
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RAFAEL VALES BETTKER

Understanding Sample Generation
Strategies for Learning Heuristic Functions

in Classical Planning

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. André Grahl Pereira

Porto Alegre
June 2023

CIP — CATALOGING-IN-PUBLICATION

Bettker, Rafael Vales

Understanding Sample Generation Strategies for Learning
Heuristic Functions in Classical Planning / Rafael Vales Bettker.
– Porto Alegre: PPGC da UFRGS, 2023.

68 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor: André Grahl Pereira.

I. Pereira, André Grahl. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

To my mother.

“God does not play dice”

— ALBERT EINSTEIN

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisors, Prof. Dr. André Grahl Pereira

and Prof. Dr. Marcus Ritt, for their guidance during the past two years. Their expertise

and continuous feedback were invaluable to my research and significantly contributed to

my growth as an academic and professional. I would like to extend my gratitude to my

research partner, Pedro Probst Minini, with whom I shared every moment of this mas-

ter’s degree. Without his contribution in our day-to-day work and countless discussions,

everything would have been more arduous.

I would like to express my sincere gratitude to my mother, Fátima Antunes Vales,

for her love and support throughout my entire life. I would not have reached this point

without her unwavering dedication. I would also like to thank my father, Roberto dos

Reis Bettker, who I know continues to cheer me on from wherever he may be. Lastly, I

am grateful to those in my family who have closely followed my academic journey and

offered their support and well wishes.

ABSTRACT

Heuristic functions are essential in guiding search algorithms to solve planning tasks.

We study the problem of learning good heuristic functions for classical planning tasks

with neural networks based on samples that are states with their cost-to-goal estimates.

It is well known that the learned model quality depends on the quality of training data.

Our main goal is to better understand the influence of sample generation strategies on

the performance of a greedy best-first search guided by a learned heuristic function. In

a set of controlled experiments, we find that two main factors determine the quality of

the learned heuristic: the distribution of samples in the state space and the quality of the

cost-to-goal estimates. These two factors are interdependent: having perfect cost-to-goal

estimates is insufficient if the samples are not well distributed across the state space. We

study the effects of restricting samples to only include states that could be visited when

solving a given task and the effects of adding samples with high-value estimates. Based on

our findings, we propose practical strategies to improve the quality of learned heuristics:

three strategies that aim to generate more representative states and two strategies that

improve the cost-to-goal estimates. Our resulting neural network heuristic has higher

coverage than a basic satisficing heuristic. Compared to a baseline learned heuristic, our

best neural network heuristic almost doubles the mean coverage and can increase it for

some domains by more than six times.

Keywords: Classical Planning. Heuristic Search. Machine Learning. Sample Quality.

Compreendendo Estratégias de Amostragem para Aprendizagem de Funções

Heurísticas em Planejamento Clássico

RESUMO

Funções heurísticas são essenciais para guiar algoritmos de busca na resolução de tare-

fas de planejamento. Nós estudamos o problema de aprender boas funções heurísticas

para tarefas de planejamento clássico usando redes neurais baseadas em amostras que

são estados acompanhados de suas estimativas de custo-para-objetivo. É conhecido que a

qualidade do modelo aprendido depende da qualidade dos dados de treinamento. Nosso

objetivo principal é entender melhor a influência das estratégias de geração de amostras

no desempenho do greedy best-first search guiado por uma função heurística aprendida.

Em um conjunto de experimentos controlados, descobrimos que dois fatores principais

determinam a qualidade da heurística aprendida: a distribuição de amostras no espaço de

estados e a qualidade das estimativas de custo-para-objetivo. Esses dois fatores são inter-

dependentes: ter estimativas ótimas de custo-para-objetivo é insuficiente se as amostras

não estiverem bem distribuídas ao longo do espaço de estados. Nós estudamos os efeitos

de restringir as amostras para incluir apenas estados que poderiam ser visitados ao resolver

uma determinada tarefa e os efeitos de adicionar amostras com altos valores de estima-

tivas. Com base em nossas descobertas, propomos estratégias práticas para melhorar a

qualidade das heurísticas aprendidas: três estratégias que visam gerar estados mais repre-

sentativos e duas estratégias que melhoram as estimativas de custo-para-objetivo. Nossa

heurística resultante da rede neural possui uma cobertura maior do que uma heurística de

satisficing básica. Em comparação com uma heurística baseline aprendida, nossa melhor

heurística de rede neural quase dobra a cobertura média e aumenta para alguns domínios

em mais de seis vezes.

Palavras-chave: Planejamento Clássico. Busca Heurística. Aprendizado de Máquina.

Qualidade das Amostras.

LIST OF ABBREVIATIONS AND ACRONYMS

ASNet Action Schema Network

BFS Breadth-First Search

BSS Backward State Space

DFS Depth-First Search

FF Fast-Forward

FNN Feedforward Neural Network

FSM Focused Sampling Method

FSS Forward State Space

GBFS Greedy Best-First Search

HGN Hypergraph Network

IPC International Planning Competition

MSE Mean Squared Error

NN Neural Network

PDDL Planning Domain Description Language

ReLU Rectified Linear Unit

ResNet Residual Neural Network

RW Random Walk

SAI Sample Improvement

SAS+ Simplified Action Structures Plus

STRIPS Stanford Research Institute Problem Solver

SUI Successor Improvement

LIST OF SYMBOLS

V Set of variables

F Set of facts

O Set of operators

S State space

s0 Initial state

s∗ Goal condition

s′ Successor state

⊥ Undefined value

Π Planning task

π Plan

d∗ Distance from state furthest from goal

L Maximum regression limit

F Facts regression limit

F̄ Facts per mean effects regression limit

h Heuristic function

h∗ Perfect heuristic function

hFF FF heuristic

hGC Goal-count heuristic

ĥ Learned heuristic function

ĥ0 Baseline learned heuristic function

ĥ
′ Logic-independent learned heuristic function

LIST OF FIGURES

Figure 2.1 VisitAll domain description in PDDL. ..18
Figure 2.2 Graph representing a state space. ..20
Figure 2.3 Structure of the artificial neuron. ...22
Figure 2.4 Graph of a neural network. ..23
Figure 2.5 A regular block and a residual block. ..25

Figure 3.1 SAI technique applied on samples of random walk rollouts.38
Figure 3.2 SUI technique applied to samples of a random walk rollout.........................39
Figure 3.3 Sample generation workflow. ..40
Figure 3.4 Example of sampling in Blocksworld..41

LIST OF TABLES

Table 4.1 Size of the forward state spaces for the selected domains.45
Table 4.2 Comparison of sampling strategies on h∗-values. ...46
Table 4.3 Comparison of sampling strategies on estimated h-values.47
Table 4.4 State space information and expanded states with different regression limits.48
Table 4.5 Expanded states from a varying percentage of randomly generated samples. 49
Table 4.6 Expanded states from different state completion techniques.50
Table 4.7 Mean difference of the cost-to-goal estimates to h∗..51
Table 4.8 Mean difference of heuristics to h∗ when evaluated over the FSS..................51
Table 4.9 Expanded states of different heuristic functions. ..52
Table 4.10 Expanded states from different sample set sizes. ..52
Table 4.11 Results of the learned heuristics with and without mutexes.54
Table 4.12 Results of the traditional heuristics, the baseline, and our approach.56
Table 4.13 Mean coverage results of our approach compared to previous works.57
Table 4.14 Expanded states with standard deviations in small state space experiments.59

CONTENTS

1 INTRODUCTION...12
1.1 Contributions...13
1.2 Overview and Outline...14
2 BACKGROUND..15
2.1 Classical Planning ...15
2.1.1 STRIPS Representation ...17
2.1.2 SAS+ Representation...18
2.2 Search Algorithms ..19
2.2.1 Blind Search...19
2.2.2 Heuristic Search ...20
2.3 Neural Networks ...22
2.3.1 Residual Networks ...24
2.3.2 Learning Heuristic Functions...25
2.4 Related Work...26
2.4.1 Structured NN-based Approaches..27
2.4.2 Non-structured NN-based Approaches ..28
3 SAMPLE GENERATION..30
3.1 Generation of States..30
3.1.1 Sampling by Regression ..31
3.1.2 Maximum Regression Limit ..34
3.1.3 State Completion..35
3.1.4 Randomly Generated Samples...36
3.2 Improving Cost-to-Goal Estimates..37
3.2.1 Improvement of Repeated Samples ...37
3.2.2 Improvement over Successors..38
3.3 Workflow..40
4 EXPERIMENTS ...43
4.1 Settings ...43
4.2 Small State Spaces...44
4.2.1 Sample Generation Algorithms..45
4.2.2 Maximum Regression Limit ..47
4.2.3 Randomly Generated Samples...48
4.2.4 State Completion..49
4.2.5 Quality of Estimates...50
4.2.6 Evaluation over the Forward State Spaces...51
4.2.7 Comparison to Traditional Heuristic Functions...52
4.3 Large State Spaces ..53
4.4 Comparison to Other Approaches...55
4.5 Limitations...58
4.5.1 Validation Loss...58
4.5.2 Noisy Training ...59
4.5.3 State Representation...60
5 CONCLUSION ...61
REFERENCES...63
APPENDIX A — RESUMO EXPANDIDO ..66

12

1 INTRODUCTION

Classical planning provides a method for representing and solving various prob-

lems. Formulating these problems as planning tasks can model real-world challenges

such as route planning, robotics, automated system verification, and computational bi-

ology (EDELKAMP; SCHRÖDL, 2012). This approach enables automated systems to

reason, make decisions, and generate plans to achieve specific objectives. The ability to

represent and solve problems using classical planning techniques has garnered significant

attention and has proven instrumental in various domains.

Planning tasks are typically defined by the initial state and the desired outcome

(goal state). States capture the relevant information about the system’s condition at a

particular time. Each domain provides a set of actions that describe how a state can be

transformed. A plan is constructed to reach the goal from the initial state by applying

a sequence of actions. The plan provides a step-by-step guide for an agent or a system

to follow to achieve the desired objective. By using various planning techniques and

algorithms, planning systems can efficiently explore the space and generate plans to solve

complex problems, including those classified as PSPACE-complete (BYLANDER, 1994).

Several approaches can find a sequence of actions that transforms an initial state

into one that satisfies the goal condition. One successful strategy for solving such tasks

is to apply algorithms of the best-first search family, guided by a heuristic function that

estimates the cost to reach a goal for each state. Generally, best-first search algorithms

are more effective when the heuristic function better estimates the perfect cost-to-goal.

Relaxations of planning tasks create some of the most successful heuristic func-

tions, e.g., the delete relaxation (HOFFMANN; NEBEL, 2001), critical paths (HASLUM;

GEFFNER, 2004), landmarks (KARPAS; DOMSHLAK, 2009; HOFFMANN; PORTE-

OUS; SEBASTIA, 2004), or the state equation (BONET, 2013). Many of these heuristics

come with additional properties, such as admissibility.

The emergence of interest in learning heuristic functions with neural networks

has been driven by rapid progress in other application areas. Some works in this area

include those by Samadi, Felner and Schaeffer (2008), Arfaee, Zilles and Holte (2011),

Agostinelli et al. (2019), Yu, Kuroiwa and Fukunaga (2020), Shen, Trevizan and Thiebaux

(2020), Ferber, Helmert and Hoffmann (2020), Toyer et al. (2020), Ferber et al. (2022),

and O’Toole et al. (2022). The basic approach is simple: one generates a set of samples

of pairs of states and estimates of cost-to-goal and trains a supervised model over the set

of samples. However, a successful approach to planning has to solve several challenges:

13

C1) State spaces are implicitly defined and mostly exponential in the size of a compact

description. Therefore, random samples are hard to generate and may be infeasible,

unreachable from an initial state, or unable to reach the goal. Samples are usu-

ally generated by expanding the state space through forward search or backward

search (regression).

C2) Estimates of cost-to-goal are typically hard to obtain. Finding the perfect cost-to-

goal amounts to solving the task on the samples, and often the learned function is

only useful if it is close to the perfect cost-to-goal.

C3) Planning domains are very different, and traditional heuristics apply to any domain.

This results in the problem of transferring a learned heuristic to new domains, tasks,

or state spaces.

C4) Planners depend on evaluating many states per second, so computing the heuristic

function should be fast, or the learned heuristic must be more informed. However,

there is a trade-off between a more informed learned heuristic and the complexity of

the model.

By addressing these core issues, new possibilities can be found for advancing the

field of classical planning and enabling more efficient and effective problem-solving ca-

pabilities in planning systems. For this, we investigate current state sampling methods and

propose new techniques that directly affect the quality of samples for training heuristic

functions.

1.1 Contributions

Through controlled experiments on planning tasks with small state spaces, we

identify several techniques that improve the quality of the samples used for training. Our

contributions include:

• A sample generation algorithm that can better generate a representative subset of

the state space through a combination of breadth-first search (expanding states close

to the goal) followed by random walks from the breadth-first search’s leaves (Sec-

tion 3.1.1).

• State space-based estimations to limit the sampling regression depth to avoid large

cost-to-goal overestimates (Section 3.1.2).

14

• Two methods to improve cost-to-goal estimates based on detecting samples from

the same or neighboring states (Section 3.2).

• A systematic study on sampling quality (Chapter 4).

1.2 Overview and Outline

This thesis explores strategies for generating samples and their influence on heuris-

tic function performance. In Chapter 2, we provide the necessary background for our

work, covering important topics such as classical planning (Section 2.1), search algo-

rithms (Section 2.2), and neural networks (Section 2.3). Additionally, we review relevant

previous research and related work in Section 2.4. By establishing this, we present the

sample generation techniques and propose new approaches to improve them in Chapter 3.

We focus mainly on the quality of the learned heuristic and its influence on the num-

ber of expanded states and coverage. To this end, Chapter 4 presents a systematic study

of the contributions of each strategy when solving distinct initial states of a single state

space, aiming to understand better how to learn high-quality heuristics. In Section 4.1,

we present our settings to learn state space-specific heuristics using a feedforward neural

network. In experiments on small state spaces (Section 4.2), we investigate the effect

of different sampling strategies, the quality of the learned heuristic with an increasing

number of samples, and the effect of a different subset of states part of the sample set on

the learned heuristic. We also evaluate how the quality of the estimates of cost-to-goal

influences the effectiveness of learned heuristic to guide a search algorithm. Then, in Sec-

tion 4.3, we compare our best techniques with a baseline and traditional heuristics over

large state spaces. Furthermore, we qualitatively compare existing methods in Section 4.4

and discuss the limitations of learned heuristics in Section 4.5. Finally, we conclude and

highlight possible future works in Chapter 5.

15

2 BACKGROUND

This chapter provides an overview of the fundamental concepts and techniques

that form the background for this thesis.

2.1 Classical Planning

Typically we provide a formal description of the problem to find a solution from

search algorithms. In classical planning, a problem is represented as a planning task. We

define the various concepts that constitute a planning task, which are addressed through-

out the thesis.

Definition 2.1 (Fact). A fact f is a statement that represents a condition or characteristic

of the environment and can be either true or false.

Typically, a domain has a set of facts denoted as F = {f1, . . . , fn}. For example,

consider the domain VisitAll, where a robot explores a grid and aims to visit all its cells. In

this scenario, facts can represent the robot’s position and the status of each cell, indicating

whether it has been visited or not. Consider a grid with two cells labeled a and b. In

this case, the set of facts can be represented as F = {at-robot(a), at-robot(b), visited(a),

visited(b)}.

Definition 2.2 (Mutex). A mutex (mutual exclusion) is a condition where two or more

facts cannot occur simultaneously.

In VisitAll, the robot cannot be in two positions simultaneously. Therefore, the set

of facts {at-robot(a), at-robot(b)} represents a mutex.

Definition 2.3 (Variable). A variable v is a concise representation of a condition or char-

acteristic of the environment. It can assume any value from a predefined domain D(v).

