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Abstract

The introduction and conclusion of the following dissertation serve to support and summarize

our research entitled ”CompuCell3D Model of Cell Migration Reproduces Chemotaxis.” In this

study, we created a CompuCell3D simulation of single cell chemotaxis, a biological phenomena

in which cells move in response to environmental chemical cues. We also developed an analysis

scheme to analyze recordings of center of mass and polarization over time to characterize cell

dynamics and kinetics. Aiming at individuals with intermediate modeling experience who lack

specific understanding in the field, we offer the relevant biology, mathematics, and computational

foundation in order to adequately prepare the reader. In the first topic, we discuss the biological

cell and its capacity to migrate, discussing both the significance of this capacity for survival and

the underlying biochemical mechanism. Second, we explore a few computational and mathematical

models of cell migration, focusing on a brand-new analytical model called the Anisotropic Ornstein-

Uhlenbeck Process, which treats polarization in its stochastic differential equations. Finally, we go

over CompuCell3D’s functionality in detail and provide a real-world example for readers to try out

(needs access to a computer with Windows installed). Our research on single cell movement aims

to completely characterize chemotaxis and offer tools that may be used to analyze experimental

data, provided that cell polarization is measured. We discuss the significance of cell polarization

measurements and the proper way to handle the issue of cell velocity when short time scales exhibit

cell diffusive behavior. We suggest a procedure for measuring chemotactic efficiency as well as a way

to discriminate between cell reorientation and cell drift speed modulation as chemotactic response

modalities. Our simulation serves as the basis for upcoming collective migration models and may

be utilized to investigate the role of particular types of white blood cells during innate immune

response.
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THEORETICAL INTRODUCTION

Here we aim at a basic and elaborate introduction to biological and mathematical con-

cepts used in the study of single cell migration and chemotaxis. We will also explain in

detail how Cellular Potts Model (CPM) [1–3] works, and review mathematical models of

cell migration such as Langevin equation and the Anisotropic Ornstein-Uhlenbeck Process.

By the end of this theoretical introduction, the reader will be ready to understand the pro-

posed model and results presented in our paper. This introduction is divided as follows:

A. overview of a biological cell, how it moves, and how it interacts with the environment;

B. computational models in cellular biology, and mathematical models of single cell mi-

gration using stochastic differential equations; C. the Cellular Potts Model (CPM) and its

implementation in CompuCell3D (CC3D) with a practical example of a real cellular biology

problem that the reader can follow through as a first CompuCell3D experience.

A. From Proteins to Motility: How Do Cells Orient and Migrate?

The basic structure of a cell consists in 1) a membrane separating interior (cytoplasm)

from exterior (environment), 2) specific molecules carrying information about cell behaviors

and instructions on self replication (RNA/DNA), 3) other molecules in the cytoplasm that

allow cell metabolism to run, such as nutrients, proteins, ions etc. (carbohydrates, ATP,

enzymes, Ca2+ ...).

Despite the fact that the word ”metabolism” literally means ”change”, in cellular biology,

it refers to all chemical processes that the cell sustains in order to survive, proliferate, or

die. Metabolic processes can be divided into anabolism and catabolism. Catabolism is the

breakdown of molecules. The most notable catabolism mechanism is probably the breakdown

of absorbed molecules to release energy. The additional energy can then be used for anabolic

tasks like maintenance and building.Although processes like diffusion, heat transfer, and

mechanical deformations are excluded from this definition, it is important to note that

cells can alter their metabolism to interfere with each of these processes. For instance, the

cytoskeleton can control mechanical deformations, and ion pumps and channels can control

ion diffusion. Although the transition from alive to dead (such as apoptosis) is considered

metabolism by the preceding definition and may be a kind of catabolism, we define cell
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death as the irreversible condition of zero metabolism. Death is not the same as having no

metabolism. The expression ”irreversible” is crucial. As an example, extremophilic bacteria

can cease their metabolism for years in face of extreme desiccation and reversibly recover

after hydration [4].

Every cell engages in a number of metabolic activities, including the conversion of nutri-

ents into energy, movement of molecules throughout the cytoplasm, and removal of metabolic

wastes. However, sometimes these abilities are insufficient. A bacterium, for example, may

need to migrate if nutrients deplete, if temperature or light intensity are not favorable for

survival, or if toxic substances are accumulating. To orient their migration direction accord-

ing to external chemical gradients, some cells sense spacial concentration variations, leading

to chemotaxis; other cells sense temporal concentration variations, leading to chemokinesis.

