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“An asset manager should concentrate her efforts on developing a theory rather

than on backtesting potential trading rules.”

— MARCOS M. LÓPEZ DE PRADO



ABSTRACT

The current study aims to conduct a comparative analysis of portfolio optimization tech-

niques in the context of financial applications. The proposed approach involves the use

of mixture-copulas as an alternative to mitigate the inherent risks of investments associ-

ated with investments in the stock market, particularly during times of economic crisis.

To conduct this research, data from 19 country index ETFs were sourced from Historical

Market Data - Stooq, spanning the period from 2013 to 2023. The study employed Mean-

CVaR portfolio optimization, and the structural dependence between assets was modeled

using a mixture of copulas (specifically Clayton-t-Gumbel), with marginal adjusted by

an AR(1)-GARCH(1,1) model. The results of simulations based on this strategy were

compared with two other benchmark portfolios, including those using Gaussian copulas

and equally weighted portfolios, across three distinct time horizons: one, two, and five

years. Portfolios generated through simulated returns using the mixture-copulas technique

demonstrated superior risk-return performance when contrasted with the benchmark port-

folios. Simultaneously, a reduction in financial losses was observed, with equivalent or

superior returns in the comparison, particularly over longer time periods where the esti-

mates were more accurate.

JEL classification: G11, G17, G32.

Keywords: Portfolio Optimization. Downside Risk Measurement. Mixture-Copulas.

Time-Series Analysis. Uncertainty Modeling. Econometrics.



RESUMO

A presente pesquisa tem como objetivo analisar comparativamente técnicas de otimização

de portfólio no contexto de aplicações financeiras. A abordagem de mistura de cópulas

é proposta como uma alternativa para mitigar os riscos inerentes aos investimentos real-

izados na Bolsa de Valores, principalmente em momentos de crise. Para desenvolver a

pesquisa, foram utilizados dados de preços de 19 ETFs de índices de países, provenientes

do Historical Market Data - Stooq, que abrangem o período de 2013 a 2023. Foi empre-

gada uma otimização de portfólio Média-CVaR, e a dependência estrutural entre os ativos

foi modelada usando uma mistura de cópulas (Clayton-t-Gumbel), cujas marginais foram

ajustadas por um modelo AR(1)-GARCH(1,1). Os resultados das simulações feitas a

partir dessa estratégia foram comparados com outros dois portfólios de referência de téc-

nicas mais simples, usando cópulas Gaussianas e igualmente ponderado, em três janelas

de tempo: um, dois e cinco anos. As carteiras geradas a partir dos retornos simulados

com a técnica de mistura de cópulas apresentaram melhores desempenhos em termos de

risco-retorno quando comparada aos portfólios de referência. Ao mesmo tempo, notou-se

uma redução das perdas financeiras, inclusive retornos iguais ou superiores na compara-

ção, especialmente nas janelas de tempo maiores, nas quais as estimativas foram mais

precisas.

Classificação JEL: G11, G17, G32.

Palavras-chave: Otimização de Carteiras. Medição de Risco Negativo. Cópulas Mistas.

Análise de Séries Temporais. Modelagem de Incertezas. Econometria.
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1 INTRODUCTION

The financial market is an environment characterized by uncertainty, where var-

ious factors like economic shifts, political events, and unforeseeable circumstances can

significantly influence investment performance. The well-known saying "don’t put all

your eggs in one basket" cautions against concentrating all resources in a single invest-

ment. With this in mind, investors often diversify their capital across different asset

classes to reduce the risk associated with a single type of asset.

Markowitz (1952), in his seminal work, was the first to demonstrate the benefits

of diversification. He emphasized that investors are primarily concerned with two factors:

risk and return. Markowitz’s Modern Portfolio Theory laid the foundation for under-

standing the relationship between risk and return in investment portfolios, highlighting

the importance of diversification as a means to optimize returns while managing risk 1.

However, understanding financial markets poses a significant challenge due to

their highly complex dynamics. In economic studies, a high degree of uncertainty is

always taken into account, as agents’ behavior is influenced by the information available

to them. Fama (1970) addressed this issue by introducing the Efficient Market Hypothesis,

stating that under certain conditions, prices incorporate all available information. This

hypothesis suggests a market equilibrium determined by expected returns as a function

of their associated risk. It operates under the assumption of a "fair game" where the

probabilities of winning or losing are equal, leading to two distinct models. The first

model assumes that price movement is a martingale, implying an expected return of zero.

The second suggests that price series follow a random walk, characterized by independent

returns at each point in time and a known distribution.

While considering the Efficient Market Hypothesis as reasonably valid, it is prac-

tically impossible, or at least extremely challenging, to predict the prices of financial

assets. Nonetheless, this does not imply that a portfolio manager cannot achieve a risk-

return relationship that outperforms the overall market composition. A recent study by

Prado (2020) emphasizes that "as investors, we have no (legitimate) control over prices,

and the key decision we can and must make is to size bets properly." Therefore, it is cru-

cial to focus on studies that provide solutions for the optimal allocation of an investment

portfolio.

1Harry Markowitz initially focused his attention on passive portfolio management. He believed that
investors could identify an optimal portfolio that effectively balanced risk and return, determine the appro-
priate asset allocation, and then adopt a stance of patience and observation.
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Alovisi (2019) presented an empirical study with similar objectives. The primary

goal was to construct an investment portfolio capable of protecting against extreme neg-

ative market conditions while aiming for positive returns. To achieve this, a portfolio

optimization technique based on the mean-CVaR (Conditional Value at Risk) method

was employed. The structural dependence among financial assets was modeled using a

Clayton-t-Gumbel mixture-copula approach, and the marginal distributions of the assets

were adjusted through an AR(1)-GARCH(1, 1) model.

At present, various portfolio optimization techniques are available, some employ-

ing risk measures such as standard deviation, initially proposed by Markowitz. However,

this metric is not ideal as it encompasses both negative variations (which investors aim

to avoid) and positive variations in returns (which they aim to achieve). Therefore, it

is essential to focus on measures known as "Downside risk," as defined by Sortino and

Meer (1991). CVaR is a preferred choice due to its nature as a coherent risk measure that

adheres to four fundamental axioms, as demonstrated by Pflug (2000): (i) monotonicity,

(ii) invariance translation, (iii) positive homogeneity, and (iv) subadditivity, as defined by

Artzner et al. (1999). CVaR is also convex, as demonstrated by Rockafellar and Uryasev

(2000). This allows us to find a unique solution in portfolio optimization problems.

Additionally, some authors argue that the distribution of returns is considered nor-

mal, with a mean µ and variance σ2, r ∼ N(µ, σ2); nevertheless, returns exhibit different

stylized facts: (i) the distribution is not normal, (ii) they approximate a random walk, and

(iii) there is a positive dependence between absolute (or quadratic) returns, as observed

by Taylor (2011).

These atypical behaviors can be partially attributed to the existence of volatility

clusters. This means that during periods of crisis or instability, different financial assets

tend to move together, resulting in distinct patterns of market behavior. The presence

of volatility clustering serves as a prominent indicator of non-normality within the daily

return distribution. Therefore, by implementing a mixture probability distribution, we can

enhance the model’s capacity to effectively capture the stylized facts, a crucial aspect in

mitigating extraordinary losses.

Given that we are working with a set of financial instruments, establishing their

interrelationships is essential. One straightforward approach involves using linear corre-

lation to model asset dependencies. However, as Pfaff (2012) asserts, this is accurate only

if the assets are jointly elliptically distributed, which does not apply to our specific sce-

nario. To overcome this limitation and account for different distribution patterns, copula
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functions prove useful. They enable a more precise adjustment of relationships between

assets, especially when the distribution is non-elliptical, a common occurrence in finan-

cial markets. A mixture of copula functions allows modeling a wider range of possible

multivariate dependence structures of the assets.

