application makespan is given by the last phase two (computationally intensive)

ending time τ (2)nb . While the general goal of these optimizations is to reduce application execution

time, the objective function for the linear program in Equation 6.11 is more complicated. If

the LP used a simple loose objective function like τ (2)nb , the ending of the previous phases’ steps

τ
(2)
s for s < n could appear as late as possible when the first phase is the bottleneck, which is

undesirable. Instead, the objective function minimizes the sum of all τ (1)s and τ
(2)
s inducing a

simultaneous minimization of all steps endings. In our experiments, giving more weight to τ
(2)
s

or adopting a recursive minimization failed to bring any practical improvement compared to this

simple sum.

The Equations 6.11a to 6.11f refer to the constraints of the linear program, and their

individual goals follow. Equation 6.11a guarantees that the exact number of tasks are used in

the resources. The dependencies by consecutive steps inside the same phase are approximated

by Equation 6.11b, which states that one phase will end after the previous one ends, plus its own

tasks. The next constraint refers to the dependencies between phases. Equation 6.11c guarantees

that a step from phase two cannot end earlier than the same step from phase one and its own

tasks. Equation 6.11d is similar to Equation 6.11b and enforces that the end of phase two will

be after the end of the previous phase plus its tasks. This rule is stricter in the model than in

reality because of the completely asynchronous execution; many iterations of the algorithm (that

share multiple steps) can be executed in parallel. However, because they essentially share the

same cost, it ensures the correct progression between phases without penalizing it too much.

To guarantee that two tasks do not overlap in the resources, Equation 6.11e states that for each

resource r, phase two ends at a step s be at least the sum of all previous tasks on that resource. The

last constraint, Equation 6.11f, improves the approximation in the earlier stages of the execution.

As the linear program adopts rational variables, the model allows the "split" of tasks between

resources. In ExaGeoStat, the duration of the best implementation of the first phase tasks will

be the minimal time for the first step of phase one. In Diodon, because of the step definition and

the guarantee that each read step will execute at maximum x parallel tasks, as we have only x

parallel workers, this rule can be restricted to ∀s ∈ S : τ
(1)
s +minr∈R,t∈P1(wt,r) ≤ τ

(1)
s+1.

Although the linear program has many constraints, it is fast solved in all our cases. The

final duration result remains an excellent approximation and a lower bound even if some rules do

not entirely represent reality (Equation 6.11d strictness, for example). In addition, the α variable

is an excellent indicator of the number of tasks each resource group should execute in each

phase, the information we will use to compute the relative power per machine per phase. Even

if α is a fractional number, the relative power computed using it will be a good approximation.

118

Finally, the distribution algorithms try to approximate their final output concerning the informed

power values, meaning that α does not need to be the precise number of tasks for each resource.

The relative power of each node for each phase is an input for most distribution algorithms.

The computation of power pxy of node x and phase y uses as input α from the LP, the actual

number of tasks in the problem
∑

s∈S Ns,t, and a task type weight (ht) to adjust for the most

significant tasks. The computation of power of each phase should only consider task types t of

that particular phase T (y). Equation 6.12 shows how to compute pxy.

ct =
1∑

r∈R
1

wt,r

∑
s∈S

Ns,t (6.12a)

hty =
ct∑

z∈T (y) cz
(6.12b)

pxy =
∑

r∈R(x),t∈T (y),s∈S

hty
αs,t,r

Ns,t

(6.12c)

The weight hty uses ct, the time to complete all tasks of type t using all resources. The

component 1∑
r∈R

1
wt,r

express the duration needed to complete one task of type t if it could

be hypothetically split in all resources. The weight hty is then the normalization of ct, and

the normalized values are greater for the task type that requires more time to fully complete.

Finally, the power is computed by summing the normalized amount of tasks placed (αs,t,r

Ns,t
) on

any resource of that node (R(x)) for each task type, multiplied by the weight of that type.

6.2.3 Multi-Partitioning for distinct phases

Ideally, each phase has a different distribution, as each has a different computational need

and resource affinities. In ExaGeoStat and Diodon, while the main tasks of the computationally

intensive phase are the dgemm that GPUs can accelerate, the main tasks in the first phase (data

generation) only execute on CPUs. The linear program output can derive the ideal computation

load for each phase. Consider a simple situation with ExaGeoStat with four nodes with the

same CPU, but two have GPUs. When considering the problem individually per phase, while

the generation distribution will be equally divided, the factorization would mainly use the two

faster nodes. Figure 6.3 shows a possible data distribution for the generation in the left (a simple

2D block-cyclic distribution) and for the factorization in the middle (a 1D-1D distribution).

In ExaGeoStat, the 1D-1D distribution ensures a well-balanced factorization with a

minimal amount of communication. In Diodon, the problem can be relaxed to a 1D distribution.

119

Figure 6.3 – Generation and Factorization distributions for two nodes (1, 2) without and two (3, 4) with
GPUs

Source: The Author.

However, because of the ratio of work in Diodon, assigning the last rows of the matrix to

CPU-only machines during the computational intensive phase would create a huge critical path,

as r
bs

tasks would need to execute sequentially with the traditional algorithm (other algorithms

would require extra memory and a reduction operation). For this reason, we used the idea of a

constrained distribution, as discussed in Chapter 5, when analyzing distributions for individual

operations. We only consider assigning a row to a node if the global amount of work divided

by the resources (expected application duration time) is larger than the critical path (CPB) of

assigning that row to that node. Considering the placement of the x row, starting from the last

one, the CPB is easily computed as r
bs

times the best implementation of the dgemm task on that

node plus the LP result for the read phase x. At the same time, the amount of work divided by the

resources can be estimated by the LP result of the computationally intensive phase at the last step

τ
(2)
nb . We always consider nodes for assignment with the lowest CPB plus a tolerance of two times

the number of blocks in milliseconds. This heuristic handles the case for very small workloads

and cases where the CPB is marginally different for the nodes. This idea of constraining the

end of the distribution can also be applied to ExaGeoStat. We restrict the placement of the last

rows of the Cholesky distribution to GPU-only nodes (or a group of fast nodes) while the CPB

of an iteration is greater than the area-bound estimator (ABE). These methodologies are much

simpler and slighter than the one presented in Chapter 5; however, they solve the problem of the

slow and long critical path when there are heterogeneous nodes and multi-phases.

When building the phases (data generation and computationally intensive phases) distri-

butions, if each one is computed independently, the chance is that most of the locations will be

120

different, requiring more communication during the redistribution between phases. For example,

consider ExaGeoStat with a 50 × 50 matrix and the scenario of Figure 6.3, using the optimal

independent partitions results in the communication of 890 blocks between the generation and

the factorization phase, i.e., 70% of the total number of blocks.

In these conditions, each node in the data generation should receive roughly the same

number of blocks, as the CPU is the same. When considering the phases overlap and possible

interference, the linear program states an ideal of [318, 319, 319, 319] blocks per node in

the generation and [60, 60, 565, 590] for the factorization. These differences mean that the

first two nodes should transfer 517 blocks to the latter ones. This redistribution with 517

communications would be the minimum possible, i.e., 373 (≈42%) fewer transfers than when

distributions are independent. Not only are the quantities important for the generation, but the

ideal distribution would also maintain it “cyclic”, just like the 1D-1D distributions, ensuring that

the first generation blocks are spread and processed in parallel over the nodes. This cyclicality

helps increase the number of earlier computational intensive tasks ready, as in the factorization,

this order matters. In Diodon, such distributions between phases have the same problem of extra

communications.

Redistributing the two distributions in both applications can incur extra communication

overhead. To minimize it, we propose Algorithm 10, which receives a computationally intensive

distribution (a 1D-1D factorization distribution for ExaGeoStat, or a 1D heterogeneous cyclic

distribution for Diodon, without or with the constrained rule) and a ideal number of blocks per

node in the generation load. The output is a distribution for the generation that respects the

factorization cyclically, minimizing the redistribution communication cost.

The algorithm’s general idea is to iterate over the computationally intensive phase dis-

tribution, computing the current ratio of blocks each node should give or receive by the total

number of blocks it has at the moment. The owner of the block changes if a node has more

blocks than it should, giving it to the neediest node. If a node has twice as many blocks as it

should have, its base ratio is two, and at every two blocks that the algorithms pass through that

owner, one block moves to the neediest node. Since the computational intensive distribution in

both cases is uniformly spread over the nodes, this cyclic update also ensures a uniform node

spread of the generation but respects processing speeds. Figure 6.3 (right) presents the final

distribution yield. This distribution minimizes the communications while aiming to reach the

ideal number of blocks per node. It is possible to see similarities between this distribution and

the factorization one, particularly the vertical stripes for nodes 1 and 2 and the horizontal stripes

for nodes 3 and 4.

121

Algorithm 10: Generation of a target (data generation) distribution (dist(2)) from
a source (computational intensive) distribution (dist(1))

1 Input: dist(1)[1...mb][1...nb]
db(2)[1...p] Desired number of blocks per node

2 Output: dist(2)[1...mb][1...nb]
db(1)[1...p]← Number of blocks per node in dist(1)

3 diff ← db(1) - db(2)
4 rates, base← db(1)

diff

5 count[1...p]← (0, ..., 0)
6 dist(2)← dist(1)
7 foreach (i,j) in (1...m, 1...n) do
8 node← dist(1)[i, j]
9 if diff[node] > 0 then

10 count[node]← count[node] + 1
11 if count[node] ≥ rates[node] then
12 neediest← which.min(diff)
13 dist(2)[i, j]← neediest
14 diff [neediest]++
15 diff [node]−−
16 rates[node]← rates[node] + base[node]
17 if diff[neediest] > 1 then return
18 end
19 end
20 end

The computation of the ideal number of blocks per node for the first phase comes from

the LP result. In ExaGeoStat, the number of tasks is straightforward from the α values. In

Diodon, because we use single dimension distributions, we get α, compute the relative power,

and apply a 1D distribution again (with the number of blocks as the number of lines, even in

situations where there will be more tasks because of the reading grid) and count the number of

tasks (rows) per node.

6.3 Performance Evaluation

This section evaluates the strategies for improving phase overlap and multi-phase het-

erogeneous distributions using solely real experiments. The commits for the software stack used

are the following.

ExaGeoStat has the main branch commit 9518886 containing HiCMA, Chameleon, and

Stars-H in the corresponding submodules. StarPU developer branch commit 015357bd, and the

NewMadeleine (DENIS, 2019) (the communication layer) main branch commit 51d3bf40. We

122

added in ExaGeoStat and Chameleon some functions to load custom distributions. All the phase

overlap modifications are dynamically enabled or disabled during execution time. ExaGeoStat

authors made available a list of workloads1, for which we selected three synthetic ones identified

by numbers 8, 9, and 10 with n = 57600, n = 96600 and n = 122500, and a subset of workload

27 with n = 172800. These present the best workload ratio to our computational power. The

evaluation uses 960 as block size and, as a consequence, receives a matrix size (nb) of 60× 60,

101× 101, 128× 128, and 180× 180 blocks. These numbers (60, 101, 128, and 180) are used

to identify each workload.

Diodon experiments use the official main branch version commit 4e6027e2. The com-

munication library NewMadeleine is set to master branch commit 51d3bf40 while StarPU is

0fb603d8 and Chameleon 6f185f1. The hdf5 is the 1.10.7 version. Diodon and Chameleon

have modifications for the proposed optimizations and accept heterogeneous distributions. Fi-

nally, the workload consists of synthetic datasets generated by computing the distance of n

dimension random points with sizes 48k, 64k, and 128k. The execution environment uses a

block size of 640, resulting in workloads of 75× 75, 100× 100, and 200× 200 blocks.

6.3.1 Improving ExaGeoStat Phases Overlap

The phase overlap strategies in ExaGeoStat were evaluated using two workloads (60

and 101), two sets of machines (four and six Chifflets), and ten repetitions. Figure 6.4 depicts

the results. The X-axis is the cumulative optimizations enabled (from left to right), while

Y-axis is time in seconds with a 99% confidence interval. The percentage values in the far

right represent the total gain with all optimizations compacted to the synchronous version. The

results indicate that the first three strategies (full asynchronous, new solve algorithm, and memory

optimizations) were the ones that brought more improvements. The priority and submission

optimizations caused minor improvements in the 101 workload or no improvement in the 60

workload. However, ≈10% improvements were further seen in heterogeneous scenarios. The

last optimization, over-subscription, brought a slight yet consistent improvement in all cases. All

these optimizations represent a total gain from 31% in the 101 workload with four machines up

to 46% in the 60 workload with six machines when compared to the synchronous version. The

rest of the Section presents a more comprehensive analysis of how these optimizations changed

the behavior and improved performance.

The execution visualization of three different optimization cases is present in Figure 6.5

1<https://ecrc.github.io/exageostat/md_docs_examples.html>

https://ecrc.github.io/exageostat/md_docs_examples.html

123

Figure 6.4 – Performance comparison of our phase overlap improvement strategies against the
synchronous version of ExaGeoStat

Source: The Author.

for the four machine case with the 101 workload. In the left panel (Async), there is the first

case full asynchronous. The second one in the middle panel (+ New Solve + Memory) has

two extra optimizations concerning the first one, the new solve algorithm and the memory
optimizations strategies. The last one in the right panel (All optimizations) contains all the

optimizations. When comparing the simple asynchronous execution with the earlier Figure 6.1

that is the synchronous one, the synchronizations barriers disappear, meaning that factorization

tasks (green) are executed in GPUs alongside the generation ones (yellow) in the CPU. However,

the simple asynchronous case on the left still has improvement potential, as idle time is present at

the beginning of the execution and during the solve phase at the end. As discussed earlier, those

problems may be related to communication and memory utilization, even in the asynchronous

case. This assumption is confirmed when applying the first optimizations (the new solve

algorithm and memory optimizations) present in the center panel of Figure 6.5. There is no

gradual memory consumption (allocations are expensive) when comparing annotation A.2 to

A.1. Also, resource utilization is almost at 100%, as shown by comparing annotation B.2 to

B.1. The total amount of communication, computed from traces, is reduced from 11044MB in

the asynchronous version to 8886MB with the New Solve optimization.

The right execution of Figure 6.5 also shows the differences in the behavior of the last

three optimizations (Priorities, Submission order, and Over-subscription) when compared to the

middle one, though with minor performance gains. The first difference is that the factorization

iteration parallelism is higher, as seen in annotations C.3 to C.2, indicating a faster start,

124Figure 6.5 – Cholesky Iteration, Node occupation, and Memory utilization panels using 4 Chifflet for one ExaGeoStat iteration in three cases: Asynchronous,
Async + New solve + Memory optimizations, All optimizations

Source: The Author.

125

advancing the critical path sooner and releasing more tasks. This situation is further confirmed

by comparing annotations D.3 to D.2, which shows the corrections of the slow start and the

full utilization of the resources much earlier. The second main difference is that generation

tasks run at the beginning of the execution, without misplaced tasks in the middle, as shown in

annotations E.3 with E.2, a result mainly from the defined priorities. A third difference is the

start of the late phases. As seen in F.1 to F.2, the solve can start when it’s ready; however, most

solve tasks in F.2 occur after the middle of the execution. With the priorities, most of the F.3

region tasks occur gradually during the execution. Finally, annotations G.2 and G.3 present the

behavior at the end of the execution. While in G.2, there is a more gradual ending, in G.3, with

all optimizations, there is an abrupt closure, indicating that it prefers to delay some tasks in the

first iterations.

Another metric that indicates the strategies improvements was resource utilization. This

metric is the application’s complete tasks time divided by the working time of all resources.

Runtime overhead is considered idle time, i.e., time not spent in the application. The total

resource utilization for each of the three executions is 87.74%, 95.78%, and 96.83%, respectively.

Also, when only considering the first 95% of the ExaGeoStat iteration, the metric is 93.01%,

99.55%, and 99.55%. This result indicates that the last possible improvements are at the

end of the application when parallelism diminishes and working in the critical path becomes

more important (NESI; SCHNORR; LEGRAND, 2020). All the results here indicate that the

strategies were able to improve phase overlap in ExaGeoStat and increase resource utilization.

These improvements are essential for the multi-phase distribution over heterogeneous systems.

6.3.2 Improving Diodon Phases Overlap

In the Diodon case, Figure 6.6 presents the evaluation of the optimizations, and it consists

of using three different workload sizes for the matrix A (facets) and two different sizes for the

matrix Ω (line shape). The optimizations are present on the X-axis and the makespan until the

SVD is on the vertical axis. Two groups of machines were used, four (red) and six Chifflets

(blue). The percentage in the right part presents the final improvement compared to the original

sync version. The optimizations improved the performance from at least 29% to up to 40% in

these cases.

The following behaviors of individual optimizations are pertinent. An asynchronous flow

without overlap consideration impaired the performance in most cases. While the allocation, split

Gram, and commute optimizations improved performance by the same amount, a considerable

126

Figure 6.6 – Performance comparison of our phase overlap improvement strategies against the Diodon
synchronous version

Source: The Author.

performance gain appears only when the read order optimization is enabled. We stress that this

is caused not only by this optimization alone but also by combining the split Gram, commute,

and reading order. Finally, the priorities harvest the last final gains and are more visible in large

Ω sizes.

The optimizations modify the behavior of the execution. Figure 6.7 presents the workers’

utilization of three different optimizations over four nodes’ execution. The left case presents

the original asynchronous execution. In this situation, the read phase had problems because of

allocation (A.1), and it is possible to observe the hard algorithm synchronization point in the

gram (blue tasks in B.1). The center case used the allocation and split Gram optimizations. The

read tasks are now smooth (A.2), but the dgemm did not start earlier than it should be possible

(B.2). This behavior results from a poor overlap because of the commute problem, extra

communication, and lack of priorities. The right and final case presents the behavior using all

optimizations, giving a clear execution and overlap of read and dgemm tasks (B.3). This last case

shows a makespan of 18.6s compared to the asynchronous naive case of 29.9s. The beginning

127

of the execution still presents some idle time caused by allocations for the matrix multiplication

matrices (A.3). However, even if the dgemm tasks could start earlier, the improvement would be

limited, as there will be an inevitable algorithm synchronization in the gram_post tasks before

the QR factorization. The distance between those tasks and the last read tasks is small (the

critical path).

6.3.3 ExaGeoStat phases partitioning in heterogeneous clusters

This Section now considers the heterogeneous distributions’ strategies. The experiments

use workloads 101, 128, and 180 over 18 different sets of machines combining the available ones

on each system, as depicted by the panels of Figure 6.8. These sets of machines demonstrate

different system heterogeneity levels. Each panel shows the makespan in seconds (Y-axis) as

a function of the distribution strategy (X-axis and colored bars). The first three bars of each

panel are our baselines: (1) the homogeneous block-cyclic distribution using all the resources

(BC on All in red); (2) the homogeneous block-cyclic distribution for the fastest homogeneous

subset of nodes (BC on fast in blue), as which we consider the standard in the community; and

(3) the heterogeneous 1D-1D distribution using the powers of machines computed considering

the dgemm speed (1D-1D in green). These baselines always use the same distribution for the

factorization and generation phases. Our proposed distributions, using the linear program and the

workflow to compute two distinct distributions for each phase with the factorization distribution

using the normal 1D-1D (LP HetDist in purple) or the 1D-1D constrained distribution (LP

HetDist Constrained in orange). The orange bar also presents an inner white bar to represent the

ideal makespan obtained by the linear program. The fastest group of machines used is usually the

individual fastest homogeneous subset of nodes (used in the block-cyclic distribution in blue).

However, in cases with only one Chifflot, the single machine cannot perform this workload well

because of high GPU memory utilization. So, for these cases, the BC on Fast result indicates

the usage of the second powerful partition.

Figure 6.8 shows that the block-cyclic distributions are never the best result, neither using

all the resources (red) nor the fastest homogeneous subset of nodes (blue). The linear program

distribution (purple and orange) performs very well. Compared to the homogeneous cases (BC

on Fast), using the LP is always beneficial: the most significant gain is 69.8% on the 4 Chiclet

+ 1 Chifflot 101 case, while the lowest gain is 6.5% on the 6 Chiclet + 4 Chifflot 101.

Compared to the single heterogeneous distribution (1D-1D), using the LP is most of the

time beneficial or ties, but there are a few situations (6 Che + 6 Chi + 1|2 Cho) where it slightly

128

Figure 6.7 – Node occupation using 4 Chifflet for Diodon: Asynchronous, Async + Allocation + Split Gram, All optimizations

Source: The Author.

129

degrades performance. This last situation occurs because the gains by correctly balancing the

load are small, and the imbalance compensates for the differences when phases overlap in the

heterogeneous nodes. Also, when only using one distribution, there is no cost for redistribution.

The minimal difference between the ideal execution time obtained by the linear program and

the actual makespan for the good cases shows that the redistribution communication overhead is

completely overlapped. However, when using the three levels of heterogeneity with the Chifflot

Figure 6.8 – ExaGeoStat makespan for homogeneous and heterogeneous distributions in 18 machine
sets configurations

Source: The Author.

130

nodes (the cases where the LP distributions are worse than the pure 1D-1D), the execution time

is much larger than the LP solution. Further investigation indicates that the problem is the

communication of the fast nodes with the slow ones and the ratio of work and power in this

configuration. The following section provides further insight into this situation.

6.3.4 Analysis of a case when using too many fast nodes

Using more nodes may not always improve performance. Sometimes, it can impact

negatively. Figure 6.9 presents the iteration (top) and Node occupation (bottom) panels for

three different cases: 6 Che + 6 Chi (left), 6 Che + 6 Chi + 2 Cho using all the resources in the

factorization (center), and 6 Che + 6 Chi + 2 Cho using only nodes with GPUs in the factorization

(right). Both the execution with two types of machines and the one shown in Figure 6.5 (right)

have low idle times. Moreover, the transition in Figure 6.9 (left) from generation to factorization

is more smooth in CPU-only nodes (A.1 annotation) and then in GPU nodes (B.1 annotation).

In GPU nodes, the high-priority tasks will execute on the fastest resource, while in CPU, they

begin to share the resources with some generation tasks. In this execution, the effect of the

constrained version is visible, as the work ends earlier in the CPU-only nodes (C.1).

When adding two Chifflot nodes (represented in the very bottom of the center of Fig-

ure 6.9), the P100 GPU computes the dgemm task 10× faster than the Chifflet nodes, adding extra

heterogeneity, and the need for faster communication. While the overall makespan decreases,

considerable idle time is visible (D.2 annotation). Further investigation revealed that commu-

nication along the critical path and the small workload for this set of machines are responsible

for such high idle times. One problem is that the factorization load is highly different in the

nodes; the two very fast nodes receive most of the computation and are helped slightly by the

slower nodes. A lot of communication is necessary to propagate all the computation done by

the GPU nodes, and even with their faster network, it’s not enough, mainly because these nodes

share a different subnet in the Lille site. This problem is also why cases 4+4+2, 6+6+1, and

6+6+2 of Figure 6.8 have a distant LP prediction to the result. Another evidence for this network

problem is that the pure 1D-1D uses a single distribution across all phases and then requires less

communication, trading distribution balance for communication improvements. One possible

technique to circumvent the communication problem is limiting the number of nodes during

the factorization, which is the phase causing most communication operations. We can easily

set such a limitation by excluding the nodes without GPUs from the factorization in the LP

constraints. The case in the right of Figure 6.9 depicts the resulting behavior. The idle time

131

Figure 6.9 – Cholesky Iteration, Node occupation, and Memory utilization panels of the ExaGeoStat iteration using the LP HetDist Constrained distribution for
three sets of machines: 6+6, 6+6+2, and 6+6+2 restricting factorization to GPU-only nodes

Source: The Author.

132

decreases (D.3 annotation), indicating a better usage of the nodes, leading to a slight decrease

in the makespan with fewer resources. This case provides a mean makespan of ≈26s. There

remains a difference of 50% between the actual makespan and the LP result, so enhancements

in communication or a better selection of machines for this workload should improve this even

further. Overall, comparing this result against the original synchronous 2 Chifflot homogeneous

execution (≈41s), we have a performance improvement of 41%. This result reinforces the ne-

cessity of having strategies to decide the correct number of nodes considering communication

and, after this inquiry, using such distributions on the correct number of nodes. This will be the

topic of Chapter 7.

6.3.5 Diodon phases partitioning in heterogeneous clusters

This Section now considers Diodon and the heterogeneous distributions’ strategies. The

experiments use the workloads with 75, 100, and 200 blocks width (nb) for matrix D and

r = 1000. Figure 6.10 shows the makespan (the elapsed time between the application start to

the last gram task) in 18 distinct scenarios of machines with five different distributions.

Once again, the first three bars of each panel are our baselines: 1) BC on All uses all the

available machines on that configuration but with the traditional block-cyclic distribution (red);

2) BC on Fast shows the case of using only the fastest nodes (with GPUs) for both phases with

the original homogeneous distribution (blue); 3) The 1D is the version with the heterogeneous

distribution (with one dimension) that considers node heterogeneity for the factorization while

the generation phase uses the standard round-robin distribution (green). In all these cases, the

read phase does not require heterogeneous awareness as the relative read power is very similar

across such nodes. Our proposed distributions are the LP HetDist (purple) and LP HetDist

Constrained (orange). The LP HetDist version describes the case when using the LP to compute

the ideal capacity of each machine for each phase, considering the overlap. It uses the 1D

heterogeneous distribution algorithm for the computational intensive phase and the derivative

fewer communication one for the read phase. The LP HetDist Constrained version is similar to

the LP HetDist, but instead of the original 1D heterogeneous distribution for the computation

phase, it uses the constrained version that will only assign rows to a node if the CPB is higher than

the application expected duration. This situation means that the final rows will be constrained to

the fastest nodes, accelerating the critical path. As before, the white bar inside shows the ideal

makespan obtained by the linear program.

The results of Figure 6.10 show the improvements when using heterogeneous resources

133

Figure 6.10 – Diodon time to Gram operation for homogeneous and heterogeneous distributions in 18
machine sets configurations

Source: The Author.

and adequate distributions over them considering phases overlap. In most cases, using the

baseline strategy BC on Fast presents the worst results, as the reduction in computational

power, especially in the read phase, is considerable. The performance sometimes improves by

adding different extra nodes using the original homogeneous distribution (BC on All). There

are positive and negative cases when transitioning to heterogeneous independent distributions

(1D). However, the performance improves in all cases only when using LP-based versions.

In some cases, especially where the workload ratio to machines is lower (less workload per

134

node), our constrained version (LP HetDist Constrained) improves considerably. Also, one

extra advantage of using more heterogeneous nodes is that they may handle larger problems in

case the application fails to handle large workloads in fewer nodes. This is the situation of the

case 12 SDC + 4 SDG, where the workload of 200 was unable to run using only 4 SDG. When

comparing the LP HetDist Constrained version with the block-cyclic one on the fast nodes only,

the greater performance increase was in case 4 Cle + 4 Chi + 1 Cho with 73.1%, and the lower

performance increase was in 4 Cle + 4 Chi with 24.6%.

6.4 Discussion

As heterogeneity becomes even more prominent at a system level, when there are distinct

nodes, correctly distributing multi-phase applications in such an environment enables them to

exploit it and better accommodate their load. This Chapter presented optimizations for improving

the overlap and strategies for distributing asynchronous multi-phase task-based applications

over heterogeneous system-level resources. Two real scientific applications, ExaGeoStat and

Diodon, were used. First, we demonstrate three general optimization categories that improve

the overlap of asynchronous phases. These optimizations enable the latter phases’ critical

tasks to execute earlier and reduce resource idleness, enhancing performance on homogeneous

scenarios from 29% to 46%. When considering the heterogeneous case, we present strategies

that compute the ideal relative power for each phase on each group of nodes. A linear program

models the application’s flow considering tasks and resource heterogeneity. The relative power

is extracted from the linear program and later used in traditional distribution algorithms for

some computationally intensive phases. This Chapter also provides an algorithm to design a

distribution of a previous generation phase that maintains data cyclically, reduces redistribution

communications, and balances the load for that particular phase. This new distribution is distinct

but tightly coupled to the next one. All those heterogeneous distribution strategies enhance the

performance by up to 69% compared to a simple homogeneous setup in ExaGeoStat and 24%

to 73% in Diodon.

Although these strategies provide a methodology to generate multi-phase distributions

considering a given number of heterogeneous resources, the best case may not necessarily be

the one with all nodes. The excessive use of nodes is expensive and not necessarily valuable,

as performance usually deteriorates because of communication overheads or other unforeseen

behaviors. At the same time, modeling when communication occurs exactly in a dynamic

runtime is complex, especially with system-level heterogeneity involved. In this way, the next

135

Chapter considers the problem of dynamically determining the best set of heterogeneous nodes

to use during runtime.

This chapter’s initial contributions and results, focusing on the ExaGeoStat application,

were published in ICPP 2021 (NESI; LEGRAND; SCHNORR, 2021), which received the best

paper award. After, the overall contributions and results of the chapter were published in FGCS

2023 (NESI; LEGRAND; MELLO SCHNORR, 2023).

136

137

7 LEARNING AND ADAPTING IN COMPLEX HETEROGENEOUS SYSTEMS

This Chapter studies the problem of discovering the ideal set of heterogeneous nodes

to use when considering multi-phase applications. Although the task-based paradigm largely

mitigates communication overhead, unforeseen effects (e.g., network contention or complex

inter-node synchronizations) remain possible and particularly hard to model. In this context,

finding an adequate number of computational nodes for each phase can be particularly challeng-

ing to anticipate. Hence, methods that dynamically learn and adapt to such complex scenarios

and improve performance over time are desirable. The ExaGeoStat application is a good can-

didate for studying such strategies. It has many iterations where decisions of increasing or

decreasing nodes could take place. Many applications have this structure of stable iterations

(stationary workload) but whose total duration is difficult to anticipate in some setups, as some

phases scale well while others do not. That means the application can actively learn and adapt

to the best set of heterogeneous nodes it can access between iterations. Remember that it is

possible to inform the runtime about data movement during the submission of tasks, causing the

following submitted tasks to change their execution node accordingly. These movements can

reflect new distributions, which can be phase-oriented and use more or fewer nodes. The StarPU

runtime will move all the data to the right place asynchronously, overlapping with computation.

The structure of this chapter follows. Section 7.1 analyzes the problem showing real

cases where varying the number of nodes in just one phase is beneficial. Section 7.2 presents

a series of possible candidates to handle this problem of deciding the number of nodes to

use. Section 7.3 presents the experimental evaluation of the proposed strategies, including an

overview of the results in 16 different scenarios, a detailed step-by-step analysis, the strategy cost

overhead evaluation, and possible expansions of the proposal. Experimental results are gathered

using real and simulation environments with system-level heterogeneous setups. Section 7.5

discusses the results, concluding the chapter.

7.1 Problem: Varying Heterogeneous Nodes per Phase

ExaGeoStat’s iteration phases have very different computational requirements and re-

source affinities. While generation only runs on CPUs, the Cholesky factorization can exploit

GPUs to accelerate the application. Moreover, the factorization cost is stationary across itera-

tions, as it is only based on the matrix size, and the generation cost is mostly constant between

iterations when using adequate parameters. However, the distribution of multiple phases for a

138

given number of resources is not trivial, as using a different number of nodes for interleaving

phases may cause unforeseen network contention and heterogeneous distribution problems. It

is also unsatisfactory and costly to manually discover how such a complex application would

behave for a certain number of nodes, hardware, and workload. Consequently, it is desirable that

this application adapts to any HPC system without extensive analysis or complete executions of

all possible configurations. Automatic adaptation for these setups is key to achieving portable

performance.

Figure 7.1 depicts three iterations of ExaGeoStat where the X-axis is the time, and the

Y-axis has the aggregated resource type utilization per node. The different colors correspond to

different phases: the yellow ones are the generation, the green ones are the factorization, and a

small number of tasks in gray correspond to the other three phases. Each iteration of Figure 7.1

uses a different number of nodes per phase. The notation of the title, Case A-B denotes the

Figure 7.1 – Three iterations of ExaGeoStat: the first using a eight homogeneous nodes for both phases
(8-8). The second increasing the number of nodes (with CPU-only nodes) and using all 23 for both

generation and factorization (23-23), the third restricting the factorization to the eight fast nodes (23-8)

Source: The Author.