Directed migration then take place until cells find better environment conditions. In mul-

ticellular organisms, eukaryotic cell migration plays important roles in regulation of tissue

development, immunologic response, wound healing and cancer metastasis [5].

Nature has found many solutions for cell locomotion: propulsive engines like flagella,

swimming engines like cilia, and stick and pull structures like lamellipodium. Some of

these structures can also probe the environment and acquire cues to direct cell movement.

Flagellum can behave as a wetness sensor, and Lamellipodium can sense the stiffness of the

ECM (extra cellular medium).

Shifting to physiological processes in humans, we now will focus on eukaryotic cells with

lamellipodium. They crawl over 2D substrates or through complex 3D ECM by adhering

and pulling. Lamellipodium is a flat net of actin filaments inside the cell as you can see

in Fig. 1C and Fig. 2. Each actin filament is a chiral, long and stiff structure that

polymerize preferentially in one end (barbed end), depolymerizing in the other (pointed

end). Actin filaments in the lamellipodium can be limited by capping proteins and can

branch via Arp2/3 proteins. A net of these filaments grows everywhere in the cell, creating

a global competition for free actin molecules. As filaments branch, more actin is locally used,

promoting localized growth, and rising cell membrane tension globally. High demand for

actin and high membrane tension disfavor growth in regions of the cell where lamellipodium

less is developed. This effect corresponds to a Local Excitation Global Inhibition - LEGI

[6–10] dynamics. It explains why lamellipodium can spontaneously polarize and establish a

preferential axis, breaking cell’s circular symmetry into a (in average) bilateral symmetry.
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Figure 1. A) Transmission electron microscopy image of cilia in a Paramecium

caudatum. By Richard Allen. Image from CIL – Cell Image Library (cellimageli-

brary.org/images/36768 accessed in 02/15/2023). B) Scanning electron microscopy image of

flagellum in sperm cells. By Don W. Fawcett and David Phillips. Image from CIL – Cell

Image Library (cellimagelibrary.org/images/35957, accessed in 02/15/2023). Link to license:

creativecommons.org/licenses/by-nc-nd/3.0/. C) differential interference contrast microscopy

recorded image of lamellipodium in an epidermal cell. By Mark Cooper. Image from CIL –

Cell Image Library (cellimagelibrary.org/images/37332, accessed in 02/15/2023). Link to license:

creativecommons.org/licenses/by-nc-sa/3.0/.

Figure 2. Transmission electron microscopy image of lamellipodium in a vertebrate fi-

broblast. By Tatyana M. Svitkina and Gary G. Borisy. Image from CIL – Cell Im-

age Library (cellimagelibrary.org/images/24788 accessed in 02/15/2023). Link to license:

creativecommons.org/licenses/by-nc-sa/3.0/. You may notice the high density of actin fibers and

how frequently they branch. Full article in reference [11].
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Lamellipodium adheres to substrate or ECM via integrin transmembrane proteins at-

tached both to actin filaments and to substrate fibers. These adhesion points hold lamel-

lipodium fixed relative to the substrate. As filaments grow and branch in lamellipodium’s

front and retract at the rear, cell’s membrane is pushed and flows forward. As filaments

advance into new territory, new adhesions are made between lamellipodium and the sub-

strate, while older adhesions are destroyed in the back. Free actin molecules flow from the

rear to the front, allowing the cell to sustain this process and migrate. For reviews on cell

migration, check refs. [12, 13]

Extra mechano-chemical mechanisms increase efficiency of migration via lamellipodium,

and are sometimes necessary. We list three important processes addressed in ref. [14]: 1)

myosing molecules concentrated at the rear attach to filaments, contract (ATP mediated)

to break filaments and adhesions, retracting cell rear and promoting actin flow to the front,

2) establishment of microtubules along polarization axis create positive feedback with actin

polymerization and allow active transport of vesicles carrying regulatory proteins from the

rear to the front, and 3) Rac and Rho GTPases in active/inactive forms distributed inside

the cell promote or inhibit polymerization of actin filaments. In Fig. 3, we schematically

show how these processes are organized inside the cell.

