
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

WEVERTON LUIS DA COSTA CORDEIRO

ChangeLedge: Change Design and
Planning in Networked Systems

based on Reuse of Knowledge and
Automation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Luciano Paschoal Gaspary
Advisor

Porto Alegre, February 2009

CIP – CATALOGING-IN-PUBLICATION

Cordeiro, Weverton Luis da Costa

ChangeLedge: Change Design and Planning in Networked
Systems based on Reuse of Knowledge and Automation /
Weverton Luis da Costa Cordeiro. – Porto Alegre: PPGC
da UFRGS, 2009.

104 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2009. Advisor: Luciano Paschoal Gas-
pary.

1. Information Technology. 2. ITIL. 3. Change Manage-
ment. 4. Change Templates. 5. Requests for Change. I. Gas-
pary, Luciano Paschoal. II. T́ıtulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“You’ll never get to heaven

if you’re scared of getting high. ”

— Kylie Minogue

“With men this is impossible: but

with God all things are possible. ”

— Matthew 19:26

ACKNOWLEDGEMENTS

First of all, I thank God for all the blessing He has given me, and for all the
support I have received throughout my journey. All honor and glory to our Lord
Jesus Christ.

To my parents, Weliton and Ana Margarete da Costa Cordeiro, for the support
I have received through all my life. I want you to know that all my achievements
are a result of the education and lessons you have taught me. Also thanks to my
brother, Werley, and my sister, Lis Marina. And my special regards to my aunt
Marinês Vieira da Costa, who was very important in the beginning of my journey
in Belém, Brazil.

Also thanks to Aldete das Graças Serra da Costa and Ladislau Cavalheiro da
Costa, who have adopted me as a son during my stay in Belém. Also my best regards
to Anderson Jorge, Ana Carolina, and Maria Auxiliadora da Silva Tavares.

Thanks to Profs. Antônio Abelém, Carla Reis, and Rodrigo Reis, for the support
and lessons that will last for a lifetime. My regards to my colleagues and friends
from the Federal University of Pará, in special to Adailton Lima, Breno França, and
Rafael Esteves, for the great friendship and help you have given to me.

It is also a great pleasure for me to remind the people who have made my stay in
Porto Alegre a very funny experience: Vânia Rodenas, Kênia Lilian, Neila Rezende,
William Bruno, Flávio “Cockroach”, and the folks from former Eraldo’s shared
house.

My special thanks to Profs. Luciano Gaspary, Lisandro Granville, and Marinho
Barcellos, for all the lessons taught and the holy patience in putting me up through-
out my masters. The good news is that this period is finally over. Bad news is that
there are four more years ahead!

I cannot forget the members of the II/UFRGS Network Group. I hope you have
learned something good from me, as I have learned valuable lessons from you: Ew-
erton, Raniery, Clarissa, Giovane, Juliano, Roben, Jeferson, Flávio, Alan, Cristiano,
and Fabŕıcio. To Guilherme, my sincere apologies. Not being sufficient to put up
with me in Brazil, he had to tolerate me in Europe as well! Guilherme, great success
to you in your new journey in Switzerland, “are you plugged in”?

Thanks also to David Trastour, Claudio Bartolini, Abdel Boulmakoul, and Robert
Fink, for the cooperation, barbecues, the muqueca party, and talks that have made
my stay in Bristol, UK a very pleasant period.

Finally, a very special thanks to my girlfriend (and future wife, if God wish)
Sarita Nunes Loureiro. Thank you very much for your tenderness, support, and
comprehension. Soon we will overcome this distance that separates us! I love you,
my darling!

AGRADECIMENTOS

Agradeço primeiramente à Deus, por todas as oportunidades que Ele tem me
concedido, e por Ele ter sempre me apoioado na minha caminhada. Toda honra e
toda glória seja dada ao Nosso Senhor Jesus Cristo.

Aos meus pais, Weliton e Ana Margarete da Costa Cordeiro, pelo apoio que
eu sempre recebi em todos os momentos da minha vida. Quero que vocês saibam
que todas as minhas conquistas são resultado da educação e dos ensinamentos que
vocês me transmitiram. Meus agradecimentos também aos meus irmãos Werley e
Lis Marina. Minha lembrança especial à minha tia Marinês Vieira da Costa, a qual
foi fundamental no ińıcio da minha jornada em Belém.

Agradeço também à Aldete das Graças Serra da Costa e ao Ladislau Cavalheiro
da Costa, os quais me adotaram como um filho durante a minha estadia em Belém.
Minhas lembranças também ao Anderson Jorge, Ana Carolina, e à Maria Auxiliadora
da Silva Tavares.

Aos Profs. Antônio Abelém, Carla Reis e Rodrigo Reis, pelo apoio e ensinamen-
tos que ficarão para uma vida inteira. Minhas lembranças também aos colegas e
amigos do Curso de Computação da UFPA, em especial ao Adailton Lima, Breno
França, e Rafael Esteves, pela grande amizade e ajuda que sempre me foi prestada.

É um grande prazer também lembrar aqui as pessoas que tornaram a minha esta-
dia em Porto Alegre super divertida: Vânia Rodenas, Kênia Lilian, Neila Rezende,
William Bruno, o Flávio “Barata”, e toda a galera da ex-pensão do Eraldo.

Meu agradecimento todo especial aos Profs. Luciano Gaspary, Lisandro Granville
e Marinho Barcellos, pelos ensinamentos e pela santa paciência em terem conseguido
me aturar durante o mestrado. A boa not́ıcia para vocês é que esse peŕıodo final-
mente acabou. A má not́ıcia é que agora tem mais quatro anos pela frente!

Não posso esquecer também os integrantes do Grupo de Redes do II/UFRGS.
Espero que vocês tenham aprendido algo de positivo comigo, assim como aprendi
lições importantes com vocês: Ewerton, Raniery, Clarissa, Giovane, Juliano, Roben,
Jéferson, Flávio, Alan, Cristiano e Fabŕıcio. Ao Guilherme, minhas sinceras des-
culpas. Não bastava ter que me aturar no Brasil, teve que me aguentar na Europa
também! Guilherme, sucesso lá na tua nova empreitada na Súıça, tá ligado?

Agradecimentos também ao David Trastour, Claudio Bartolini, Abdel Boulmak-
oul e Robert Fink, pela cooperação, churrascos, muqueca e conversas que tornaram
a estadia em Bristol (UK) super agradável.

Para finalizar, um especial agradecimento à minha namorada (e se Deus quiser,
futura esposa) Sarita Nunes Loureiro. Muito obrigado pelo seu carinho, apoio e
compreensão. Logo logo haveremos de superar a distância que nos separa! Eu te
amo, meu amor!

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 8

LIST OF FIGURES . 10

LIST OF TABLES . 11

ABSTRACT . 12

RESUMO . 13

1 INTRODUCTION . 14

2 BACKGROUND . 17
2.1 ITSM, ITIL, and Change Management 17
2.2 Related Work . 21
2.2.1 IT Change Design and Planning . 21
2.2.2 Process Mining . 21
2.2.3 Management of IT Systems . 22

3 CONCEPTUAL SOLUTION FOR CHANGE MANAGEMENT 23
3.1 A Typical IT Change Process . 23
3.2 Conceptual Architecture . 24
3.3 Building Blocks of the Proposed Solution 26
3.3.1 IT Infrastructure Model . 26
3.3.2 Requests for Change & Change Plan Model 27
3.3.3 Activity Modeling Notation . 29

4 DESIGN OF PRELIMINARY PLANS THROUGH CHANGE TEM-

PLATES . 31
4.1 Request & Plan Templates . 31
4.2 Association Between Request and Plan Templates 32
4.3 Composition, Generalization, and Specialization of Templates . 33

5 FROM PRELIMINARY PLANS TO ACTIONABLE WORKFLOWS

THROUGH AUTOMATED PLANNING 37

6 FROM EXECUTION TRACES TO CHANGE TEMPLATES THROUGH

TEMPLATE MINING . 40
6.1 Template Discovery Process Overview 40
6.2 Discovering Change Processes from Logs 41

6.3 Converting Discovered Change Processes into Templates 43

7 PROTOTYPICAL IMPLEMENTATION AND EXPERIMENTAL EVAL-

UATION . 47
7.1 The ChangeLedge System . 47
7.1.1 System Architecture and Technologies 47
7.1.2 Change Designer and Planner Assistant 48
7.2 Experimental Evaluation . 50
7.2.1 Change Design and Planning Evaluation 50
7.2.2 Evaluation of the Template Mining Mechanism 56

8 CONCLUSION . 60
8.1 Contributions of this Thesis . 60
8.2 Considerations on the Proposed Solution 61
8.3 Research Avenues for Future Investigations 62

REFERENCES . 63

APPENDIX A RESUMO ESTENDIDO DA DISSERTAÇÃO 66
A.1 Contribuições . 68
A.2 Considerações sobre a Solução Proposta 69
A.3 Trabalhos Futuros . 70

APPENDIX B PUBLISHED PAPER – NOMS 2008 72

APPENDIX C PUBLISHED PAPER – DSOM 2008 81

APPENDIX D PUBLISHED PAPER – IM 2009 96

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artificial Intelligence

AMN Activity Modeling Notation

API Application Programming Interface

BPEL Business Process Execution Language

CAB Change Advisory Board

CHAMPS Change Management with Planning and Scheduling

CI Configuration Item

CIM Common Information Model

CM Causality Metric

CMDB Configuration Management Database

CMS Configuration Management System

COBIT Control Objectives for Information and related Technologies

DAO Data Access Object

DB Data Base

DBMS Database Management System

DML Definitive Media Library

DMTF Distributed Management Task Force

DNS Domain Name Server

GM Global Metric

ICMP Internet Control Message Protocol

IP Internet Protocol

ITIL Information Technology Infrastructure Library

IT Information Technology

ITSM Information Technology Service Management

LM Local Metric

OASIS Advancing Open Standards for the Information Society

OGC Office of Government Commerce

OS Operating System

RFC Requests for Change

SLA Service Level Agreement

StAX Streaming API for XML

URL Uniform Resource Locator

WfMC Workflow Management Coalition

XML Extended Markup Language

LIST OF FIGURES

Figure 2.1: ITIL Core . 18
Figure 2.2: ITIL Change Management Process 19

Figure 3.1: Elements of the proposed solution and interactions 25
Figure 3.2: Partial view of the IT Infrastructure model 26
Figure 3.3: Partial view of the RFC & Change Plan model 28

Figure 4.1: Examples of request and plan templates 32
Figure 4.2: A template for installing an operating system 34
Figure 4.3: Illustration of composition in the level of plan templates 35

Figure 6.1: Subcomponents of the change mining mechamism 40
Figure 6.2: Change plan extracted from an execution trace 43
Figure 6.3: Conversion of a change plan into a plan template 45

Figure 7.1: Implementation view of the ChangeLedge system 48
Figure 7.2: Graphical user interface of the ChangeLedge system 49
Figure 7.3: Template for the installation of a generic Web application (WebApp) 52
Figure 7.4: Partial workflow for installing WebApp on top of Windows XP

Professional . 53
Figure 7.5: Partial workflow for installing WebApp on top of Debian GNU/Linux 54
Figure 7.6: Partial view of the template extracted from the change log of RFC

Install e-Commerce Web application at Server1 58
Figure 7.7: Partial view of the template generated for RFC Migrate System

Hosted on Server3 to Server4 . 58

LIST OF TABLES

Table 3.1: Activity modeling using AMN . 30

Table 6.1: Example of execution trace . 42
Table 6.2: Dependency/Frequency table . 42
Table 6.3: Values for metrics LM, GM, and CM 43

Table 7.1: General settings of the servers employed in the change design and
planning evaluation . 50

Table 7.2: System requirements for the software present in the DML 51
Table 7.3: Numeric complexity of the submitted changes (pre and post re-

finement) . 55
Table 7.4: Time consumed by the ChangeLedge system to generate action-

able workflows . 55
Table 7.5: Characteristics of the change plans employed in the template min-

ing evaluation . 57
Table 7.6: Partial view of the change log of RFC Install e-Commerce Web

application at Server1 . 57
Table 7.7: Characteristics of the templates discovered using the template

mining mechanism . 57
Table 7.8: Time consumed by the ChangeLedge system to extract templates 59

ABSTRACT

Proper management of Information Technology (IT) resources and services has
become imperative for the success of modern organizations. The IT Infrastructure
Library (ITIL) represents, in this context, the most widely accepted framework to
help achieve this end. In order to deal with IT changes, ITIL defines the change
management process, whose main goal is to ensure that standardized methods and
procedures are used for the efficient and prompt handling of these changes. To meet
this goal, it is of paramount importance reusing the experience acquired from pre-
vious changes in the design of subsequent ones. ITIL suggests the use of change
models as a mean of enabling the reuse of such experience across recorrent, similar
changes. The creation of change models can be done considering two distinct ap-
proaches. In a top-down approach, IT operators may manually design models based
on the knowledge owned/acquired in the past. In contrast, in a bottom-up perspec-
tive, these models could be discovered from past execution traces gathered from IT
provisioning tools. In practice, however, changes have been usually described and
documented in an ad hoc fashion, due to the lack of proper mechanisms to both sup-
port the change design process. This hampers knowledge acquired when specifying,
planning, and carrying out previous changes to be reused in subsequent requests. To
address this problem, in this thesis we propose (i) the concept of change templates
as a mechanism to formalize, preserve, and (re)use knowledge in the specification of
(recurrent and similar) IT changes, (ii) an algorithm for the automated refinement
of change plans into actionable workflows, (iii) a mechanism to discover change tem-
plates from traces of past changes, and (iv) an end-to-end solution, supported by
a real system, to allow planning and implementation of IT changes to be designed
and executed. To prove concept and technical feasibility of the proposed solution,
we have developed a prototypical implementation of a change management system
called ChangeLedge and used it to carry out a set of experiments, considering typ-
ical IT changes. The results obtained indicate the effectiveness of the solution and
efficiency of the system, which is able to generate accurate and actionable change
plans in substantially less time than would be spent by a skilled human operator,
and to extract templates that accurately describe IT change procedures previously
executed in the organization.

Keywords: Information Technology, ITIL, Change Management, Change Tem-
plates, Requests for Change.

RESUMO

ChangeLedge: Projeto e Planejamento de Mudanças em Sistemas de
Rede com base no Reuso de Conhecimento e Automação

A gerência adequada de recursos e serviços de Tecnologia da Informação (TI)
se tornou imperativa para o sucesso de organizações modernas. A Biblioteca de
Infraestrutura de Tecnologia da Informação (Information Technology Infrastructure
Library, ITIL) representa, nesse contexto, o framework mais popular para ajudar
a alcançar esse fim. Para lidar com mudanças em TI, a ITIL define o processo de
gerência de mudanças (change management), cujo principal objetivo é garantir que
métodos e procedimentos padronizados são utilizados para o tratamento imediato e
eficiente dessas mudanças. Para alcançar esse objetivo, é fundamental reutilizar a
experiência adquirida com mudanças passadas no projeto de requisições futuras. A
ITIL sugere o uso de modelos de mudanças (change models) como uma forma para
permitir o reuso de tal experiência em mudanças recorrentes e similares. A criação
de modelos de mudanças pode ser concretizada considerando duas abordagens dis-
tintas. Em uma abordagem top-down, operadores de TI podem projetar os modelos
manualmente, com base no conhecimento adquirido no passado. Em uma perspec-
tiva alternativa, bottom-up, esses modelos poderiam ser extráıdos a partir de traços
de mudanças passadas obtidos com orquestradores de mudanças. Na prática, no
entanto, mudanças tem sido geralmente descritas e documentadas de forma ad hoc,
devido à falta de mecanismos adequados para apoiar o projeto das mesmas. Isso
impede que o conhecimento adquirido na especificação, planejamento e condução
de mudanças passadas seja reutilizado em requisições futuras. Para abordar esse
problema, nesta dissertação são propostos (i) o conceito de templates de mudança
como um mecanismo para formalizar, preservar, e (re)usar conhecimento na especi-
ficação de mudanças recorrentes e similares, (ii) um algoritmo para o refinamento
automatizado de planos de mudanças em workflows executáveis, (iii) um mecanismo
para extrair templates de mudanças a partir de traços de execuções passadas, e (iv)
uma solução fim-a-fim, apoiada por um sistema real, para permitir o planejamento
e implantação de mudanças em TI. Para provar conceito e viabilidade técnica da
solução proposta, foi realizada uma implementação protot́ıpica de um sistema de
gerência de mudanças chamado ChangeLedge, o qual foi utilizado para conduzir
uma série de experimentos considerando mudanças t́ıpicas em TI. Os resultados al-
cançados indicam a efetividade da solução e eficiência do sistema, o qual é capaz
de gerar planos de mudança executáveis e corretos em um peŕıodo de tempo sub-
stancialmente menor que o que seria gasto por um operador humano experiente, e
de extrair templates que descrevem com acurácia mudanças passadas executadas na
organização.

Palavras-chave: Tecnologia da Informação, ITIL, Gerência de Mudanças, Tem-
plates de Mudança, Requisições de Mudança.

14

1 INTRODUCTION

The use and importance of networked, distributed systems to support the busi-
ness of organizations has increased significantly in recent years. This scenario has
made imperative the employment of effective approaches for the proper and efficient
handling of these systems (also referred to as Information Technology systems in this
thesis). The Information Technology Infrastructure Library (ITIL) (OGC, 2008) has
become, in this context, one of the most widely accepted and adopted set of best
practices and processes for IT service deployment and management (REBOUCAS
et al., 2007), being of special importance to those organizations characterized by
their large scale and rapidly changing, dynamic services.

In order to deal with changes in IT systems, frequently introduced in response
to business needs, ITIL defines the change management process (LACY; MAC-
FARLANE, 2007). This process has the goal of maximizing the value of changes
to business, by means of minimizing change-related incidents and service-delivery
disruption. To this end, change management recommends the use of standardized
methods and procedures to deal with these changes.

As described in the ITIL Service Transition book (LACY; MACFARLANE,
2007), change management comprises from the specification of Requests For Change
(RFC) documents, by a change initiator, to the generation, either by an IT operator
or automatically, of actionable change plans. RFC documents, typically triggered
by business users, express the requested changes in a high level of abstraction (for
example, Deploy New e-Commerce Service and Increase Data Link Capacity). Ac-
tionable change plans, in turn, are workflows that comprise low level actions (for
example, software installation, route table manipulation, and setting modification)
to be deployed upon the managed IT infrastructure. If executed, these actionable
change plans (also called actionable workflows throughout this thesis) should deploy
the requested changes. The subsequent phases of a traditional change management
process are evaluation, test, authorization, scheduling, implementation, and record
of the executed actions in the Configuration Management Database (CMDB).

To meet the change management goal of maximizing the value of changes to
business, it is of paramount importance reusing the experience acquired from the
execution of previous changes in the design of subsequent ones. ITIL suggests the use
of change models as a mean of enabling the reuse of such experience across recurrent,
similar change requests. Ideally, the creation of these models can be done considering
two distinct approaches. In a top-down approach, IT operators may design models
based on the knowledge owned/acquired in past changes. In contrast, in a bottom-
up perspective, these models could be discovered from execution logs gathered from
IT provisioning tools (or from any general-purpose workflow orchestration engine).

15

In practice, however, RFCs and change plans are traditionally modeled in an ad
hoc fashion (REBOUCAS et al., 2007), where natural language is often employed
to express what, why, when, where, and how changes should be executed. The
lack of a common standard widely accepted and adopted by business users and IT
operators to assist the design of changes often leads, for example, to documents
specified with either too much or not enough information than actually required,
and to erroneous interpretation of the produced change-related documents. More
importantly – and the focus of the investigation presented in this thesis – it hampers
knowledge owned/acquired by the personnel responsible for specifying, planning,
and carrying out changes to be reused in recurrent or similar requests.

We highlight two reasons that justify the importance of reusing the experience of
operators in the implementation of IT changes. First, as change plans are recurrently
instantiated, they become more stable and, therefore, their use may result in fewer
incidents (upon change execution). Second, the time consumed by the IT personnel
in the specification and planning of changes tends to be reduced, given that they
will seldom be generated “from scratch”.

Since the inception of ITIL, there has been substantial research on IT change
management issues. For example, important steps have been taken towards ex-
ploring parallelism opportunities in the execution of change plans (KELLER et al.,
2004), optimizing both the scheduling of changes to maintenance windows and the
assignment of technicians to execute them (TRASTOUR et al., 2007), and guiding
the scheduling of changes as to satisfy business objectives/restrictions (REBOUCAS
et al., 2007). However, despite the potential benefits of reusing knowledge behind IT
changes, this topic has been barely addressed in previous investigations (KELLER
et al., 2004; LACY; MACFARLANE, 2007; KELLER, 2005) (this will be further
discussed in Chapter 2).

To bridge this gap, in this thesis we present a solution, based on the guidelines
for change management proposed by ITIL, to support the design and planning of
changes in IT systems. The contributions of this thesis are fourfold. First, we in-
troduce the concept of change templates as a mechanism to formalize, preserve, and
reuse the experience accumulated within organizations in relation to IT changes.
These templates may exist at different abstraction levels of a change management
system. We characterize request templates as those used by the change initiator to
specify RFC documents. Complementarily, plan templates comprise large-grained
activities required to accomplish the RFC objectives. Second, we propose an al-
gorithm for the automated refinement of large-grained activities present in plan
templates into finer-grained ones, in order to produce detailed, actionable change
plans. Our algorithm focuses on the impact that already computed, preceding ac-
tions will cause on the IT infrastructure, when computing the subsequent ones. As
a consequence, the actionable plans generated using our algorithm are aware of the
runtime constraints imposed by the target IT environment (e.g., disk space and
memory constraints). Third, we present a mechanism, inspired on process mining
techniques (MARUSTER et al., 2002), to discover change templates from execution
traces generated by IT provisioning tools. In contrast to the already established
workflow mining techniques, our mechanism concentrates on obtaining templates
that capture the essence of previously executed change processes. The discovered
templates, in turn, enable the reuse and applicability of such processes in scenarios
having settings diverse from the original ones (e.g., different dependency relation-

16

ships among affected IT components, or specific system requirements). And fourth,
in order to support the reuse of knowledge through templates, the automated re-
finement of change plans, and the discovery of change templates from historic data,
we introduce an end-to-end solution, supported by a real system, to allow planning
and implementation of IT changes to be designed and executed.

The use of change templates, the refinement of preliminary plans into actionable
workflows, and the discovery of templates from execution traces have been evalu-
ated through a prototypical implementation of a change management system called
ChangeLedge. In addition to allowing templates to be (manually) designed, (au-
tomatically) discovered, and (re)used in the specification of new change documents,
the system is able to compute actionable change plans by correlating instantiated
RFCs/sketched plans with dependency information available in IT-related reposito-
ries. The resulting actionable workflows can, in turn, be straightforwardly translated
into a workflow language and executed by any off-the-shelf deployment system. To
prove concept and technical feasibility of our solution, we have conducted several
experiments exploring the potentialities of employing templates as a resource for
preserving and reusing the expertise acquired with IT changes.

The remainder of this thesis is organized as follows. Chapter 2 discusses re-
lated work on IT change management and some of the concepts that form the basis
of the investigation presented herein. Chapter 3 introduces our conceptual solu-
tion for IT change management. Chapter 4 details how the concept of templates
is tailored to knowledge reuse in the context of IT change management. Chap-
ter 5 presents the algorithm for the automated refinement of preliminary change
plans into actionable workflows. Chapter 6 introduces our mechanism for extract-
ing change templates from execution traces. Chapter 7 emphasizes implementation
aspects of the ChangeLedge system and discusses the results obtained with the
experimental evaluation. Finally, Chapter 8 concludes the thesis with final remarks
and perspectives on both research directions and trends in the area.

17

2 BACKGROUND

In this chapter we briefly present key concepts in the field of IT change man-
agement (Section 2.1), and discuss the most relevant research work related to this
thesis (Section 2.2).

2.1 ITSM, ITIL, and Change Management

Information Technology Service Management (ITSM) (BON; JONG et al., 2007)
is a discipline for managing IT systems, philosophically centered on the customer’s
perspective of IT’s contribution to the business. ITSM is not concerned with the
details of how to use a particular vendor’s product, or necessarily with the techni-
cal details of the systems under management. Instead, it focuses upon providing a
framework to structure IT-related activities and the interactions of IT technical per-
sonnel with business customers and users. Because of the ever-growing importance
of IT systems to corporate activity, ITSM has been the object of concentrated study
over the past decade (SAUVÉ et al., 2007). As a result, best practice collections
for ITSM – such as the Control Objectives for Information and related Technologies
(COBIT) (ISACA, 2008) and the Information Technology Infrastructure Library
(ITIL) – are becoming popular, and have been employed and validated across a
diverse set of environments and situations (LACY; MACFARLANE, 2007). In this
thesis, we focus our investigation on the ITIL framework.

The ITIL publication provides detailed but generic guidance to organizations,
and has the following components (OGC, 2008): the ITIL Core, which provides
best practices applicable to organizations of all sizes and types; and the ITIL Com-
plementary Guidance, which comprises a complementary set of publications with
guidance specific to industry sectors, organization types, operating models, and
technology architectures. The ITIL Core is composed of five publications, which
together provide guidelines necessary for an integrated approach for service man-
agement: Service Strategy, Service Design, Service Transition, Service Operation,
and Continual Service Improvement. Each publication addresses capabilities that
have a direct impact on a service provider’s performance. Figure 2.1 illustrates the
structure of the ITIL Core.

Within the ITIL framework, Service Transition (LACY; MACFARLANE, 2007)
“provides guidance for the development and improvement of capabilities for transi-
tioning new and changed services into operations”. This includes, as a major task,
the management of IT changes. In this context, the term change comprises any
modification to entities (CIs) involved in the operation of IT services. Therefore,
change management covers minor tuning, such as granting access rights or rebooting

18

Continual Service
Improvement

Service
Strategy

Service
Design

Service
Transition

Service
Operation

Figure 2.1: ITIL Core (LACY; MACFARLANE, 2007)

devices, as well as high level tasks, such as design and implementation of new services
due to emerging business needs (FINK, 2009; LACY; MACFARLANE, 2007).

Figure 2.2 presents the typical activities of a traditional change management
process. In the first activity, Create RFC, an RFC document is raised by a request
from the initiator – the individual (e.g., business user) or organizational group (e.g.,
maintenance staff) that requires the change. For major changes having reasonable
impact on business continuity or significant financial implications, a Change Proposal
may be required, which should contain a full description of the change, along with
technical/business/financial justification.