A variable groups a collection of mutually exclusive facts, where each fact corre-

sponds to a value d ∈ D(v) that can be assigned to the variable v at any given moment,

allowing for a single assignment at a time. (Note that a mutex can also arise between val-

ues of different variables.) For instance, in the VisitAll domain, all the facts representing

the robot’s position can be combined into a variable. This approach significantly reduces

the size required to represent the robot’s position. Instead of necessitating n facts in a

grid with n cells, we have a single variable vp with |D(vp)| = n. Similarly to facts, each

domain task has a set of variables V = {v1, . . . , vn}.

16

Definition 2.4 (State). A state s is an assignment of all variables v ∈ V .

A state where all variables are defined is also called a complete state. When the set

of variables is not fully assigned, i.e., one or more variables v ∈ V do not have a defined

value d ∈ D(v), it is a partial state. Let s(v) be the value of variable v in state s. The

value of an undefined variable v is written as s(v) = ⊥. We say that s ⊆ t if s(v) = t(v)

for all v ∈ V such that t(v) ̸= ⊥. This implies that there is an assignment of undefined

variables such that s = t. Therefore, a partial state t represents a set of states containing

every state whose s ⊆ t. The initial state s0 is a complete state corresponding to the initial

variable assignment. The goal s∗ can be defined as a partial state.

Definition 2.5 (Operator). An operator o, also known as action, is defined as a pair of

preconditions and effects (pre(o), eff(o)), both partial states. The preconditions specify

the conditions that must hold in the current state for an operator to be applicable, while

the effects describe the changes in the state that occur when the operator is applied.

LetO be the set of all operators in a given task. An operator o ∈ O is applicable to

a state s if s ⊆ pre(o), and produces a successor state s′ = succ(s, o) := eff(o) ◦ s, where

s′ = t ◦ s is defined by s′(v) = t(v) for all v such that t(v) is defined, and s′(v) = s(v)

otherwise. The set of all successor states of state s is succ(s) = {succ(s, o) | o ∈

O, s ⊆ pre(o)}. Each operator is assigned a cost according to the mapping function cost :

O → R+; when the cost is omitted, it assumes a unit cost, i.e., cost(o) = 1 for each

operator o ∈ O.

A sequential application of operators is called a progression. Alternatively, a

regression is a backward sequential application of operators. For regression, we con-

struct a backward operator or ∈ Or for each operator o ∈ O. Given an operator o =

(pre(o), eff(o)) let o|v be the operator restricted to variable v in the operator’s variables,

we generate the corresponding backward operator or where or|v = (eff(o|v), pre(o|v)) if

pre(o|v) is defined, otherwise or|v = (eff(o|v),⊥).

Similar to progression, a partial state s has predecessors pred(s) = {pred(s, or) |

or ∈ Or, s ⊆ pre(or)}. A regression sequence from state s0 then is valid if oi can be

applied to si−1 and produces si = pred(si−1, oi). All partial states sk can reach a partial

state s0 ⊆ s in at most k forward applications of the reversed operator sequence.

Definition 2.6 (Plan). A plan is a sequence of operators π = (o1, . . . , ok).

A plan is valid for state s0, referred to as an s0-plan, if for i ∈ [k] operator oi

can be applied to si−1 and produces si = succ(si−1, oi), where sk ⊆ s∗. The cost of

17

plan π is
∑

o∈π cost(o). When a plan has the lowest cost among all s0-plans, it is called

an optimal s0-plan.

Definition 2.7 (State Space). A state space is the set of all the states over the variables v ∈

V .

The forward state space (FSS) is the set of all the states reachable from the initial

state s0 by applying a sequence of operators. Similarly, the backward state space (BSS)

is the set of all the partial states reachable from a goal s∗ by applying a sequence of

backward operators.

2.1.1 STRIPS Representation

The STRIPS (Stanford Research Institute Problem Solver) representation (FIKES;

NILSSON, 1971) is a fundamental approach used in planning tasks to model and reason

about the state of the environment. In this representation, a planning task is defined by a

set of propositions (facts) that describe the various attributes and conditions of the prob-

lem domain. Each fact represents a specific property that can be true or false in a given

state. The preconditions and effects of operators are expressed as a set of facts.

Definition 2.8 (STRIPS Planning Task). A STRIPS planning task is defined as a tuple Π =

⟨F ,O, s0, s∗, cost⟩, where F is a set of facts, O is a set of operators over F , s0 an initial

state, s∗ the goal condition, and cost : O → R+ a function mapping operators to costs.

Throughout this thesis, we present samples represented in the STRIPS formalism.

The motivation behind this approach lies in the compatibility between the propositional

nature of STRIPS, where facts can be either true or false, and the proposed neural network

input in binary format, which is more suitable for training (Section 2.3.2). Additionally,

the Fast Downward planning system used in this thesis has PDDL (Planning Domain

Definition Language) as its input language. PDDL provides a formal and widely accepted

syntax for describing planning tasks compatible with the STRIPS representation.

Figure 2.1 shows an example of a domain description in PDDL. The VisitAll do-

main represents a scenario where a robot navigates a grid and marks each cell it steps

on as visited. The objective of this domain is typically to visit all cells in the grid. The

initial and goal states are described in a second file, the problem PDDL, along with the

object declarations. The domain PDDL specifies the predicates and actions (operators).

18

Figure 2.1 – VisitAll domain description in PDDL.

(define (domain grid-visit-all)
(:requirements :typing)
(:types place - object)
(:predicates (connected ?x ?y - place)

(at-robot ?x - place)
(visited ?x - place))

(:action move
:parameters (?curpos ?nextpos - place)
:precondition (and

(at-robot ?curpos)
(connected ?curpos ?nextpos))

:effect (and
(at-robot ?nextpos)
(not (at-robot ?curpos))
(visited ?nextpos)))

)

Source: International Planning Competition (IPC) 2014.

In the VisitAll example, we have one object type (place), three predicates (connected,

at-robot, and visited), and one action (move). The combination of predicates with objects

forms the facts in a process called grounding. For instance, in a grid with two connected

cells, a and b, we have the set of factsF = {connected(a, b), connected(b, a), at-robot(a),

at-robot(b), visited(a), visited(b)}.

2.1.2 SAS+ Representation

Another approach to modeling planning tasks is using the SAS+ representation

(BÄCKSTRÖM; NEBEL, 1995). Although Fast Downward takes propositional repre-

sentation with PDDL as its input, internally, it uses finite domains to represent states.

The SAS+ enhances the capabilities of a propositional representation by using finite do-

mains D, which explicitly define the possible values for each variable. This representation

enables a more compact and structured representation of the problem.

Definition 2.9 (SAS+ Planning Task). A SAS+ planning task is defined as a tuple Π =

⟨V ,O, s0, s∗, cost⟩, where V is a set of variables, O is a set of operators over V , s0 an

initial state, s∗ the goal condition, and cost : O → R+ a function mapping operators to

costs.

SAS+ and STRIPS differ in their method of representing states and can be con-

19

verted between each other. For example, consider the VisitAll domain depicted in Fig-

ure 2.1, specifically the at-robot predicate. In PDDL, the action always replaces one robot

position with another. Thus, SAS+ represents this predicate using a variable v and a

value d ∈ D(v) for each possible robot position. Consequently, in large grids with hun-

dreds of positions where propositional representation would require many facts, SAS+

efficiently represents them using a single variable.

2.2 Search Algorithms

Search algorithms enable expanding the state space to find a solution for a plan-

ning task. They systematically traverse the state space of a problem, aiming to reach a

goal state from an initial state. Blind search algorithms, in particular, operate without any

knowledge about the problem domain and rely solely on the problem representation. On

the other hand, heuristic search uses heuristic functions generated from problem-specific

knowledge. Heuristics prioritize the expansion of more promising states by using in-

formed estimates of the cost or distance to the goal. The following sections present both

approaches.

2.2.1 Blind Search

By expanding the state space exhaustively, blind search algorithms navigate across

various states and paths to find potential solutions. An example of a blind search algorithm

is the Breadth-First Search (BFS). BFS is a graph search and expands the state space by

systematically expanding all the states at the same distance from the initial state before

moving to the next distance. This strategy ensures that the shortest path to a goal state is

found. However, BFS can be memory-intensive as it maintains a queue of all the generated

but not expanded states in memory.

Depth-First Search (DFS) also performs a blind search. In DFS, the search starts

from an initial state and expands the state space by iteratively expanding the farthest

state from the initial state that has not been expanded yet. This algorithm is memory-

efficient as it only needs to keep track of a single path from the initial state to the current

state. However, DFS does not guarantee an optimal solution and can get trapped in deep

branches of the state space.

20

Figure 2.2 – Graph representing a state space where the vertices and arcs correspond to states and
applicable operators, respectively.

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s∗

To illustrate, Figure 2.2 presents a state space. BFS starts by expanding the initial

state s0 and then expands s1, s2, and s3. In sequence, it expands the successor of s1 (s4),

then of s2 (s5 and s6), and so on until a solution is found. On the other hand, DFS expands

the initial state s0 and continues expanding a newly generated successor until it reaches

a solution or a state without successors (e.g., s6 or s11), at which point the algorithm

backtracks to the nearest state that has an unexpanded successor and continues the search.

BFS and DFS are unsuitable for solving planning tasks due to their lack of effi-

ciency in expanding the state space, which is typically vast and contains numerous paths.

Instead, heuristic search is used, which will be introduced in the next section. However,

BFS and DFS can still be valuable in planning as sampling algorithms. By sampling the

state space using these algorithms, we can selectively focus on regions either closer to the

initial state, using BFS, or more distant, using DFS.

2.2.2 Heuristic Search

Expanding the state space systematically to find a plan can quickly become com-

putationally infeasible for planning domains with large state spaces. Therefore, the pri-

mary approach for solving planning tasks is heuristic search. Heuristic search algorithms

address this challenge by using heuristics to guide the search toward promising regions

of the state space. These heuristics estimate how close a given state is to a goal state and

guide which successors to prioritize during the search.

A commonly used heuristic search algorithm in classical planning is A∗ search

(HART; NILSSON; RAPHAEL, 1968). For a given state s, A∗ is guided by f(s) =

g(s)+h(s), i.e., combine the current cost g(s) of the sequence of operators starting in the

initial state s0 and resulting in s, and a heuristic function h(s) that estimates the cost-to-

21

goal from state s. By considering both the past cost and the estimated future cost, A∗ can

efficiently expand the state space to find an optimal solution – provided that the heuristic

is admissible (does not overestimate the actual h-value).

Greedy Best-First Search (GBFS) (DORAN; MICHIE, 1966), another widely

used heuristic search algorithm in classical planning, is an alternative to A∗ search that pri-

oritizes expanding states with the lowest heuristic values without considering the cost of

reaching those states, i.e., f(s) = h(s). Both A∗ and GBFS are considered a “greedy” al-

gorithm because it only considers the heuristic estimate and makes decisions solely based

on that information. While GBFS can be highly efficient regarding expansion speed, it

does not guarantee to find an optimal solution as A∗ does. Nonetheless, GBFS is a popu-

lar choice in planning, where quickly finding any feasible solution is more important than

finding the optimal solution. Therefore, in our experiments, GBFS serves as the search

algorithm.

Heuristic search algorithms require the use of a heuristic function. A heuristic

function h : S → R+ ∪ {∞} maps each state in the state space S to a non-negative

number or ∞. The number represents the cost-to-goal estimate (h-value) for the given

state. An infinity value indicates a dead-end state, i.e., without any paths leading to the

goal. The perfect heuristic h∗ produces the cost of an optimal s-plan for each state s ∈ S.

The heuristic function can have certain properties, such as admissibility, consis-

tency, and goal-awareness. An admissible heuristic function never overestimates the ac-

tual goal distance. It guarantees optimality when combined with specific search algo-

rithms such as A∗. A heuristic function is consistent if, for every state s ∈ S and for every

applicable operator o with s′ = succ(s, o), it holds that h(s) ≤ cost(o) + h(s′). Finally, a

goal-aware heuristic guarantees h(s) = 0 for all goal states s ⊆ s∗.

Heuristics can be arbitrary functions, allowing for design flexibility based on do-

main knowledge and problem-specific insights. Therefore, a heuristic can be classified as

logic-independent or logic-dependent. In a logic-independent setting, we interact with the

planning task only by functions that allow accessing the initial state s0, the goal condi-

tion s∗, and the successors succ(s) or predecessors pred(s) of a state s through black-box

functions (STURTEVANT; HELMERT, 2019) – which could also be learned. We do not

have access to the logical description of operators. In contrast, a logic-dependent heuris-

tic can use the complete description of the model, which permits, for example, reasoning

about operators and the computation of mutexes.

A logic-dependent heuristic is the FF (Fast-Forward) heuristic (HOFFMANN;

22

Figure 2.3 – Structure of the artificial neuron.

Source: Haykin (2009)

NEBEL, 2001), which computes its cost-to-goal estimates by considering a relaxed ver-

sion of the planning problem. In a relaxed version, all effects that remove facts from a

state (delete effects) of the operators are ignored, resulting in a simplified version of the

problem. The FF heuristic extracts a solution from a relaxed version and computes the

cost of operators in the plan, using it as the cost-to-goal estimate. As logic-independent,

we have the goal-count heuristic, which does not rely on the planning model. Instead, it

counts the number of unsatisfied goal conditions in the current state, assuming that each

unsatisfied condition requires an additional unit cost operator to be satisfied. Both the FF

and goal-count heuristics are addressed in our experiments (Chapter 4).

2.3 Neural Networks

Neural networks (NN) have gained popularity due to their ability to learn and gen-

eralize from datasets. In classical planning, various neural networks approaches have been

proposed (see Section 2.4). These approaches range from simpler models that prioritize

processing speed – and, consequently, expansion rate – to more complex architectures

that exploit the relational structure of a domain.

Essentially, neural networks are composed of multiple artificial neurons, whose

structure is illustrated in Figure 2.3. A neuron k consists of four components: input

signals x1, . . . , xm, weights wk1, . . . , wkm, bias term bk, and an activation function φ. A

neuron k produces an output yk = φ(vk + bk) where vk =
∑

j∈[m] wkjxj . The activation

23

Figure 2.4 – Graph of a neural network. Vertices and edges represent the neurons and their
connections, respectively.

Source: Haykin (2009)

function introduces non-linearity to the output. A common example is the Rectified Linear

Unit (ReLU) activation φ(v) = max(0, v).

The NN comprises multiple layers of neurons, as illustrated in Figure 2.4, which

transform the input data into an output. The input layer receives the input data and passes

it to the subsequent layers. The hidden layers, located between the input and output

layers, weigh the neuron weights to learn the features that transform the input data into

the desired output. These hidden layers enable the network to capture complex patterns

and relationships within the data. Finally, the output layer produces the prediction for the

given input. A specific type of NN called Feedforward Neural Network (FNN) allows

information to flow in one direction, from the input layer through the hidden layers to the

output layer.

The learning process involves adjusting the network’s parameters, such as weights

and biases, to minimize the error between its predictions and the true values of the train-

ing samples. This adjustment is typically performed using an optimization algorithm to

minimize a specified loss function. A commonly used loss function is the Mean Squared

Error (MSE), which quantifies the error by computing the mean squared difference be-

tween the predicted and true values. Training is often performed on batches of data rather

than individual samples to update the parameters efficiently. The batch size determines the

number of samples processed together before updating the network’s parameters. Batches

enable training with larger sets of samples, which can be computationally infeasible to

handle all at once. Haykin (2009) provides further details for a more comprehensive

24

understanding of weight adjustment and training in neural networks.

By iteratively adjusting its parameters based on the training data, an NN gradually

improves its ability to make accurate predictions. The quality of the NN depends on the

quality of the sample set. Additionally, the network’s capacity to learn and generalize

from the training data is influenced by its architecture. Each one has its purpose and may

excel in specific types of tasks.

2.3.1 Residual Networks

ResNet, short for Residual Network, was proposed by He et al. (2016) and has

gained attention due to its ability to address the vanishing gradient problem (HOCHRE-

ITER, 1998) and improve training performance for deep networks. While its initial suc-

cess was in image recognition, ResNets has also been used in planning (AGOSTINELLI

et al., 2019; FERBER et al., 2022) to address training deep neural networks.