In addition to fundamental movement, eukaryotic cells contain a membrane full of recep-

tors that can bind to or let in external chemical agents to internalize information from the

environment. The contact between the substance and the receptor sets off internal chemical

reaction cascades. When perturbation of internal chemical equilibrium is spatially uneven

throughout the cell, it can influence cell polarization orientation, which then directs migra-

tion, i.e., chemotaxis. The details on how information transduction and cell reorientation

take place are specific to cell species, phenotype and external conditions. [15–17]

Many forms of directed migration, other than chemotaxis, have also been observed:

electrotaxis (orientation by electrical fields), durotaxis (orientation by substrate stiffness

gradients), phototaxis (orientation by light intensity gradient), and others. Understanding

directed migration is of great importance for studying wound healing, cancer metastasis, im-

munologic response and embryo development, as cells rely on environmental cues to achieve

large scale organization. [5]

Unfortunately, these processes are complex enough to preclude the use of physics’ con-

servation laws and equilibrium thermodynamics. Biologists often resort to study chemical
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Figure 3. Representation of a cell crawling with lamellipodium and stabilished polarization direc-

tion P⃗ . A) Polimerization of actin filaments at the front, branching via Arp2/3 and filament’s

capping. Integrins attach to fibers and to substrate through cell membrane. B) Actin fibers de-

tachment from substrate and breaking into smaller pieces via myosin II. C) Active transport of

vesicles containing actin molecules and other regulatory proteins. Rear contraction helps actin flow

to the front, and gradients of active/inactive forms of Rac and Rho GTPases create feedback loops

with actin fibers’ polymerization dynamics.

pathways, to isolate specific cellular molecules, or merely classify and document observa-

tions. Lately, however, modern computation allows us to operate increasingly complex

multivariable systems. The use of such computational models enables the proposition of

new hypothesis and new experimental setups [18]. We recognize the contribution of compu-

tational models as a driving force in the advancement of biology.

B. Models of Cellular Biology: Computational and Mathematical Approaches

Computational models of cellular biology can hardly rely on conservation laws of Physics

or on equilibrium thermodynamics. Can you think a way of modelling human behavior (a

crowd in a stadium for example) using conservation of energy and momentum? It is almost

non sense. Only very small systems and specific cases will allow this type of modelling.

When considering large metabolic organisms (cells, tissues and whole animals), complexity

preclude the use of classic theories from physics. One possible approach is to consider cells

as discrete agents, setting rules of interactions to determine their behavior. This approach
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is often referred to as ”Game Theory” [19]. Another approach is to consider cells as a

continuous field (commonly a density field), employing partial differential equations and

boundary conditions to describe the evolution of the system.

Models of continuous cell density fields can use fluid mechanics, partial differential equa-

tions (PDE), logistic maps, and Lattice-Boltzmann methods. The great advantage of such

models is scalability and the small number of simulation parameters. Moreover, most solv-

ing methods are well documented and ready to use in C, C++, Python, Fortran, Julia and

other languages.

On the other hand, agent based models provide a bottom-up approach allowing the

emergence of collective behavior from individual characteristics. Some examples are: vertex

models, where dynamics occur at vertices and edges, with each polygon defining a cell;

center models, where cells are self propelled point particles with interacting potentials and

equations of motion; phase field models, where each cell is a connected region of high intensity

field, that determines system’s evolution; and lattice models, like Cellular Automata and

Cellular Potts Model, where each cell is a set of pixels that obey a set of rules (Automata) or

minimize global energy (Potts). The weaknesses of agent based models are the strengths of

continuous models. They often have many parameters and are computationally expensive for

large agent numbers. See Fig. 4 for visual representation of some agent based computational

models.

Although the center-based approach is the most computationally efficient, it lacks realistic

cell properties associated with cell size and shape. Recently, however, Emanuel F. Teixeira

and collaborators built a deformable extensive propelled cell (with volume, surface and clear

borders) using the center-based approach. See reference [20] for detailed explanation.