139

number of nodes for the generation (A), and the number of nodes for the factorization (B). The

first one only uses eight homogeneous nodes for both phases (8-8). The second iteration uses the

Chapter 6 strategies and now adds 15 CPU-only nodes to speed up the generation (23-23). The

generation phase ends earlier on the second iteration, but excessive communication and critical

path problems slow down factorization. However, iteration three presents the best makespan,

using all nodes for generation and only the eight faster nodes for the factorization operation

(23-8). This execution uses the non-constrained distribution detailed in Chapter 6. For iterative

multi-phase applications such as ExaGeoStat, it may be interesting to have nodes that will only

be used for some phases, like the generation, and not the others.

Estimating the ideal number of nodes to use per phase is a complex process (NESI;

LEGRAND; SCHNORR, 2021), and not only because adding more and more nodes is not the

ideal situation. A perfect duration modeling would require anticipating the stochastic behavior

of the scheduler, the network conditions, and the distribution’s issues. It seems unfeasible to

anticipate every possible condition. Figure 7.2 provides three representative examples, named

cases (c), (i), and (p), of the ExaGeoStat iteration duration (Y-axis) depending on the number

of factorization nodes it uses (X-axis). The application uses all the nodes in the generation

step for all scenarios, as this phase is embarrassingly parallel. In the figure, the nodes in the

X-axis are sorted by computational power, meaning that we always use the fastest nodes in

the set. The nodes are organized in three categories, Large (L), Medium (M), and Small (S),

depending on the computing capability of each category (the machines described in Chapter 4

are organized and presented on Table 7.1). The vertical black lines show when the machines’

categories change. The dark blue line corresponds to the lower bound provided by the LP (of

Chapter 6.2.2). The yellow and green vertical bars represent the duration of the asynchronous

(the reason for the inner bar) generation and factorization phases provided by the LP. The jittered

crosses represent actual measurements on those configurations, while the red line represents the

mean of such measurements. In all cases, the granularity of the workloads is large enough to

exploit parallelism in all nodes and present a similar resource usage behavior as in Figure 7.1.

Table 7.1 – Computational nodes used in the performance evaluation

Site S Machine M Machine L Machines

G5K Chetemi Chifflet Chifflot
SD B715 B715-GPU1 B715-GPU

Source: The Author.

13Identical to the L machine but with one GPU activated during the experiments.

140

Figure 7.2 – Behavior using different heterogeneous nodes setups (Table 7.1) by varying the number of
factorization nodes

Source: The Author.

It is possible to observe that these are complex scenarios. In all of these cases, using all

nodes for all phases is sub-optimal. The main behavior observed is that the addition of new nodes

usually forms convex-like shapes. In the beginning, adding new nodes is beneficial by having

more processing power. However, there is a point where adding new nodes is no longer useful,

and there are some scenarios where the network could get overwhelmed. In these setups with

a limited network, the performance starts to deteriorate. Furthermore, there are scenarios with

significant breaks, usually related to the heterogeneity and the distribution shape. Sometimes,

adding a slow node (especially CPU-only ones), like in scenario (p), creates a critical path

that may degrade the overall performance. The observation noise is generally the same for all

numbers of nodes, with few outliers. Some scenarios, like (i), have small breaks related to the

distribution. Adding new nodes may cause the reorganization of the partition structure, creating

more communications and synchronizations. Such cases demonstrate the problem of varying

the number of nodes for a particular phase. Combined with the problem that such behaviors are

challenging to model upfront, dynamic strategies would be desirable to identify the best case to

use during application execution.

141

7.2 Proposal: Exploration Strategies Candidates

In the case of the studied application, ExaGeoStat, although computation phases can

partially overlap thanks to the fine-grain dependencies expressed in StarPU, an iteration (the

evaluation of the likelihood of a given value θ) cannot start before the previous one completes.

At each iteration, the application may select a different subset of nodes. The optimization goal

is to minimize the iteration duration. Instead of exploring all possible node permutations, it

can choose n between 1 and N nodes to use and pick the n fastest nodes since trading a slow

node for a fast one is always detrimental (when considering performance solely). Therefore, our

search space consists of the number of nodes per phase. Although this search space is discrete,

it is visible from Figure 7.2 that there is an underlying continuous structure. The variability

from one iteration to another for the same configuration adds additional challenges, and the

optimization strategy should be able to handle it. This section presents possible methods to

explore and optimize such search space.

7.2.1 Naive Heuristics

For comparison purposes, we implement three simple naive heuristics. First, a simple

divide and conquer dichotomy (DC) to carry out a recursive binary search over the space. At

each exploration step, the search space is divided in two, and the middle point of each division

is measured. The method selects the division with the lower makespan as the new search space

and repeats. This simple heuristic will converge quickly and pick the correct point in simple

low-variance curves. The second heuristic considers using all the machines as the best candidate.

The heuristic walks from the rightmost option to the left, while the left point presents a lower

measurement (Right-Left). The final heuristic is similar to the former but moves from the

left to the right of the function (Left-Right). These two last methods would work when the

curve is well-behaved (without huge discontinuities) and with a very small variability. However,

excessive resources create extra overhead on the rightmost options.

7.2.2 Classical continuous minimization approaches

Another subset of strategies is the one for classical continuous optimization. The simplest

algorithms use gradient, which is unavailable in our problem. Yet, the problem’s search space

142

may have local minima. Since there is only one dimension in our context, a sensible choice

is the Brent algorithm, which combines the bisection method, the secant method, and inverse

quadratic interpolation. Such technique is a priori not robust to noise and does not revise their

belief. It is also available on R’s optim (R Core Team, 2022). We also tried multi-dimension

algorithms like Nelder-Mead and BFGS with no better results. We also investigated Stochastic

Approximation (CHEN, 2006) and Simulated Annealing (SANN from optim), but they achieved

bad results because they are not parsimonious, so we refrained from reporting them.

7.2.3 Multi-armed bandits

Multi-armed bandits are a Reinforcement Learning framework that models K possible

unrelated choices (SUTTON; BARTO, 2018). Each choice has its distribution and variance.

The goal is to maximize its total reward,
∑T

t=1 y(nt), where y(n) is the (stochastic) reward

of step t (in our case, the opposite of the duration of an iteration when using nt nodes). The

difference between the cumulative reward from choosing the best action upfront is the regret. To

minimize regret, one should balance exploration (to discover the best action) and exploitation

(selecting the best action to improve the overall reward). A no-regret strategy (i.e., whose

regret is O(log(T)), the optimal bound) consists of using the Upper-Confidence-Bound (UCB)

algorithm (AUER; CESA-BIANCHI; FISCHER, 2002) that selects the action that maximizes

the mean empirical reward plus an upper bound that increases over time:

xt+1 = argmax
x∈A

µt(x) + c
√

ln t/Nt(x) (7.1)

where µt(x) is the mean reward measured so far for action x, c is a adjustment constant, Nt(x) is

the number of times action x was selected. Best actions are often selected, while less promising

actions are not taken frequently but have their upper confidence bound component increased so

that they are eventually selected again after some time.

In our case, each action corresponds to a number of nodes. However, the fact that a

similar number of nodes leads to similar performance is not exploited, making large setups have

large search spaces requiring a long time to explore. To speed up the exploration, we consider a

restricted version (UCB-struct) that will only look at multiple complete groups of homogeneous

nodes. For example, in a setup with five machines of group A, five of B, and five of C, the only

options are 5, 10, or 15 nodes. If the best action is outside these choices, it will never reach the

optimal configuration.

143

7.2.4 Gaussian Process

The Gaussian Process (GP) (GRAMACY, 2020) or Kriging is a surrogate model that

assumes a form of smoothness over the data. It uses a Multivariate Normal Distribution (MVN)

to model possible realizations over observations. The assumption is optimizing a function f ,

which is unknown and assumed to have been drawn randomly from the set of smooth functions,

f ∼ GP . Furthermore, this is a noisy scenario, so f(x) cannot be directly observed. The

measurements are noisy observations y(x) = f(x) + ϵ with ϵ ∼ N (0, σ2
N). Then, based on a

set of t observations Dt = {xi, yi} and given the smoothness of the function which stems from

the GP assumption, it is possible to compute µt(x) = E[f(x)|Dt] and σt(x) =
√
V ar[f(x)|Dt]

with standard kriging R libraries.

After the generation of the surrogate model, it can be used to select an action to take.

This decision needs to consider the predicted mean of the location, its confidence interval, and

the exploration and exploitation trade-off. A possible approach with the same kind of no-regret

properties as UCB is to use GP-UCB (SRINIVAS et al., 2010) where the following equations

(with β growing logarithmic with iterations) will give the best choice:

xt+1 = argmax
x∈A

µt(x) + β
1/2
t σt(x) (7.2)

Figure 7.3 illustrates such a process. The red line is the cos function representing a true

unknown function that GP wants to model. The black points are real random measurements

taken in the function, which will be used as the GP’s input. The black line is the predictive

mean provided by the GP, while the gray area inside the dashed black lines represents the 95%

confidence interval. The mean prediction is very close to the real function in the neighborhood

of measured points. Coordinates that do not have measurements have more uncertainty, but the

true cos function indeed lies in the 95% confidence region. The red cross is the next point to be

evaluated, as it represents the most promising point while considering the current uncertainty.

The GP puts a probability distribution over smooth functions through a covariance

function (typically the exp function), which is commonly parameterized as:

Σ(x, x′) = α exp

{
−||x− x′||

θ

}
(7.3)

It has parametersα, and θ that GP-UCB assumes are known. In practice, they are often estimated

from the data with an ML approach (as in ExaGeoStat), but with little data, this can be a problem,

144

Figure 7.3 – An example of the GP fit with eight measurements over cos function

Source: The Author.

as, with bad luck, the algorithm may be overconfident.

In practice, when using GP and building surrogates, it is common to initialize the process

with a uniform quasi-random design (e.g., LHS, maximin), where the xi are uniformly spread

over the space as it allows a reasonable estimation of the hyper-parameters. However, this would

be too costly in our case, and we need a more parsimonious approach. Therefore, the model

selects the actions of the first iterations following a simple procedure. The first iteration will

always choose the action with N nodes, which is the application’s default behavior. Using all

the available nodes would provide the best performance in ideal circumstances. Then, to obtain

as much information as possible, standard Bayesian optimization approaches would select the

left-most point, i.e., the configuration that uses the minimal number of nodes, which may not

be a good idea from an application makespan perspective. Finally, it selects the middle of these

two points for the subsequent two iterations.

Any new measurement will bring some information about f but also about α, θ, and

σN . Measuring two points next to each other provides mostly information about α and θ. While

measuring the same location several times provides a lot of information about σN . In our case,

for example, σN is estimated as follows. We consider S = {x ∈ D|Nt(x) > 1}, then σ2
N can be

estimated by: ∑
x∈S

∑
y(x)∈D(y(x)− ȳ(x))2∑
x∈S Nt(x)− 1

(7.4)

The version so far described is GP-UCB, and it is reasonable when we do not know a

priori the shape and the noise is roughly the same regardless of x. However, the f function may

have discontinuities (see Figure 7.2(p)), and the functions are not entirely random as they have

a general shape, more or less decreasing than increasing (see Figure 7.2).

The standard GP has no particular trend, which explains why in Figure 7.3, it naturally

reverts to 0. If we know something about the shape of f , it should be put in the trend µ(x) =

145

∑
i γigi(x) where gi is a basis function and γi the coefficients. But again, the more unknown

parameters, the more complex the model and the more measurements we will have to do to

reduce uncertainty and explore instead of exploit. In our case, measuring two points far away

from each other gives a lot of information about γ if we have a linear model.

This work exploits the properties of its problem scenario. First, the results indicate that

the trend of the observations follows a pattern of 1
x
+x. This result follows the intuitive view that

the makespan will decrease every time a new node is added. However, adding a new node may

cause more communications, and therefore, there is an overhead associated with it. However,

the 1
x

parameters are not very useful as this part is already well estimated in the LP. Hence, the

adopted approach is to use the LP as a baseline and use the GP to model the overhead with

respect to the LP. In this sense, the trend will be linear x, as the LP captures the 1
x

behavior.

Second, bound the exploration with the LP results. Considering that the first iteration uses all

the machines, some configurations with very few resources cannot provide better results when

comparing a theoretical lower bound (LP) to the actual first iteration makespan. In G5K 6L-15S

or SD 64L, the most left points are inevitably higher than using all nodes as predicted by the linear

program. The method to find the most adequated left-point uses the linear programming bound

and finds the lower nl that satisfies LP(nl) < f(N). The bound given by the linear program is

optimistic and does not consider communications or the critical path. The approach excludes

all the left points where their linear programming bound is higher than the real measurement of

using all the nodes. This will limit the search space and avoid bad actions.

Finally, the model needs to be fixed because it is too smooth. A local broken continuity

results in an artificially inflated estimation of the smoothness parameter α, increasing overall

(global) uncertainty. Indeed, some scenarios present a discontinuity of performance when using

a new group of machines. Although the GP-UCB will eventually explore all x after a very long

time, a strong smoothness assumption may prevent finding the optimal configuration shortly.

This situation is sometimes caused by abrupt changes in the partition distribution or because

of the critical path. The new nodes may be so less powerful than the others that the few data

blocks they receive may cause a synchronous critical path. Many other tasks may have to wait

for it, causing a global slowdown. In the case of Cholesky, giving a block of coordinate (i, j)

to a node will cause a synchronous sequence of min(i, j) dgemm tasks on that particular node.

This can take some time if the node does not have GPUs. Similar to the case of Chapter 6 when

using CPU-only nodes.

To model such discontinuities, we introduce dummy variables (JAMES et al., 2013) to

the trend model for each group of homogeneous machines. In this way, the trend will be given

146

by x+
∑

g∈G dg(x) where dg(x) will be 1 if the node x (last node added) is present on group g

and 0 otherwise. The dummy variable allows us to indicate where discontinuities may appear

and generally allows it to pool, which is good for estimating parameters. However, this model

may get overconfident when the number of measurements is low, given a bad estimate for θ.

To overcome this, we set θ to 1 and α to the sample variance. Because this model adds new

variables, it requires more initial points for the first fit. Then, each group (after the leftmost

point) will have its last point measured once. If this point is already measured, we choose to

evaluate the next point. The last group (using all the machines) is already measured and skipped.

This is GP-discontinuous. Both GP versions are implemented using the R package DiceKriging

(ROUSTANT; GINSBOURGER; DEVILLE, 2012).

7.2.5 Summary of Strategies

All presented strategies will behave differently in this particular problem. Table 7.2

presents a list of all discussed algorithms with expected behavior. Considering the technical

aspects of the algorithms, our expectations are that DC, Right-Left, Left-Right, and Brent
were not resilient to noise, and so can be misled by the measurements in this problem. UCB
would require a full exploration of the search space, which can be bad in applications with few

iterations, and because some configurations are particularly bad. UCB-struct will only search a

fraction of the possibilities. In this way, if the best case is not one of them, it will never discover

it. GP-UCB does not use the problem particularities and insights to improve its model, which

leads to the exploration of bad configurations and lower confidence when finding discontinuities.

GP-discontinuous is our proposed version that uses knowledge of the problem to solve some of

the earlier issues discussed.

Table 7.2 – Summary of exploration strategies and expected behavior

Algorithm Resilient to noise Optimal Fast

DC ×
Right-Left ×
Left-Right ×
Brent ×
UCB × ×
UCB-struct × (limited exploration) ×
GP-UCB × ×
GP-discontinuous × × ×

Source: The Author.

147

7.3 Experimental Evaluation

The experiments use ExaGeoStat on commit 9518886 of its public repository, with

other software dependencies present as submodules of the same commit. The StarPU version

is the main branch commit 015357bd with the NewMadeleine library (DENIS, 2019) commit

d6542d72 and backend. The experiments use the 96100 (101×101 blocks) and the 122880

(128×128 blocks) matrices from the ExaGeoStat samples. First, this Chapter presents the

behavior of the application on many configurations in Section 7.3.1, followed by a detailed

evaluation of the GP versions step-by-step behavior in Section 7.3.2. Then, Section 7.3.3

presents the evaluation of all the candidate strategies. Section 7.3.4 discusses the case of

expanding the method to more phases.

7.3.1 Behavior on different setups

This section presents the behavior of the problem in many setups formulated by varying

the machines of Table 7.1. Figure 7.4 presents the behavior (performance when adding nodes)

of 16 setups in a similar way to Figure 7.2. One difference is the addition of a yellow line that

shows the rigid situation where the same number of nodes is used for both the generation and

the factorization steps.

The data comes from executions that solve the workload entirely and explore all possible

numbers of nodes for the factorization phase. These measures enable the estimation of the true

variability of the application and the system. Second, we rely on simulations of ExaGeoStat with

StarPU-SimGrid, allowing us to quickly and accurately estimate the response of ExaGeoStat

even for platforms that are not directly available or would be very time and resource-consuming.

However, with the default StarPU-Simgrid configuration, the time for a given iteration and

nodes’ number is deterministic. Therefore, the simulation evaluation of each configuration is

augmented 30 times, assuming a normal distribution with a standard deviation of 0.5s (computed

from the real experiments). Real experiments and simulations are marked in the title of each

configuration in Figure 7.4.

These setups generally present all the shapes we found, even in unreported situations.

Some scenarios show a very smooth behavior, like cases (a), (b), (e), (f), and (m). Most of them

are scenarios on G5K that have a limited network compared to SD. Another behavior is the

presence of discontinuities when a new group of machines is introduced, like cases (d), (g), (h),

(k), (l), (n), (o), and (p). In these cases, adding a very slow node (CPU-only) caused problems on

148

Figure 7.4 – Behavior using different heterogeneous nodes setups (Table 7.1) by varying the number of
factorization nodes.

Source: The Author.

the critical path. Finally, some situations had small breaks related to the heterogeneous partition

of that specific number of nodes (and occurring inside groups of the same types of machines),

like cases (c), (e), (f), (g), (i), (j), and (p).

7.3.2 Depicting the GP exploration/exploitation step-by-step

Figure 7.5 (A) illustrates the step-by-step process of the GP-UCB on the G5K 2L-6M-6S

101 scenario. The graphs show different iterations and the corresponding GP estimation. For

149

each iteration, the solid red line with error bars shows the real data for each action with a 99%

confidence interval. The blue lines show the LP estimation. The black line is the GP mean

prediction, and the black dashed lines are the UCB component. The large red cross is the next

action to take based on the current situation. The bottom of each graph shows the number of

measurements taken with that number of nodes.

Figure 7.5 – Step-by-step of (A) GP-UCB in G5K 2L-6M-6S 101, (B) GP-UCB in G5K 6L-30S 101,
and (C) GP-discontinuous in G5K 6L-30S 101

Source: The Author.

Figure 7.5 (A) Iteration 5 has two areas without measurements with much uncertainty

in the surrogate model caused by the experimental design’s first points. This area is further

reduced, as shown in Iteration 8 when middle points were evaluated. At Iteration 20, there is

already a convergence in finding the best points (action six or seven, which are very similar).

This behavior is maintained until Iteration 100. However, it is interesting to note that GP-UCB

keeps exploring as actions 5 and 6 continue to be evaluated sometimes but that some actions

(10, 12, 13) are not even tried as they would clearly provide bad performance. In this scenario,

the GP-UCB is enough to find the best configuration without assessing all the search space.

150

However, the GP-UCB does not behave so well in scenario G5K 6L-30S 101 as shown in

Figure 7.5 (B). There is a lot of uncertainty in Iterations 8 and 20 because the measurements scale

is large, and the curve has some discontinuities that mislead the smooth GP and overestimate the

scale parameters α and θ. Although it does find the best option by Iteration 100, it has explored

all the points. Applying the most elaborate version, GP-discontinuous, solves these problems

as shown in Figure 7.5 (C). Panel (C) has an additional purple line representing the difference

between the real data and the LP. At Iteration 8, it is possible to check how this GP version

models the discontinuities with the dummy variables. The model presents two distinctive curves,

one until action six and another after it, which is a very flat line on this iteration. On Iteration 20,

the local minima zone from actions 10−14 is already evaluated, improving the model accuracy.

At this iteration, the surrogate model includes all the real values on its UCB component. On

Iteration 100, it does find the best action without needing to measure all the points, skipping

most of the right zone after action 20.

7.3.3 Results Overview: GP and existing Exploration Strategies

The evaluation of the exploration strategies proposed in Section 7.2 has been conducted

using two complementary techniques. First, we collect data from all the iteration durations

obtained through real experiments or simulations to obtain a fast and fair comparison. We used

R to implement the strategies; every time an action was chosen, we resampled that data. This

way, all exploration strategies are compared with the exact same iteration durations (see the

Shiny app2), and their comparison can be made reliable from a statistical point of view. Finally,

we also implemented the GP strategies directly in ExaGeoStat, which lets it control the number

of nodes it uses. All the possible distributions were precomputed and accessed when an action

is chosen. With this second approach, it is possible to measure the computational cost overhead

of the methods, as discussed in Section 7.3.4.

Figure 7.6 depicts a performance evaluation overview of all studied exploration strategies

with all scenarios. Each colored line is a group of strategies where the points are the makespan

mean of 30 executions after 127 iterations. The top dashed horizontal line describes the

performance when using all nodes, and the bottom one is the best option when knowing the best

configuration upfront. The percentage for each strategy is the acceleration with respect to using

all the machines. In what follows, we discuss the scenarios referencing Figures 7.4 and 7.6.

The UCB, Right-Left, and Left-Right perform poorly in more than half of the scenarios.

2Publicly available at: <https://adaphetnodes.shinyapps.io/shiny/>

https://adaphetnodes.shinyapps.io/shiny/

151

Figure 7.6 – Comparison of different methods in 16 scenarios

Source: The Author.

UCB requires a full exploration that degrades the overall performance. Bad configurations for

this strategy have many nodes or should use most nodes. In scenario (o), it is worse than using all

the nodes (UCB point is above the top dashed line) because of inevitable bad points exploration.

Moreover, Right-Left and Left-Right fail because they do not explore enough and may get

stuck in local minima. For example, in Figure 7.4 (p), using all 128 factorization nodes is better

than using 127, so it never explores the best action, which is 64. In (a), variability plays a role,

152

and some Right-Left executions presented better results than others. The algorithm often stops

too soon by bad luck because it is not resilient to variability.

The simple divide and conquer (DC) algorithm sometimes performs very well, finding

the best option. Indeed, using this simple heuristic in most of the Figure 7.4 curves will work

correctly. However, the variability of the measurements may trick the decisions, and in some

scenarios like that of Figure 7.6 (n), it may perform very well or very badly depending on the

observations. In these scenarios, making a wrong decision in any division moment may be

enough to never find the best number of nodes. As shown in Figure 7.4 (n), the best point is on

the left, but the method will never explore it if the right side is chosen in the first division.

The Brent strategy also performs very well in many scenarios. However, in ones with

discontinuity like Figure 7.4 (k), (n), and (o), it may not explore enough and get tricked into a

local minimum. In such scenarios, because of the scale of the X-axis, it may only try points

after the addition of one group of homogeneous machines. Figure 7.4 (n) does have a large

plateau corresponding to the 60 nodes of that group. Also, it is subject to the variability of the

measurements, like in Figure 7.6 (e), (i), and (l). In these scenarios, it is possible to check that

not all executions found the best number of nodes (the confidence interval is larger), resulting

in a larger makespan in some executions.

The GP-UCB approach works well in more or less half of the scenarios. It does not

always find the best option (in the available iterations) or requires a full exploration of the search

space, as discussed in Section 7.3.2. It presents good acceleration in Figure 7.6 (a), (b), (c),

(e), (f), and (j), which do not present discontinuities and have a small search space. However,

scenarios like (k), (l), (m), (n), and (o) indicate that the GP requires extra modeling to handle

more complex situations.

However, the GP-discontinuous performs very well in all scenarios. The introduction

of trend, search space limits, and dummy variables allows it to quickly and dynamically reach

the optimal configuration with a minimal overhead compared to the lower bound obtained with

a static clairvoyant choice. An example is Figure 7.5 (C), which presents the state of the GP-

discontinuous strategy in (i). After the 20 iterations, the method already identified the optimal

number of nodes, and the surrogate model has a very good estimate of the response of the whole

system as it comprises most of the (true) red line without having ever explored large regions.

UCB-struct also performs very well in almost all scenarios. It has minimal possible

actions to check, and its algorithm is resilient to variability. Also, selecting multiple groups

of homogeneous machines is, or close to, the best option. However, there are scenarios where

the best action to take is far from those points, and because this strategy would never explore

153

or know these points, it cannot find them. Examples are Figure 7.6 (a), (e), and (j). In these

scenarios, the optimal choice (Figure 7.4) does not correspond to any vertical lines that mark

the groups’ transitions.

In short, the GP-discontinuous presents good results in all scenarios, up to 51.2%

speedup as shown in Figure 7.6 (p). In scenarios where using all the nodes is the best option

(e.g., (l)), the final performance compared to using all notes is superior to -1%, meaning that the

exploration overhead is low. All these results corroborate with the Table 7.2 expectations.

7.3.4 GP Computation Overhead Evaluation

The performance gains of using an exploration strategy should be smaller than the

overhead of its computation. Figure 7.7 shows the overhead of the GP-discontinuous strategy

on the scenario (b) G5K 2L-6M-6S, with ten repetitions of a real experiment running the GP

online. Each black point represents the average overhead for that iteration. The overhead per

iteration is almost constant in this model. The first iteration is longer than the others, and the

successive four iterations are less expensive, as they do not perform the GP’s computations. In

the sixth and subsequent iterations, the DiceKriging package is called, resulting in an almost

constant duration. The final overhead per iteration is negligible (0.04s – 0.06s) compared to the

typical iteration total duration (10s – 30s). The cost is thus not of great concern compared to

the risk of missing a learning opportunity.

Figure 7.7 – Overhead of GP in function of iterations

Source: The Author.

7.3.5 Optimizing considering all phases

Using all the machines for the first (generation) phase is the best option for most scenarios.

However, one investigated case shows that using too many nodes for the generation can also result

154

in a slowdown. Figure 7.8 presents the iteration duration (as a colored gradient) when varying

both the number of generation nodes and the number of factorization nodes for (f) G5K 2L-

6M-15S 128. In this scenario, using 10 generation nodes and eight factorization nodes is better

than using all 23 generation nodes (23/9) by 1.1 seconds (≈3% less). In this type of situation,

the problem should then be explored in both dimensions. Although the GP exploration should

gracefully extend to more dimensions, considering more parameters significantly enlarges the

search space and we believe the gain would be limited in practice.

Figure 7.8 – Iteration makespan with different number of generation and factorization nodes

Source: The Author.

7.4 Energy Perspectives

So far, this chapter has proposed and evaluated the Gaussian Process (GP) as a surrogate

model focused exclusively on the application performance. At the same time, we wonder how

such a model could also consider other observation variables, such as the application’s energy

consumption when running on a specific set of computational resources. This case is strongly

motivated by some situations where the best performance requires many powerful GPU nodes

and possibly many additional CPU-only nodes, which are left mostly idle during the factorization

phase. This invariably induces idle time in slower resources. The issue here is that these nodes,

155

even when idle, do consume energy. A natural and relevant extension of the previous work

is thus to automatically identify a good trade-off between makespan and energy consumption.

However, some of the previous model’s decisions do not apply in this situation. It is no longer

possible to summarize a configuration through the number of nodes one phase uses ordered by

the fastest nodes. In this case, the search space should include the number of machines from

each group in every phase. This entire search space is required because, from an efficiency

perspective, a swap from a fast node to a slower one could improve energy efficiency without

compromising makespan.

The first step in this investigation is to understand the energy consumption of the ap-

plications. ExaGeoStat and StarPU were modified to collect energy metrics via PAPI from

RAPL (WEAVER et al., 2012) and NVIDIA NVML (NVIDIA, 2023). Figure 7.9 presents five

iterations of ExaGeoStat. The bottom is the traditional Gantt Chart, where the beginning of each

iteration can be identified as a yellow phase in the Gantt Chart, represented at the bottom of the

figure. The first panel shows four power metrics derived from the RAPL energy counters. Each

metric is associated with a socket and can be the power consumption of a CPU or RAM. The

second panel presents the power consumption from the wattmeter of the whole machine running

the application (troll machine in G5K). The main interesting observation from the figure is that

tasks have a heterogeneous power consumption. In the beginning, the generation tasks do not

trigger the full power of the CPUs. We believe that such behavior occurs because such tasks

are memory-bound. However, as the number of concurrent factorization tasks increases, power

gradually increases until it reaches the CPUs’ limits. Such results indicate that the energy and

power consumption of the application can not be modeled as a function of workers’ utilization

alone but need to consider the tasks’ type and amount.

The following investigation step was to characterize a case varying the number of ma-

chines individually for each cluster and each phase. The experimental evaluation considers eight

Chiclet machines, five Chifflot machines (with P100), and two Chifflot machines (with V100).

It is necessary to vary the number of nodes in all partitions for all phases. The notation used is

nS
Gen + nM

Gen + nL
Gen | nS

Facto + nM
Facto + nL

Facto. A case with notation 8 + 5 + 2 | 7 + 5 + 1 means

that the generation used eight Chiclet, five Chifflot (P100), and two Chifflot (V100) for the

generation and seven Chiclet, four Chifflot (P100), and one Chifflot (V100) for the factorization.

All cases using less than four GPU machines for the factorization were not considered, as they

are expected by the LP of Chapter 6 to provide poor performance results.

Figure 7.10 presents the cases of such experimental evaluation where the X-axis is the

time to compute one iteration and the Y-axis is the energy used throughout the iteration. Each

156Figure 7.9 – Power consumption from RAPL and Wattmeter in the first two panels, and the traditional Gantt Chart for a one-node ExaGeoStat execution

Source: The Author.

157

dot is the average of at least two executions of the same case, showing data for one ExaGeoStat

iteration. The data is relative to iterations two, four, or five, as it is more representative of

further iterations. The colors represent the number of GPU machines used for the factorization.

The solid black line is the Pareto Front. Such cases have their notation highlighted. The case

0+2+2 | 0+2+2 is also highlighted but is not part of the Pareto Front, but it is the case using

the smaller number of machines of these experiments. All instances of the Pareto Front have a

confidence ellipse accounting for the variability of the measurements. The dotted curves are the

time× energy product isolines of the Pareto Front elements.

Figure 7.10 – Energy and time of a ExaGeoStat iteration varying the number of machines among eight
Chiclet, five Chifflot (P100), and two Chifflot (V100)

Source: The Author.

In this situation, the optimization is multi-criteria, and energy and time should be

minimized but have different units. Consequently, aggregating both criteria through a weighted

sum or a weighted maximum always raises the question of the weights. Furthermore, both

criteria correlate since very long iteration durations typically incur high energy consumption. A

common approach is thus to aggregate both criteria with a product, which is unitless. The cases

in the Pareto Front do not use all machines available, and there is a case 1 + 3 + 2 | 0 + 3 + 2

in which the number of nodes from generation to factorization changes. Also, it is interesting

to note that these four nodes are somehow equivalent to the product time× energy, but they are

quite different from the time and energy perspective. The two configurations that appear to be

optimal for the product seem to be 1+ 3+ 2 | 0+ 3+ 2 and 0+ 4+ 2 | 0+ 4+ 2. They achieve

158

an interesting trade-off between time and energy compared to the two other configurations, and

further measurements would be required to distinguish them further. A faster case also uses

less energy because energy consumption is directly related to the makespan. Another positive

side-effect of considering the product is that it should easily discriminate between good and

bad configurations (i.e., many configurations with relatively good energy consumption can have

wildly different durations and conversely).

Compared to the previous time-only approach, one of the main problems in this situation

comes from the dimension of the search space. A good strategy should still quickly find

suitable candidates. However, a model that considers all possible numbers of nodes per partition

per phase is more complicated (i.e., has more parameters) and typically requires more initial

measurements. How to efficiently bootstrap the model, which includes the initial cases to select,

is an open question and left as future work.