Kakouris and Rustem (2014) proposed the utilization of a mixture of Archimedean

copulas. Copulas capture the dependency between the marginal distributions of the ran-

dom variables rather than the dependency between the variables themselves. A notable

advantage of employing copulas is the ability to separate the selection of multivariate

dependence from the selection of the univariate distributions. A mixture of copula func-

tions allows modeling a wider range of possible multivariate dependence structures of the

assets.

In this work, we apply the Worst Case Mixture-Copula for Mean-CVaR optimiza-

tion to 19 ETFs different countries indexes from January 2013 to June 2023, contributing

to a comprehensive analysis and meaningful insights into the performance of our portfo-

lio optimization strategy. This paper is structured as follows: in Section 2, we provide a

comprehensive literature review in portfolio optimization and risk management. Section

3 outlines the methodology, including mathematical techniques employed and the empir-

ical strategy. Section 4 describes the data and results. Finally, in Section 5, we conclude

our study, summarizing the findings and discussing their implications for future works.
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2 LITERATURE REVIEW

2.1 EVOLUTION OF PORTFOLIO OPTIMIZATION MODELS

While studying information transmission through communication channels, Kelly

(1956) provides a practical example addressing the portfolio optimization problem. The

example involves a gambler who uses received information to profit from their bets. The

results demonstrate that, in each round, the player maximizes the logarithm of the ex-

pected capital because in a sequence of repeated bets, where the law of large numbers

applies, the gambler’s fortune depends only on the predetermined percentage of capital to

be wagered.

Markowitz (1952) proposed another approach to analyzing agent preferences. He

argues that investors should not only consider the expected return of each asset but also

the associated risk and their correlation with one another. Therefore, they should diversify

their capital to find the weights of the optimal portfolio, which maximizes return subject

to minimum variance 1.

In his analysis, Latane (1959) proposed the use of additional criteria for finan-

cial asset allocation strategies. He acknowledges that while Markowitz has developed a

method for selecting efficient portfolios, there is still a need to provide objective ways to

adjust the risk aversion indicator. His process is divided into three parts, with a primary

objective, a secondary objective, and a strategy definition criterion. Based on Bernoulli,

the conclusion of the analysis suggests that a portfolio manager maximizes wealth in the

long term by: (i) maximizing mathematical expectation, (ii) maximizing expected utility,

and (iii) choosing the investment portfolio with the highest probability of success.

The divergences among the presented models have generated different stances

within the academic community and the financial industry. According to Samuelson

(1963), the use of a logarithmic utility function by economic agents would violate the as-

sumption of rational behavior because, for a given level of risk aversion, the choices made

would be inconsistent, resulting in what is known as the "Samuelson Fallacy" concerning

the law of large numbers. Although, Thorp (1975) counters this argument by highlight-

ing the distinction between different types of utility theories 2 and asserting that the use

1This optimal portfolio is found on the efficient frontier.
2Thorp compares three types of utility theory: Descriptive - when observed data is mathematically

adjusted, Predictive - which explains observed data, and Prescriptive - used to guide behavior to achieve a
specific goal.
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of logarithmic utility is prescriptive, meaning it guides decision-making for groups and

institutions aiming to maximize returns. Furthermore, it emphasizes that by maximizing

logarithmic utility, portfolios with a higher probability of losses are eliminated, partially

reducing the risk.

Recently, Carr and Cherubini (2022) published a study aiming to resolve the de-

bate surrounding the use of logarithmic utility in wealth maximization. They propose a

new definition of market equilibrium that does not refer to a specific individual but only

to laws governing the excess return of an investment portfolio. By employing power laws

to maximize wealth, the authors argue that composition rules cannot be arbitrary, and the

event’s dynamics do not depend on the investor’s behavior, but rather on the nature of the

market itself. The economic model developed indicates that price speculation includes a

process governing time dynamics and that if trading time is stochastic, the average returns

must account for this randomness. Two dynamic models are introduced, with the first one

using the Variance Gamma (VG) distribution, yielding the same wealth function proposed

by Samuelson but without the inclusion of a utility function. In the second case, a model

of Inverse Gaussian (NIG) distribution is used, resulting in a quadratic wealth function

similar to Markowitz’s approach. In both cases, the impact of optimal portfolio growth is

isomorphic to an increase in risk aversion, and the parameter playing the role of the risk

aversion index is the variance of the stochastic clock 3.

2.2 FROM VAR TO CVAR IN PORTFOLIO OPTIMIZATION

Over the years, the process of quantifying risk has become an indispensable com-

ponent of investment decision-making, particularly when confronted with the volatility of

stock market crashes, as highlighted by Kakouris and Rustem (2014). The continuously

evolving financial landscape has compelled investors to reorient their attention towards

effectively gauging risks and potential losses, even in relatively stable market conditions,

as articulated by Pfaff (2012).

Prominent financial institutions have pioneered various risk measurement method-

ologies, one of which is Value at Risk (VaR), introduced by J.P. Morgan in the mid-1980s,

as documented in Longerstaey and Spencer (1996), Morgan et al. (1996). While VaR sat-

isfies three out of the four axioms necessary to qualify as a coherent risk measure, it falls

3The idea behind this process is to link return volatility to the flow of market information, which is not
always uniform over time and often not directly observable. See Geman (2009).
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short in subadditivity, as pointed out by Zhu and Fukushima (2009). Consequently, in

scenarios involving portfolio optimization with multiple assets under consideration, there

is no guarantee that the portfolio’s VaR will be lower than the sum of individual VaRs.

This potential outcome may lead to a misleading conclusion that diversification

lacks merit. Therefore, as proposed by Rockafellar and Uryasev (2002), it is advisable to

conduct optimizations subject to the minimum Conditional Value at Risk (CVaR) 4, also

known as Expected Shortfall (ES), elaborated by Szego (2005). Furthermore, it has been

established that CVaR is a convex function for both continuous and discrete distributions.

This property enables the reduction of optimization problems to linear programming, fa-

cilitating the efficient optimization of portfolios with large dimensions.

2.3 ROBUST MODELING TECHNIQUES AND DEPENDENCE STRUCTURES

In the pursuit of constructing investment portfolios that demonstrate resilience in

the face of dynamic market conditions, a major shift in portfolio optimization methodol-

ogy has emerged. Traditional approaches, reliant on single sets of assumptions or histor-

ical data, have shown vulnerability to extreme market events, which can severely impact

portfolio performance. In response to these challenges, Fabozzi et al. (2007) suggests

incorporating a variety of scenarios and potential risks into the portfolio construction pro-

cess, rather than relying on a single set of assumptions. This approach helps to reduce the

impact of crashes or bubbles on the performance of the investment portfolio.

Significant advancements have been made in using econometric models to esti-

mate the volatility of financial assets. An important approach is the ARCH model intro-

duced by Engle (1982) and applied to finance by Bollerslev, Chou and Kroner (1992),

which assumes that the variation in returns of a financial asset changes over time and

depends on its own past returns. The utility of the ARCH model in finance is widely

recognized and has been applied in various areas, including asset pricing, portfolio opti-

mization, and risk management.

In another work, Bollerslev, Engle and Wooldridge (1988) propose a version of the

CAPM model that takes into account time-varying covariances between the returns of dif-

ferent assets. Unlike the traditional CAPM, which assumes that covariances between asset

returns are constant over time, the model proposed by Bollerslev, Engle, and Wooldridge

4CVaR serves as a tail risk metric, representing the anticipated loss when returns dip below the VaR
threshold at a specified confidence level.
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incorporates the idea that these covariances change over time. This is particularly impor-

tant because the assumption of constant covariances can lead to imprecise estimates of

expected returns and risk. To explain volatility variation, a multivariate GARCH model

is used, allowing for the estimation of time-varying covariance matrices between the re-

turns of different assets. Applying this model to a dataset of stock returns revealed that

time-varying covariances have significant effects on expected returns and risks.