In the subsequent activity, Change Record, the newly requested change is recorded
in the Configuration Management Database (CMDB). Some information must be
recorded upon change creation (e.g., change description, reason for the change, and
contact information of the person proposing it), whereas other information are con-
tinuously created/updated throughout its lifecycle (e.g. executed actions). The
degree of detail recorded depends on the impact and size of the change. The infor-
mation that should be recorded for an RFC document are:

• Unique identification number;

• Trigger of the change (e.g., problem report number, business need, legislation);

• Description;

• Identity of the item(s) to be changed, along with a description of the desired
change;

19

Change
Management

Change
Management

Create
RFC

Change
Proposal
(optional)

Authorize
Change Proposal

Record the
RFC

Review
RFC

Plan updates

Coordinate change
implementation

Review and close
change record

Authorize
Change

U
p

d
a

te
 ch

a
n

g
e

 a
n

d
 co

n
fig

u
ra

tio
n

 in
fo

rm
a

tio
n

 in
 C

M
S

Work orders

Work orders

Initiator

Change
Management

Assess and
evaluate change

Change
Authority

requested

ready for evaluation

ready for decision

authorized

scheduled

implemented

closed

Evaluation report

Figure 2.2: ITIL Change Management Process (LACY; MACFARLANE, 2007)

• Reason;

• (Negative) effects of not implementing the change;

• Configuration item(s) that should be primarily affected;

• Contact and details of the person proposing the change;

• Date and time the change was proposed;

• Category of the change (e.g., minor, significant, major);

• Change priority (e.g., low, medium, high, immediate);

• Risk assessment and risk management plan;

• Back-out or remediation plan;

20

• Impact assessment on business continuity;

• Decision and recommendations accompaining the change;

• Authorization for the deployment of the change (could be electronic);

• Authorization date and time;

• Scheduled implementation date and time;

• Detailed steps for change implementation (i.e., change plan) ;

• Actual implementation date and time;

• Change implementation details;

• Review date;

• Review results (including reference to new RFC, when necessary);

• Closure.

In the next activity, Review RFC, submitted RFCs are evaluated in regard to
their completeness, status (e.g., accepted, rejected, under consideration), and tech-
nical/financial feasibility. Changes that do not comply with required standards or
that are totally impractical, for example, should be filtered and returned to the
initiator, along with a justification for the rejection.

In the Assess and Evaluate Change activity, the RFC document is then evalu-
ated by the Change Advisory Board (CAB). The CAB is a group of people capable
of analyzing and assessing changes from a technical as well as from a business point
of view. After the RFC is authorized (activity Authorize Change), the required
actions to perform it are planned, updated, and tested (activity Plan Updates).
Subsequently, the RFC is passed to the team responsible for deployment upon the
target IT infrastructure (activity Co-ordinate Change Implementation). ITIL sug-
gests the deployment of changes to be performed using Work Orders, in order to
enable the trackability of the RFC under implementation. Finally, on completion of
the change, the results are reported for evaluation to those responsible for managing
changes (activity Review and Close Change Record). At this stage, incidents ob-
served during the change deployment should be reported. Moreover, business users
and customers involved in the change should be contacted, in order to check whether
the change met its desired results or not.

As indicated by Figure 2.2 and explicitly stated in the ITIL Service Transition
publication (LACY; MACFARLANE, 2007), all activities comprising the change
management process should be executed in close conjunction with the Configura-
tion Management. For that purpose, ITIL recommends the use of Configuration
Management Systems (CMS) and Configuration Management Databases (CMDB),
to manage information about all configuration items involved in ITSM processes.

21

2.2 Related Work

In recent years, several research efforts on IT change management have been
carried out within the network/service operations and management community. In
parallel, the use of historic data to extract process models has been largely investi-
gated in the areas of Software Engineeering and Data Mining. In this section, we
cover some of the most prominent investigations concerning these topics. Subsec-
tion 2.2.1 presents related work in the field of IT management. Subsection 2.2.2
briefly describes some process mining techniques that support our work. Finally,
Subsection 2.2.3 reviews some additional research efforts on the field of IT change
management.

2.2.1 IT Change Design and Planning

The ITIL Service Transition book (LACY; MACFARLANE, 2007) recommends
the use of change models to both define a library of recurrent changes and foresee
the impact associated to them, once performed. However, since ITIL concentrates
on documenting generally applicable industry best practices, it is out of its scope to
propose how to materialize such models.

Keller et al. (2004) have proposed CHAMPS, a system for automating the gen-
eration of change plans that explore a high degree of parallelism. The topic of
knowledge reuse was not the focus of that work. Even though the system enables
some degree of reuse through abstract workflows, the scope of the reuse is limited.
That is so because these workflows cannot be generalized, once they are tied to
a given combination of software packages. Refinements, on the other hand, are
restricted to “editing/saving as” the already existing workflows. The lack of spe-
cialization/generalization capabilities hampers knowledge to be better structured
and systematically reused in future changes.

In regard to change planning and scheduling aspects of CHAMPS, they are
approached as an optimization problem. Although the system is able to evaluate
technical constraints in the planning and scheduling of changes, the scope is limited
to Service Level Agreements (SLAs) and policies. Since it does not perform a fine-
grained control of resource constraints, modifications on the infrastructure produced
by the already processed tasks of the plan under refinement are not taken into
account when computing the subsequent ones. As a consequence, the resulting
change plans may not be executable in practice.

Aware of the importance of formalizing IT change documents, Keller (KELLER,
2005) has introduced, in a subsequent work, the concept of electronic contracts.
Four types of contracts are proposed: Requests for Change, Deployment Descrip-
tors, Policies and Best Practices, and Service Level Agreements. In respect to the
specification of RFCs – central to our investigation – the author only enumerates
the parameters to be supplied in an RFC, but does not propose a more robust
information model to express them.

2.2.2 Process Mining

The idea of extracting workflow processes from execution logs has been explored
in the field of software engineering and workflow management (ROZINAT et al.,
2007). Seminal techniques proposed, however, were not able to mine workflows
having and/or branches/joins (MARUSTER et al., 2002). As a consequence, the

22

resulting workflows were limited to a purely sequential behavior.
To tackle this limitation, Maruster et al. (2002) have proposed a mechanism to

mine workflows from event logs, which explicitly distinguishes decision points that
route the workflow enactment. In a subsequent work (MEDEIROS et al., 2004), the
authors have extended the class of workflows their technique can mine, by enabling
their algorithm to mine short loops from event logs. More recently (ROZINAT;
AALST, 2006), the authors have proposed a supplementary mechanism that en-
ables understanding how environment data influences in the routing of a workflow
execution. The proposed mechanism, called Decision Miner, was implemented and
evaluated in the context of a process mining framework called ProM. The solution
for change template mining, proposed in this thesis, adopts some principles and
techniques introduced in the previously mentioned related work (this will be further
discussed in Chapter 6).

2.2.3 Management of IT Systems

Despite not directly related with the problem addressed in this thesis, some
additional research efforts on change management published in recent years merit
attention. Shankar et al. (2006) have proposed an enhanced policy-based solution
to execute changes on the IT infrastructure, triggered by the managed system and
not by a human operator, in response to the occurrence of events. Dumitras et al.
(2007) have presented Ecotopia, a framework for change management that schedules
change operations with the goal of minimizing service-delivery disruptions. Trastour
et al. (2007) have formulated a solution to assign changes to maintenance windows
and to allocate change activities to technicians.

Looking at IT changes from a business perspective, Rebouças et al. (2007)
have investigated approaches for the planning and scheduling of changes aiming at
minimizing costs (e.g., labor costs and financial loss due to SLA disruption). Sauvé
et al. (2007) have gone a step further, by proposing a method to automatically assign
priorities to changes, considering the individual exposure of each requested change to
risks as its execution is postponed. Finally, in a previous work (MACHADO et al.,
2008), we have introduced the concept of atomic groups in the design of change
plans with the purpose of providing an end-to-end solution for change management
with rollback support.

There are additional relevant research efforts published in other fields, e.g. Soft-
ware Engineering and Knowledge Management, which explore similar aspects of our
work. Nevertheless, due the fact that they are not related to neither the manage-
ment of information technology systems nor the scope of our investigation, they are
not addressed in this thesis.

23

3 CONCEPTUAL SOLUTION FOR CHANGE MAN-

AGEMENT

As mentioned in the previous chapter, little has been done to facilitate change
design and implementation by capturing, organizing, and reusing the knowledge
acquired within IT organizations. To tackle this issue, we propose a conceptual
solution to allow planning and implementation of IT changes to be, respectively,
designed and executed. In contrast to previous investigations, our solution focuses
on providing a systematic way to design changes – from RFCs to resulting change
plan documents – by reusing the knowledge accumulated in the past.

In this chapter, we first characterize the issues addressed in this thesis using
an example (Section 3.1). Subsequently, we introduce our solution for IT change
management (Section 3.2), followed by the presentation of its building blocks (Sec-
tion 3.3).

3.1 A Typical IT Change Process

Before introducing the issues associated to a typical change process, consider
the environment of a research & development department of an organization. It
is often composed of a set of dedicated servers (Virtual Machine servers, database
servers, Web servers, etc.), users’ workstations, and other network facilities (routers,
switches, repeaters, etc.). In the daily operations of this department, users request
changes to be performed, for example to deploy new Web applications, or to up-
grade the set of software packages installed on their workstations. These requests
are materialized, respectively, by RFCs such as Deploy New Web Application and
Upgrade Software Installed at Workstation. Once the demands are assessed, these
RFCs are translated into changes, and subsequently executed by the IT operator
(e.g., the maintenance staff). To illustrate, a possible translation of the first RFC
into an actionable change could result in the following high level activities: Install
Operating System, Install Web Server, Install Web App, Configure Database Server,
Configure Web Server, Configure Firewall, Publish Web App at DNS Server, Start
Web Server, and Start Web Application.

During the translation of requests into a sequence of activities (i.e., an actionable
change plan), the operator must consider two important information: the current
state of the IT infrastructure in place, and the parameters specified in the request.
Also, he/she must design an strategy to deploy the change plan, depending on the
previously mentioned information. Focusing on the first RFC, the Web application
can be installed on a physical or a virtual host, which may have an operating system

24

and other software already installed (or not). Considering the current state of the
host, dependencies for the installation of the Web application (e.g., the prior in-
stallation of an operating system and a Web server) may also need to be identified.
Furthermore, the operator must decide in which subnetwork (assuming there is more
than one in the organization) the Web application will be available. This decision,
in turn, may result in different activities to be performed onto the network’s firewall
and DNS server.

There are five major issues related to such ad hoc approach to deploy this and
other requested changes. First, the steps necessary to conduct the change may be
scattered among IT operators and paper procedures. These steps, along with output
generated (in the form of change logs) from previous and similar changes, may be
disregarded during the change design, due to the lack of a proper mechanism to ex-
press and process such information. Second, the operator must know the state of the
IT infrastructure prior to the planning and deployment of the change. This is often
not the case, specially for organizations having a large number of elements belonging
to their infrastructure, and a complex network of relationship among them. Third,
the sequence of actions designed by the operator might be incomplete (e.g., due to
missed dependency information) or have more actions than actually needed (e.g., due
to optional steps). This may translate into incomplete/faulty changes, or changes
that take longer or demand more effort than necessary to be completed. Fourth,
the sequence of actions may be erroneousy interpreted, if distributedly executed by
several operators (e.g., actions may be executed in a different order than originally
envisaged, which may disrupt their execution). Fifth, knowledge is owned/acquired
only by the operator(s) orquestrating the change. As a consequence, the dissemina-
tion of such knowledge to other operators may be hampered, and the organization
itself may be prejudiced if the operator owning this knowledge quits from his/her
position. These issues underscore the importance of a process-oriented, systematic
approach (taking advantage of automation when possible) to conduct IT changes in
organizations.

3.2 Conceptual Architecture

In this section we present our solution to support the different phases of the
change process. In our solution, the design of an RFC and preliminary change plans
represents the initial phase for the conduction of a change management process,
being followed by the refinement of preliminary plans into actionable changes, the
deployment of actionable workflows into the target IT infrastructure, and the discov-
ery of change templates from execution traces. Figure 3.1 depicts the basis of our
conceptual architecture for change management, highlighting its main conceptual
components, personnel involved, and their interactions.

The Change Initiator starts a change process by interacting with the component
Change Designer in order to specify an RFC (flow 1 in Figure 3.1). The Configu-
ration Management System (CMS) provides the change initiator with an updated
view of the IT infrastructure and services (flow 2) so that he/she is able to precisely
identify the hardware, software elements, and services (Configuration Items – CIs)
involved in the desired change. The creation of a new RFC document can be done
“from scratch” or instantiated from a request template stored in the Change Tem-
plates repository (3). The intent of a request template is to specify the set of high

25

level objectives that must be met by a change. Request templates will be created
for routine and recurrent changes and will be persisted in the repository (3).

Change Designer Change Planner Deployment System CI

Change
Templates

Configuration
Mgmt. System

(3)

Operator

Change
Initiator

(2) (5) (6)

(10)

(1) (4) (7) (8)

Definitive Media
Library

(9)

Change Miner

Operator

(11)

(12)

(13)

Figure 3.1: Elements of the proposed solution and interactions

After an RFC is instantiated/designed, an Operator, who is responsible for mod-
eling the change procedure, interacts with the component Change Designer (4),
now to sketch a preliminary change plan. In this stage, the operator specifies large-
grained steps required to fulfill the RFC objectives, possibly taking advantage of
plan templates available in the Change Templates repository (3). Plan templates
encode composable workflows of change procedures and represent the knowledge
gained from past experience in an IT department. Such templates are also stored in
the Change Templates repository (3). Request and plan templates will be described
in more detail in Chapter 4.

The final refinement of the preliminary change plan into an actionable workflow
is then performed, without human intervention, by the component Change Plan-
ner. This refinement is computed using a task refiner algorithm (further detailed
in Chapter 5), based on both factual information about the IT infrastructure (5)
and information about acceptable configurations and dependencies among software
packages, available in the Definitive Media Library (DML) (6). Thereafter, the re-
sulting change plan can be modified by the operator as to precisely reflect his/her
needs (7) and finally translated to a workflow language.

In the last step of the change process, the operator may invoke the actual execu-
tion of the workflow by interacting with a Deployment System (a generic abstraction
for IT provisioning tools) (8). To carry out some of the activities contained in the
workflow, such a system may consume software packages available in the DML (9).
After executing the change plan, the deployment system is responsible for updating
the CMS with the changes performed on every target CI (10).

We extend the traditional change management process by introducing the change
mining phase, in which change templates are discovered from execution traces and
persisted in the Change Templates repository. The operator starts the change min-
ing by interacting with component Change Miner (11). In this step, he/she indicates
the traces that will be consumed for analysis and subsequent template extraction.
The execution traces consumed in this process – available from the CMS (12) – are

26

typically recorded by the component Deployment System (10), during the execu-
tion of previous changes over the IT infrastructure. The component Change Miner
generates plan templates that capture the high-level actions involved in the changes
associated to the analyzed traces (the extraction of change templates will be further
discussed in Chapter 6). Thereafter, the resulting plan templates can be modified
by the operator as to precisely reflect his/her needs (11), and finally stored in the
Change Templates repository (13). The extracted change templates may then be
later (re)used in the design of future RFCs, solicited by change initiators, and of
preliminary change plans, by operators, as previously described in our conceptual
solution for change management.

3.3 Building Blocks of the Proposed Solution

Having presented a general view of our solution for change management, we now
focus on the formalization of change-related documents and other information used
by the solution. More specifically, we introduce three “building blocks”, namely:
the model for the management and persistence of IT information (Subsection 3.3.1),
the model to design change-related documents (Subsection 3.3.2), and the notation
for the modeling of activities (Subsection 3.3.3).

3.3.1 IT Infrastructure Model

We chose to base our IT Infrastructure Model on a subset of the Common Infor-
mation Model (CIM), defined by the Distributed Management Task Force (DMTF)
(DMTF, 2007). It allows the representation of computing and business entities com-
prising an organization, as well as the relationships among them. Figure 3.2 shows a
partial view of the model. The root class of the model is ManagedElement. Through
specialization, it is possible to represent any CI (e.g., physical devices, computer and
application systems, and services), as well as IT personnel. Relationships such as
associations, compositions, and aggregations, most of them omitted in the figure
for the sake of legibility, map the dependencies among the elements comprising the
infrastructure. Some classes are described below.

1

Computer
System

User
Entity

Logical
Element

1

Setting
Check

SwapSpace
Check

DiskSpace
Check

*

*

1 0..1

Execute
Program

Reboot
Action

ModifySetting
Action

Memory
Check

Alternate
SwDependency

0..1

1

Human
Action

SoftwareElement
Checks

Action
Sequence

Software
Element

EnabledLogical
Element

Check

Action

SoftwareElement

Actions

OperationLog

1 *

RecordApplies
ToElement

*

*

System Operating
System

Service Log

LogManages
Record

1 *

MessageLog
RecordInLog

1 *

ManagedSystem
Element

Organizational
Entity

MessageLog

Managed
Element

RecordForLog

LogRecord

SoftwareElement
VersionCheck

Figure 3.2: Partial view of the IT Infrastructure model

Instances of class UserEntity allow representing personnel belonging to the IT
staff of an organization. Class ComputerSystem enables the representation of the

27

several aggregations of computational entities (e.g., computers or clusters) present
in the managed IT infrastructure. Instances of ApplicationSystem allow to represent
applications or software packages that support particular business functions (e.g.,
Microsoft WordTM). The several features that are provided by applications are
represented by instances of SoftwareFeature (e.g., Microsoft Word features include
spell check and macro definition/execution). The software binaries (e.g., system
libraries or executables) that provide a specific feature are represented by instances
of SoftwareElement. Finally, class Service permits to model functionalities provided
by managed elements. Concrete examples of services are authentication facilities,
name resolution, and mail delivery, which are provided by an authentication system,
a domain name server, and a mail server, respectively.

The model also incorporates classes such as Check and Action, which repre-
sent relevant information required for managing the lifecycle of CIs (e.g., software
upgrade and application system installation/uninstallation). In Figure 3.2, we il-
lustrate some specializations of classes Check and Action for the manipulation of a
SoftwareElement.

An instance of class Check defines a condition to be met or characteristic required
by the associated SoftwareElement for it to evolve to a new state (e.g., deployable,
installable, executable, or running). Possible checks include verification of software
dependencies, available disk space and memory, and required environment settings.
Each instance of class Action, in its turn, represents an operation of a process
to change the state of the associated SoftwareElement (e.g., from installable to
executable). Examples of actions are invocation of a software installer/uninstaller,
manipulation of files and directories, and modification of configuration files.

In regard to the classes that support the persistence of execution traces, Logi-
calElement enables the representation of IT provisioning systems that are employed
for the implementation of changes over the managed CIs. Instances of class Mes-
sageLog represent, in the context of this thesis, the several changes executed over
these CIs. Class LogRecord, in turn, holds information about tasks executed dur-
ing the change process (in other words, it enables the representation of execution
traces). These traces may be associated to one or more ManagedElement, in this
case meaning that the associated element was involved in the generation of that
trace.

In addition to being used to represent the current IT infrastructure, the same
model is also employed to specify new hardware and software packages (along with
their dependencies) that may be required throughout a change process. Our concep-
tual solution proposes these two uses of the same information model to be materi-
alized, respectively, in the Configuration Management System and in the Definitive
Media Library, as previously presented in Figure 3.1.

3.3.2 Requests for Change & Change Plan Model

Our conceptual solution for template-based change management includes the
proposal of a Requests for Change & Change Plan Model, to be employed in the de-
sign of change-related documents. The model relies on both (a) guidelines presented
in the ITIL Service Transition book (LACY; MACFARLANE, 2007) in regard to the
change management process and (b) the workflow process definition, proposed by
the Workflow Management Coalition (WfMC) (MARIN; NORIN; SHAPIRO, 2008).

Figure 3.3 presents a partial view of the model. It is structured in two connected

28

parts. The first (whose background is highlighted in gray) enables the modeling of
an RFC, while the second (with white background) provides classes for expressing
the corresponding change plan. Each one is detailed below.

An RFC (represented by class RFC in the model) is composed of operations
(class Operation) that indicate, in a high level of abstraction, what changes the
change initiator (class UserEntity of the IT Infrastructure model) would like to per-
form. It is also important to notice that each operation has an explicit reference
to the CIs over which the change operation is supposed to be executed (class Man-
agedElement). Other classes related to an RFC are: ProblemReport (problem that
motivated the change request), CABRecommendation (RFC impact and resource re-
quirement assessments), RFCReview (modifications to the RFC after its creation),
and RFCAuthorization (approval of the RFC by a Change Authority).

Classes from the IT
Infrastructure Model

RFC

Change Plan

Activity Set

Leaf Activity Block Actvity SubProcess
Definition

hasChangePlan

hasOperation

allActivitySet

allTransition
Information

allActivity

to

from
Activity

- description

Participant
Specification

Managed
Element

participant
Association

participant
Specification

Relevant Data
hasRelevantData

participant
Data

1

1

*

0..1

1

1 1

*

* * 1

1 *

*

* 1

1

1

* *

* *

Transition
Information

User Entity

Managed
Element

author

* 1..*

hasParticipant

* *
author

1..* *

composedBy
0..1

0..1
User Entity Operation

Figure 3.3: Partial view of the RFC & Change Plan model

Every operation of an RFC has an associated change plan (class ChangePlan)
that consists of a network of activities (class Activity) and their relationships. These
activities may represent either low-level, actionable tasks (LeafActivity) or large-
grained ones (BlockActivity/SubProcessDefinition), being the latter subject to fur-
ther levels of refinement. In general, an activity manipulates one or more CIs (class
ManagedElement). The class ParticipantSpecification describes the resources which
perform a given activity, for example a human, a software package, or an automated
machine. Transitions between activities are represented by instances of the class
TransitionInformation, which may be of type branch (with conditions or not) or
join. Finally, the class RelevantData allows the specification of data consumed and
produced by each activity. We would like to point out that change plans modeled
using the aforementioned classes are vendor neutral and, therefore, can be easily
mapped to any workflow language, such as the Business Process Execution Lan-
guage (BPEL) (OASIS, 2007).

29

3.3.3 Activity Modeling Notation

For the refinement process to be automatically computable, the large-grained
tasks must be expressed unambiguously and understood by the refinement algo-
rithm. To address this issue, the class Activity introduced in the previous section
presents an attribute called description, which is filled in with a sentence written in
accordance to the Activity Modeling Notation (AMN), proposed in the scope of this
research. Table 3.1 enumerates AMN constructions that are currently supported
by our solution. In the subsequent paragraphs we present some examples of using
AMN to model activities.

For illustration, consider an activity that consists of installing a Web application
X on a computer Y . Its specification using AMN, according to Table 3.1, is install
SoftwareElement X at ComputerSystem Y. In this example, X and Y are references
to objects from the Definitive Media Library and the Configuration Management
System, respectively.

The automated refinement of the activity install mentioned above is started by
looking up pre-requisites (instances of class Check) to be met and actions (instances
of Action) to be executed to move application X from state installable to state
executable (i.e., an installation procedure). This process is recursively executed
(e.g., for new instances of SoftwareElement identified as dependencies) until all
pre-requisites are solved. The result of this refinement, as mentioned earlier, is a
subworkflow of actions necessary to materialize the activity goal.

Consider also an activity that consists of uninstalling a Database Management
System (DBMS) Z from computer W . According to AMN, its specification is unin-
stall SoftwareElement Z from ComputerSystem W. In this case, the system does not
only lookup pre-requisites and actions to uninstall Z (i.e., to move Z from state
executable to state installable), but also consider dependency relationships within
the IT infrastructure that need to be solved. For example, Z may provide database
services to web pages running on a certain Web server (i.e., they may need to query
data from Z in order to display data to clients). As one valid approach to temporar-
ily tackle this issue, the refined change plan could contain activities to unpublish
these web pages. This process is also recursively executed, as to identify all the CIs
that will be affected by the uninstallation of Z and include the necessary counter-
measures in the refined workflow (the refinement of preliminary plans into actionable
workflows is detailed later on in Chapter 5).

A procedure typically conducted after the installation of a Web server is mak-
ing it accessible either to the local Intranet or to the entire Internet. One of the
steps performed to this effect is publishing, in the network’s Domain Name Server
(DNS), the hostname of the computer in which the Web server is installed. For
this particular case, the set of actions that should compose the preliminary plan is:
(i) add HostName www.example.com at ComputerSystem C ; (ii) modify HostName
www.example.com at ComputerSystem C set Type to “ADDRESS”; and (iii) modify
HostName www.example.com at ComputerSystem C set IP to x.y.z.w. In this exam-
ple, C is the network’s Domain Name Server (DNS) and x.y.z.w is the IP address of
the network interface in which the Web server is listening to incoming connections.