Another difficulty stems from the computation of the confidence bound, which reinforce-

ment learning approaches like UCB require. Indeed, in our previous work, time is modeled by

the GP using the difference between the LP and the actual makespan, with a confidence interval

of its own. Modeling energy requires time as an input, and this model would generate another

individual confidence bound. When using the time× energy product plus the UCB to select a

configuration, it is still unclear how to combine the uncertainties of both models, especially as

they are strongly correlated.

Although there are many challenges, we believe such an approach using the GP surrogate

(and having a model for all the search space) can be a good strategy for finding energy-aware

configurations. This problem is still under investigation and will be pursued as a future work

of this thesis. Such a model would enable the application to adapt dynamically to a pool of

heterogeneous resources, improving time and energy.

7.5 Discussion

This Chapter proposes and analyzes different exploration methods to find the best collec-

tion of heterogeneous nodes for an HPC application phase. It uses the ExaGeoStat application,

which has multiple phases and was already optimized for heterogeneous resources (NESI;

LEGRAND; SCHNORR, 2021). However, determining the ideal number of nodes per phase

was an open and challenging problem. Indeed, the network and the distribution of data over

heterogeneous nodes may cause unpredictable and unexpected behavior during the execution of

the application on a particular number of nodes. The application should thus explore various

159

configurations and adapt online to discover the optimal subset of nodes for a given scenario.

Our results show that an informed Gaussian process based reinforcement learning strat-

egy can quickly find the best configuration of nodes for the main phase (factorization). The

superior approach, GP-discontinuous, uses bounding mechanisms to filter the search space,

model the difference of the makespan to a lower bound (and already have some knowledge of

the scenario), and use dummy variables and a linear trend to model discontinuities caused by

the distributions. This method provided the consistent best results in all 16 studied scenarios.

Another (simpler) method that performs particularly well is UCB-struct, which only considers

specific points. However, this method will only sometimes find the best configuration, as it is

constrained not to search all the space but only the multiple complete homogeneous groups. In

the end, using all nodes for the generation phase and only a learned subset for the factorization

provided up to 51.2% speedup compared to using all nodes for both phases. These results

demonstrated that the application could discover during execution the action (number of nodes)

it could take to improve performance and adapt to the heterogeneous resources.

This chapter’s main contributions and results were published in IPDPS 2022 (NESI;

SCHNORR; LEGRAND, 2022).

160

161

8 SUMMARIZING APPLICATIONS’ BEHAVIOR

The performance analysis of High-Performance Computing applications is a vital step

for achieving correct performance. But the complexity of the applications and systems, includ-

ing the many levels of heterogeneity (HPE et al., 2022), adds considerable challenges to such

activity. The performance analysis of HPC applications through visualization is considered an

advantageous methodology (GARCIA PINTO et al., 2018), as it enables a facilitated compre-

hension of large amounts of trace data (SCHNORR; LEGRAND, 2013). However, even with

this strategy, there is limited space to plot, and the visualization strategy can give wrong insights.

That is the case of Gantt Charts, which focus on resource utilization but can hide the actual

progression of the application. Although performance visualizations tailored for an application

(MILETTO et al., 2022) or runtime aspects (NESI et al., 2019) can mitigate some of these

problems, general strategies that summarize the overall performance behavior would aid in this

matter.

This Chapter proposes a performance analysis methodology through an entry-level vi-

sualization. It aims to check the progression of task-based applications on individual nodes to

indicate moments and node groups of interest. This methodology comprises three elements: a

progression metric per node that employs the structure of task-based applications, a clustering

method to classify nodes and reduce the elements to show, and a final entry-level visualization

of such components. Section 8.1 presents the general idea of the problem, followed by Section

8.2 detailing the proposed methodology. Section 8.3 presents the evaluation of the methodology

on real applications.

8.1 Problem: Limited space to plot complex behaviors

The comprehension of applications’ performance may become problematic because of

the number of features the system presents. This is particularly the case when using Gantt charts

to plot states per node-level resources (cores, GPUs) with large amounts of nodes. Although

there are techniques for aggregating and reducing the size of such visualizations (PILLET et al.,

1995; KNÜPFER et al., 2008; SCHNORR; STEIN; KERGOMMEAUX, 2013; DOSIMONT et

al., 2014), the traditional idea of having system elements as one axis would never scale as their

number grows. Moreover, these Gantt chart ideas focus on resource utilization, which does not

necessarily reflect how well the application is distributed and progresses. Aggregating many

resources with the same utilization would also mask application problems and their progression.

162

Consider an example of the dense linear algebra Chameleon library with the LU fac-

torization, where when using 30 nodes with two GPUs each, two nodes were faulty and were

initialized with only one GPU. Figure 8.1 presents the aggregated Gantt chart per node resource

of such execution made with StarVZ. Each node has two rows; the first is the aggregation uti-

lization of the CPUs (four cores per node), while the second is for GPUs (two per node). In this

case, it is possible to notice that two nodes (0 and 1) were working more than the others, and

already with 30 nodes, such visualizations present scalability problems even with intra-node

resource aggregation. The initial yellow tasks represent the generation data phase, and after

Figure 8.1 – Gantt chart with nodes’ resources aggregation of the Chameleon LU Factorization
execution with 30 nodes where two are misbehaving

Source: The Author.

163

synchronization, the green area represents the main computational task, the gemm operation.

In this representation, it is unclear if the two first nodes are problematic or correct concerning

behavior. Moreover, the other nodes have two distinct patterns (B.1 and B.2 annotations), but it

is also unclear which ones perform better. The only certainty from this visualization is that the

resources of nodes 0 and 1 are working all the time.

A critical aspect of the analysis workflow is the progression of the application towards its

final result. This aspect is missing in visualizations such as the one depicted in 8.1. Measuring

at a given point how far the application is from its goal, from its ideal performance, and how

each node behaves compared to each other can lead to performance improvement insights. We

argue that an entry-level visualization for the performance analysis workflow that focuses on

the progression would complement the Gantt chart by providing an overview. Such entry-

level visualization should guide the analyst to points and nodes of interest by serving as a

preliminary step before delving into the details of application behavior using the Gantt chart.

This visualization should enable the perception of node outliers and handle heterogeneity in its

many forms, such as resources, application phases, and tasks.

8.2 Proposal: Node Progression visualization through clustering

When many resources have to be considered, the raw Gantt visualization is inadequate,

and other summarizing techniques should be used. Instead of observing the Gantt chart or

its variations as the first instrument, this Section presents a methodology for an entry-level

tool to provide an overview. This overview can indicate and classify nodes of interest, where

the traditional methods (including detailed Gantt charts) could use such groups to focus on

non-redundant information.

8.2.1 Progression Metrics

The notion of how much work the application has accomplished at a given time, or

how much it requires to finish, can be captured into a progression metric. When improving

or analyzing an application’s performance, its progression is an aspect of main interest, as if it

progresses correctly and fast, the application’s execution time will be optimized. In a distributed

scenario with many resources, it is desired to understand how each node performs relatively.

We define a progression metric to capture the individual and normalized [0, 1] progression

164

of a node’s work while maintaining the relative comparison possible. This comparison means

that their metric should be the same when nodes achieve the same relative progression (i.e., 50%

of work).

The important aspect is the quantification of work. It can be directly associated with

the application’s main algorithm, for example, the iteration number concluded on a particular

simulation step. However, it could be agnostic to the application and use information from

the programming paradigm, in our case, the task-based one. In this agnostic case, universal

information for all applications like tasks, the DAG, and task performance models can be used

to measure work.

One very simple progression metric to be defined in the context of the task-based

programming paradigm is the number of completed tasks Cs,n at a given moment s in a node n

as the primary measure of work and normalizing it by dividing with the node’s (n) total amount

of tasks Nn. The progression of a node n at a given time s, Pn,s will be given by:

Pn,s =
Cn,s

Nn

(8.1)

However, this simple metric works when the application has a clear dominant phase

and task. Complex applications with multiple phases (NESI; LEGRAND; SCHNORR, 2021)

and a variety of significant tasks would require quantifying different tasks costs considering the

possible intra-node heterogeneity. This quantification could be achieved by using tasks duration

wn,t,r of each heterogeneous resource r (CPU, GPU) in the noden to relativize them between task

types t. The proposed metric is present in Equations 8.2 and 8.3. Wt,n is essentially how much

time a task t would hypothetically take if all node n resources with an available implementation

could run it simultaneously, creating a weight per task type. Then, the progression (Pn,s) can be

measured by summing for each task, the number of tasks completed Cn,s,t of type t on node n at

time s multiplied by the respective weight (Wt,n), and normalizing in the same way by replacing

C by N . Such a metric would detect fewer longer tasks’ progression and contribution correctly.

Wt,n =
1∑

r
1

wn,t,r

(8.2)

Pn,s =

∑
t(Cn,s,tWt,n)∑
t(Nn,tWt,n)

(8.3)

To illustrate how this metric behaves, consider the case of the last section in Figure 8.1,

the LU factorization with 30 nodes where the first two were initialized with one less GPU. Figure

165

8.2 presents the progression metric that accounts for heterogeneity for each node of Figure 8.1

execution. At the start of the execution, annotation A.3, there is a split in behavior. The below

line (actually two overlapping lines) represents the progress of the two slower nodes. The upper

lines show the progression of the other nodes. In the middle of the execution, there is also a

division of nodes in two distinct behavior, annotation B.3, observed from Gantt chart areas B.1

and B.2.

The progression metric, which is not a utilization metric (as in the Gantt chart), indicates

that a group of nodes is progressing slower since the beginning, annotation A.3, a situation that

is not clear in the Gantt area A.1. The Gantt gives a false impression in area A.1 that things

were progression well, where actually there was a problem in the load partition since the start

(considering the relative real speed of the machines). In the middle of the execution, the split in

behavior is directly associated with the data partition, as will be discussed in Section 8.3. Where

B.1 and B.2 are associated respectively with nodes that communicate directly or indirectly with

the two problematic nodes. Also, this visualization already has a lot of lines (one per node).

Figure 8.2 – Progression heterogeneous metric applied to the Chameleon simulation of the LU
Factorization on 30 nodes

Source: The Author.

166

8.2.2 Summarizing by Clustering

Analyzing such progression metrics may still be difficult in cases with many nodes

having similar behavior, i.e., similar metric values. The identification of nodes or groups of

nodes of interest can still be overwhelming. A possible solution is summarizing such metrics by

clustering and understanding the behavior of node groups instead of individual ones. We utilize

the notion of discrete time-steps, computing the progress metrics and clustering the nodes only

for those moments. This clustering per step is particularly useful because some performance

degradation may arise at lonely moments of the execution, and while at that particular moment,

the node is an outlier, during the rest of the execution, it behaves the same as other nodes.

At a given time-step, the progression may be summarized by clustering nodes that follow

the intuitive, though weak and relative, characteristics: (1) Have the same progress behavior but

have differences in the progression metric because of system variability, where one would expect

a normal distribution; (2) Have genuine, though light, differences in behavior (small variances

in workload, for example), but such small differences relatively do not reflect points of interest

for the analyst. To comply with such characteristics, we select modal clustering, where the

populations and clusters are defined as high regions of density divided by low regions of density

(FUKUNAGA; HOSTETLER, 1975; CHEN; GENOVESE; WASSERMAN, 2016; CHACÓN,

2015). Such a definition would encompass both characteristics.

K-Means and Gaussian Mixture Models (GMM) (CHACÓN, 2019) were also tested,

but such approaches require determining the number of k clusters or distribution components.

One of the most popular approaches to determine this is using Bayesian Information Criterion

(BIC); however, it requires the number of observations to be large (KASS; WASSERMAN,

1995; GIRAUD, 2021). In this case, it is also interesting to want to cluster groups with a few

outlier nodes, even if this group comprises only one member. Also, for the case of the GMM,

which models clusters as a realization of a normal distribution, it is preferable generality that

the groups are not necessarily normal distributions.

The modal clustering is performed with the principle of the mean shift algorithm (FUKU-

NAGA; HOSTETLER, 1975), where data points are moved to the near kernel density modes,

and clusters are divided by local minimums (CHEN; GENOVESE; WASSERMAN, 2016;

CHACÓN, 2015). For this one-dimensional case with a relatively small number of data points,

this can be achieved by computing the density estimation (using the Gaussian kernel in our case)

with a bandwidth parameter h and finding the local minimums (CHACÓN, 2015). All data

points between the same minimums are classified in the same group as belonging to that mode.

167

Figure 8.3 presents the density estimations for the first ten time-steps with a bandwidth of 0.01,

where the horizontal axis is the progression metric value, the vertical one is the density, and the

blue vertical lines are the local minimums. At step one, all nodes share the same progression

metric, zero, so it has a unique mode centered at 0. At step two, two nodes start to depart from

the other 28; this causes a skewed distribution, with the mode much closer to the metric of the

28 nodes. But still, the distance between points using this bandwidth was not sufficiently far for

creating another mode. At step three, there was enough distance, making two local modes, with

a local minimum in the middle separating the groups. The left side represents the two slower

nodes, while the right side is the other 28 nodes. The same principle continues through the

remaining steps.

The advantages of this clustering method are that it works with a small number of data

points, has a bandwidth parameter that controls the sensibility and the smoothing factor of

the density estimation, enabling the adjustment of the clusters spread, and that clusters may

be a complex mixture distribution that admits more complex density shapes than a normal

distribution. The disadvantages of this clustering are that it does not capture possible sub-

populations of interest that share the same mean but have different variances and the control

parameter that must be adjusted. Also, this step-based clustering discards temporal knowledge

that could be exploited.

Figure 8.3 – Kernel density estimations of the first ten time-steps with the Gaussian kernel and
bandwidth 0.01 for all steps considering metrics of Figure 8.2

Source: The Author.

168

8.2.3 Progression Visualization

After having computed the clusters for each time-step, we propose a visualization to

show the modal clustering progression. It is then shown in Figure 8.4 for the same data as Figure

8.2. At each time-step, one point is displayed per cluster. A line will connect two points of

subsequent steps if they share nodes, and the number of shared nodes determines its thickness.

In this way, from time 0 to time ~2000, all nodes are associated with the same cluster and share

all nodes. However, at time ~2500, two clusters are detected, and the difference in thickness

(thin on the bottom and thick on the top) informs that most of the nodes followed the up path

behavior. This is the case as the upper cluster is made of two nodes while the below one is made

of 28 nodes. At each disjoint path, the paths with fewer nodes have a label with the nodes that

follow it. Also, the visualization keeps the original progression metrics per node (as of Figure

8.2) as background semi-transparent gray lines.

Figure 8.4 – Progression visualization strategy applied to the Chameleon simulation of the LU
factorization on 30 nodes

Source: The Author.

However, even if all nodes follow the same behavior, the application does not necessarily

achieve the ideal performance. All nodes could share the same problems and be equally late. We

plot two additional metrics to aid the observation of such a problem (see Figure 8.4). First, the

visualization presents the global ABE as a vertical dashed line. Second, we compute the ABE

169

per time-step and perform a cumulative sum for each step of their ABE and their previous ones.

A series of black points interconnected by a dotted line, usually in the upper part, demonstrates

the cumulative per-step ABE. The first point is the ABE per step of the first step, while the

second one is the ABE per step of the second step plus the first one, and so on. This metric

captures some critical paths and steps’ resource restrictions. For example, until step one, there

are only tasks that do not utilize GPUs; the ABE of this step will only consider CPUs letting the

GPUs idle. This is different from the global ABE, which will try to “pack” all tasks as if they do

not have dependencies and compute the bound as if the GPUs were used in the early moments

of the execution by future tasks. This difference explains why the per-step ABE may be longer

than the global ABE. With those two metrics, one can better perceive the nodes’ progress.

8.3 Evaluation on Real Applications

This Section presents experiments on real applications and cases showing how the

proposed methodology behaves and helps an analyst.

8.3.1 System and Software

The experiments were conducted with real executions and simulations using Chameleon

commit 54e4ec73, StarPU commit 0fb603d8, and Simgrid commit 61ee012f. The version of

ExaGeoStat, the application used in Section 8.3.3, is 9518886. Simulations were used for the LU

factorization experiments (Section 8.3.2) with a workload of size 96000×96000, considering 30

machines with eight cores and 2 NVIDIA GTX 1080ti GPUs each (Tupi). For the ExaGeoStat

real experiments (Section 8.3.3), two partitions of machines were used with a 96100 × 96100

workload. First, six nodes with 32 cores each (Chiclet); second, two nodes with 24 cores (2x

Intel Xeon 6126), and two Nvidia P100 each (Chifflot). The modal clustering uses the density

function from R 4.2.1 (R Core Team, 2022).

8.3.2 Chameleon predefined abnormal behaviors

Intending to test the methodology’s identification power in common problems, we define

a set of situations that may happen during the execution of real applications. Such situations

are: (a) communications contention problems of one or more nodes; (b) the utilization of a

170

wrong distribution, giving more load to some nodes; (c) global bad behavior that appears to be

correct. Those situations were created using StarPU-Simgrid simulations and the Chameleon

application. The next Sections detail these situations.

One node with a slower connection. In this case, the first node has only a 1Gb/s network

while the others have 25Gb/s. Figure 8.5 shows the progress clustering metric with 20 time-steps

on the upper panel and the respective Gantt chart with nodes’ resources aggregation on the lower

one. Three groups of nodes dominate such execution. The slowest group, comprised of only

one node (node zero), is exactly the node with the network reduction. The second slowest group

is composed of nodes 1-6, 12, 18, and 24 and is only a little better than group one (the slowest).

At the same time, the final and last group is composed of all remaining nodes. The distance

from the lower bounds is significant, and while groups one and two started with the slowest

progression since the beginning, group three followed the lower bound’s progression until time

~15s. The explanation of this group split relies on the application matrix distribution.

The Chameleon library uses the traditional block-cyclic distribution (BLACKFORD et

al., 1997) to divide its matrix across many nodes. Considering n nodes, this distribution sets

two parameters p and q as p× q = n. These parameters will be used to create a simple partition

with p rows and q columns that will be used as a repetitive pattern through all the matrix block

distributions. This partition matrix is depicted at the bottom right of the progression metric

panel and presents the partition with p = 5 and q = 6 used in this case. In this distribution,

considering the LU factorization kernel, nodes essentially communicate with other nodes that

share the same row and columns. The nodes that share the row and columns with the problematic

node zero are exactly the nodes of cluster two. This is not necessarily obvious, as one could

expect one problematic node to cause a global slowdown in the whole system. However, the

behavior of nodes that maintain direct communication with node zero is more affected. This

observation corroborates that the clustering manages to group significant co-related nodes. From

the performance analysis perspective, the nodes with a slower progression would have a priority

in the analysis with more detailed tools such as Gantt charts. When observing the Gantt chart

solely, it is not clear what is the group of most problematic nodes, though there is a distinction

between the two groups in behavior. The progression metric informs such problematic nodes

straightforwardly, with the benefit of being a more scalable visualization.

Bad distribution of load across nodes. In this case, we consider the 1D-1D (BEAU-

MONT et al., 2001a) heterogeneous distribution, giving 50% more load to the first node and

25% more load to the second node. Figure 8.6 presents the progression metrics for this execution

in the upper panel with the partition of this heterogeneous distribution on the bottom right. The

171

Figure 8.5 – Progression visualization strategy and aggregated Gantt chart of Chameleon’s LU
factorization simulation over 30 nodes where the first node has a slower network

Source: The Author.

172

Figure 8.6 – Progression visualization strategy and aggregated Gantt chart of Chameleon’s LU
factorization simulation over 30 nodes where the first and second nodes received 50% and 25% more

load, respectively

Source: The Author.

173

bottom panel is the aggregated Gantt chart. Nodes zero and one have larger areas related to the

increase in load (though they have the same computational power as the others). There is an

expectation that this execution would have problems, but we are interested in checking how the

node clusters relate to these problematic nodes.

Groups one and two from time 8s to 24s are solely the nodes zero and one, the problematic

ones. There are five clusters at a maximum on time of ~24s. Group three is essentially nodes

2-5, 10, 15, 20, and 25, while group four is nodes 6, 11, 16, 21, 26, and group five is the others.

This corresponds to the nodes that directly communicate with the problematic nodes, with a

small difference between groups three and four, that the latter communicates more with node

one (25% slowdown). While the groups can be recognizable in the Gantt chart, it is unclear to

indicate which ones are the most affected. Another situation is that most nodes get affected by

the slowdown only at the 20s-25s, progressing until then near the bound.

All nodes with bad network. The network can also globally impact the performance of

the application. This case considers a scenario where the infrastructure does not have an optimal

network. In this case, all nodes have a 1Gb/s network. Figure 8.7 left presents the clustering

metrics for this case. All nodes share the same cluster and present similar behavior. This could

lead to the analysis that the execution was well performed. However, the metrics distance to the

lower bounds of per-step and global ABE indicates a problem in execution.

Figure 8.7 – Progression visualization strategy of Chameleon’s LU factorization simulation over 30
nodes where, on the left, all nodes have slow networks, and on the right, regular networks

Source: The Author.

The problem of Figure 8.7 left execution is even more discernible when it is compared

174

to a correct execution without problems, as shown in Figure 8.7 right side. In the correct case,

it is possible to check the proximity of the metric to the lower bound, indicating a well-behaved

execution. The correct execution also demonstrates the difficulties of adhering to both ABE

bounds at the end, when parallelism diminishes.

8.3.3 A multi-phase application over heterogeneous nodes

In this case, we use eight nodes, where six are CPU-only, and two have CPUs and two

GPUs. Figure 8.8 presents the progress cluster visualization on the top panel and the aggregated

Gantt chart on the bottom. The first phase is depicted in the Gantt by the yellow tasks and in the

A area on the top panel.

Figure 8.8 – Progression visualization strategy (with a bandwidth of 0.15) and aggregated Gantt chart of
ExaGeoStat real execution iteration on eight heterogeneous nodes

Source: The Author.

175

After the first phase, the nodes split into two clusters, B area, and, for a short period,

three clusters. The fastest cluster (the top one) comprises six nodes that are exactly the nodes

of the first partition, while the slowest cluster (in red) is the two nodes of the second partition

(six and seven). With this indication from the progression visualization that some nodes were

not performing correctly, further investigation is performed into them. In this case, the slow

performance is mainly caused by two problems. First, we used distributions considering the

machines’ relative power as inputs for this heterogeneous execution. The mean duration of all

tasks on all nodes is considered for computing such power. However, when generating such

distribution, there was an overestimation of the performance of the main task, dgemm, on GPUs

by 5%. Second, this power considers a continuous utilization of the GPUs. However, in this

case, these workers had short idle periods between many tasks, accounting for 9% idle time.

The StarPU scheduler used, DMDAS, greedy considers priorities above the locality of data of

ready tasks. A task becomes ready when its data is available on that node, i.e., dependencies are

met and transferred to that node via MPI. Because of data of high-priority tasks arriving on this

node, the scheduler will not be able to pre-fetch such data and will immediately schedule such

high-priority tasks above all others, even if their data is still in RAM and has to be transferred to

the GPU. Although there is a pipeline of tasks on GPU workers, the transfer duration is higher

than the duration of the tasks, and the GPU will wait for the transfer to finish before starting the

high-priority task.

This case also illustrates how the Gantt chart can be misleading if used alone. Figure

8.9 shows the Gantt chart for all resources for this execution (of Figure 8.8) for a middle point

in the execution for node 0 (Gantt chart behavior equal to nodes 1, 2, 4, 5), node 3, the one that

formed a new cluster between the fastest and slowest one, and node 6 (Same behavior as node

7). One may conclude from this Gantt that there is a huge problem on node three because of

CPU workers’ idle times. However, it is difficult to notice the small GPU idle times that account

for a considerable loss in overall performance, as described before. The idle times on node 3 are

mainly critical paths of nodes six and seven late tasks that increased communication contention.

8.4 Discussion

Performance analysis of complex HPC applications is the core for improving and accel-

erating them even more. However, such performance analysis is difficult, as both applications

and platforms present many levels of complexity, like heterogeneity, different phases, and sizes.

Visualization can aid in this situation by quickly assisting in interpreting the application be-

176

Figure 8.9 – Traditional Gantt chart of selected nodes of Figure 8.8 execution

Source: The Author.

havior. However, even the best visualizations have limited space to represent such data. Gantt

charts are a classical visualization approach for such analysis. However, they are not scalable to

the number of nodes and may point in the wrong direction when interpreting results. Although

Gantt charts help visually identify resource idleness, they fail to determine or pinpoint the root

cause of such inactivity that might be located elsewhere because task dependencies are much

more complex in task-based systems.

This Chapter presented a methodology to summarize application behavior, quickly cap-

ture the progression of nodes, and indicate problematic ones. It proposes an entry-level strategy

to provide an overview of the execution before using other methods, like Gantt charts. This

strategy utilizes a progression metric to capture the behavior of the nodes, a clustering of such

progression metric to identify node groups of interest and reduce the number of elements to show,

and a visualization of such clustering over execution time. We evaluate such strategies over four

crafted problematic scenarios with the dense linear algebra library Chameleon, which correctly

detected the group of nodes with problems. In a real case with the ExaGeoStat application, it

not only handled heterogeneity but indicated the most problematic nodes more straightforwardly

than a traditional Gantt Chart. Ultimately, the strategies correctly identified problematic nodes

177

and provided a new angle that quickly informed the application’s progression.

This chapter’s main contributions and results were published in PDP 2023 (NESI et al.,

2023).

178

179

9 FINAL DISCUSSION AND CONCLUSION

Heterogeneity is part of HPC systems, both intra-node with accelerators and inter-

node with multiple diverse machines. This system-level (inter-node) heterogeneity may arise

because of upgrades over time, handling different applications workloads, or financial decisions.

Ultimately, these systems have diverse hardware with vast opportunities for utilization. On

the other side, HPC applications are already very complex, having many operations of different

behavior. Such applications require modern paradigms that can handle heterogeneous resources,

improve application development while allowing systems portability, and avoid unnecessary

synchronous barriers between the different operations. The task-based programming paradigm

is an example that has such attributes. It uses a dynamic runtime to schedule tasks, and

applications are well-defined into a DAG. While this paradigm presents many benefits, there

are still challenges when distributing these applications into those system-level heterogeneous

resources.

Different problems appear when dealing with the distribution of task-based applications

on system-level heterogeneous resources. When considering solely one application operation,

one problem is correctly distributing it across a diverse range of computational nodes. While this

distribution should consider each resource capability, other behavior aspects, such as critical

path and communications, are also important. Nonetheless, a single operation is just one

of many parts of the application. There may be many different operations with different

behaviors and resource affinities that ideally call for a distinct distribution. Also, in task-based

applications, these operations may run asynchronously, overlapping, and each one can choose its

relative best resource. In this context, the problem of distributing the application over different

resources should now consider multiple overlapping operations adopting various distributions.

The number of resources available may also be excessive for a given phase, as sometimes, using

fewer resources to reduce some issues is beneficial. However, modeling all behaviors that lead

to such problems before the application execution may be challenging, and dynamic adapting

during execution is a possible solution. In all these problems, there is a transversal challenge:

how to analyze the performance of the applications quickly and thoughtfully. Ultimately, this

thesis contributes strategies to all these correlated problems.

This thesis chooses the StarPU task-based runtime and applications of its ecosystem

as study subjects. The StarPU runtime has the required flexibility to define distributions,

allows asynchronous redistribution, has a simulation feature that can augment experimental

scenarios when necessary, and many auxiliary tools for performance analysis. In this sense,

180

this thesis experiments used the linear algebra library Chameleon, the GeoStatistics machine

learning application ExaGeoStat, and the library to analyze large datasets Diodon. The platforms

used for the experiments were the Grid5000 infrastructure and the supercomputer SDumont,

both providing different levels of heterogeneity. These selected applications present multiple

operations that, with the contributions of this thesis, can exploit the system-level heterogeneity

to improve performance. The main lines of research and contributions follow.

The first set of contributions, in Chapter 5, focuses on a single application operation

distribution. We part from literature algorithms, more specifically, the 1D-1D one. An initial

step was to study the behavior of such heterogeneous distributions compared to the classical

BC one, even in homogeneous configurations, showing that it can handle an arbitrary number

of nodes (including prime numbers). After, this thesis proposes two strategies, inspired by the

1D-1D, that create heterogeneous distributions. The first one considers the critical path and

communication alongside the heterogeneous capacities of the resources. It constrains the final

workload of the operation to faster resources, decreasing communication and improving critical

path. The second strategy performs extra balancing, relaxing previous constraints that some

nodes would only communicate with others. A performance analysis compares 1D-1D with

the methodology that uses both strategies. The results indicate a slight gain when combining

those two strategies in cases where 1D-1D already performed very well. An earlier analysis that

predicted a little space for improvement (lower bound) collaborates with such results. However,

future problems will reuse the constraining strategy in their cases where the critical path in

multi-phase distributions is more critical. In those cases, this strategy presents better results.

The second group of contributions focuses on the problem of applications with multiple

phases (operations), tracked in Chapter 6. The Chapter shows that guaranteeing asynchronous

execution between operations and tailoring distributions considering their overlap can improve

performance, even in homogeneous scenarios. A series of strategies enhance the asynchronous

overlap of the phases, improving up to 49% the makespan when considering ExaGeoStat and

Diodon applications. Next, it studies the heterogeneous environment. A Linear Program (LP)

computes the ideal division of tasks per machine considering heterogeneity and phase interaction

overlap. This LP also operates as a lower bound for the application. The relative power of each

node for each phase is extracted from the LP’s division of tasks result. This power per phase

and machine will be the input for the distribution algorithms (of Chapter 5, including the

constraining strategy) to compute the distribution of selected operations. Finally, we propose

an algorithm to compute a distribution for a precedent phase while minimizing redistribution

communications. The algorithms use the following distribution as a reference and the tasks

181

division of the LP. This methodology improves the performance in the best-studied case by 69%

in ExaGeoStat and 73% in Diodon when compared to using a homogeneous distribution strategy

on the most powerfully homogeneous cluster (partition) of each scenario. We also present a

detailed performance behavior of some cases that suggests that using all available nodes for all

phases may be unnecessary.

The third set of contributions (Chapter 7) follows the lead given by the last chapter

and focuses on limiting the number of resources in each phase. The problem is that network

contention, critical path, or other unexpected behavior may deteriorate the performance more

than the possible contribution when adding a computational node. However, modeling such

behaviors is challenging in this asynchronous and dynamic scenario. For this reason, this

thesis studies the usage of reinforcement learning methods during execution time to model the

application’s behavior when selecting an arbitrary number of nodes for a given phase. This

model serves as a surrogate that the application can consult to guide the next decision. This

thesis proposes a method based on the Gaussian Process (GP) with its Upper Confidence Interval

(UCB) methodology that assumes a smooth behavior in the search space. The proposal adds

HPC knowledge on the method to tune it for this problem, considering limiting the search

space, providing an expected trend, and handling discontinuities in makespan behavior. This

learning part actuates on a segment of the application, in this case, a long iteration. The

ExaGeoStat application presents this structure, where it performs many optimization iterations

(with an unavoidable algorithmic synchronization), and each one comprises many asynchronous

operations. The surrogate will approximate the duration of one iteration. Before starting each

one, the application queries the surrogate and, based on the UCB component, chooses an action

that trades exploration and exploitation. In the end, we compare such a method with six others in

16 scenarios, showing that it was the only one that handled all cases, improving the performance

up to 51.2% when selecting the number of nodes for the ExaGeoStat factorization phase. It

also shows that the overhead of the method is low and that there may be a limited gain (in

performance) in optimizing the number of nodes considering all phases.