Moreover, the use of copulas as a way to model the dependence structure between

credit risks in a portfolio was proposed by Li (2000). However, this model was criticized

for assuming that the dependence structure between credit risks was stable over time,

which proved to be a major flaw during the financial crisis when correlations between

different assets suddenly became highly correlated. Engle (2002) demonstrated that ana-

lyzing dynamic correlations is more suitable, as the return of financial assets is positively

correlated with market volatility.

Other authors, such as Cherubini, Luciano and Vecchiato (2004) and McNeil, Frey

and Embrechts (2015), have also made significant contributions to the use of copulas in

finance. Christoffersen (1998) proposed the use of copulas to estimate risk measures by

modeling the dependence between different financial assets. By modeling the dependence

structure with copulas, we can estimate the joint distribution of different financial assets

and calculate measures such as VaR and ES that take into account the joint behavior of

assets. Christoffersen showed that using copulas can lead to more accurate risk estimates

compared to traditional

Moreover, a model that aims to address the distribution issue was proposed by Zou

and Zhu and Fukushima (2009). The authors applied a robust worst-case technique in this

domain. However, they also acknowledged the possibility of assuming a multivariate

distribution among the assets. Hu (2006) and Kakouris and Rustem (2014) explain that

relying on a Gaussian distribution implies that the probability of losses is equal to the

probability of gains. Nevertheless, in the context of financial markets, assets tend to

exhibit stronger co-movements during crises. As a result, the use of a combination of

Archimedean copulas was suggested to enhance data fitting. A notable advantage of

employing copulas is the ability to separate the selection of multivariate dependence from

the selection of the univariate distributions, emphasized by Nelsen (2000).
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2.4 INNOVATIONS IN ASSET ALLOCATION

New methods for asset selection have continued to be developed based on theo-

retical frameworks. Luca, Rivieccio and Zuccolotto (2010) devised a heuristic for asset

selection that combines machine learning and copulas. Three steps were taken in the

article: (i) application of univariate AR-GARCH models, (ii) asset selection using data

mining techniques, the random forest algorithm 5, to filter assets with lower lower-tail

dependence, and (iii) copulas to estimate lower-tail dependence coefficients.

A set of techniques was proposed to deal with uncertainty in input data by Prado

(2016). One of the main challenges in portfolio optimization is that ideal portfolio weights

obtained using historical data may not perform well when applied to out-of-sample future

data. This is known as overfitting. To address this issue, Lopez de Prado introduced a new

method called the Hierarchical Risk Parity (HRP) algorithm, based on machine learning

techniques. The HRP algorithm offers several advantages over conventional portfolio

optimization methods. In particular, it is less susceptible to fluctuations in input data and

can adapt to new market conditions with greater flexibility. Moreover, it tends to generate

more broadly diversified portfolios, which can reduce the risk of significant losses.

Finally, in the book "Machine Learning for Asset Managers," Prado (2020) ex-

plores various techniques that make use of supervised and unsupervised machine learn-

ing algorithms to address issues such as numerical instability, noise elimination resulting

from substitute effects and multicollinearity, as well as improving prediction accuracy

and identifying the importance of each variable. The book also provides practical guid-

ance for financial professionals to achieve more reliable results in their work, drawing on

economic theories.

2.5 EVALUATING INVESTMENT PORTFOLIO PERFORMANCE

Up to this point, we have discussed decision-making methods for investments.

Nonetheless, it is equally important to assess whether the choices made were the best

possible ones. In this regard, Sharpe (1963) proposes the most famous indicator for eval-

uating investment portfolios. For example, the Markowitz model indicates that for two

portfolios with the same variance, the one with the higher expected return should be se-

5This algorithm constructs multiple decision trees using subsets of variables and random observations
from the dataset and aggregates the predictions of each decision tree to obtain a final prediction.
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lected. Similarly, for two portfolios with equivalent expected returns, the one with lower

variance should be chosen. The best combination of assets is the one found on the effi-

cient frontier, tangential to the objective function. This metric, called the Sharpe ratio,

not only serves as an evaluation measure but also suggests the percentage that investors

should allocate to equities and risk-free assets.

There are other performance metrics available in the literature. For instance,

Jensen’s alpha measures the excess return of a portfolio over the expected return. Alpha

assesses the manager’s ability to generate gains independently of market movements. A

positive alpha indicates that the manager has added value, while a negative alpha suggests

that the results fell short of expectations, as explained by Jensen (1969).

The Treynor ratio adjusts the excess return relative to the risk (measured by beta)

assumed by the manager. This measure represents the portfolio’s risk that cannot be

eliminated through diversification, i.e., systematic risk. A higher Treynor ratio indicates

higher returns generated in relation to the amount of assumed systematic risk, as explained

by (TREYNOR, 1961).

Both measures align with the famous Capital Asset Pricing Model (CAPM) pro-

posed by Sharpe (1964). This model assumes that investors are rational and risk-averse,

demanding compensation for bearing risk. Consequently, the expected return can be ex-

plained by the risk-free rate, the risk premium 6, and an idiosyncratic component.

More robust measures have been proposed by Bailey and Prado (2014) to address

the issue of selection bias when backtesting potential trading strategies. The authors high-

light the dangers of encountering false positives, which can lead investors and researchers

to make Type I errors, by not identifying false positives. The proposed indicator, the De-

flated Sharpe Ratio, is designed to address several issues commonly encountered when

assessing the statistical significance of the Sharpe Ratio. It takes into account factors such

as multiple trials, non-normal returns, and shorter sample lengths, which can potentially

distort the accuracy of the Sharpe Ratio. Please be aware that the primary goal of this

measure is to prevent overfitting.

6This relationship is given by: β × (Rm −Rf ).
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3 METHODOLOGY

CVaR is a widely used risk measure in portfolio optimization, offering a more

comprehensive view of risk by considering not only the probability of losses but also

their magnitude. By incorporating copulas that capture asset dependencies, we can en-

hance portfolio modeling, enabling the construction of portfolios that are more resilient

to complex and volatile market scenarios. The combination of CVaR and copulas opens

up new opportunities for risk management and asset allocation in investment contexts,

providing a more sophisticated and robust approach to portfolio optimization.

In this chapter, we will explore the application of CVaR in portfolio optimization,

with a focus on integrating copulas to more accurately represent interactions between

financial assets. We will delve into the theory behind CVaR and its superiority compared

to traditional metrics like Value at Risk (VaR). Additionally, we will examine copulas as

an effective tool for modeling asset dependence and discuss how they can be incorporated

into the portfolio optimization process. Therefore, we will present a strategy following

the steps outlined in Alovisi (2019). Last, we show a bunch of performance measures to

evaluate results.

3.1 THEORETICAL FOUNDATION

As previously mentioned, VaR is a common risk measure originally developed

by J.P. Morgan to manage financial risks in their investment portfolios. It helps calcu-

late the maximum expected loss over a defined period with a certain level of confidence.

However, VaR has its limitations. It doesn’t provide information about losses beyond the

estimated value at the chosen confidence level, and it is not suitable for optimizing port-

folios because, in certain instances, the combined risk of individual assets may be lower

than the overall portfolio risk due to the lack of subadditivity, as pointed out by Zhu and

Fukushima (2009).

In mathematical terms, VaR is defined as follows:

Pr(x ≤ V aR(X)) = 1− β

V aRβ(X) = inf{x |Pr(X > x) ≤ 1− β}

= inf{x |FX(x) ≥ β}

(3.1)



19

This represents the probability that a random variable X falls below or equals its

V aR at a confidence level of 1 − β. V aRβ(X) is essentially the infimum of x such that

the probability of X exceeding x is less than 1−β, a condition which can be equivalently

expressed as FX(x) ≥ β.