AMN also supports the specification of activities that must be manually executed
by a human operator, in order to permit that their effects can be taken into account
during the refinement process. For example, an operator may wish to specify, within
the preliminary plan, that more physical memory must be added to a computer B

30

Table 3.1: Activity modeling using AMN

Abstract Activity Abstract Specification

Start a service start Service 〈Service〉 at ComputerSystem 〈Host〉

Stop a service stop Service 〈Service〉 at ComputerSystem 〈Host〉

Reload service settings reload Service 〈Service〉 at ComputerSystem 〈Host〉

Restart a service restart Service 〈Service〉 at ComputerSystem 〈Host〉

Install a software install SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

Uninstall a software uninstall SoftwareElement 〈Software〉 from ComputerSystem 〈Host〉

Backup software settings
backup Setting from SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

to DataFile 〈File〉 at ComputerSystem 〈Backup Server〉

Restore software settings
restore Setting for SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

from DataFile 〈File〉 at ComputerSystem 〈Backup Server〉

Copy specific setting from software
copy Setting 〈Setting〉 from SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

to SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

Copy settings from software
copy Setting from SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

to SoftwareElement 〈Software〉 at ComputerSystem 〈Host〉

Add a new user add UserEntity 〈User〉 at ComputerSystem 〈Host〉

Remove an existing user del UserEntity 〈User〉 from ComputerSystem 〈Host〉

Modify user attributes modify UserEntity 〈User〉 at ComputerSystem 〈Host〉 set 〈Attribute〉 to value 〈New Value〉

Add a new DNS entry add HostName 〈Host〉 at ComputerSystem 〈DNS Host〉

Delete an existing DNS entry delete HostName 〈Host〉 at ComputerSystem 〈DNS Host〉

Modify an existing DNS entry modify HostName 〈Host〉 at ComputerSystem 〈DNS Host〉 set 〈Attribute〉 to 〈New Value〉

Create a new file create DataFile 〈File〉 in Directory 〈Dir〉 at ComputerSystem 〈Host〉

Delete an existing file delete DataFile 〈File〉 in Directory 〈Dir〉 from ComputerSystem 〈Host〉

Rename file rename DataFile 〈File〉 to 〈New File〉 in Directory 〈Dir〉 at ComputerSystem 〈Host〉

Copy File to Location
copy DataFile 〈File〉 in Directory 〈Target Directory〉 at ComputerSystem 〈Host〉

to Directory 〈Target Directory〉 at ComputerSystem 〈Host〉

Move File to Location
move DataFile 〈File〉 in Directory 〈Target Directory〉 at ComputerSystem 〈Host〉

to Directory 〈Target Directory〉 at ComputerSystem 〈Host〉

Modify file attributes modify DataFile 〈File〉 in Directory 〈Dir〉 set 〈Attribute〉 to value 〈New Value〉

Configure a generic software/device
configure ManagedSystemElement 〈Element〉 of type 〈Element Type〉

at ComputerSystem 〈ComputerSystem〉 using Setting 〈Setting〉

Modify attributes of a generic soft-

ware/device

modify ManagedSystemElement 〈Element〉 of type 〈Element Type〉

at ComputerSystem 〈ComputerSystem〉 set 〈Attribute〉 to 〈New Value〉

Dump database schema to file
dump schema from DatabaseSystem 〈Database〉 at ComputerSystem 〈Host〉

to DataFile 〈File〉 in Directory 〈Dir〉 at ComputerSystem 〈Host〉

Load database schema to file
load schema from DataFile 〈File〉 in Directory 〈Dir〉 at ComputerSystem 〈Host〉

to DatabaseSystem 〈Database〉 at ComputerSystem 〈Host〉

prior to the installation of a new software package. According to AMN, the specifi-
cation of this activity is modify ManagedSystemElement A of type OperatingSystem
at ComputerSystem B set TotalVisibleMemorySize to 2048M. By computing the ef-
fect of this manual activity, the refinement process will be aware that computer B

will have 2 GB of physical memory available for operating system A (according to
the CIM model, each operating system has its own memory settings).

31

4 DESIGN OF PRELIMINARY PLANS THROUGH

CHANGE TEMPLATES

The conceptual solution presented in Chapter 3 is the core basis upon which the
notion of IT change templates is built. In this chapter we explore it in more detail.
Subsection 4.1 characterizes request and plan templates. The association between
such templates, during the design of changes, is explained in Subsection 4.2. Finally,
Subsection 4.3 discusses composition, specialization, and generalization of templates.

4.1 Request & Plan Templates

In the context of this work, we define templates as parameterized building blocks
that can be reused in the design of changes similar to previously executed ones
(CORDEIRO et al., 2008). Explored in different levels of the change process, they
are categorized as request or plan templates. Each one is detailed below.

A request template, defined by means of the upper part of the model illustrated
in Figure 3.3, defines a set of prototypical operations that need to be performed on
the IT infrastructure. The person producing such a template (e.g., change initiator
or operator) is free to specify which attributes/references will have fixed values and
which will be left to be provided during the instantiation of a new RFC. As an
example, Figure 4.1 (background highlighted in gray) presents a request template
to deploy a hosting service in a dedicated server. This template is composed of two
operations: Build Dedicated Web Hosting Service and Lease Dedicated Data Circuit.
In the case of the first operation, the references what to be installed and where
are defined to be of type WebApplication and ComputerSystem, respectively, thus
specifying the type of CIs that may be affected.

The request template just described could be used, for example, to instantiate
two distinct RFCs: one to install a J2EE Web application on a RISC computer and
one to install an ASP.NET Web application on a 64-bit computer. For that to be
possible, J2EE and ASP.NET apps should be present in the DML (as WebApplica-
tion objects), while RISC and 64-bit computers should appear (as ComputerSystem
objects) in the CMS.

Going down to the level of change plans, plan templates have a central role in the
process of promoting the reuse of the experience accumulated by operators. Specified
using the classes illustrated in the lower part of Figure 3.3, these templates comprise
steps necessary to materialize recurrent changes. The large-grained activities of a
plan template are typically loosely coupled, learned and tuned after a multitude of
attempts to implement the corresponding changes successfully. For this reason, they

32

has operation

RFC
Name: Deploy Hosting Service
Author: Weverton Cordeiro
Type: Template

what

where

Operation
Name: Build Dedicated
Web Hosting Service
Type: Template

X: WebApp

Y: Computer
System

has change plan

Operation
Name: Lease Dedicated
Data Circuit
Type: Template

Activity
Number: 2
Name:
Install
WebApp

Activity
Number: 3
Name: Load
Dababase

Activity
Number: 4
Name:
Configure
Users

Activity
Number: 5
Name:
Configure
DNS

Activity
Number: 1
Name: Build
New Server
Host

Figure 4.1: Examples of request and plan templates

are not automatically computable based on dependency information.

Figure 4.1 (background in white) depicts an example of a plan template for
the installation of a new server, from scratch, and a Web application on top of it.
Activity 1 consists of building the new server into ComputerSystem Y . Activity 2
installs WebApplication X into the newly built server. Next, two parallel tasks take
place: Activity 3, which loads the default database for use by the WebApplication
X, and Activity 4, which configures the users that will have remote access to the
application. Finally, Activity 5 comprises the instructions for publishing the URL
of the Web application in the network’s DNS server. This activity is defined to be
executed in a final step because clients must not have access to the Web application
until it is fully installed and operational.

4.2 Association Between Request and Plan Templates

The association between templates enables the creation of change documents as
a combination of one request and one or more plan templates that may satisfy the
demand of the RFC operation(s). The motivation for such combination is twofold.
First, different changes specified in the level of request templates may be materialized
by the same implementation procedure, hence the same plan template. Second, there
may be more than one valid plan template that materializes the same operation of
a request template.

The association of templates can be done in one of two ways: (1) gradually, after
the instantiation of an RFC (taking advantage of a request template or not); or (2)
at any point in time before an RFC instantiation. Regardless of the moment of such
associations, they are achieved through the establishment of a relationship between
the classes Operation (at the RFC level) and ChangePlan (at the change plan level).

When associating templates, the operator must specify the mapping between
attributes/references from the RFC/request template and variables of the binded
plan templates. It is expected that all attributes and/or references of the former are
linked to one (or more) variable(s) of the latter. Variables of the plan template not

33

set by this process must be assigned “values” by the operator in order to produce
a consistent and complete preliminary change plan. In the example illustrated in
Figure 4.1, one can observe the association between a request and a plan template.
One of the operations, Build Dedicated Web Hosting Service, has been associated to
the plan template depicted in the lower part of the figure (explained in the previous
subsection).

We highlight, in the aforementioned association, the binding of the variables of
Activities 2 and 5 to the variables of the operation Build Dedicated Web Hosting
Service. For Activity 2, one of the participant CIs is the Web application to be
installed. In this case, the Web application is already present in the associated
operation (variable named X, which is of type WebApplication). When the operator
assigns a value for variable X in the operation Build Dedicated Web Hosting Service,
the assigned CI will be automatically indicated as a participant CI in Activity 2.
For Activity 5, however, one of the participant CIs, the DNS server, is not listed as
a variable of the associated operation. Therefore, during the instantiation process,
the operator will need to identify, among the servers registered in the Configuration
Management System, what is the DNS server to be affected by Activity 5.

There are several scenarios in which association between templates is important.
Looking at association between templates from a top-down perspective, consider the
request template Build Dedicated Web Hosting Service. From the Change Templates
repository, the operator may identify two distinct plan templates that materialize the
change expressed in the request template: Build Hosting Service Using GNU/Linux
and Build Hosting Service Using Microsoft Windows XP. The former contains the
high level steps to install a Web Hosting Service in a GNU/Linux environment (by
using Apache and/or Tomcat Web servers, among others), while the latter com-
prises steps to do the same, however in a Microsoft Windows environment (by using
Internet Information Service or Apache for Windows, for example).

Now looking at association from a bottom-up perspective, consider the plan
template Migrate System to a New Host. It comprises the detailed steps to migrate
data files, installed software, and system and software settings, from a given com-
puter to another one. This plan template could be used to materialize the following
request templates: Improve Quality of Service for Customer’s Application and Up-
grade Web Server Hardware. Considering that the operator is aware that the best
choice to accomplish both requests is migrating the system to a new host having
higher computational capabilities, he/she could take advantage of the previously
mentioned plan template to meet the objectives of these request templates.

4.3 Composition, Generalization, and Specialization of Tem-

plates

Reuse of knowledge in the context of IT changes is facilitated through the use
of template composition, specialization, and generalization. These techniques are
introduced next, considering both request and plan templates.

Template composition allows complex changes to be designed based on the ex-
perience formalized and preserved in previous processes. The basic principle is to
use existing templates as “building blocks” in the design of new change documents.
From the perspective of request templates, composition is possible, for example,
by grouping operations that have been specified elsewhere in different request tem-

34

plates. This type of composition is supported by the association between the classes
RFC and Operation of the model presented in Subsection 3.3.2.

An example of composition in this level is the use of the templates Upgrade
Web Server Hardware and Install New Leased Data Line Circuit. Since one of their
objectives is improving the computational environment for software having high
computational, storage, memory, and bandwidth demands, they could be used to
compose the request template Improve Quality of Service for Customer’s Applica-
tion, mentioned in the previous subsection.

It is in the context of plan templates, though, that composition can be better
taken advantage of. In this case, large-grained activities found in a plan template
can be materialized by other plan templates, possibly forming a hierarchy of nested
templates. Figure 4.2 illustrates a template for installing an operating system that
is nested to Activity 1, Build New Server Host, of the plan template presented in
Figure 4.1. Such nesting is made possible by using the class SubProcessDefinition.

Activity
Number: 2
Name: Apply
Security
Policies

Activity
Number: 3
Name: Setup
Remote
Users

Activity
Number: 1
Name: Install
OS

Activity
Number: 4
Name:
Reboot
System

Activity
Number: 5
Name: Apply
Firewall
Policies

Activity
Number: 6
Name: Setup
Network

Figure 4.2: A template for installing an operating system

Composition in the level of plan templates also enables the modeling of changes
by joining together (pieces of) templates already present in the Change Templates
repository. This approach permits specifying complex change plans in less time than
would be required to design the whole preliminary plan from scratch. For example,
the plan template presented in Figure 4.2 may be built by composing several other
plan templates. As shown in Figure 4.3, Activities 5 and 6 may be materialized
by other plan templates, which describe, in a more detailed perspective, the steps
involved in the configuration of the system’s firewall and the configuration of the
network, respectively.

Specialization enables the creation/modification of change templates to address
non-ordinary changes, whose activities usually deviates slightly from those found in
typical procedures. It also permits the operator to think globally about a problem,
model a template to solve it, and then adapt the composed plan to the specific
needs or nuances of each target environment. For request templates, specialization
may be useful, for instance, to both extend an existing one with new operations
and/or restrict the scope of the CIs that may be affected by them. For a concrete
example, consider the request template shown in Figure 4.1. It could be specialized
so that the affected CI, labeled as what in operation Build Dedicated Web Hosting
Service, was restricted to J2EE Web applications, instead of any Web application,
as originally defined.

One can also use specialization as a surrogate to model customized plan tem-
plates. For example, a template that dictates how an operating system should be
installed within an organization may have different specializations to address the
specific needs of each department. In this example, class BlockActivity could be em-

35

Activity
Number: 2
Name: Apply
Security
Policies

Activity
Number: 3
Name: Setup
Remote
Users

Activity
Number: 1
Name: Install
OS

Activity
Number: 4
Name:
Reboot
System

Activity
Number: 5
Name: Apply
Firewall
Policies

Activity
Number: 6
Name: Setup
Network

Activity
Number: 4
Name: Config
Network
Addresses

Activity
Number: 5
Name: Config
DNS
Addresses

Activity
Number: 1
Name: Install
Net-tools

Activity
Number: 2
Name: Install
Network Iface
Driver

Activity
Number: 3
Name: Load
Network Iface
Driver

Activity
Number: 6
Name: Config
Proxy Server

Activity
Number: 7
Name: Add
Host to
Workgroup

Activity
Number: 1
Name: Policy
INPUT DROP

Activity
Number: 2
Name: Policy
FORWARD
DROP

Activity
Number: 3
Name: Policy
OUTPUT
ACCEPT

Activity
Number: 4
Name: Set
ACCEPT
Policy to R/E

Activity
Number: 5
Name: Set
ACCEPT
Policy to Lo

Activity
Number: 6
Name: Set
ICMP Rate
Limit to 3/s

Activity
Number: 7
Name: Log
Connect to
Mail Server

Activity
Number: 8
Name: Log
Connect to
Web Server

Activity
Number: 9
Name: Log
Connect to
DB Server

Activity
Number: 10
Name: Allow
Connect to
Mail Server

Activity
Number: 11
Name: Allow
Connect to
Web Server

Activity
Number: 12
Name: Allow
Connect to
DB Server

Figure 4.3: Illustration of composition in the level of plan templates

ployed to refine higher level, standard actions into more detailed, lower level steps,
in order to accommodate those specific requirements.

The specialization of plan templates may alternatively serve the purpose of al-
lowing the operator to guide/influence the refinement of change plans into actionable
workflows. For example, consider the plan template depicted in Figure 4.1. Being
aware that the Web application requires a Data Base Management System (DBMS),
the operator may indicate, in the design of the template, which DBMS should be
installed, instead of leaving the decision to the Change Planner.

Finally, generalization lets the operator to start thinking of a specific template
(either request or plan) and, after that, generalize it in order to make it suitable for
more general contexts. For example, an operator may design a template to perform
some change considering the IT scenario of a particular department. The essence
of the change may be later captured and applied to other departments as well, by
means of generalization.

For request templates, the generalization could be achieved, for example, by
changing the affected CI of an install operation, from WebApplication to simply
SoftwareElement. In the case of plan templates, finer-grained activities, for example
defined within a BlockActivity, could be replaced with a more general, larger-grained
activity. As a practical example, suppose than an operator has designed a change
template for the installation of an authentication system for Department X of an

36

Organization Y . Through generalization, this template could be adapted in order
to become the standard installation of the same system in every department of the
same organization.

37

5 FROM PRELIMINARY PLANS TO ACTIONABLE

WORKFLOWS THROUGH AUTOMATED PLANNING

As previously mentioned in Chapter 3, the refinement of preliminary change
plans into actionable workflows is computed by means of a task refiner algorithm.
It generates actionable change plans that are aware of the restrictions imposed by
the IT environment (e.g., disk space and memory constraints). As a consequence,
the resulting change plans are less prone to be prematurely aborted (e.g., due to
lack of resources), reducing the chances of incidents and service-delivery disruption
caused by failed changes (CORDEIRO et al., 2008).

The key concepts of the algorithm for the constraint-aware refinement of change
plans proposed in the scope of this work are the backtracking technique (CORMEN
et al., 2001) and the snapshots of the IT infrastructure. Backtracking is a sistematic
method to iterate through all possible configurations in the space of refinements for
the activities that compose a preliminary change plan. Snapshots, in turn, represent
the differences between the current state of the IT infrastructure and the state it
would reach after the execution of the activities being refined. These differences
include, for example, newly installed (or removed) software, disk space and memory
consumed (or freed), modified settings, and created (or deleted) files and directories.
Used in conjunction with the backtracking technique, snapshots prune the search
space, indicating which of the possible refinements violate IT resource constraints.
Please refer to a previous work (CORDEIRO et al., 2008) for an in-depth analysis
on the dynamics of snapshots.

Algorithm 1 presents the pseudo-code that implements the refinement process. It
receives three parameters as input: C, I, and R, where C is the preliminary change
plan; I represents the state of the IT infrastructure as in the instant in which the
preliminary plan C is submitted for refinement; and R represents the Definitive Me-
dia Library (DML). The output of the refinement process is an actionable workflow
that meets the resource constraints imposed by the target environment.

As described in Algorithm 1, function Refine initiates the refinement process
by copying all activities from the preliminary plan C to A – the set of activities
that require further refinement. Subsequently, it creates an initial (and empty)
snapshot of the IT infrastructure, s0. Despite not describing any differences from
the current state of the IT infrastructure, this snapshot serves as basis for the
recursive refinement that will be conducted afterwards.

The actual refinement of the preliminary plan C is performed by function Back-
track. Upon each invokation of this funcion, it verifies if the set of activities that
require further refinement is empty (or not). An empty set A received as parameter

38

ChangePlan Refine(C, I, R);1

begin2

A← set of activities from C;3

s0 ← initial snapshot of I;4

Backtrack(C, I, R, A, s0);5

if all activities in C are refined, given I then6

return ChangePlan C;7

else8

return false ;9

end10

end11

ChangePlan Backtrack(C, I, R, A, si);12

begin13

if A is empty then14

return ChangePlan C;15

else16

extract an activity ai from A;17

if all dependencies for ai are satisfied, given I, R, and si then18

Backtrack(C, I, R, A, si);19

else20

compute candidate activity dependency groups Yj to satisfy ai;21

foreach set of activities Yj do22

add activities in Yj to the change plan C;23

add activities in Yj to the set of activities A;24

si+1 ← new snapshot of I, given I, R, and si;25

Backtrack(C, I, R, A, si+1);26

end27

end28

end29

end30

Algorithm 1: Runtime constraint-aware refinement of change plans

indicates that all activities originally present in C (and the ones created and added
to this set during the refinement process) have been already processed. If empty,
the recursive refinement returns, and the plan C received as parameter is passed
back to function Refine for further verification.

In case A is not empty, an activity ai is extracted. Subsequently, it is verified
whether ai has computed dependencies. An activity a is said to have computable
dependencies if: (i) the Configuration Item (CI) modified by a has instances of
checks (SoftwareElementChecks) mapped in the Definitive Media Library and/or
relationships in the IT repository (e.g., shutting down Service1 requires shutting
down Service2 and bringing up Service3), and (ii) the previously described depen-
dencies (or checks) are not yet fulfilled considering snapshot si and the current state
of the IT infrastructure I. For example, suppose that ai is expressed, according
to AMN, as install SoftwareElement WebApplication at ComputerSystem Server1.
Suppose also that from R (the Definitive Media Library) WebApplication is known
to require the prior installation of a Web server and a Database Management Sys-
tem (DBMS). In this case, there are two dependencies that need to be fulfilled to

39

make ai executable. If all the dependencies for executing ai are already satisfied
(considering si and I), the refinement continues recursively, now to process another
activity from A (lines 18-19).

If ai has dependencies not yet satisfied, all the groups Y of candidate activities
to satisfy them are computed, given si, I, and R (line 21). Considering the previous
example, suppose that WebApplication requires one of two different Web servers
(Apache or Internet Information Server), and one of two different database servers
(MySQL or SQL Server 2005). Suppose also that SQL Server 2005 is known to
require more disk space than Server1 has available. The processing of this infor-
mation, obtained from the DML and represented through instances of class Checks,
yields the generation of the following groups of candidate activities: Y1 = { Install
Apache, Install MySQL } and Y2 = { Install IIS, Install MySQL }. Each of these
activities represent a BlockActivity derived from the set of actions (instances of class
Action from the model of Figure 3.2) necessary to install their respective software.
The reader may note that Install SQL Server 2005 is not regarded as a candidate
since the requirements for the installation of SQL Server 2005 violates the disk
space constraint imposed by Server1.

After the groups of candidate activities are computed, Backtrack searches for
a group Yj that leads to a refined plan. Although more than one Yj may lead
to a solution, the first Yj whose recursive dependencies (i.e., the dependencies of
the activities in Yj) satisfy the imposed restrictions will compose the refined plan.
As described in Algorithm 1 (lines 22-27), for each group Yj, the activities in it
are added to the plan C and to A (since these activities may also require further
refinement). Subsequently, the effects of executing the activities in Yj are persisted
at snapshot si+1. Note that si+1 holds the effects of executing the activities in Yj

plus the effects already recorded in si. Finally, Backtrack is invoked recursively, now
to process another activity present in A.

It is important to mention that, if activity ai has dependencies to be satisfied,
but none of these dependencies are executable (e.g., due to violation of constraints),
no group of candidate dependencies is created (line 21). In this case, the recursive
processing fails, indicating that one group of candidate dependencies Yj selected in
a previous recursion does not lead to a refined plan. Therefore, another group Yi+1

is tested (if there is any). This process continues until a refined plan that meets
resource constraints is found, or all the space of refinements for a given plan is
explored.

As previously mentioned, once all activities added to A are processed, the plan
C is returned to function Refine. This plan will be given as a solution to the
operator, if refined (line 6). We consider a change plan C as refined if and only
if the dependencies of all activities composing the plan are satisfied either by any
other activity in C or by the current state of the IT infrastructure. In case the plan
C is not refined, the operator will receive a negative feedback (line 9). This feedback
will mean that an executable workflow (for the preliminary plan C submitted) could
not be achieved. Having this feedback, the operator could reformulate and resubmit
the preliminary plan, therefore starting the refinement process over again.

40

6 FROM EXECUTION TRACES TO CHANGE TEM-

PLATES THROUGH TEMPLATE MINING

The notion of change templates introduced in Chapter 4 forms the fundamental
basis for the template mining mechanism presented in this thesis. Starting from
past execution traces, the proposed mechanism extracts the workflows behind the
implemented changes and, afterwards, transforms them into change templates. In a
first iteration at this problem, it was focused the extraction of templates that com-
prise simple execution routing structures, i.e., composed of and/or branches/joins
(CORDEIRO et al., 2009). In the following sections, the template mining mech-
anism is depicted in more detail. Section 6.1 describes, in more detail, the inter-
mediate, grained-level phases of the change template discovery process. Section 6.2
presents how actionable change plans are extracted from execution traces. Finally,
Section 6.3 details how the extracted plans are transformed into change templates.

6.1 Template Discovery Process Overview

The mechanism for template mining, encapsulated in the component Change
Miner (illustrated in Figure 3.1), comprises three distinct, well-defined steps. These
steps are materialized by subcomponents Workflow Miner, Decision Miner, and
Template Converter, illustrated in Figure 6.1. The relationship between these sub-
components and with external entities is described next.

Change Miner

Change
Templates

Config. Mgmt.
System

(1)

Workflow
Miner

Decision
Miner

Template
Converter

(2) (4) (5)

(3)

Operator

Figure 6.1: Subcomponents of the change mining mechamism

41

Once the change mining process is started by the operator (as described in Sec-
tion 3.2), the component Change Miner triggers the execution of the subcomponent
Workflow Miner. The purpose of this subcomponent is to extract workflows that
reflect the behavior of similar changes executed in the past. To this end, it con-
sumes, from IT-related repositories (flow 1 in Figure 6.1), execution traces gener-
ated by IT provisioning tools. By analyzing these traces, the Workflow Miner is
able to discover the low-level activities (and their relationship) that comprised the
past changes. This subcomponent produces typical workflows of activities having
and/or branches/joins.

The workflows generated in the previous step are then processed by the sub-
component Decision Miner (flow 2). Also exploring historical information present
in the Configuration Management System (3), this subcomponent identifies how
data has influenced the execution routing. Subsequently, it populates the and/or
branches/joins present in the workflows with the conditions that needed to be satis-
fied for the transitions to take place. Finally, the resulting workflows are consumed
by the subcomponent Template Converter (4). This subcomponent will abstract
the change procedures described in the workflows as to enable their applicability in
several, diverse change contexts. Thereafter, as previously mentioned in Section 3.2,
the resulting templates may be modified by the operator and stored in the Change
Templates repository (5) for future (re)use.

6.2 Discovering Change Processes from Logs

As presented in the previous section, subcomponent Workflow Miner is respon-
sible for extracting the actionable change plans (or actionable workflows) executed
for the implementation of past changes. To materialize the conceptual functional-
ity of this subcomponent, we have tailored some concepts from already established
process mining techniques (MARUSTER et al., 2002; MEDEIROS et al., 2004) to
the context of change management.

There are simplifying assumptions adopted by process mining techniques which
are also applicable in our work. First, they assume that each event present in
an execution trace refers to an activity (i.e., a well defined step in the workflow).
Second, each event refers to a case (i.e., a workflow instance). Finally, they assume
that events present in the trace are totally ordered. Researchers in the field of process
mining argue that, in fact, any information system using transactional systems will
offer this information in some form (MARUSTER et al., 2002). In the context of
our work, activity maps to change action (the smallest unit of a change present in
an RFC document), cases represent instances of execution of RFCs onto the target
IT environment, and IT provisioning tools are examples of transactional systems.

In order to enable the applicability of process mining concepts in the field of
change management, we denote ai 0 ≤ i ≤ n as being a change action (smallest unit
of a change) performed over the managed IT infrastructure. Sequences of change
actions are represented by change traces. Finally, a change log L is a set of all traces
related to a same process. We assume that L may be created by grouping together,
from the log repository, traces that share a same attribute value (e.g., the same
change ID). To facilitate the understanding of the process, we illustrate each step
considering the example of change log presented in Table 6.1. In this example, there
are six change traces, each composed by nine executed tasks. The process for the

42

Table 6.1: Example of execution trace

Change trace number Executed change actions

Trace 1 a1, a3, a5, a6, a4, a9

Trace 2 a1, a3, a4, a5, a6, a9

Trace 3 a2, a5, a6, a3, a4, a9

Trace 4 a1, a7, a3, a8, a4, a9

Trace 5 a2, a3, a7, a4, a8, a9

Trace 6 a2, a3, a5, a4, a6, a9

extraction of change plans from execution logs is comprised of four high-level steps,
which are described below.

1) Creation of the Dependency/Frequency Table: The Dependency/Frequency
(D/F) table (MARUSTER et al., 2002) contains information about the frequency of
occurrence of events registered in the change log (e.g., number of executions of each
change action, and number of succession relationships that occur between them).
The information contained in the D/F table are (i) the identifier of task ai and
aj, (ii) the overall frequency of task ai, (iii) the overall frequency of task aj , (iv)
the frequency in which task ai directly succeeds another task aj (aj > ai), (v) the
frequency in which task aj directly succeeds another task ai (ai > aj), (vi) the
frequency in which ai directly or indirectly succeeds another task aj , but before the
next occurrence of aj (aj ≫ ai), and (vii) the frequency in which aj directly or
indirectly succeeds another task ai, but before the next occurrence of aj (ai ≫ aj).
Table 6.2 shows an excerpt of D/F table for the change log illustrated in Table 6.1.
We highlight the number of times in which a3 > a4 holds, suggesting that a3 and a4

are likely to be connected in the workflow.