Both computational and experimental models require metrics that come from mathemat-

ical theories. For example, when studying bacteria colonies, Malthusian growth rate can be

used to compare the effect of different parameters over population growth. Malthus model

is a simplistic description of population growth, yet it gives clear measurement protocols to

characterize computational and experimental systems. What happens if a system deviates

from the Malthus model? Well, you will still use Malthus model to demonstrate the dis-

crepancy between prediction and observation, which promotes the sofistication of current

theories. Sometimes it is impossible to create a model that can quantitatively predict a

system’s evolution. In this case, qualitative models can be employed. Although they are
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Figure 4. A) Representation of a cell in a phase field model. The cell exists where ϕ = 1. There is a

smooth transition between cell and medium (ϕ = 0), defining an interface. B) 2 types of cells (blue

and red) and three cells (indexes 1, 2 and 3) represented in the lattice of a CPM simulation. C)

Representation of a tissue in a vertex model. Each polygon represents a cell. D) Representation of

cells in a center model simulation. Each cell is a point particle. Often there is short range repulsion

between cells, representing cell volume.

not exact, they can give insights, helping people to make decisions, and they can even be

used to propose classification criteria. A good example is the evolution of species: even in

the absence of a complete quantitative mathematical model, we can organize the species

(taxonomy) from our qualitative understanding of natural selection. Theoretical models,

whether quantitative or not, are essential for comprehending how a phenomenon operates,

for making judgments, and for exploring it sensibly.

Going back to the main topic of this dissertation, i.e. cell migration, the most used

mathematical model is Langevin equation for velocity

m
dv

dt
= −γv + ξ . (1)

It considers a point particle receiving random collisions from surrounding particles repre-

sented by a random force term ξ, and suffering drag from the medium represented by the
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viscosity term −γv. This equation was originally formulated to solve the Brownian particle

problem. In cell migration, ξ is interpreted as a self propelling mechanism that uses energy

from cell’s metabolism, and −γv is a memory loss due to constant repolymerization of F-

actin and interactions with the substrate. In this model, the cell is never in thermodynamic

equilibrium, but the system reaches a steady state when the energy input from ξ equals the

energy loss to −γv.

The analytical solution of Langevin equation for the Mean Square Displacement - MSD

⟨|∆r⃗|2⟩ = 2D(∆t− P (1− e−∆t/P )) (2)

provides important parameters to quantify cell movement: diffusivity and persistence time.

Diffusivity distinguishes migration capacity of cells over long periods of time, while persis-

tence time determines cell’s ability to sustain a migration speed and direction in the short

term. However, this model fails to describe the short term diffusive behavior observed in

some experiments, as shown by Thomas and collaborators [21].

To solve this problem, a recent mathematical model of cell migration considers a polarized

cell with different dynamics in the parallel and perpendicular directions to polarization

vector. This model also considers the effect of membrane and cytoskeleton fluctuations as a

noise in cell displacement. The equations of motion

∆θ =

∫ t+∆t

t

β⊥(t)dt (3)

v∥(t+∆t) =

[
(1− γ∆t)v∥(t) +

∫ t+∆t

t

ξ∥(t)dt

]
(p̂(t) · p̂(t+∆t)) (4)

∆r⊥ =

∫ t+∆t

t

ξ⊥(t)dt (5)

were proposed by de Almeida and collaborators in 2020 [22]. This model is necessarily 2D

since it defines parallel and perpendicular directions to the polarization. The important

remarks of this model are: 1) polarization is a central concept, it is a unit vector whose

direction obeys a Wiener process with Gaussian white noise β⊥ (Eq. 3), 2) velocity dynamics

takes place in the parallel direction to the polarization, where it obeys a Langevin-like process

with an additional memory loss from reorientation, expressed by the scalar product between
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two successive polarization orientations p̂(t) and p̂(t+∆t) (Eq. 4), 3) in the perpendicular

direction, the cell is only affected by fluctuations in membrane and cytoskeleton, which

behave as a gaussian white noise displacement ξ⊥ (Eq. 5).

de Almeida and collaborators solved equations 3-5 analytically. They obtained the solu-

tion for MSD

⟨|∆r⃗|2⟩ = 2D(∆t− P (1− e−∆t/P )) +
2DS

1− S
∆t , (6)

where the extra term linear in ∆t accounts for the diffusive behavior in short time scales.

The new parameter S provides information about the time scale below which cell movement

is diffusive.

Both models lack a description of chemotactic response, which we need to analyze and

interpret data from simulations. In the case of the Langevin equation, simply adding an

external force term as

m
dv

dt
= −γv + ξ + F (7)

does not reflect the mechanism observed in the experiments. In chemotaxis, the cell is not

pulled by the chemical solution, as Eq. 7 implies. In reality, cell’s polarization is reoriented,

as shown by experiments [15–17, 23].