On the other hand, CVaR is a measure that derives from VaR but offers several

advantages. While VaR provides a single point estimate of the maximum potential loss,

CVaR goes a step further by considering the entire tail of the loss distribution beyond the

VaR threshold. This means that CVaR takes into account not only the probability of loss

exceeding a specific threshold but also the expected magnitude of those losses.

Moreover, CVaR is coherent, meaning it satisfies certain mathematical properties

that VaR does not, making it a more suitable choice for risk optimization and manage-

ment. It respects subadditivity, ensuring that the risk of a portfolio is always lower than or

equal to the sum of individual asset risks, addressing one of VaR’s limitations in portfolio

optimization.

Conditional Value at Risk at a confidence level 1 − β, denoted as CV aRβ(X),

represents a critical risk measure used to gauge the expected loss under extreme scenarios.

It is calculated as the expected value of the random variable X conditional on X being

less than or equal to its Value at Risk (V aR) at the same confidence level. This can be

expressed mathematically as follows:

CV aRβ(X) = E[X|X ≤ V aRβ(X)]

=
1

1− β

∫ 1−β

0

V aRα(X) dα
(3.2)

In essence, CV aRβ(X) provides valuable insights into the potential loss magni-

tude beyond the V aRβ(X) threshold, taking into account extreme scenarios with a confi-

dence level of 1− β.

In the context of portfolio optimization, according Pflug (2000), where w rep-

resents a vector of portfolio weights, X is a set of feasible portfolios subject to linear

constraints, and r is a vector denoting market variables affecting asset losses, a loss func-

tion f(w, r) must be introduced. This loss function depends on the decision vector w,

a member of any arbitrary subset X ∈ Rm, and the random vector r ∈ Rm. It effec-

tively combines the weight vector w and the return vector r to capture the joint impact

of portfolio weights and market outcomes. This formalism is integral to various portfolio

optimization problems, including the one outlined in Silva and Ziegelmann (2017).



20

CV aRβ =
1

1− β

∫
f(w,r)≥V aRβ(w)

f(w, r)p(r) dr (3.3)

Let’s see the four axiom defined by Artzner et al. (1999) for a risk measure to be

coherent. A brief explanation of the axioms is given by Pfaff (2012). Let ρ denote a risk

measure and ρ(L) the risk value of a portfolio, where the loss L is a random variable.

a) Monotonicity: For two given losses, L1 and L2, this principle states that L1 ≤

L2 =⇒ ρ(L1) ≤ ρ(L2).

b) Translation invariance: It postulates that the risk measure is specified in the same

terms as the losses and is formalized as ρ(L1) = ρ(L) + l, l ∈ R, where l ∈ R.

c) Positive homogeneity: If ρ(λL) = λρ(L), λ > 0, the axiom of positive homogene-

ity is met. If the size of a portfolio position directly affected how risky it was, this

premise would be broken.

d) Subadditivity: This axiom asserts that ρ(L1 + L2) ≤ ρ(L1) + ρ(L2). In other

words, due to the advantages of diversification, the portfolio risk must be lower

than or equal to the total of the individual risk measurements of the assets included

in the portfolio.

It’s worth emphasizing that for a risk measure to exhibit convexity, it must respect the

axioms of positive homogeneity and subadditivity.

It is obvious that CVaR optimization employs VaR in its definition given equation

3.3. As previously established, VaR is neither convex nor linear. In their major contri-

bution, Rockafellar and Uryasev (2000) defines a more straightforward auxiliary function

that may be used to calculate CVaR without first computing VaR:

Fβ(w, α) = α +
1

1− β

∫
f(w,r)≥α

(f(w, r)− α) p(r) dr, (3.4)

where F (w, α) is the non-decreasing and right-continuous cumulative distribution func-

tion for the loss function f(w, r) with respect to α. It is also shown that Fβ(w, α) is

convex with respect to α that minF = minCV aR. This implies that minimizing F leads

to minimizing CVaR.

Now, suppose we do not have an analytical representation to describe the prob-

ability of returns; to address this, we can employ an approximation. Let’s consider K

different scenarios, which can be historical or simulated returns, represented as r1, r2, up

to rK . Equation 3.4 can be approximated using the equation below:
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Fβ(w, α) = α +
1

(1− β)K

K∑
k=1

(f(w, rk)− α)+. (3.5)

Equation 3.5 assists in estimating CVaR. Essentially, it involves calculating a

weighted average of the discrepancies between f(w, rk) and a reference value α for each

of the scenarios, where k = 1, 2, ..., K represents the complete set of available scenarios.

To handle the distribution of asset returns, we can resort to the use of copulas.

To address various distribution patterns, copula functions are valuable. They enable pre-

cise adjustment of relationships between assets, particularly when the distribution is non-

elliptical, which is common in financial markets.

Copulas are multivariate distribution functions whose marginals are uniformly dis-

tributed in [0, 1]. Sklar’s Theorem teaches us that we can represent the joint distribution

of multiple random variables using a copula function that depends solely on the individual

distributions of each variable, referred to as marginals.

Theorem 3.1.1 (Sklar’s Theorem) Let F be an n-dimensional distribution function with

margins F1, ...Fn. Then there exists an n-copula C such that for all x ∈ Rn,

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (3.6)

Furthermore, if F1, ...Fn are continuous, then C is unique.

In other words, Sklar’s Theorem demonstrates how to characterize the relation-

ships among multiple random variables in terms of copulas, which describe the depen-

dencies between the random variables and their individual distributions. This simplifies

our analysis significantly.

Let F be an n-dimensional distribution function with margins F1, ...Fn and let C

be and n-copula. Then, for any u = (u1, ..., un) ∈ U [0, 1]n,

Corollary 3.1.1.1

C(u1, ...un) = F (F−1
1 (u1), ..., F

−1
n (un)), (3.7)

where F−1
i , i = 1, ..., n are the quasi-inverses of the marginals.

Kakouris and Rustem (2014) demonstrated that a relationship between the proba-

bility density functions and the copulas can be derived using Theorem 2.3.1 and Corollary

2.3.1.1. An n-copula’s copula density is defined as follows:
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Definition 3.1.1 Let f be the multivariate probability density function the probability

distribution F and f1, ..., fn the univariate probability density functions of the margins

F1, ..., Fn. The copulas density function of an n-copula C is the function c: U [0, 1]n 7→

[0,∞) such that
∂F (x1, ..., xn)

∂x1, ..., ∂xn

= c(u1, ..., un)
n∏

i=1

fi(xi) (3.8)

The concept enables us to distinguish between the dependence structure symbol-

ized by C and the modeling of the marginals Fi(xi). The join probability function is then

compared to what it would have been under independence to create the copula probability

density function. It is feasible to think of the copula as the adjustment we must do in

order to change the independent probability density function into the multivariate density

function, according to the Silva and Ziegelmann (2017) interpretation. In other words,

copulas break down the joint p.d.f. from its margins.

Similar to Hofert et al. (2018b), we adopt a two-step approach for estimating mul-

tivariate distributions. Firstly, we determine the marginal distribution for each variable

xi, and then we establish the relationship between the filtered data from step one. This

methodology doesn’t assume joint behavior among the marginals, allowing us to gener-

ate joint distributions independently. Copula function modeling thus offers flexibility for

joint distribution modeling, as elaborated in Fan and Patton (2014) and Patton (2008) for

econometrics and finance. For simulating joint probability density functions (p.d.fs), we

consider two distinct copula families: Archimedean Copulas and Elliptical Copulas as

described in Nelsen (2000) and Pfaff (2012).

Elliptical copulas, like Gaussian or t-student copulas, implicitly capture depen-

dence via distribution parameters. While elliptical copulas are easy to simulate, their

symmetry may not align with the skewed empirical distributions typically seen in finan-

cial data. The Gaussian copula, commonly used in modeling, has zero tail dependency,

limiting its use in risk modeling. On the other hand, the Student’s t-copula, another ellip-

tical copula, exhibits non-zero tail dependency.