The final group of contributions comes from a transversal problem to all the others:

analyzing the performance of these task-based applications. During the progress of this thesis,

any investigation included an extensive and comprehensive analysis of execution traces. Many of

these investigations lead to improvements and new features in the StarVZ, a performance analysis

workflow package. One example was the addition of the per-node per-resource aggregation Gantt

chart. However, in the final stages of this work, the analysis visualization scalability in some

experiments was considered a problem. Instead of relying on the Gantt chart directly, which will

182

never scale as the number of resources increases, another simple visualization would be desirable

to point to problematic groups of nodes. That is why Chapter 8 studies a methodology to serve as

a visualization summary of the performance behavior of different nodes. It relies on a progression

metric sensitive to system-level heterogeneity and distinct tasks (from various operations). The

methodology uses this metric for every node in different time steps. Then, because some nodes

have similar behavior, it clusters the metric into groups of nodes with similar behavior. The

final visualization only shows these groups of nodes, where groups that advance slowly in the

progression metric are potentially problematic. This visualization does not need more space as

the number of nodes increases. To demonstrate the methodology’s usefulness, we craft some

bad scenarios with simulation and use real executions of other investigations. Ultimately, the

proposed method worked well in all tested cases and helped detect all problematic nodes.

All these contributions are motivated by distributing task-based applications on hetero-

geneous resources. And in the end, they should be used all together. When an application

starts executing, it needs to decide the number of nodes to use per phase, triggering Chapter 7

contributions. This contribution will start by using all nodes in all operations, which requires

computing the distributions aware of heterogeneity and asynchronous overlapping operations,

leading to using Chapter 6 strategies. Then, those strategies inherently use Chapter 5 to compute

the selected phases’ final distribution. Afterward, the application’s performance can be analyzed

using Chapter 8 contributions and the general methodology employed in this Thesis. Finally,

one should evaluate if other performance optimizations for the application are worth it.

9.1 Deciding when to stop optimizing

A decision point exists after proposing a solution that works in real experiments: Is this

enough? Is the application on the best performance it could get? Is the trade-off between the

scientific, engineering, and developing cost to further improvements satisfying? The analysis

methodology is important and should consider the cost and gains of possible solutions carefully.

The answer to this question varies depending on many factors, including (i) the ap-

plication, (ii) the users, (iii) the potential improvements and costs of any change, and (iv) the

performance analysis metrics used. This thesis contributes as additional evidence to this question

on two fronts.

First, the strategies can be imperfect in some aspects in a practical sense. There will

always be idle time in complex applications, minor scheduling decisions that could be corrected

when analyzed post-mortem, and the applicability of excessively complex solutions. An example

183

is that even with a good yet simple model of the multi-phase application in Chapter 6, the final

distributions still present some idle time when other unexpected factors happen. In this case,

we choose to continue the research and provide Chapter 7 contributions. In the same sense, the

strategy in Chapter 7 essentially forces idle time in some resources, as not using all of them is

more beneficial in performance. This idle time can be seen as a waste of resources or energy

for some. It is complicated to maximize gain in all aspects. However, in this case, this idle

time analysis may be worthless and a wrong metric. Although this seems counterintuitive at

first look, improving performance by not using some resources can be sufficient (in some cases)

to reduce the overall energy consumption compared to the slower scenario that forces the usage

in all. Another example is when memory contention has an effect, and using fewer resources

to reduce interference is beneficial (MILETTO et al., 2022). Ultimately, it depends on the goal

metric, and auxiliary ones (like idle time) may reflect something other than what truly matters.

The second front is that analytical analysis, simulations, and visualization techniques

seem a vital ally to deciding when to stop optimizing, as already pointed out by other authors

(JAIN, 1991). This situation is further improved by adding diverse scenarios and workloads

into consideration. The experiments in Chapter 5 detected a small yet possible improvement

when checking the performance distance of the state-of-the-art distribution and the lower bound

for the general good case. It is not unexpected that the final improvements of the proposed

strategies (in the general case) seemed unsatisfactory for the effort. The first time we analyzed

the potential gain, we focused on a specific case that was not representative of the general one.

Yet, it is not accidental that the strategy had positive gains when such a case appeared again

when considering multi-distributions, a situation that could have been missed if simulations and

the analytical analysis had not expanded the view.

Ultimately, this decision, as any other in any domain, has an associated risk. In this

case, a risk that the optimization is not worth it. To go blind to uncharted territory trying to fix

a "possible problem," focusing on a single non-reproducible experiment seems to have a high

chance of leading to wasted effort. However, it is possible to minimize the risk probability by

improving the projections of gain and cost with tools like simulation and methods like analytical

models. These approaches look appropriate and feasible. All these tools that expand the

perspective of the problem, giving new angles, like many of the used visualization techniques,

were fundamental for the conduction of this thesis.

Considering all these points, this thesis achieved its goals. All the enumerated problems

were studied, and the thesis proposed new solutions. In this way, in the context of this work, it

is the moment to stop optimizing. However, we consider the problems in the next Section worth

184

investigating in the context of future works and directions.

9.2 Future Works

This work opens further perspectives on many topics. The first one includes adjust-

ments in heterogeneous data distribution during execution, an additional action than the static

distributions, and dynamically selecting the number of nodes. This can consist of refining

distributions in specific operations while considering the multi-phase complexity. Such a sit-

uation could further improve balancing with unpredictable behavior. These improvements are

ideally application-tailored, exploiting its algorithm and DAG structure. However, a systematic

way of changing such distribution in the context of the STF and distributed computing would

present technical and scientific problems. As the model is, after the DAG is unrolled in all

nodes, data ownership and task changes would require global awareness to guarantee distributed

consistency. In this context, the distribution changes decisions should be equal. In the current

model, nodes can even submit different tasks, relying on the application design to submit all the

necessary tasks in all nodes, leading to the DAG distributed correctness. In this context, one

research topic is determining which information the application should pass to the runtime to

make heterogeneous optimizations automatically.

Another open question is how to improve the current multi-phase power model with

communication, the LP in Chapter 6. Such extra information could approximate it even more

to reality. This information is hard to anticipate because of the dynamic scheduler and general

complexity of the operations overlap. In the same context of this model, one current problem

is that information about one application is specific to it. Although some applications share

the same underlying libraries, like Chameleon, only some tasks using the same sizes could be

reused through the history-based performance models.

In the context of finding the best set of nodes to use, one open work is to use the efficiency

of the configurations instead of only the makespan. Better preparing applications to adapt from

an oversized configuration could improve makespan, energy, and efficiency. Specifically, to the

proposed strategies, one situation is considering expanding the model of the GP surrogate when

augmenting the search space with all phases. The bootstrap of the model and how to prune the

search space are open questions. The flexibility of the GP as a surrogate to model performance

and efficiency could be used to explore other parameters, allowing HPC applications to adapt

better to their systems on each run actively. One possibility is that the GP approach could model

distributions that allow mixed precision blocks or other forms of compression specific to the

185

input data. With such a strategy, one could determine the regions and the number of blocks with

lower precision while modeling the trade-off between performance and accuracy.

For the performance analysis and visualizations, some perspectives include always fa-

cilitating the development of such applications, allowing developers to quickly understand how

their current implementation is behaving. Specifically to the proposed strategy of summarizing

thought clustering, future work includes investigating other progression metrics and clustering

techniques. Those could be application or situation-tailored.

Ultimately, many traditional techniques, methods, and strategies for homogeneous cases

should be revisited to uncover the multiple opportunities and benefits that arise in this heteroge-

neous context.

9.3 Publications

The main publications related to the thesis follow. The principal results of Chapter 5 were

published in ICPADS 2020 (NESI; SCHNORR; LEGRAND, 2020), including some simulation

comparisons. A publication in ICPP 2021, which received the best paper award, includes the

first works (with ExaGeoStat) in multi-phase applications of Chapter 6 (NESI; LEGRAND;

SCHNORR, 2021). We further extended that work to a journal paper in FGCS 2023 (NESI;

LEGRAND; MELLO SCHNORR, 2023). The contributions of Chapter 7 were published in

IPDPS 2022 (NESI; SCHNORR; LEGRAND, 2022). A publication in PDP 2023 includes the

contributions of Chapter 8 (NESI et al., 2023).

• NESI, L. L.; LEGRAND, A.; SCHNORR, L. M. Asynchronous multi-phase task-based ap-

plications: Employing different nodes to design better distributions. Future Generation
Computer Systems, 2023, 147, 119-135.

• NESI, L. L.; PINTO, V. G.; SCHNORR, L. M.; LEGRAND, A. Summarizing task-

based applications behavior over many nodes through progression clustering. In: 31st
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2023. Naples, Italy: Euromicro, 2023.

• NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Multi-phase task-based HPC applications:

Quickly learning how to run fast. In: 36th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2022. Lyon, France, IEEE, 2022. pp. 357-367).

• NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Exploiting system level heterogeneity to

improve the performance of a geostatistics multi-phase task-based application. In: 50th

186

International Conference on Parallel Processing, ICPP 2021. Chicago, Illinois, USA:

ACM, 2021. (Best Paper Award)
• NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Communication-aware load balancing

of the LU factorization over heterogeneous clusters. In: 26th IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2020. Hong Kong: IEEE,

2020. p. 54–63.

• NESI, L. L.; SCHNORR, L. Detection, evaluation and mitigation of resource affinity and

communication contention problems in a task-based runtime over heterogeneous clusters.

In: Anais do XXI Simpósio em Sistemas Computacionais de Alto Desempenho. Porto

Alegre, RS, Brasil: SBC, 2020. p. 275–286.

• NESI, L. L.; LEGRAND, A.; SCHNORR, L. Impacto da variabilidade de tarefas nas

distribuições de aplicações baseadas em tarefas. In: SBC. Anais da XXI Escola Regional
de Alto Desempenho da Região Sul. Joinville, Brazil, 2021. p. 113–114.

• NESI, L.; LEGRAND, A.; SCHNORR, L. M. Refinando e balanceando o particionamento

de aplicações científicas baseadas em tarefas em plataformas heterogêneas. In: SBC.
Anais da XX Escola Regional de Alto Desempenho da Região Sul. Santa Maria,

Brazil, 2020. p. 137–138.

Collaborations and other publications during the thesis period:

• MILETTO, M. C.; NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Performance analysis

of irregular task-based applications on hybrid platforms: Structure matters. Future
Generation Computer Systems, 2022, 135, 409-425.

• PINTO, V. G.; NESI, L. L.; MILETTO, M. C.; SCHNORR, L. M. Providing in-depth

performance analysis for heterogeneous task-based applications with StarVZ. In: 2021
Heterogeneity in Computing Workshop (HCW) / IPDPSW. Portland, Oregon USA,

2021.

• SOLÓRZANO, A. L. V.; NESI, L. L.; SCHNORR, L. M. Using visualization of perfor-

mance data to investigate load imbalance of a geophysics parallel application. In: Practice
and Experience in Advanced Research Computing. New York, NY, USA: Association

for Computing Machinery, 2020. (PEARC ’20), p. 518–521. ISBN 9781450366892.

• NESI, L. L; SERPA, M.; SCHNORR, L.; NAVAUX, P. O. A. Advances in GPPD-

PCAD management with 12-months analysis and perspectives. In: XVIII Workshop de
Processamento Paralelo e Distribuído. Porto Alegre, Brazil, GPPD, 2020.

• NESI, L. L.; SERPA, M.; SCHNORR, L. M.; NAVAUX, P. O. A. GPPD-PCAD HPC

resources management infrastructure description and 10-month statistics. In: XVII

187

Workshop de Processamento Paralelo e Distribuído. Porto Alegre, Brazil, GPPD,

2019.

Courses developed, with extended material published as a book chapter, and presented

during this thesis:

• NESI, L. L.; and SCHNORR, L. M. DevOps para HPC: Como configurar um cluster para

uso compartilhado. In: Edson Luiz Padoin; Guilherme Galante; Rodrigo Righi. (Org.).

Minicursos da XXIII Escola Regional de Alto Desempenho da Região Sul. 1ed. Porto

Alegre: Sociedade Brasileira de Computação, 2023, v. 23, p. 38-57.

• PINTO, V. G.; NESI, L. L.; and SCHNORR, L. M. Apresentação de Resultados Exper-

imentais para Processamento de Alto Desempenho em R. In: Arthur Lorenzon; Márcio

Castro; Mauricio Pillon. (Org.). Minicursos da XXII Escola Regional de Alto Desem-
penho da Região Sul. 1ed.Porto Alegre: SBC, 2022, v. 22, p. 104-124.

• NESI, L. L.; MILETTO, M. C.; PINTO, V. G.; SCHNORR, L. M. Desenvolvimento

de aplicações baseadas em tarefas com openmp tasks. In: CHARÃO, A.; SERPA, M.

(Ed.). Minicursos da XXI Escola Regional de Alto Desempenho da Região Sul. Porto

Alegre, Brazil: Sociedade Brasileira de Computação, 2021. chp. 6, p. 129–150.

• NESI, L. L.; PINTO, V. G.; MILETTO, M. C.; SCHNORR, L. M.; THIBAULT, S.

Introdução ao desenvolvimento de aplicações paralelas com o paradigma orientado a

tarefas e o runtime starpu. In: BOIS, A. D.; CASTRO, M. (Ed.). Minicursos da XX
Escola Regional de Alto Desempenho da Região Sul. Porto Alegre, Brazil: Sociedade

Brasileira de Computação, 2020. chp. 4, p. 70–88.

• DAGOSTINI, J. I.; PINTO, V. G.; NESI, L. L.; SCHNORR, L. M. Are you root? ex-

perimentos reprodutíveis em espaço de usuário. In: CHARãO, A.; SERPA, M. (Ed.).

Minicursos da XXI Escola Regional de Alto Desempenho da Região Sul. Porto

Alegre, Brazil: Sociedade Brasileira de Computação, 2021. chp. 3, p. 70–85.

• PINTO, V. G.; NESI, L. L.; SCHNORR, L. M. Boas práticas para experimentos computa-

cionais de alto desempenho. In: BOIS, A. D.; CASTRO, M. (Ed.). Minicursos da XX
Escola Regional de Alto Desempenho da Região Sul. Porto Alegre, Brazil: Sociedade

Brasileira de Computação, 2020. chp. 1, p. 1–19.

188

189

REFERENCES

AALI, S. N.; BAGHERZADEH, N. Divisible load scheduling of image processing applications
on the heterogeneous star and tree networks using a new genetic algorithm. Concurrency and
Computation: Practice and Experience, v. 32, n. 10, p. e5498, 2020. E5498 CPE-18-1079.R2.

ABDULAH, S. et al. Exageostat: A high performance unified software for geostatistics on
manycore systems. IEEE Transactions on Parallel and Distributed Systems, v. 29, n. 12, p.
2771–2784, 2018.

ACOSTA, A.; BLANCO, V.; ALMEIDA, F. Towards the dynamic load balancing on hetero-
geneous multi-gpu systems. In: 2012 IEEE 10th International Symposium on Parallel and
Distributed Processing with Applications. USA: IEEE, 2012. p. 646–653.

ACOSTA, A. et al. Dynamic load balancing on heterogeneous multicore/multigpu systems. In:
2010 International Conference on High Performance Computing Simulation. [S.l.: s.n.],
2010. p. 467–476.

AGULLO, E. et al. Faster, Cheaper, Better – a Hybridization Methodology to Develop Linear
Algebra Software for GPUs. In: HWU, W. mei W. (Ed.). GPU Computing Gems. USA: Morgan
Kaufmann, 2010. v. 2.

AGULLO, E. et al. Implementing multifrontal sparse solvers for multicore architectures with
sequential task flow runtime systems. ACM Tr. Math. Softw., ACM, New York, NY, USA,
v. 43, n. 2, 2016. ISSN 0098-3500.

AGULLO, E. et al. On the autotuning of task-based numerical libraries for heterogeneous
architectures. In: Parallel Computing: Technology Trends. Amsterdam, Netherlands: IOS
Press, 2020. p. 157–166.

AMESTOY, P. et al. Improving multifrontal methods by means of block low-rank representations.
SIAM Journal on Scientific Computing, v. 37, n. 3, p. A1451–A1474, 2015.

AUER, P.; CESA-BIANCHI, N.; FISCHER, P. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, v. 47, p. 235–256, 2002.

AUGONNET, C. et al. StarPU-MPI: Task programming over clusters of machines enhanced
with accelerators. In: Proceedings of the 19th European Conference on Recent Advances in
the Message Passing Interface. Berlin, Heidelberg: Springer-Verlag, 2012. (EuroMPI’12), p.
298–299. ISBN 978-3-642-33517-4.

AUGONNET, C. et al. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. Conc. Comp.: Pract. Exp., SI:EuroPar 2009, John Wiley and Sons,
Ltd., v. 23, 2011.

BALAPRAKASH, P. et al. Autotuning in high-performance computing applications. Proceed-
ings of the IEEE, v. 106, n. 11, p. 2068–2083, 2018.

BALLARD, G. et al. Minimizing communication in numerical linear algebra. SIAM Journal
on Matrix Analysis and Applications, v. 32, n. 3, p. 866–901, 2011.

190

BEAUMONT, O. et al. Recent advances in matrix partitioning for parallel computing on het-
erogeneous platforms. IEEE Transactions on Parallel and Distributed Systems, v. 30, n. 1,
p. 218–229, Jan 2019. ISSN 1045-9219.

BEAUMONT, O. et al. Symmetric Block-Cyclic Distribution: Fewer Communications Leads
to Faster Dense Cholesky Factorization. In: SC 2022 - Supercomputing. Dallas, Texas, United
States: IEEE, 2022.

BEAUMONT, O. et al. Comparison of Static and Dynamic Resource Allocation Strategies for
Matrix Multiplication. In: 26th IEEE International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), 2015. Florianopolis, Brazil: IEEE, 2015.

BEAUMONT, O.; EYRAUD-DUBOIS, L.; VÉRITÉ, M. 2D Static resource allocation for
compressed linear algebra and communication constraints. In: 2020 IEEE 27th International
Conference on High Performance Computing, Data, and Analytics (HiPC). USA: IEEE,
2020. p. 181–191.

BEAUMONT, O. et al. Static LU decomposition on heterogeneous platforms. Int. Journal of
High Performance Computing Applications, SAGE Publications, v. 15, p. 310–323, 2001a.

BEAUMONT, O. et al. Matrix multiplication on heterogeneous platforms. IEEE Trans. Parallel
Distributed Systems, v. 12, n. 10, p. 1033–1051, 2001b.

BEAUMONT, O. et al. Dense linear algebra kernels on heterogeneous platforms: Redistribution
issues. Parallel Computing, Elsevier, v. 28, n. 2, p. 155–185, 2002a.

BEAUMONT, O. et al. Partitioning a square into rectangles: NP-completeness and approxima-
tion algorithms. Algorithmica, v. 34, p. 217–239, 2002b.

BECKER, B. A.; LASTOVETSKY, A. Towards data partitioning for parallel computing on
three interconnected clusters. In: Sixth International Symposium on Parallel and Distributed
Computing (ISPDC’07). USA: IEEE, 2007. p. 39–39.

BELTRÁN, M.; GUZMÁN, A. How to balance the load on heterogeneous clusters. The In-
ternational Journal of High Performance Computing Applications, v. 23, n. 1, p. 99–118,
2009.

BERNSTEIN, A. J. Analysis of programs for parallel processing. IEEE Transactions on
Electronic Computers, EC-15, n. 5, p. 757–763, 1966.

BHATELÉ, A.; BOHM, E.; KALÉ, L. V. Optimizing communication for charm++ applications
by reducing network contention. Concurrency and Computation: Practice and Experience,
v. 23, n. 2, p. 211–222, 2011.

BLACKFORD, L. S. et al. ScaLAPACK User’s Guide. USA: Society for Industrial and Applied
Mathematics, 1997. ISBN 0-89871-397-8.

BLUMOFE, R. D. et al. Cilk: An efficient multithreaded runtime system. Journal of parallel
and distributed computing, Elsevier, v. 37, 1996.

BORRELL, R. et al. Heterogeneous CPU/GPU co-execution of cfd simulations on the POWER9
architecture: Application to airplane aerodynamics. Future Generation Computer Systems,
v. 107, p. 31–48, 2020. ISSN 0167-739X.

191

BOSILCA, G. et al. Dague: A generic distributed dag engine for high performance computing.
Parallel Computing, Elsevier, v. 38, n. 1-2, p. 37–51, 2012.

BOSILCA, G. et al. Parsec: Exploiting heterogeneity to enhance scalability. Computing in
Science Engineering, v. 15, n. 6, p. 36–45, 2013.

BRAMAS, B. Impact study of data locality on task-based applications through the Heteroprio
scheduler. PeerJ Computer Science, PeerJ, v. 5, p. e190, may 2019.

BRUEL, P. Toward transparent and parsimonious methods for automatic performance
tuning. Thesis (PhD) — Université Grenoble Alpes; Universidade de São Paulo (Brasil), 2021.

CABRERA, A. et al. A dynamic multi–objective approach for dynamic load balancing in
heterogeneous systems. IEEE Transactions on Parallel and Distributed Systems, v. 31, n. 10,
p. 2421–2434, 2020.

CAO, Q. et al. Flexible data redistribution in a task-based runtime system. In: 2020 IEEE
International Conference on Cluster Computing (CLUSTER). USA: IEEE, 2020. p. 221–
225.

CASANOVA, H. et al. Versatile, scalable, and accurate simulation of distributed applications
and platforms. Journal of Parallel and Distributed Computing, Elsevier, v. 74, n. 10, p.
2899–2917, jun. 2014.

CHACÓN, J. E. A Population Background for Nonparametric Density-Based Clustering. Sta-
tistical Science, Institute of Mathematical Statistics, v. 30, n. 4, p. 518, 2015.

CHACÓN, J. E. Mixture model modal clustering. Advances in Data Analysis and Classifica-
tion, Springer, v. 13, n. 2, p. 379–404, 2019.

CHEN, H.-F. Stochastic approximation and its applications. Berlin, Heidelberg: Springer
Science & Business Media, 2006.

CHEN, Y.-C.; GENOVESE, C. R.; WASSERMAN, L. A comprehensive approach to mode
clustering. Electronic Journal of Statistics, Institute of Mathematical Statistics and Bernoulli
Society, v. 10, n. 1, p. 210 – 241, 2016.

CIERNIAK, M.; ZAKI, M. J.; LI, W. Compile-time scheduling algorithms for a heterogeneous
network of workstations. The Computer Journal, v. 40, n. 6, p. 356–372, 1997.

CLARKE, D. et al. Hierarchical partitioning algorithm for scientific computing on highly
heterogeneous cpu + gpu clusters. In: Proceedings of the 18th International Conference on
Parallel Processing. Berlin, Heidelberg: Springer-Verlag, 2012. (Euro-Par’12), p. 489–501.
ISBN 9783642328190.

CLARKE, D.; LASTOVETSKY, A.; RYCHKOV, V. Dynamic load balancing of parallel compu-
tational iterative routines on highly heterogeneous hpc platforms. Parallel Processing Letters,
World Scientific, Singapore, v. 21, n. 02, p. 195–217, 2011.

CLARKE, D.; LASTOVETSKY, A.; RYCHKOV, V. Column-based matrix partitioning for
parallel matrix multiplication on heterogeneous processors based on functional performance
models. In: ALEXANDER, M. et al. (Ed.). Euro-Par 2011: Parallel Processing Workshops.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. p. 450–459. ISBN 978-3-642-29737-3.

192

CODD, E. F. Multiprogram scheduling: Parts 1 and 2. introduction and theory. Commun.
ACM, Association for Computing Machinery, New York, NY, USA, v. 3, n. 6, p. 347–350, jun.
1960. ISSN 0001-0782.

DEFLUMERE, A.; LASTOVETSKY, A. Optimal data partitioning shape for matrix multipli-
cation on three fully connected heterogeneous processors. In: LOPES, L.; OTHERS (Ed.).
Euro-Par 2014: Parallel Processing Workshops. Cham: Springer International Publishing,
2014. p. 201–214. ISBN 978-3-319-14325-5.

DENIS, A. Scalability of the NewMadeleine Communication Library for Large Numbers of MPI
Point-to-Point Requests. In: 19th IEEE/ACM International Symposium in Cluster, Cloud,
and Grid Computing. Cyprus: IEEE, 2019.

DENNARD, R. et al. Design of ion-implanted mosfet’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, 1974.

DONGARRA, J.; LASTOVETSKY, A. An overview of heterogeneous high performance and
grid computing. In: Engineering the Grid. USA: Science Publishers, Inc, 2006.

DONGARRA, J. et al. With extreme computing, the rules have changed. Computing in Science
Engineering, v. 19, n. 3, p. 52–62, May 2017. ISSN 1521-9615.

DONGARRA, J. J.; LUSZCZEK, P.; PETITET, A. The linpack benchmark: past, present and
future. Concurrency and Computation: Practice and Experience, v. 15, n. 9, p. 803–820,
2003.

DONGARRA, J. J. et al. Top500 supercomputer sites. Supercomputer, ASFRA BV, v. 13, p.
89–111, 1997.

DOSIMONT, D. et al. A spatiotemporal data aggregation technique for performance analysis of
large-scale execution traces. In: 2014 IEEE International Conference on Cluster Computing
(CLUSTER). USA: IEEE, 2014.

DUPROS, F. et al. High-performance finite-element simulations of seismic wave propagation
in three-dimensional nonlinear inelastic geological media. Parallel Computing, v. 36, n. 5, p.
308–325, 2010. ISSN 0167-8191.

DURAN, A. et al. Ompss: a proposal for programming heterogeneous multi-core architectures.
Paral. Proces. Letters, World Scientific, v. 21, n. 02, 2011.

EYRAUD-DUBOIS, L. pmtool: Post-mortem Analysis Tool for starpu Scheduling Studies.
2019. Accessed January 21, 2021. Available from Internet: <https://gitlab.inria.fr/eyrauddu/
pmtool>.

FAN, Y. et al. A heterogeneity-aware data distribution and rebalance method in hadoop cluster.
In: 2012 Seventh ChinaGrid Annual Conference. USA: IEEE, 2012. p. 176–181.

FENTON, W. et al. Supporting machine independent parallel programming on diverse archi-
tectures. In: In proceedings of 1991 International Conference on Parallel Processing. [S.l.:
s.n.], 1991. p. pp.

FOLK, M. et al. An overview of the hdf5 technology suite and its applications. In: Proceedings
of the EDBT/ICDT 2011 Workshop on Array Databases. New York, NY, USA: Association
for Computing Machinery, 2011. (AD ’11), p. 36–47. ISBN 9781450306140.

https://gitlab.inria.fr/eyrauddu/pmtool
https://gitlab.inria.fr/eyrauddu/pmtool

193

FOSTER, I. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. ISBN 0201575949.

FREEH, V. W. et al. Analyzing the energy-time trade-off in high-performance computing ap-
plications. IEEE Transactions on Parallel and Distributed Systems, v. 18, n. 6, p. 835–848,
2007.

FUKUNAGA, K.; HOSTETLER, L. The estimation of the gradient of a density function, with
applications in pattern recognition. IEEE Transactions on Information Theory, v. 21, n. 1, p.
32–40, 1975.

GAMMEL, M. et al. Evaluating the Charm++ Runtimes Ability to Cope with Performance
Heterogeneity. [S.l.], 2017.

GARCIA PINTO, V. et al. A visual performance analysis framework for task-based parallel
applications running on hybrid clusters. Concurrency and Computation: Practice and Ex-
perience, v. 30, n. 18, p. e4472, 2018.

GATES, M. et al. Slate: Design of a modern distributed and accelerated linear algebra li-
brary. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. [S.l.]: ACM, 2019. ISBN 9781450362290.

GIOIOSA, R. et al. The minos computing library: Efficient parallel programming for extremely
heterogeneous systems. In: Proceedings of the 13th Annual Workshop on General Purpose
Processing Using Graphics Processing Unit. New York, NY, USA: Association for Computing
Machinery, 2020. (GPGPU ’20), p. 1–10. ISBN 9781450370257.

GIRAUD, C. Introduction to high-dimensional statistics. [S.l.]: Chapman and Hall/CRC,
2021.

GRAHAM, R. et al. Optimization and approximation in deterministic sequencing and schedul-
ing: a survey. In: HAMMER, P.; JOHNSON, E.; KORTE, B. (Ed.). Discrete Optimization II.
[S.l.]: Elsevier, 1979, (Annals of Discrete Mathematics, v. 5). p. 287–326.

GRAMACY, R. Surrogates: Gaussian Process Modeling, Design, and Optimization for the
Applied Sciences. [S.l.]: CRC Press, 2020. (Chapman & Hall/CRC Texts in Statistical Science).
ISBN 9781000766523.

GRIGORI, L.; DEMMEL, J. W.; XIANG, H. Communication avoiding gaussian elimination.
In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. [S.l.:
s.n.], 2008. p. 1–12.

HENNESSY, J.; PATTERSON, D. Computer Architecture: A Quantitative Approach. [S.l.]:
Elsevier Science, 2017. (ISSN). ISBN 9780128119068.

HERAULT, T. et al. Determining the optimal redistribution for a given data partition. In: 2014
IEEE 13th International Symposium on Parallel and Distributed Computing. [S.l.: s.n.],
2014. p. 95–102.

HERAULT, T. et al. Generic matrix multiplication for multi-gpu accelerated distributed-memory
platforms over parsec. In: 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA). [S.l.: s.n.], 2019. p. 33–41.

194

HERRMANN, J. et al. Assessing the cost of redistribution followed by a computational kernel:
Complexity and performance results. Par. Comp., Elsevier, v. 52, 2016.

HOFMANN, M.; RÜNGER, G. Flexible all-to-all data redistribution methods for grid-based
particle codes. Concurrency and Computation: Practice and Experience, v. 30, n. 13, p.
e4421, 2018. E4421 cpe.4421.

HOUSSAM-EDDINE, Z. et al. The hpc-dag task model for heterogeneous real-time systems.
IEEE Transactions on Computers, p. 1–1, 2020.

HPE, U.-U. H. et al. Heterogeneous high performance computing. ETP4HPC White Paper,
2022.

HUMPHREY, A.; BERZINS, M. An evaluation of an asynchronous task based dataflow ap-
proach for uintah. In: 2019 IEEE 43rd Annual Computer Software and Applications Con-
ference (COMPSAC). [S.l.: s.n.], 2019. v. 2, p. 652–657.

Intel Corporation. Intel oneAPI Threading Building Blocks (oneTBB) Documentation.
Santa Clara, CA, USA: Intel Corporation, 2021. Available from Internet: <https://software.
intel.com/content/www/us/en/develop/documentation/onetbb-documentation/>. Accessed in:
01/06/2021.

Intel Corporation. Optimizing Software for x86 Hybrid Architecture. [S.l.], 2021.

ISAACS, K. E. et al. State of the art of performance visualization. In: EuroVis - STARs. [S.l.]:
The Eurographics Association, 2014.

JAIN, R. The Art of Computer Systems Performance Analysis: Techniques for Experimen-
tal Design, Measurement, Simulation, and Modeling. [S.l.]: Wiley, 1991. (Wiley professional
computing). ISBN 9780471503361.

JAMES, G. et al. An introduction to statistical learning. [S.l.]: Springer, 2013.

JEANNOT, E. et al. Communication and topology-aware load balancing in charm++ with
treematch. In: 2013 IEEE International Conference on Cluster Computing (CLUSTER).
[S.l.: s.n.], 2013. p. 1–8.

JEANNOT, E.; WAGNER, F. Scheduling messages for data redistribution: An experimental
study. The International Journal of High Performance Computing Applications, v. 20, n. 4,
p. 443–454, 2006.

JIN, H. et al. Optimizing HPC Fault-Tolerant Environment: An Analytical Approach. In: 2010
39th International Conference on Parallel Processing. [S.l.: s.n.], 2010. p. 525–534.

JOUPPI, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In: Pro-
ceedings of the 44th Annual International Symposium on Computer Architecture. New
York, NY, USA: Association for Computing Machinery, 2017. (ISCA ’17), p. 1–12. ISBN
9781450348928. Available from Internet: <https://doi.org/10.1145/3079856.3080246>.