A more realistic approach would be to consider a restoring torque in polarization direction

∆θ =

∫ t+∆t

t

β⊥(t)dt− l(θ(t)− θeq) , (8)

and add a net positive velocity in the parallel direction to polarization. This new stochastic

model has not yet been solved analytically. It is an ongoing project of Guilherme Shoiti and

our research group.

We are left without an appropriate theoretical solution. But we can propose a phe-

nomenological MSD curve for chemotaxis. Consider a cell with polarization orientation bias

in the x-direction and a net velocity in the direction of polarization. In the steady state, we

expect the average displacement in the x direction to increase linearly with time

⟨∆x′(∆t)⟩ = VT∆t , (9)

whereas the average displacement of a cell without bias would be ⟨∆x(∆t)⟩ = 0. VT refers to
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terminal speed. This concept of terminal speed is used for particles under constant external

force plus a viscous force. Despite this not being the case for cells during chemotaxis, we still

employ the term ”terminal speed”, since we also do not expect cells to accelerate indefinitely

in such conditions.

Assuming that x(t) and x′(t) obey the same stochastic realization, we can express their

difference in displacement as

∆x′(∆t)−∆x(∆t) = VT∆t . (10)

From this equation, we can calculate the mean square displacement in the x-direction,

obtaining

⟨∆x′2(∆t)⟩ − ⟨∆x′(∆t)⟩2 = ⟨∆x2(∆t)⟩ − ⟨∆x(∆t)⟩2 + V 2
T∆t2 . (11)

We expect the new squared term V 2
T∆t2 to be carried out to the total MSD equation for ∆r⃗

(we do not demonstrate this step because it would require the full solution for the adapted

equation system 3-5):

MSD′ = MSD + V 2
T∆t2 . (12)

We can now import the MSD result from Eq. 6, yielding

⟨|∆r⃗|2⟩ = 2D(∆t− P (1− e−∆t/P )) +
2DS

1− S
∆t+B∆t2 , (13)

where
√
B = VT . This justifies the use of an extra ballistic term in our MSD fitting curve,

which does fit the simulation results as you will see in the paper’s result section.

At last, it is important to state that robust characterization is key in biomedicine. For

example, when studying cancer cell aggressiveness and drug interventions, metric’s robust-

ness determines the quality of results, which in turn determines the reliability of medical

reports and interventions. For this purpose, mathematical models provide parameters with

clear interpretation and measurement. In the case of chemotaxis, the parameter ”termi-

nal velocity” can be used to quantitatively compare two experiments and decide if a drug

hindered or intensified a cell’s response to a chemical field.
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C. Cells in a Lattice: the CompuCell3D Implementation of Cellular Potts Model

A development from Ising and Potts models of Solid State Physics, Cellular Potts Model

(CPM) allows a set of pixels to behave as an object with size and shape, interacting with

other objects around [1–3]. Originally, CPM was not specifically designed for use in the field

of Cellular Biology. However, it has been found to be unexpectedly useful in this area, and

it is now one of the primary applications of the model. Despite this, CPM still has other

applications in fields such as materials science.

In Ising model [24], originally intended for ferromagnetism, each pixel of the lattice can

transit between two states (spin up and down) depending on its neighbors. Two neighboring

pixels of same spin have a lower energy than two neighboring pixels of opposite spins. Let’s

propose an algorithm that picks a random pixel in the grid and offers a state switch. If

global energy decreases, the state switch is accepted. Otherwise, a Boltzmann Probability

PBoltzmann ∝ e−∆E/T (14)

will decide if it switches or not based on energy variation and temperature. The higher the

temperature, the higher the probability to accept a transition that would increase global

energy. If we repeat this process over many steps, the system will evolve pursuing an energy

minimum. As we set higher temperatures, the system can occupy higher energy states,

increasing entropy.

In Potts model [25], the algorithm is similar to Ising’s, but more than 2 states are possible.

A simple use of Potts model is to simulate infectious disease spread in a lattice, where each

pixel represents a house. Consider three pixel states: healthy, infected and removed. The

evolution can be implemented similarly to Ising model, the difference being that each state

switch can opt between more than one transition, for example: an infected site could recover

without immunity (susceptible), or could become permanently immune or die (removed).