Archimedian copulas are not always symmetric, unlike elliptical copulas, because

tail dependency is modeled by the specific copula-generating function. The Clayton Cop-

ula and the Gumbel Copula are two practical and well-known Archimedean copulas, each

with unique properties. You may find more extensive literature on Archimedian copulas

in Cherubini, Luciano and Vecchiato (2004); Hofert et al. (2018b); Nelsen (2006).

We shall now elucidate the attributes of three copulas employed for modeling the

interdependence among asset returns:
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a) Clayton Copula: To model the dependence between random variables, especially

in the lower tails of their distributions. It is particularly useful for capturing depen-

dence in low-probability scenarios, such as extreme events in the financial market.

b) t-Copula: Very useful when aiming to capture dependence in both the lower and

upper tails of the distributions of random variables. It is suitable for handling ex-

treme or rare events where the tails of the distribution are heavier than the Normal

distribution.

c) Gumbel Copula: A copula function that describes the dependence between ran-

dom variables, with a focus on the upper tails of their distributions. In contrast to

Clayton, it investigates events in the upper tail, significantly above the average.

This approach allows us to explore a wide range of dependence structures among

assets, with the goal of more accurately capturing how these individual assets relate to

each other. The choice of copulas and their weights is grounded in previous studies, such

as those by Pfaff (2012) and Hu (2006).

Kakouris and Rustem (2014) established the framework for utilizing copula func-

tions in conjunction with Conditional Value at Risk (CVaR). Let w ∈ W represent a

decision vector, u ∈ U [0, 1]n a random vector following a continuous distribution with

a copula density function denoted as c(.), and a set of marginal distributions F (r) =

(F1(r1), ..., Fn(xn)) where u = F (r). The corresponding equation, incorporating copula

into equation 3.5, is given by:

Gd
β(w, α) = α +

1

(1− β)Ki

K∑
k=1

(f(w, ui
k)− α)+, i = 1, 2...l. (3.9)

Equation 3.9 can then be evaluated using Monte Carlo simulations. This is accomplished

by sampling realizations of the copulas Ci(.) using the previously determined marginals.

Finally, following Wuertz et al. (2010), portfolio optimization involves minimiz-

ing Conditional Value at Risk (CVaR) under constraints. This involves finding optimal

asset weights (w) to achieve a target return (R) while considering a desired CVaR signif-

icance level (β). Rockafellar and Uryasev (2000) introduced an approach that simultane-

ously determines portfolio weights, CVaR, and VaR within a feasible set. When an ana-

lytical representation for density is unavailable, they proposed an approximation method.

If both the feasible set (X) and the loss function (f(w, rj)) are convex, CVaR optimiza-

tion can be transformed into a Linear Programming problem, allowing efficient solutions.

From equation 3.9 we have:
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min
w∈Rn,z∈RK ,α∈R

α +
1

(1− β)K

K∑
i=1

zi,

s.a zi ≥ f(w, uk)− α, i = 1, ..., K

zi ≥ 0, i = 1, ..., d,

w ∈ W,

wT µ̂ ≥ R,

wT1 = 1,

(3.10)

3.2 OPTIMIZATION AND STRATEGY

We will present a strategy following the steps outlined in Alovisi (2019). Mod-

ifications were made in our study to explore the effects of sample size for a period of

T = {252, 504, 1260} days, representing one year, two years, and five years, respectively.

In order to ensure more accurate results and to mitigate bias, transaction costs of 0.0003

or 0.03% were included in our analysis, aligning with the methodology of Frazzini, Israel

and Moskowitz (2018).

An optimization with varying sample sizes was conducted, employing the method

described by Xi (2014) to estimate our model and capture market dynamics. The portfo-

lio’s performance one day ahead was projected through simulations using the estimated

model, implementing a rolling window approach. This allowed for insights into future

asset performance. To adapt to changing market conditions and align with our objec-

tives, the portfolio was rebalanced daily. This resulted in a total of L − T optimizations,

depending on the length of the period.

Here’s a breakdown of the optimization process:

a) Optimization 1: Data spanning from day 1 to day T was utilized to execute the

strategy and determine portfolio weights for day T + 1;

b) Optimization 2: Data spanning from day 2 to day T +1 was utilized to execute the

strategy and determine portfolio weights for day T + 2;

c) Optimization 3: ...

d) Optimization L− T : Data spanning from day L− T to day L− 1 was utilized to

execute the strategy and determine portfolio weights for day L;
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We were able to efficiently modify our portfolio to varied market conditions and

acquire a complete grasp of the asset’s performance across diverse time frames by contin-

uously implementing this methodology for different in-sample sizes. The rolling window

technique kept our model current and captured the most recent market conditions, allow-

ing us to make informed decisions and improve portfolio performance.

To implement the Worst Case Mixture-Copula Mean-CVaR portfolio optimiza-

tion, we primarily follow the procedures described in Christoffersen (2011), Pfaff (2012),

Hofert et al. (2018a), Hofert et al. (2018b) and Xi (2014). The optimization steps previ-

ously demonstrated are reiterated below. Additionally, for comparative purposes, we also

consider the estimation of two other portfolios: a Gaussian Copula Portfolio and an Equal

Weight Portfolio. These steps are taken into account when conducting benchmarking.

a) First, an AR(1)-GARCH(1,1) model with skewed t-distributed innovations was fit-

ted to each univariate time series.

b) A standardized residuals vector was created for each asset using the estimated para-

metric model.

ϵ̂t,j
σ̂t,j

, t = 1, . . . , (L− T ) and j = 1, . . . , 19. (3.11)

c) The Skewed-t distribution of the GARCH error process was used to parametrically

calculate pseudo-uniform variables from the standardized residuals. The empiri-

cal distribution functions of the standardized residual vectors could also be used

to accomplish this semiparametrically, as shown in Pfaff (2012) and Hofert et al.

(2018a).

d) The multivariate Clayton-t-Gumbel Mixture Copula model was calculated using

data transformed to [0, 1] margins from the linear combination of copulas,

CCtG(Θ, u) = π1C
C(θ1, u) + π2C

t(θ2, θ3, u) + π3C
G(θ4, u), (3.12)

where Θ is the vector of pseudo-uniform observations for each asset, πi is a copula

weight parameter such that πi ∈ [0, 1] and
∑

πi = 1, and u is the vector of Clayton,

t, and Gumbel copula parameters.

The copula parameters and weights were estimated by minimizing the negative log-

likelihood of the weighted densities from the Clayton, t, and Gumbel copulas. Cop-

ula densities were calculated with Hofert et al. (2018b). Based on the work of Ye
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(1987), a general non-linear augmented Lagrange multiplier technique solver was

used. This was done in R using "Rsolnp" package.

e) K = 1000 scenarios of random variates were generated for the pseudo-uniformly

distributed variables using the dependence structure provided by the calculated

Copula Mixture.

f) For these Monte Carlo drawings, zj,t, Skewed-t quantiles for j = 1, . . . , 19 and

t = 1, . . . , (L− T ) were computed.

g) K scenarios of simulated daily log-returns for the out-of-sample following day, we

are forecasting, were determined for each j asset,

rj,t = Xj + ϵj,t, (3.13)

where Xj is provided by the AR(1) model,

Xj,t = ϵj,t + ϕj,iXj,t−i (3.14)

and ϵj,t is the error term following a GARCH(1,1) process given as

ϵj,t = σj,t zj,t

σ2
j,t = αj,0 + αj,1 ϵ

2
j,t−1 + βj,1 σ

2
j,t−1

(3.15)

h) Finnaly, portfolio weights were optimized by minimizing CVaR with a confidence

level of 2.5%, as proposed by Ramos et al. (2023). The simulated data was used

as input, following the works of Wuertz et al. (2010), in which the approach of

Rockafellar and Uryasev (2002) had been used to optimize CVaR with a linear

program. The optimization ran for target daily returns equal to the transaction costs

of 0.0003 or 0.03%, to assess optimization performance.