KAISER, H. et al. HPX: a task based programming model in a global address space. In:
Proceedings of the 8th International Conference on Partitioned Global Address Space
Programming Models. New York, NY, USA: Association for Computing Machinery, 2014.
(PGAS ’14). ISBN 9781450332477.

https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/
https://doi.org/10.1145/3079856.3080246

195

KALE, L. V.; KRISHNAN, S. Charm++: A portable concurrent object oriented system based
on c++. SIGPLAN Not., Association for Computing Machinery, New York, NY, USA, v. 28,
n. 10, p. 91–108, oct. 1993. ISSN 0362-1340. Available from Internet: <https://doi.org/10.1145/
167962.165874>.

KALE, L. V.; ZHENG, G. Charm++ and ampi: Adaptive runtime strategies via migratable ob-
jects. Advanced Computational Infrastructures for Parallel and Distributed Applications,
p. 265–282, 2009.

KALINOV, A.; LASTOVETSKY, A. Heterogeneous distribution of computations solving linear
algebra problems on networks of heterogeneous computers. J. of Par. and Distr. Comp., v. 61,
n. 4, p. 520, 2001. ISSN 0743-7315.

KASS, R. E.; WASSERMAN, L. A reference bayesian test for nested hypotheses and its rela-
tionship to the schwarz criterion. Journal of the american statistical association, Taylor &
Francis, v. 90, n. 431, p. 928–934, 1995.

KERGOMMEAUX, J. C. de; STEIN, B. de O. Flexible performance visualization of parallel
and distributed applications. Future Generation Computer Systems, v. 19, n. 5, p. 735–747,
2003. ISSN 0167-739X.

KEUPER, J.; PREUNDT, F.-J. Distributed training of deep neural networks: Theoretical and
practical limits of parallel scalability. In: 2nd WS on Machine Learning in HPC Environ-
ments. [S.l.: s.n.], 2016. p. 19–26.

KHALEGHZADEH, H. et al. A novel data partitioning algorithm for dynamic energy optimiza-
tion on heterogeneous high-performance computing platforms. Concurrency and Computa-
tion: Practice and Experience, v. 32, n. 21, p. e5928, 2020.

KHALEGHZADEH, H. et al. Bi-objective optimization of data-parallel applications on het-
erogeneous hpc platforms for performance and energy through workload distribution. IEEE
Transactions on Parallel and Distributed Systems, v. 32, n. 3, p. 543–560, 2021.

KHALEGHZADEH, H.; MANUMACHU, R. R.; LASTOVETSKY, A. A novel data-
partitioning algorithm for performance optimization of data-parallel applications on hetero-
geneous hpc platforms. IEEE Transactions on Parallel and Distributed Systems, v. 29, n. 10,
p. 2176–2190, 2018.

KHALEGHZADEH, H.; MANUMACHU, R. R.; LASTOVETSKY, A. A hierarchical data-
partitioning algorithm for performance optimization of data-parallel applications on heteroge-
neous multi-accelerator numa nodes. IEEE Access, v. 8, p. 7861–7876, 2020.

KLEINBERG, J.; TARDOS, E. Algorithm design. [S.l.]: Pearson Education India, 2006.

KLINKENBERG, J. et al. Chameleon: Reactive load balancing for hybrid mpi+openmp task-
parallel applications. Journal of Parallel and Distributed Computing, v. 138, p. 55–64, 2020.
ISSN 0743-7315.

KNÜPFER, A. et al. The Vampir performance analysis tool-set. In: Proc. of the 2nd Intl.
Workshop on Parallel Tools for High Performance Computing. [S.l.]: Springer, 2008. p.
139–155.

https://doi.org/10.1145/167962.165874
https://doi.org/10.1145/167962.165874

196

KOMATSU, K. et al. Performance evaluation of a vector supercomputer sx-aurora tsubasa. In:
IEEE. SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis. [S.l.], 2018. p. 685–696.

LI; YU. New bipartite graph techniques for irregular data redistribution scheduling. Algorithms,
MDPI AG, v. 12, n. 7, p. 142, Jul 2019. ISSN 1999-4893. Available from Internet: <http:
//dx.doi.org/10.3390/a12070142>.

LIM, Y. W.; BHAT, P.; PRASANNA, V. Efficient algorithms for block-cyclic redistribution of
arrays. In: Proceedings of SPDP ’96: 8th IEEE Symposium on Parallel and Distributed
Processing. [S.l.: s.n.], 1996. p. 74–83.

LYNAR, T. M. et al. Clustering obsolete computers to reduce e-waste. Int. J. Inf. Syst. Soc.
Chang., IGI Global, USA, v. 1, n. 1, p. 1–10, jan. 2010. ISSN 1941-868X. Available from
Internet: <https://doi.org/10.4018/jissc.2010092901>.

MALIK, T.; LASTOVETSKY, A. Optimal matrix partitioning for data parallel computing on
hybrid heterogeneous platforms. In: 2020 19th International Symposium on Parallel and
Distributed Computing (ISPDC). [S.l.: s.n.], 2020. p. 1–11.

MALIK, T.; LASTOVETSKY, A. Towards optimal matrix partitioning for data parallel com-
puting on a hybrid heterogeneous server. IEEE Access, v. 9, p. 17229–17244, 2021.

MANUMACHU, R. R.; LASTOVETSKY, A. L. Design of self-adaptable data parallel appli-
cations on multicore clusters automatically optimized for performance and energy through load
distribution. Concurrency and Computation: Practice and Experience, v. 31, n. 4, p. e4958,
2019.

MENG, C. et al. Training deeper models by gpu memory optimization on tensorflow. In: Proc.
of ML Systems Workshop in NIPS. [S.l.: s.n.], 2017. v. 7.

MENG, Q.; HUMPHREY, A.; BERZINS, M. The uintah framework: a unified heterogeneous
task scheduling and runtime system. In: 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. [S.l.: s.n.], 2012. p. 2441–2448.

MENON, H.; BHATELE, A.; GAMBLIN, T. Auto-tuning parameter choices in hpc applications
using bayesian optimization. In: IEEE. 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). [S.l.], 2020. p. 831–840.

MENON, H.; KALÉ, L. A distributed dynamic load balancer for iterative applications. In:
SC ’13: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. [S.l.: s.n.], 2013. p. 1–11.

MILETTO, M. C. Combining prediction models and visualization techniques for enhanced
performance analysis of irregular task-based applications. Dissertation (Master) — Univer-
sidade Federal do Rio Grande do Sul (Brésil), 2021.

MILETTO, M. C. et al. Performance analysis of task-based multi-frontal sparse linear solvers:
Structure matters. Future Generation Computer Systems, v. 135, p. 409–425, 2022. ISSN
0167-739X.

http://dx.doi.org/10.3390/a12070142
http://dx.doi.org/10.3390/a12070142
https://doi.org/10.4018/jissc.2010092901

197

MOHIYUDDIN, M. et al. Minimizing communication in sparse matrix solvers. In: Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis.
[S.l.: s.n.], 2009. p. 1–12.

MOORE, G. E. et al. Cramming more components onto integrated circuits. [S.l.]: McGraw-
Hill New York, NY, USA:, 1965.

MOORE, G. E. et al. Progress in digital integrated electronics. In: MARYLAND, USA. Electron
devices meeting. [S.l.], 1975. v. 21, p. 11–13.

NAGAMOCHI, H.; ABE, Y. An approximation algorithm for dissecting a rectangle into rectan-
gles with specified areas. Discrete Applied Mathematics, v. 155, n. 4, p. 523–537, 2007. ISSN
0166-218X.

NESI, L. et al. Visual performance analysis of memory behavior in a task-based runtime on
hybrid platforms. In: IEEE. 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). [S.l.], 2019.

NESI, L. L.; LEGRAND, A.; MELLO SCHNORR, L. Asynchronous multi-phase task-based
applications: Employing different nodes to design better distributions. Future Generation
Computer Systems, v. 147, p. 119–135, 2023. ISSN 0167-739X.

NESI, L. L.; LEGRAND, A.; SCHNORR, L. M. Exploiting system level heterogeneity to
improve the performance of a geostatistics multi-phase task-based application. In: 50th Inter-
national Conference on Parallel Processing. New York, NY, USA: ACM, 2021. (ICPP).

NESI, L. L. et al. Summarizing task-based applications behavior over many nodes through pro-
gression clustering. In: 31st Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. Naples, Italy: [s.n.], 2023.

NESI, L. L.; SCHNORR, L. Detection, evaluation and mitigation of resource affinity and
communication contention problems in a task-based runtime over heterogeneous clusters. In:
Anais do XXI Simpósio em Sistemas Computacionais de Alto Desempenho. Porto Alegre,
RS, Brasil: SBC, 2020. p. 275–286. ISSN 0000-0000. Available from Internet: <https://sol.sbc.
org.br/index.php/wscad/article/view/14076>.

NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Communication-aware load balancing of the
LU factorization over heterogeneous clusters. In: 26th IEEE International Conference on
Parallel and Distributed Systems, ICPADS 2020. Hong Kong: IEEE, 2020. p. 54–63.

NESI, L. L.; SCHNORR, L. M.; LEGRAND, A. Multi-phase task-based hpc applications:
Quickly learning how to run fast. In: 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). [S.l.: s.n.], 2022. p. 357–367.

NVIDIA. CUDA Toolkit Documentation v12.1. Santa Clara, CA, USA: NVIDIA Corporation,
2023. Available from Internet: <https://docs.nvidia.com/cuda/>. Accessed in: 30/05/2023.

OpenMP Architecture Review Board. OpenMP Application Program Interface Ver-
sion 5.1. 2020. Available from Internet: <https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf>.

https://sol.sbc.org.br/index.php/wscad/article/view/14076
https://sol.sbc.org.br/index.php/wscad/article/view/14076
https://docs.nvidia.com/cuda/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf

198

PARK, N.; PRASANNA, V.; RAGHAVENDRA, C. Efficient algorithms for block-cyclic ar-
ray redistribution between processor sets. IEEE Transactions on Parallel and Distributed
Systems, v. 10, n. 12, p. 1217–1240, 1999.

PATTON, S. et al. Summagen: Parallel matrix-matrix multiplication based on non-rectangular
partitions for heterogeneous hpc platforms. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). [S.l.: s.n.], 2019. p. 57–68.

PEI, Y. et al. Evaluation of programming models to address load imbalance on distributed
multi-core CPUs: A case study with block low-rank factorization. In: IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI. [S.l.: s.n.], 2019. p. 25–36.

PILLET, V. et al. Paraver: A tool to visualize and analyze parallel code. In: NIXON, P. (Ed.).
Proceedings of WoTUG-18: Transputer and occam Developments. [S.l.: s.n.], 1995. p.
17–31. ISBN 90-5199-222-X.

PINTO, V. G. Performance Analysis Strategies for Task-based Applications on Hybrid
Platforms. Thesis (PhD) — Université Grenoble Alpes; Universidade Federal do Rio Grande
do Sul (Brésil), 2018.

PINTO, V. G. et al. Providing in-depth performance analysis for heterogeneous task-based
applications with starvz. In: 2021 Heterogeneity in Computing Workshop (HCW). [S.l.:
s.n.], 2021.

PRYLLI, L.; TOURANCHEAU, B. Efficient block cyclic data redistribution. In: BOUGÉ, L.
et al. (Ed.). Euro-Par’96 Parallel Processing. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996. p. 155–164. ISBN 978-3-540-70633-5.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria,
2022. Available from Internet: <https://www.R-project.org/>.

RACA, V.; MEHOFER, E. clustercl: comprehensive support for multi-kernel data-parallel
applications in heterogeneous asymmetric clusters. The Journal of Supercomputing, Springer,
p. 1–33, 2020.

RICO-GALLEGO, J. A. et al. Performance evaluation of model-driven partitioning algorithms
for data-parallel kernels on heterogeneous platforms. Computational and Mathematical Meth-
ods, v. 2, n. 1, p. e1017, 2020. E1017 cmm4.1017.

RICO-GALLEGO, J.-A.; LASTOVETSKY, A. L.; DÍAZ-MARTÍN, J.-C. Model-based estima-
tion of the communication cost of hybrid data-parallel applications on heterogeneous clusters.
IEEE Transactions on Parallel and Distributed Systems, v. 28, n. 11, p. 3215–3228, 2017.

RICO-GALLEGO, J. A. et al. A tool to assess the communication cost of parallel kernels on
heterogeneous platforms. The Journal of Supercomputing, v. 76, p. 4629–4644, 2019.

ROBINSON, B. H. E-waste: An assessment of global production and environmental impacts.
Science of The Total Environment, v. 408, n. 2, p. 183–191, 2009. ISSN 0048-9697.

ROBISON, A. D. Intel® threading building blocks (TBB). In: . Encyclopedia of Parallel
Computing. Boston, MA: Springer US, 2011. p. 955–964. ISBN 978-0-387-09766-4.

https://www.R-project.org/

199

ROSARIO, V. et al. Fast and low-cost search for efficient cloud configurations for hpc workloads.
In: Anais do XXII Simpósio em Sistemas Computacionais de Alto Desempenho. Porto
Alegre, RS, Brasil: SBC, 2021. p. 144–155. ISSN 0000-0000.

ROUSTANT, O.; GINSBOURGER, D.; DEVILLE, Y. DiceKriging, DiceOptim: Two R pack-
ages for the analysis of computer experiments by kriging-based metamodeling and optimization.
Journal of Statistical Software, v. 51, n. 1, p. 1–55, 2012.

SALETORE, V.; JACOB, J.; PADALA, M. Parallel computations on the charm heterogeneous
workstation cluster. In: Proceedings of 3rd IEEE International Symposium on High Perfor-
mance Distributed Computing. [S.l.: s.n.], 1994. p. 203–210.

SANDERS, J.; KANDROT, E. CUDA by example: an introduction to general-purpose GPU
programming. [S.l.]: Addison-Wesley Professional, 2010.

SCHNORR, L.; STEIN, B. de O.; KERGOMMEAUX, J. C. de. Paje trace file format, version
1.2.5. Laboratoire d’Informatique de Grenoble, France, Technical Report, 2013.

SCHNORR, L. M.; LEGRAND, A. Visualizing more performance data than what fits on your
screen. In: Tools for High Performance Computing 2012. [S.l.]: Springer, 2013. p. 149–162.

SHIRAZI, B. A.; KAVI, K. M.; HURSON, A. R. Scheduling and load balancing in parallel
and distributed systems. [S.l.]: IEEE Computer Society Press, 1995.

SILVANO, C. et al. Autotuning and adaptivity in energy efficient hpc systems: the antarex tool-
box. In: Proceedings of the 15th ACM International Conference on Computing Frontiers.
[S.l.: s.n.], 2018. p. 270–275.

SRINIVAS, N. et al. Gaussian process optimization in the bandit setting: No regret and ex-
perimental design. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010. (ICML’10), p.
1015–1022. ISBN 9781605589077.

STANISIC, L. et al. Fast and accurate simulation of multithreaded sparse linear algebra solvers.
In: The 21st IEEE International Conference on Parallel and Distributed Systems. Mel-
bourne, Australia: [s.n.], 2015.

STANISIC, L. et al. Faithful Performance Prediction of a Dynamic Task-Based Runtime System
for Heterogeneous Multi-Core Architectures. Concurrency and Computation: Practice and
Experience, Wiley, p. 16, may 2015.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. [S.l.]: MIT press,
2018.

TESSER, R. K. et al. Performance modeling of a geophysics application to accelerate over-
decomposition parameter tuning through simulation. Concurrency and Computation: Prac-
tice and Experience, Wiley Online Library, p. e5012, 2017.

THIBAULT, S. On Runtime Systems for Task-based Programming on Heterogeneous Plat-
forms. Thesis (Habilitation à diriger des recherches) — Université de Bordeaux, dec. 2018.

TOPCUOGLU, H.; HARIRI, S.; WU, M.-y. Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE transactions on parallel and distributed
systems, IEEE, v. 13, n. 3, p. 260–274, 2002.

200

UNDERWOOD, K. D.; HEMMERT, K. S.; ULMER, C. D. From silicon to science: The long
road to production reconfigurable supercomputing. ACM Trans. Reconfigurable Technol.
Syst., Association for Computing Machinery, New York, NY, USA, v. 2, n. 4, sep. 2009. ISSN
1936-7406. Available from Internet: <https://doi.org/10.1145/1575779.1575786>.

VASUDEVAN, R. et al. G-charm: An adaptive runtime system for message-driven parallel
applications on hybrid systems. In: Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing. New York, NY, USA: Association for
Computing Machinery, 2013. (ICS ’13), p. 349–358. ISBN 9781450321303.

WALKER, D.; OTTO, S. Redistribution of block-cyclic data distributions using mpi. Concur-
rency: Practice and Experience, v. 8, n. 9, p. 707–728, 1996.

WEAVER, V. M. et al. Measuring energy and power with papi. In: 2012 41st International
Conference on Parallel Processing Workshops. [S.l.: s.n.], 2012. p. 262–268.

WIDMER, R. et al. Global perspectives on e-waste. Environmental Impact Assessment Re-
view, v. 25, n. 5, p. 436–458, 2005. ISSN 0195-9255. Environmental and Social Impacts of
Electronic Waste Recycling.

WILSON, J. M. Gantt charts: A centenary appreciation. European Journal of Operational
Research, Elsevier BV, v. 149, n. 2, p. 430–437, Sep 2003. ISSN 0377-2217.

WILSON, R. J. Introduction to graph theory. [S.l.]: Pearson Education India, 1979.

WU, W. et al. Hierarchical dag scheduling for hybrid distributed systems. In: 2015 IEEE
International Parallel and Distributed Processing Symposium. [S.l.: s.n.], 2015. p. 156–
165.

XU, C.; LAU, F. C. Load balancing in parallel computers: theory and practice. [S.l.]:
Springer Science & Business Media, 1996.

YANG, L.; SCHOPF, J.; FOSTER, I. Conservative scheduling: Using predicted variance to
improve scheduling decisions in dynamic environments. In: SC ’03: Proceedings of the 2003
ACM/IEEE Conference on Supercomputing. [S.l.: s.n.], 2003. p. 31–31.

https://doi.org/10.1145/1575779.1575786

201

APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

A computação de alto desempenho (HPC) fornece os meios para que aplicações com-

plexas utilizem uma enorme capacidade computacional e sejam concluídas num tempo viável.

Até o início da década de 2000, o crescimento do número de transístores por chip seguia a lei

de Moore, que estabelecia que este número duplicaria a cada dois anos (MOORE et al., 1965;

MOORE et al., 1975). Este crescimento permitiu um aumento exponencial do poder de com-

putação, tal como indicado por Dennard (DENNARD et al., 1974). No entanto, os limites na

dissipação de calor travaram o aumento da frequência dos chips na década de 2000 (HENNESSY;

PATTERSON, 2017), parando o aumento exponencial do desempenho de núcleos individuais

(DONGARRA et al., 2017). Surgiram muitas alternativas para continuar o crescimento do poder

computacional, incluindo várias técnicas de CPU e aceleradores para computação especializada.

A combinação de um subconjunto destes recursos resulta num único nó computacional

heterogêneo. Esta heterogeneidade intra-nó tem sido amplamente utilizada nos últimos anos em

muitas aplicações pela comunidade de HPC (SANDERS; KANDROT, 2010; AUGONNET et

al., 2011; MENG et al., 2017; PINTO, 2018). No entanto, a exploração desta heterogeneidade

é complexa, uma vez que requer a divisão correta da aplicação nesses múltiplos e diversos

recursos, tendo em conta a adaptabilidade e o desempenho do algoritmo em cada um (SANDERS;

KANDROT, 2010; AUGONNET et al., 2011).

Do ponto de vista dos programadores, lidar com esta heterogeneidade requer um conhec-

imento profundo do sistema alvo e a antecipação do comportamento da aplicação. Nos métodos

e ferramentas de programação tradicionais, como o MPI e as aplicações BSP, a utilização de

recursos heterogêneos é complicada, uma vez que o estilo de programação é inteiramente imper-

ativo. Estas abordagens de programação especificam onde uma carga de trabalho é executada

estaticamente, com barreiras e comunicações síncronas para controlar o fluxo das múltiplas

operações ou fases da aplicação. Com este nível de sincronismo, um pequeno erro na divisão

da carga de trabalho resultaria num desempenho não ideal com recursos inativos. Entretanto,

esse erro é quase inevitável, uma vez que tanto os sistemas como as aplicações são complexos.

Além disso, garantir a capacidade (portabilidade) da aplicação para ser executada em diferentes

sistemas exige modificações extensas no seu código-fonte, aumentando a possibilidade de erros.

No entanto, a disponibilidade de processadores distintos e a diversidade das necessidades

das aplicações encorajam a heterogeneidade ao nível do sistema. Assim, é cada vez mais

comum que os sistemas HPC incluam muitas máquinas com diversas configurações de hardware

organizadas em clusters ou partições homogêneas para melhor acomodar as necessidades das

202

aplicações. Se utilizada corretamente, esta heterogeneidade permite à aplicação ajustar um

comportamento interno específico e melhorar o desempenho, explorando a heterogeneidade em

vez de sofrer com ela.

As principais infra-estruturas de HPC, os supercomputadores, estão normalmente lo-

calizadas em grandes centros de investigação no meio acadêmico ou industrial. Os locais (as

instalações da infra-estrutura) podem acolher sistemas diferentes, como indica a lista TOP500

(DONGARRA et al., 1997) de supercomputadores, oferecendo a heterogeneidade já men-

cionada. As razões pela heterogeneidade destes locais de supercomputadores podem ser três: (i)

por concepção, quando a infra-estrutura possui tais configurações para visar cargas de trabalho

diversas, (ii) limitações financeiras, quando, por exemplo, apenas um subconjunto de nós recebe

aceleradores devido a restrições orçamentais, e (iii) as atualizações naturais da infra-estrutura

ao longo do tempo. A lista TOP 500 apenas considera e classifica um conjunto homogêneo

de nós como um sistema. Esta restrição vem de uma limitação do benchmark adotado, HPL

(DONGARRA; LUSZCZEK; PETITET, 2003), uma vez que ele não funciona adequadamente

em configurações heterogêneas ao nível do sistema.

Muitos desafios algorítmicos surgem na transição para cenários heterogêneos (DON-

GARRA; LASTOVETSKY, 2006; BEAUMONT et al., 2019). Em primeiro lugar, a quantidade

ideal de dados por nó será diferente. Dependendo da estrutura de dados da aplicação, esta

divisão pode não ser trivial. Embora uma divisão simples seja suficiente em estruturas de dados

unidimensionais, caso todas as porções de dados terem um custo computacional idêntico, são

necessárias estratégias especializadas para dimensões superiores ou quando determinados dados

têm comportamentos ou necessidades de potência computacional diferentes (BEAUMONT et

al., 2001a). Além disso, a existência de diferentes quantidades de dados por nó resulta em difer-

entes quantidades de comunicação entre nós, uma vez que os nós que processam mais dados terão

de comunicar mais. Esta diferença de comunicação significa que o compromisso ideal entre

comunicação e computação por nó é mais crítico em cenários heterogêneos do que em cenários

homogêneos. O mesmo se aplica se a quantidade de computação por elemento de dados diferir,

resultando num caminho crítico que as capacidades heterogêneas dos nós computacionais irão

influenciar. Por último, existe uma perspectiva técnica de programação. As distribuições mais

simples, como as cíclicas, são mais fáceis de implementar em paradigmas tradicionais como

o MPI, e as funções de distribuição são mais claramente empregadas. No entanto, surgem

padrões de comunicação irregulares quando se lida com distribuições arbitrárias, e podem ser

necessários outros paradigmas ou middlewares para reduzir a complexidade de desenvolvimento

e a manutenibilidade da aplicação.

203

Além disso, as aplicações podem ser compostas por diferentes fases com diferentes

necessidades computacionais, possivelmente admitindo diferentes distribuições ideais de dados.

Essas fases também podem explorar os recursos dos nós de forma diferente, alterando ainda

mais a distribuição ideal para cada uma delas. Por exemplo, as fases que compreendem a

geração de dados são tipicamente mais apropriadas para CPUs, enquanto algumas operações de

computação intensiva, como os kernels clássicos de álgebra linear, poderiam usar aceleradores

para aumentar o desempenho.

As limitações destes paradigmas tradicionais incluem o limitado tratamento da hetero-

geneidade intra-nó, a baixa eficiência da programação, o sincronismo desnecessário e a porta-

bilidade limitada dos recursos. Em conjunto, elas impulsionam o ressurgimento do paradigma

de programação baseado em tarefas (BOSILCA et al., 2013; DURAN et al., 2011; AUGONNET

et al., 2011; WU et al., 2015; THIBAULT, 2018). Este paradigma adota uma forma mais declar-

ativa de programação e utiliza um runtime para tomar decisões, incluindo o escalonamento

dinâmica do trabalho (tarefas) durante a execução. A aplicação descreve tarefas individuais e

dependências de dados e estrutura-as num gráfico acíclico dirigido (DAG). Os benefícios desta

abordagem incluem a diminuição da complexidade de programação, do tratamento automático

de comunicações irregulares e a cooperação de recursos heterogêneos intra-nós.

Um runtime é responsável pela programação das tarefas respeitando as dependências,

utilizando heurísticas. Esta abordagem também permite o fácil assincronismo de tarefas de

múltiplas operações (ou fases). Além disso, alguns runtimes efetuam automaticamente a trans-

ferências de dados inter e intra-nós com base na estrutura do DAG, reduzindo a carga de

desenvolvimento. O programador da aplicação ainda precisa dar muitas dicas ao runtime para

o ajudar durante a execução, mas uma vez formulado, o código é altamente portátil para vários

sistemas. Exemplos de tais runtimes são ParSEC (BOSILCA et al., 2013), OmpSS (DURAN

et al., 2011), e StarPU (AUGONNET et al., 2011), este último utilizado neste trabalho. Estes

runtimes modernos fornecem uma abstração de programação de alto nível com a flexibilidade

necessária, facilitando a investigação e o desenvolvimento de estratégias sofisticadas de dis-

tribuição de dados estáticos em nós heterogêneos. Esta abordagem parece mais adequada para

combinar a heterogeneidade ao nível de sistemas e as necessidades das aplicações.

Assim, o paradigma de programação baseado em tarefas oferece muitas oportunidades

para implementar estratégias algorítmicas elaboradas e distribuições refinadas necessárias para

enfrentar os muitos desafios que surgem da utilização de recursos heterogêneos. Além disso,

este trabalho utiliza informações relacionadas com o DAG e tarefas para orientar as decisões das

estratégias e a análise do desempenho.

204

A.1 Contribuições da Tese

As aplicações de HPC exigem um poder computacional considerável fornecido prin-

cipalmente por supercomputadores. Esses recursos computacionais podem apresentar uma

heterogeneidade ao nível de sistema quando há dois ou mais grupos de nós, cada grupo com

hardware e poder computacional diferentes. Além disso, as aplicações podem apresentar um

comportamento heterogêneo interno devido a operações distintas ou a várias fases que podem

ser executadas de forma diferente em cada recurso. O aumento da heterogeneidade entre nós

em supercomputadores e a dificuldade de programá-los incentivam o uso de paradigmas ro-

bustos de programação paralela, como o baseado em tarefas. Embora esse paradigma ofereça

flexibilidade, portabilidade e dinamismo suficientes para lidar com um cenário tão complexo,

muitos problemas ainda precisam ser resolvidos. Todas essas circunstâncias tornam o problema

da distribuição dessas aplicações baseados em tarefas entre nós heterogêneos desafiador,

embora surjam muitas oportunidades para melhorar o desempenho e o uso de recursos.

O principal objetivo deste trabalho é fornecer estratégias e métodos para melhorar a

distribuição de aplicações baseados em tarefas em recursos heterogêneos no nível do sistema.

Nesse contexto, muitos desafios devem ser considerados para uma aplicação atingir o desem-

penho correto. Os desafios abordados nesta tese são: (1) As distribuições para cada fase da

aplicação devem considerar não apenas o balanceamento de carga, mas também a razão entre

a comunicação e o caminho crítico; (2) Criar várias distribuições para aplicações multifásicas

com necessidades diferentes e, ao mesmo tempo, considerar sua interação de sobreposição; e

(3) encontrar o número ideal de nós por tipo para cada fase. A estrutura da tese segue.

Capítulos preliminares. O Capítulo 2 detalha as aplicações baseadas em tarefas, as caracterís-

ticas dos runtimes e o ecossistema StarPU. Ele se concentra na estrutura do DAG das aplicações

a partir dos algoritmos e como o runtime escalona as tarefas em muitos recursos. O capítulo

também apresenta as aplicações usadas no restante da tese. A primeira é a biblioteca de álgebra

linear Chameleon. A segunda é a aplicação de geo estatística ExaGeoStat. E a terceira é a

biblioteca de análise de grandes conjuntos de dados Diodon.

O Capítulo 3 apresenta trabalhos relacionados. Começando com o problema geral

da distribuição de uma aplicação (principalmente as estruturadas de álgebra linear 2D) em

cenários homogêneos e heterogêneos. Depois, introduz trabalhos e técnicas clássicas sobre o

equilíbrio de carga, seguidos de uma apresentação de trabalhos relacionados com a gestão de

aplicações multifásicas, tendo em conta tanto as distribuições múltiplas como a comunicação.

Por fim, apresentamos brevemente como alguns algoritmos de aprendizagem automática e de

205

aprendizagem por reforço são utilizados em problemas de HPC relacionados.

Metodologia. O Capítulo 4 apresenta a metodologia da tese para experimentos controlados e

uma análise de desempenho. A metodologia baseia-se em execuções reais com um controle

experimental, simulações com uma avaliação da sua fiabilidade no nosso contexto, e análise

destes experimentos utilizando métricas analíticas, análise de rastros e visualização.

Contribuições. O Capítulo 5 estuda as distribuições de uma operação possível, a fatoração LU,

que poderia ser expandida para outras operações semelhantes de álgebra linear. Ele fornece

as seguintes contribuições. (a) Uma estratégia que melhora o desempenho das aplicações ao

reduzir as comunicações no caminho crítico. Essa situação ocorre quando o paralelismo no

DAG diminui. A abordagem restringe a distribuição para usar menos recursos no final do

algoritmo. (b) Uma estratégia para melhorar o balanceamento da carga computacional de

uma determinada distribuição estática, considerando várias tarefas e recursos heterogêneos,

aumentando a comunicação. (c) Uma metodologia para combinar (a) e (b).

O Capítulo 6 considera o problema de aplicações multifásicas que envolvem possivel-

mente várias distribuições heterogêneas. O estudo de casos se baseia nas aplicações multifásicas

ExaGeoStat e Diodon. O capítulo tem as seguintes contribuições. (d) Otimizações para melho-

rar o assincronismo de fases em aplicações. (e) Estratégia para gerar distribuições heterogêneas

eficientes para aplicações multifásicas com diferentes afinidades de desempenho de recursos,

considerando a sobreposição de fases. (f) Uma técnica para derivar outra distribuição de uma

distribuição principal que reduz as comunicações ao realizar a redistribuição entre ambas.

O Capítulo 7 apresenta estratégias para a aplicação aprender e se adaptar ativamente aos

melhores nós heterogêneos que ela pode acessar. O capítulo tem as seguintes contribuições. (g)
Uma análise das principais características desse problema (estrutura e ruído) e explicação de

por que as técnicas genéricas de otimização e aprendizado provavelmente falharão. Essa análise

motiva variações específicas de uma técnica de aprendizado por reforço baseada no Processo

Gaussiano. (h) Uma avaliação abrangente do desempenho com 16 máquinas heterogêneas

e cargas de trabalho diferentes que comparam as soluções propostas com outros métodos de

otimização genéricos (Brent, Bandits, GP-UCB). Entre esses vários métodos, a variante baseada

em GP é o único método robusto e parcimonioso para alcançar rapidamente a configuração ideal

em vários cenários. (i) Uma implementação real do método para permitir que a aplicação se

adapte durante a execução, demonstrando a baixa sobrecarga.

O Capítulo 8 discute técnicas e métodos para analisar o comportamento de aplicações

baseadas em tarefas. Especificamente, (j) técnicas com foco extra na heterogeneidade da

plataforma e do progresso da aplicação.