ResNet uses the concept of residual connections or skip connections, which enable

the network to learn residual mappings. These connections allow the network to bypass

specific layers and pass the input directly to deeper layers. By doing so, ResNet mitigates

the vanishing gradient problem in deep networks, where the gradient becomes increas-

ingly small as they propagate backward through the network layers, causing the weights

in the earlier layers to update slowly or not at all. The residual connections establish

“highways” for information flow, helping maintain the signal propagation.

Figure 2.5 illustrates a schematic representation of both a regular block and a

residual block – with a shortcut connection that skips two layers – in a ResNet archi-

tecture. In a regular block, the output of its layers is directly mapped to the activation

function. In a residual block, the network needs to learn the residual mapping. Instead

of forcing the network to learn all the information from the input, residual blocks allow

it to focus only on the residual, i.e., the difference between the input and output, needed

to achieve the desired output. He et al. (2016) provide a more detailed explanation of

ResNets.

25

Figure 2.5 – A regular block (left) and a residual block (right).

Source: Zhang et al. (2021)

2.3.2 Learning Heuristic Functions

Many heuristics for classical planning are derived from a model of the task, such

as SAS+. An obvious alternative is to learn to map a state s to its heuristic value h(s).

We focus on learning with neural networks, although other supervised learning methods

could be used. To learn a heuristic function, an NN is trained on pairs of states and cost-to-

goal estimates. The learned heuristic functions are usually not admissible, so traditional

optimality guarantees are lost.

A propositional representation of a state is more suitable for learning functions

over states, as the variables in a planning task are categorical variables. To this end,

consider a SAS+ planning task Π = ⟨V ,O, s0, s∗, cost⟩, and let V = {v1, . . . , vn} and

D(vi) = {di1, . . . , di,si}, i ∈ [n] be some order of the variables and their domains. We

represent any state s by a sequence of facts

F(s) = (f11, f12, . . . , f1,s1 , . . . , fn1, fn2, . . . , fn,sn),

where each fact fij = [s(vi) = dij] indicates if variable vi assumes value dij in state s.

Note that facts Fi = {fi1, . . . , fi,si} corresponding to variable vi satisfy the consistency

condition
∑

f∈Fi
f ≤ 1 since each variable assumes at most one value, and

∑
f∈Fi

f = 0

only if vi is undefined. More generally, for any set of facts F we write mutex(F) if

26

∑
f∈F [f] ≤ 1 must be satisfied in states of Π. Many planning systems can deduce mu-

texes from the description of the planning task Π (HELMERT, 2009); we will discuss and

analyze their utility for sampling states later. Some architectures provide additional input

to the neural network, e.g., the propositional representation of the goal condition. The

target output for training may be the cost-to-goal estimates directly or some encoding of

them.

An important aspect of sample generation related to challenges C1 and C2 (Chap-

ter 1) is the degree of dependency on the domain model or the planning task and the

cost of generating the samples. The cost of sample generation depends on the number

of samples and the cost to generate each. This generates the problem of deciding how

many samples are required since, generally, only a very small part of the state space can

be sampled. More importantly, ideal samples would be labeled with the perfect heuris-

tic h∗. In general, ideal labeling is impractical since it requires solving the planning task

on a large number of initial states. Therefore, we are mainly interested in good heuristic

estimates that can be generated fast. We analyze the influence of sample size and quality

experimentally later.

Additionally, and related to challenges C3 and C4, network architecture and sam-

ple generation depend on the range of tasks the learner intends to generalize. The range

may be the state space of a planning task, a planning domain, or an entire planning for-

malism. In the first case, the set of planning tasks is defined over any pair of initial state s0

and goal s∗. Often the set of planning tasks is restricted to select the initial state from the

FSS of some given initial state and to a fixed goal. In the second case, the learned function

has to generalize over all domain tasks. Finally, a learning-based heuristic that general-

izes over a planning formalism is domain-independent. An important aspect of sample

generation is the distribution of states which are part of the sample set. For example, the

sample set can contain only states with a short distance to the goal or only states with a

short distance to the initial states. We assume that the distribution of h∗-values, e.g., in a

histogram, represents the distribution of states in the sample set.

2.4 Related Work

Two main research topics have been explored in learning heuristic functions:

structured NN-based approaches and non-structured NN-based approaches. The struc-

tured NN-based approaches utilize model descriptions, such as information about oper-

27

ator preconditions and effects, to construct a neural network. These approaches aim to

generalize across different domains or planning formalisms. On the other hand, non-

structured NN-based approaches focus on sampling, using limited access to the model to

identify mutexes and generate states that are close to those encountered during the search,

aiming to generalize only over a state space.

2.4.1 Structured NN-based Approaches

The first set of approaches (TOYER et al., 2018; TOYER et al., 2020; SHEN;

TREVIZAN; THIEBAUX, 2020; STÅHLBERG; BONET; GEFFNER, 2022; GEHRING

et al., 2022) aims for heuristic functions that generalize beyond a specific task. These

approaches rely on the model to build domain-specific or multi-domain heuristics. The

usual setting is to train different architectures of neural networks with samples of small

tasks of a domain generated with a logic-dependent method and evaluated on larger tasks

of the same domain. These architectures can be general networks such as Neural Logic

Machines (DONG et al., 2018) and Graph Neural Networks (SCARSELLI et al., 2008;

GORI; MONFARDINI; SCARSELLI, 2005).

In the context of planning, Shen, Trevizan and Thiebaux (2020) use Hypergraph

Neural Networks (HGN) as an extension of graph networks (BATTAGLIA et al., 2018).

HGN aims to learn planning heuristics through training, focusing on developing domain-

independent heuristics capable of generalizing across various domains, as well as domain-

specific and multi-domain heuristics. The HGN encompasses vertices representing task

propositions within a hypergraph structure, with edges denoting operators connecting the

preconditions to their effects.

Another approach proposed explicitly for planning tasks is the Action Schema

Network (ASNet) (TOYER et al., 2018). ASNets are composed of alternating proposition

and action layers, with the first and last always being an action layer. Each action layer

contains an action module for each operator in a specific task, while each propositional

layer contains a proposition module for each fact in the task. Weight sharing is used to

optimize efficiency, where action modules with operators derived from the same action

schema share the same weight, and proposition modules with facts derived from the same

predicate share the same weight. This weight sharing allows for the reuse of a single set

of learned weights across all tasks within a class of planning problems.

These networks achieve competitive results compared to traditional heuristics and

28

can generalize well, but require the logical description of the domain and the task to be

instantiated. These approaches also help in understanding learning heuristics. For exam-

ple, the main goal of Ståhlberg, Bonet and Geffner (2022) is to understand the expressive

power and limitations of learning heuristics. The main limitation of these approaches is

the strong dependence on the domain model and task description. They also require too

much memory and are slow. Generally, they are too big to be instantiated for the size of

tasks typically used. For example, HGN has 32.8% coverages on the large planning tasks

used in this thesis.

2.4.2 Non-structured NN-based Approaches

The second set of approaches (FERBER; HELMERT; HOFFMANN, 2020; YU;

KUROIWA; FUKUNAGA, 2020; FERBER et al., 2022; O’TOOLE et al., 2022) accesses

the model for computing mutexes and is typically task-specific. Specific to each task,

they can perform better than the approaches in the first set. They typically train an FNN

and evaluate the learned heuristic on a state space using tasks with the same goal and

different initial states. These networks are trained with pairs of states and cost-to-goal es-

timates. Ferber, Helmert and Hoffmann (2020) systematically studied hyperparameters on

the FNN and found that, for a fixed architecture, two aspects significantly influence how

informed the heuristic is: the subset of selected samples and the size of the sample set.

Ferber et al. (2022) use a combination of backward and forward searches (AR-

FAEE; ZILLES; HOLTE, 2011). First, they generate new initial states with backward

random walks and then solve them with a GBFS guided by a learned heuristic. The sam-

pling is performed in parallel with the training. The number of samples per search varies

throughout the process, starting with a random value ranging from 0 to 5 and doubling

it as plans are found. The plans found provide the samples for the next training epoch,

where each sample is a state in a plan with the cost-to-goal estimate as its distance to the

goal through the plan. Their FNN architecture is a ResNet with two hidden layers and a

residual block consisting of two more hidden layers.

O’Toole et al. (2022) use the same FNN architecture as Ferber et al. (2022), which

is also applied in this thesis. They use random walks to perform five backward searches

from the goal, with a depth of 500, where the depth at which the state is generated serves

as the cost-to-goal estimate. Each sampled partial state is converted into 20 complete

states and added to the sample set. Furthermore, they sample an additional 50K randomly

29

generated states with a cost-to-goal estimate equal to the maximum value in the sample

set plus one, resulting in a total of 100K samples. They showed that random sampling

improves the performance of the heuristic function by including in the sample set states

from regions of the state space not reached by the backward search.

Yu, Kuroiwa and Fukunaga (2020) used a backward search approach with the

DFS algorithm. In their best configuration, they sample 100K states in 500 searches,

i.e., 200 states per search, with a cost-to-goal estimate equal to the depth at which the

state was generated. In contrast to the previous approaches, they use a compact FNN

consisting of only one hidden layer with 16 neurons.

The methods from the non-structured NN-based approaches are highly indepen-

dent of the domain model and task description and require low computational resources

to generate samples and train the FNN. However, despite having competitive results com-

pared to logic-based heuristics, they can still not surpass the goal-count heuristic.

30

3 SAMPLE GENERATION

Our objective is to systematically investigate sample generation methods to un-

derstand the influence of each technique on the performance of sampling strategies. We

explore the effects of each component in sample generation and propose new strategies

to improve the performance of the learned heuristic. By systematically analyzing and

comparing the outcomes of each strategy, we can gain insights into the strengths and

weaknesses of different sample generation approaches. This understanding will allow us

to identify how each technique contributes to enhancing performance and guide us to a

better learned heuristic function.

Therefore, we focus on how two aspects of sample generation influence the per-

formance of the learned heuristic to guide a search algorithm: the distribution of states si

in the state space and the quality of the estimates hi of samples concerning the h∗-value.

Learning a heuristic function requires a set of samples (s1, h1), . . . , (sN , hN), where each

sample (si, hi), i ∈ [N] consists of a state si and a cost-to-goal estimate hi.

We restrict our study to generalizing over planning tasks with initial states part

of the same FSS and a fixed goal condition. We study logic-independent approaches

with access to predecessors and successors of partial states through a black-box function,

to the goal condition, and to the domain of each variable. We also study mutex-based

approaches with access to mutexes derived from Fast Downward (HELMERT, 2006).

We address the generation of states in Section 3.1 and the estimation of the cost-to-goal

in Section 3.2. In both sections, we explore techniques from the previous works and

introduce novel methods. The methods are a sampling strategy combining regression by

breadth-first search with random walk, an adaptive regression limit based on the input

task parameters, and two improvement methods for the cost-to-goal estimates. Finally,

Section 3.3 presents the workflow of all the techniques discussed and an example of their

applications in the Blocksworld domain.

3.1 Generation of States

Unlike other domains in machine learning, such as image recognition or natural

language processing, where datasets of samples are often collected in real-world experi-

ments and subsequently need to be manually annotated and carefully curated, the task of

sample generation in classical planning presents a particular problem. In contrast to the

31

reliance on external data sources, classical planning uses the structure of the task domain.

Thus, the generation of samples becomes an algorithmic problem that uses the availabil-

ity of the state space and the ability to compute cost-to-goal estimates, allowing for a

systematic and controlled investigation of various techniques using only computational

resources.

Previous works typically address three fundamental approaches: progression from

one or more initial states, random sampling of the state space, or regression from a

goal state. Progression and regression involve starting from a state and systematically

applying forward (progression) or backward (regression) operators to expand the state

space. There are several expansion strategies, such as random walk (RW), BFS and DFS,

or teacher searches which include methods using reinforcement learning or bootstrap-

ping (ARFAEE; ZILLES; HOLTE, 2011). Each strategy influences the coverage and

expansion patterns of the generated states, contributing to the overall diversity and repre-

sentation of the sample set.

A problem in both random sampling and progression-based methods is obtaining

the cost-to-goal estimates. Without access to efficiently computable heuristic functions,

or in logic-independent approaches, obtaining these values is a challenging task. Typi-

cally, search algorithms must be used to generate these estimates, which can introduce

significant computational costs in tasks with large state spaces.

To remain less dependent on models than logic-based methods and more general,

we focus on regression for which an upper bound on the cost-to-goal is readily available,

discussed in Sections 3.1.1 and 3.1.2. Regression leads to partial states, so the problem

of generating complete states is addressed in Section 3.1.3. Using random sampling as an

additional approach is discussed in Section 3.1.4.

3.1.1 Sampling by Regression

To generate samples, we expand states from the backward state space through

regression using the main techniques in the literature, such as expansion by BFS, DFS, and

RW. Regression sampling consists of one or more regression rollouts involving a series of

state expansions. A rollout starts in an arbitrary state and continues until the last expanded

state has no predecessors or a maximum regression limit is reached. Therefore, RW can

have multiple rollouts, while BFS and DFS only have one. The sampling generation stops

when the total number of samples N has been reached.

32

During expansion, we optionally use mutexes obtained from an analysis of the

planning task – in our case, as computed by Fast Downward (HELMERT, 2006) – to

avoid partial states which cannot be completed to complete states without violating a

mutex. We also avoid repeated partial states for random walk rollouts, such that a single

rollout never cycles. However, the same partial state can be sampled multiple times in

different rollouts.

Regression starts from the goal s∗ with the cost-to-goal estimate h(s∗) = 0. When

applying a backward operator or ∈ Or to a state s, the resulting state s′ = pred(s, or)

receives a cost-to-goal estimate of h(s′) = h(s) + cost(or). For a state s generated

during rollout that satisfies the goal condition, i.e., s ⊆ s∗, we set its cost-to-goal estimate

to 0. States are added to the sample set when generated in the random walks and when

expanded in BFS or DFS. In all methods, backward operators applicable to a state are

applied randomly.

Using different expansion strategies and considering multiple rollouts, we aim to

generate a diverse and representative sample set of the state space. Different expansion

strategies generate sample sets with different distributions over the state space. In our

experience, good coverage of states close to the goal, such as those obtained by BFS or

random walks, is valuable, as is the greater depth obtained by DFS or random walks.

However, random walks from a goal state often sample states close to the goal multiple

times, while DFS can result in samples that are distant. Based on these observations,

we propose a novel combination of BFS and random walks called Focused Sampling

Method (FSM) that aims to have a good coverage close to the goal, from the BFS, and a

diverse set of samples from the remaining state space, from the random walks. By inte-

grating these techniques, FSM aims to achieve a balanced and comprehensive sampling

of the state space. Algorithm 1 presents the approach.

FSM has two phases. In the first phase, a fixed percentage p of the desired N sam-

ples is generated using BFS. The percentage p also serves as a constraint on computational

resources, and the BFS process terminates when either the desired number of samples or

the resource limit is reached first. BFS expands a state from layer k and generates n states

from layer k + 1 (line 11). Each generated state is inserted into the sample set S if the

current total samples plus n are within pN ; otherwise, no states are sampled, and BFS

expands another state. When expanding an entire layer, the algorithm moves to the next

layer.