For each period, same steps are taken to optimize the Gaussian Copula Portfolio.

However, because estimating a mixture of copula functions is unnecessary, step (4) of the

optimization only fits a Gaussian Multivariate Copula to given pseudo-uniform data using

the Hofert et al. (2018b) method.

For each period in (L − T ), the respective estimated vector of asset weights and

the data-set’s log returns are used to construct out-of-sample portfolio returns for mixture
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of copulas portfolios and Gaussian copulas portfolios, as shown below.

Rport
t =

19∑
j=1

wj,t rj,t, t = 1, ..., (L− T − 1) (3.16)

For EWP, the weight of each asset is simply 1/N .

Several performance measures were produced using calculated out-of-sample port-

folio returns for the Mixture Copula Portfolio, Gaussian Copula Portfolio, and Equal

Weighted Portfolio, as shown in Peterson and Carl (2019).

3.3 PERFORMANCE MEASURES

The performance of the investment portfolio is evaluated using various perfor-

mance measures, as computed in Peterson and Carl (2019) and based on the methodology

presented in Bacon (2008). The following performance measures are utilized to assess

the portfolio’s risk and return characteristics:

1. Annualized Return: The annualized return measures the average percentage gain

or loss of the investment per year.

2. Annualized Standard Deviation: This metric quantifies the volatility or risk of the

investment by measuring the dispersion of returns around the mean over a one-year

period.

3. Sharpe Ratio: The Sharpe ratio evaluates the risk-adjusted return by comparing

the portfolio’s excess return over the risk-free rate to its standard deviation.

4. Sortino Ratio: The Sortino ratio is a modified version of the Sharpe ratio that

considers only downside risk, which is calculated using the semi-deviation.

5. Omega Ratio: The Omega ratio assesses the probability-weighted ratio of gains to

losses, providing a measure of upside potential relative to downside risk.

6. V aR0.975 (Value at Risk): The V aR0.975 measures the maximum expected loss

with a 97.5% confidence level over a specified time horizon.

7. CV aR0.975 (Conditional Value at Risk): Also known as Expected Shortfall, CV aR0.975

quantifies the average loss beyond the V aR0.975 level.

8. Semi-Deviation: The semi-deviation calculates the volatility of returns below the

mean, focusing on downside risk.
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9. Worst-Drawdown: The worst-drawdown measures the maximum percentage de-

cline in the portfolio’s value from a previous peak to the lowest subsequent point.

These performance measures provide a comprehensive assessment of the invest-

ment portfolio’s risk and return characteristics, allowing for a better understanding of its

performance in different market conditions.

The following performance measures are computed in Peterson and Carl (2019)

and based on Bacon (2008): annualized return, annualized standard deviation, annual-

ized Sharpe ratio, Sortino ratio, Omega ratio, V aR0.975, CV aR0.975, Semi-Deviation and

Worst-Drawdown.

The annualized return is a measure used to determine the average rate of return

per year over a specific investment period. It is commonly calculated as follows:

An. Ret. =

(
252∏
i=1

(1 +Ri)
1

252

)
− 1 (3.17)

Furthermore, the annualized Standard Deviation is the rescaled daily Standard Deviation

and can be calculated as

An. Std. Dev. = σ ×
√
252. (3.18)

The Sharpe ratio is a widely used metric in finance to assess the risk-adjusted

performance of an investment or portfolio. It quantifies the excess return generated per

unit of risk taken, Sharpe (1966). The formula for the Sharpe ratio is given by:

SR =
E[R]−Rf

σ
. (3.19)

The Sortino ratio is a performance metric extensively used in finance to estimate

an investment’s or portfolio’s risk-adjusted return. It is based on the Sharpe ratio concept,

but it focuses entirely on downside risk, which is typically evaluated by the standard

deviation of negative returns. The Sortino ratio is determined by dividing the investment

or portfolio’s excess return over a defined target return by the downside risk. It tries to

provide a more relevant measure of risk-adjusted performance, especially in instances

when investors are concerned about downside volatility, see Sortino and Price (1994).

Sortino =
E[R]−Rf

σ− (3.20)

where σ− is the standard deviation of negative asset returns.
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The Omega ratio, on the other hand, is a performance indicator meant to assess the

asymmetry of returns and the chance of achieving a specific goal return. It evaluates the

full return distribution and assesses the likelihood of returns exceeding a specific target

or threshold level, see Keating and Shadwick (2002). The Omega ratio is the probability-

weighted average of positive returns divided by the probability-weighted average of neg-

ative returns. Beyond typical risk metrics, it provides useful insights into the possible

upside and downside of an investment or portfolio.

Ω(θ) =

∫∞
θ
[1− F (R)] dr∫ θ

−∞ F (R) dr
(3.21)

where F is the return’s cumulative probability distribution function and θ is the desired

return threshold determining what is regarded a gain against a loss. A higher ratio shows

that the asset generates more returns relative to losses for certain threshold θ, and hence

is favoured by investors.

Var and CVaR have already been defined in previous chapters.

The semi-deviation is calculated as follows:

Semi-Deviation =

√∑
Ri<R̄(Ri − R̄)2

N
,

where ri represents individual returns, R̄ is the mean return, and N is the number of

observations. The semi-deviation provides valuable insights into the asset’s performance

during periods of negative returns. Check Bodie, Kane and Marcus (2014)

The worst-drawdown is a measure that quantifies the maximum percentage de-

cline in a portfolio’s value from a previous peak to the lowest subsequent point. It helps

investors understand the largest loss they might have experienced during a specific invest-

ment period. The worst-drawdown can be calculated using the following formula:

Worst-Drawdown = Maximum Drawdown = max
i,j

(
Vi − Vj

Vi

)
× 100%,

where Vi is the portfolio’s value at time i, Vj is the lowest subsequent value after the

peak at time j, and maxi,j represents the maximum value over all peak-to-trough periods.

Check Bodie, Kane and Marcus (2014) for more information.



30

4 DATA AND CASE STUDY

The empirical research on the Worst Case Mixture-Copula Mean-CVaR portfolio,

as previously described, utilizes sample data from 19 ETFs available on Free Historical

Market Data - Stooq. These ETFs were selected based on the inclusion of G20 countries,

with the exception of Russia due to the absence of available data. EWA, EXS1, and

EXSA may encounter issues related to non-overlapping trading hours due to time zone

differences.

The daily log-returns of the selected ETFs were calculated based on closing prices.

The study period, spanning from January 2, 2013, to June 30, 2023, was chosen to provide

a substantial dataset for robust analysis and to encompass various market conditions. The

resulting dataset consists of L = 2692 observations, allowing for a comprehensive assess-

ment of portfolio performance and risk measures. Table 4.1 provides a comprehensive list

of the selected ETFs, including their respective countries, full names, and exchanges.