CPM [1] distinguishes itself from its predecessor by implementing Metropolis-Hastings

algorithm [26] differently; pixels alone can not switch state (no matter the temperature),

instead, one pixel attempts to copy its attributes to a neighbor. In other words, if a pixel

of state A is surrounded by pixels of state A, it will never switch to B even for very high

temperatures, because there is no neighbor in state B to attempt a copy. The effect is to
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favor connected clusters with pixels of the same state. State switches will happen only in

the interface between neighboring clusters. In what follows, we call ”cell” each cluster with

pixels of the same state, reserving the term ”cluster” when more than one cell compose a

bigger structure.

To give an example of a simple CPM simulation, consider a 2D square lattice where

different cells are located. The evolution of the system goes as follows:

1. A random pixel in the N×N 2D square lattice is chosen. Let i⃗ = (x, y) be its position.

2. A random pixel is picked in the neighborhood of pixel i⃗. Let j⃗ be the position of the

randomly picked neighbor pixel.

It is possible to define the neighbor order. In general, people use neighbor order

equal to 2, so the neighboring region of a pixel is the 8 closest neighboring pixels (in

2D). The central pixel is not counted as part of the neighborhood.

3. Get the state σ of pixel i⃗, where σ stands for the cell to which pixel i⃗ belongs.

In cases with different cell types, another attribute, τ , will represent the cell type,

and the pixel state will become the list of attributes (σ, τ). Other attributes can be

defined for more complex simulations.

4. Calculate the global energy in the current configuration and in the configuration sup-

posing pixel j⃗ acquires all of i⃗’s attributes (complete overwrite). There are two options:

∆Etotal ≤ 0) If global energy decreases, pixel j⃗ switches state and become identical

to pixel i⃗, acquiring all of i⃗’s attributes.

∆Etotal > 0) If global energy increases, state switch can be accepted with Boltz-

mann probability (Eq. 14);

5. The above process is repeated NMCS times. NMCS = N × N defines a Monte Carlo

Step (MCS), which means the amount of copy attempts is equal to the number of

lattice pixels. The MCS is the time unit in a CPM simulation.

The global energy equation is the main determinant of the system’s behavior. One of the

simplest energy equations in CPM considers a volume energy (to constraint cell sizes) and
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a contact interaction energy term (analogous to surface tension in liquids):

Etotal =
∑
i⃗

∑
j⃗

J(τ⃗i, τ⃗j)(1− δ(σ⃗i, σj⃗)) +
∑
σ

λσ(V
σ
current − V σ

target)
2 . (15)

Again, σ is the cell identifier, and τ is the cell type identifier. J is the energy per edge

between neighboring pixels. J depends on the types of each pair of pixels sharing a surface,

thus it is a symmetrical matrix listing each possible interaction between all pairs of cell

types in a simulation. Each cell has a target volume V σ
target, so they can grow and shrink

individually. The parameter λ is the inverse of compressibility, it regulates how much the cell

volume Vcurrent can fluctuate around Vtarget. Now we will present the softwere CompuCell3D

(CC3D) and use it to build a simple model of Cellular Biology as an example of the above

CPM energy equation.

CompuCell3D (CC3D) (accessible at compucell3d.org) [27] is an open software that runs

a CPM algorithm (in C++) as a black box, but allows the user to intervene between each

MCS (in Python) and initialize parameters and other useful simulation Plugins (in XML

and Python). Users can add precoded energy terms to the global energy equation. It

is possible to implement: cell attraction, cell surface, force over cells, cell interactions with

fields and others. CC3D offers: 1) diffusion solvers for chemical fields, giving cells the ability

to secrete, uptake and diffuse; 2) methods to model mitosis and cell death; 3) and Plugins to

manipulate data acquisition, data output, parameter scan etc. CC3D has a Player with real

time visualization display of cells and fields in the lattice, and the user can plot simulation

data in real time in the Player. The code editor Twedit++ provides examples on how to

implement various useful methods and helps managing all simulation files. Twedit++ is

also included in the CC3D package. Nowadays, CC3D can be called as a Python library,

giving complete freedom for modellers to use it inside Python scripts.