Let Q be the states in S that did not generate successors for the sample set,

33

Algorithm 1: FSM algorithm
Data: N: number of samples; p: fraction of samples obtained by BFS; s0:

initial state; L: random walk rollout limit
Result: S: the sample set

1 Function FSM(p, s0, L):
2 S← {s0}
3 Q← {s0}
4 Dk ← {s0} // current layer
5 Dk+1 ← ∅ // next layer
6 NBFS ← N× p
7 // BFS phase
8 while |S| < NBFS and Dk ̸= ∅ do
9 Shuffles Dk with a uniform distribution

10 foreach s ∈ Dk do
11 t← {s’ | s’ ∈ pred(s) and s’ /∈ S}
12 if |S|+ |t| ≤ NBFS then
13 Dk+1 ← Dk+1 ∪ t
14 S← S ∪ t
15 Q← (Q ∪ t) \{s}

16 Dk ← Dk+1

17 // RW phase
18 while |S| < N do
19 Shuffles Q with a uniform distribution
20 foreach s ∈ Q do
21 SRW ← set of min(L− h∗(s),N− |S|) states sampled via RW

starting from s
22 S← S ∪ SRW

23 if |S| = N then break;

24 return S

i.e., they were not expanded, or their set of successors did not fit. The second phase

generates multiple random walk rollouts, each starting from a state s ∈ Q chosen ran-

domly with a complete replacement after all states have been selected once. Each rollout

samples L − h∗(s) states, where L is the maximum regression limit and h∗(s) is the dis-

tance already traversed by BFS. During a random walk, states sampled in the BFS phase

are avoided. The random walks are repeated until reaching N samples in the sample set.

34

3.1.2 Maximum Regression Limit

The maximum regression limit controls the depth of the rollout during sample

generation. This limit determines how far the sampling can deviate from the goal during

regression. In random walk, the regression limit is represented by the maximum length

(number of random steps) the algorithm can take in a rollout. In BFS or DFS, the max-

imum regression limit corresponds to the maximum depth (distance from the goal) that

can be reached.

This limit serves two main objectives. First, particularly in regression-based meth-

ods, it helps maintain the precision of the cost-to-goal estimate, which is determined by

the distance from the goal state that the sample was generated and tends to degrade during

sampling due to the random nature of algorithms such as random walk or DFS. Second,

it regulates the distribution of samples by periodically restarting the sampling, effectively

distributing them across the different distances from the goal.

By establishing an appropriate maximum regression limit, we can balance the

expansion of the state space and precision in the cost-to-goal estimates. If the limit is too

low, the sampling may fail to cover areas far from the goal, typically where the initial

states of a search reside, resulting in a sample set lacking information from these regions.

On the other hand, if the limit is too large, the sampling may extend too far from the goal,

increasing the error on the cost-to-goal estimates.

A simple strategy is to define some maximum limit L. Previous work has used

this, e.g., Yu, Kuroiwa and Fukunaga (2020) and O’Toole et al. (2022) with L = 200 and

L = 500, respectively. A fixed limit is not the optimal choice for tasks with state spaces

of different maximum distances to a fixed goal when we aim for a representative sample

of the state space. Therefore, using adaptive strategies is important to dynamically adjust

the maximum rollout limit, ensuring the generation of a representative sample set that

captures the characteristics of the state space.

The ideal regression limit is the one that stops regression when reaching the fur-

thest state from the goal. Let d∗ denote the distance from the goal to its farthest state.

For BFS, d∗ would be the ideal estimate; for DFS and random walks, higher limits are

required since they do not follow the shortest paths. Since d∗, in general, is unknown, a

potential solution is to estimate this value using available or domain-specific information.

We propose two adaptive and approximate methods to define a suitable maximum

regression limit based on the input task parameters. The first method uses the number

35

of facts F = |F(s0)| to estimate the d∗. Since each state is represented by a set of

factsF , we assume that each operator changes exactly one fact in the worst-case scenario.

Therefore, starting from a particular state, it is possible to modify all the facts by applying

F operators and thus reaching any other state in the state space.

However, operators can modify more than one fact at a time, enabling a more

precise estimation by considering the average number of facts changed by the task’s op-

erators. Therefore, we propose the second method, denoted as

F̄ =

⌈
F∑

o∈O
| eff(o)|
|O|

⌉
,

i.e., the number of facts per mean number of effects in the operators. This technique

generates a more refined estimate of the d∗.

Using these adaptive and approximated methods, we can define the maximum re-

gression limit based on the characteristics of each planning task. The regression limit F

offers a simple yet effective estimation, while the F̄ provides a more refined approxima-

tion.

3.1.3 State Completion

The goal condition is represented as a partial state, consisting of a subset of facts

of a complete state that need to be satisfied to reach the desired solution. Therefore, sam-

pling by regression generates a set of partial states. Since neural networks use complete

states as input during the search, it becomes necessary to perform state completion, which

involves assigning values to the undefined variables in the partial states. By using addi-

tional information and making more informed decisions during the state completion, we

can investigate the gain it can have on the neural network’s learning.

We introduce three approaches to complete a partial state. The first one is a ran-

dom assignment, where each partial state can be completed by assigning a value s(v) ∈

dom(v) to all fact pairs (v, s(v)) where s(v) = ⊥. This completion technique is logic-

independent since it relies solely on the available domain values without making addi-

tional assumptions.

The second method is mutex-based and aims to avoid states that are impossible to

reach during the search. It also assigns a random value s(v) ∈ dom(v) to each undefined

variable v but excludes states that do not satisfy mutexes. This filtering is achieved by

36

rejection sampling, where the undefined variables are processed in random order and set

to a random value that does not violate the mutexes. If the state cannot be completed, we

leave the facts undefined, i.e., set to false. By using the mutex information, we generate

states more consistent with those in the forward state space, enhancing the quality of the

training data.

While this mutex-based solution provides enhanced state completion, generating

invalid states or states that cannot be reached during the search is still possible. We

introduce an ideal state completion method to investigate the influence of generating only

those states that are reachable from the initial states of interest. This method aims to

produce a sample set that is highly relevant to the specific task. To complete a partial

state s, we sample a random state from s ∩ FSS. Since we sample by regression, for some

states, s ∩ FSS may be empty; such states are avoided during regression. However, it is

important to note that this method applies only to small tasks where we can enumerate

the complete forward state space of the initial state s0.

3.1.4 Randomly Generated Samples

We explore random sampling, as proposed by O’Toole et al. (2022), as an addi-

tional approach to generate samples. They have shown that adding randomly generated

samples to a set of samples generated by expansion improves the performance of the

learned heuristic. In their work, they propose to set the cost-to-goal estimate for these

samples to L+ 1 for a maximum regression limit of L.

We use this method to investigate the influence of randomly generated samples on

the sample set. These samples are generated from a fully undefined state s, i.e., s(v) = ⊥

for all v ∈ V , using the mutex-based state completion described in the previous section.

When generating a state s by random sampling, if s is already present in the sample

set, it receives the same cost-to-goal estimate; otherwise, it receives a cost estimate of

1 + maxi∈[N] hi that is larger than all sample estimates. By using random samples, we

aim to investigate their influence on the overall performance of the sampling approach.

37

3.2 Improving Cost-to-Goal Estimates

The cost-to-goal estimate’s accuracy also influences the quality of the sample set.

We aim to reduce the difference from the actual goal distance h∗ to improve the cost-to-

goal estimate. Our sampling approach ensures that the cost-to-goal estimates assigned

to the samples are based on the operators used to reach that particular state. Thus, we

guarantee that a sample never underestimates h∗.

Property 3.1. The cost-to-goal estimate h(s) of a sample s obtained by regression satis-

fies h(s) ≥ h∗(s).

Proof. Each estimate is witnessed by a plan. As observed in Chapter 2, a valid regression

sequence ρ = (o1, . . . , ok) generates a sequence of partial states that can reach the goal

in at most k steps and with a cost at most
∑

o∈ρ cost(o), which cannot be lower than the

optimal cost. ⊓⊔

Therefore, we apply two procedures that improve the cost-to-goal estimates but

maintain Property 3.1. The first minimizes estimates over repeated samples, while the

second over successors of samples. Both are logic-independent techniques.

3.2.1 Improvement of Repeated Samples

When generating samples through multiple rollouts, there is a possibility of over-

lap, where the same state could appear at different distances across different rollouts,

leading to varying cost-to-goal estimates. When training the NN, different labels for the

same sample can result in inconsistency and affect learning. To address this issue and im-

prove the quality of cost-to-goal estimates, we propose the Sample Improvement (SAI).

SAI aims to improve the consistency of the training data by selecting a single

cost-to-goal estimate for each unique state. Property 3.1 guarantees that no sampled cost-

to-goal estimate underestimates the actual goal distance h∗, so the lower the value, the

closer it is to h∗. Therefore, we choose the sample with the lowest cost-to-goal estimate

to represent each particular state.

For all sampled states s we update each cost-to-goal estimate to the best esti-

mate h(s) = min{hi | s = si, i ∈ [N]}. Since different partial states can generate identi-

cal complete states, the improvement is applied to partial and complete states. Choosing

38

Figure 3.1 – SAI technique applied on samples of two random walk rollouts. Each node
represents a state, and each arc is an applicable operator. Each rollout has a color, and its applied

operators are colored accordingly.

s∗

s1

s2

s3

s4

s5

s6

s7

s8

s9 s10

the minimum h-value is sound since, in all cases, we have valid plans from a regression

that witness these distances; for the same reason, Property 3.1 still holds.

Figure 3.1 presents the technique applied to sampling from random walks. Both

rollouts generate the state s2 but through different paths. The red rollout reaches it with a

distance of one from the goal state s∗, and the blue rollout generates s2 after three hops.

Consequently, we have two samples (s2, 1) and (s2, 3). Applying the SAI technique,

we update the cost-to-goal estimate h(s2) of both samples to min(1, 3) = 1. The same

process is applied to samples of state s8, which receives h(s8) = min(5, 7) = 5.

3.2.2 Improvement over Successors

In addition to sampling the same states in different rollouts, sampling states neigh-

bors in the state space is common – more frequent in states at the beginning of the rollout.

By sampling neighboring states, we can use the local information to enhance the accuracy

of the cost-to-goal estimates. For this, we propose a technique called Successor Improve-

ment (SUI).

SUI uses the fact that neighboring samples, distant by an operator, can be con-

nected by this operator to form a new path to the goal and, consequently, new cost-to-goal

estimates. We can update the corresponding cost-to-goal estimate to approximate h∗ if

it produces a shorter path than the current one. Note that although it is possible to ex-

pand the technique to neighbors of two or more distance operators, the computational

cost grows exponentially with the average number of successors per sampled state.

Consider a directed, weighted, and labeled graph G = (V,A) where each vertex

in V corresponds to a sampled state and is labeled by its lowest cost-to-goal estimate. We

39

Figure 3.2 – SUI technique applied on samples of a random walk rollout (red arches). Each node
represents a state, and each arc is an applicable operator.

s∗ s1

s2

s3

s4

s5

s6

insert an arc (s, t) into A for every pair of states s, t ∈ V such that t ∈ succ(s). When

generating a successor of a partial state, we typically generate another partial state. Since

a partial state represents a set of complete states, to determine if a successor s′ ∈ succ(s)

matches any sampled state t, we need to compute the subsets of t. For this, we maintain

a trie data structure, where each sampled state is inserted with its variable values as key.

When generating a successor s′, we search the trie for sampled states t supersets of s′;

that is, s generates t from applying an operator o and assigning zero or more undefined

variables. Thus, we can include an arc (s, t) in A with a weight cs,t = cost(o).

Using the graph G, we propagate the cost-to-goal estimate from each sampled

state to its sampled predecessors. We iterate over each arc (s, t) ∈ A and update the

cost-to-goal estimate h(s) = min(h(s), h(t) + cs,t). The process continues as long as

there are updates. For partial states generated by regression, by construction, at least one

successor exists, except for the goal s∗. Therefore, in the worst case, the algorithm will

make L iterations, propagating the cost-to-goal estimate of a goal state to the most distant

state. As for SAI, all distances are witnessed by plans, so Property 3.1 is maintained.

Figure 3.2 shows an example. The rollout does not overlap but intersects at a

distance of one operator between states s1 and s3. This information is discovered by

inserting the black arcs into the graph G, which are operators not previously used by

the sampling. From there, we can connect these states to generate a new path from s3

to the goal that is shorter than the one produced by the rollout, updating its cost-to-goal

estimate from 4 to h(s1) + 1 = 1 + 1 = 2, according to the new path. Now, s3 can

update the estimate of its neighbors in the next iteration. Thus, all states generated in

the rollout after s3 will be updated. Therefore, although distant states from the goal have

fewer neighbors than those near the goal, their cost-to-goal estimates are updated through

the rollout propagation.

40

Figure 3.3 – Sample generation workflow.

Sampling stage

SAI applied in partial states

SUI

State completion

Generation of random samples

SAI applied in complete states

Learning stage

3.3 Workflow

Our approach follows the workflow shown in Figure 3.3. The workflow begins

with the sampling stage, where a set of samples is generated using algorithms such as

random walk or FSM. The sampling must be performed through regression to enable

the SAI and SUI. After obtaining the sample set, the first step of sample processing is

to apply SAI to the samples, represented as partial states at this stage. Then, the SUI

technique is performed, which achieves the same outcome even if SAI is not applied to

the partial states. However, applying SAI beforehand is computationally advantageous

– except in cases where the effect of the SAI is minimal – as it reduces the number of

iterations required to update the cost-to-goal estimates in the SUI stage. The SUI is the

last step, where the samples are treated as partial states. Next, the undefined variables of

each sample are assigned according to the chosen state completion technique, resulting

in a sample set of complete states. Then, we use random sampling to generate additional

states for the sample set. By generating the random samples before applying SAI to

complete states, there is no need to check if each randomly generated sample is already

in the sample set to copy its cost-to-goal estimate since a high cost-to-goal estimate L+1

is reduced by the SAI in this case. This step is handled by SAI, which updates the value

if necessary. Applying SAI to the complete states concludes the preprocessing of the

sample set before it proceeds to the supervised learning stage. Overall, this workflow

applies a series of transformations to the sample set. Each step contributes to adjusting

41

Figure 3.4 – Example of sampling in Blocksworld. Each set of blocks corresponds to a state, with
its facts described on the side and its label below.

(goal)

on(R,G)
on(G,B)

(s1)

clear(G)
on(G,B)

on-table(R)

(s2)

clear(G)
clear(B)

on-table(R)
on-table(G)

(s3)

clear(G)
clear(B)
on(G,R)

on-table(R)

(s4)

clear(R)
clear(G)
clear(B)

on-table(R)
on-table(G)

(s5)

clear(R)
clear(B)
on(B,G)

on-table(R)

the distribution of samples over the state space or refining their cost-to-goal estimates,

both key factors for enhancing the quality of the sample set.

Examples of all techniques can be extracted from Figure 3.4. The subset of the

state space presented consists of six states from the Blocksworld with three blocks. Each

state has a set of facts that describe its configuration. These facts include clear(A) to

indicate that block A has no block above it, on(A,B) to denote that block A is placed on

top of block B, and on-table(A) to signify that block A is on the table. The block labels

are abbreviated based on their colors, with red, blue, and green named as R, B, and G,

respectively. In this context, the goal state is defined as a stack of all blocks, with the blue

block on the table and the red block on top. The described facts are based on applying

backward operators from the goal state.

We can illustrate a regression using the FSM algorithm. Suppose we want to

sample six states, i.e., N = 6, with p = 0.67 and a maximum rollout limit of L = 4. The

goal state is initially sampled and expanded, adding the state s1 to the open queue Q (see

Algorithm 1). In the second iteration, s1 is expanded, adding s2 and s3 to Q, which

are also expanded and sampled in the next iteration. The BFS phase ends with four

samples, and the random walk phase begins, where s2 and s3 are the starting states for

rollouts. Consider s3 for the first rollout, which generates s4 and then s5. The starting

state s3 was sampled in the BFS and is not sampled again, so only s4 and s5 are inserted

in the sample set. Upon reaching s5, the rollout ends due to the maximum regression

limit L = 4. The sample budget is reached, and the sample generation ends. If the sample

42

budget were larger, a new rollout would start from a predecessor of s2 or s3 excluding s4.

Assuming unit costs, the cost-to-goal estimate of a sample is the number of hops to the

goal, e.g., h(s4) = 3.