ETF Country Full Name Exchange
ARGT Argentina Global X MSCI Argentina ETF NYSE Arca
EWA Australia iShares MSCI Australia ETF ASX
EWZ Brazil iShares MSCI Brazil ETF NYSE Arca
EWC Canada iShares MSCI Canada ETF NYSE Arca
FXI China iShares China Large-Cap ETF NYSE Arca

EWQ France iShares MSCI France ETF NYSE Arca
EXS1 Germany iShares DAX UCITS ETF Xetra
INDA India iShares MSCI India ETF NYSE Arca
EIDO Indonesia iShares MSCI Indonesia ETF NYSE Arca
EWI Italy iShares MSCI Italy ETF NYSE Arca
EWJ Japan iShares MSCI Japan ETF NYSE Arca

EWW Mexico iShares MSCI Mexico ETF NYSE Arca
KSA Saudi Arabia iShares MSCI Saudi Arabia ETF NYSE Arca
EZA South Africa iShares MSCI South Africa ETF NYSE Arca
EWY South Korea iShares MSCI Korea ETF NYSE Arca
TUR Turkey iShares MSCI Turkey ETF NYSE Arca
EWU United Kingdom iShares MSCI United Kingdom ETF NYSE Arca
SPY United States SPDR S&P 500 ETF Trust NYSE Arca

EXSA European Union iShares STOXX Europe 600 UCITS
ETF

Euronext Amsterdam

Table 4.1: ETFs, Countries, Full Names, and Exchanges
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4.1 DESCRIPTIVE STATISTICS

From the collected adjusted prices for each ETF, we calculated the logarithmic

returns, as depicted in Figure 4.1. Additionally, a summary of statistics for the entire

sample period is presented in Table 4.2. These statistics provide valuable insights into the

historical distribution of returns for the selected data.

Figure 4.1: Log Returns

Source: Author’s own work

Two statistics that deserve special attention in the table are skewness and kur-

tosis. Notably, negative skewness indicates a return distribution with a longer left tail,

suggesting the presence of extremely negative returns. Conversely, a very high kurtosis

indicates the existence of heavier tails than the normal distribution, implying that returns

have a greater likelihood of reaching extreme values. These characteristics align with the

stylized facts of financial asset returns presented by Taylor (2011).

The insights above are crucial for comprehending the risks and potential rewards

of investing in financial assets and prompt the question of how these risks are distributed

over time. This question finds its answer in the presence of volatility clusters—periods

characterized by heightened asset price volatility. During such episodes, diverse assets

tend to move in tandem, giving rise to distinctive market behavior patterns. The non-

normal distribution of returns, exemplified by skewness and kurtosis, underscores the ne-
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ETF Min. 1st Q. Median Mean 3rd Q. Max. Skewness Kurtosis
ARGT -0.29 -0.0086 0.0006 0.0004 0.0101 0.10 -1.9764 27.6424
EIDO -0.15 -0.0079 0.0000 -0.0000 0.0082 0.14 -0.5315 9.4203
EWA -0.18 -0.0064 0.0003 0.0001 0.0071 0.13 -1.1350 22.8411
EWC -0.14 -0.0052 0.0006 0.0002 0.0058 0.12 -1.1270 24.3630
EWI -0.17 -0.0069 0.0007 0.0002 0.0083 0.11 -1.4798 15.4850
EWJ -0.10 -0.0050 0.0004 0.0002 0.0060 0.07 -0.5206 6.3646
EWQ -0.14 -0.0055 0.0006 0.0003 0.0068 0.09 -1.2070 15.0895
EWU -0.13 -0.0051 0.0005 0.0001 0.0060 0.11 -1.3594 18.4232
EWW -0.17 -0.0077 0.0000 0.0000 0.0086 0.08 -1.0387 9.7245
EWY -0.17 -0.0078 0.0000 0.0001 0.0086 0.12 -0.7468 11.4362
EWZ -0.26 -0.0116 0.0001 -0.0001 0.0123 0.16 -1.0798 13.1711
EXS1 -0.13 -0.0026 0.0000 0.0003 0.0039 0.21 1.8920 63.3013
EXSA -0.13 -0.0019 0.0000 0.0003 0.0034 0.16 0.5871 56.3795
EZA -0.16 -0.0109 0.0000 -0.0001 0.0112 0.10 -0.5740 5.4369
FXI -0.11 -0.0088 0.0000 -0.0001 0.0089 0.19 0.4166 9.6157
INDA -0.17 -0.0067 0.0003 0.0002 0.0080 0.12 -1.0409 16.2523
KSA -0.19 -0.0027 0.0000 0.0002 0.0037 0.15 -0.8038 41.9807
SPY -0.12 -0.0036 0.0005 0.0005 0.0055 0.09 -0.8170 14.4863
TUR -0.21 -0.0108 0.0000 -0.0002 0.0120 0.19 -0.5261 8.8241

Table 4.2: Summary Statistics of ETF Returns
Source: Author’s own work

cessity of employing risk models and investment strategies that account for these features.

For instance, a risk model assuming a normal return distribution may underestimate the

risks associated with assets susceptible to volatility clusters, potentially leading to subop-

timal investment decisions.

4.2 EMPIRICAL RESULTS

The empirical analysis compared the performance of Mixture Copula for Mean-

CVaR portfolios (MCP) against two benchmarks: an Equal Weight Portfolio (EWP) and

a Gaussian Copulas Mean-CVaR Portfolios (GCP), considering sample windows of 252,

504, and 1260 days. The results are presented in Table 4.3, indicating that the Mix-

ture Copula portfolios consistently outperformed the benchmarks in terms of return and

risk. The metrics include annualized return, annualized standard deviation, Sharpe ra-

tio, Sortino ratio, Omega Sharpe ratio, VaR at the 97.5% level, CVaR at the 97.5% level,

semi-deviation, and worst drawdown.

The analysis of the results reveals that portfolios constructed from simulated re-

turns using copula mixture exhibited superior performance when assessed by risk-return
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Metrics MCP 1Y MCP 2Y MCP 5Y GCP 1Y GCP 2Y GCP 5Y EWP
Annualized Return 0.0494 0.0790 0.1206 0.0490 0.0692 0.0648 0.0350
Annualized Std. Dev. 0.1498 0.1578 0.1730 0.1516 0.1630 0.1710 0.1798
Sharpe Ratio 0.3300 0.5005 0.6974 0.3232 0.4245 0.3791 0.1947
Sortino Ratio 0.0337 0.0484 0.0653 0.0329 0.0422 0.0383 0.0239
Omega Sharpe Ratio 0.0774 0.1112 0.1506 0.0755 0.0993 0.0896 0.0539
VaR (97.5%) -0.0195 -0.0198 -0.0214 -0.0202 -0.0209 -0.0207 -0.0223
CVaR (97.5%) -0.0294 -0.0307 -0.0338 -0.0308 -0.0331 -0.0349 -0.0348
Semi-Deviation 0.0071 0.0074 0.0080 0.0073 0.0077 0.0082 0.0085
Worst Drawdown 0.3268 0.3215 0.3057 0.3253 0.3372 0.3146 0.4380

Table 4.3: Performance Metrics
Source: Author’s own work

metrics such as the Sharpe ratio, Sortino ratio, and Omega Sharpe ratio. These portfolios

displayed lower levels of risk and experienced fewer financial losses during the evaluation

period, while still managing to achieve comparable or even superior returns compared to

other investment strategies.

Another crucial aspect to highlight is the substantial impact of transaction costs on

portfolio performance. The costs associated with executing the strategies were considered

in the backtest, and the results indicate that effective management of these costs played

a crucial role in the overall outcome. This underscores the importance of a strategic ap-

proach to handling transaction costs when developing and implementing copula mixture-

based investment strategies. In summary, the results suggest that the copula mixture ap-

proach can be a valuable tool for investors seeking to optimize the trade-off between risk

and return in their portfolios, especially when accompanied by careful consideration of

associated costs.

The following charts illustrate the performance of the portfolios under analysis,

with each chart addressing specific aspects. The top section of the charts displays the

cumulative returns over time, providing an overview of the portfolio’s growth or decline.

In the middle section, daily returns are shown, allowing for a more detailed analysis of

the portfolios’ daily fluctuations. Finally, in the bottom part, we find the drawdown chart,

which highlights periods when the portfolio experienced declines compared to its previous

values.

For the purpose of comparison, the charts are divided into three distinct figures,

each corresponding to a different time window: the first figure covers a 1-year window,

the second considers a 2-year period, and the third represents a 5-year time horizon. This

segmentation enables a comparative analysis of return trajectories and drawdown patterns

over these different time intervals, offering a comprehensive view of portfolio perfor-
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mance under various market conditions.