CC3D headquarters is placed in Indiana University, Bloomington, USA. The multicultural

team of instructors and developers is led by Prof. James A. Glazier (Indiana University,

Bloomington), and includes members and ex members from our research group LabCel

(Instituto de F́ısica, Universidade Federal do Rio Grande do Sul). Prof. Gilberto L. Thomas

(LabCel, IF-UFRGS) leads the collaboration between LabCel and CC3D. CC3D team holds

yearly virtual Workshops open for any graduate and undergraduate student of any science

backgrounds from any country and university. Students learn basic concepts of modelling,
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basic Python, and basic to advanced use of CC3D software with examples and practice. At

the end of the course, students form groups and apply learnt content in problems of real

importance to scientific community. Visit CC3D site (compucell3d.org) to learn more.

Now we will show how to build a simple self segregation model step-by-step in CC3D.

If you already have CC3D installed (any version newer than 4.0.0), you should be able to

follow the steps and see the results. But first, it is important to understand what we are

trying to model and what we want to achieve. Self segregation is in our day-by-day life: oil

and water is a common example, football fans in a stadium is another one, thank god, and

cornstarch and milk is probably the most annoying of all. In Cellular Biology, cell segregation

is complex because it can result from very different processes: cell-cell communication via

chemical fields, difference in adhesion between different pairs of cell types, cell tolerance to

external medium, difference in motility between different cell types, and even cell phenotype

differentiation due to diffusive fields or contact with surrounding agents [28].

With the energy equation 15 we are limited to study difference in adhesion and tolerance

to external medium, however, it is possible to implement and simulate all the enumerated

processes in CC3D. In our example, starting with two different types of cells, our goal

is to show which conditions are enough to promote segregation and to observe different

manifestations of segregation depending on the simulation parameters.

1. Go to CC3D installation folder and open Twedit++;

2. Open the tab menu ”CC3D Project”;

3. Click ”New CC3D Project...”;

4. Give your simulation the name ”CellSeg”, keep ”Python+XML” option checked in

”Simulation Type”, and hit ”Next”;

5. You can change the lattice size, boundary conditions (for cells, not fields), lattice

geometry (square or hexagonal), Average Membrane Fluctuation (this is the Potts

temperature that appears in Eq. 14), the Neighbor Order of pixel copies, and the

total number of MCSs (simulation length). For now, we will only change the Neighbor

Order to 2, leaving the rest as it is;

6. Check option ”Blob” in the Initial Cell Layout, so that cells are initialized in a spherical

blob instead of a square, hit ”Next”;

16



7. In the ”Cell Type” text bar, type ”CellA” and hit ”Add”. Then type ”CellB” and hit

”Add”. Now we have set our two cell types CellA and CellB. Cell type ”Medium” is a

default cell type which represents the surrounding cell medium. DO NOT REMOVE

MEDIUM TYPE. Hit ”Next”;

8. Leave ”Chemical Fields” section as it is. Hit ”Next”;

9. In ”Cell Properties and Behaviors” section, check boxes ”Contact” and ”VolumeFlex”.

Leave the rest as it is. Hit ”Next”;

10. Hit ”Finish”.

We have our simulation set. Now let’s run it and see what we got.

1. In Twedit++, in the ”CC3D Project” sub window, double click our project ”CellSeg.cc3d”.

Twedit++ will open 3 tabs with our main code files.

”CellSeg.xml” is our setup file. In ”CellSegSteppables.py”, we are free to code

whatever we want in the starting simulation step (start function), between MCSs

(step function) and at the end (finish function). At last, ”CellSeg.py” is the main

python file that calls each class inside ”CellSegSteppables.py”. We are not changing

these files for this example.;

2. In Twedit++, in the ”CC3D Project” sub window, right click our project ”CellSeg.cc3d”;

3. Click ”Open in Player”. A new window will open with the cell visualization display

and other options.

You can hit pause, stop and run at the top left corner. By default, when you click

”Open in Player”, the simulation automatically starts running. For now, we only get

our cell initialization and random fluctuations at the cell borders. It is time to play

with it;

4. In the ”Model Editor” sub window, open the drop down arrow of ”Plugin Contact”.

Then open all drop downs inside it. The default value 10 showing in each pair of cell

types is our energy term J(τ1, τ2);

All energies are equal, CellA and CellB have the same behavior and will avoid

contact with Medium, keeping the cluster tight. The Medium avoidance comes from
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the fact that only one interface between CellA and CellB is energetically more favorable

than having a strip of Medium between CellA and CellB, which has one additional

interface with same contact energy value;

5. Leave the simulation running and set J(CellA,CellA) = 1.0 and J(CellB, CellB) =

1.0: double click the value 10.0, change the value to 1.0 (IT HAS TO BE A FLOAT)

and press enter.