206

O Capítulo 9 conclui esta tese com as principais contribuições, trabalhos futuros e a lista

de publicações.

Por fim, um site com materiais complementares para a tese está disponível publicamente

em: <https://gitlab.com/lnesi/thesis-companion.git>. Ele inclui os dados, os scripts e os rastros

dos experimentos para replicar a análise e as figuras.

A.2 Paradigma de Programação Baseado em Tarefas

O paradigma de programação baseado em tarefas (THIBAULT, 2018), também con-

hecido como Data Flow Scheduling (DONGARRA et al., 2017) ou Asynchronous Many Task

(AMT) e runtimes (HUMPHREY; BERZINS, 2019), usa uma abordagem mais descritiva, não

imperativa, para definir uma aplicação. As aplicações expressam seus algoritmos internos com

tarefas e dependências sem definir explicitamente onde está o paralelismo e onde e quando essas

tarefas são executadas. Um runtime decide o escalonamento e o posicionamento das tarefas

durante a execução usando algoritmos internos e heurísticos. Devido a essa flexibilidade e ao

acoplamento fraco na plataforma, Dongarra et al. (2017) aponta que a programação baseada

em tarefas será o paradigma desejado para os sistemas exaflop. Embora a utilização de tarefas

e programação dinâmica seja um conceito antigo (CODD, 1960), ele está ganhando popular-

idade em muitos projetos novos e modernos (DONGARRA et al., 2017; THIBAULT, 2018;

HOUSSAM-EDDINE et al., 2020).

No caso do StarPU, o runtime usado neste trabalho, o uso sucessivo de dados por meio

de várias tarefas cria um fluxo que expressa a ordem de execução da aplicação e constrói o DAG

de tarefas, esta estratégia se chama Fluxo de Tarefas Sequenciais (STF) (AGULLO et al., 2016).

Nessa abordagem, a aplicação tem apenas uma thread e submete as tarefas sequencialmente,

construindo o DAG.

Embora os runtimes possam suportar tecnicamente a execução em recursos heterogêneos

no nível do sistema, seu desempenho depende de como a aplicação é estruturada (DAG, por

exemplo) e de como o desenvolvedor a distribui entre os nós. Em ambos os casos, o conhecimento

de como uma aplicação com operações assíncronas é executada em recursos heterogêneos no

nível do sistema é limitado e tem um grande potencial a ser explorado. Dessa forma, são

desejáveis abordagens ou estratégias que ajudem as aplicações baseados em tarefas executarem

em recursos heterogêneos no nível do sistema.

https://gitlab.com/lnesi/thesis-companion.git

207

A.3 Trabalhos Relacionados: Distribuição de Carga

A divisão de dados e computação para nós distribuídos é um elemento fundamental na

programação paralela. A distribuição de carga pode otimizar vários objetivos. Os objetivos

mais comuns são melhorar o desempenho da aplicação, diminuindo os tempos ociosos ou

equilibrando a carga dos processadores, reduzir a comunicação total para evitar a contenção da

rede ou aumentar os cálculos paralelos disponíveis.

As estratégias de distribuição de dados e computação entre os recursos podem ser uma

abordagem estática, dinâmica ou híbrida (SHIRAZI; KAVI; HURSON, 1995). A partição

estática é realizada uma vez antes de toda a computação e permanece estacionária durante a

execução da aplicação. Esse problema de particionamento depende do domínio da aplicação.

Por exemplo, as operações lineares de álgebra clássica devem particionar uma matriz 2D entre os

recursos. No entanto, a solução ideal para a estratégia 2D estática é um problema NP-completo

(BEAUMONT et al., 2002a). As estratégias dinâmicas dependem da distribuição da carga de

trabalho durante a execução da aplicação. A maioria dos runtimes baseados em tarefas, incluindo

o StarPU (AUGONNET et al., 2011), adota essa abordagem para o escalonamento de recursos

dentro do nó. Por fim, uma abordagem híbrida tem técnicas estáticas e dinâmicas. Um exemplo

híbrido é o módulo StarPU-MPI, que usa escalonamento dinâmico para tarefas dentro do nó e

distribuição de dados estáticos entre diferentes nós, principalmente devido a preocupações com

a escalabilidade. A aplicação deve informar essa distribuição estática, enquanto um dos muitos

algoritmos heurísticos do StarPU executa o escalonamento dinâmico de tarefas dentro do nó.

Assim, estão disponíveis partições que permitem o processamento eficiente de uma

única operação. No entanto, é necessária uma distribuição correta de colunas e linhas para

obter um balanceamento de carga adequado durante a execução de algoritmos mais complexos,

como o algoritmo LU. Beaumont et al. (2001a) propôs um procedimento de distribuição simples

(1D-1D), o qual é assintoticamente ótimo, independentemente da partição retangular inicial.

Os problemas de (i) distribuição de uma operação em recursos heterogêneos; (ii) várias

distribuições e redistribuições para aplicações de várias fases; e (iii) aprendizado e adaptação a

comportamentos inesperados, como escalabilidade de nós, são estudados principalmente com

nós homogêneos e separadamente na literatura, sem a oportunidade de combinar todos eles.

Este trabalho mostra que esses problemas são desafios ao distribuir aplicações baseadas em

tarefas em recursos heterogêneos no nível do sistema. Portanto, é preciso resolver todos esses

problemas para melhorar o desempenho da aplicação. Esta tese apresenta suas contribuições

de distribuição de carga de uma perspectiva micro para uma macro. Primeira, computando

208

a distribuição de uma operação (Capítulo 5) que será usada posteriormente ao estudar várias

distribuições em várias operações (Capítulo 6). Em seguida, essas estratégias serão novamente

empregadas ao ajustar o número de nós a serem usados por fase (Capítulo 7).

A.4 Métodos Experimentais e de Análise

Os métodos experimentais e de análise deste trabalho consistem em três estágios. O

primeiro estágio (Metodologia experimental) é a realização de experimentos em ambientes con-

trolados, usando execuções reais e de simulação. A execução gera rastros que descrevem em

detalhes cada experimento realizado. O próximo estágio (Metodologia de análise de desem-

penho) é a análise desses rastros usando métricas, visualizações e ferramentas de ciência de

dados. Essa análise leva ao estágio final, a proposta de soluções e métodos para melhorar o

comportamento. Uma reinicialização da metodologia ocorre com novos candidatos de otimiza-

ção. As estratégias oferecidas nesta tese refletem um ciclo iterativo de experimentos, análises e

propostas de soluções.

Os experimentos deste trabalho são divididos em duas categorias: execuções reais e

simulações. Na primeira, uma plataforma real executa diretamente a aplicação. O programa

efetivamente calcula e cumpre seu objetivo, chegando a uma solução de algoritmo real e correta.

Diferentemente, o caso da simulação pode substituir alguns cálculos por modelos estatísticos,

concentrando-se em aproximar o comportamento da duração e não a solução final do algoritmo.

Este trabalho usa o Simgrid (CASANOVA et al., 2014) como meio para simular plataformas

HPC distribuídas, trabalhando com o StarPU com seu módulo StarPU+Simgrid (STANISIC et

al., 2015b). O StarPU+Simgrid gera rastros que se aproximam fielmente do comportamento da

aplicação e da utilização de recursos (STANISIC et al., 2015a). No entanto, o StarPU+Simgrid

não executa cálculos (tarefas) e substitui dados por informações nulas.

A base da metodologia de análise são os rastros de execução e os dados complementares

que o runtime e aplicação coletam. A tese usa estratégias diferentes para a coleta de dados,

o cálculo de métricas de desempenho, a visualização do comportamento do desempenho da

aplicação e a investigação direta dos dados. Uma das principais ferramentas usadas é o StarVZ,

um worklfow de análise de desempenho para aplicações baseadas em tarefas que utiliza R e

Tidyverse.

Com a metodologia de análise, é possível verificar alguns problemas, como a subuti-

lização de recursos em um determinado ponto, o desequilíbrio de recursos, a falta de tarefas

prontas, pontos de sincronização em iterações, valores inadequados para qualquer métrica ap-

209

resentada e operações relacionadas à memória. Todos esses insights de análise permitem que

o analista proponha possíveis soluções em algumas entidades de execução (aplicação, runtime,

biblioteca, sistema). Essas soluções exigem experimentação, validação da análise e repetição

da metodologia. Esse processo foi aplicado a todos os problemas da tese, com os resultados

levando ao próximo objeto de estudo, resultando em um processo iterativo.

A.5 Estratégias de Distribuições Heterogêneas para Álgebra Linear

O Capítulo 5 concentra-se em uma única operação e propõe estratégias para gerar

distribuições cíclicas estáticas para procedimentos de álgebra linear que precisam equilibrar a

carga em muitas iterações. Embora os algoritmos de distribuição cíclica e heterogênea, como o

1D-1D, forneçam resultados assintoticamente ótimos, eles ainda deixam algumas oportunidades

para melhorias e para a criação de distribuições mais refinadas. Além disso, ter uma carga

de equilíbrio perfeita não garante o melhor desempenho. Devido ao caminho crítico e à

heterogeneidade dos nós, às vezes pode ser melhor ter algum desequilíbrio com a carga extra

nos nós mais rápidos. As estratégias discutidas neste capítulo atuam em uma única operação, e

suas ideias são essenciais ao examinar a interação de várias fases com várias distribuições nos

Capítulos 6 e 7.

Este capítulo propõe algoritmos (1D-1D C e 1D-1D C+S) para gerar distribuições

considerando os momentos da aplicação com baixo paralelismo, comunicação e equilíbrio de

carga. Experimentos com a fatoração LU demonstram como as distribuições 1D-1D podem

ser benéficas mesmo para um grupo homogêneo de nós híbridos quando comparadas com BC,

apresentando escalabilidade muito mais estável. O capítulo propõe duas novas estratégias para

considerar um conjunto heterogêneo de máquinas híbridas, para as quais o 1D-1D também é

quase ideal. A primeira usa menos nós no final da operação, intensificando gradualmente a

computação nas máquinas potentes. A segunda move adicionalmente blocos para nivelar o

trabalho cumulativo. A técnica de restrição permite a otimização do final da execução, enquanto

o balanceamento de blocos possibilita o alcance de um equilíbrio de carga quase ideal entre as

iterações, mas aumenta a comunicação. Uma combinação cuidadosa dessas técnicas proporciona

melhorias seletivas de desempenho em relação ao 1D-1D original, tanto no balanceamento de

carga quanto no tempo de execução.

Esse estudo também indica que as distribuições 1D-1D são um excelente ponto de partida,

que não é tão fácil de melhorar. Na prática, quando se considera apenas uma operação de álgebra

linear, não está claro se o uso sistemático de 1D-1D C e 1D-1D C+S é vantajoso, por requererem

210

um bom modelo de desempenho e poderem induzir uma sobrecarga de comunicação. Entretanto,

essas duas estratégias são ferramentas que podem ser aplicadas a situações específicas. Quando

surgem problemas no final da execução devido ao paralelismo limitado, à comunicação excessiva

ou ao caminho crítico mal posicionado, a estratégia de restrição pode ajudar. Uma reorganização

adicional pode beneficiar os casos em que o balanceamento fornecido pelo 1D-1D pode ser

aprimorado e a comunicação não é um problema (em uma rede de alta velocidade e baixa

latência, por exemplo). Esse primeiro estudo permite a identificação de quantidades essenciais

para o reequilíbrio e as consequências de ter distribuições irregulares na execução geral. Além

disso, esse estudo mostra que as distribuições balanceadas não perfeitas (como a versão restrita)

podem apresentar benefícios em algumas situações.

Por fim, as aplicações podem ter várias fases de algoritmo que exigem diferentes dis-

tribuições heterogêneas. A interação entre essas distribuições deve ser cuidadosamente estudada

ao usar um sistema totalmente assíncrono, como nos runtimes baseados em tarefas. O tempo

ganho em alguns recursos ao desativá-los no final do algoritmo pode ser usado para as fases

subsequentes, o que significa que as distribuições desequilíbradas para uma fases podem ser

compatíveis na geração de uma execução completa e equilibrada. Se os recursos ociosos de uma

fase forem usados inteligentemente pela as fases subsequentes, pode-se esperar melhorias no

desempenho. Ainda, a estratégia restrita pode ser usada para otimizar o caminho crítico no final

da distribuição. Quando há nós com e sem GPUs, as tarefas no caminho crítico que exploram

melhor as GPUs se beneficiariam de uma distribuição desigual concentrada em nós com esses

aceleradores.

A.6 Estratégias Heterogêneas para Aplicações Multifásicas

Muitas aplicações têm fases diferentes, cada uma com necessidades computacionais

diferentes. Por exemplo, as fases que compreendem a entrada e a geração de dados geral-

mente são mais adequadas às CPUs, enquanto as operações de computação intensiva, como

os kernels clássicos de álgebra linear, podem explorar eficientemente os aceleradores. Essa

heterogeneidade interna da aplicação pode ser mais bem adequada quando combinada com a

heterogeneidade do sistema, melhorando o equilíbrio da carga ao oferecer mais opções de dis-

tribuição. Como as fases individuais não usam todos os recursos igualmente, uma aplicação

requer certa liberdade para executar as fases simultaneamente para melhorar o uso de recursos e

o desempenho. Os desafios para permitir a sobreposição de fases incluem dificuldades de pro-

gramação e algorítmicas. Do ponto de vista do programador, a sobreposição de fases geralmente

211

é difícil de obter em aplicações paralelas tradicionais. No entanto, o assincronismo é possível no

paradigma baseado em tarefas se o DAG for estruturado corretamente. Mas, mesmo depois que

a sobreposição de fases for implementada, a aplicação ainda enfrentará o desafio de encontrar

uma distribuição eficiente para os nós disponíveis. A combinação desses desafios faz com que

a maioria das aplicações perca uma enorme oportunidade de usar a heterogeneidade ao nível

do sistema. Mesmo que a demanda computacional distinta das fases torne esta heterogeneidade

uma opção interessante para melhorar a distribuição da carga.

O Capítulo 6 estuda e propõe estratégias para distribuir essas aplicações de várias fases em

recursos com heterogeneidade ao nível de sistema. A investigação usa as aplicações ExaGeoStat

e Diodon. Em ambas as aplicações, a falta de sobreposição entre as fases faz com que elas percam

uma enorme oportunidade de desempenho: recursos poderosos (GPU) poderiam trabalhar mais.

Com a ordem de execução correta na fase de geração, as tarefas para a GPU poderiam ficar

prontas mais cedo, aumentando sua utilização. No entanto, quando a sobreposição é corrigida,

as fases têm necessidades diferentes que poderiam explorar conjuntos diferentes de nós para

melhorar o desempenho. Essa heterogeneidade significa que as distribuições de várias fases

devem considerar essa sobreposição. E a distribuição de uma determinada fase deve reconhecer

o desempenho das tarefas de outras fases nos recursos e nós heterogêneos.

O Capítulo apresenta otimizações para aprimorar a execução assíncrona baseada em

tarefas das fases de ambas as aplicações. Em ambas as aplicações, as mesmas ideias de

aprimoramento de estruturas específicas do DAG, como prioridades, dicas e dependências,

levam a ganhos de desempenho. No ExaGeoStat, cinco operações se sobrepõem, enquanto no

Diodon, a sobreposição de computação ocorre entre o Gram e a primeira etapa de multiplicação

de matriz. Com a sobreposição correta, o capítulo continua e oferece estratégias para gerar

uma distribuição estática heterogênea no nível do sistema que considera o custo computacional

e a sobreposição das fases. Um programa linear modela o fluxo da aplicação considerando as

tarefas e a heterogeneidade dos recursos. O pode computacional relativo é extraído do programa

linear e, posteriormente, usada em algoritmos de distribuição tradicionais para algumas fases de

computação intensiva. O capítulo também fornece um algoritmo para inferir uma distribuição

de uma determinada fase usando a distribuição da fase seguinte, mantendo o equilíbrio regional

e reduzindo a sobrecarga de redistribuição.

A avaliação de desempenho deste capítulo demonstra que as três categorias gerais de

otimização melhoram a sobreposição de fases assíncronas. Essas otimizações permitem que

as tarefas das últimas fases sejam executadas mais cedo e reduzem a ociosidade de recursos,

melhorando o desempenho em cenários homogêneos de 29% a 46%. Ao considerar o caso

212

heterogêneo, as estratégias propostas calculam o poder computacional relativo ideal para cada

fase em cada grupo de nós. Todas as estratégias de distribuição heterogênea melhoram o desem-

penho em até 69% em comparação com uma configuração homogênea simples no ExaGeoStat

e de 24% a 73% no Diodon.

A.7 Aprendendo e Adaptando em Sistemas Heterogêneos Complexos

O Capítulo 7 estuda o problema de descobrir o conjunto ideal de nós heterogêneos a serem

usados ao considerar aplicações multifásicas. Embora o paradigma baseado em tarefas atenue

amplamente a sobrecarga de comunicação, efeitos imprevistos (por exemplo, contenção de rede

ou sincronizações complexas entre nós) continuam sendo possíveis e particularmente difíceis

de modelar. Nesse contexto, encontrar um número adequado de nós de computação para cada

fase pode ser particularmente difícil de prever. Portanto, métodos que aprendam e se adaptem

dinamicamente a esses cenários complexos e melhorem o desempenho ao longo do tempo

são desejáveis. A aplicação ExaGeoStat é uma boa candidata para estudar essas estratégias.

Ela tem muitas iterações em que podem ocorrer decisões de aumento ou diminuição de nós.

Muitas aplicações têm essa estrutura de iterações estáveis (carga de trabalho estacionária), mas

cuja duração total é difícil de prever em algumas configurações, pois algumas fases são bem

escaláveis, enquanto outras não. Isso significa que a aplicação pode aprender e se adaptar

ativamente ao melhor conjunto de nós heterogêneos que pode acessar entre as iterações.

É possível informar o runtime sobre a redistribuição de dados durante o envio de tarefas,

fazendo com que as tarefas enviadas a seguir alterem seu nó de execução de acordo. Essas

redistribuições podem refletir novas distribuições e usarem mais ou menos nós. O runtime do

StarPU moverá todos os dados para o lugar certo de forma assíncrona, de forma sobreposta à

computação.

O capítulo considera sete estratégias diferentes na literatura e apresenta a proposta GP-

descontínua. A avaliação experimental inclui uma visão geral dos resultados em 16 cenários

diferentes, uma análise detalhada passo a passo, a avaliação da sobrecarga de custos da estratégia

e possíveis expansões da proposta. Os resultados experimentais são obtidos usando ambientes

reais e de simulação com configurações heterogêneas no nível do sistema.

Os resultados mostram que uma estratégia de aprendizagem por reforço baseada em

processo gaussiano com informações extras pode encontrar rapidamente a melhor configuração

de nós para a fase principal (fatoração). A abordagem superior, GP-descontínua, usa mecan-

ismos de limite para filtrar o espaço de pesquisa, modelar a diferença do makespan para um

213

limite inferior (com algum conhecimento do cenário) e usar variáveis fictícias e uma tendência

linear para modelar as descontinuidades causadas pelas distribuições. Esse método forneceu

os melhores resultados consistentes em todos os 16 cenários estudados. Outro método (mais

simples) com desempenho particularmente bom é o UCB-struct, que considera apenas pontos

específicos. No entanto, esse método só encontrará a melhor configuração às vezes por es-

tar limitado a não pesquisar todo o espaço, mas apenas os opções que consideram os grupos

homogêneos completos. No final, o uso de todos os nós para a fase de geração e apenas um

subconjunto aprendido para a fatoração proporcionou um aumento de desempenho de até 51,2%

em comparação com o uso de todos os nós para ambas as fases. Esses resultados demonstraram

que a aplicação pode descobrir durante a execução a ação (número de nós) que pode tomar para

melhorar o desempenho e se adaptar aos recursos heterogêneos.

A.8 Resumindo o Comportamento das Aplicações

A análise de desempenho das aplicações de computação de alto desempenho é uma

etapa essencial para obter o desempenho correto. No entanto, a complexidade das aplicações e

sistemas, incluindo os vários níveis de heterogeneidade (HPE et al., 2022), acrescenta desafios

consideráveis a essa atividade. A análise de desempenho de aplicações HPC por meio da visu-

alização é considerada uma metodologia vantajosa (GARCIA PINTO et al., 2018) por permitir

uma compreensão facilitada de grandes quantidades de dados de rastreamento (SCHNORR;

LEGRAND, 2013). Entretanto, mesmo com essa estratégia, o espaço para visualização é limi-

tado, e as estratégias podem fornecer percepções errôneas. Esse é o caso do Gantt Chart, que se

concentram na utilização de recursos, mas podem ocultar a progressão real das aplicações. Em-

bora as visualizações de desempenho adaptadas para uma aplicação (MILETTO et al., 2022) ou

aspectos do runtime (NESI et al., 2019) possam atenuar alguns desses problemas, as estratégias

gerais que resumem o comportamento geral do desempenho ajudariam nessa questão.

O Capítulo 8 propõe uma metodologia de análise de desempenho por meio de uma

visualização introdutória. Seu objetivo é verificar a progressão de aplicações baseados em

tarefas em nós computacionais individuais para indicar momentos e grupos de nós de interesse.

Essa metodologia é composta por três elementos: uma métrica de progressão por nó que emprega

a estrutura das aplicações baseados em tarefas, um método de agrupamento para classificar nós

e reduzir os elementos a serem exibidos e uma visualização introdutória desses componentes.

A avaliação dessas estratégias inclui quatro cenários problemáticos criados com a bib-

lioteca de álgebra linear densa Chameleon, onde a estratégia proposta detectou corretamente o

214

grupo de nós com problemas. Em um caso real com a aplicação ExaGeoStat, a estratégia não

apenas lidou com a heterogeneidade, mas indicou os nós mais problemáticos de forma mais

direta do que um gráfico de Gantt tradicional. Por fim, as estratégias identificaram corretamente

os nós problemáticos e forneceram uma nova visão que informa rapidamente a progressão da

aplicação.

A.9 Discussão Final e Conclusão

A heterogeneidade faz parte dos sistemas de HPC, tanto no interior do nó com aceler-

adores quanto no nível de sistema com várias máquinas diferentes. Essa heterogeneidade ao

nível de sistema (entre nós) pode surgir devido a atualizações ao longo do tempo, ao suporte de

diferentes cargas de trabalho de aplicações ou a decisões financeiras. Em última análise, esses

sistemas têm hardware diversificado com grandes oportunidades de utilização. Por outro lado, as

aplicações de HPC já são muito complexas, com várias operações com comportamento diferente.

Essas aplicações exigem paradigmas modernos que possam lidar com recursos heterogêneos,

melhorar o desenvolvimento de aplicações e, ao mesmo tempo, permitir a portabilidade aos sis-

temas e evitar barreiras síncronas desnecessárias entre as diferentes operações. O paradigma de

programação baseado em tarefas é um exemplo que possui esses atributos. Ele usa um runtime

dinâmico para escalonar tarefas, e as aplicações são bem definidas em um DAG. Embora esse

paradigma apresente muitos benefícios, ainda há desafios ao distribuir essas aplicações nesses

recursos heterogêneos ao nível do sistema.

Diferentes problemas aparecem ao lidar com a distribuição de aplicações baseadas em

tarefas em recursos heterogêneos ao nível do sistema. Ao considerar apenas uma operação

da aplicação, um problema é distribuí-la corretamente em uma gama diversificada de nós de

computação. Embora essa distribuição deva considerar cada recurso, outros aspectos compor-

tamentais, como o caminho crítico e as comunicações, também são importantes. No entanto,

uma única operação é apenas uma das muitas partes das aplicações. Pode haver diversas

operações com comportamentos diferentes e afinidades de recursos que, idealmente, exigem

distribuições distintas. Além disso, em aplicações baseadas em tarefas, essas operações podem

ser executadas de forma assíncrona, sobrepostas, e cada uma pode escolher seu melhor recurso

relativo. Nesse contexto, o problema de distribuir a aplicação em diferentes recursos deve agora

considerar as várias operações sobrepostas que adotam distribuições distintas. O número de

recursos disponíveis também pode ser excessivo para uma determinada fase, pois, às vezes, é

vantajoso usar menos recursos para reduzir alguns problemas. No entanto, a modelagem de

215

todos os comportamentos que levam a esses problemas antes da execução da aplicação pode ser

um desafio, e a adaptação dinâmica durante a execução é uma possível solução. Em todos esses

problemas, há um desafio transversal que é como analisar o desempenho das aplicações. Em

última análise, esta tese contribui com estratégias para todos esses problemas correlacionados.

Esta tese escolheu o runtime baseado em tarefas StarPU e as aplicações de seu ecos-

sistema como objetos de estudo. O runtime StarPU tem a flexibilidade necessária para definir

distribuições, permite redistribuição assíncrona, tem um recurso de simulação que pode aumen-

tar os cenários experimentais quando necessário e muitas ferramentas auxiliares para análise

de desempenho. Nesse sentido, os experimentos desta tese usaram a biblioteca de álgebra

linear Chameleon, a aplicação de aprendizagem de máquina ExaGeoStat e a biblioteca para

analisar grandes conjuntos de dados Diodon. As plataformas usadas para os experimentos

foram a infraestrutura Grid5000 e o supercomputador SDumont, ambos com diferentes níveis

de heterogeneidade. Essas aplicações selecionadas apresentam várias operações que, com as

contribuições desta tese, podem explorar a heterogeneidade ao nível de sistema para melhorar o

desempenho. A seguir, as principais linhas de pesquisa e contribuições são apresentadas.

O primeiro conjunto de contribuições, no Capítulo 5, concentra-se em uma única dis-

tribuição em uma operação das aplicações. Ela parte de algoritmos da literatura, mais especi-

ficamente, o 1D-1D. Uma etapa inicial foi o estudo do comportamento dessas distribuições

heterogêneas em comparação com a distribuição BC clássica, mesmo em configurações ho-

mogêneas, mostrando que ela pode lidar com um número arbitrário de nós (incluindo números

primos). Em seguida, esta tese propõe duas estratégias, inspiradas no 1D-1D, que criam dis-

tribuições heterogêneas. A primeira considera o caminho crítico e a comunicação juntamente

com as capacidades heterogêneas dos recursos. Ela restringe a carga de trabalho final da oper-

ação a recursos mais rápidos, diminuindo a comunicação e melhorando o caminho crítico. A

segunda estratégia realiza um balanceamento extra, relaxando as restrições anteriores de que

alguns nós só se comunicariam com outros. Uma análise de desempenho compara o 1D-1D

com a metodologia que usa as duas estratégias. Os resultados indicam um pequeno ganho ao

combinar essas duas estratégias nos casos em que o 1D-1D já apresentava um desempenho bom.

Uma análise anterior que previa um pequeno espaço para melhoria (limite inferior) colabora com

esses resultados. No entanto, problemas futuros reutilizarão a estratégia de restrição em seus

casos em que o caminho crítico em distribuições multifásicas é mais importante, apresentando

melhores resultados.

O segundo grupo de contribuições se concentra no problema de aplicações com várias

fases (operações), apresentado no Capítulo 6. O capítulo mostra que garantir a execução

216

assíncrona entre as operações e adaptar as distribuições considerando sua sobreposição pode

melhorar o desempenho, mesmo em cenários homogêneos. Uma série de estratégias aprimora

a sobreposição assíncrona das fases, melhorando em até 49% o makespan ao considerar as

aplicações ExaGeoStat e Diodon. Em seguida, ele estuda o ambiente heterogêneo. Um Programa

Linear (LP) calcula a divisão ideal de tarefas por máquina, considerando a heterogeneidade e a

sobreposição de fases. Esse LP também serve como um limite inferior para o desempenho da

aplicação. A potência relativa de cada nó para cada fase é extraída do resultado da divisão de

tarefas do LP. Essa potência por fase e máquina será a entrada para os algoritmos de distribuição

(do Capítulo 5, incluindo a estratégia de restrição) para calcular a distribuição das operações

selecionadas. Por fim, esta tese propõe um algoritmo para calcular uma distribuição para

uma fase precedente e, ao mesmo tempo, minimizar as comunicações de redistribuição. Os

algoritmos usam a distribuição seguinte como referência e a divisão de tarefas do LP. Essa

metodologia melhora o desempenho no melhor caso estudado em 69% no ExaGeoStat e em

73% no Diodon quando comparado ao uso de uma estratégia de distribuição homogênea no

cluster homogêneo mais potente (partição) de cada cenário. O capítulo também apresenta uma

análise do desempenho de alguns casos que sugere que o uso de todos os nós disponíveis para

todas as fases pode ser desnecessário.

O terceiro conjunto de contribuições (Capítulo 7) segue a conclusão dada pelo último

capítulo e se concentra em limitar o número de recursos em cada fase. O problema é que a

contenção da rede, o caminho crítico ou outro comportamento inesperado podem deteriorar o

desempenho mais do que a possível contribuição ao adicionar um nó de computação. No entanto,

a modelagem desses comportamentos é um desafio nesse cenário assíncrono e dinâmico. Por

esse motivo, esta tese estuda o uso de métodos de aprendizagem por reforço durante o tempo de

execução para modelar o comportamento da aplicação ao selecionar um número arbitrário de

nós para uma determinada fase. Esse modelo serve como um substituto que a aplicação pode

consultar para orientar a próxima decisão. Esta tese propõe um método baseado no Processo

Gaussiano (GP) com sua metodologia de Intervalo de Confiança Superior (UCB) que pressupõe

um comportamento suave no espaço de busca. A proposta acrescenta conhecimento de HPC ao

método para ajustá-lo a esse problema, considerando a limitação do espaço de busca, fornecendo

uma tendência esperada e lidando com descontinuidades no comportamento do makespan. Essa

parte do aprendizado atua em um segmento da aplicação, nesse caso, uma longa iteração. A

aplicação ExaGeoStat apresenta essa estrutura, em que executa muitas iterações de otimização

(com uma sincronização algorítmica inevitável), e cada uma delas compreende muitas operações

assíncronas. O modelo aproximará a duração de uma iteração. Antes de iniciar cada uma

217

delas, a aplicação consulta o modelo e, com base no componente UCB, escolhe uma ação que

compreende a exploração e o aproveitamento. No final, esse método é comparado com outros

seis em 16 cenários, mostrando que ele foi o único que lidou com todos os casos, melhorando o

desempenho em até 51,2% ao selecionar o número de nós para a fase de fatoração do ExaGeoStat.

Ele também mostra que a sobrecarga do método é baixa e que pode haver um ganho limitado

(em desempenho) na otimização do número de nós considerando todas as fases.

O último grupo de contribuições vem de um problema transversal a todos os outros:

analisar o desempenho dessas aplicações baseados em tarefas. Durante o andamento desta tese,

qualquer investigação incluía uma análise extensa e abrangente dos rastros de execução. Muitas

dessas investigações levaram a aprimoramentos e novos recursos no StarVZ. Um exemplo foi

a adição do gráfico de Gantt com agregação por nó e por recurso. No entanto, nos estágios

finais deste trabalho, a escalabilidade da visualização da análise em alguns experimentos foi

considerada um problema. Em vez de depender diretamente do gráfico de Gantt, que nunca será

dimensionado à medida que o número de recursos aumenta, seria desejável outra visualização

simples para apontar grupos de nós problemáticos. É por isso que o capítulo 8 estuda uma

metodologia para servir como uma visualização de resumo do comportamento do desempenho

de diferentes nós. Ela se baseia em uma métrica de progressão sensível à heterogeneidade ao

nível de sistema e a tarefas distintas (de várias operações). A metodologia usa essa métrica

para cada nó em diferentes etapas de tempo. Em seguida, como alguns nós computacionais têm

comportamento semelhante, ela agrupa a métrica em grupos de nós parecidos. A visualização

final mostra apenas estes grupos de nós, onde os grupos que avançam lentamente na métrica de

progressão são potencialmente problemáticos. Essa visualização não precisa de mais espaço à

medida que o número de nós aumenta. Para demonstrar a utilidade da metodologia, o capítulo

usa alguns cenários problemáticos criados com simulação e usa execuções reais de outras

investigações. Em última análise, o método proposto funcionou bem em todos os casos testados

e ajudou a detectar todos os nós problemáticos.