Table 6.2: Dependency/Frequency table

ai aj # ai # aj (aj >ai) (ai >aj) (aj ≫ai) (ai ≫aj)

a3 a1 500 404 236 0 404 0

a3 a2 500 96 56 0 96 0

a3 a3 500 500 0 0 0 0

a3 a4 500 500 0 160 0 500

a3 a5 500 339 114 147 0 339

a3 a6 500 339 27 86 0 339

2) Calculation of the Local Metric, Global Metric, and Causality Metric: The
Local Metric (LM) expresses the tendency of succession relation by comparing the
magnitude of (ai > aj) versus (aj > ai). The Global Metric (GM), in contrast,
determines the likelihood of succession between two change actions ai and aj con-
sidering the overall frequencies of these actions. Finally, the Causality Metric (CM)
indicates the chance that action ai causes the occurrence of action aj. Table 6.3
presents the values for metrics LM, GM, and CM computed for the pairs of activ-
ities presented in the first field of Table 6.2. For example, the high values of LM,
GM, and CM for the pair (a3, a4) reinforce the observation done for the data in
Table 6.2.

43

Table 6.3: Values for metrics LM, GM, and CM

ai aj LM GM CM

a3 a1 0 0 0

a3 a2 0 0 0

a3 a3 0 0 0

a3 a4 0.98 0.32 1.00

a3 a5 0.50 0.09 0.32

a3 a6 0.67 0.17 0.13

3) Computation of the Existence of Direct Succession Between Tasks : In this step,
the three metrics LM, GM, and CM, computed in the previous step, are combined
using a Logistic Regression Model (MEDEIROS et al., 2004). The output of this
combination is the probability π that two events ai and aj , present in the log, are
in a direct succession relationship.

4) Generation of the Actionable Change Plan: This last step consists in identi-
fying and/or branches/joins between tasks, considering the succession relationship
information present in the D/F table. After identified, they are explicitly incorpo-
rated into the workflow. Finally, the activities in the discovered plan are associated
to the Configuration Items they affect. Figure 6.2 illustrates the change plan ex-
tracted from the change log partially illustrated in Table 6.1.

Activity
Number: 9
Name: Install
WebApp

Activity
Number: 3
Name: Install
Apache

Activity
Number: 4
Name: Install
PHP

Activity
Number: 7
Name: Install
PostgreSQL

Activity
Number: 5
Name: Install
MySQL

Activity

Number: 6
Name: Install
Plug-in for
MySQL

Activity
Number: 8
Name: Install
Plug-in for
PostgreSQL

Activity
Number: 2
Name:
Upgrade
GNU/Linux

Activity
Number: 1
Name: Install
GNU/Linux

Conditional Transition

Unconditional Transition

Figure 6.2: Change plan extracted from an execution trace

6.3 Converting Discovered Change Processes into Templates

Our mechanism for the conversion of an actionable change plan into a change
template is materialized by a conceptual algorithm, illustrated in Algorithm 2. The
conceptual algorithm, denoted by ExtractTemplate, takes as input the change plan
C to be converted, the current state of the IT infrastructure I, and the Definitive
Media Library (DML) R. The output is a change template T that comprises the
high-level steps necessary to implement the same change described in C in a broader
range of scenarios.

Figure 6.3 illustrates the functioning of ExtractTemplate using a simplified ex-
ample. The change plan C presented in the figure – extracted using the change

44

PlanTemplate ExtractTemplate(C, I, R);1

begin2

A← set of activities from C;3

S ← empty set of activities;4

T ← empty plan template;5

foreach activity ai ∈ A do6

S ← S ∪ {set of dependencies of ai, given I and R};7

end8

T ← A− S;9

B ← set of activities a from the change template T ;10

foreach ai ∈ B do11

foreach bj ∈ B do12

if ai 6= bj and there is a path from ai to bj in C then13

cond ← false logical expression;14

P ← {set of paths Pk that connect ai to bj in C};15

foreach transition tl arriving at bj do16

if ∃Pk ∈ P | tl ∈ Pk then17

cond ← cond . (or (condition of transition tl));18

end19

end20

connect ai to bj in T using the logical expression cond;21

end22

end23

end24

D ← empty set of variables v of managed elements;25

foreach activity ai ∈ B do26

transform all managed elements e affected by ai into variables v;27

D ← D ∪ {list of variables v present in activity ai};28

end29

add D to the list of variables of the change template T ;30

return PlanTemplate T ;31

end32

Algorithm 2: Conceptual algorithm for converting change plans into tem-
plates

mining technique presented in the previous section – comprises the steps necessary
to install a Web Application (WebApp).

As a first step towards the conversion of an actionable workflow into a change
template, the set of activities that compose the change plan C is copied to A (line 3
in Algorithm 2). Next, an empty set of activities S (line 4), and an empty template
T (line 5) are created. The newly created template T , in this case, will hold the
result of the conversion process.

Subsequently, for each activity ai that belongs to A (line 6), ExtractTemplate
computes the set of dependencies that must be satisfied prior to its execution, con-
sidering information about the target IT infrastructure I and dependencies between
software packages available in R. The result of this computation is added to S (line
7). At this point, S is composed only of activities that satisfy any dependency of
any other activities of the change plan C. In the example illustrated in Figure 6.3,

45

S will be composed of activities Install WebSrv, Install DBServer, and LibX. In
this case, WebSrv and DBServer are software that must be installed prior to the
installation of WebApp (according to WebApp’s SwChecks, present in the DML).
LibX, in turn, is a software dependency for both WebServer and DBServer (as both
require its prior installation, according to their SwChecks, also shown in the DML).
Since activity Configure DNS is not an explicitly dependency found in the DML, it
is not added to S.

Definitive Media Library

has operation

RFC
Name: Extracted Change Template
Type: Template

has change
 template

Operation
Name: Extracted Operation
Type: Template

X: Computer
System

Z: Software
Element

Activity
Install

WebApp

Activity
Configure

DNS

Y: Computer
System

Activity
Install LibX

Activity
Install WebSrv

Activity

Install DBServer

Activity

Install

WebApp

Activity

Configure

DNS

Activity
Install

WebSrv

Activity
Install

DBServer

Activity
Install
LibX

Activity
Install

WebApp

Activity
Configure

DNS

S =
Activity
Install

WebApp

Activity
Configure

DNS

(1)

X: Computer System

Z: Software Element

Y: Computer System

Change Template T

(2)

Change Template T

Sw: WebSrv

Sw: DBServer

S
w

C
he

ck
s

Sw: LibX

Install WebSrv

 Install LibX

WebApp : Sw

WebServer : Sw

LibX : Sw

Install WebApp
SwActions

Sw: LibX

Install DBServer DBServer : Sw

InstalledSw

Srv3: Computer
System

Linux: Operating
System

DNSServer: Sw
Element

MailServer: Sw
Element

Srv1: Computer
System

Srv2: Computer
System

Installed

Sw

InstalledOS D =

Change Plan C

IT Infrastructure

Figure 6.3: Conversion of a change plan into a plan template

After processing the activities in A, the computed dependencies (in S) are ex-
cluded from A, and the remaining ones are added to T (line 9). At this point, T

is composed only of activities that cannot be deduced through automated analysis
of dependencies between elements from IT-related repositories. In the example of
Figure 6.3, the template T (box 1) is composed of activities Install WebApp and
Configure DNS.

The activities that have been just added to T do not have any relationships to
one another (i.e., there are no conditional/unconditional transitions between them).
This information must be obtained by observing how activities are linked to each
other in the original change plan C. In order to compute this information, the set
of activities contained in template T is copied to B (line 10). Subsequently, for each
pair of ordered activities (ai, bj) ∈ B (lines 11-12), if there is at least a path of

46

activities starting in ai and ending in bj in the original change plan C (line 13), the
following steps are performed. First, cond is initialized with a false logical expression
(line 14). Subsequently, all different paths of activities Pk from ai to bj are stored
in P (line 15) (Pk, in this case, is an ordered set of transitions that form a path of
activities from ai to bj). Then, for each transition tl that arrives at activity bi (line
16), if this transition belongs to any of the paths in P (line 17), the condition of this
transition is used to build a logical expression, which will be concatenated to cond
(line 18). After all transitions that arrive to bj are processed, ai is connected to bj in
the change template T (line 21), using as transition condition the logical expression
stored in cond. In Figure 6.3, the template T shown in box 1 was modified by the
addition of the transitions between the activities that compose it, yielding the one
presented in box 2.

Once the transitions between activities that compose the change template T

are created, ExtractTemplate processes all managed elements affected by activities
in T , converting references to them into template variables (which were previously
described in Section 4.2). As a first step towards the processing of these variables,
D is declared as a set of variables v of managed elements, i.e., pointers to elements
belonging to the IT infrastructure (line 25). Next, for each activity ai of template
T present in B (line 26), the managed elements affected by these activities are
abstracted, i.e., the activity will no longer be associated to a concrete managed
element. Instead, it will reference variables v having the same class of the affected
managed elements e (line 27). The variables resulted from this abstraction will be
added to D (line 28).

In the example illustrated in Figure 6.3, activity Install WebApp affects two
managed elements: the software to be installed (WebApp), and the computer in
which it will be installed (Server2). After the abstraction step (line 27), the software
installed by Install WebApp becomes Z (and has type SoftwareElement), and the
computer in which the software is installed becomes X (of type ComputerSystem).
Configure DNS, in turn, modifies software settings of the network’s domain name
server, located in computer Server3. After the abstraction, the element affected by
this activity becomes Y (ComputerSystem). All these three variables are stored in
the set of variables D, as illustrated in Figure 6.3.

As a last step, the variables present in D are added to the list of variables of
the change template T (line 30) and returned to the change operator (line 31). In
Figure 6.3, the change template resulted from this process has three variables, X,
Y , and Z, and is composed of two activities, ordered according to the relationship
information acquired from the previous change plan C. At this point, the change
template T is ready for use in the instantiation of similar future changes.

47

7 PROTOTYPICAL IMPLEMENTATION AND EX-

PERIMENTAL EVALUATION

In this chapter, we first present the prototypical implementation of a change
management system used as a proof-of-concept (Section 7.1). Subsequently, we
discuss the experimental evaluation conducted using this system (Section 7.2).

7.1 The ChangeLedge System

The solution for template-based change management presented in the previous
chapters is supported by the ChangeLedge system, a prototypical implementation
developed as part of this work. In this section, we further detail how the system
components are implemented (Subsection 7.1.1) and how change initiators and IT
operators interact with the system to design changes (Subsection 7.1.2).

7.1.1 System Architecture and Technologies

The ChangeLedge system is implemented in layers, as shown in Figure 7.1.
The modules of each layer either implement conceptual components presented in
Figure 3.1 or provide services to other components in the system. These components
are further described below.

The Web interface was implemented using the Flex programming language, and
is supported by the Apache/Tomcat and by Granite Data Services (GRANITEDS,
2007), a Java to Flex package conversion library. As a consequence, for each inter-
action with the Web interface, Tomcat invokes a service through Java, the language
employed to implement the system’s kernel.

In the layer underlying the Web interface are located the modules Template Min-
ing, Template Management, Change Specification and Change Deployment, which
compose the core layer of the ChangeLedge system. The module Template Min-
ing provides the functionalities for the discovery of plan templates from execution
traces. The Template Management incorporates the functionalities for the speci-
fication of request and plan templates. The Change Specification implements the
functionalities related to the design of RFCs/preliminary change plans. Finally,
the Change Deployment delivers the functionalities for the refinement of prelimi-
nary plans into actionable workflows (and their later invocation). Considering the
conceptual solution presented in Chapter 3, the module Template Mining materi-
alizes the functionalities of the component Change Miner ; Template Management
and Change Specification materialize the Change Designer ; and Change Deployment
materializes the Change Planner.

48

Web Interface Layer

Object/Relational Mapper Hibernate

DAO Interface CIM, RFC, and Change Plan Models

MySQL DBMS

 CIM Facade Change Plan Facade RFC Facade

Template

Management

Active

BPEL
Deployment Change

Specification
BPEL

Mapper

Change

Initiator

Operator

Template

Mining

Figure 7.1: Implementation view of the ChangeLedge system

To fulfill their objectives, these modules employ the services provided by the
layer underneath, which manipulates the data associated to the IT infrastructure
and RFC & Change Plan models. These services are provided by the modules CIM
Facade, RFC Facade, and Change Plan Facade. Below this layer, the persistence
layer uses the Object/Relational Mapper Hibernate framework (REDHAT, 2007),
and the Database Management System MySQL. The Data Access Object (DAO)
design pattern is employed, in this context, to abstract and encapsulate all access
to the IT-related repositories.

The actionable workflows generated by the system, more specifically by the mod-
ule Change Deployment, are coded using the XML language, respecting the Business
Process Execution Language (BPEL) (OASIS, 2007) standard. These documents are
produced using the Streaming API for XML (StAX) (CODEHAUS, 2007) and exe-
cuted through ActiveBPEL (ACTIVEENDPOINTS, 2007) (which materializes the
component Deployment System, present in our conceptual solution). The choice for
BPEL is due to the standard’s popularity and its adherence to coordinate distributed
actions over IT infrastructures.

7.1.2 Change Designer and Planner Assistant

The Web interface is the front-end for the access to all features provided by the
ChangeLedge system. Through a Graphical User Interface (GUI), the change
initiator and operator may interact with the modules (i) Template Management,
to specify new templates (either request or plan), (ii) Change Specification, to de-
sign new change documents (either from templates or from scratch), (iii) Change
Deployment, to invoke both refinement of preliminary plans into actionable change
plans and the execution of the resulting workflows, and (iv) Template Mining, to
trigger the discovery of change templates from traces of previously executed change
processes.

Figure 7.2 presents two snapshots of the ChangeLedge system. The interface
illustrated in Figure 7.2 (a) is the starting point for the specification of a new change

49

(either from template or from scratch). In this stage, the change initiator may inform
the name of the change, reason, priority, and suggested deployment date and time,
among other information described in Section 2.1. Having filled in this information,
the change initiator will indicate the operations that make up the newly specified
change, as well as the primary affected CIs.

(a) specification of new RFCs

(b) design of preliminary change plans

Figure 7.2: Graphical user interface of the ChangeLedge system

Likewise, Figure 7.2 (b) presents the main interface for the design of prelimi-
nary change plans. By interacting with this interface, the operator may detail the
steps necessary to materialize the change objectives, either with the aid of tem-
plates (and the composition, generalization and specialization techniques, described
in Chapter 4), or by designing the activities from scratch. After the design of the
network of activities that will compose the preliminary plan, the RFC will be ready
to be automatically refined into an actionable change plan (available in the Change
Deployment menu option), and subsequently deployed over the managed IT infras-
tructure.

7.2 Experimental Evaluation

To prove the technical feasibility and the potentialities of using templates in the
context of IT change management, we have conducted an experimental evaluation
using the ChangeLedge system. All experiments have been conducted on a com-
puter equipped with a PentiumTM Centrino processor, 1.7 GHz of CPU clock, 2,048
KB of cache, and 512 MB of RAM memory.

We divide the presentation and discussion of the experiments conducted to evalu-
ate our solution in two subsections. Subsection 7.2.1 describes the set of experiments
performed to evaluate the use of change templates to instantiate RFC documents,
and their refinement into actionable workflows. Subsection 7.2.2, in turn, emphasizes
the evaluation of the template mining mechanism.

7.2.1 Change Design and Planning Evaluation

The IT infrastructure employed for the evaluation of the change design and plan-
ning functionalities of ChangeLedge is equivalent to the environment of a research

50

& development department of an organization. It is composed of 65 workstations,
located in seven rooms, running either Windows XP SP2 or GNU/Linux. The envi-
ronment is also composed of four servers, Server1, Server2, Server3, and Server4,
whose relevant settings to the context of our evaluation are presented in Table 7.1.
Similarly, the content of the Definitive Media Library (DML) is summarized in Ta-
ble 7.2.

Table 7.1: General settings of the servers employed in the change design and planning
evaluation

Server Name Installed Operating System Available Disk Space (MB) Total Physical Memory (MB)

Server1 None 20,480 2,048

Server2 Windows 2003 Server 71,680 4,096

Server3 Debian GNU/Linux 51,200 4,096

Server4 Debian GNU/Linux 102,400 4,096

To conduct the evaluation of the proposed templates, we have instantiated, using
templates available in the Change Templates repository, several change requests, of
incremental complexity, considering the same target IT infrastructure. For the sake
of brevity, we focus our attention on five of these changes. The first two have as
objective the installation of an e-Commerce Web application (WebApp), one of them
having Server1 as target CI and the other, Server3. The third RFC comprises two
operations: one to install and configure an authentication server on Server3, and
the other to install and configure a network monitoring platform on Server4. The
fourth RFC comprises the migration of the entire system installed on Server3 to
Server4. Finally, the fifth RFC consists in updating software packages installed in
47 out of the 65 stations that compose the IT infrastructure (typical procedure in
several organizational contexts).

Having presented a general view of the experimental setup, Subsection 7.2.1.1
describes both (i) the qualitative analysis of the use of templates within the con-
text of change management and (ii) an evaluation of the generation of actionable
change plans aware of the runtime constraints imposed by the target IT infrastruc-
ture. Subsequently, Subsection 7.2.1.2 presents results on the performance of the
ChangeLedge system in the computation of actionable workflows.

7.2.1.1 Qualitative Analysis

The first two previously described change requests were instantiated from the
same template illustrated in Figure 7.3, Install Web Application (which, in turn,
was specialized from the template presented in Figure 4.1). During the instantiation
of the RFC documents, the CIs that were supposed to be primarily affected by the
changes have been identified: the e-Commerce Web application (from the DML, and
common to both RFCs), Server1 (to the first RFC), and Server3 (to the second
one).

After the design of the RFC documents, we have instantiated preliminary plans
for the installation of the e-Commerce Web application. The activities present in the
preliminary plans, instantiated from the plan template also illustrated in Figure 7.3,
are: Install Web Application (the core activity of the plan), Load Database Schema
(creation of the database schema to be used by the application and population of the

51

Table 7.2: System requirements for the software present in the DML

Software Name
Disk Space

(MB)

Memory

(MB)
Software Dependencies

e-Commerce Web App for Windows 512 128
SQL Server

Internet Information Server

e-Commerce Web App for Linux 512 128

mysql-server-5.0

php5-mysql

apache

Internet Information Server 5.1 15 16 Windows XP Service Pack 2

Internet Information Server 7.0 15 16 Windows Vista Service Pack 1

.Net Framework 4.8 280 256

Internet Explorer

Internet Information Server

Windows XP Service Pack 2

SQL Server 2005 425 512

Internet Explorer

Windows XP Service Pack 2

.Net Framework

SQL Server 2008 1,460 1,024
Internet Explorer

Windows Vista Service Pack 1

Internet Explorer 7 64 128 Windows XP Service Pack 2

Windows XP SP 2 1,800 - Windows XP

Windows Vista SP 1 5,445 - Windows Vista

Windows XP 1,500 128 -

Windows Vista 15,000 1,024 -

mysql-server-5.0 70 128

mysql-common-5.0

mysql-client-5.0

GNU/Linux

mysql-client-5.0 16 8
mysql-common-5.0

GNU/Linux

mysql-common-5.0 1 - GNU/Linux

apache 1 32

apache-common

apache2-utils

GNU/Linux

apache-common 3 -
apache2-utils

GNU/Linux

apache2-utils 1 - GNU/Linux

php5-mysql 1 -

libapache-mod-php5

mysql-client-5.0

php5

libapache-mod-php5 5 -
apache-common

php5-common

php5 1 - php5-common

php5-common 1 - GNU/Linux

Debian GNU/Linux 4.0 1,024 256 -

database with preliminary data), Configure the Network’s DNS (publication of the
address in which the Web application may be reached), and Start Web Application
(start of the main service provided by the Web application). This instantiation has
consisted basically in assigning the CIs affected by each activity that were not yet

52

has operation

RFC
Name: Install Web Application
Author: Weverton Cordeiro
Template: true

what

where

Operation
Name: Install Web Application
Type: Install

X: WebApp

Y: Computer
System

has change plan

Activity
Number: 1
Name: Install
Web
Application

Activity
Number: 3
Name: Load
Dababase
Schema

Activity
Number: 4
Name: Config
the Network’s
DNS

Activity
Number: 5
Name: Start
Web
Application

Figure 7.3: Template for the installation of a generic Web application (WebApp)

assigned by the binding mechanism (explained in Subsection 4.1).

Focusing on activity Install Web Application, the specification of this activity,
according to the Activity Modeling Notation, was install SoftwareElement what at
ComputerSystem where. The two affected CIs what and where, automatically as-
signed with the CIs specified during the instantiation of the RFCs, were e-Commerce
Web application and Server1, respectively, for the first RFC. For the second, what
was also assigned to e-Commerce Web application. The CI labeled where, however,
was assigned to Server3.

The actionable workflows generated to accomplish the objectives of the first two
RFCs are illustrated, respectively, in Figures 7.4 and 7.5. For the sake of clarity,
only the refinement of the Install Web Application is presented in both figures. The
linkage between the activities that compose the workflows reflects the dependencies
between installed packages, configuration procedures, among others. For example,
in Figure 7.5, installing apache on top of Debian GNU/Linux requires the prior
installation of the basic libraries provided by apache-common. In addition, having
e-Commerce Web Application functional requires configuring the Web Server (IIS
5.1, for Windows, and apache, in the case of GNU/Linux) and granting permissions
for the use of the Database Management System (mysql-server, in the change plan
for the GNU/Linux environment, and SQL Server 2005, in the case of Windows XP).

The reader may note that there are significant differences between the workflows
present in the figures. This is explained by the diverse group of affected CIs and
checks/actions involved in their manipulation. To illustrate, Internet Information
Server only requires a few steps to have it installed and functional (extracted from
the chain of actions represented using the IT infrastructure model, described in
Subsection 3.3). Furthermore, it depends on the prior installation of the operating
system (dependency depicted from the OperatingSystemVersionCheck information,
also represented using the IT infrastructure model). For Debian GNU/Linux, on the
other hand, the apache installer requires several dependencies to be satisfied (in the
target environment, only apache2-utils and apache-common dependencies were not
yet fulfilled), plus the prior installation of the operating system. One may also note
that the activities present in the workflow may be either automatically executed

53

Activity
Insert CD
Windows XP
Pro

Activity
Boot
Computer
from CD

Activity
Invoke
Windows XP
Installer

Activity
Create
Partition C:

Activity
Format C:
Using NTFS
FileSystem

Activity
Enter
Windows XP
Product Key

Activity
Set Passwd
for Admin
Account

Activity
Reboot
Computer

Windows XP
Installed

y
n

Activity
Validate
Windows XP
Installation

Activity
Get Windows
XP Service
Pack 2

Activity
Invoke
Service Pack
2 Installer

SP 2
Installed

y
n

Activity
Get .Net
Framework
3.5 Installer

Activity
Get Internet
Explorer 7

Activity
Select IIS 5.1
to Install

Activity
Select
Internet
Explorer
Components

Activity
Get IE 7
Components
to Install

Activity
Install IE 7
Components

Activity
Invoke .Net
Framework
3.5 Installer

Activity
Install
Selected .Net
Components

Activity
Invoke IIS 5.1
Installer

IIS Web Page
Access Ok

y
n

Fail

Activity
Reboot
Computer

Activity
Insert CD
SQL Server
2005

Activity
Invoke SQL
Server 2005
Installer

Activity
Insert Name
Instance

Activity
Select
License
Agreement

n

y

Activity
Run System
Configuration
Check

Activity
Insert User &
Passwd for
SQL Account

Activity
Select
Components
to Install

Activity
Select
Features to
Install

Activity
Choose Inst
Authentiation
Mode

Activity
Reboot
Computer

SQL Server
2005 Installed

n

I.E. 7
Installed

n

.Net 3.5

Installed

y
n

y

y

Activity
Get e-
Commerce
Web App
from DSL

Activity
Invoke
WebApp
Installer

Activity
Select
License
Agreement

Activity
Select
Components
to Install

Activity
Select Target
Directory for
Installation

Activity
Config. User,
Passwd &DB
for WebApp

Activity
Configure IIS
for Web
Access

Activity
Install
Selected
Components

Activity
Set Passwd
for Manager
Account

Activity
Publish
WebApp at
Network DNS

Activity
Start
WebApp
Service

Activity
Select Target
Installation
Directory

IIS 5.1
Installed

Figure 7.4: Partial workflow for installing WebApp on top of Windows XP Profes-
sional

(background in white) or require the intervention of a human operator (background
in gray).

The implementation of the actionable workflow presented in Figure 7.4 requires,
considering the information in Table 7.1, about 4,596 MB of disk space, and a
minimum of 1,168 MB of available physical memory from Server1. As for the
workflow presented in Figure 7.5, the demands are 1,124 MB of disk space and about
424 MB of physical memory. Since both Server1 and Server3 have sufficient disk
space for the installation procedures present in the workflows, the implementation of
both RFCs is likely to succeed. Moreover, all the installed software should execute
normally, given that the target servers have sufficient physical memory.