Originally, a random walk rollout cannot visit states sampled by BFS. However,

even though s4 has the same configuration as s2, they have different facts, making them

distinct states according to duplicate detection. Note that h(s2) = 2 and h(s4) = 4,

i.e., the cost-to-goal estimate of s4 overestimates h∗. When using the mutex-based ap-

proach to complete states, both s2 and s4 become the same complete state s = {clear(R),

clear(G), clear(B), on-table(R), on-table(G), on-table(B)}, and the SAI updates the

cost-to-goal estimate h(s4) = min(4, 2) = 2. On the other hand, SUI also adjusts the

value. When creating the graph G, a new arc is inserted from s4 to s1 motivated by the

operator that moves the green block onto the blue block. Thus, we can update the esti-

mate of s4 to h(s4) = h(s1) + 1 = 1 + 1 = 2, reaching h∗ in the same way. In the next

iteration, the cost-to-goal estimate of s5 is updated to h(s5) = h(s4) + 1 = 2 + 1 = 3,

also reaching h∗.

43

4 EXPERIMENTS

In this section, we present two sets of experiments. In the first set, we analyze

the behavior of sampling methods on planning tasks for which we can enumerate the

complete state space with associated perfect cost-to-goal estimates h∗. We study how

different techniques can influence the number of state expansions by a search algorithm.

In the second set, we evaluate how our findings generalize to a practical setting with large

planning tasks. Our methods are then compared to traditional heuristics and previous

works.

4.1 Settings

We use a residual neural network (HE et al., 2016) to learn a heuristic for a state

space. The network’s input is a Boolean representation of the states, where a fact is set

to 1 if it is true in the state and 0 otherwise, as explained in Section 2.3.2, and its output is

a single neuron with the predicted h-value. The network has two hidden layers followed

by a residual block with two hidden layers. Each hidden layer has 250 neurons that use

ReLU activation and are initialized as proposed by He et al. (2015). The training uses the

Adam optimizer (KINGMA; BA, 2015), learning rate of 10−4, early-stop patience of 100,

and MSE loss function. Due to better results in preliminary experiments, we use batch

sizes of 64 for small and 512 for large state spaces. We use 90% of the sampled data as

the training set, with the remaining 10% as the validation set. Different learned heuristics

are denoted as ĥX , where X indicates different algorithmic choices.

We select the domains and tasks from Ferber et al. (2022): Blocksworld, Depot,

Grid, N-Puzzle, Pipesworld-NoTankage, Rovers, Scanalyzer, Storage, Transport, and

VisitAll. All domains have unit costs except for Scanalyzer and Transport, for which

we consider the variant with unit costs. All methods are implemented on the Neu-

ral Fast Downward planning system with PyTorch 1.9.0 (FERBER; HELMERT; HOFF-

MANN, 2020; PASZKE et al., 2019). Our source code, planning tasks, and experiments

are available1. All experiments were run on a PC with an AMD Ryzen 9 3900X processor,

using a single core with 4GB RAM per process. The GPU provides a subtle speedup, so

it was not used. We solve all tasks with GBFS guided by the heuristic h with the lowest

generation order as the tie-breaking strategy.

1Available at <https://github.com/bettker/NeuralFastDownward>

https://github.com/bettker/NeuralFastDownward

44

We observe that an NN may fail to train if, after initialization, it outputs zero for

all training samples – referred to as “born dead” in Lu et al. (2020). This condition arises

when the weights and biases of the NN are initialized to consistently map the ReLU

activation region to negative values, resulting in a zero gradient and no weight updates

during training. This phenomenon occurs with a non-negligible frequency in experiments

on smaller state spaces with fewer samples, mainly in the Blocksworld and VisitAll do-

mains. A smaller sample set has limited input variability, reducing the chances of at

least one sample correctly activating the ReLU units. In that case, we reinitialize with a

different seed until the network outputs a non-zero value for some sample.

To establish a point of comparison for evaluating the performance of the ap-

proaches, we propose a baseline ĥ0. The baseline refers to a neural network config-

ured similarly to previous non-structured NN-based methods described in Section 2.4.2.

The ĥ0 is trained using random walks with L = 200. Mutexes are applied during the

regression and for state completion, but resetting the h-value to zero in goal states and

the improvement strategies SAI and SUI are turned off. By comparing the results of our

approaches with the baseline, we can assess the potential improvements over existing

methods.

To determine a value for p, preliminary experiments in small state spaces were per-

formed using p ∈ {0.01, 0.05, 0.1, 0.2, . . . , 0.9}. We use the same baseline configuration

but with the FSM sampling algorithm. The corresponding geometric mean expansions

obtained were 84.92, 79.51, 74.05, 79.46, 80.39, 80.79, 96.17, 120.42, 133.99, 167.14,

and 175.58, respectively. As a result, we set a fixed value of p = 0.1 for the experiments.

4.2 Small State Spaces

In this section, we study the behavior of different sampling methods on small

state spaces. For each domain, we select the task from the IPC benchmarks with the

largest state space between 30K and 1M states that can be enumerated completely to

obtain h∗-values. Table 4.1 shows the tasks and their state space sizes. For domains

Grid, Rovers, Scanalyzer, and Transport, the best task found had fewer than 30K states,

and VisitAll more than 1M, so we manually modified these tasks. We could not find a

non-trivial task within our limits for Depot, Pipesworld-NoTankage, and Storage, so they

were excluded from our experiments. We generate the initial states for the small state

spaces by performing a random walk of length 200 from the original initial state of a task.

45

Table 4.1 – Size of the forward state spaces for the selected small tasks in seven domains. Tasks
marked with ∗ were modified.

Domain Task #States Domain Task #States

Blocks blocks-7-0 65990 Scanalyzer p03∗ 46080
Grid prob01∗ 452353 Transport p02∗ 637632
N-Puzzle prob-n3-1 181440 VisitAll p-1-4∗ 79931
Rovers p03∗ 565824

Rovers, Scanalyzer, and VisitAll, had duplicated initial states or states that satisfied the

goal condition. Thus, we generate the initial states for these domains with random walks

of length 25, 50, and 8, respectively.

In the small state space experiments, the coverage for all methods is 100%. There-

fore we use the number of expanded states to evaluate the quality of the heuristic function.

In these experiments, we report means over experiments in 25 models (five different net-

work seeds and five different sample seeds) and 50 initial states. The training time has

been limited to 30 minutes. After initialization, the percentage of NN that output 0 for

all samples was at most 40% (in Blocksworld), and all networks successfully passed the

initialization test after the second initialization. Under these conditions, less than 1.5%

of the NNs did not converge within the time limit.

We aim to analyze the influence of the distribution of sampled states in the state

space on the quality of the learned heuristics and how techniques used to improve cost-

to-goal estimates influence sample quality. If not stated otherwise, we use the number

of samples equal to 1% of the state space size, regression limit L = 200, mutex-based

completion, and no cost-to-goal improvement methods.

4.2.1 Sample Generation Algorithms

This experiment compares four sample generation algorithms: BFS, DFS, RW,

and FSM. To control the cost-to-goal estimates’ effect on the learned heuristic’s quality,

we replace sample estimates with perfect values h∗ before training. Table 4.2 shows the

number of expanded states of a GBFS guided by the learned heuristics and the mean

h∗-values over the sampled states. We see that heuristic ĥBFS leads to more expanded

states than ĥDFS, which in turn expands about 50% more states than ĥRW and ĥFSM, which

perform similarly. Using ĥBFS is significantly worse and leads to the highest or close to

the highest number of expansions in all domains. Heuristic ĥDFS has a high number of

46

Table 4.2 – Comparison of sampling strategies BFS, DFS, RW, and FSM on h∗-values. Expanded
states of GBFS with learned heuristics and mean h∗-values over the sample sets.

Expanded states Mean h∗-values

Domain ĥBFS ĥDFS ĥRW ĥFSM FSS BFS DFS RW FSM

Blocks 5047.1 85.9 44.4 37.3 18.8 10.8 17.7 11.9 14.4
Grid 112.7 122.4 99.2 110.3 16.6 5.3 17.1 7.2 8.9
N-Puzzle 1477.2 176.8 109.5 109.2 22.0 10.4 20.2 20.0 19.8
Rovers 12.9 13.1 11.8 11.8 6.4 2.3 5.2 5.0 5.0
Scanalyzer 175.9 25.5 24.5 24.9 8.3 2.9 7.9 7.1 6.5
Transport 135.1 45.0 19.6 19.2 12.2 2.9 11.3 10.0 9.5
VisitAll 53.3 22.0 19.2 18.7 9.0 2.0 9.1 6.8 6.6

Geo. mean 201.9 48.3 34.0 33.5 12.2 4.2 11.4 8.8 9.1

expansions in Blocksworld, N-Puzzle, and Transport. Looking at the mean h∗-values, we

see that samples generated by BFS have the lowest, and those by DFS the highest mean

estimates in all domains. Although the distribution of DFS is closest to that of the whole

state space (inferred from the mean h∗-values), the resulting heuristic expands more states

than RW and FSM, which generate states closer to the goal. Therefore, multiple random

walk rollouts seem better than one with BFS or DFS due to increased sample diversity in

different portions of the state space, covering states more likely to be visited during the

search.

We now compare these results to results shown in Table 4.3, obtained on exactly

the same states but using the cost-to-goal estimates obtained during sampling for training

the NN. Note that the results for BFS with estimated costs to the goal differ from those

with exact values in Table 4.2. This difference happens because, during regression with

BFS, the cost-to-goal estimates are only exact on partial states; when turning them to

complete states, the estimates can be larger than h∗. Thus ĥBFS with the estimates obtained

during regression is less informed.

We can see that the relative order of the methods concerning the number of ex-

panded states remains the same, although all methods expand more states. The increase

in the number of expanded states is highest for ĥDFS, which expands about seven times

more states. In contrast, the other methods expand about twice as much, meaning that the

estimates produced by DFS during regression are inferior to those produced by the other

methods. The mean h-values confirm this: we can see that DFS significantly overesti-

mates the true distances. Although BFS has an estimation quality close to h∗-value, its

expanded states also degrade. These results suggest that sampling more states in localized

47

Table 4.3 – Comparison of sampling strategies BFS, DFS, RW, and FSM on estimated h-values.
Expanded states of GBFS with learned heuristics and mean h-values over the sample sets.

Expanded states Mean h-values

Domain ĥBFS ĥDFS ĥRW ĥFSM FSS BFS DFS RW FSM

Blocks 5047.1 205.6 87.0 80.8 18.8 10.8 166.1 28.1 38.4
Grid 431.2 4102.4 263.6 276.2 16.6 6.8 184.6 21.1 22.5
N-Puzzle 1477.2 1092.5 237.6 177.1 22.0 10.4 187.5 96.3 90.6
Rovers 91.8 27.8 21.9 18.8 6.4 4.6 27.1 25.9 24.9
Scanalyzer 328.0 263.5 70.6 53.6 8.3 3.0 146.2 90.3 87.9
Transport 215.1 1321.1 111.0 130.1 12.2 3.3 196.1 95.2 88.6
VisitAll 170.4 44.6 22.0 21.5 9.0 2.7 28.5 22.5 22.4

Geo. mean 446.7 326.7 79.8 73.1 12.2 5.1 103.5 43.3 44.4

regions of the state space (BFS closer to the goal and DFS more distant) is insufficient

to achieve good results during the search with GBFS. Furthermore, ĥFSM expands fewer

states than ĥRW and is the best in five of seven domains. Because ĥFSM had a lower in-

crease in expansions compared to ĥRW, we use FSM in the remaining experiments.

4.2.2 Maximum Regression Limit

In this experiment, we analyze the influence of the regression limit on the number

of expanded states of the sample generation technique FSM. We compare a fixed regres-

sion limit of L = 200 with the adaptive rollout limits number of facts F and number of

facts divided by the mean number of effects F̄ . Values F and F̄ for the selected tasks

and the largest distance of any state from a goal state d∗ are shown in Table 4.4. Both F

and F̄ overestimate the largest distance d∗, except for F̄ in three domains (Blocksworld,

Scanalyzer, and VisitAll). As discussed in Section 3.1.2, this is desirable since random

walk rollouts do not follow the shortest paths.

The right-hand side of Table 4.4 gives the number of expanded states for the three

settings of L. We see that limits F and F̄ perform better than the fixed limit 200, with F

best on one, F̄ on four, and 200 on two tasks. Also, when a limit of 200 is best, F presents

the closest results, but when F or F̄ are best, a limit 200 can be much worse. Note that F is

the best only in the domain where F̄ underestimates d∗. To validate this, we set L =
⌈
cF̄

⌉
for c ∈ {1.25, 1.5, 2, 2.5, 3, 3.5} in an additional experiment on domain Blocksworld. The

number of expanded states decreases to c = 3 with a mean of 52.31 expansions. Overall,

the adaptive limits F and F̄ are better estimates of the best regression limit.

48

Table 4.4 – State space information and expanded states of GBFS guided by ĥ trained on FSM
samples with different regression limits and no cost-to-goal improvements. The value d∗ is the

distance of the state most distant from a goal state.

Domain d∗ F F̄ L200 LF LF

Blocks 24 64 17 80.76 58.06 185.00
Grid 32 76 44 276.23 316.51 204.89
N-Puzzle 31 81 41 177.12 104.52 80.83
Rovers 19 32 27 18.85 17.74 16.50
Scanalyzer 15 42 20 53.59 57.02 88.76
Transport 17 66 35 130.14 82.35 58.13
VisitAll 15 31 17 21.51 25.61 29.96

Geo. mean 73.12 63.36 69.48

4.2.3 Randomly Generated Samples

In this experiment, we evaluate the effect of adding randomly generated sam-

ples to the sample set, as explained in Section 3.1.4. We generate sample sets S =

{(s1, h1), . . . , (sN , hN)} where 10%, 20%, . . . , 100% are random samples and the rest

is sampled with FSM and a regression limit F̄ . No cost-to-goal improvement is applied.

Random samples get a cost-to-goal estimate of H + 1 where H = maxi∈[N] hi is the

largest h-value in samples S, except when they are part of the samples, in which case they

receive the corresponding estimate (this happens in fewer than 1% of the samples). Note

that when using 100% of random samples, each has the cost-to-goal estimate equal to the

regression limit L+ 1 instead of H + 1, as we do not have samples in S.

Table 4.5 shows the performance up to 70% random samples. We have omit-

ted 80%, 90%, and 100% since expansions are higher (respectively 56.10, 73.94, and

11397.79). The number of expansions is considerably reduced when using random sam-

ples, with 20% random samples performing slightly better than other percentages. This

phenomenon also holds for individual domains, except Transport which expands on av-

erage a few states more, and N-Puzzle and Rovers, which expand a few states less. The

results only degrade significantly from 60%, which makes 50% a good choice when

considering computational resources, as random samples are computationally cheaper to

generate than regression samples.

To better understand the effect of random samples, we have performed three ad-

ditional experiments with 20% of random samples. The first focuses on cost-to-goal

estimates. We keep the samples but replace H + 1 with small values: a random h-value

from the sample set S or a random value drawn from U [1, 5]. This modification leads to

49

Table 4.5 – Expanded states of GBFS guided by ĥ trained on FSM samples with regression
limit F̄ , both cost-to-goal improvement strategies, and a varying percentage of randomly

generated samples.

Percentage of random samples

Domain 0 10 20 30 40 50 60 70

Blocks 177.88 59.23 57.00 63.75 63.25 48.99 65.26 74.47
Grid 124.89 60.77 66.52 79.81 64.33 66.87 75.92 115.44
N-Puzzle 89.47 87.60 80.93 88.76 86.64 81.62 89.38 96.26
Rovers 17.03 14.16 13.45 13.63 13.60 14.34 14.23 16.38
Scanalyzer 55.29 37.88 28.34 33.74 32.37 42.94 28.85 35.83
Transport 22.90 24.58 25.95 27.44 33.02 34.53 43.36 52.36
VisitAll 30.90 22.70 21.78 22.05 22.11 23.11 24.45 25.75

Geo. mean 53.91 36.97 35.13 38.51 37.95 38.76 40.94 48.75

overall means of 295.65 and 3832.14 expanded states, respectively. The second exper-

iment changes the distribution of the random samples: we force them to be part of the

FSS. This approach leads to a mean of 36.90 expanded states. Finally, the third experi-

ment does not apply mutexes, leading to a mean of 36.11 expanded states. From these

additional experiments, it is clear that the most relevant factor is a high h-value, and the

distribution and quality of the states seem to matter less. Overall, the most probable ex-

planation for the effect of random samples is that they help to increase the probability that

the search is guided towards samples for which the network has learned good estimates,

i.e., the samples obtained through regression.