Todas essas contribuições são motivadas pela distribuição de aplicações baseados em

tarefas em recursos heterogêneos. E, no final, elas devem ser usadas em conjunto. Quando

uma aplicação começa a ser executada, ela precisa decidir o número de nós a serem usados

por fase, acionando as contribuições do Capítulo 7. Essa contribuição começará usando todos

os nós em todas as operações, exigindo o cálculo das distribuições cientes da heterogeneidade

e das operações assíncronas sobrepostas, levando ao uso das estratégias do Capítulo 6. Em

seguida, essas estratégias usam inerentemente o Capítulo 5 para calcular a distribuição final

das fases selecionadas. Depois disso, o desempenho da aplicação pode ser analisado usando as

218

contribuições do Capítulo 8 e a metodologia geral empregada nesta tese.

Esse trabalho abre novas perspectivas em vários tópicos. O primeiro inclui ajustes na

distribuição de dados heterogêneos durante a execução, uma ação adicional às distribuições

estáticas, e a seleção dinâmica do número de nós. Isso pode consistir em refinar as distribuições

em operações específicas, considerando a complexidade de várias fases. Essa situação poderia

melhorar ainda mais o equilíbrio com um comportamento imprevisível. O ideal é que esses

aprimoramentos sejam adaptados à aplicação, explorando seu algoritmo e a estrutura do DAG.

Entretanto, uma maneira sistemática de alterar essa distribuição no contexto do STF e da

computação distribuída apresentaria problemas técnicos e científicos. Depois que o DAG é

desenrolado no modelo STF, a propriedade dos dados e as alterações de tarefas exigiriam

conhecimento global para garantir a consistência distribuída. Nesse contexto, as decisões de

alterações de distribuição devem ser iguais. No modelo atual, os nós computacionais podem até

mesmo submeter tarefas diferentes, contando com o design da aplicação para submeter todas as

tarefas localmente necessárias em todos os nós, levando ao correto DAG distribuído.

Outra questão em aberto é como melhorar o atual modelo de poder por nó multifásico

com comunicação, o LP no Capítulo 6. Essas informações adicionais poderiam aproximá-lo

ainda mais da realidade. É difícil prever essas informações devido ao escalonamento dinâmico

e à complexidade geral da sobreposição de operações. No mesmo contexto desse modelo,

um problema atual é que as informações sobre uma aplicação são específicas a ela. Embora

algumas aplicações compartilhem as mesmas bibliotecas subjacentes, como o Chameleon,

somente algumas tarefas reutilizadas que usam os mesmos tamanhos podem ser ter os modelos

de desempenho baseados em histórico compartilhados.

No contexto de encontrar o melhor conjunto de nós a ser usado, calcular a eficiência

das configurações em vez de apenas o makespan parece ser a direção correta. Preparar melhor

as aplicações para se adaptarem de uma configuração superdimensionada poderia melhorar o

makespan, a energia e a eficiência. Especificamente, para as estratégias propostas, uma situação

é considerar a expansão do modelo do GP ao aumentar o espaço de pesquisa com todas as

fases. O bootstrap do modelo e como diminuir o espaço de busca são questões em aberto. A

flexibilidade do GP como substituto para modelar o desempenho e a eficiência pode ser usada

para explorar outros parâmetros, permitindo que as aplicações HPC se adaptem aos seus sistemas

em cada execução particular. Um exemplo, é a possibilidade que a abordagem do GP possa

modelar distribuições que permitam blocos de precisão mista ou outras formas de compactação

específicas para os dados de entrada. Combinando essas estratégias, seria possível determinar as

regiões e o número de blocos com menor precisão e, ao mesmo tempo, modelar a compensação

219

entre desempenho e precisão.

Para a análise de desempenho e as visualizações, algumas perspectivas incluem sempre

facilitar o desenvolvimento de tais aplicações, permitindo que os desenvolvedores entendam

rapidamente como sua implementação atual está se comportando. Especificamente para a

estratégia proposta de resumir o comportamento utilizando agrupamento. Um trabalho futuro

inclui a investigação de outras métricas de progressão e técnicas de agrupamento. Elas poderiam

ser adaptadas às aplicações e à situação.

Em última análise, muitas técnicas, métodos e estratégias tradicionais para casos ho-

mogéneos devem ser revisitadas para descobrir as múltiplas oportunidades e benefícios que

surgem neste contexto heterogéneo.

220

221

APPENDIX B — RÉSUMÉ DÉTAILLÉ EN FRANÇAIS

Le calcul intensif permet aux applications complexes d’utiliser une puissance de calcul

massive et de conclure dans un délai raisonnable. Jusqu’au début de la décennie 2000, la crois-

sance du nombre de transistors par puce suivait la loi de Moore, qui stipulait qu’elle doublerait

tous les deux ans (MOORE et al., 1965; MOORE et al., 1975). Cette croissance a permis une

augmentation exponentielle de la puissance de calcul, comme le souligne Dennard (DENNARD

et al., 1974). Cependant, les limites de la dissipation thermique ont freiné l’augmentation de

la fréquence d’horloge des puces dans les années 2000 (HENNESSY; PATTERSON, 2017),

stoppant l’augmentation exponentielle des performances des cœurs individuels (DONGARRA

et al., 2017). De nombreuses alternatives pour poursuivre la croissance de la puissance de calcul

sont apparues, notamment diverses techniques de CPU et des accélérateurs.

La combinaison d’un sous-ensemble de ces ressources aboutit à un seul nœud de cal-

cul hétérogène. Cette hétérogénéité intra-nœud a été largement utilisée ces dernières années

dans de nombreuses applications par la communauté HPC (SANDERS; KANDROT, 2010;

AUGONNET et al., 2011; MENG et al., 2017; PINTO, 2018). Cependant, l’exploitation de

cette hétérogénéité est complexe, car elle nécessite une division correcte de l’application dans

ces ressources multiples et variées, en tenant compte de l’adaptabilité et de la performance de

l’algorithme dans chaque ressource (SANDERS; KANDROT, 2010; AUGONNET et al., 2011).

Du point de vue des développeurs, la gestion d’une telle hétérogénéité nécessite une

connaissance approfondie du système cible et l’anticipation du comportement de l’application.

Dans les méthodes et les outils de programmation traditionnels tels que les applications MPI

(Message Passing Interface) et BSP (Bulk Synchronous Parallel), l’utilisation de ressources

hétérogènes est compliquée, car le style de programmation est entièrement impératif. Ces

approches de programmation spécifient l’endroit où une charge de travail s’exécute statiquement

avec des barrières et des communications synchrones pour contrôler le flux des multiples

opérations ou phases de l’application. Avec ce niveau de synchronisme, une petite erreur

dans la répartition de la charge de travail se traduirait par des performances non idéales avec

des ressources inactives. Mais une telle erreur est presque inévitable, car les systèmes et

les applications sont complexes. De plus, garantir la capacité (portabilité) de l’application à

s’exécuter sur différents systèmes nécessite d’importantes modifications de son code source, ce

qui augmente le risque d’erreurs.

Cependant, la disponibilité de processeurs distincts et la diversité des besoins des ap-

plications encouragent l’hétérogénéité au niveau du système (HPE et al., 2022). Il est donc de

222

plus en plus courant que les systèmes HPC comprennent de nombreuses machines avec diverses

configurations matérielles organisées en grappes ou partitions homogènes pour mieux répondre

aux besoins des applications. Si elle est utilisée correctement, cette hétérogénéité permet à

l’application d’ajuster un comportement interne particulier et d’améliorer les performances, en

exploitant l’hétérogénéité au lieu de la subir.

Les principales infrastructures de calcul intensif, les superordinateurs, sont générale-

ment situés dans de grands centres de recherche universitaires et industriels. Les sites (les

infrastructures) peuvent héberger différents systèmes, comme le montre la liste TOP500 (DON-

GARRA et al., 1997) des superordinateurs, offrant ainsi l’hétérogénéité déjà mentionnée.

L’hétérogénéité de ces sites de superordinateurs s’explique par trois raisons : (i) la concep-

tion, lorsque l’infrastructure possède de telles configurations pour cibler diverses charges de

travail, (ii) les limitations financières, lorsque, par exemple, seul un sous-ensemble de nœuds

reçoit des accélérateurs en raison de contraintes budgétaires, et (iii) les mises à niveau naturelles

de l’infrastructure au fil du temps. La liste TOP 500 ne prend en compte et ne classe qu’un

ensemble homogène de nœuds en tant que système. Cette restriction provient d’une limitation

du benchmark HPC adopté, HPL (DONGARRA; LUSZCZEK; PETITET, 2003), qui ne peut

pas fonctionner de manière adéquate dans des configurations hétérogènes au niveau du système.

De nombreux défis algorithmiques apparaissent lors de la transition vers des scénarios

hétérogènes (DONGARRA; LASTOVETSKY, 2006; BEAUMONT et al., 2019). Tout d’abord,

la quantité idéale de données par nœud sera différente. En fonction de la structure des données

de l’application, cette division peut ne pas être triviale. Bien qu’une simple division soit

suffisante dans les structures de données unidimensionnelles, quand toutes les portions de

données ait un coût de calcul identique, des stratégies spécialisées sont nécessaires pour les

dimensions supérieures ou lorsque des données particulières ont un comportement différent

ou des besoins en puissance de calcul (BEAUMONT et al., 2001a). En outre, le fait d’avoir

des quantités différentes de données par nœud entraîne différentes quantités de communication

entre les nœuds, car les nœuds qui traitent plus de données devront communiquer davantage.

Cette différence de communication signifie que le compromis idéal entre la communication

et le calcul par nœud est plus critique dans les scénarios hétérogènes que dans les scénarios

homogènes. Il en va de même si la quantité de calcul par élément de données diffère, ce qui

entraîne un chemin critique que les capacités hétérogènes des nœuds influenceront. Enfin, il

existe une perspective technique de programmation. Les distributions plus simples, comme les

distributions cycliques, sont plus faciles à mettre en œuvre dans les paradigmes traditionnels tels

que MPI, et les fonctions de communication sont plus clairement appliquées. Cependant, des

223

schémas de communication irréguliers apparaissent lorsqu’il s’agit de distributions arbitraires,

et d’autres paradigmes ou intergiciels peuvent être nécessaires pour réduire la complexité du

développement et la maintenabilité de l’application.

En outre, les applications peuvent comporter différentes phases ayant des besoins de

calcul différents et admettant des distributions de données idéales distinctes. Ces phases peuvent

également exploiter différemment les ressources des nœuds, ce qui modifie encore davantage la

distribution idéale pour chacune d’entre elles. Par exemple, les phases comprenant la génération

de données sont généralement plus adaptées aux unités centrales traditionnelles, tandis que

certaines opérations de calcul, telles que les d’algèbre linéaire classiques, pourraient utiliser des

accélérateurs pour augmenter les performances.

Les limites du paradigme traditionnel comprennent une mauvaise gestion de l’hétérogénéité

intra-nœud, une faible efficacité de programmation, un synchronisme inutile et une portabilité

limitée des ressources. Ensemble, ils évoquent la résurgence du paradigme de programma-

tion basé sur les tâches (BOSILCA et al., 2013; DURAN et al., 2011; AUGONNET et al.,

2011; WU et al., 2015; THIBAULT, 2018). Ce paradigme adopte un mode de programmation

plus déclaratif et utilise un moteur d’exécution pour prendre des décisions, y compris la pro-

grammation dynamique du travail (tâches) pendant l’exécution. L’application décrit les tâches

individuelles et les dépendances de données et les structure dans un graphe acyclique direct

(DAG). Les avantages de cette approche sont notamment de soulager la complexité de program-

mation liée à la gestion explicite des communications irrégulières et du flux de calcul à l’aide

d’un moteur d’exécution et d’améliorer la coopération des ressources hétérogènes à l’intérieur

des nœuds.

Le moteur d’exécution est chargé d’ordonnancer les tâches en respectant les dépen-

dances à l’aide de nombreuses heuristiques possibles. Cette approche permet également de

faciliter l’asynchronisme des tâches d’opérations simples et multiples. En outre, certains mo-

teurs d’exécution effectuent automatiquement les transferts de données entre les nœuds et à

l’intérieur de ceux-ci en fonction de la structure du DAG, ce qui réduit la charge de développe-

ment. Le développeur de l’application doit encore donner de nombreuses indications au moteur

d’exécution pour l’aider pendant l’exécution, mais une fois formulé, le code est hautement

portable sur plusieurs systèmes. Exemples de ces moteurs d’exécution sont ParSEC (BOSILCA

et al., 2013), OmpSS (DURAN et al., 2011) et StarPU (AUGONNET et al., 2011), ce dernier

étant utilisé dans le cadre de ce travail. Ces moteurs d’exécution modernes basés sur les tâches

fournissent une abstraction de programmation de haut niveau avec la flexibilité requise, facilitant

la recherche et le développement de stratégies sophistiquées de distribution de données statiques

224

sur des nœuds hétérogènes. Cette approche semble plus élégante et plus appropriée pour gérer

et combiner l’hétérogénéité de l’architecture des systèmes et les besoins des applications.

Par conséquent, le paradigme de programmation basé sur les tâches offre de nombreuses

possibilités de mettre en œuvre des stratégies algorithmiques élaborées et des distributions

raffinées nécessaires pour relever les nombreux défis qui émergent de l’utilisation de ressources

hétérogènes. En outre, ce travail utilise des informations liées au DAG et basées sur les tâches

pour guider les décisions relatives aux stratégies et l’analyse des performances.

B.1 Apports de la thèse

Les applications HPC nécessitent une puissance de calcul considérable fournie par les

superordinateurs. Ces ressources de calcul peuvent présenter une hétérogénéité au niveau du

système lorsqu’il y a deux groupes de nœuds ou plus, chaque groupe ayant un matériel et

une puissance de calcul différents. En outre, les applications peuvent présenter un comporte-

ment hétérogène interne en raison d’opérations distinctes ou de phases multiples qui peuvent

s’exécuter différemment à chaque ressource intra-nœud. L’augmentation de l’hétérogénéité

intra-nœud dans les superordinateurs et la difficulté de les programmer encouragent l’utilisation

de paradigmes de programmation parallèle robustes tels que celui basé sur les tâches. Bien

que ce paradigme offre suffisamment de flexibilité, de portabilité et de dynamisme pour gérer

un scénario aussi complexe, de nombreux problèmes doivent encore être résolus. Toutes ces

circonstances rendent le problème de la distribution de ces applications basées sur des tâches
entre des nœuds hétérogènes difficile, bien que de nombreuses opportunités d’amélioration

des performances et de l’utilisation des ressources se présentent.

L’objectif principal de ce travail est de fournir des stratégies et des méthodes pour

améliorer la distribution des applications basées sur des tâches sur des ressources hétérogènes

au niveau du système. Dans ce contexte, de nombreux défis doivent être pris en compte pour

qu’une application atteigne une performance correcte. Les défis abordés dans cette thèse sont

les suivants : (1) Les distributions pour chaque phase de l’application doivent prendre en compte

non seulement l’équilibrage de la charge, mais aussi le compromis entre la communication et le

chemin critique ; (2) Créer plusieurs distributions pour des applications multi-phases avec des

besoins différents tout en considérant leur interaction chevauchante ; et (3) trouver le nombre

idéal de nœuds par type pour chaque phase. La structure principale de cette thèse est la suivante.

Chapitres préliminaires. Le Chapitre 2 présente le contexte des applications basées sur les

tâches, les caractéristiques des runtimes, et l’écosystème StarPU. Il se concentre sur la structure

225

du DAG des applications à partir des algorithmes et sur la façon dont le runtime planifie les

tâches dans de nombreuses ressources. Ce chapitre présente également les applications utilisées

dans le reste de la thèse. La première est la bibliothèque d’algèbre linéaire Chameleon. La

deuxième est l’application de géostatistiques ExaGeoStat. Et la troisième est la bibliothèque

d’analyse de grands ensembles de données Diodon.

Le Chapitre 3 présente de nombreux travaux liés à l’état de l’art. Il commence par le

problème général de la distribution d’une application (principalement les applications struc-

turées d’algèbre linéaire 2D) sur des scénarios homogènes et hétérogènes. Ensuite, il introduit

les travaux et techniques classiques sur l’équilibrage de la charge, suivis d’une présentation des

travaux relatifs à la gestion des applications multi-phases en tenant compte des distributions

et des communications multiples. Enfin, nous présentons brièvement comment certains algo-

rithmes d’apprentissage automatique et d’apprentissage par renforcement ont été utilisés dans

des problèmes HPC connexes.

Méthodologie. Le Chapitre 4 présente la méthodologie de la thèse pour les expériences con-

trôlées et l’analyse complète des performances. La méthodologie s’appuie sur des exécutions

réelles avec un contrôle expérimental, des simulations avec une évaluation de leur fiabilité dans

notre contexte, et l’analyse de ces expériences en utilisant des métriques analytiques, l’analyse

des traces et la visualisation.

Contributions. Le Chapitre 5 étudie les distributions pour une opération possible, la factori-

sation LU, qui pourrait être étendue à des opérations d’algèbre linéaire similaires. Il apporte

les contributions suivantes. (a) Une stratégie qui améliore les performances des applications

en réduisant les communications sur le chemin critique. Cette situation se produit lorsque le

parallélisme dans le DAG diminue. L’approche contraint la distribution à utiliser moins de

ressources vers la fin de l’algorithme. (b) Une stratégie pour améliorer l’équilibrage de la charge

de calcul d’une distribution statique donnée considérant des tâches multiples et des ressources

hétérogènes en augmentant la communication. (c) Une méthodologie pour combiner (a) et (b).

Le Chapitre 6 examine le problème des applications multi-phases impliquant éventuelle-

ment plusieurs distributions hétérogènes. L’étude de cas repose sur les applications multi-phases

ExaGeoStat et Diodon. Les contributions du chapitre sont les suivantes. (d) Optimisations pour

améliorer l’asynchronisme de phase dans les applications et améliorer les distributions. (e)
Stratégie pour générer des distributions hétérogènes efficaces pour les applications multi-phases

avec différentes affinités de performance des ressources tout en considérant le chevauchement

des phases. (f) Une technique pour dériver d’autres distributions à partir d’une distribution

principale qui réduit les communications lors de la redistribution.

226

Le Chapitre 7 présente des stratégies permettant à l’application d’apprendre active-

ment et de s’adapter aux meilleurs nœuds hétérogènes auxquels elle peut accéder. Le chapitre

contient les contributions suivantes. (g) Une analyse des principales caractéristiques de ce

problème (structure et bruit) et explique pourquoi les techniques génériques d’optimisation et

d’apprentissage échoueront probablement. Cette analyse motive la conception de variantes

spécifiques d’une technique d’apprentissage par renforcement basée sur le processus gaussien.

(h) Une évaluation complète des performances avec 16 machines hétérogènes différentes et des

charges de travail qui comparent les solutions proposées avec d’autres méthodes d’optimisation

génériques (Brent, Bandits, GP-UCB). Parmi ces différentes méthodes, la variante basée sur GP

est la seule méthode robuste et parcimonieuse permettant d’atteindre rapidement la configura-

tion optimale dans de multiples scénarios. (i) Une implémentation réelle de la méthode pour

permettre à l’application de s’adapter pendant l’exécution, démontrant le faible surcoût.

Le Chapitre 8 traite des techniques et des méthodes permettant d’analyser le comporte-

ment des applications basées sur les tâches. En particulier, les techniques (j) qui mettent

l’accent sur l’hétérogénéité de la plate-forme et de l’application et sur la progression réelle de

l’application.

Le Chapitre 9 conclut cette thèse avec les contributions majeures, les prochaines direc-

tions, et la liste des publications.

Enfin, un site compagnon pour la thèse est disponible publiquement à l’adresse suivante :

<https://gitlab.com/lnesi/thesis-companion.git>. Il comprend les données, les scripts et les

traces des expériences pour reproduire l’analyse et les figures.

B.2 Paradigme de Programmation Basé sur les Tâches

Le paradigme de programmation basé sur les tâches (THIBAULT, 2018), également

connu sous le nom de Data Flow Scheduling (DONGARRA et al., 2017) ou le Asynchronous

Many Task (AMT) paradigme et les runtimes (HUMPHREY; BERZINS, 2019), utilise une ap-

proche plus descriptive, et non impérative, pour définir une application. Les applications expri-

ment leurs algorithmes internes avec des tâches et des dépendances sans définir explicitement où

se trouve le parallélisme et où et quand ces tâches s’exécutent. Un moteur d’exécution décide de

l’ordonnancement et du placement des tâches pendant l’exécution à l’aide d’algorithmes internes

et d’heuristiques. En raison de cette flexibilité et du couplage lâche sur la plateforme, Dongarra

et al. (2017) souligne que la programmation basée sur les tâches sera le paradigme souhaité

pour les systèmes exaflops. Bien que l’utilisation de tâches et l’ordonnancement dynamique

https://gitlab.com/lnesi/thesis-companion.git

227

soient des concepts anciens (CODD, 1960), ils gagnent en popularité dans de nombreux projets

nouveaux et modernes (DONGARRA et al., 2017; THIBAULT, 2018; HOUSSAM-EDDINE et

al., 2020).

Dans le cas de StarPU, le runtime utilisé dans ce travail, l’utilisation successive de

données à travers de multiples tâches créera un flux qui exprime la progression de l’application

et construit le DAG de tâches, la stratégie du Sequential Task Flow (STF) (AGULLO et al.,

2016). Dans cette approche, l’application n’a qu’un seul thread et soumet les tâches de manière

séquentielle, construisant ainsi le DAG.

Bien que les moteurs d’exécution puissent techniquement prendre en charge l’exécution

sur des ressources hétérogènes au niveau du système, leurs performances dépendent de la manière

dont l’application est structurée (DAG, par exemple) et de la manière dont le développeur la

répartit sur les nœuds. Dans les deux cas, la connaissance de la façon dont une application avec

des opérations asynchrones s’exécute sur des ressources hétérogènes au niveau du système est

limitée et a un grand potentiel à explorer. Comme le montrera cette thèse, de nombreux défis

apparaissent qui nécessitent des solutions basées sur l’application. Ainsi, les approches ou les

stratégies qui aident les applications basées sur des tâches sur des ressources hétérogènes au

niveau du système sont souhaitables.

B.3 Travail connexe : Répartition de la charge

La répartition des données et des calculs pour les nœuds distribués est un élément

fondamental de la programmation parallèle. La répartition de la charge peut optimiser plusieurs

objectifs. Les objectifs les plus courants sont l’amélioration des performances de l’application

en réduisant les temps morts ou en équilibrant la charge des processeurs, la réduction de

la communication totale pour éviter la contention du réseau, ou l’augmentation des calculs

parallèles disponibles.

Les stratégies de répartition des données et des calculs entre les ressources peuvent être

statiques, dynamiques ou hybrides. La partition statique est effectuée une fois avant tous les cal-

culs et reste stationnaire pendant l’exécution de l’application. Ce problème de partitionnement

dépend du domaine d’application. Par exemple, les opérations linéaires d’algèbre classique

doivent répartir une matrice 2D entre les ressources. Cependant, la solution optimale pour la

stratégie 2D statique est un problème NP-complet (BEAUMONT et al., 2002a). Les stratégies

dynamiques reposent sur la répartition de la charge de travail pendant l’exécution de l’application.

La plupart des moteurs d’exécution basés sur les tâches, y compris StarPU (AUGONNET et al.,

228

2011), adoptent cette approche pour l’ordonnancement des ressources à l’intérieur des nœuds.

Enfin, une approche hybride combine des techniques statiques et dynamiques. Un exemple

d’approche hybride est le module StarPU-MPI, qui utilise un ordonnancement dynamique pour

les tâches intra-nœud et une distribution statique des données entre les différents nœuds, princi-

palement pour des raisons d’extensibilité. L’application doit informer cette distribution statique,

tandis que l’un des nombreux algorithmes heuristiques de StarPU effectue l’ordonnancement

dynamique des tâches à l’intérieur des nœuds.

Des partitions permettant de traiter efficacement une seule opération de mise à jour sont

ainsi disponibles. Cependant, un brassage correct des colonnes et des lignes est nécessaire pour

obtenir un bon équilibre de la charge tout au long de l’exécution d’algorithmes plus complexes

comme l’algorithme LU. Beaumont et al. (2001a) a proposé une procédure de brassage simple

(1D-1D), qui est asymptotiquement optimale, quelle que soit la partition initiale du rectangle.

Les problèmes de (i) distribution d’une opération sur des ressources hétérogènes ; (ii)

distributions et redistributions multiples pour des applications multi-phases ; et (iii) appren-

tissage et adaptation à des comportements inattendus comme l’extensibilité des nœuds ; sont

principalement étudiés avec des nœuds homogènes et séparément dans la littérature, manquant

ainsi l’opportunité de les combiner tous. Ce travail montre que ces problèmes constituent des

défis lors de la distribution d’applications basées sur des tâches sur des ressources hétérogènes

au niveau du système. Par conséquent, il faut résoudre tous ces problèmes pour améliorer la

performance de l’application. Cette thèse présente ses contributions à la distribution de charge

d’un point de vue micro à macro. Nous commençons par calculer la distribution d’une opération

(Chapitre 5) qui sera ensuite utilisée pour étudier les multiples distributions dans les multiples

opérations (Chapitre 6). Ensuite, de telles stratégies seront à nouveau employées lors du réglage

du nombre de nœuds à utiliser par phase (Chapitre 7).

B.4 Méthodes d’analyse et d’expérimentation

Les méthodes expérimentales et d’analyse de ce travail comportent trois étapes. La

première étape (méthodologie expérimentale) consiste à mener des expériences dans des envi-

ronnements contrôlés, en utilisant des exécutions réelles et des simulations. L’exécution génère

des traces qui décrivent en détail chaque expérience réalisée. L’étape suivante (méthodologie

d’analyse des performances) est l’analyse de ces traces à l’aide de métriques, de visualisations

et d’outils de science des données. Cette analyse conduit à l’étape finale, la proposition de

solutions et de méthodes pour améliorer le comportement. Un redémarrage de la méthodologie

229

a lieu avec de nouveaux candidats à l’optimisation. Les stratégies proposées dans cette thèse

reflètent une boucle itérative d’expérimentation, d’analyse et de proposition de solutions.

Les expériences de ce travail sont divisées en deux catégories : les exécutions réelles

et les simulations. Dans la première, une plate-forme réelle exécute directement l’application.

Le programme calcule effectivement et atteint son objectif, en parvenant à une solution algo-

rithmique réelle et correcte. À l’inverse, la simulation peut remplacer certains calculs par des

modèles statistiques, en se concentrant sur l’approximation du comportement des performances

et non sur la solution finale de l’algorithme. Ce travail utilise Simgrid (CASANOVA et al.,

2014) comme cadre pour simuler des plateformes HPC distribuées, combine avec StarPU avec

son module StarPU+Simgrid (STANISIC et al., 2015b). StarPU+Simgrid génère des traces qui

se rapprochent fidèlement du comportement de l’application et de l’utilisation des ressources

(STANISIC et al., 2015a). Cependant, StarPU+Simgrid n’effectue pas de calculs (tâches) et

peut remplacer les données par des informations factices.

La base de la méthodologie d’analyse est constituée par les traces d’exécution et les

données complémentaires que le runtime et l’application collectent. La thèse utilise différentes

stratégies pour la collecte de données, le calcul des métriques de performance, la visualisation

du comportement de la performance de l’application et l’investigation directe des données.

L’un des principaux outils utilisés est StarVZ, un cadre d’analyse des performances pour les

applications basées sur des tâches, construit sur R et Tidyverse.

Grâce à la méthodologie d’analyse, il est possible de vérifier certains problèmes tels

que la sous-utilisation des ressources à un moment donné, le déséquilibre des ressources, le

manque de tâches prêtes, les points de synchronisation dans les itérations de l’application,

les valeurs inadéquates pour toute métrique présentée et les opérations liées à la mémoire.

Toutes ces analyses permettent à l’analyste de proposer des solutions possibles dans certaines

entités d’exécution (application, runtime, bibliothèque, système). Ces solutions nécessitent une

expérimentation, une validation de l’analyse et la répétition de la méthodologie. Ce processus

a été appliqué à tous les problèmes envisagés dans la thèse, les résultats conduisant à l’objet

d’étude suivant, ce qui donne lieu à un processus itératif.

B.5 Stratégies de distributions hétérogènes pour l’algèbre linéaire

Le Chapitre 5 se concentre sur une seule opération et propose des stratégies pour générer

des distributions cycliques statiques pour les procédures d’algèbre linéaire qui doivent équilibrer

la charge sur plusieurs itérations. Bien que les algorithmes de distribution cyclique et hétérogène

230

de pointe comme 1D-1D fournissent des résultats asymptotiquement optimaux, ils laissent

encore des possibilités d’amélioration et de création de distributions plus raffinées. En outre,

une charge d’équilibre parfaite ne garantit pas les meilleures performances. En raison du chemin

critique et de l’hétérogénéité des nœuds, il est parfois préférable d’avoir un certain déséquilibre

avec une charge supplémentaire sur les nœuds les plus rapides. Les stratégies discutées dans

ce chapitre agissent sur une seule opération, et leurs idées sont essentielles lors de l’examen de

l’interaction à phases multiples avec des multiples distributions dans les Chapitres 6 et 7.

Ce chapitre propose des algorithmes (1D-1D C et 1D-1D C+S) pour générer des distribu-

tions en tenant compte des moments de l’application avec un faible parallélisme et des compromis

de communication et d’équilibre de charge. Des expériences avec la factorisation LU démontrent

que les distributions 1D-1D peuvent être bénéfiques même pour un groupe homogène de nœuds

hybrides lorsqu’elles sont comparées à BC, présentant une évolutivité beaucoup plus stable. Le

chapitre propose deux nouvelles stratégies pour prendre en compte un ensemble hétérogène de

machines hybrides, pour lesquelles 1D-1D est également presque optimal. La première utilise

moins de nœuds vers la fin de l’opération, en intensifiant progressivement le calcul dans les

machines puissantes. La seconde applique un brassage supplémentaire des blocs pour niveler

le travail cumulé. La technique de contrainte permet d’optimiser la fin de l’exécution, tandis

que le mélange des blocs permet d’atteindre un équilibre de charge quasi optimal entre les

itérations, mais augmente la communication. Une combinaison pertinente de ces techniques

permet d’améliorer sélectivement les performances par rapport au modèle 1D-1D original, à la

fois en termes d’équilibrage de la charge et de temps d’exécution.

Cette étude indique également que les distributions 1D-1D sont un excellent point de

départ, qui n’est pas si facile à améliorer. Dans la pratique, lorsqu’on ne considère qu’une

opération d’algèbre linéaire, il n’est pas certain qu’une utilisation systématique de 1D-1D C et

1D-1D C+S soit bénéfique, car elle nécessite un bon modèle de performance et peut induire

un surcoût de communication. Cependant, ces deux stratégies sont des outils qui peuvent être

appliqués à des situations spécifiques. Lorsque des problèmes surviennent à la fin de l’exécution

en raison d’un parallélisme limité, d’une communication excessive ou d’un chemin critique

mal placé, la stratégie de contrainte peut s’avérer utile. Un remaniement plus poussé peut

s’avérer utile dans les cas où l’équilibrage fourni par le 1D-1D pourrait être amélioré et où la

communication n’est pas un problème (dans un réseau à grande vitesse et à faible latence, par

exemple). Cette première étude permet d’identifier les quantités essentielles au rééquilibrage

et les conséquences d’une distribution irrégulière sur l’exécution globale. De plus, cette étude

montre que des distributions équilibrées non parfaites (comme la version contrainte) peuvent

231

présenter des avantages dans certaines situations.