An alternative plan for the Windows environment (Figure 7.4) is the one in which
SQL Server 2008 is installed instead of SQL Server 2005, and Internet Information
Server 7.0, instead of IIS 5.1. As a consequence, Windows Vista and Windows Vista
Service Pack 1 would be installed as well, instead of Windows XP Service Pack 2
and Windows XP, due to the pre-requisite information. For the same reason, the
installation of .Net Framework 3.5 would not be present in this alternative plan.
This plan would require 22,496 MB of available disk space from Server1 to be
executable, amount beyond the 20,480 MB currently available. Therefore, it would
not be generated by our refinement algorithm, since it is impractical considering the

54

Activity
Insert CD
Debian
GNU/Linux

Activity
Select Linux
Kernel to
Boot
Computer

Activity
Select
Installation
Language

Activity
Select
Keyboard
Layout

Activity
Mount
Installation
CD

Activity
Configure the
Network

Activity
Set the
System Time

Activity
Create
Partition
Table on Disk

Activity
Install the
Base System

Activity
Set root
Password

Activity
Create User
Account

Activity
Configure
Package Mgr

Activity
Install GRUB
Boot Mgr Sw
Package

Activity
Configure
GRUB Boot
Mgr

Activity
Install GRUB
Boot Mgr at
MBR

Activity
Reboot
Computer

Debian Linux

Installed

n

Activity
Get mysql-
common from
Repository

Activity
Get apache2-
utils from
Repository

Activity
Get php5-
common from
Repository

Activity
Invoke
apache2-utils
Installer

Activity
Invoke mysql-
common
Installer

Activity
Invoke php5-
common
Installer

Activity
Get mysql-
client from
Repository

Activity
Invoke mysql-
client Installer

Activity
Get mysql-
server from
Repository

Activity
Invoke mysql-
server
Installer

MySQL
Installed

n

Apache
Installed

n

PHP
Installed

y
n

Activity
Get apache-
common from
Repository

Activity
Invoke
apache-
common
Installer

Activity
Configure
mysql-
common

Activity
Configure
mysql-client

Activity
Configure
mysql-server

Activity
Configure
apache2-utils

Activity
Configure
apache-
common

Activity
Get apache
from
Repository

Activity
Invoke
apache
Installer

Activity
Configure
apache

Activity
Configure
php5-
common

Activity
Get
libapache-
mod-php5
from APT

Activity
Invoke
libapache-
mod-php5
Installer

Activity
Configure
libapache-
mod-php5

Activity
Get php5
from
Repository

Activity
Invoke php5
Installer

Activity
Configure
php5

y

y

Activity
Get Web App
from DSL

Activity
Invoke
WebApp
Installer

Activity
Select
License
Agreement

Activity
Select
Components
to Install

Activity
Grant MySQL
Permissions
for WebApp

Activity
Configure
Apache for
Web Access

Activity
Install
Selected
Components

Activity
Set Password
for Manager
Account

Activity
Publish
WebApp at
Network DNS

Activity
Start
WebApp
Service

y

Activity
Get php5-
mysql from
Repository

Activity
Invoke php5-
mysql
Installer

Activity
Configure
php5-mysql

Figure 7.5: Partial workflow for installing WebApp on top of Debian GNU/Linux

imposed resource constraints.

In summary, the use of change templates was shown to be flexible, enabling (i)
the reuse of knowledge, through the specification of similar, recurrent changes, (ii)
a faster design of preliminary change plans, and (iii) the automated refinement of
preliminary change documents into actionable workflows. Moreover, the generation
of accurate, workable change plans, composed by activities that do not hinder the
execution of subsequent ones, has potential to decrease the occurrence of change-
related incidents and service-delivery disruption caused by failed changes.

7.2.1.2 Quantitative Analysis

Table 7.3 characterizes, synthetically, the actionable workflows generated for the
five submitted RFCs. We highlight in the table the number of activities, as well as
the number of computer systems (stations), operating systems, and software affected
in both the preliminary (specified by a human operator with the aid of templates)
and actionable plans (generated by the system). Taking the fourth RFC as example,
one may note that the final change plan has 182 activities, automatically refined from
a 40% smaller preliminary plan.

The time consumed by the ChangeLedge system to generate the aforemen-
tioned actionable plans is presented in Table 7.4. The system has performed satisfac-
torily, demanding from a few hundreds of milliseconds (1,209 for the first scenario)
to a few dozens of seconds (62 for the last scenario) to generate the refined plans.
We have also calculated a confidence interval of 95% for the measured times, consid-
ering 10 repetitions of the refinement process for each change document. The values

55

Table 7.3: Numeric complexity of the submitted changes (pre and post refinement)

Scenario
Preliminary Plan Refined Plan

Activities
Affected

Stations

Affected

OSes

Affected

Software
Activities

Affected

Stations

Affected

OSes

Affected

Software

1 3 2 0 1 54 2 1 7

2 3 2 0 1 70 2 1 12

3 4 2 0 2 30 2 1 26

4 46 3 0 5 182 3 1 47

5 235 47 0 6 613 47 2 29

obtained show that the amount of time necessary for the automated refinement is
expected to vary minimally.

Table 7.4: Time consumed by the ChangeLedge system to generate actionable work-
flows

Scenario
Refinement

Time (ms)

Standard

Deviation

Average Refinement

Time per Activity (ms)

Confidence Interval

Lower Bound (ms) Upper Bound (ms)

1 1,209 10.6 22 1,188 1,230

2 1,430 7 20 1,416 1,443

3 2,360 7.7 78 2,345 2,375

4 3,966 41.2 21 3,885 4,047

5 62,901 91 102 62,722 63,079

Note that the time to generate a refined change plan (and the average time to
build a single activity that composes it), in each scenario, is negligible compared
to the time that an operator would spend to generate the same workflow, using
any off-the-shelf workflow designer. The reason is as follows. An operator, during
the manual refinement of preliminary plans, needs to identify every dependency
between software packages to be installed and CIs to be affected by the change.
Subsequently, he/she must translate the dependencies that were not yet fulfilled
in the target IT environment into actions to be executed. The complexity of these
two tasks increases dramatically with the number of affected components and unmet
dependencies. Furthermore, there is the additional effort to identify such information
from distributed sources, causing the operator to miss important information, and
therefore generate incomplete plans. In contrast, our refinement algorithm is able
to capture the dependency information behind requested changes, and compute the
require actions in a very short time. To conclude, our refinement algorithm is not
only feasible to generate complete and correct plans, but has potential to reduce, in
a significant way, time and efforts demanded to this end.

7.2.2 Evaluation of the Template Mining Mechanism

The conceptual and technical feasibility of change template mining mechanism
proposed in this thesis has been evaluated considering the extraction of change
templates from synthetically generated traces. This decision was made because it
enables a more thorough analysis of the mechanism, by enabling the comparison of

56

the extracted templates with the real processes that have implemented the changes.
Again, for the sake of brevity, we focus our analysis on three of these templates.
As a result of the template mining process, we have observed the correctness and
completeness of the obtained templates, in addition to performance indicators.

The IT infrastructure employed in the evaluation of the template mining func-
tionality of ChangeLedge was composed of four servers: Server1, having no
operating system installed on top of it; Server2, having Windows 2003 installed;
Server3, and Server4, both having Debian GNU/Linux installed.

In regard to the change logs consumed during the mining process, they were
generated by simulation of the execution of four different RFCs on the previously
described IT environment. For each RFC, we have generated one change log with
500 change traces. Each simulation has considered uniform distributions for the
time spent in the execution of each activity, as well as distinct probabilities, defined
empirically, for choices present in the change plans.

The first two RFCs used in the simulation had as objective the installation of
an e-Commerce Web application (WebApp), one of them having Server1 as target
CI (Install e-Commerce Web application at Server1) and the other, Server3 (Install
e-Commerce Web application at Server3). The third RFC comprised the migra-
tion of the entire system installed on Server3 to Server4 (Migrate System Hosted
on Server3 to Server4). Information about the number of activities and types of
transitions that composed the change plan associated to each of the three RFCs is
presented in Table 7.5.

Table 7.5: Characteristics of the change plans employed in the template mining
evaluation

RFC Activities Conditional Transitions Unconditional Transitions

1 26 16 29

2 84 26 115

3 245 100 383

7.2.2.1 Qualitative Analysis

A partial view of the log generated from the execution of the first change is
presented in Table 7.6, whereas the characteristics of the templates extracted from
the logs of the three RFCs are summarized in Table 7.7. An interesting point
to highlight is that templates 1 and 2, generated from RFCs 1 and 2, respectively,
encode the prototypical steps (illustrated in Figure 7.6) to implement a same general
change. This is explained by the same goal that both RFCs share, even though they
are concerned with distinct environments, i.e., having different sets of dependencies
to be fulfilled.

Figures 7.6 and 7.7 show a partial view of the templates extracted from the
execution traces of the first and third changes, respectively. The reader may note,
in the change template from Figure 7.6, that Activity 2, Install Security Updates
for WebApp, is conditionally executed (for example, whenever the system in which
WebApp is installed requires these updates). An indication of existence of this
decision may be observed, for example, in traces 3 and 4. In the first trace, Activity

57

Table 7.6: Partial view of the change log of RFC Install e-Commerce Web application
at Server1

Change Trace Executed change actions

Trace 1 a1, a4, a5, a3, a7, a6, a8, a9

Trace 2 a1, a2, a5, a7, a4, a3, a6, a8, a9

Trace 3 a1, a2, a4, a3, a5, a6, a7, a8, a9

Trace 4 a1, a5, a4, a3, a6, a7, a8, a9

Trace 5 a1, a4, a3, a6, a5, a7, a8, a9

Table 7.7: Characteristics of the templates discovered using the template mining
mechanism

Template Activities Conditional Transitions Unconditional Transitions

1 9 2 15

2 9 2 15

3 57 0 65

2 is executed after Activity 1, Install WebApp. In the second, though, Activity 2
is not executed. The reader may also note that the order of execution of Activities
3, 4, 5, 6, and 7 varies in the change traces, indicating the existence of parallelism
upon their execution. As shown in Figure 7.6, this behavior is also captured and
materialized in the extracted change template.

Activity
Install
WebApp

Activity
Create User
admin at
Database

Activity
Load
Database
Schema

Activity
Grant Privileges
for User admin
at Database

Activity
Number: 7
Name: Reload
Web server
Settings

Activity
Publish
WebApp
Address at the
DNS Srv

Activity
Start Web
Application

Activity
Reconf. Web
server for
WebApp
Settings

Activity
Install
Security
Updates for
WebApp

Conditional Transition

Unconditional Transition

Figure 7.6: Partial view of the template extracted from the change log of RFC
Install e-Commerce Web application at Server1

As for the change template illustrated in Figure 7.7, we highlight the size and
complexity of the depicted change template, extracted from a change log that com-
prised over 245 distinct, low level change actions. It is important to mention that
the completeness and generality of these templates is highly influenced by the num-
ber of change traces available during the template mining process. For example,
if a smaller set of change traces were used to compute the change template from
Figure 7.7, the representativeness of the 245 activities would be affected, thus mak-
ing the template mining mechanism to interpret some (or most of them) as noise.
As a consequence, the resulting template would be less complete and general (e.g.,
composed of fewer activities or transitions between them).

58

Activity

Install Linux

Activity
Reconfig.
DNS

Activity
Migrate root
Account
Data

Activity
Create
Ordinary
Users

Activity
Migrate
Ordinary
User’s Data

Activity
Install
MySQL
Server

Activity
Migrate
MySQL
Server Cfg
Data

Activity
Reconfigure
DNS for DB

Activity
Migrate
MySQL
Server
Schema

Activity
Start
MySQL
Server

Activity
Migrate
Apache
Settings

Activity
Reconfigure
DNS for
WWW

Activity
Migrate
Apache
Doc. Root

Activity
Reload
DNS
Settings

Activity
Install
Apache

Activity
Install Mail
Transport
Agent
 Activity

Reconfigure
DNS for
SMTP

Activity
Install PHP

Activity
Migrate
PHP
Settings

Activity
Migrate
MTA
Settings

Activity
Migrate
User’s
Mailboxes

Activity
Start
Apache

Activity
Start Mail
Transport
Agent

Activity
Install
Webmail

Activity
Reload
DNS
Settings

Activity
Migrate
Webmail
Settings

Activity
Reconfigure
Apache for
Webmail

Activity
Reconfig.
DNS for
Webmail

Figure 7.7: Partial view of the template generated for RFC Migrate System Hosted
on Server3 to Server4

7.2.2.2 Quantitative Analysis

The performance of ChangeLegde to extract the previously mentioned tem-
plates is depicted in Table 7.8. Exhibiting a performance similar to the planning
functionality (as shown in Subsection 7.2.1.2), the ChangeLegde system has de-
manded a few dozens of seconds (from 31 to 112) to generate the templates.

Table 7.8: Time consumed by the ChangeLedge system to extract templates

Scenario
Mining

Time (s)

Confidence Interval

Lower Bound (ms) Upper Bound (ms)

1 31 29 33

2 36 34 39

3 112 104 121

From the results presented in Table 7.8, we expect the template mining process-
ing time to vary minimally, for each scenario. These results show that our template
mining mechanism not only generates complete and correct change templates, but
has potential to perform it in a time of lower magnitude than would be spent by a
skilled human operator, using any off-the-shelf workflow editor.

59

8 CONCLUSION

We have discussed in this thesis some of the benefits of capturing and reusing
IT change knowledge. The lack of a common standard to aid the design of changes,
along with proper tool support to assist this process, makes such knowledge reuse
difficult in practice. To address these issues, we have proposed (i) a conceptual
solution to support the design and planning of IT changes, (ii) the use of change
templates as a mechanism to ease the formalization and reuse of the experience accu-
mulated within organizations in relation to IT changes, and (iii) a mechanism that
enables the capture and reuse of knowledge – through the use of change templates –
from historic data generated during the implementation of past changes in organiza-
tions. Our solution is supported by ChangeLedge, a prototypical implementation
of a change management system.

8.1 Contributions of this Thesis

The main novel contributions of our work are fourfold. First, we have intro-
duced request and plan templates as a mechanism to formalize, preserve, and reuse
knowledge acquired by change managers and operators in the conduction of changes.
Operations such as association, composition, generalization, and specialization ex-
pand the potentialities of using templates in the specification of changes. Second, the
template-based mechanism is accompanied by an algorithm that enables the gener-
ation of detailed, actionable workflows aligned to IT resource constraints. Third, we
have tailored the process mining techniques proposed in the literature (MARUSTER
et al., 2002) to the context of IT change management, and proposed a mechanism
to convert process models, discovered from historic data, into change management
templates. The discovered templates, in turn, enable the reuse of past change pro-
cesses in a broader range of scenarios, having settings diverse of the original process.
Fourth, in order to support the reuse of knowledge through templates, the auto-
mated refinement of change plans, and the discovery of change templates from his-
toric data, we have introduced an end-to-end solution, supported by a real system,
to allow planning and implementation of IT changes to be designed and executed.

The results obtained are quite positive. The use of request and plan templates
showed to be flexible to allow the design of RFCs and (different levels of) preliminary
change plans, for several types of IT changes. The possibility of associating, com-
posing, specializing, and generalizing templates provides the change operators with
a powerful mechanism to structure knowledge that otherwise would remain with
individuals. In addition, the automated refinement of preliminary change plans (de-
signed by human operators) into actionable workflows ran on the order of hundreds

60

of milliseconds to dozens of seconds and has resulted in highly detailed change plans.
The generated plans have respected the restrictions imposed by the target environ-
ment (e.g., memory and disk space constraints), and included aspects not explored in
previous investigations (e.g., activities that involve human operators). Furthermore,
the discovery of change templates from execution traces has showed to be feasible,
yielding the generation of templates – also on the order of hundreds of milliseconds
to dozens of seconds – that capture the nuances of the changes implemented by the
original plans.

8.2 Considerations on the Proposed Solution

In this section, we provide a critical analysis of the proposed solution, highlight-
ing the relationship with other concepts, scope, and applicability.

ChangeLedge comprises a workflow of ordered steps (change design, planning,
execution, etc.), with documents or data being coordinately passed from one partic-
ipant (a person or a software component) to another. Therefore, from this point of
view, we can state that our solution implements sort of a business logic. However,
this “logic” is not exclusive to an organization, but general, since it is aligned to the
best practices and processes defined by ITIL.

On the other hand, looking at our solution from a systems’ perspective, it is im-
portant to mention that ChangeLedge process information received from change
managers, IT operators, and IT related repositories. This is another facet of the
basic business logic present in our solution, in order to ensure that the documents
produced along the change design process are consistent. Apart from that, the au-
tomated refinement of RFCs into detailed change plans and the deployment of the
changes are not subject to business rules and consistencies.

It is also important to highlight that ChangeLedge provides an end-to-end
solution for the conduction of IT changes, from the early design to the deployment
and evaluation of the achieved results. However, it does not support any means
for understanding the several aspects involved in the changes to be performed (e.g.,
why are they needed, which strategies to use, etc.). Therefore, ChangeLedge does
not indicate suitable methodologies to conduct the requested changes, considering
any identified aspects and trade-offs, following the same line of systems thinking
(BOARDMAN; SAUSER, 2008) and systems-of-systems methodology (JACKSON;
KEYS, 1984).

In regard to the scope of our solution, it is targeted at the design, planning,
and deployment of changes. Therefore, other phases that comprise the traditional
change management process, e.g., assessment, testing, authorization, and schedule,
are envisaged as directions and trends for long-term, future investigation in this area.
As for the execution of the resulting actionable workflows and the interface necessary
in the CIs for their remote manipulation, these issues have been subject of another
work by our research group and, for this reason, have not been presented here. The
interested reader may refer to Machado et al. (2008) for additional information.

Now focusing on the template mining functionality of our solution, it is impor-
tant to mention that the change templates extracted with our mechanism are not
influenced by traces that describe changes that have failed. Since these traces differ
significantly from the traces that describe successful changes, the events registered
by them (e.g., direct and indirect succession between activities) are regarded as noise

61

(MEDEIROS et al., 2004). As a consequence, they become statistically irrelevant
to the template mining process.

Another important aspect worth discussing is the applicability of our solution.
Since our solution aims to be aligned to the set of best practices and processes rec-
ommended by ITIL, it may be applied for management of Information Technology
assets in the several levels of an organization, i.e., from switches, routers, and data
links, to services and distributed applications. Furthermore, our solution has the
potential to fit adequately in several contexts, from small to large organizations,
observed the adherence of their respective management practices to ITIL’s recom-
mendations.

8.3 Research Avenues for Future Investigations

Despite the progresses achieved and ongoing investigations, and in addition to
the long-term research topics enumerated in Section 8.2, there are several other
research opportunities in the field of IT change management that merit attention.
Considering a short-term research agenda, we intend to investigate decision support
mechanisms to help operators understand the trade-offs between alternative change
designs. Moreover, since our problem of IT change design concerns the realization
of sequences of activities from a description of the goal and an initial state of the
IT environment, we plan to explore how IT change design can take advantage of
Artificial Intelligence (AI) planning techniques (NAU et al., 2003).

As a simplification assumption, we have considered and/or branches/joins as
not being influenced by environmental data. We intend to address this issue by in-
corporating decision mining techniques (ROZINAT; AALST, 2006) to our template
mining mechanism, in order to generate change templates composed of decision
structures that take into account these data. Finally, we plan to (i) evaluate our so-
lution taking into consideration real-life data (e.g., mining change logs generated by
Opsware (OPSWARE, 2008)), (ii) further investigate the sensitivity of the template
mining process to the number and nature of the traces available, and the complexity
of changes available in execution logs, and (iii) deal with the problem of conflicts
(in terms of goals, resource access, etc.) between changes designed, planned, and
deployed in parallel.

62

REFERENCES

ACTIVEENDPOINTS. ActiveBPEL for SOA Orquestration. Available
at: <http://www.activebpel.org>. Visited on: May 2007.

BOARDMAN, J.; SAUSER, B. Systems Thinking: coping with 21st century
problems. Boca Raton, USA: CRC Press, 2008.

BON, J. V.; JONG, A. de et al. IT Service Management - An Introduction.
Zaltbommel, NL: Zaltbommel : Van Haran Publishing, 2007.

CODEHAUS. The Streaming API for XML (StAX). Available
at: <http://stax.codehaus.org>. Visited on: Jun. 2007.

CORDEIRO, W.; MACHADO, G.; ANDREIS, F.; SANTOS, A.; BOTH, C.;
GASPARY, L.; GRANVILLE, L.; BARTOLINI, C.; TRASTOUR, D. A Run-
time Constraint-Aware Solution for Automated Refinement of IT Change Plans.
In: IFIP/IEEE INTERNATIONAL WORKSHOP ON DISTRIBUTED SYSTEMS:
OPERATIONS AND MANAGEMENT, DSOM, 19., 2008, Samos Island, Greece.
Managing Large Scale Service Deployment: proceedings. . . Berlin: Springer,
2008. p.69–82.

CORDEIRO, W.; MACHADO, G.; ANDREIS, F.; SANTOS, A.; BOTH, C.;
GASPARY, L.; GRANVILLE, L.; BARTOLINI, C.; TRASTOUR, D. ChangeM-
iner: a solution for discovering it change templates from past execution traces. In:
IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK
MANAGEMENT, IM, 11., 2009, New York, USA. Proceedings. . . Piscataway:
IEEE Operations Center, 2009. p.1–8.

CORDEIRO, W.; MACHADO, G.; DAITX, F.; BOTH, C.; GASPARY, L.;
GRANVILLE, L.; SAIKOSKI, K.; SAHAI, A.; BARTOLINI, C.; TRASTOUR,
D. A Template-based Solution to Support Knowledge Reuse in IT Change Design.
In: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM,
NOMS, 11., 2008, Salvador, Brazil. Proceedings. . . Piscataway: IEEE Operations
Center, 2008. p.355–362.

CORMEN, T. H. et al. Introduction to Algorithms. Cambridge, USA: The Mas-
sachusetts Institute of Technology Press, 2001.

DMTF. Common Information Model. Available
at: <http://www.dmtf.org/standards/cim>. Visited on: Apr. 2007.

63

DUMITRAS, T. et al. Ecotopia: an ecological framework for change management
in distributed systems. In: WORKSHOP ON ARCHITECTING DEPENDABLE
SYSTEMS, WADS, 6., 2007, Edinburgh, Scotland. Architecting Dependable
Systems IV: proceedings. . . Berlin: Springer, 2007. p.262–286. (Lecture Notes in
Computer Science, v.4615).

FINK, R. Modelling and Assisting the Design of IT Changes. 2009. Dis-
sertação (Mestrado em Ciência da Computação) — Institut für Informatik, Der
Ludwig-Maximilians-Universität, München, Germany.

GRANITEDS. Granite Data Services. Available
at: <http://www.graniteds.org>. Visited on: Aug. 2007.

ISACA. Control Objectives for Information and related Technologies (CO-
BIT). Available at: <http://www.isaca.org/cobit>. Visited on: May 2008.

JACKSON, M.; KEYS, P. Towards a System of Systems Methodologies. Journal
of the Operational Research Society, [S.l.], v.35, p.473–486, 1984.

KELLER, A. Automating the Change Management Process with Electronic Con-
tracts. In: IEEE INTERNATIONAL CONFERENCE ON E-COMMERCE TECH-
NOLOGY WORKSHOPS, CECW, 7., 2005, München, Germany. Proceedings. . .
Piscataway: IEEE Operations Center, 2005. p.99–107.

KELLER, A. et al. The CHAMPS System: change management with planning and
scheduling. In: IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT
SYMPOSIUM, NOMS, 9., 2004, Seoul, Korea. Proceedings. . . Piscataway: IEEE
Operations Center, 2004. p.395–408.

LACY, S.; MACFARLANE, I. ITIL Service Transition Version 3.0. London,
UK: The Stationery Office, 2007.

MACHADO, G.; CORDEIRO, W.; DAITX, F.; BOTH, C.; GASPARY, L.;
GRANVILLE, L.; SAIKOSKI, K.; SAHAI, A.; BARTOLINI, C.; TRASTOUR,
D. Enabling Rollback Support in IT Change Management Systems. In: IEEE/IFIP
NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS, 11.,
2008, Salvador, Brazil. Proceedings. . . Piscataway: IEEE Operations Center,
2008. p.347–354.

MARIN, M.; NORIN, R.; SHAPIRO, R. Workflow Process Definition In-
terface – XML Process Definition Language. [S.l.: s.n.], 2008. Available
at: <http://www.wfmc.org>. Visited on: Oct. 2008.

MARUSTER, L. et al. Process Mining: discovering direct successors in process logs.
In: INTERNATIONAL CONFERENCE ON DISCOVERY SCIENCE, DS, 5., 2002,
Lübeck, Germany. Proceedings. . . Berlin: Springer-Verlag, 2002. p.364–373.

MEDEIROS, A. K. A. de et al. Process Mining: extending the alpha-
algorithm to mine short loops. Eindhoven, The Netherlands: [s.n.], 2004. Avail-
able at: <http://prom.win.tue.nl/research/wiki/publications/medeiros2004>. Vis-
ited on: May. 2008.

64

NAU, D. S. et al. SHOP2: an htn planning system. Journal of Artificial Intelli-
gence Research, [S.l.], v.20, p.379–404, 2003.

OASIS. Business Process Execution Language, Version 2.0. Available
at: <http://docs.oasis-open.org/wsbpel/2.0>. Visited on: May 2007.

OGC. Information Technology Infrastructure Library (ITIL). Available
at: <http://www.itil-officialsite.com>. Visited on: May 2008.

OPSWARE. Opsware Data Center Automation Platform. Available
at: <http://www.opsware.com>. Visited on: Jun. 2008.

REBOUCAS, R. et al. A Decision Support Tool to Optimize Scheduling of IT
Changes. In: IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED
NETWORK MANAGEMENT, IM, 10., 2007, München, Germany. Proceedings. . .
Piscataway: IEEE Operations Center, 2007. p.343–352.

REDHAT. Hibernate: relational persistence for java and .net. Available
at: <http://www.hibernate.org>. Visited on: Jun. 2007.

ROZINAT, A.; AALST, W. van der. Decision Mining in ProM. In: INTERNA-
TIONAL CONFERENCE ON BUSINESS PROCESS MANAGEMENT, BPM, 4.,
2006, Vienna, Austria. Proceedings. . . [S.l.]: Springer, 2006. p.420–425.

ROZINAT, A. et al. Discovering colored Petri nets from event logs. International
Journal on Software Tools for Technology Transfer, Berlin, Heidelberg, v.10,
n.1, p.57–74, 2007.

SAUVÉ, J. P. et al. On the Risk Exposure and Priority Determination of Changes
in IT Service Management. In: IFIP/IEEE INTERNATIONAL WORKSHOP ON
DISTRIBUTED SYSTEMS: OPERATIONS AND MANAGEMENT, DSOM, 18.,
2007, San Jose, CA. Managing Virtualization of Networks and Services: pro-
ceedings. . . Berlin: Springer, 2007. p.147–158. (Lecture Notes in Computer Science,
v.4785).

SHANKAR, C. et al. Specification-Enhanced Policies for Automated Management
of Changes in IT Systems. In: LARGE INSTALLATION SYSTEM ADMINIS-
TRATION CONFERENCE, LISA, 20., 2006, Washington, USA. Proceedings. . .
Berkeley: CA: USENIX Association, 2006. p.103–118.