4.2.4 State Completion

Here we focus on how sampled partial states are converted to complete states. In

this experiment, all the samples have perfect cost-to-goal estimates h∗. We compare three

different state completion strategies for a partial state s. All of them select a random state

from the set of states represented by s or a restriction of it: the set equals either to all

states in s (no restrictions), only those states that satisfy mutexes, or only states from the

forward state space (ideal baseline).

Table 4.6 presents the expanded states for these approaches. Applying mutexes

has a moderate effect and is very close to an ideal completion of the states. However,

completing randomly also presents competitive results, except for N-Puzzle. Also, N-

Puzzle with both restrictions should have similar results, as for this particular domain, all

50

Table 4.6 – Expanded states of GBFS guided by ĥ trained on FSM samples with LF , h∗

cost-to-goal estimates, and different state completion techniques.

Restriction

Domain None Mutex FSS

Blocks 212.30 207.18 190.96
Grid 104.34 96.02 87.80
N-Puzzle 225.62 79.42 98.71
Rovers 11.50 11.74 10.65
Scanalyzer 41.20 43.98 44.61
Transport 17.98 17.86 16.65
VisitAll 22.17 22.44 22.78

Geo. mean 51.37 44.15 43.57

partial states completed respecting the mutexes are part of the FSS, but this is not the case

due to noisy training (detailed in Section 4.5.2). To confirm this, we ran 900 experiments,

with 30 sample seeds and 30 network seeds, for N-Puzzle “Mutex” and “FSS”, and we

achieved similar mean expansions of 84.4 and 88.66, respectively.

4.2.5 Quality of Estimates

Now, we compare the quality of the cost-to-goal estimates to h∗ with and without

cost-to-goal improvement techniques and distinct regression limits, as shown in Table 4.7.

This table shows the mean absolute difference between the sample estimates and h∗, so

smaller means indicate better approximations. Note that we are not evaluating an NN’s

output but the sample set’s cost-to-goal estimates.

The improvement strategies SAI and SUI substantially reduce the estimates for all

regression limiting methods. For L200, LF , and LF , using only SAI reduces the estimates

to 31.28, 13.95, and 4.93, respectively, and using only SUI reduces the estimates to 11.1,

5.48, and 1.93 respectively. Thus, SUI has the most effect on improving the cost-to-goal

estimates compared to SAI.

The adaptive regression limiting methods are superior to the fixed default L200,

and LF has the best results. When comparing L200 to LF without cost-to-goal improve-

ments, the estimate difference to h∗ decreases by about six times on geometric mean.

Blocksworld has the best performance, improving more than 25 times. Finally, using both

cost-to-goal improvements and rollout limit LF reduces the difference to h∗ from 33.45

to only 1.60.

51

Table 4.7 – Mean difference of the cost-to-goal estimates of samples of the sample set to h∗.

No improvements With SAI and SUI

Domain L200 LF LF L200 LF LF

Blocks 24.01 12.90 0.91 12.56 6.90 0.18
Grid 13.60 13.29 9.84 1.32 1.32 0.61
N-Puzzle 70.87 21.80 6.10 60.79 19.18 5.11
Rovers 19.92 11.58 9.74 6.70 5.29 4.88
Scanalyzer 81.35 15.07 6.09 20.16 5.59 1.89
Transport 79.06 23.42 10.98 24.59 5.98 2.44
VisitAll 15.80 9.07 4.58 5.64 4.06 2.15

Geo. mean 33.45 14.56 5.56 10.95 5.35 1.60

Table 4.8 – Mean difference of hFF, hGC and ĥ, to h∗ when evaluated over the forward state space.

Domain hFF hGC ĥ0 ĥL200 ĥLF
ĥLF

ĥ20%
LF

Blocks 6.76 13.37 26.46 16.58 9.84 2.91 2.42
Grid 3.72 13.78 26.85 4.21 4.10 2.73 9.78
N-Puzzle 4.19 14.86 79.84 65.37 23.90 6.75 12.73
Rovers 0.17 3.31 11.08 3.18 3.04 2.98 6.35
Scanalyzer 2.78 1.08 106.37 27.60 11.45 2.99 9.01
Transport 1.13 8.63 109.77 33.53 12.54 7.05 14.89
VisitAll 1.31 3.03 21.55 7.50 5.56 2.21 4.74

Geo. mean 1.84 5.92 39.80 13.91 8.13 3.57 7.40

4.2.6 Evaluation over the Forward State Spaces

We now analyze the quality of our learned heuristics and the traditional heuristics

FF hFF (HOFFMANN; NEBEL, 2001) and goal-count hGC over all states from the forward

state space of each task. Table 4.8 shows the results. Except for the baseline ĥ0, the

samples are generated with FSM limited by L200, LF , or LF and improved with SAI

and SUI. The learned heuristic ĥ20%
LF

is the same as ĥLF
, but 20% of the samples are

randomly generated. We see that ĥLF
reduces the difference of the predicted h-value to

the real one by about 11 times when compared to ĥ0. When compared to hGC, it has the

smallest difference in all domains except Scanalyzer. Also, the heuristic ĥLF
presents a

similar mean difference to hFF. Due to the randomly generated samples in the sample

set, ĥ20%
LF

doubles the difference compared to ĥLF
. The only domain with a lower value

is Blocksworld, driven by approximately two-thirds of the FSS states having an h∗-value

within a range of two or less the value assigned for random samples, thus improving the

average.

52

Table 4.9 – Expanded states of GBFS with different heuristic functions. The “h∗” column is ideal
and only used for comparison.

Domain h∗ hFF hGC ĥ0 ĥLF
ĥ20%
LF

ĥ20%
LF / RW

Blocks 19.44 183.00 332.66 87.00 177.88 57.00 106.55
Grid 20.80 33.62 265.58 304.22 124.89 66.52 56.76
N-Puzzle 22.56 139.86 818.70 246.77 89.47 80.93 83.50
Rovers 10.32 11.46 61.48 21.89 17.03 13.45 14.01
Scanalyzer 9.16 28.54 31.94 70.62 55.29 28.34 33.05
Transport 13.30 17.82 200.50 110.89 22.90 25.95 26.68
VisitAll 11.90 27.26 16.70 21.99 30.90 21.78 21.68

Geo. mean 14.53 38.98 124.95 81.86 53.91 35.13 38.92

Table 4.10 – Expanded states of GBFS with ĥLF
trained with the number of samples

corresponding to some percentage of the number of states in the FSS of each task.

Domain 5 % 25 % 50 % 100 %

Blocks 30.21 20.90 20.40 20.02
Grid 132.45 99.87 68.85 43.66
N-Puzzle 37.31 27.17 25.58 24.04
Rovers 16.23 14.47 14.45 19.58
Scanalyzer 18.23 12.86 12.89 13.33
Transport 20.39 18.42 16.87 15.81
VisitAll 22.18 19.05 20.23 21.46

Geo. mean 29.62 23.28 21.72 21.10

Comparing Tables 4.7 and 4.8, we observe that relative order between L200, LF ,

and LF is preserved. The mean difference of the samples’ estimates to h∗ for LF is 1.60

in Table 4.7, and when the corresponding ĥLF
is required to generalize over the entire

FSS, the mean difference is 3.57.

4.2.7 Comparison to Traditional Heuristic Functions

We now compare the learned heuristics with traditional ones. The number of

expanded states of GBFS guided by different heuristic functions is shown in Table 4.9.

The NNs are trained with samples obtained with FSM (except ĥ20%
LF / RW which was sampled

by random walk), both cost-to-goal improvement strategies, and regression limit F̄ .

First, we see that the baseline ĥ0 expands fewer states than hGC in most domains

except Grid, Scanalyzer, and VisitAll, but it is far worse than hFF except in Blocksworld

and VisitAll, where the learned heuristic has particularly good results. We also see that

53

ĥLF
expands less than ĥ0 in five domains. hFF has better results than ĥLF

; however, ĥLF

surpasses hFF if 20% of the samples are randomly generated, or if we increase the budget

of ĥLF
to 5% (instead of 1%) of the number of states in the FSS as shown in Table 4.10.

This table also indicates that after increasing the budget to 50% of the number of states

in the FSS, the gains in quality of the learned heuristic are negligible. Additionally, by

comparing Tables 4.9 and 4.10, we see that having fewer samples but perfect estimates h∗

has better results than having more samples but h∗ estimates, meaning that improving the

cost-to-goal estimates is more important than having more samples.

We see that for the learned heuristics, the order of approaches in terms of h-h∗ dif-

ference (Table 4.8) and expanded states (Table 4.9) remains consistent for ĥ0 and ĥLF
, but

not for ĥ20%
LF

, which has a higher mean difference than ĥLF
but presents the least state ex-

pansions, even when compared to hFF. We experimented with the learned heuristic using

all our techniques, except for the RW sampling algorithm, to observe the performance

gain of our proposed FSM algorithm (ĥ20%
LF

) over the RW algorithm (ĥ20%
LF / RW). We see

that RW’s NN outperforms FSM’s by ten expansions in Grid but achieves approximately

double the expanded states in Blocksworld. Overall, sampling with FSM slightly outper-

forms RW in other domains, with a geometric mean of 10% fewer expansions.

With these results, we conclude that a better generalization over the forward state

space is good for the samples obtained during regression. In contrast, despite worsening

the mean difference to the FSS, random samples are obtained after the regression proce-

dure and can be helpful due to the reasons discussed in Section 4.2.3. Thus, a smaller

h-h∗ difference is not a definitive indication of good search quality.

4.3 Large State Spaces

The main goal of the following experiments is to validate our findings from the

previous sections on large state spaces, so we compare different configurations of the

improved methods with traditional heuristics and a baseline. We report results over

9 seeds (3 network seeds and 3 sample seeds), and using 50 initial states from each of

Ferber et al. (2022) moderate tasks, which are the IPC tasks from ten selected domains

that according to their results are solvable by GBFS with hFF within 1 to 900 seconds.

Each domain has the following number of tasks: Blocksworld, 5; Depot, 6; Grid, 2; N-

Puzzle, 8; Pipesworld-NoTankage, 10; Rovers, 8; Scanalyzer, 6; Storage, 4; Transport, 8;

VisitAll, 6.

54

Table 4.11 – Mean coverages and expanded states of the learned heuristics with regression limits
and their respective approaches not using mutexes (ĥ

′
). Expanded states consider only the initial

states solved by all heuristics; Grid, N-Puzzle, and Storage had no common solved initial state.
The geometric mean is used for the overall mean of expanded states.

Coverage (%) Expanded states

Domain ĥLF
ĥLF

ĥ
′
LF

ĥ
′
LF

ĥLF
ĥLF

ĥ
′
LF

ĥ
′
LF

Blocks 93.33 96.31 100.00 100.00 459205 15279 8927 8400
Depot 81.26 84.67 85.96 86.41 45002 49629 55136 69342
Grid 76.56 81.11 41.33 38.33 - - - -
N-Puzzle 21.64 95.50 7.42 35.33 - - - -
Pipes-NT 17.80 17.78 17.82 18.07 193039 211291 209366 205928
Rovers 13.92 13.33 13.67 13.53 203 115 106 99
Scanalyzer 66.44 67.78 66.15 66.67 12793 415 17475 367
Storage 3.94 9.11 1.67 8.33 - - - -
Transport 75.53 85.97 81.42 87.50 96642 46120 76756 65656
VisitAll 92.81 80.52 92.70 79.00 11515 20910 12972 47916

Mean 54.32 63.21 50.81 53.32 27378 9574 15230 10461

We generate samples within one hour and set one hour as the maximum training

time. Each of the 50 initial states must be solved separately with GBFS within 5 minutes

and 2GB RAM. Generally, more samples yield better results; however, because we do

not know how much time will be spent on the cost-to-goal improvement SUI stage as it is

done after regression, we fix the number of samples at N = 16M/|V|, which results in a

mean of 500MB RAM during sampling and 2GB during SUI.

First, we reassess our previous results using the regression limits LF and LF on

large state spaces since our previous experiments (Section 4.2.2) produced similar results.

Table 4.11 shows the mean coverage and number of expanded states for the methods

using LF or LF , with both cost-to-goal improvements. In addition, we explore logic-

independent variants (denoted by ĥ
′) that use the state completion technique without mu-

texes since we want to assess the performance of learning over samples generated with or

without information from the task.

When comparing the learned heuristic ĥLF
over ĥLF

, we see a mean coverage

improvement of about 9%. All domains are improved or have very similar results, except

VisitAll, where limiting the regression limit by LF is better – this is also observed in

the small state space experiment. Without mutexes, the coverage improvements from LF

over LF are minor. However, the smaller number of expanded states in ĥ
′
LF

indicates

samples of higher quality, which achieves expansions close to when using mutexes. With

or without mutexes, using LF has the highest positive effect in N-Puzzle, increasing its

55

coverage by about four times. Also, not using mutexes improves Blocksworld, Depot,

and Transport results while having a minimal effect on Pipesworld-NoTankage, Rovers,

Scanalyzer, and VisitAll. This result suggests that logic-independent approaches show

potential in these domains. Based on the results, we conclude that LF performs better

than LF for large state spaces. Therefore, the following experiments will use LF .

Next, we compare the traditional heuristics hFF and hGC, the baseline ĥ0, and our

best approach ĥ20%
LF

in Table 4.12. We see that hFF dominates in most domains, achieving

twice the mean coverage of the baseline ĥ0. However, ĥ20%
LF

has only 12% less mean cov-

erage than hFF, with competitive coverage in most domains and improving ĥ0 by about

31%. Note that ĥ20%
LF

achieves better mean coverage than hGC, with higher or equal cov-

erage in 6 out of 10 domains. Also, in all domains except Transport, the best-learned

heuristic ĥ20%
LF

expands fewer states when compared to hFF, indicating that the learned

heuristic is more informed and that the inferior coverage is an effect of the slower ex-

pansion speed of the learned heuristics. However, the expanded states are biased towards

easier tasks, as they refer to commonly solved initial states across the approaches. Fur-

thermore, when limiting hFF by the same number of expansions as the learned heuristic,

hFF achieves coverage of 81.20, meaning that it still excels in most states. Because the

dataset used contains only tasks that are solvable by hFF within 900 seconds, the results

are also biased towards better performance with a search guided by hFF.

When comparing Tables 4.11 and 4.12, we notice that all learned heuristics have

similarly poor results in Rovers, independent of configuration. Considering only the

learned heuristics, when using 20% of random samples (ĥ20%
LF

) instead of 0% (ĥLF
),

there are intermediate improvements of about 15% in Storage, Transport, and VisitAll,

and a significant improvement in Pipesworld-NoTankage, from approximately 18% to

80% coverage.

4.4 Comparison to Other Approaches

Although we do not aim to systematically compare other methods due to distinct

machine configurations or libraries, we try to qualitatively compare our approach with

Ferber et al. (2022) and O’Toole et al. (2022). All methods share the same dataset and NN

configuration – differences include batch size, patience value, NN initialization functions,

and percentages of data split into training and validation sets.

Regarding our method, the sampling and training procedures can take a combined

56

Table 4.12 – Mean coverages and expanded states of the traditional heuristics hFF and hGC

compared to the baseline learned heuristic ĥ0 and the best learned heuristic ĥ20%LF
, obtained via

training over samples with FSM, LF , 20% of random samples, and both cost-to-goal
improvement strategies. Expanded states consider only the initial states solved by all heuristics;
N-Puzzle and Storage had no common solved initial state. The geometric mean is used for the

overall mean of expanded states.