With less contact energy between cells of same type, it becomes more favorable to

establish clusters of cells of same type. This is our first manifestation of self segregation

by different cell adhesion. Some small clusters of cells will remain alone because there

is no long range interaction. However, for very long simulation times, the tendency is

that only a few clusters with many cells remain;

6. Set J(CellA,CellA) = 10.0 and J(CellB, CellB) = 10.0 again (IT HAS TO BE A

FLOAT) and see the cell clusters relaxing due to reduction in surface tension;

7. Now set J(Medium,CellA) = 100.0 (IT HAS TO BE A FLOAT), this will make

CellA intolerant to Medium, so cells of this type will avoid contact with Medium.

Very quickly CellB surrounds CellA, producing another manifestation of self seg-

regation. This one, in particular, is important for embryo development, as embryo

needs to segregate endoderm and ectoderm.

8. Have fun. You can test different combinations of contact energies to produce other

types of segregation.

We did not code directly in the python files and already got some interesting

results. If we were to use the Python files to their full potential, we could implement

cell communication through chemical fields, cell oxygen depletion inside the aggregate,

cell differentiation via contact or via chemical fields, cell growth and division, cell

death, cell migration, chemical reaction pathways, and many other phenomena.

This simple model is our preferred example of an application of CPM to cellular biol-

ogy. CPM cells’ fluctuations and damped medium have great resemblance with experimental

observations, justifying its wide use for Cellular Biology rather than materials science. More-
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Figure 5. This is the transition from the cell initialization state (first screenshot), passing through

the first segregated state with CellA and CellB grouping together (step 5), back to relaxed state

(step 6), and finally to the engulfment state where CellB surrounds CellA (step 7).

over, cell behaviors like contact and volume energies alone achieve impressive results given

their simplicity. If you did not follow the exercise, take a look at the results in Fig. 5.

This ends the theoretical introduction. Now you are able to read and fully understand

our paper ”CompuCell3D Model of Cell Migration Reproduces Chemotaxis”.

CLOSURE

Our simulation presented in the paper reproduced chemotactic behavior from a reorien-

tation dynamics exclusively. We demonstrated the presence of a drift speed (net positive

velocity in the polarization direction), a required feature for this mechanism to work. We

detected diffusion in cell velocity due to membrane fluctuations, driven by CPM stochastic

evolution. Finally, we characterized all notable cell behaviors quantitatively from position

and polarization data. We highlight:

1. The use of a modified Fürth equation for MSD (Mean Square Displacement), with a
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terminal speed term that also appears in mVACF (Mean Velocity Auto Correlation

Function);

2. The definition of four time intervals that mark transitions between different MSD

regimes;

3. The analysis of cell displacement distributions in both laboratory and cell reference

frames;

4. The ratio between terminal speed and drift speed defining chemotactic efficiency.

All these metrics can be applied to experiments (provided that polarization is measured at

all trajectory steps) and they allow quantitative comparison between data from different

sources.

The most important concept in this paper is polarization. I take the risk to state that

any cell migration model must include polarization to be realistic, and any cell migration

analysis must include polarization to be complete. In our CPM model, we create Lamel

(lamellipodium) pixels in the cell to promote polarization reorientation. Other modelling

methods (center, vertex, phase field) can easily implement analogous dynamics. Mathe-

matical models are not that simple. Traditional Langevin-like equations are insufficient to

model realistic chemotaxis. Developing robust mathematical models of chemotaxis requires

the use of 2-dimensional stochastic differential equations that explicitly account for the cell’s

polarization direction, incorporate velocity drift in the direction of polarization, and model

chemotaxis as a factor that influences polarization orientation, rather than pulling the cell

up gradient.

In immune response and cancer spread simulations, appropriate chemotaxis dynamics

can significantly impact the quality of results and conclusions. Hence, our next step could

be to show the differences between our version and the traditional version of chemotaxis in

these types of problems. Gilberto Lima Thomas, together with new students, is developing

a multicellular simulation, paving the way to the study of wound healing or other collective

migration problems. In the scope of theoretical models, our results help Rita M. de Almeida

and Guilherme Y. Shoiti in their mathematical model of cell migration, still a work in

development.
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