TRASTOUR, D. et al. Activity-Based Scheduling of IT Changes. In: INTERNA-
TIONAL CONFERENCE ON AUTONOMOUS INFRASTRUCTURE, MANAGE-
MENT AND SECURITY, AIMS, 1., 2007, Oslo, Norway. Inter-Domain Manage-
ment: proceedings. . . Berlin: Springer, 2007. p.73–84. (Lecture Notes in Computer
Science, v.4543).

65

APPENDIX A RESUMO ESTENDIDO DA DISSER-

TAÇÃO

O uso e a importância de sistemas em rede e distribúıdos para apoiar as ativi-
dades de negócio das organizações tem aumentado de forma significativa recente-
mente. Esse cenário tornou imperativo o uso de abordagens efetivas para a gerência
desses sistemas (também chamados de sistemas de Tecnologia da Informação – TI
nesta dissertação) de forma adequada e eficiente. A Biblioteca de Infraestrutura
de Tecnologia da Informação (Information Technology Infrastructure Library, ITIL)
(OGC, 2008) se tornou, nesse contexto, um dos conjuntos mais aceitos e adotados
de boas práticas e processos para a implantação e gerência de serviços de TI (RE-
BOUCAS et al., 2007), possuindo uma importância especial para as organizações
que possuem serviços dinâmicos, de larga escala e em constante evolução.

Para lidar com mudanças em sistemas de TI, frequentemente introduzidas em
resposta às necessidades de negócio, a ITIL define o processo de gerência de mu-
danças (change management) (LACY; MACFARLANE, 2007). Esse processo tem
por objetivo maximizar o valor que mudanças adicionam aos negócios, através da
minimização de ocorrência dos incidentes relacionados à mudanças e disrupção no
provisionamento de serviços. Para este fim, a gerência de mudanças recomenda o
uso de métodos e procedimentos padronizados para lidar com mudanças.

Conforme descrito no livro Suporte a Serviços da ITIL (ITIL Service Transition
book) (LACY; MACFARLANE, 2007), a gerência de mudanças compreende desde
a especificação de documentos chamados Requisições de Mudança (Requests For
Change, RFC), por um solicitante da mudança (change initiator), até a geração,
quer seja por um operador de TI (IT operator) ou automatizada, de planos de mu-
dança executáveis (actionable change plans). As RFCs, tipicamente solicitadas por
usuários de negócios, expressam as mudanças requisitadas em um alto ńıvel de abs-
tração (por exemplo, Implantar Novo Serviço de Comércio Eletrônico e Aumentar
a Capacidade do Enlace de Dados). Planos de mudança executáveis, por sua vez,
são workflows que compreendem ações de baixo ńıvel (por exemplo, instalação de
software, manipulação de tabelas de roteamento e modificações em configurações) a
serem implantadas na infra-estrutura de TI gerenciada. Se executados, esses planos
de mudança executáveis (também chamados de workflows executáveis nesta dis-
sertação) devem implantar as mudanças requisitadas. As fases subsequentes de um
processo de gerência de mudanças tradicional são a avaliação, o teste, a autorização,
o agendamento, a implantação, e o registro das ações executadas na Base de Dados
de Gerência de Configuração (Configuration Management Database, CMDB).

Para alcançar os objetivos da gerência de mudança previamente mencionados, é

66

de fundamental importância reutilizar a experiência adquirida com mudanças pas-
sadas no projeto de requisições futuras. A ITIL sugere o uso de modelos de mudança
(change models) como uma forma para permitir o reuso de tal experiência em mu-
danças recorrentes e similares. Idealmente, a criação desses modelos pode ser con-
cretizada considerando duas abordagens distintas. Em uma abordagem top-down,
operadores de TI podem projetar os modelos manualmente, com base no conhe-
cimento adquirido no passado. Em uma perspectiva alternativa, bottom-up, esses
modelos poderiam ser extráıdos a partir de traços de mudanças passadas obtidos
com orquestradores de mudanças (ou com qualquer orquestrador de workflows de
propósito geral).

Na prática, no entanto, as RFCs e os planos de mudança têm sido geralmente
descritos e documentados de forma ad hoc (REBOUCAS et al., 2007), na qual
a linguagem natural é frequentemente empregada para expressar o quê, por quê,
quando, onde e como as mudanças devem ser executadas. A falta de um padrão
comum amplamente aceito e adotado por usuários de negócio e operadores de TI
para apoiar o projeto de mudanças leva, por exemplo, a documentos especificados
ou com excesso de detalhamento ou com informações insuficientes, e à interpretações
errôneas dos documentos relacionados a mudanças produzidos. Mais importante –
e o foco da investigação apresentada nesta dissertação – isso impede que o conheci-
mento possúıdo/adquirido pelo pessoal responsável pela especificação, planejamento
e condução de mudanças seja reutilizado em requisições recorrentes e similares.

São destacadas duas motivações que justificam a importância de reutilizar a
experiência dos operadores na implantação de mudanças em TI. Primeiro, à me-
dida que planos de mudança são recorrentemente instanciados, eles se tornam mais
estáveis e, portanto, o uso dos mesmos pode resultar em menos incidentes (na exe-
cução de mudanças). Segundo, o tempo consumido na especificação e planejamento
de mudanças tende a ser reduzido, dado que as mesmas raramente serão geradas
“do ińıcio”.

Desde a concepção da ITIL, tem havido pesquisa substancial em questões rela-
cionadas à gerência de mudanças em TI. Por exemplo, passos importantes têm sido
dados em direção à exploração de oportunidade de paralelismo na execução de planos
de mudança (KELLER et al., 2004), otimização de ambos o agendamento de mu-
danças em janelas de manutenção e a atribuição de técnicos para executá-las (TRAS-
TOUR et al., 2007), e na obtenção de agendamentos de mudanças que satisfaçam a
objetivos/restrições de negócios (REBOUCAS et al., 2007). No entanto, apesar dos
potenciais benef́ıcios de se reusar o conhecimento oriundo de mudanças em TI, este
tópico tem sido pouco abordado em investigações passadas (KELLER et al., 2004;
LACY; MACFARLANE, 2007; KELLER, 2005).

Para lidar com essa lacuna, nesta dissertação é proposta uma solução, baseada
nas recomendações para a gerência de mudanças proposta pela ITIL, para apoiar o
projeto e planejamento de mudanças em sistemas de TI. As contribuições desta dis-
sertação se desdobram em quatro. Primeiro, é introduzido o conceito de templates
de mudança como um mecanismo para formalizar, preservar e reusar a experiência
acumulada nas organizações em relação a mudanças em TI. Esses templates podem
existir em ńıveis de abstração diferentes de um sistema de gerenciamento de mu-
danças. São caracterizados os templates de requisição os utilizados pelo solicitante
da mudança para especificar RFCs. De forma complementar, templates de plano
compreendem atividades de alto ńıvel requeridas para satisfazer os objetivos da

67

RFC. Segundo, é proposto um algoritmo para o refinamento automatizado de ativi-
dades em alto ńıvel, presentes em templates de plano, em atividades de mais baixo
ńıvel, de modo a produzir planos de mudança detalhados e executáveis. O algoritmo
proposto foca no impacto que as ações precedentes já computadas causarão na infra-
estrutura de TI, ao computar as ações subsequentes. Como consequência, os planos
de mudança executáveis gerados utilizando o algoritmo proposto estarão “cientes”
das limitações, em tempo de execução, impostas pelo ambiente de TI alvo da mu-
dança(ex., limitações de espaço em disco e memória). Terceiro, é apresentado um
mecanismo, inspirado em técnicas de mineração de processos (MARUSTER et al.,
2002), para extrair templates de mudança a partir de traços de execuções gerados
por orquestradores de mudanças. Em contraste com as técnicas de mineração de
workflows já estabelecidas, o mecanismo proposto concentra-se na obtenção de tem-
plates que capturam a essência dos processos de mudança previamente executados.
Os templates extráıdos, por sua vez, permitem o reuso e aplicabilidade de tais pro-
cessos em cenários com configurações diversas em relação ao cenário original (ex.,
relacionamentos de dependência diferentes entre os componentes de TI afetados, ou
requisitos de sistema espećıficos). E quarto, para apoiar o reuso de conhecimento
por intermédio de templates, o refinamento automatizado de planos de mudança,
e a extração de templates de mudança a partir de dados históricos, é introduzida
uma solução fim-a-fim, apoiada por um sistema real, para permitir o planejamento
e implantação de mudanças em TI.

O uso de templates de mudança, o refinamento de planos preliminares em work-
flows executáveis e a extração de templates a partir de traços de execuções foram
avaliados por meio de uma implementação protot́ıpica de um sistema de gerência de
mudanças chamado ChangeLedge. Além de permitir o projeto (manual), a ex-
tração (automatizada) e o (re)uso de templates na especificação de novos documentos
de mudança, o sistema é capaz de computar planos de mudança executáveis a partir
da correlação de RFCs instanciadas/planos de mudança elaborados com informações
de dependências dispońıveis em repositórios relacionados à TI. Os planos executáveis
resultantes podem ser, por sua vez, trivialmente traduzidos em uma linguagem de
workflow e executados por qualquer sistema de implantação de mudanças. Para
provar conceito e viabilidade técnica da solução proposta, foram conduzidos vários
experimentos para explorar as potencialidades do emprego de templates como um
mecanismo para preservar e reusar o expertise adquirido com mudanças em TI.

A.1 Contribuições

As principais contribuições apresentadas nesta dissertação se desdobram em qua-
tro. Primeiro, foram introduzidos os templates de requisição e de plano como um
mecanismo para formalizar, preservar e reusar o conhecimento adquirido por ge-
rentes e operadores de TI na condução de mudanças. As operações de associação,
composição, generalização e especialização expandem as potencialidades do uso de
templates na especificação de mudanças. Segundo, o mecanismo de templates é
acompanhado por um algoritmo que permite a geração de workflows detalhados,
executáveis e alinhados com as limitações de recursos de TI. Terceiro, as técnicas
de mineração de processos propostas na literatura (MARUSTER et al., 2002) foram
adaptadas ao contexto da gerência de mudanças em TI, e foi proposto um mecanis-
mo para converter modelos de processos, extráıdos a partir de dados históricos, em

68

templates de mudança. Os templates extráıdos, por sua vez, permitem o reuso de
processos de mudança executados no passado em uma ampla variedade de cenários,
com configurações diversas em relação às do processo original. Quarto, com o ob-
jetivo de apoiar o reuso de conhecimento por meio de templates, o refinamento
automatizado de planos de mudança, e a extração de templates de mudança a partir
de dados históricos, foi apresentada uma solução fim-a-fim, apoiada por sistema,
para permitir o planejamento e implantação de mudanças em TI.

Os resultados obtidos são bastante positivos. O uso de templates de requisição e
de plano mostrou-se flex́ıvel para permitir o projeto de RFCs e planos de mudança
preliminares (em ńıveis diferentes de granularidade), para vários tipos de mudanças
em TI. A possibilidade de associar, compor, especializar e generalizar templates
proporciona aos operadores de TI um mecanismo poderoso para estruturar o co-
nhecimento que, de outra forma, permaneceria com os indiv́ıduos. Além disso, o
refinamento automatizado de planos de mudança preliminares (projetados por ope-
radores humanos) em workflows executáveis foi realizado na ordem de centenas de
milissegundos a dezenas de segundos, e resultou em planos de mudança altamente
detalhados. Os planos gerados respeitaram às restrições impostas pelo ambiente
alvo (ex., limitações de memória e de espaço em disco), e inclúıram aspectos não
explorados em investigações anteriores (ex., atividades que envolviam operadores
humanos). Por fim, a extração de templates de mudança a partir de traços de exe-
cuções se mostrou viável, levando à geração de templates – também na ordem de
centenas de milissegundos a dezenas de segundos – que capturam as nuances das
mudanças implantadas pelos planos originais.

A.2 Considerações sobre a Solução Proposta

O sistema ChangeLedge compreende um workflow de passos ordenados (pro-
jeto de mudança, planejamento, execução, etc.), com documentos ou dados sendo
transmitidos de forma coordenada de um participante (uma pessoa ou um compo-
nente de software) para outro. Portanto, considerando esse ponto de vista, é posśıvel
afirmar que a solução proposta implementa uma forma de lógica de negócio. No en-
tanto, essa “lógica” não é exclusiva de uma organização, porém geral, uma vez que
está alinhada com as boas práticas e processos definidas pela ITIL.

Por outro lado, olhando para a solução proposta em uma perspectiva de sistema,
é importante mencionar que o ChangeLedge processa informações recebidas de
gerentes de mudança, operadores e de repositórios relacionados à TI. Essa é outra
face da lógica de negócio básica presente na solução, com o objetivo de garantir
que os documentos produzidos ao longo do processo de projeto de mudanças são
consistentes. Apesar disso, o refinamento automatizado de RFCs em planos de
mudança detalhados e a implantação das mudanças não estão sujeitas a regras de
negócio e consistências.

É importante destacar também que o ChangeLedge proporciona uma solução
fim-a-fim para a condução de mudanças em TI, desde o projeto até a implantação
e avaliação dos resultados alcançados. No entanto, o mesmo não oferece apoio de
qualquer natureza para o entendimento dos vários aspectos relacionados com as mu-
danças a serem conduzidas (ex., por quê são necessárias, quais estratégias utilizar,
etc.). Portanto, o ChangeLedge não indica metodologias adequadas para con-
duzir as mudanças requisitadas, considerando e identificando aspectos e trade-offs,

69

seguindo a mesma linha de dinâmica de sistemas (systems thinking) (BOARDMAN;
SAUSER, 2008) e systems-of-systems methodology (JACKSON; KEYS, 1984).

Em relação ao escopo da solução proposta, ele compreende o projeto, planeja-
mento, e implantação de mudanças. Logo, outras fases que compõem um processo
tradicional de gerência de mudanças, ex., avaliação, teste, autorização e agenda-
mento, são tratadas como direções e tendências para investigação de longo prazo
nessa área. Sobre a implantação das mudanças descritas nos workflows executáveis
gerados pelo sistema e a interface necessária nos Itens de Configuração (Configu-
ration Items – CIs) para sua manipulação remota, esses têm sido abordados em
outros trabalhos conduzidos por este grupo de pesquisa e, por esta razão, não são
apresentados nesta dissertação. O leitor interessado pode referir-se a Machado et
al. (2008) para informações adicionais.

Agora olhando para a funcionalidade de extração de templates da solução pro-
posta, é importante mencionar que os templates gerados pelo mecanismo apresen-
tado nesta dissertação não são influenciados por traços que descrevem mudanças
que falharam. Uma vez que tais traços diferem significativamente dos traços que
descrevem mudanças executadas com sucesso, os eventos registrados pelos mesmos
(ex., sucessão direta e indireta entre as atividades) são considerados como rúıdos
(MEDEIROS et al., 2004). Consequentemente, esses tornam-se estatisticamente
irrelevantes para o processo de extração de templates de mudança.

Outro aspecto importante que merece discussão é a aplicabilidade da solução
proposta. Dado que a solução visa estar alinhada com o conjunto de boas práticas e
procesos recomendados pela ITIL, ela pode ser aplicada para a gerência de recursos
de tecnologia da informação nos vários ńıveis de uma organização , i.e., de switches,
roteadores e enlaces de dados, até serviços e aplicações distribúıdas. Mais ainda, a
solução proposta tem potencial para encaixar-se adequadamente em diversos contex-
tos, de pequenas a grandes organizações, desde que as mesmas observem a aderência
de suas práticas de gerência com as recomendações da ITIL.

A.3 Trabalhos Futuros

Apesar dos progressos alcançados e das investigações em andamento, e somando-
se aos tópicos de pesquisa de longo prazo enumerados na Seção A.2, há várias
outras oportunidades de pesquisa no campo de gerência de mudanças em TI que
merecem atenção. Considerando uma agenda de pesquisa de curto prazo, tem-se
como objetivo investigar mecanismos de suporte à decisão que ajudem operadores a
entender os trade-offs entre projetos de mudança alternativos. Além disso, uma vez
que o problema do projeto de mudanças em TI está relacionado com a materialização
de uma sequência de atividades a partir de uma descrição dos estados inicial e final
do ambiente de TI, pretende-se explorar como o projeto de mudanças em TI pode
tirar proveito de técnicas de Inteligência Artificial (IA) (NAU et al., 2003).

Como premissa simplificatória, foi considerado que os and/or branches/joins
presentes nos workflows não são influenciados por dados do ambiente no qual o
mesmo é executado. Essa questão deverá ser abordada por meio da incorporação
de técnicas de mineração de decisões (ROZINAT; AALST, 2006) ao mecanismo de
mineração de templates, com o objetivo de gerar templates de mudança compostos
de estruturas de decisão que levem em consideração tais dados. Por fim, pretende-se
(i) avaliar a solução proposta nesta dissertação levando em consideração traços de

70

execuções reais (ex., a mineração de traços históricos gerados pelo Opsware (OP-
SWARE, 2008)), (ii) investigar a sensitividade do processo de mineração de tem-
plates em relação ao número de traços dispońıveis e à complexidade das mudanças
dispońıveis em tais traços, e (iii) abordar o problema de conflitos (em termos de ob-
jetivos, acesso a recursos, etc.) entre mudanças projetadas, planejadas, e executadas
em paralelo.

71

APPENDIX B PUBLISHED PAPER – NOMS 2008

In this attachment we present the paper entitled “A Template-based Solution to
Support Knowledge Reuse in IT Change Design”, one of the deliverables of the work
described in this thesis. The paper introduces the concept of templates in the context
of IT change management. Furthermore, the paper depicts the conceptual solution
to allow planning and implementation of IT changes to be, respectively, designed
and executed. Finally, the paper presents the results obtained with the experimental
evaluation using the ChangeLedge system, showing the technical feasibility of the
use of change templates to promote the reuse of knowledge acquired from previous
changes.

• Title: A Template-based Solution to Support Knowledge Reuse in IT Change
Design

• Conference: IEEE/IFIP Network Operations and Management Symposium
(NOMS 08)

• URL: http://www2.dcc.ufmg.br/eventos/noms2008/

• Date: 7-11 April 2008

• Venue: Pestana Bahia Hotel, Salvador, Brazil

72

 Abstract– Capturing and reusing the experience of operators

in implementing IT changes is an important aspect of IT service

management, as it may result in fewer incidents (upon change

execution) and faster specification of change plans, to mention

just a few potential advantages. Nevertheless, in practice, changes

are usually described and documented in an ad hoc fashion, due

to the lack of proper support to assist the design process. This

hampers knowledge acquired when specifying, planning, and

carrying out previous changes to be reused in subsequent

requests. In order to address this issue, we propose the use of

change templates as a mechanism to formalize, preserve, and

reuse the experience accumulated within organizations in

relation to IT changes. Our solution is analyzed through a

prototypical implementation of a change management system

and a case study based on a real-life scenario.

I. INTRODUCTION

The Information Technology Infrastructure Library (ITIL)

has become, in the recent past, one of the most important

references for Information Technology (IT) infrastructure

management [1]. ITIL is composed of a set of best practices

and processes that spread from service strategy to service

operation. Among these processes, change management plays

an important role in the efficient and prompt handling of IT

changes [2].

Change management, as described in the ITIL Service

Support book [3], defines that changes required to be executed

over the managed IT infrastructure should be specified in

documents called Requests for Change (RFC). RFCs are then

supposed to be processed, either manually or automatically,

for the generation of change plans. A change plan consists of

a workflow of actions that, when executed, will move the

managed system from the current workable state into another

workable state.

In practice, RFCs and change plans are traditionally

modeled in an ad hoc fashion [4], where natural language is

often employed to express what, why, when, where, and how

changes should be executed. The lack of a common standard

widely accepted and adopted by IT practitioners to assist this

process often leads, for example, to documents with either too

much or not enough information than actually required and to

erroneous interpretation of the produced change-related

documents. More important than that and the focus of our

investigation it hampers knowledge owned/acquired by the

personnel responsible for specifying, planning, and carrying

out changes to be reused in recurrent or similar requests.

We highlight two reasons that justify the importance of

reusing the experience of operators in the implementation of

IT changes. First, as change plans are recurrently instantiated,

they become more stable and, therefore, their use may result in

fewer incidents (upon change execution). Second, the time

consumed by the IT personnel in the specification and

planning of changes tends to be reduced, given that they will

seldom be generated “from scratch”.

Since the inception of ITIL, there has been substantial

research on IT change management issues. For example,

important steps have been taken towards automated planning

and scheduling of change plans [2], policy definition for event

reaction in IT systems [5], and business-driven change

schedule optimization [4]. However, despite the potential

benefits of reusing knowledge behind IT changes, this topic

has been barely addressed in previous investigations [2, 3, 6]

(this will be further discussed in Section II).

To bridge this gap, in this paper we propose the use of

change templates as a mechanism to formalize, preserve, and

reuse the experience accumulated within organizations in

relation to IT changes. These templates may exist at different

abstraction levels of a change management system. We

characterize request templates as those used by the change

requester to specify RFC documents. In contrast, plan

templates comprise activities, which represent large-grained

steps required to accomplish the RFC objectives. These

activities may need to be iteratively refined into finer-grained

ones in order to produce detailed, actionable change plans

(also called actionable workflows throughout this paper).

Our solution has been evaluated through a prototypical

implementation of a change management system called

CHANGELEDGE. In addition to allowing templates to be

designed and (re)used in the specification of new change

documents, the system is able to compute actionable change

A Template-based Solution to Support

Knowledge Reuse in IT Change Design

Weverton Luis da Costa Cordeiro,
Guilherme Sperb Machado, Fábio Fabian Daitx,

Cristiano Bonato Both, Luciano Paschoal Gaspary,

Lisandro Zambenedetti Granville
Institute of Informatics

Federal University of Rio Grande do Sul, Brazil
{weverton.cordeiro, gsmachado, ffdaitx,

cbboth, paschoal, granville}@inf.ufrgs.br

Akhil Sahai
1
, Claudio Bartolini

1
,

David Trastour
2
, Katia Saikoski

3

1
HP Laboratories Palo Alto, USA

2
HP Laboratories Bristol, UK

3
HP Brazil R&D, Brazil

{akhil.sahai, claudio.bartolini,

david.trastour, katia.saikoski}@hp.com

978-1-4244-2066-7/08/$25.00 ©2008 IEEE 355

73

plans by correlating instantiated RFCs/sketched plans with

dependency information available in IT-related repositories.

The resulting actionable workflows can, in turn, be

straightforwardly translated into a workflow language and

executed by any off-the-shelf deployment system. To prove

concept and technical feasibility of our proposed solution, we

have also conducted a case study to explore the potentialities

of employing templates as a resource for preserving and

reusing the expertise acquired with IT changes.

The remainder of this paper is organized as follows. Section

II discusses related work on IT change management. Section

III introduces our conceptual solution. Section IV details how

the concept of templates is tailored to knowledge reuse in the

context of IT change management. Section V emphasizes

implementation aspects of CHANGELEDGE and presents the

results achieved with the case study. Section VI concludes the

paper with remarks and perspectives for future work.

II. RELATED WORK

In recent years, several research efforts on IT change

management have been carried out within the operations and

management community. In this section, we cover some of the

most prominent investigations.

The ITIL Service Support book [3] recommends the use of

change models to both define a library of recurrent changes

and foresee the impact associated to them, once performed.

However, since ITIL concentrates on documenting generally

applicable industry best practices, it is out of its scope to

propose how to materialize such models. In spite of this, ITIL

represents a common ground upon which our solution is built.

Keller et al. [2] have proposed CHAMPS, a system for

automating the generation of change plans that explore a high

degree of parallelism. The topic of knowledge reuse was not

the focus of this work. Even though the system enables some

degree of reuse through abstract workflows, the scope of the

reuse is limited. That is so because these workflows cannot be

generalized, once they are tied to a given combination of

software packages. Refinements, on the other hand, are

restricted to “editing/saving as” the already existing

workflows. The lack of specialization/generalization

capabilities hampers knowledge to be better structured and

systematically reused in different future changes.

Aware of the importance of formalizing IT change

documents, Keller [6] has introduced, in a subsequent work,

the concept of electronic contracts. Four types of contracts are

proposed: Requests for Change, Deployment Descriptors,

Policies and Best Practices, and Service Level Agreements

(SLAs). In regards to the specification of RFCs central to

our investigation the author only enumerates the parameters

to be supplied in an RFC, but does not propose a more robust

model to express them.

Other relevant research efforts in the field of IT change

management have been recently published. Shankar et al. [5]

have proposed an enhanced policy-based solution to execute

changes on the IT infrastructure, triggered by the managed

system and not by a human operator, in response to the

occurrence of events. Looking at IT changes from a business

perspective, Rebouças et al. [4] have investigated approaches

for the planning and scheduling of changes aiming at

minimizing costs (e.g., labor costs and financial loss due to

SLA disruption).

There are additional relevant research efforts published in

other fields, e.g. Software Engineering and Knowledge

Management, which explore similar aspects of our work.

Nevertheless, due to space constraints and the fact that they

are not related to IT change management itself, they are not

approached in this paper.

Although change management is a relatively new discipline

in the IT context, the area has been quickly progressing, as

evidenced by the previously mentioned related work.

Nevertheless, little has been done to facilitate change design

and implementation by capturing, organizing, and reusing the

knowledge acquired within IT organizations. In the following

sections we envisage a solution to address these issues.

III. CONCEPTUAL SOLUTION

A conceptual solution is proposed to allow planning and

implementation of IT changes to be designed and executed. In

contrast to previous investigations, our solution focuses on

providing a systematic way to design changes from RFCs to

resulting change plan documents by reusing the knowledge

accumulated in the past. Figure 1 depicts the basis of our

solution, highlighting its main conceptual components,

personnel involved, and their interactions.

Fig. 1. Elements of the proposed solution and interactions.

The Change Requester starts a change process by

interacting with the component Change Designer in order to

specify an RFC (flow 1 in the figure). The Configuration

Management Database (CMDB) provides the change

requester with an updated view of the IT infrastructure (flow

2) so that he/she is able to precisely identify the hardware and

software elements (Configuration Items – CIs) involved in the

desired change. The creation of a new RFC document can be

done “from scratch” or instantiated from a request template

stored in a Change Template repository (3). The intent of a

request template is to specify the set of high level objectives

that must be met by a change. RFC templates will be created

for routine and recurrent changes and will be persisted in the

repository (3).

Change Designer Change Planner Deployment System
 CI

Change

Templates
Config. Mgmt.