Each chart features three distinct lines: the black line represents the copula mix-

ture portfolio that achieved the best results, the red line corresponds to the Gaussian cop-

ulas portfolio, and the green line represents the equally weighted portfolio. This differen-

tiation allows for an immediate visual analysis of performance differences among these

strategies over time.

Figure 4.2: Portfolio construction with 1 year sample

Source: Author’s own work

Observing Figure 4.2, it becomes evident that the copula mixture portfolio achieved

the lowest levels of risk, as indicated by smaller drawdowns in the chart, especially during

periods of heightened market volatility. While the red line representing the Gaussian cop-

ula portfolio exhibited a final result quite close, it displayed greater volatility and larger

drawdowns compared to the copula mixture portfolio. In contrast, the green line repre-

senting the equally weighted portfolio showcased an intermediate performance.
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Figure 4.3: Portfolio construction with 2 year sample

Source: Author’s own work

In Figure 4.3, we observe a more substantial divergence in outcomes, underscor-

ing the increased effectiveness of copula mixture estimates in capturing market trends and

patterns as more information is incorporated. The black line, denoting the copula mix-

ture portfolio, continues to demonstrate the lowest risk levels, characterized by shallower

drawdowns, particularly during episodes of elevated market volatility. Consequently, the

disparities in portfolio returns become more pronounced, as the copula mixture portfo-

lio appears to outperform both the Gaussian copula and equally weighted portfolios by a

more substantial margin in the 2-year sample window.

The disparities become even more pronounced when the portfolio construction

window expands to 5 years. As depicted in Figure 4.4, during periods of heightened

market volatility, copula mixtures excel in capturing extreme values that contribute to

loss mitigation, particularly evident during the COVID-19 crisis. The chart demonstrates

that the copula mixture portfolios managed to navigate the turbulent market conditions

more effectively, leading to shallower drawdowns and demonstrating resilience during

extreme events.
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Figure 4.4: Portfolio construction with 5 year sample

Source: Author’s own work

Understanding the ramifications of the pandemic-induced drawdown on downside

risk and overall risk-adjusted performance is crucial, with a particular focus on the Sortino

Ratio and Omega Sharpe Ratio. These metrics shed light on how effectively the portfolios

managed losses during the pandemic. The MCP and GCP portfolios endured significant

drawdowns, with the 5-year MCP witnessing a worst drawdown of 30.57%, while the

5-year GCP experienced a worst drawdown of 31.46%. This amplified downside volatil-

ity had a noticeable impact on the Sortino Ratio and Omega Sharpe Ratio, resulting in

diminished values relative to the pre-pandemic period.

The notable superiority of the 5-year portfolio in contrast to the 1-year and 2-year

portfolios can be ascribed to the influence of the estimation window’s size (sample) on

portfolio performance. An extended investment horizon enables the portfolio to capi-

talize on a more extended period of market observations, thereby mitigating the impact

of short-term fluctuations and data noise. This protracted time frame provides a more

comprehensive perspective on market trends and economic cycles, enabling investors to

discern more substantial underlying patterns and make well-informed decisions.
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In conclusion, the empirical analysis strongly suggests that the worst-case Mix-

ture of Copulas Mean-CVaR portfolio is a superior choice for investors seeking improved

risk-adjusted performance over different time horizons, especially for longer investment

periods. Its ability to capture tail dependence appears to be a significant factor in achiev-

ing these favorable outcomes.
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5 CONCLUDING REMARKS

This study accomplishes Mean-CVaR portfolio optimization by integrating a copula-

based dependence framework and dynamic adjustments for mean and volatility in asset

returns through an AR-GARCH model. Our assessment of the designated portfolio’s per-

formance draws on data spanning 19 country-specific ETF indexes from 2013 to 2023,

comparing it against three benchmarks: a Gaussian Copula Mean-CVaR portfolio and an

equally weighted (1/N ) portfolio.

Our findings unveil that optimizing the Mean-CVaR portfolio while modeling as-

set dependencies through a blend of Clayton, t, and Gumbel copulas yields a portfolio

exhibiting superior downside-risk and drawdown metrics when contrasted with the Gaus-

sian and 1/N portfolios, especially concerning the target returns for Mean-CVaR opti-

mization. Moreover, the findings suggest that using longer time windows for estimations

played a crucial role in result accuracy. Longer time windows provided a significantly

larger amount of data, contributing to a clearer identification of patterns and trends in

financial markets.

The first priority for future work is to refine and enhance the data preprocessing

stage. This involves organizing the dataset and ensuring that it includes a more extensive

historical period and a broader range of financial assets. Improving data quality and ex-

panding the scope of data sources will not only lead to more trustworthy results but also

help mitigate survivorship bias, a critical consideration in portfolio optimization.

Secondly, incorporating constraints and conducting comparative analyses with ex-

isting studies is a vital avenue for future research. One particular constraint that I intended

to include but was time-consuming to implement in this study is the cardinality constraint.

This constraint restricts the number of assets in the portfolio with the aim of mitigating

over-diversification. For instance, consider a universe of 100 assets; applying a cardinal-

ity constraint can help identify an optimal subset of assets for portfolio inclusion. A study

that has explored the impact of this constraint on portfolio optimization is the work by

Ramos et al. (2023). However, their analysis primarily relied on historical simulations

and did not focus extensively on precise return estimations.

Third, the feasibility of incorporating into the same framework an asset selection

method that combines copulas and machine learning, as proposed by Luca, Rivieccio and

Zuccolotto (2010), could be examined. This approach offers the opportunity to enhance

portfolio diversification by leveraging advanced computational approaches and statistical



39

models. By integrating copulas and machine learning, the framework can benefit from

more sophisticated asset selection strategies, ensuring that the portfolio includes assets

with ideal risk-return profiles. This integration may result in improved risk management

and portfolio performance, making it a promising avenue for future research.

The execution of robustness tests and sub-period analysis is crucial. This aims to

ensure the reliability of the results and provide insights into the performance observed by

comparing performance before and after the COVID-19 pandemic. A widely recognized

test that could be used is the Diebold and Mariano test, which is valuable for assessing

whether the observed changes in results are statistically significant and represent a real

improvement compared to previous performance. This detailed analysis of data over time

would contribute to a more robust understanding of the method and its effects in the

context of different market scenarios. Data Snooping tests such as Hansen (2005) should

be used to assess predictive ability.

Other suggestions include investigating the impact of daily rebalancing on perfor-

mance, as it was influenced by transaction costs. Additionally, it would be interesting to

compare different mixture-copulas, like pairs, triples or quartets. Also, to evaluate return

objectives, assessing how the method performs under various performance targets. Fur-

thermore, incorporating dynamic copulas or vine copula models, as proposed in works

such as Ausin and Lopes (2010), Xi (2014), could enhance the modeling of dependence

and potentially improve the accuracy of portfolio estimates. These are promising areas

for future research that can further enhance the method and its application in different

financial contexts.
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APPENDIX - GITHUB REPOSITORY

For the sake of transparency and reproducibility, you can find the code used for

the calculations presented in this report on the GitHub repository:

<https://github.com/JoaoJungblut/Mean-CVaR_Portfolio_with_Mixture-Copulas>

The repository contains all the necessary scripts and files required to perform the

risk optimization calculations discussed in this document. Additionally, it includes any

extra code used for data preprocessing, analysis, and visualization. By accessing the

GitHub repository, readers can review, validate, and independently execute the code to

verify the results or adapt it to their specific requirements.

Please be aware that the GitHub repository may receive updates or improvements

over time. If you encounter any issues or have questions regarding the code, please feel

free to create an issue on the repository or contact the repository owner.

https://github.com/JoaoJungblut/Mean-CVaR_Portfolio_with_Mixture-Copulas
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