Enfin, les applications peuvent comporter plusieurs phases algorithmiques nécessitant

différentes distributions hétérogènes. L’interaction entre ces distributions doit être soigneuse-

ment étudiée lors de l’utilisation d’un système entièrement asynchrone, comme les systèmes

d’exécution basés sur les tâches. Le temps gagné sur certaines ressources en les désactivant à la

fin de l’algorithme pourrait être utilisé pour les phases suivantes, ce qui signifie que les distri-

butions de déséquilibre pour les phases pourraient être compatibles pour générer une exécution

complète et équilibrée. Si les ressources inactives d’une phase sont utilisées intelligemment pour

les phases suivantes, on peut s’attendre à une amélioration des performances. Néanmoins, la

stratégie contrainte peut être utilisée pour optimiser le chemin critique à la fin de la distribution.

Lorsque l’on dispose à la fois de nœuds avec et sans GPU, les tâches du chemin critique qui

exploitent mieux les GPU bénéficieraient d’une distribution inégale concentrée sur les nœuds

dotés de ces accélérateurs.

B.6 Stratégies Hétérogènes pour les Applications Multi-phases

De nombreuses applications comportent plusieurs phases, chacune ayant des besoins de

calcul différents. Par exemple, les phases comprenant l’entrée et la génération de données sont

généralement plus adaptées aux CPU, tandis que les opérations à forte intensité de calcul, telles

que les noyaux d’algèbre linéaire classiques, peuvent exploiter efficacement les accélérateurs.

Cette hétérogénéité interne des applications peut être plus équilibrée lorsqu’elle est combinée

à l’hétérogénéité du système, ce qui améliore l’équilibre de la charge en offrant davantage

d’options de distribution. Comme les phases individuelles n’utilisent pas toutes les ressources

de la même manière, une application a besoin d’une certaine liberté pour exécuter les phases

simultanément afin d’améliorer l’utilisation des ressources et les performances. Les défis

à relever pour rendre possible le chevauchement des phases comprennent des difficultés de

programmation et d’algorithme. Du point de vue du programmeur, le chevauchement des phases

est habituellement difficile à obtenir dans les applications parallèles synchrones traditionnelles.

Toutefois, un certain asynchronisme est possible dans le paradigme basé sur les tâches si le DAG

est correctement structuré. Mais même après la mise en œuvre du chevauchement de phases,

l’application reste confrontée au défi algorithmique consistant à trouver une distribution efficace

pour les nœuds disponibles. La combinaison de ces défis fait que la plupart des applications

manquent une énorme opportunité d’utiliser l’hétérogénéité au niveau du système. La demande

de calcul distincte des phases fait de l’hétérogénéité du système un choix intéressant pour

232

améliorer la répartition de la charge.

Le Chapitre 6 étudie et propose des stratégies pour distribuer ces applications multi-

phases sur des ressources avec une hétérogénéité au niveau du système. L’étude utilise les

applications ExaGeoStat et Diodon. Dans ces deux applications, le manque de chevauchement

entre les phases fait manquer à l’application une énorme opportunité de performance : des

ressources puissantes (GPU) pourraient travailler davantage. Avec l’exécution correcte de

la phase de génération, les tâches GPU antérieures pourraient être prêtes plus tôt, ce qui

augmenterait leur utilisation. Néanmoins, lorsque le chevauchement est corrigé, les phases ont

des besoins différents qui pourraient exploiter différents ensembles de nœuds pour améliorer

les performances. Cette hétérogénéité signifie que les distributions multi-phases doivent tenir

compte de ce chevauchement. Et la distribution d’une phase particulière doit tenir compte des

performances des tâches des autres phases dans les ressources et les nœuds hétérogènes.

Le Chapitre présente des optimisations visant à améliorer l’exécution asynchrone basée

sur les tâches des phases des deux applications. Dans les deux applications, les mêmes idées

d’amélioration des structures spécifiques du DAG telles que les priorités, les indices et les

dépendances conduisent à des gains de performance. Dans ExaGeoStat, cinq opérations se

chevauchent, tandis que dans Diodon, le chevauchement se situe entre le Gram et la première

étape de multiplication de la matrice. Lorsque le chevauchement est correct, le chapitre se

poursuit et propose des stratégies pour générer une distribution statique au niveau du système

hétérogène qui prend en compte le coût de calcul et le chevauchement des phases. Un programme

linéaire modélise le flux de l’application en tenant compte des tâches et de l’hétérogénéité des

ressources. La puissance relative est extraite du programme linéaire et utilisée par la suite dans

les algorithmes de distribution traditionnels pour certaines phases à forte intensité de calcul.

Ce chapitre fournit également un algorithme permettant de déduire la distribution d’une phase

particulière en utilisant la distribution de la phase suivante, en maintenant l’équilibre régional

et en réduisant les frais généraux de redistribution.

L’évaluation des performances de ce chapitre démontre que les trois catégories générales

d’optimisation améliorent le chevauchement des phases asynchrones. Ces optimisations perme-

ttent aux tâches critiques des dernières phases de s’exécuter plus tôt et réduisent l’inactivité des

ressources, ce qui améliore les performances dans les scénarios homogènes de 29 % à 46 %.

Dans le cas des scénarios hétérogènes, les stratégies proposées calculent la puissance relative

idéale pour chaque phase sur chaque groupe de nœuds. Toutes les stratégies de distribution

hétérogène améliorent les performances jusqu’à 69 % par rapport à une configuration homogène

simple dans ExaGeoStat, et de 24 % à 73 % dans Diodon.

233

B.7 Apprentissage et Adaptation dans les Systèmes Hétérogènes Complexes

Le Chapitre 7 étudie le problème de la découverte de l’ensemble idéal de nœuds

hétérogènes à utiliser dans le cadre d’applications multi-phases. Bien que le paradigme basé sur

les tâches atténue largement la surcharge de communication, des effets imprévus (par exemple,

la contention du réseau ou des synchronisations complexes entre les nœuds) restent possibles

et particulièrement difficiles à modéliser. Dans ce contexte, trouver un nombre adéquat de

nœuds de calcul pour chaque phase peut être particulièrement difficile à anticiper. Il est donc

souhaitable de disposer de méthodes qui apprennent et s’adaptent dynamiquement à ces scénar-

ios complexes et qui améliorent les performances au fil du temps. L’application ExaGeoStat

est un bon candidat pour étudier de telles stratégies. Elle comporte de nombreuses itérations

au cours desquelles des décisions d’augmentation ou de diminution des nœuds peuvent être

prises. De nombreuses applications ont cette structure d’itérations stables (charge de travail

stationnaire) mais dont la durée totale est difficile à anticiper dans certaines configurations,

car certaines phases s’échelonnent bien et d’autres non. Cela signifie que l’application peut

apprendre activement et s’adapter au meilleur ensemble de nœuds hétérogènes auquel elle peut

accéder entre les itérations.

Il est possible d’informer le moteur d’exécution des mouvements de données pendant

la soumission des tâches, ce qui amène les tâches suivantes à modifier leur nœud d’exécution

en conséquence. Ces mouvements peuvent refléter de nouvelles distributions et utiliser plus ou

moins de nœuds. Le moteur d’exécution StarPU déplacera toutes les données au bon endroit de

manière asynchrone, en chevauchant le calcul.

Le chapitre examine sept stratégies différentes dans la littérature et présente la proposition

GP-discontinu. L’évaluation expérimentale comprend une vue d’ensemble des résultats dans

16 scénarios différents, une analyse détaillée étape par étape, l’évaluation des coûts indirects

de la stratégie et les extensions possibles de la proposition. Les résultats expérimentaux sont

recueillis à l’aide d’environnements réels et de simulation avec des configurations hétérogènes

au niveau du système.

Les résultats montrent qu’une stratégie d’apprentissage par renforcement basée sur un

processus gaussien informé peut rapidement trouver la meilleure configuration de nœuds pour la

phase principale (factorisation). L’approche supérieure, GP-discontinu, utilise des mécanismes

de bornage pour filtrer l’espace de recherche, modélise la différence du makespan par rapport à

une borne inférieure (et a déjà une certaine connaissance du scénario), et utilise des variables

fictives et une tendance linéaire pour modéliser les discontinuités causées par les distributions.

234

Cette méthode a donné les meilleurs résultats dans les 16 scénarios étudiés. Une autre méthode

(plus simple) particulièrement performante est UCB-struct, qui ne prend en compte que des

points spécifiques. Cependant, cette méthode ne trouvera que parfois la meilleure configu-

ration, car elle est contrainte de ne pas chercher dans tout l’espace, mais seulement dans les

multiples groupes homogènes complets. Finalement, l’utilisation de tous les nœuds pour la

phase de génération et uniquement d’un sous-ensemble appris pour la factorisation a permis

une accélération de 51,2 % par rapport à l’utilisation de tous les nœuds pour les deux phases.

Ces résultats démontrent que l’application peut découvrir pendant l’exécution l’action (nombre

de nœuds) qu’elle peut prendre pour améliorer les performances et s’adapter aux ressources

hétérogènes.

B.8 Résumé du Comportement des Applications

L’analyse des performances des applications de calcul à haute performance est une étape

essentielle pour obtenir des performances correctes. Mais la complexité des applications et

des systèmes, y compris les nombreux niveaux d’hétérogénéité (HPE et al., 2022), ajoute des

défis considérables à cette activité. L’analyse des performances des applications HPC par le

biais de la visualisation est considérée comme une méthodologie avantageuse (GARCIA PINTO

et al., 2018), car elle permet une compréhension facilitée de grandes quantités de données

de trace (SCHNORR; LEGRAND, 2013). Cependant, même avec cette stratégie, l’espace de

représentation est limité et la stratégie de visualisation peut donner des indications erronées.

C’est le cas des diagrammes de Gantt, qui se concentrent sur l’utilisation des ressources mais

peuvent masquer la progression réelle de l’application. Bien que les visualisations de perfor-

mance adaptées à une application (MILETTO et al., 2022) ou à des aspects du runtime (NESI

et al., 2019) puissent atténuer certains de ces problèmes, des stratégies générales qui résument

le comportement global de la performance seraient utiles dans ce domaine.

Le Chapitre 8 propose une méthodologie d’analyse des performances par le biais d’une

visualisation introductive. Elle vise à vérifier la progression des applications basées sur des

tâches sur des nœuds individuels afin d’indiquer les moments et les groupes de nœuds d’intérêt.

Cette méthodologie comprend trois éléments : une métrique de progression par nœud qui utilise

la structure des applications basées sur les tâches, une méthode de regroupement pour classer

les nœuds et réduire les éléments à montrer, et une visualisation introductive de ces composants.

L’évaluation de ces stratégies comprend quatre scénarios problématiques élaborés avec

la bibliothèque d’algèbre linéaire dense Chameleon, qui a correctement détecté le groupe de

235

nœuds présentant des problèmes. Dans un cas réel avec l’application ExaGeoStat, elle a non

seulement géré l’hétérogénéité, mais a également indiqué les nœuds les plus problématiques plus

directement qu’un diagramme de Gantt traditionnel. En fin de compte, les stratégies ont permis

d’identifier correctement les nœuds problématiques et ont fourni un nouvel angle d’approche

qui a permis d’éclairer rapidement la progression de l’application.

B.9 Discussion Finale et Conclusion

L’hétérogénéité fait partie des systèmes HPC, à la fois à l’intérieur d’un nœud avec des

accélérateurs et au niveau du système avec plusieurs machines différentes. Cette hétérogénéité

au niveau du système (entre nœuds) peut être due à des mises à niveau au fil du temps, à

la gestion de charges de travail d’applications différentes ou à des décisions financières. En

fin de compte, ces systèmes disposent d’un matériel diversifié offrant de vastes possibilités

d’utilisation. D’autre part, les applications HPC sont déjà très complexes, avec de nombreuses

opérations aux comportements différents. Ces applications nécessitent des paradigmes modernes

capables de gérer des ressources hétérogènes, d’améliorer le développement d’applications tout

en permettant la portabilité des systèmes, et de s’affranchir des barrières synchrones inutiles

entre les différentes opérations. Le paradigme de la programmation basée sur les tâches est un

exemple qui présente de telles caractéristiques. Il utilise un runtime dynamique pour planifier

les tâches, et les applications sont bien définies dans un DAG. Bien que ce paradigme présente

de nombreux avantages, il reste des défis à relever lors de la distribution de ces applications dans

ces ressources hétérogènes au niveau du système.

Différents problèmes apparaissent lorsqu’il s’agit de distribuer des applications basées

sur des tâches sur des ressources hétérogènes au niveau du système. Lorsque l’on considère

uniquement une opération d’application, l’un des problèmes consiste à la répartir correctement

sur une gamme variée de nœuds de calcul. Bien que cette répartition doive tenir compte de la

capacité de chaque ressource, d’autres aspects du comportement, tels que le chemin critique et

les communications, sont également importants. Néanmoins, une opération unique n’est qu’une

des nombreuses parties de l’application. Il peut y avoir de nombreuses opérations différentes

avec des comportements différents et des affinités de ressources qui appellent idéalement une

distribution distincte. De plus, dans les applications basées sur des tâches, ces opérations peu-

vent s’exécuter de manière asynchrone, se chevaucher, et chacune d’entre elles peut choisir sa

meilleure ressource relative. Dans ce contexte, le problème de la répartition de l’application

sur différentes ressources devrait maintenant prendre en compte de multiples opérations se

236

chevauchant et adoptant diverses répartitions. Le nombre de ressources disponibles peut égale-

ment être excessif pour une phase donnée, car il est parfois avantageux d’utiliser moins de

ressources pour réduire certains problèmes. Cependant, la modélisation de tous les comporte-

ments qui conduisent à de tels problèmes avant l’exécution de l’application peut s’avérer difficile,

et l’adaptation dynamique au cours de l’exécution est une solution possible. Dans tous ces prob-

lèmes, il y a un problème transversal qui est comment analyser la performance des applications

rapidement et de manière réfléchie. En fin de compte, cette thèse apporte des stratégies à tous

ces problèmes corrélés.

Cette thèse choisit comme sujet d’étude le moteur d’exécution StarPU basé sur les tâches

et les applications de son écosystème. Le moteur d’exécution StarPU possède la flexibilité néces-

saire pour définir des distributions, permet une redistribution asynchrone, possède une fonction

de simulation qui peut augmenter les scénarios expérimentaux si nécessaire, et de nombreux

outils auxiliaires pour l’analyse des performances. Dans ce sens, les expériences de cette thèse

ont utilisé la bibliothèque d’algèbre linéaire Chameleon, l’application d’apprentissage automa-

tique géostatistique ExaGeoStat, et la bibliothèque d’analyse de grands ensembles de données

Diodon. Les plateformes utilisées pour les expériences étaient l’infrastructure Grid5000 et le

supercalculateur SDumont, tous deux offrant différents niveaux d’hétérogénéité. Ces appli-

cations sélectionnées présentent de multiples opérations qui, grâce aux contributions de cette

thèse, peuvent exploiter l’hétérogénéité au niveau du système pour améliorer les performances.

Les principaux axes de recherche et les contributions sont les suivants.

Le premier ensemble de contributions, dans le Chapitre 5, se concentre sur la distri-

bution des opérations d’une seule application. Nous partons des algorithmes de la littérature,

plus particulièrement de l’algorithme 1D-1D. Une première étape a été d’étudier le comporte-

ment de ces distributions hétérogènes par rapport à la distribution BC classique, même dans

des configurations homogènes, en montrant qu’elle peut gérer un nombre arbitraire de nœuds

(y compris des nombres premiers). Ensuite, cette thèse propose deux stratégies, inspirées de

la 1D-1D, qui créent des distributions hétérogènes. La première considère le chemin critique

et la communication en même temps que les capacités hétérogènes des ressources. Elle con-

traint la charge de travail finale de l’opération vers des ressources plus rapides, diminuant la

communication et améliorant le chemin critique. La seconde stratégie réalise un équilibrage

supplémentaire, en assouplissant les contraintes précédentes selon lesquelles certains nœuds ne

communiqueraient qu’avec d’autres. Une analyse des performances compare la méthode 1D-1D

à celle qui utilise les deux stratégies. Les résultats indiquent un léger gain en combinant ces deux

stratégies dans les cas où la méthode 1D-1D était déjà très performante. Une analyse antérieure

237

qui prévoyait une petite marge d’amélioration (limite inférieure) va dans le même sens que ces

résultats. Cependant, les problèmes futurs réutiliseront la stratégie de contrainte dans leurs cas

où le chemin critique dans les distributions multi-phases est plus critique. Dans ces cas, cette

stratégie présente de meilleurs résultats.

Le deuxième groupe de contributions se concentre sur le problème des applications à

phases multiples (opérations), abordé dans le chapitre 6. Ce chapitre montre que la garantie

d’une exécution asynchrone entre les opérations et l’adaptation des distributions en fonction de

leur chevauchement peuvent améliorer les performances, même dans des scénarios homogènes.

Une série de stratégies améliorent le chevauchement asynchrone des phases, améliorant jusqu’à

49 % le makespan en considérant les applications ExaGeoStat et Diodon. Ensuite, il étudie

l’environnement hétérogène. Un programme linéaire (LP) calcule la division idéale des tâches

par machine en tenant compte de l’hétérogénéité et du chevauchement des interactions de

phase. Ce programme linéaire sert également de limite inférieure pour l’application. La

puissance relative de chaque nœud pour chaque phase est extraite du résultat de la division

des tâches du programme linéaire. Cette puissance par phase et par machine sera l’entrée des

algorithmes de distribution (du chapitre 5, y compris la stratégie de contrainte) pour calculer

la distribution des opérations sélectionnées. Enfin, cette thèse propose un algorithme pour

calculer une distribution pour une phase précédente tout en minimisant les communications de

redistribution. Les algorithmes utilisent la distribution suivante comme référence et la division

des tâches du LP. Cette méthodologie améliore la performance dans le cas le plus étudié de

69 % dans ExaGeoStat et de 73 % dans Diodon par rapport à l’utilisation d’une stratégie de

distribution homogène sur le cluster homogène le plus puissant (partition) de chaque scénario.

Le chapitre présente également un comportement détaillé des performances de certains cas

qui suggère que l’utilisation de tous les nœuds disponibles pour toutes les phases puisse être

problématique.

La troisième série de contributions (Chapitre 7) suit l’exemple donné par le dernier

chapitre et se concentre sur la limitation du nombre de ressources dans chaque phase. Le

problème est que la contention du réseau, le chemin critique ou d’autres comportements inat-

tendus peuvent détériorer la performance plus que la contribution possible lors de l’ajout d’un

nœud de calcul. Cependant, la modélisation de tels comportements est un défi dans ce scé-

nario asynchrone et dynamique. Pour cette raison, cette thèse étudie l’utilisation de méthodes

d’apprentissage par renforcement pendant le temps d’exécution pour modéliser le comportement

de l’application lors de la sélection d’un nombre arbitraire de nœuds pour une phase donnée.

Ce modèle sert de substitut que l’application peut consulter pour guider la décision suivante.

238

Cette thèse propose une méthode basée sur le processus gaussien (GP) avec sa méthodologie

d’intervalle de confiance supérieur (UCB) qui suppose un comportement lisse dans l’espace de

recherche. La proposition ajoute des connaissances HPC sur la méthode pour l’adapter à ce prob-

lème, en considérant la limitation de l’espace de recherche, la fourniture d’une tendance attendue

et la gestion des discontinuités dans le comportement du makespan. Cette partie d’apprentissage

agit sur un segment de l’application, dans ce cas, une longue itération. L’application ExaGeo-

Stat présente cette structure, où elle effectue de nombreuses itérations d’optimisation (avec une

synchronisation algorithmique inévitable), et chacune d’entre elles comprend de nombreuses

opérations asynchrones. Le substitut correspond approximativement à la durée d’une itération.

Avant de commencer chaque itération, l’application interroge le substitut et, sur la base du com-

posant UCB, choisit une action qui échange l’exploration et l’exploitation. En fin de compte, le

chapitre compare cette méthode à six autres dans 16 scénarios, ce qui montre qu’elle est la seule

à traiter tous les cas, améliorant la performance jusqu’à 51,2 % lors de la sélection du nombre de

nœuds pour la phase de factorisation d’ExaGeoStat. Cela montre également que le surcoût de la

méthode est faible et qu’il peut y avoir un gain limité (en termes de performance) en optimisant

le nombre de nœuds en tenant compte de toutes les phases.

Le dernier groupe de contributions provient d’un problème transversal à tous les autres :

l’analyse de la performance de ces applications basées sur des tâches. Au cours de l’avancement

de cette thèse, toute investigation comprenait une analyse extensive et complète des traces

d’exécution. Beaucoup de ces investigations ont conduit à des améliorations et à de nouvelles

fonctionnalités dans StarVZ, un package d’analyse de performance. Un exemple a été l’ajout

du diagramme de Gantt avec d’agrégation par nœud et par ressource. Cependant, dans les

dernières étapes de ce travail, l’extensibilité de la visualisation de l’analyse dans certaines

expériences a été considérée comme un problème. Au lieu de s’appuyer directement sur le

diagramme de Gantt, qui ne s’adaptera jamais à l’augmentation du nombre de ressources, une

autre visualisation simple serait souhaitable pour indiquer les groupes de nœuds qui posent

un problème. C’est pourquoi le Chapitre 8 étudie une méthodologie pour servir de résumé

de visualisation du comportement de performance de différents nœuds. Elle s’appuie sur une

métrique de progression sensible à l’hétérogénéité du système et aux tâches distinctes (provenant

de diverses opérations). La méthodologie utilise cette métrique pour chaque nœud à différents

pas de temps. Ensuite, comme certains nœuds ont un comportement similaire, elle regroupe

la métrique en groupes de nœuds ayant un comportement similaire. La visualisation finale ne

montre que ces groupes de nœuds, où les groupes qui progressent lentement dans la métrique

de progression sont potentiellement problématiques. Cette visualisation ne nécessite pas plus

239

d’espace à mesure que le nombre de nœuds augmente. Pour démontrer l’utilité de la méthode,

le chapitre utilise des scénarios problématiques élaborés par simulation et des exécutions réelles

d’autres enquêtes. En fin de compte, la méthode proposée a bien fonctionné dans tous les cas

testés et a permis de détecter tous les nœuds problématiques.

Toutes ces contributions sont motivées par la distribution d’applications basées sur des

tâches sur des ressources hétérogènes. Et en fin de compte, elles devraient être utilisées toutes

ensemble. Lorsqu’une application commence à s’exécuter, elle doit décider du nombre de

nœuds à utiliser par phase, ce qui déclenche les contributions du Chapitre 7. Cette contribution

commencera par l’utilisation de tous les nœuds pour toutes les opérations, ce qui nécessite de

calculer les distributions en tenant compte de l’hétérogénéité et des opérations asynchrones qui se

chevauchent, ce qui conduit à utiliser les stratégies du Chapitre 6. Ensuite, ces stratégies utilisent

intrinsèquement le Chapitre 5 pour calculer la distribution finale des phases sélectionnées.

Ensuite, la performance de l’application peut être analysée en utilisant les contributions du

Chapitre 8 et la méthodologie générale employée dans cette thèse.

Ces travaux ouvrent d’autres perspectives sur de nombreux sujets. La première concerne

les ajustements de la distribution des données hétérogènes pendant l’exécution, une action

supplémentaire par rapport aux distributions statiques et la sélection dynamique du nombre de

nœuds. Il peut s’agir d’affiner les distributions dans des opérations spécifiques tout en tenant

compte de la complexité des multiples phases. Une telle situation pourrait encore améliorer

l’équilibrage avec un comportement imprévisible. Ces améliorations sont idéalement adaptées

à l’application, en exploitant son algorithme et la structure du DAG. Cependant, un moyen

systématique de modifier cette distribution dans le contexte du STF et de l’informatique distribuée

poserait des problèmes techniques et scientifiques. En l’état actuel du modèle, une fois que le

DAG est déroulé dans tous les nœuds, la propriété des données et les changements de tâches

nécessiteraient une prise de conscience globale pour garantir la cohérence de la distribution.

Dans ce contexte, les décisions de modification de la distribution devraient être égales. Dans le

modèle actuel, les nœuds peuvent même soumettre des tâches différentes, en s’appuyant sur le

contrôle de l’application pour soumettre toutes les tâches localement nécessaires dans tous les

nœuds, ce qui conduit à la correction distribuée du DAG.

Une autre question ouverte est de savoir comment améliorer le modèle actuel puissance

multi-phase avec communication, le LP du Chapitre 6. De telles informations supplémentaires

pourraient le rapprocher encore plus de la réalité. Ces informations sont difficiles à anticiper en

raison du planificateur dynamique et de la complexité générale du chevauchement des opérations.

Dans le même contexte de ce modèle, l’un des problèmes actuels est que les informations

240

relatives à une application sont spécifiques à celle-ci. Bien que certaines applications partagent

les mêmes bibliothèques sous-jacentes, comme Chameleon, seules certaines tâches utilisant les

mêmes tailles ont pu être réutilisées grâce aux modèles de performance basés sur l’historique.

Dans le contexte de la recherche du meilleur ensemble de nœuds à utiliser, le calcul

de l’efficacité des configurations au lieu du seul makespan semble aller dans la bonne direc-

tion. Mieux préparer les applications à s’adapter d’une configuration surdimensionnée pourrait

améliorer la portée, l’énergie et l’efficacité. En ce qui concerne les stratégies proposées, une

situation consiste à envisager d’étendre le modèle GP lors de l’augmentation de l’espace de

recherche avec toutes les phases. Le démarrage du modèle et la manière d’élaguer l’espace de

recherche sont des questions ouvertes. La flexibilité du GP en tant que substitut pour modéliser

la performance et l’efficacité pourrait être utilisée pour explorer d’autres paramètres, ce qui

permettrait aux applications HPC de mieux s’adapter à leurs systèmes à chaque exécution. Une

possibilité est que l’approche GP puisse modéliser des distributions qui permettent des blocs

de précision mixtes ou d’autres formes de compression spécifiques aux données d’entrée. Avec

une telle stratégie, on pourrait déterminer les régions et le nombre de blocs de moindre précision

tout en modélisant le compromis entre performance et précision.

En ce qui concerne l’analyse et la visualisation des performances, certaines perspec-

tives consistent à toujours faciliter le développement de ces applications, en permettant aux

développeurs de comprendre rapidement comment se comporte leur implémentation actuelle.

En ce qui concerne la stratégie proposée pour résumer le comportement des applications, les

travaux futurs comprennent l’étude d’autres mesures de progression et de techniques de re-

groupement. Celles-ci pourraient être adaptées à l’application ou à la situation.

En fin de compte, de nombreuses techniques, méthodes et stratégies traditionnelles pour

les cas homogènes devraient être revues pour découvrir les multiples opportunités et avantages

qui se présentent dans ce contexte hétérogène.

	Acknowledgements
	Abstract
	Resumo
	Résumé
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Contents
	1 Introduction
	1.1 The Heterogeneous HPC Universe
	1.2 Applications' Perspective of such Complex Heterogeneous Systems
	1.3 This Thesis Contributions and Structure

	2 Task-based Programming and Selected HPC Applications
	2.1 Application Structure
	2.2 Tasks Scheduling and Runtimes
	2.3 Application Benefits
	2.4 The StarPU Ecosystem
	2.4.1 The Chameleon Linear Algebra Library
	2.4.2 The ExaGeoStat Unified GeoStatistics Framework
	2.4.3 The Diodon library for large datasets

	2.5 Opportunities in the Heterogeneous Context

	3 Related Work: Load Distribution
	3.1 Data Distribution for Linear Algebra
	3.1.1 Homogeneous Distributions
	3.1.2 Heterogeneous Distributions

	3.2 Heterogeneous Dynamic Load Balancing Algorithms and Strategies
	3.3 Multi-Distributions and Redistribution on Multi-Phase Applications
	3.4 Reinforcement Learning for optimizing HPC behavior
	3.5 Contributions opportunities

	4 Analysis and Experimental Methods
	4.1 Experimental Methodology
	4.1.1 Computational Resources and Software Stack
	4.1.2 Real Experiments Setup
	4.1.3 Simulation Setup and Evaluation

	4.2 Performance Analysis Methodology
	4.2.1 Trace data collection and transformation
	4.2.2 Performance metrics
	4.2.3 Visualizations of performance behavior
	4.2.4 Interpreting traces data

	4.3 Improving performance process

	5 Heterogeneous Distributions Strategies for Linear Algebra
	5.1 Strong Scaling in a Homogeneous Context
	5.2 Problem: The Communications and Load-Balance Trade-off
	5.3 Proposal: Communication and Load-Balance Trade-off Aware Distributions
	5.3.1 Constraining an Heterogeneous Distribution
	5.3.2 Shuffling Blocks

	5.4 Performance Evaluation
	5.4.1 Strong Scaling in a Heterogeneous Context
	5.4.2 Performance Gain over a Larger Heterogeneous Cluster
	5.4.3 Performance Gain over Different Levels of Heterogeneity

	5.5 Discussion

	6 Heterogeneous Strategies for Multi-phase Applications
	6.1 Problem: Asynchronous Multi-phase distributions
	6.2 Multi-phase Partitioning in Heterogeneous Clusters
	6.2.1 Improving Application's Phase Overlap
	6.2.2 Load Balancing across Application Phases
	6.2.3 Multi-Partitioning for distinct phases

	6.3 Performance Evaluation
	6.3.1 Improving ExaGeoStat Phases Overlap
	6.3.2 Improving Diodon Phases Overlap
	6.3.3 ExaGeoStat phases partitioning in heterogeneous clusters
	6.3.4 Analysis of a case when using too many fast nodes
	6.3.5 Diodon phases partitioning in heterogeneous clusters

	6.4 Discussion

	7 Learning and Adapting in Complex Heterogeneous Systems
	7.1 Problem: Varying Heterogeneous Nodes per Phase
	7.2 Proposal: Exploration Strategies Candidates
	7.2.1 Naive Heuristics
	7.2.2 Classical continuous minimization approaches
	7.2.3 Multi-armed bandits
	7.2.4 Gaussian Process
	7.2.5 Summary of Strategies

	7.3 Experimental Evaluation
	7.3.1 Behavior on different setups
	7.3.2 Depicting the GP exploration/exploitation step-by-step
	7.3.3 Results Overview: GP and existing Exploration Strategies
	7.3.4 GP Computation Overhead Evaluation
	7.3.5 Optimizing considering all phases

	7.4 Energy Perspectives
	7.5 Discussion

	8 Summarizing Applications' Behavior
	8.1 Problem: Limited space to plot complex behaviors
	8.2 Proposal: Node Progression visualization through clustering
	8.2.1 Progression Metrics
	8.2.2 Summarizing by Clustering
	8.2.3 Progression Visualization

	8.3 Evaluation on Real Applications
	8.3.1 System and Software
	8.3.2 Chameleon predefined abnormal behaviors
	8.3.3 A multi-phase application over heterogeneous nodes

	8.4 Discussion

	9 Final Discussion and Conclusion
	9.1 Deciding when to stop optimizing
	9.2 Future Works
	9.3 Publications

	References
	Appendix A — Resumo expandido em Português
	A.1 Contribuições da Tese
	A.2 Paradigma de Programação Baseado em Tarefas
	A.3 Trabalhos Relacionados: Distribuição de Carga
	A.4 Métodos Experimentais e de Análise
	A.5 Estratégias de Distribuições Heterogêneas para Álgebra Linear
	A.6 Estratégias Heterogêneas para Aplicações Multifásicas
	A.7 Aprendendo e Adaptando em Sistemas Heterogêneos Complexos
	A.8 Resumindo o Comportamento das Aplicações
	A.9 Discussão Final e Conclusão

	Appendix B — Résumé détaillé en Français
	B.1 Apports de la thèse
	B.2 Paradigme de Programmation Basé sur les Tâches
	B.3 Travail connexe : Répartition de la charge
	B.4 Méthodes d'analyse et d'expérimentation
	B.5 Stratégies de distributions hétérogènes pour l'algèbre linéaire
	B.6 Stratégies Hétérogènes pour les Applications Multi-phases
	B.7 Apprentissage et Adaptation dans les Systèmes Hétérogènes Complexes
	B.8 Résumé du Comportement des Applications
	B.9 Discussion Finale et Conclusion