Coverage (%) Expanded states

Domain hFF hGC ĥ0 ĥ20%
LF

hFF hGC ĥ0 ĥ20%
LF

Blocks 100.00 100.00 100.00 100.00 36482 87026 5349 7335
Depot 94.33 80.00 57.19 89.26 137053 874333 35972 29984
Grid 94.00 51.00 38.11 60.33 45117 29990 15040 27009
N-Puzzle 92.50 4.00 13.75 86.81 - - - -
Pipes-NT 63.40 89.40 13.51 79.84 83825 10416 304764 17389
Rovers 85.50 66.00 13.53 15.39 38 466 596 30
Scanalyzer 100.00 100.00 59.70 73.67 408 3914 27570 300
Storage 33.00 13.50 1.94 27.67 - - - -
Transport 100.00 100.00 48.89 100.00 8342 253501 139311 12149
VisitAll 92.00 100.00 74.19 98.85 248269 337 80155 5110

Mean 85.47 70.39 42.08 73.18 12529 15706 25184 3937

time of up to 2 hours, and we use a search time limit of 5 minutes. Ferber et al. (2022)

perform sampling and training for up to 28 hours, with a search time limit of 10 hours.

O’Toole et al. (2022) spend an unreported amount of time to generate 100K samples and

an average of 23 minutes in training, with a search time-limit of 6 minutes. Ferber et al.

(2022) use a validation method that consists in retraining the network up to three times if

the learned heuristic is not able to solve with GBFS more than 80% of generated valida-

tion states with a search time-limit of 30 minutes. O’Toole et al. (2022) train 10 networks

for each state space and select the one with the best-performing heuristic according to the

same validation method as Ferber et al. (2022).

Considering only the best configurations, Ferber et al. (2022) and O’Toole et al.

(2022) perform backward search-based sampling using random walks while we combine

breadth-first search with random walk. Ferber et al. (2022) obtain states through regres-

sion and try to solve them using GBFS with the current heuristic to obtain the plans used

as training data. They use bootstrapping, which consists of improving the learned heuris-

tics by training with samples of increasing difficulty, starting with a random walk limit

of 5 and doubling it (up to 8 times) whenever GBFS finds a plan for at least 95% of the

states obtained through regression. O’Toole et al. (2022) perform 5 rollouts with a re-

gression limit of L = 500 and use the current depth as cost-to-goal estimates; they use

57

Table 4.13 – Mean coverage results of ĥBoot (FERBER et al., 2022) and ĥN-RSL (O’TOOLE et al.,
2022), with results obtained from their respective papers, and our best learned heuristic trained

with 100K samples, from which 0%, 20% and 50% are randomly generated.

Domain ĥBoot ĥN-RSL ĥLF
ĥ20%
LF

ĥ50%
LF

Blocks 0.00 91.50 99.96 100.00 100.00
Depot 32.00 58.80 80.56 91.52 81.78
Grid 100.00 60.30 59.89 57.56 54.44
N-Puzzle 27.00 18.90 70.94 85.92 86.36
Pipes-NT 36.00 69.60 19.00 91.51 96.62
Rovers 36.00 12.50 13.47 14.33 14.50
Scanalyzer 33.00 94.10 67.00 66.67 66.15
Storage 89.00 16.40 19.67 22.00 19.17
Transport 84.00 70.80 100.00 99.67 86.89
VisitAll 17.00 95.40 84.52 99.04 99.70

Mean 45.40 58.80 61.50 72.82 70.56

the Tarski planning framework (FRANCÉS; RAMIREZ, 2018) to perform the regression

procedure as opposed to Fast Downward and developed a cost-to-goal improvement tech-

niques equivalent to SAI, and 50% of the samples are randomly generated as described

in Section 3.1.4. All methods have a Boolean representation for the samples and use

mutexes (obtained from Fast Downward) to complete undefined variables.

We now compare the coverage results between all methods over the same tasks.

We perform an additional set of experiments to show in Table 4.13. We present the results

of our best method using 0%, 20% and 50% of random samples, obtained from training

over 100K samples – same quantity as O’Toole et al. (2022). We also show results re-

ported by Ferber et al. (2022) ĥBoot and O’Toole et al. (2022) ĥN-RSL, both trained without

validation. Note that although the dataset is the same, the results are not fully compa-

rable due to different machine configurations and time dedicated to sampling, training,

and testing. Considering coverages, we notice that our methods have results more similar

to ĥN-RSL than to ĥBoot, and higher coverage, except for Grid, Rovers, Scanalyzer, and

Storage. Generating samples only through regression (i.e., without solving states) and

training afterward is faster when compared to bootstrapping. A significant limitation of

Ferber, Helmert and Hoffmann (2020) is the high cost of generating samples, as the states

generated by the backward random walk must be solved with the currently learned heuris-

tic to produce plans used as samples. (An alternative to computationally cheaper bootstrap

is proposed by Lelis (2013).) Both ĥN-RSL and our methods suggest that sampling using

regression with improvement strategies (such as SAI, SUI, and random samples) gives

58

competitive results in most domains.

According to O’Toole et al. (2022), the proportion of random samples in the sam-

ple set has the most positive effect on coverage – approximately doubling it when going

from 0% to 50% of random samples (34.7 vs. 59.9, from their supplementary material).

As seen in Table 4.13, we also notice an improvement from using random samples, al-

though smaller. This improvement is more prominent in O’Toole et al. (2022), most likely

due to their small quantity of rollouts (only five), negatively influencing sample diversity,

which is compensated by adding random samples. Our experiments show that all domains

either improve or have similar results, and the mean coverage improves by about 10%.

Also, except for Pipesworld-NoTankage, we saw no improvements above 5% using 50%

of random samples compared to 20%.

4.5 Limitations

This chapter discusses the problems and limitations of methods based on learning

heuristics with neural networks. Understanding and addressing these limitations can help

advance the field and develop more robust and effective learned heuristic functions.

4.5.1 Validation Loss

A significant limitation is the unreliability of the validation loss as an indicator of

performance during the training. We observe that two NNs trained with identical config-

uration and regime, varying only in the training seed, produce distinct validation losses,

where the network with a larger loss may outperform the one with a smaller loss in terms

of coverage or number of states expanded during the search. For instance, when training

with h∗-values over FSM samples, with one sample seed and 100 network seeds for each

of the small state spaces, 36% of the models with the least amount of expanded states

had a higher validation loss than other models with more expanded states; if the states do

not have h∗-values, the percentage increases to 49%. Regarding coverage, in the large

state space experiments with the heuristic ĥ20%
LF

and 9 runs (3 sample seeds and 3 network

seeds) for each state space, 15% of the models with the highest coverage had a higher

validation loss than the other models with lower coverage. This phenomenon happens

because the sampling procedure is imperfect – an NN learns a limited portion of the state

59

Table 4.14 – Expanded states with GBFS and their standard deviations in small state space
experiments using the baseline ĥ0 and the best heuristic ĥ20%LF

.

Domain ĥ0 ĥ20%
LF

Blocks 87.00 ± 26.24 57.00 ± 14.51
Grid 304.22 ± 177.52 66.52 ± 32.47
N-Puzzle 246.77 ± 133.26 80.93 ± 11.73
Rovers 21.89 ± 4.18 13.45 ± 0.78
Scanalyzer 70.62 ± 38.00 28.34 ± 7.86
Transport 110.89 ± 24.30 25.95 ± 2.33
VisitAll 21.99 ± 3.16 21.78 ± 2.30

Geo. mean 81.86 ± 25.78 35.13 ± 5.64

space, which varies per sample seed, so even if the validation loss is small, it provides no

guarantees of search quality.

This phenomenon challenges model validation methods and clarifies that a lower

validation loss does not necessarily translate to a better heuristic function in the search.

Consequently, relying solely on validation loss to measure model quality can lead to mis-

leading conclusions and suboptimal decisions about when to stop training or which NN is

most effective for the search. Using multiple seeds can work around the problem. How-

ever, alternative evaluation metrics and techniques must be explored to more accurately

assess the performance and effectiveness of learned heuristic models before the search.

4.5.2 Noisy Training

Another limitation to consider is the influence of seed initialization on the train-

ing. As noted by other methods that use some form of model validation (FERBER;

HELMERT; HOFFMANN, 2020; SHEN; TREVIZAN; THIEBAUX, 2020; FERBER et

al., 2022; O’TOOLE et al., 2022), training can be noisy, with multiple runs leading to

very different results. A consequence of this is observed in our experiments comparing

expanded states, where even a single state that ends up expanded due to an inaccurate

heuristic can lead to numerous extra expansions. In contrast, other states can lead the

search to a more direct path to the goal. This problem is common for all approaches that

use GBFS, but this is further aggravated in NNs that learn from approximated values.

Table 4.14 compare the mean number of expansions of the baseline ĥ0 and ĥ20%
LF

.

We see that standard deviation varies per domain, i.e., some domains are noisier than

others, and training with better-quality samples typically helps. Regarding coverage in

60

large state spaces, the standard deviation was smaller, as it does not vary at the same rate

as expanded states. For example, ĥ20%
LF

has a Grid coverage of 60 with a standard deviation

of 16, while the mean standard deviation considering all the other domains is less than 3.

4.5.3 State Representation

This work and others (FERBER; HELMERT; HOFFMANN, 2020; FERBER et

al., 2022; O’TOOLE et al., 2022) use the same STRIPS representation, and the NN re-

ceives as input a vector of Boolean values representing the set of facts of a complete state,

where each input neuron corresponds to a fact. However, this can become inefficient when

training over large tasks as the input size of the NN grows linearly with the number of

facts in the task. Furthermore, sampling methods via regression generate partial states.

With the assignment of undefined variables, part of the sampling information is lost.

Yu, Kuroiwa and Fukunaga (2020) use the same STRIPS representation with a

Boolean input for NN but does not complete the undefined variables, assigning false to

all |D(v)| = n facts of each undefined variable v. Since their undefined variables are

represented in SAS+, we can infer that at least one of the n facts is true in a complete

state. Consequently, by assigning false to all undefined facts, the NN is trained using

states that are unreachable during the search process.

On the other hand, Yu, Kuroiwa and Fukunaga (2020) and Geissmann (2015) ad-

dress the SAS+ representation. They use a multivalued vector to represent a state, which

aligns with the internal state representation in Fast Downward. This choice allows the

representation of undefined values and increases the speed of the NN by reducing the di-

mensionality of the input layer. They discuss that the choice may depend on the domain,

and the performance can vary across different domains. However, on average, this ap-

proach has shown worse performance than the Boolean representation in experiments on

46 domains (YU; KUROIWA; FUKUNAGA, 2020).

61

5 CONCLUSION

We have presented a study of sample generation and correction strategies for train-

ing FNNs to learn heuristic functions for classical planning. We have revised existing

approaches to sample generation and proposed a new strategy that uses regression with

BFS and random walks and several techniques that improve cost-to-goal estimates. By

revising and refining existing sample generation methods, we have successfully enhanced

the overall performance of the learned heuristic functions, achieving nearly double the

coverage compared to our baseline.

Among our contributions, the cost-to-goal improvement technique SUI and the

adaptive regression limit F̄ have the most positive effects on sampling quality. The for-

mer improves the accuracy of cost-to-goal estimates by analyzing the successors of a

state, while the latter avoids overestimates by limiting the maximum regression limit so

that we have a sampling distribution within a reasonable cost-to-goal range. Also, one

of our main findings is that having fewer samples with more accurate h-values is better

than having more samples with inaccurate h-values. Furthermore, having multiple ran-

dom walk rollouts – especially when combined with BFS – generates samples with better

quality when compared to using only BFS or DFS.

Finally, a systematic analysis of small state spaces against ideal baselines seems

to indicate that: a) for the samples obtained through regression, a distribution cover-

ing various portions of the state space without repeated samples close to the goal works

best; b) both the sample size and reasonable cost-to-goal estimates contribute to search

performance, with the latter being more important; c) enough samples of good quality

translate to good search performance that can be compared to traditional heuristics, al-

though logic-independent approaches (e.g., without mutexes) are currently not as good as

logic-dependent ones.

Future works can be conducted to investigate the scalability of the proposed tech-

niques, as well as approaches that address the limitations described in Section 4.5 can

be explored. Additionally, compared to traditional heuristics, some domains have poor

results with learned heuristics, such as Rovers, which, as far as we know, has a low cov-

erage among all NN-based methods. It needs to be clarified why some domains perform

well and others poorly among different learned heuristics.

We validate the findings of O’Toole et al. (2022) that including randomly gener-

ated samples in the sample set has a consistently positive influence. However, the un-

derlying reasons for this effect remain unexplained. A study on random sampling can be

62

conducted to understand its effect when combined with other sampling methods. Still,

exploring new approaches to determine the cost-to-goal estimate in random samples as an

alternative to the current arbitrary value could improve performance.

Furthermore, sampling approaches involving novelty can be promising. O’Toole

et al. (2022) proposed generating states that maximize the number of undiscovered facts,

i.e., facts that have not been observed in any state of the current rollout, during the ran-

dom walk steps. While their approach does not yield significant gains, other novelty or

information gain methods can be explored.

Finally, heuristic functions with logic-independent approaches seem promising.

The experiments demonstrate competitive results compared to the mutex-based one, with

a coverage difference of less than 4% in 8 out of 10 domains addressed. These find-

ings indicate the potential of logic-independent approaches, such as those with black-box

interfaces.

63

REFERENCES

AGOSTINELLI, F.; MCALEER, S.; SHMAKOV, A.; BALDI, P. Solving the Rubik’s
Cube with Deep Reinforcement Learning and Search. Nature Machine Intelligence, v. 1,
n. 8, p. 356–363, 2019.

ARFAEE, S. J.; ZILLES, S.; HOLTE, R. C. Learning Heuristic Functions for Large State
Spaces. Artificial Intelligence, v. 175, n. 16-17, p. 2075–2098, 2011.

BÄCKSTRÖM, C.; NEBEL, B. Complexity Results for SAS+ Planning. Computational
Intelligence, v. 11, n. 4, p. 625–655, 1995.

BATTAGLIA, P. W.; HAMRICK, J. B.; BAPST, V.; SANCHEZ-GONZALEZ, A.; ZAM-
BALDI, V.; MALINOWSKI, M.; TACCHETTI, A.; RAPOSO, D.; SANTORO, A.;
FAULKNER, R.; GULCEHRE, C.; SONG, F.; BALLARD, A.; GILMER, J.; DAHL,
G.; VASWANI, A.; ALLEN, K.; NASH, C.; LANGSTON, V.; DYER, C.; HEESS, N.;
WIERSTRA, D.; KOHLI, P.; BOTVINICK, M.; VINYALS, O.; LI, Y.; PASCANU, R.
Relational inductive biases, deep learning, and graph networks. 2018.

BONET, B. An Admissible Heuristic for SAS+ Planning Obtained from the State Equa-
tion. In: Proceedings of the Twenty-Third International Joint Conference on Artifi-
cial Intelligence. Beijing, China: AAAI Press, 2013. p. 2268–2274.

BYLANDER, T. The computational complexity of propositional STRIPS planning. Arti-
ficial Intelligence, v. 69, n. 1-2, p. 165–204, 1994.

DONG, H.; MAO, J.; LIN, T.; WANG, C.; LI, L.; ZHOU, D. Neural Logic Machines.
In: 6th International Conference on Learning Representations. Vancouver, Canada:
OpenReview.net, 2018.

DORAN, J. E.; MICHIE, D. Experiments with the Graph Traverser program. Proceed-
ings of the Royal Society A, v. 294, p. 235–259, 1966.

EDELKAMP, S.; SCHRÖDL, S. Heuristic Search: Theory and Applications. [S.l.]:
Academic Press, 2012. ISBN 978-0-12-372512-7.

FERBER, P.; GEIßER, F.; TREVIZAN, F.; HELMERT, M.; HOFFMANN, J. Neural
Network Heuristic Functions for Classical Planning: Bootstrapping and Comparison to
Other Methods. In: Proceedings of the Thirty-Second International Conference on
Automated Planning and Scheduling. Online: AAAI Press, 2022.