Database

(3)

System-Assisted Change Management Process

Operator
Change

Requester

(2) (5) (6)

(10)

(1) (4) (7) (8)

Definitive SW

Library

SW Config.

Repository

(9)

356

74

After an RFC is instantiated, an Operator, who is

responsible for modeling the change procedure, interacts with

the component Change Designer (4), now to sketch a

preliminary change plan. In this stage, the operator specifies

large-grained steps required to fulfill the RFC objectives,

possibly taking advantage of plan templates available in the

Change Templates repository (3). Plan templates encode

composable workflows of change procedures and represent the

knowledge gained from past experience in an IT department.

Such templates are also stored in the Change Template

repository (3). Request templates and plan templates will be

described in more detail in Section IV.

The final refinement of the preliminary change plan into an

actionable workflow is then performed, without human

intervention, by the component Change Planner. This

refinement is computed using a task refiner algorithm, based

on both factual information about the IT infrastructure (5) and

information about acceptable configurations and dependencies

among software packages, available in the Software

Configuration Repository (6). Thereafter, the resulting change

plan can be modified by the operator as to precisely reflect

his/her needs (7) and finally translated to a workflow

language.

In the last step of the change process, the operator may

invoke the actual execution of the workflow by interacting

with an off-the-shelf Deployment System (8). To carry out

some of the actions contained in the workflow, such a system

may consume software packages available in the Definitive

Software Library (9). After executing the change plan, the

deployment system is responsible for updating the CMDB

with the changes performed on every target CI (10).

Having presented a general view of our solution, in the

following subsections we describe in more detail three

important “building blocks” of the proposal: the model for the

management and persistence of IT information, the model to

design change-related documents, and the algorithm to

generate actionable workflows.

A. IT Infrastructure Model

We chose to base our IT Infrastructure Model on a subset of

the Common Information Model (CIM), defined by the

Distributed Management Task Force (DMTF) [7]. It allows

the representation of computing and business entities

comprising an organization, as well as the relationships among

them. Figure 2 shows a partial view of the model. The root

class is ManagedElement. Through specialization, it is

possible to represent any CI (e.g., physical devices, computer

and application systems, and services), as well as IT

personnel. Relationships such as associations, compositions,

and aggregations, most of them omitted in the figure for the

sake of legibility, map the dependencies among the elements

comprising the infrastructure.

The model extends the scope of a traditional CMDB since it

also incorporates classes such as Check and Action, which

represent relevant information required for managing the

lifecycle of CIs (e.g., software upgrade and application system

installation/uninstallation). In Figure 2, we illustrate some

specializations of classes Check and Action for the

manipulation of a Software Element.

Fig. 2. Partial view of the IT infrastructure model.

An instance of class Check defines a condition to be met or

characteristic required by the associated Software Element for

it to evolve to a new state (e.g., deployable, installable,

executable, or running). Possible checks include verification

of software dependencies, available disk space and memory,

and required environment settings. Each instance of class

Action, in its turn, represents an operation of a process to

change the state of the associated Software Element (e.g., from

installable to executable). Examples of actions are invocation

of a software installer/uninstaller, manipulation of files and

directories, and modification of configuration files.

In addition to being used to represent the current IT

infrastructure, the same model is also employed to specify new

hardware and software packages (along with their

dependencies) that may be required throughout a change

process. Our conceptual solution proposes these two uses of

the same information model to be materialized, respectively,

in the CMDB and in the Software Configuration Repository,

as previously presented in Figure 1.

B. Requests for Change & Change Plan Model

Our conceptual solution for template-based change

management includes the proposal of a Requests for Change

& Change Plan Model, to be employed in the design of

change-related documents. The model relies on both (a)

guidelines presented in the ITIL Service Support book [3] in

regards to the change management process and (b) the

workflow process definition, proposed by the Workflow

Management Coalition (WfMC) [8].

Figure 3 presents a partial view of the model. It is structured

in two connected parts. The former (whose background is

highlighted in gray) permits the modeling of an RFC, while

the latter (with white background) provides classes for

expressing the corresponding change plan. Each one is

detailed below.

An RFC (represented by class RFC in the model) is

composed of operations (class Operation) that indicate, in a

high level of abstraction, what changes the requester (class

UserEntity of the IT Infrastructure model) would like to

perform. It is also important to notice that each operation has

an explicit reference to the CIs over which the change

Check

1

EnabledLogical
Element

Software
Element

System

Computer
System

Operating
System

Service

User
Entity

Logical
Element

ManagedSystem
Element

Organizational
Entity

Managed
Element

1

Action

Action

Sequence

SoftwareElement
VersionCheck

Setting
Check

OSVersion
Check

SoftwareElement

Checks

SoftwareElement
Actions

*

*

0..1 0..1

Execute
Program

Reboot
Action

ModifySetting
Action

357

75

operation is supposed to be executed (class ManagedElement).

Among other classes related to an RFC are: ProblemReport

(problem that motivated the change request),

CABRecommendation (RFC impact and resource requirement

assessments), RFCReview (modifications to the RFC after its

creation), and RFCAuthorization (approval of the RFC by a

Change Authority).

Fig. 3. Partial view of the change document model.

Every operation of an RFC has an associated change plan

(class ChangePlan) that consists of a network of activities

(class Activity) and their relationships. These activities may

represent either low-level, actionable tasks (LeafActivity) or

large-grained ones (BlockActivity/SubProcessDefinition),

being the latter subject to further levels of refinement. In

general, an activity manipulates one or more CIs (class

ManagedElement). The class ParticipantSpecification

describes the resources which perform a given activity, for

example a human, a software package, or an automated

machine. Transitions between activities are represented by

instances of the class TransitionInformation, which may be of

type branch (with conditions or not) or join. Finally, the class

RelevantData allows the specification of data consumed and

produced by each activity. We would like to point out that

change plans modeled using the aforementioned classes are

vendor neutral and, therefore, can be easily mapped to any

workflow language, such as the Business Process Execution

Language (BPEL) [9].

C. Generation of Change Plans

As previously mentioned, the refinement of preliminary

change plans into actionable workflows is computed by means

of a task refiner and scheduler. In our first iteration at this

problem, we propose an approach that concentrates on task

refinement. The algorithm is presented in Figure 4 below.

Refine-Operation (var rfc: RFC)

For each rfc.operation do
 for each operation.activity do

 Adt activity dependency tree
 current_set leaf nodes from adt
 while current_set is not empty do
 for each node in current_set do

 add node to activity subprocess

 delete node from adt
 delete node from current_set
 current_set leaf nodes from adt

Fig. 4. Pseudocode for the task refiner algorithm.

The algorithm processes the preliminary change plan

associated to each RFC operation separately, originating

independent actionable workflows. For each large-grained

activity of a change plan, it executes the following steps: (1)

checks dependencies among CIs affected by the activity; (2)

generates new fine-grained activities based on these

dependencies, building an activity dependency tree; and (3)

orders the activities executing a reversal traversal on the tree,

generating an actionable subworkflow.

For the refinement process to be automatically computable,

the large-grained activities must be expressed unambiguously

and understood by the algorithm. To address this issue, the

class Activity introduced in the previous subsection presents an

attribute called description, which is filled in with a sentence

written in accordance to the Activity Modeling Notation

(AMN), proposed in the scope of this research. Table I

enumerates some example activities that can be specified

using AMN.

TABLE I

ACTIVITY MODELING USING AMN
Abstract Activity Abstract Specification

Start a Service start Service <Service> with <Parameters>

Stop a Service stop Service <Service> with <Parameters>

Install a

Software

install SoftwareElement <SoftwareElement> at

ComputerSystem <ComputerSystem> with <Parameters>

Uninstall a
Software

uninstall SoftwareElement <SoftwareElement> from
<ComputerSystem> with <Parameters>

Configure a

Generic
Element

configure ManagedSystemElement

<ManagedSystemElement> at ComputerSystem
<ComputerSystem> using Setting <Setting> with
<Parameters>

For illustration, consider an activity that consists of

installing a Web application X on a computer Y. Its

specification using AMN, according to the previous table, is

install SoftwareElement X at ComputerSystem Y with Z. In

this example, X and Y are references to objects from the

Software Configuration Repository and the CMDB,

respectively. Z is a pointer to an artifact that contains a series

of parameters taken as input by the Web application installer.

The automated refinement of the activity install mentioned

Problem
Report

CAB

RFC
- name: String
- reason: String
- priority: int
- status: int
- type : int

- . . .

User

Entity

RFC
Review

RFC
Authorization

CAB
Recommendation

impact
Assessment

Impact
Assessment

Resource
Assessment

resource
Assessment

problemReport

recommendation

authorizerauthorization

Operation
- name: String
- priority: int
- type: int
- . . .

Relevant
Data

Activity
- number: int
- name: String
- description: String
- . . .

hasRelevantData
Transition

Information

Activity
Set

Managed
Element

participant
Association

*

1
0..1

1
0..1

* 1 *

*1..*0..*

1

1 *

1 0..*

*

performer

1..*

1..* *

* 1

1

* 1

*

Managed
Element

* *

1..*

*

1

*

1

1
1

*

*

* 1 *

1

1

* 1

implementer

*

recommender

newRFC

author

participant

review

author

allRelevantData allActivitySet

allActivity
allTransition

Information

to

from

*

1 participantData

participantSpecification

*

*

Participant
Specification

*

*

*

LeafActivity
Block

Activity
SubProcess

Definition

Classes of the IT Infrastructure model

participant

operation

ChangePlan

changePlan
*

0..1

subRFCDefinition *

0..1

358

76

above is started by looking up pre-requisites (instances of

class Check) to be met and actions (instances of Action) to be

executed to move application X from state installable to state

executable (i.e., an installation procedure). This process is

recursively executed (e.g., for new instances of

SoftwareElement identified as dependencies) until all pre-

requisites are solved. The result of this refinement, as

mentioned earlier, is a subworkflow of actions necessary to

materialize the activity goal.

IV. CHANGE MANAGEMENT TEMPLATES

The conceptual solution presented in the previous section is

the core basis upon which the notion of IT change templates is

built. In this section, we explore it in more detail. Subsection

A characterizes request and plan templates. The association

between such templates, during the design of changes, is

explained in Subsection B. Finally, Subsection C discusses

composition, specialization, and generalization of templates.

A. Request and plan templates

In the context of this work, we define templates as

parameterized building blocks that can be reused in the design

of changes similar to previously executed ones. Explored in

different levels of the change process, they are categorized as

request or plan templates. Each one is detailed below.

A request template, defined by means of the upper part of

the model illustrated in Figure 3, defines a set of prototypical

operations that need to be performed on the IT infrastructure.

The person producing such a template (e.g., change requester

or operator) is free to specify which attributes/references will

have fixed values and which will be left to be provided during

the instantiation of a new RFC. As an example, Figure 5

(background highlighted in gray) presents a request template

to deploy a hosting service in a dedicated server. This template

is composed of two operations: Build Dedicated Web Hosting

Service and Lease Dedicated Data Circuit. In the case of the

first operation, the references what to be installed and where

are defined to be of type Web Application and Computer

System, respectively, thus specifying the type of CIs that may

be affected.

The request template just described could be used, for

example, to instantiate two distinct RFCs: one to install a

J2EE Web application on a RISC computer and one to install

an ASP.NET Web application on a 64-bit computer. For that

to be possible, J2EE and ASP.NET apps should be present in

the Software Configuration Repository (as Web Application

objects), while RISC and 64-bit computers should appear (as

ComputerSystem objects) in the CMDB.

Going down to the level of change plans, plan templates

have a central role in the process of promoting the reuse of the

experience accumulated by operators. Specified using the

classes illustrated in the lower part of Figure 3, these templates

comprise steps necessary to materialize recurrent changes. The

large-grained activities of a plan template are typically loosely

coupled, learned and tuned after a multitude of attempts to

implement the corresponding changes successfully. For this

reason, they are not automatically computable based on

dependency information.

Figure 5 (background in white) depicts an example of a plan

template for the installation of a new server, from scratch, and

a Web application on top of it. Activity 1 consists of building

the new server into Computer System Y. Activity 2 installs the

Web Application X into the newly built server. Next, two

parallel tasks take place: Activity 3, which loads the default

database for use by the Web Application X, and Activity 4,

which configures the users that will have remote access to the

application. Finally, Activity 5 comprises the instructions for

publishing the URL of the Web application in the network's

DNS server. This activity is defined to be executed in a final

step because clients must not have access to the Web

application until it is fully installed and operational.

Fig. 5. Examples of request and plan templates.

B. Association between request and plan templates

Request and plan templates can co-exist independently from

each other. This decoupling is necessary, since, on one hand,

different changes may share similar sets of implementation

procedures, hence similar plan templates, and on the other

hand, there may be more than one valid design for a given

operation.

The association of templates can be done in one of two

ways: (1) gradually, after the instantiation of an RFC (taking

advantage of a request template or not); or (2) at any point in

time before an RFC instantiation. Regardless of the moment of

such associations, they are achieved through the establishment

of a relationship between the classes Operation (at the RFC

level) and ChangePlan (at the change plan level).

When associating templates, the operator must specify the

mapping between attributes/references from the RFC/request

template and variables of the binded plan templates. It is

expected that all attributes and/or references of the former are

linked to one (or more) variable(s) of the latter. Variables of

the plan template not set by this process must be assigned

“values” by the operator in order to produce a consistent and

complete preliminary change plan.

In the example illustrated in Figure 5, one can observe the

association between a request and a plan template. One of the

operations, Build Dedicated Web Hosting Service, has been

has operation

RFC
Name: Deploy Hosting Service
Author: Weverton Cordeiro
Type: Template

what

where

Operation
Name: Build Dedicated Web
Hosting Service
Type: Template

X: WebApp

Y: Computer
System

has change plan

Operation
Name: Lease Dedicated Data
Circuit
Type: Template

Activity
Number: 2
Name: Install
WebApp

Activity
Number: 3
Name: Load
Dababase

Activity
Number: 4
Name:
Configure
Users

Activity
Number: 5
Name:
Configure
DNS

Activity
Number: 1
Name: Build
New Server
Host

359

77

associated to the plan template depicted in the lower part of

the figure (explained in the previous subsection).

C. Composition, specialization, and generalization of
templates

Reuse of knowledge in the context of IT changes is

facilitated through the use of template composition,

specialization, and generalization. These techniques are

introduced next, considering both request and plan templates.

Template composition allows complex changes to be

designed based on the experience formalized and preserved in

previous processes. The basic principle is to use existing

templates as “building blocks” in the design of new change

documents. From the perspective of request templates,

composition is possible, for example, by grouping operations

that have been specified elsewhere in different request

templates. This type of composition is supported by the

association between the classes RFC and Operation of the

model presented in Subsection III.B.

It is in the context of plan templates, though, that

composition can be better taken advantage of. In this case,

large-grained activities found in a plan template can be

materialized by other plan templates, possibly forming a

hierarchy of nested templates. Figure 6 illustrates a template

for installing an operating system that is nested to Activity 1,

Build New Server Host, of the plan template presented in

Figure 5. Such nesting is made possible by using the class

SubProcessDefinition.

Fig. 6. A template for installing an operating system.

Specialization enables the creation of change templates to

address non-ordinary changes, whose activities usually

deviates slightly from those found in typical procedures. For

request templates, specialization may be useful, for instance,

to both extend an existing one with new operations and/or

restrict the scope of the CIs that may be affected by them. For

a concrete example, consider the request template shown in

Figure 5. It could be specialized so that the affected CI,

labeled as what in operation Build Dedicated Web Host

Service, was restricted to J2EE Web applications, instead of

any Web application, as originally defined.

One can also use specialization as a surrogate to model

customized plan templates. For example, a template that

dictates how an operating system should be installed within an

organization may have different specializations to address the

specific needs of each department. In this example, class

BlockActivity could be employed to refine a standard

procedure to accommodate those specific configuration

requirements.

The specialization of plan templates may alternatively serve

the purpose of allowing the operator to guide/influence the

refinement of change plans into actionable workflows. For

example, consider the plan template depicted in Figure 5.

Being aware that the Web application requires a Data Base

Management System (DBMS), the operator may indicate, in

the design of the template, which DBMS should be installed,

instead of leaving the decision to the Change Planner.

Finally, generalization let the operator to start thinking of a

specific template (either request or plan) and, after that,

generalize it in order to make it suitable for more general

contexts. For example, an operator may design a template to

perform some change considering the IT scenario of a

particular department. The e

.ssence of the change may be latter captured and applied to

other departments as well, by means of generalization.

For request templates, the generalization could be

performed, for example, by changing the affected CI of an

install operation, from Web Application to simply

SoftwareElement. In the case of plan templates, finer-grained

activities, for example defined within a BlockActivity, could be

replaced with a more general, larger-grained activity.

V. IMPLEMENTATION AND CASE STUDY

Our template-based solution for change management is

supported by the CHANGELEDGE system, a prototypical

implementation developed as part of this work. Next, we

present an overview of the system and a case study, which has

been conducted based on a real-life scenario.

Starting with CHANGELEDGE, its components Change

Designer and Change Planner, described previously in

Section III, have been implemented using the Java

programming language. The repositories have been created

through the use of the object-relational mapper Hibernate and

the MySQL database. In relation to the documents exchanged

among the components, XML is used to code those produced

by the Change Designer and consumed by the Change

Planner. Their processing is done by means of the Streaming

API for XML (StAX). Similarly, the actionable workflows

produced by the Change Planner are also XML documents, in

this case compliant with XML Process Definition Language

(XPDL) [8]. After translated into a workflow language, they

may be finally executed by a Deployment System.

To prove concept and technical feasibility of our proposal,

we have conducted an experimental evaluation using the

CHANGELEDGE system. It consisted of the instantiation of a

same request template to specify two different RFCs. The

RFCs were then associated to a same plan template, which

was latter instantiated to meet each RFC objectives. Finally,

the preliminary change documents were consumed by the

Change Planner in order to generate actionable workflows.

The templates used in our case study are shown in Figure 7.

The request template expresses the upgrade of services

belonging to the portfolio of an Application Service Provider

(ASP) customer, whereas the associated plan template

represents one among several approaches that could be

employed by the ASP to perform this upgrade. The plan

Activity
Number: 2
Name: Apply
Security
Policies

Activity
Number: 3
Name: Setup
Remote
Users

Activity
Number: 1
Name: Install
OS

Activity
Number: 4
Name:
Reboot
System

Activity
Number: 5
Name: Apply
Firewall
Policies

Activity
Number: 6
Name: Setup
Network

360

78

entails the migration of the whole system installed at computer

X to another computer Y. Note that Activity 2 reuses, through

composition, the same nested template that realizes Activity 1

of the plan template shown in Figure 5.

Fig. 7. Template for the migration of a computing system.

To carry out the experiment, we have modeled an IT

infrastructure composed of four computers: A, B, C, and D.

Computers A and B were specified as having Windows 2003

Server and GNU/Linux OSs installed, respectively. On top of

the former were installed Internet Information Server (IIS),

SQL Server 2000, and an ordinary ASP.NET Web app. The

latter was setup with Tomcat Web server, MySQL, and a

servlet. Computers C and D, however, had nothing installed.

In addition, we have instantiated, through the component

Change Designer, two change documents using the templates

previously described: one to migrate the entire system hosted

in computer A (label from of the template) to computer C

(label to) and one to perform the same migration, but from

computer B (from) to D (to). Thereafter, the resulting change

documents were submitted to the Change Planner in order to

compute the corresponding actionable workflows.

A partial view of the actionable workflows generated for

each RFC is depicted in Figures 8 and 9. Due to space

constraints, only the refinement of Activity 6 is shown in both

figures. These subworkflows orchestrate the installation of all

the software packages present in the old computer. The

linkage of activities reflects the

dependency among the components to be installed. For

example, in Figure 8 Web app depends on IIS and SQL Server

2000; in Figure 9, the servlet depends on MySQL and Tomcat,

and Tomcat requires the previous installation of the Java SE

Development Kit (JDK).

Our experiments conducted on a computer with AMD

Athlontm XP processor, 2 GHz of CPU clock and 1Gb of RAM

memory have showed that our algorithm took 101 and 149

millisseconds to refine the preliminary change plans,

respectively. An operator spent 25 and 86 minutes to generate

the same refined workflows, using the ActiveBPEL Designer.

Notice that the generated refinements are significantly

different. This is explained by the diverse group of affected

CIs and checks/actions involved in their manipulation. For

example, the workflow produced for the first change

document contains a reboot activity, which is required by SQL

Server 2000 to complete its installation. The reader may also

note that the activities may be either automatically executable

(background in white) or require the intervention of a human

operator (background in gray).

VI. CONCLUSIONS AND FUTURE WORK

We have discussed in this paper some of the benefits of

capturing and reusing IT change knowledge. The lack of a

common standard to design changes along with proper tool

support to assist this process make such knowledge reuse

difficult in practice. To address these issues, we have proposed

an original solution based on the concept of change templates

to ease the formalization and reuse of the experience

accumulated within organizations in relation to IT changes.

Our solution is supported by CHANGELEDGE, a prototypical

implementation of a change management system.

The results obtained, although not exhaustive, are quite

positive. The use of request and plan templates showed to be

flexible to allow the design of RFCs and (different levels of)

preliminary change plans, for several types of IT changes. The

possibility of associating, composing, specializing, and

generalizing templates provides the change operators with a

powerful mechanism to structure knowledge that otherwise

would remain with individuals. In addition, the refinement of

change documents has resulted in highly detailed change

plans, including aspects not explored in previous

investigations (e.g., activities that involve a human operator).

Since our main objective in this paper was to explore

formalization and reuse of knowledge in the context of change

management, considering a broad range of possible IT

changes, we have not focused on generating optimized change

plans. In a future investigation we intend to address this issue,

possibly taking advantage of linear optimization, AI planning

[10], or workflow/web service composition techniques [11].

Other perspectives for future work include: (i) investigating

decision support mechanisms to help operators understand the

trade-offs between alternative change designs, and (ii)

exploring data mining techniques to create request and plan

templates based on change history.

REFERENCES

[1] ITIL. Information Technology Infrastructure Library

(ITIL). Office of Government Commerce (OGC), 2006.

http://www.itil.co.uk.

[2] Keller, A.; Hellerstein, J. L.; Wolf, J. L.; Wu, K. L.;

Krishnan, V. The CHAMPS System: Change

Management with Planning and Scheduling. In 9th

IEEE/IFIP Network Operations and Management

Symposium (NOMS 2004), v. 1, pages 395-408, 2004.

[3] IT infrastructure Library. ITIL Service Support, version

2.3, Office of Government Commerce, 2000.

has operation

RFC
Name: Hosting Service Upgrade
Author: Weverton Cordeiro
Type: Template

has change plan

Activity
Number: 2
Name: Build
New Server
Host

Activity
Number: 3
Name:
Backup
Software

Activity
Number: 4
Name:
Backup Data

Activity
Number: 1
Name: Stop
Services

Activity
Number: 5
Name:
Restore Data

Activity
Number: 6
Name:
Restore
Software

Activity
Number: 7
Name: Start
Services

Operation
Name: Rebuild Server Host
Type: Template

from

to

X: Computer
System

Y: Computer
System

361

79

Fig. 8. Partial workflow for the migration of a Windows 2003 Server.

Fig. 9. Partial workflow for the migration of a GNU/Linux system.

[4] Rebouças, R.; Sauvé, J.; Moura, A.; Bartolini, C.;

Trastour, D. A Decision Support Tool to Optimize

Scheduling of IT Changes. In 10th IFIP/IEEE

International Symposium on Integrated Network

Management (IM 2007), pages 343-352, 2007.

[5] Shankar, C.; Talwar, V.; Iyer, S.; Chen, Y.; Milojicic,

D.; Campbell, R. Specification-enhanced Policies for

Automated Management of Changes in IT Systems. In

20th USENIX Large Installation System

Administration Conference (LISA 2006), 2006.

[6] Keller, A. Automating the Change Management

Process with Electronic Contracts. In 7th IEEE

International Conference on E-Commerce Technology

Workshops, pages 99 – 107, 2005.

[7] Distributed Management Task Force. Common

Information Model. http://www.dmtf.org/standards/

cim.

[8] The Workflow Management Coalition Specification.

Workflow Process Definition Interface - XML Process

Definition Language. http://www.wfmc.org/standards/

docs/TC-1025_10_xpdl_102502.pdf.

[9] Organization for the Advancement of Structured

Information Standards. Business Process Execution

Language, version 2.0. http://docs.oasis-open.org/

wsbpel/2.0.

[10] Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,

J. W.; Wu, D.; Yaman, F. SHOP2: An HTN Planning

System. Journal of Artificial Intelligence Research, v.

20, pp. 379-404, 2003.

[11] Sirin, E.; Parsia, B.; Hendlera, J. Template-based

Composition of Semantic Web Services. In AAAI Fall

Symposium on Agents and the Semantic Web, 2005.

Activity
Modify Tomcat

Conf for Servlet

Activity
Modify MySQL
Conf for Servlet

Activity
Invoke Servlet

Installer

Activity
Get Servlet from

Repository

Tomcat

Installed

Activity
Restore Tomcat

Settings

Activity
Get Tomcat
Conf File from

Backup

JDK

Installed

Activity
Get JDK from

Repository

Activity
Invoke JDK

Installer

Activity
Export
JAVA_HOME

Env

Activity
Export
CATALINA_

HOME Env

Activity
Invoke configure

Script

Activity
Invoke default

Makefile Target

Activity
Get Tomcat

from Repository

MySQL

Installed

Activity
Restore MySQL

Settings
Activity

Get MySQL
Conf File from

Backup

Activity
Get MySQL

from Repository

Activity
Invoke MySQL

Installer

Activity
Setup
Administrator
Password

Activity
Modify DB
Privileges for

MySQL

y

n

y

n

y

n

Activity
Modify IIS Conf

for WebApp

Activity
Modify SS 2000
Conf for

WebApp
SQL Server

Installed

IIS

Installed

Activity
Get SQL Server
2000 Conf File

from Backup

Activity
Invoke WebApp

Installer

Activity
Get WebApp

from Repository

Activity
Reboot

Computer

Activity
Restore IIS

Settings

n

y

y

n

Activity
Insert CD
Windows 2003
Server

Activity
Invoke IIS

Installer

Activity
Get IIS Conf File

from Backup

IIS Web Page

Access Ok

y
n

Fail

Activity
Insert CD SQL

Server 2000

Activity
Invoke SQL
Server 2000
Installer

Activity
Insert Domain

Password
Activity

Restore SQL
Server 2000

Settings

Activity
Select License

Agreement

362

80

APPENDIX C PUBLISHED PAPER – DSOM 2008

In this attachment we present the paper entitled “A Runtime Constraint-aware
Solution for Automated Refinement of IT Change Plans”, another deliverable of the
work described in this thesis. The paper presents an algorithm for the automated
refinement of preliminary change plans into actionable workflows. The proposed
algorithm takes into account the runtime constraints that emerge during the change
plan execution (e.g., lack of disk space and memory exhaustion). As a consequence,
the generated change plans will be less prone to be prematurely aborted due to
resource constraints. The experimental evaluation conducted shows the feasibility
of the proposed algorithm, which is able to generate accurate, complete change plans
in a time of lower magniture than would be spent by an experient operator to design
the same plans.