FERBER, P.; HELMERT, M.; HOFFMANN, J. Neural Network Heuristics for Classi-
cal Planning: A Study of Hyperparameter Space. In: 24th European Conference on
Artificial Intelligence. Santiago de Compostela, Spain: IOS Press, 2020. p. 2346–2353.

FIKES, R. E.; NILSSON, N. J. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, Elsevier, v. 2, n. 3-4, p. 189–208,
1971.

FRANCÉS, G.; RAMIREZ, M. Tarski: An AI Planning Modeling Framework. [S.l.]:
GitHub, 2018. <https://github.com/aig-upf/tarski>.

https://github.com/aig-upf/tarski

64

GEHRING, C.; ASAI, M.; CHITNIS, R.; SILVER, T.; KAELBLING, L. P.; SOHRABI,
S.; KATZ, M. Reinforcement Learning for Classical Planning: Viewing Heuristics as
Dense Reward Generators. In: Proceedings of the Thirty-Second International Con-
ference on Automated Planning and Scheduling. Online: AAAI Press, 2022. v. 32, p.
588–596.

GEISSMANN, C. Learning Heuristic Functions in Classical Planning. Dissertation
(Master) — University of Basel, 2015.

GORI, M.; MONFARDINI, G.; SCARSELLI, F. A New Model for Learning in Graph
Domains. In: Proceedings. 2005 IEEE International Joint Conference on Neural Net-
works. Montreal, Canada: IEEE, 2005. v. 2, n. 2005, p. 729–734.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernet-
ics, v. 4, n. 2, p. 100–107, 1968.

HASLUM, P.; GEFFNER, H. Admissible Heuristics for Optimal Planning. In: Pro-
ceedings of the Fourteenth International Conference on Automated Planning and
Scheduling. Whistler, Canada: AAAI Press, 2004. p. 140–149.

HAYKIN, S. Neural Networks and Learning Machines. 3. ed. Hamilton, Canada: Pear-
son, 2009.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification. In: Proceedings of the 2015 IEEE In-
ternational Conference on Computer Vision. Santiago, Chile: IEEE Computer Society,
2015.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Las Vegas, USA: IEEE Computer Society, 2016. p. 770–778.

HELMERT, M. The Fast Downward Planning System. Journal of Artificial Intelligence
Research, v. 26, p. 191–246, jul. 2006.

HELMERT, M. Concise Finite-Domain Representations For PDDL Planning Tasks. Ar-
tificial Intelligence, v. 173, n. 5-6, p. 503–535, 2009.

HOCHREITER, S. The Vanishing Gradient Problem During Learning Recurrent Neu-
ral Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, World Scientific, v. 6, n. 02, p. 107–116, 1998.

HOFFMANN, J.; NEBEL, B. The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research, v. 14, p. 253–302, 2001.

HOFFMANN, J.; PORTEOUS, J.; SEBASTIA, L. Ordered Landmarks in Planning. Jour-
nal of Artificial Intelligence Research, v. 22, p. 215–278, 2004.

KARPAS, E.; DOMSHLAK, C. Cost-Optimal Planning with Landmarks. In: Proceed-
ings of the Twenty-First International Joint Conference on Artificial Intelligence.
Hainan Island, China: AAAI Press, 2009. p. 1728–1733.

65

KINGMA, D.; BA, J. Adam: A Method for Stochastic Optimization. In: 3rd Interna-
tional Conference on Learning Representations. San Diego, USA: ICLR, 2015.

LELIS, L. H. S. de. Cluster-and-Conquer: a Paradigm for Solving State-Space Prob-
lems. Thesis (PhD) — University of Alberta, 2013.

LU, L.; SHIN, Y.; SU, Y.; KARNIADAKIS, G. E. Dying ReLU and Initialization: Theory
and Numerical Examples. Communications in Computational Physics, v. 28, n. 5, p.
1671–1706, jun. 2020.

O’TOOLE, S.; RAMIREZ, M.; LIPOVETZKY, N.; PEARCE, A. R. Sampling from Pre-
Images to Learn Heuristic Functions for Classical Planning. In: Fifteenth International
Symposium on Combinatorial Search. Vienna, Austria: AAAI Press, 2022. v. 15, n. 1,
p. 308–310.

PASZKE, A.; GROSS, S.; MASSA, F.; LERER, A.; BRADBURY, J.; CHANAN, G.;
KILLEEN, T.; LIN, Z.; GIMELSHEIN, N.; ANTIGA, L.; DESMAISON, A.; KöPF, A.;
YANG, E.; DEVITO, Z.; RAISON, M.; TEJANI, A.; CHILAMKURTHY, S.; STEINER,
B.; FANG, L.; BAI, J.; CHINTALA, S. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances In Neural Information Processing Systems, v. 32,
2019.

SAMADI, M.; FELNER, A.; SCHAEFFER, J. Learning from Multiple Heuristics.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence.
Chicago, USA: AAAI Press, 2008. p. 357–362.

SCARSELLI, F.; GORI, M.; TSOI, A. C.; HAGENBUCHNER, M.; MONFARDINI, G.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, v. 20, n. 1,
p. 61–80, 2008.

SHEN, W.; TREVIZAN, F.; THIEBAUX, S. Learning Domain-Independent Planning
Heuristics with Hypergraph Networks. In: Proceedings of the Thirty International
Conference on Automated Planning and Scheduling. Online: AAAI Press, 2020. p.
574–584.

STÅHLBERG, S.; BONET, B.; GEFFNER, H. Learning General Optimal Policies with
Graph Neural Networks: Expressive Power, Transparency, and Limits. In: Proceedings
of the Thirty-Second International Conference on Automated Planning and Schedul-
ing. Online: AAAI Press, 2022. v. 32, p. 629–637.

STURTEVANT, N.; HELMERT, M. Exponential-Binary State-Space Search. 2019.

TOYER, S.; THIEBAUX, S.; TREVIZAN, F.; XIE, L. ASNets: Deep Learning for Gen-
eralised Planning. Journal of Artificial Intelligence Research, v. 68, p. 1–68, may 2020.

TOYER, S.; TREVIZAN, F.; THIEBAUX, S.; XIE, L. Action Schema Networks: Gener-
alised Policies With Deep Learning. In: Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence. New Orleans, USA: AAAI Press, 2018.

YU, L.; KUROIWA, R.; FUKUNAGA, A. Learning Search-Space Specific Heuristics Us-
ing Neural Network. In: Proceedings of the 12th Workshop on Heuristics and Search
for Domain-independent Planning. Online: ICAPS, 2020.

ZHANG, A.; LIPTON, Z. C.; LI, M.; SMOLA, A. J. Dive into Deep Learning. 2021.

66

APPENDIX A — RESUMO EXPANDIDO

O planejamento clássico oferece uma abordagem para representar e resolver uma

variedade de problemas. Ao formular esses problemas como tarefas de planejamento, é

possível modelar desafios reais, como planejamento de rotas, robótica, verificação de sis-

temas automatizados, e biologia computacional (EDELKAMP; SCHRÖDL, 2012). Essa

abordagem permite que sistemas automatizados raciocinem, tomem decisões e gerem

planos para alcançar objetivos específicos.

Existem diversas abordagens para encontrar uma sequência de ações que trans-

forme um estado inicial em um estado que satisfaça a condição objetivo. Uma estratégia

bem-sucedida para resolver essas tarefas é usar algoritmos de best-first search, os quais

são guiados por uma função heurística que estima o custo para alcançar uma solução a

partir de um dado estado. Em geral, esses algoritmos são mais eficazes quando a função

heurística estima de forma mais precisa o custo ideal h∗ para alcançar o objetivo.

O interesse em aprender funções heurísticas com redes neurais (YU; KUROIWA;

FUKUNAGA, 2020; SHEN; TREVIZAN; THIEBAUX, 2020; FERBER; HELMERT;

HOFFMANN, 2020; TOYER et al., 2020; FERBER et al., 2022; O’TOOLE et al., 2022)

tem crescido devido ao rápido progresso em outras áreas de aplicação. A abordagem

básica é simples: gera-se um conjunto de amostras composto de pares de estados e esti-

madores de custo-para-o-objetivo, e, em seguida, um modelo supervisionado é treinado

usando esse conjunto de amostras. Com o intuito de aprimorar a qualidade das funções

heurísticas aprendidas, nosso objetivo é investigar sistematicamente os métodos de ger-

ação de amostras para entender a influência de cada técnica no desempenho das estratégias

de amostragem e propor novas abordagens que melhorem esse processo.

Para gerar nosso conjunto de amostras, expandimos o espaço de estados back-

ward via regressão a partir do estado objetivo. Nós aplicamos os algoritmos de busca em

largura (BFS), busca em profundidade (DFS), e random walk. Todo estado expandido é

amostrado juntamente com a distância percorrida até alcançá-lo, que representa seu esti-

mador de custo-para-o-objetivo. Buscando aproveitar as vantagens de cada algoritmo de

amostragem, apresentamos uma nova combinação de BFS e random walk, chamada Fo-

cused Sampling Method (FSM). O FSM realiza a amostragem em duas etapas: primeiro,

uma porcentagem fixa do total desejado de amostras é gerada usando BFS. Em seguida,

são realizados random walks sequenciais a partir dos nós folha do BFS até atingir o

número total de amostras. Cada um desses random walks é chamado de rollout e é inter-

rompido ao atingir um limite máximo de regressão.

67

O limite de regressão serve a dois objetivos principais. Primeiro, especialmente

em métodos baseados em regressão, ele ajuda a manter a precisão do estimador de custo-

para-o-objetivo, que tende a degradar durante a amostragem devido à natureza aleatória

de algoritmos como random walk ou DFS. Em segundo lugar, ele regula a distribuição

das amostras ao reiniciar periodicamente a amostragem, distribuindo-as efetivamente em

diferentes distâncias do objetivo.

Como alternativa aos limites fixos usados em trabalhos anteriores, nós propomos

dois métodos adaptativos para definir um limite máximo adequado de regressão com base

nos parâmetros da tarefa. O primeiro método usa o número de fatos F = |F(s0)| como

estimativa aproximada do número de passos necessários para alcançar o estado mais dis-

tante do objetivo. O segundo, mais refinado, usa também o número médio de efeitos dos

operadores e é denotado por F̄ =
⌈
F/eff

⌉
onde eff =

∑
o∈O | eff(o)|/|O|.

Além da seleção do conjunto de estados, a qualidade das amostras também é in-

fluenciada pelos estimadores de custo-para-o-objetivo. Em nossa abordagem, onde os

estimadores recebem valor igual ao número de passos da regressão, o valor sempre é

igual ou superior a h∗. Assim, buscando aprimorar a qualidade do conjunto de amostras,

nós propomos duas técnicas para aproximar os estimadores de custo-para-o-objetivo do

custo ideal h∗.

Ao gerar amostras por múltiplos rollouts, um mesmo estado pode ser amostrado

diferentes vezes com diferentes estimadores. Essa variação nos valores de custo-para-o-

objetivo para um mesmo estado pode causar inconsistências e afetar o aprendizado du-

rante o treinamento da rede neural. Para lidar com esse problema, nós propomos o Sample

Improvement (SAI). O SAI seleciona um único estimador de custo-para-o-objetivo para

cada estado único, optando sempre pelo valor mais baixo entre todas as amostras do es-

tado em específico.

Além de amostrar um mesmo estado em diferentes rollouts, é comum amostrar

estados vizinhos no espaço de estados. Ao amostrar estados vizinhos, podemos usar in-

formações locais para aumentar a precisão dos estimadores de custo-para-o-objetivo. Para

isso, propomos o Successor Improvement (SUI). O SUI usa o fato de que amostras viz-

inhas, distantes por um operador, podem ser conectadas por esse operador para formar

um novo caminho até o objetivo e, consequentemente, novos estimadores de custo-para-

o-objetivo. Podemos atualizar o estimador de custo-para-o-objetivo correspondente para

aproximar-se de h∗ se ele produzir um caminho mais curto do que o caminho atual. Am-

bas as técnicas de melhoria dos estimadores de custo-para-o-objetivo são aplicadas após

68

a amostragem.

Então, usamos uma rede neural residual (HE et al., 2016) para aprender uma

função heurística treinada sobre nosso conjunto de amostras e específica para um espaço

de estados. A entrada da rede consiste em uma representação booleana do estado, onde

um fato é definido como 1 se for verdadeiro no estado e 0 caso contrário. A saída é um

único neurônio com o valor h predito. A estrutura da rede inclui duas camadas ocultas,

seguidas por um bloco residual com mais duas camadas ocultas. Cada camada oculta

contém 250 neurônios que usam a função de ativação ReLU.

Os experimentos são divididos em dois conjuntos. No primeiro, analisamos o

desempenho das diferentes técnicas de amostragem nas tarefas de planejamento em que

é possível enumerar o espaço de estados completo com h∗. Neste contexto, estudamos

como diferentes métodos podem influenciar o número de estados expandidos na busca por

uma solução. No segundo conjunto, avaliamos a generalização de nossas descobertas para

configurações práticas com tarefas de planejamento maiores. Além disso, comparamos

nossos métodos com heurísticas tradicionais e trabalhos anteriores.

Uma análise sistemática em comparação com baselines ideais parece indicar que:

a) para as amostras obtidas por regressão, uma distribuição que abrange várias partes do

espaço de estados sem amostras repetidas próximas ao objetivo tende a funcionar mel-

hor; b) tanto o tamanho do conjunto de amostras quanto a qualidade dos estimadores de

custo-para-o-objetivo contribuem para o desempenho da heurística aprendida, sendo os

estimadores mais importante; c) um número suficiente de amostras de boa qualidade re-

sulta em uma função heurística com desempenho comparável às heurísticas tradicionais,

embora abordagens independentes de lógica (por exemplo, sem mutexes) atualmente não

sejam tão boas quanto as dependentes de lógica.

Dentre as nossas contribuições, a técnica de melhoria dos estimadores de custo-

para-o-objetivo SUI e o limite de regressão adaptativo F̄ têm os efeitos mais positivos

na qualidade da amostragem. Além disso, uma de nossas principais descobertas é que

ter menos amostras com estimadores mais precisos é melhor que ter mais amostras com

estimadores imprecisos. Também, ter múltiplos rollouts de random walk – especialmente

quando combinados com BFS – gera amostras de melhor qualidade quando comparados

a usar apenas BFS ou DFS.

	Acknowledgments
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Overview and Outline

	2 Background
	2.1 Classical Planning
	2.1.1 STRIPS Representation
	2.1.2 SAS+ Representation

	2.2 Search Algorithms
	2.2.1 Blind Search
	2.2.2 Heuristic Search

	2.3 Neural Networks
	2.3.1 Residual Networks
	2.3.2 Learning Heuristic Functions

	2.4 Related Work
	2.4.1 Structured NN-based Approaches
	2.4.2 Non-structured NN-based Approaches

	3 Sample Generation
	3.1 Generation of States
	3.1.1 Sampling by Regression
	3.1.2 Maximum Regression Limit
	3.1.3 State Completion
	3.1.4 Randomly Generated Samples

	3.2 Improving Cost-to-Goal Estimates
	3.2.1 Improvement of Repeated Samples
	3.2.2 Improvement over Successors

	3.3 Workflow

	4 Experiments
	4.1 Settings
	4.2 Small State Spaces
	4.2.1 Sample Generation Algorithms
	4.2.2 Maximum Regression Limit
	4.2.3 Randomly Generated Samples
	4.2.4 State Completion
	4.2.5 Quality of Estimates
	4.2.6 Evaluation over the Forward State Spaces
	4.2.7 Comparison to Traditional Heuristic Functions

	4.3 Large State Spaces
	4.4 Comparison to Other Approaches
	4.5 Limitations
	4.5.1 Validation Loss
	4.5.2 Noisy Training
	4.5.3 State Representation

	5 Conclusion
	References
	Appendix A — Resumo Expandido