• Title: A Runtime Constraint-aware Solution for Automated Refinement of IT
Change Plans

• Conference: International Workshop on Distributed Systems: Operations and
Management (DSOM 2008)

• URL: http://www.manweek.org/2008/dsom/

• Date: 22-26 September 2008

• Venue: Doryssa Bay Resort, Samos Island, Greece

81

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 69–82, 2008.

© IFIP International Federation for Information Processing 2008

A Runtime Constraint-Aware Solution for Automated

Refinement of IT Change Plans

Weverton Luis da Costa Cordeiro
1
, Guilherme Sperb Machado

1
,

Fabrício Girardi Andreis
1
, Alan Diego Santos

1
, Cristiano Bonato Both

1
,

Luciano Paschoal Gaspary
1
, Lisandro Zambenedetti Granville

1
,

Claudio Bartolini
2
, and David Trastour

3

1Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
2HP Laboratories Palo Alto, USA

3HP Laboratories Bristol, UK

{weverton.cordeiro, gsmachado, fgandreis, adsantos,

cbboth, paschoal, granville}@inf.ufrgs.br,

{claudio.bartolini, david.trastour}@hp.com

Abstract. Change design is one of the key steps within the IT change

management process and involves defining the set of activities required for the

implementation of a change. Despite its importance, existing approaches for

automating this step disregard the impact that actions will cause on the affected

elements of the IT infrastructure. As a consequence, activities that compose the

change plan may not be executable, for example, due to runtime constraints that

emerge during the change plan execution (e.g., lack of disk space and memory

exhaustion). In order to address this issue, we propose a solution for the

automated refinement of runtime constraint-aware change plans, built upon the

concept of incremental change snapshots of the target IT environment. The

potential benefits of our approach are (i) the generation of accurate, workable

change plans, composed of activities that do not hinder the execution of

subsequent ones, and (ii) a decrease in the occurrence of service-delivery

disruptions caused by failed changes. The experimental evaluation carried out

in our investigation shows the feasibility of the proposed solution, being able to

generate plans less prone to be prematurely aborted due to resource constraints.

1 Introduction

The increasing importance and complexity of IT infrastructures to the final business

of modern companies and organizations has made the Information Technology

Infrastructure Library (ITIL) [1] the most important reference for IT service

deployment and management. In this context, ITIL’s best practices and processes help

organizations to properly maintain their IT services, being of special importance to

those characterized by their large scale and rapidly changing, dynamic services.

Among the several processes that compose ITIL, change management [2] plays an

important role in the efficient and prompt handling of IT changes [3]. According to

this process, changes must be firstly expressed by the change initiator using Requests

for Change (RFC) documents. RFCs are declarative in their nature, specifying what

82

70 W.L. da Costa Cordeiro et al.

should be done, but not expressing how it should be performed. In a subsequent step,

an operator must sketch a preliminary change plan, which encodes high level actions

that materialize the objectives of the RFC. Latter steps in this process include

planning, assessing and evaluating, authorizing and scheduling, plan updating,

implementing, and reviewing and closing the submitted change.

Change planning, one of the key steps in this process, consists in refining, either

manually or automatically, the preliminary plan into a detailed, actionable workflow

(also called actionable change plan in this paper). Despite the possibility of manually

refining change plans, automated refinement has the potential to provide better results

for the planning phase, since it (i) decreases the time consumed to produce such

actionable workflows, (ii) captures the intrinsic dependencies among the elements

affected by changes, and (iii) diminishes the occurrence of service disruptions due to

errors and inconsistencies in the generated plans [4].

Since the inception of ITIL, there has been some preliminary research concerning
the automated refinement of change plans. For example, important steps have been

taken towards formalizing change-related documents [5], exploring parallelism in the

execution of tasks [3], and scheduling of change operations considering the long-term
impact on Service Oriented Architecture environments [6]. However, despite the

progresses achieved in the field, proposed solutions for change planning only consider
simple actions (installation, upgrade) and do not model the pre-conditions and effects

of more complex actions. The pre-conditions could be of a technical nature, such as a

memory requirement, or could impose constraints on the change process, for instance
requiring authorization before executing a given task. Effects model how actions
modify each element of the IT infrastructure (e.g., adding memory into a server or
modifying configuration parameters of a J2EE server). Without taking into account

such considerations, the actionable workflow, when executed, may be prematurely

aborted (e.g., due to lack of resources), leading to service-delivery disruption and
leaving the IT infrastructure in an inconsistent state.

To fill in this gap, we propose a solution for the automated refinement of change
plans that takes into consideration the runtime constraints imposed by the target IT

environment. In contrast to previous investigations, our solution focuses on the impact

that already computed actions will cause on the IT infrastructure, in order to compute
the subsequent ones. To this effect, we introduce in this paper the notion of snapshots

of the IT infrastructure, as representations of the intermediate states that the IT
infrastructure would reach throughout the execution of the change plan. As a result,

the refined change plans generated by our solution will be less prone to prematurely

termination, therefore reducing the occurrence of change-related incidents.
The solution proposed in this paper is evaluated through the use of CHANGELEDGE,

a prototypical implementation of a change management system that enables the

design, planning and implementation of IT changes. We have qualitatively and
quantitatively analyzed the actionable workflows generated from several different

preliminary plans, considering a typical IT scenario.
The remainder of this paper is organized as follows. Section 2 discusses some of

the most prominent research in the field of IT change management. Section 3 briefly

reviews the models employed to represent IT related information. Section 4 details
our runtime constraint-aware solution for the automated refinement of IT change
plans. Section 5 presents the results achieved using the CHANGELEDGE system.

Finally, Section 6 concludes the paper with remarks and perspectives for future work.

83

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 71

2 Related Work

In the recent years, several research efforts have been carried out in the area of IT

change design. In this section, we cover some of the most prominent investigations.

Keller et al. [3] have proposed CHAMPS, a system for automating the generation

of change plans that explore a high degree of parallelism in the execution of tasks.

Change planning and scheduling are approached as an optimization problem.

Although the system is able to evaluate technical constraints in the planning and

scheduling of changes, the scope is limited to Service Level Agreements and policies.

Since fine-grained control of resource constraints was not the focus of the work,

modifications on the infrastructure produced by the already processed tasks of the

plan under refinement are not taken into account when computing the subsequent

ones. As a consequence, the resulting change plans may not be executable in practice.

In a previous work [5], we have proposed a solution to support knowledge reuse in

IT change design. Although the solution comprises an algorithm to generate actionable

change plans, this algorithm also performs all the computations considering a static

view of the IT infrastructure. Actually, it was out of the scope of that work, as a

simplification assumption, to deal with runtime constraints in the refinement of change

plans.

Despite not directly related with the problem addressed in this paper, some

additional research efforts on change management published in the recent years merit

attention. Dumitra et al. [6] have proposed Ecotopia, a framework for change

management that schedules change operations with the goal of minimizing service-

delivery disruptions. In contrast to CHAMPS, Ecotopia optimizes scheduling by

assessing the long-term impact of changes considering the expected values for Key

Performance Indicators. Trastour et al. [7] have formulated the problem of assigning

changes to maintenance windows and of assigning change activities to technicians as

a mixed-integer program. The main difference between this work and Ecotopia is the

fact that human resources are also taken into account. Sauvé et al. [8] have proposed a

method to automatically assign priorities to changes, considering the individual

exposure of each requested change to risks as its execution is postponed. Finally, in

another previous work [9], we have introduced the concept of atomic groups in the

design of change plans with the purpose of providing our end-to-end solution to IT

change management with rollback support.

Although change management is a relatively new discipline, the area has been

quickly progressing, as evidenced by the previously mentioned related work.

Nevertheless, in the particular case of change planning, the existing solutions are

severely lacking with respect to deployment feasibility and IT infrastructure

predictability. In the following sections we envisage a solution to address these issues.

3 Building Blocks of the Proposed Solution

In order to support the automated refinement of change plans, it is of paramount

importance to formalize the change-related documents. Actually, this was a major

concern in our previous work [5], in which we proposed models to (i) characterize

dependencies between the elements that compose the IT infrastructure, (ii) express

84

72 W.L. da Costa Cordeiro et al.

information about software packages available for consumption by a change process,

and (iii) express unambiguously the changes that must be executed on the managed

infrastructure. In this section, we briefly review the models that materialize this

formalization: IT infrastructure and Requests for Change & Change Plan.

The IT Infrastructure model is a subset of the Common Information Model (CIM)

[10], proposed by the Distributed Management Task Force (DMTF). It allows the

representation of computing and business entities comprising an organization, as well

as the relationship among them. For the sake of legibility and space constraints, we

present in Fig. 1 a partial view of the model.

The root class ManagedElement permits to represent any Configuration Item (CI)

present in the IT infrastructure (e.g., physical devices, computer and application

systems, personnel, and services). Relationships such as associations, compositions,

and aggregations, map the dependencies among the elements comprising the

infrastructure. In addition, Check and Action classes in this model represent relevant

information for managing the lifecycle of software elements (e.g., software upgrade

and application system installation/uninstallation).

Check

1
EnabledLogical

Element

Software

Element

System

Computer

System

Operating

System
Service

User

Entity

Logical

Element

ManagedSystem

Element

Organizational

Entity

Managed

Element

1

Action

Setting

Check

SwapSpace

Check

DiskSpace

Check

*

*

1 0..1

Execute
Program

Reboot

Action

ModifySetting

Action

Memory

Check

SoftwareElement

VersionCheck
Alternate

SwDependency
0..1

1

Human

Action

SwChecks

SwActions

Action
Sequence

Fig. 1. Partial view of the IT Infrastructure model

Instances of class Check define conditions to be met or characteristics required by

the associated software element for it to evolve to a new state (e.g., deployable,

installable, executable, or running). Possible checks include verification of software

dependencies, available disk space and memory, and required environment settings.

Each instance of class Action, in its turn, represents an operation of a process to

change the state of the associated SoftwareElement (e.g., from installable to

executable). Examples of actions are invocation of a software installer/uninstaller,

manipulation of files and directories, and modification of configuration files.

In addition to being used to represent the current IT infrastructure, the same model

is also employed to define the Definitive Media Library (DML). The DML is a

repository that specifies the set of software packages (along with their dependencies)

that have been approved for use within the enterprise and that may be required

throughout the change process.

85

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 73

In regard to the Requests for Change & Change Plan model, it enables the design

of change-related documents and relies on both (i) guidelines presented in the ITIL

Service Transition book [2], and (ii) the workflow process definition, proposed by the

Workflow Management Coalition (WfMC) [11]. Classes such as RFC and Operation

allow expressing the changes designed by the change initiator, while ChangePlan,

LeafActivity, BlockActivity, SubProcessDefinition, and TransitionInformation enable

the operator to model the preliminary plan that materializes the change. Please refer

to our previous work [5] for additional information about this model.

4 Runtime Constraint-Aware Refinement of Change Plans

The models presented in the previous section represent the common ground for our

runtime constraint-aware solution for automated refinement of IT change plans. In

this section, we describe our solution by means of a conceptual algorithm, illustrated

in Fig. 2.

In order to support our solution, we formalize a change plan C, in the context of

this work, as a 4-tuple A, T, a1, F!, where A represents the set of activities (or actions)

A = {a1, a2, …, ann ∈ N and n ≥ 1}; T represents a set of ordered pairs of activities,

called transitions, T = {l1, l2, …, lmm ∈ N and m ≥ 1}; a1 is the begin activity of the

change plan (a1 ∈ A); and F represents the set of end activities of the change plan (F

⊆ A). A transition l = (ai, aj) ∈ T is directed from ai to aj, ∀ai, aj ∈ A, and may

represent a conditional flow.

We denote our solution as a function ƒ(C, I, R) = C′ (line 1), where C is the

preliminary change plan; I represents the state of the IT infrastructure as in the instant

in which the preliminary plan C is submitted for refinement; R represents the

Definitive Media Library (DML); and C′ represents the actionable workflow

generated as a result of the refinement process.

As a first step towards the refinement, the submitted plan C is copied to C' (line 2),

and the subset of unrefined activities contained in C is copied to A' (line 3). In a

subsequent step (line 4), ƒ creates an initial snapshot of the IT infrastructure, s0. In the

context of this work, we define snapshot as a representation of the differences

between the current state of the IT infrastructure and the state it would reach after the

execution of i activities contained in the change plan C (0 ≤ i ≤ A). These

differences include, for example, newly installed (or removed) software, disk space

and memory consumed (or freed), modified settings, and created (or deleted) files and

directories (the dynamics of snapshots is further explained in Subsection 4.2).

Considering that no new activities were added to the change plan C at the point s0 is

created, this step will yield a snapshot that describes no differences in comparison to

the current state of the IT infrastructure.

As a last step, ƒ invokes the execution of ƒ'(C', R, I, s0, A') (line 5), which will

actually perform the refinement process. We assume that C' is passed to ƒ' by

reference. Therefore, modifications performed to C' will be visible outside ƒ'. After

the execution of ƒ', C' will be returned back to the operator (line 7), if refined (line 6).

We consider a change plan C as refined if and only if, ∀a ∈ A, dependencies of a are

already satisfied either by any ai ∈ A or by the current state of the IT infrastructure.

86

74 W.L. da Costa Cordeiro et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ƒ(C, R, I) = C' {
 declare C' = copy of the preliminary change plan C
 declare A' = set of unrefined activities from the preliminary change plan C
 s0 = initial snapshot of I, after the execution of 0 activities
 ƒ'(C', R, I, s0, A')
 if (C' is refined)
 return C'
 else

 return false
}

ƒ'(C, R, I, si, A) {
 if (A is empty)
 return change plan C

 else {
 declare X: set of arrangements Y of activities
 ai = i-est activity ∈ A
 declare A' = A - {ai}
 if (ai has no computable dependencies, given I, si, and R)
 ƒ'(C, R, I, si, A')
 else {
 X = set of arrangements Y of first level dependencies of ai, given I, si, and R
 for each Yi ∈ X {
 declare C' = C + Yi
 declare A = A' ∪ Yi
 si+1 = new snapshot of the IT infrastructure I, given C', I, and si
 ƒ'(C', R, I, si+1, A)
 }
 }
 }
}

Fig. 2. Conceptual algorithm for runtime constraint-aware refinement of change plan

In case the plan returned by ƒ' is not refined, the operator will receive a negative

feedback (line 9). This feedback will mean that an actionable and executable workflow

(for the preliminary plan C submitted) could not be achieved. Having this feedback, the
operator could reformulate and resubmit the preliminary plan, therefore starting the

refinement process over again.

Having presented a general view of our solution, in the following subsections we
describe in more detail the recursive search for a refined change plan, and the concept of

snapshots of the IT infrastructure.

4.1 Refinement of the Preliminary Change Plan

Function ƒ' solves the problem of modifying the received preliminary plan C into an

actionable workflow by using the backtracking technique [12]. This technique permits
exploring the space of possible refinements for C, in order to build a refined plan that

meets IT resource constraints. Fig. 3 illustrates the execution of ƒ' using a simplified

example. For the sake of clarity, only two levels of recursion are presented.

The preliminary plan C in Fig. 3 materializes an RFC to install an e-Commerce Web

application, and is composed of the task Install WebApp. This task represents a BlockActivity

derived from the set of actions necessary to install WebApp (arrow 1 in Fig. 3). The first

verification performed by ƒ' (line 13 in Fig. 2) is whether A, the set of activities that remain

unrefined in the received plan C, is empty or not. If A is empty, C is returned back to

ƒ. Considering the example in Fig. 3, ƒ' will receive in its first invocation (line 5) the

set A' = {Install WebApp}.

87

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 75

X =

Sw: WebSrv2Sw: WebSrv

Sw: LibX

Memory: 20 MB

Disk: 56 MB

Swap: 10 MB

S
w

C
he

ck
s

Install WebApp

Memory: 30 MB

Disk: 100 MB

Swap: 30 MB

Install WebSrv

Sw: LibY

Install LibX

LibY : Sw

Disk: 10 MB

Install LibY

Sw: LibY

Memory: 35 MB

Disk: 50 MB

Swap: 20 MB

Install WebSrv2

WebApp : Sw
SwActions

WebSrv : Sw

WebSrv2 : Sw

Definitive Media Library

Disk: 2 MB

LibX : Sw
Activity
Install

WebSrv2

Activity

Install LibX

Refined Change Plan C'

Activity

Install LibY

Activity
Install

WebApp

Y1 Y2

Activity
Install

WebSrv

Activity

Install LibX

Activity
Install

WebSrv2

Activity

Install LibX

Preliminary Change Plan C
Activity
Install

WebApp

Activity

Install LibY X' =

Y'1

(1)

(3)(2)

(4)

Fig. 3. Illustration of the functioning of ƒ'

The algorithm ƒ' starts by extracting an activity ai from A (line 17), generating a

new set A' (which contains all activities in A except ai) (line 18). In our example, ai is

the activity Install WebApp, and the resulting A', an empty set. Subsequently, ƒ' tests

whether ai has computable dependencies (line 19). An activity is said to have

computable dependencies if: (i) the Configuration Item (CI) modified by ai has checks

(SwChecks) mapped in the DML and/or relationships in the IT repository (e.g.,

shutting down service Service1 requires shutting down Service2 and bringing up

Service3), and (ii) the aforementioned dependencies (or checks) are not yet fulfilled in

neither the current state of the IT infrastructure nor the current snapshot.

If ai has no computable dependencies (i.e., if all pre-conditions for the execution of

ai are already satisfied in either the IT or the current snapshot), ƒ' invokes itself

recursively (line 20), in order to refine another activity of the resulting A'. Otherwise,

ƒ' computes the set of arrangements of immediate dependencies (or first level

dependencies) that (i) fulfill the pre-conditions for the execution of ai, and (ii) would

be executable in the current snapshot (considering the requirements of these

arrangements). The arrangements returned from this step will be stored in X (line 22).

In this set, Yi represents each of the arrangements.

In our example, Install WebApp has two computable dependencies described in the

DML: a web server (either WebSvr or WebSrv2) and a generic library (LibX).

Therefore, the computation of X (line 22) yields a set containing two arrangements of

possible immediate dependencies for ai. The first is Y1 = {Install WebSrv, Install

LibX}, and the second is Y2 = {Install WebSrv2, Install LibX}.

88

76 W.L. da Costa Cordeiro et al.

After that, ƒ' searches for an arrangement Yi in X that leads to a refined change plan

(line 23). Although more than one Yi may lead to a solution, the first Yi to be tested

will compose the refined plan. Considering the example, the first set tested was Y1

(arrow 2 in Fig. 3), while the second was Y2 (arrow 3).

The aforementioned test performed to an arrangement Yi comprises four steps.

First, a new change plan C' is created, by adding the activities in Yi to C (line 24).

Second, a new set of unrefined activities A" is built, as a result of the union of the sets

A' and Yi (line 25). This is necessary because activities in Yi may not be refined yet,

therefore requiring a future processing. Third, the impact of running activities in Yi is

computed (line 26), considering both the current view of the IT infrastructure (from I)

and the changes performed so far (materialized in the snapshot si). The result will be

stored in the snapshot si+1 (in our example, s1 represents an incremental view of the

snapshot s0, after the execution of Install WebSrv, Install LibX, and Install WebApp).

Finally, ƒ' is invoked recursively to refine C", given the newly computed A" and si+1

(line 27).

Observe that the addition of the activities in Yi to the change plan C' (line 24) takes

into account dependency (pre-requisite) information. In our example, since Y1 =

{Install WebSrv, Install LibX} is a set of dependencies of Install WebApp (i.e., Install

WebSrv and Install LibX must be executed prior to Install WebApp), adding these

activities to C" implies in the creation of the transitions li = (Install WebSrv, Install

WebApp) and li+1 = (Install LibX, Install WebApp), and subsequent addition of li and

li+1 to the set of transitions T of the change plan C".

Putting all the pieces together, recursive invocations of ƒ' is the mechanism

employed to navigate through all paths in the activity dependency tree (which

represents the dependencies between software packages captured from the DML).

From the example illustrated in Fig. 3, in the first invocation to ƒ' (line 5) the activity

Install WebApp is processed. In the first-level recursion (arrow 2 in Fig. 3) of ƒ' (line

27), the set of immediate dependencies Y1 is tested. Once the test fails, the recursion

returns, and then the set Y2 is tested (arrow 3). This yields a new first-level recursion

(line 27). Once the test to Y2 is successful, a second-level recursion is performed, now

to process the set Y = {Install LibY} (arrow 4). Since Install LibY has no computable

dependencies, a third-level recursion of ƒ' is performed (line 20). Finally, given that

there are no dependencies left to refine, the recursive refinement is finished, and the

resulting refined plan C' (Fig. 3) is returned back to ƒ' (line 14).

4.2 Snapshots of the IT Infrastructure

The concept of snapshot is the notion upon which the recursive search for a refined

change plan is built. Having the current snapshot si, the refinement algorithm may

foresee the new state of the IT infrastructure after the execution of the actions already

computed and present in the change plan C. Consequently, it will be able to identify

dependencies that are executable, and then continue the refinement process.

Fig. 4 illustrates the snapshots that are created during the refinement process of our

example. In this figure, CS stands for computer system, OS for operating system, and

SwElement for software element. The initial snapshot in our example is s0. The two

arrows from s0 represent two possible state transitions of the IT infrastructure after the

execution of each of the arrangements returned for activity Install WebApp. The first

89

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 77

transition (arrow 1 in Fig. 4) leads to snapshot s1a, which represents the state after the

execution of (the activities in) Y1 plus Install WebApp. The second transition (arrow

2), on the other hand, leads to s1b, which represents the state after the execution of Y2

(plus Install WebApp). The dashed arrow from s1a to s0 represents the failed test made

with Y1 (in this case, ƒ' goes back to the previous snapshot and attempts another

arrangement of immediate dependencies contained in X, Y2). Finally, the transition

from snapshot s1b to s2 (arrow 3) represents the second-level recursion to ƒ', when the

activity Install LibY is added to the partially refined plan C.

IT Infrastructure

HostedFS

Installed
Sw

InstalledOS Linux: OS
- Mem: 256 MB
- Swap: 200 MB

FTPServer:

SwElement

MailServer:

SwElement

cs01: CS cs02: CS

cs03: CS

root: FileSystem
- Space: 200 MB

S0

cs03: CS

Linux: OS
- Mem: 206 MB
- Swap: 160 MB

root: FileSystem
- Space: 42 MB

WebSrv:
SwElement

LibX:
SwElement

WebApp:
SwElement

S1a

cs03: CS

Linux: OS
- Mem: 201 MB
- Swap: 170 MB

root: FileSystem
- Space: 92 MB

WebSrv2:
SwElement

LibX:
SwElement

WebApp:
SwElement

S1b

cs03: CS

Linux: OS
- Mem: 201 MB
- Swap: 170 MB

root: FileSystem
- Space: 82 MB

WebSrv2:
SwElement

LibX:
SwElement

WebApp:
SwElement

LibY:
SwElement

S2

(3)

(1)

(2)

Elements of the IT that were added

Elements of the IT that were modified

Initial elements of the IT infrastructure

Fig. 4. Evolution of the snapshots as the change plan is refined

Considering the representation of differences, the snapshots in Fig. 4 hold

information about consumed resources and new settings present in the environment.

For example, the reader may note that after the execution of activities in Y2 and Install

WebApp, the IT infrastructure would evolve to a new state, represented by s1b. In this

new state, the computer system cs03 (i) has 108 MB less disk space available, and (ii)

has the newly installed SoftwareElements WebSrv2, LibX, and WebApp.

Also observe that installing new software in a computer potentially increases the

demand for more available physical memory (in the case of cs03, 55 MB more

physical memory and 30 MB more swap space). Although the use of memory and

swap space is flexible, the amount of such resource available for use imposes a limit,

in terms of performance, in the software that may be running concurrently.

It is important to mention that the scope of the proposed snapshots is restricted to

the change planning step. In addition, the information they hold is useful for the

proposed refinement solution only. As a consequence, they do not take place in other

phases of the change management process (e.g., change testing or implementation).

4.3 Considerations on the Proposed Solution

According to the change management process, there are intermediate steps between
the design and the actual implementation of a change. These steps are assessment and

evaluation, authorization and schedule, and plan updates. The time scale to go

through them may range from hours to days (or even weeks). During this period, the

90

78 W.L. da Costa Cordeiro et al.

IT infrastructure may evolve to a new, significantly different state (for example, due

to other implemented changes). In this context, the runtime constraint-aware plan

generated by our solution may not be executable upon implementation. This issue
(that has been long associated with the change management process) may be tackled

during the plan updates phase. The operator may either manually adjust the plan for
the new IT scenario or re-invoke the proposed algorithm, and document the revised

plan afterwards. From this point on, the time gap to implement the change should be

kept to a minimum.

Another important aspect worth discussing is the refinement flexibility provided to
the algorithm. This is regulated by the degree of detail of the preliminary plan

submitted. A loosely defined preliminary plan tends to allow the algorithm to perform
a broader search within the activity dependency tree. Consider, for example, an RFC

to install a certain web-based application. Assuming this application depends on a

Database Management System (DBMS), the operator may explicitly specify in the
preliminary plan the DBMS to be installed or leave it up to the algorithm. In the latter

case, the choice will be based on the alternative database packages available in the

Definitive Media Library and on the runtime constraints.
To deal with the aforementioned flexibility, one could think of the existence of an

automated decision threshold. This threshold could be specified in terms of number of
software dependency levels. During the refinement process, dependencies belonging

to a level above the configured threshold would be decided by the operator in an

interactive fashion. Otherwise, the algorithm would do this on his/her behalf.
Evaluating the pros and cons of setting a more conservative or liberal strategy is left
for future work.

5 Experimental Evaluation

To prove the conceptual and technical feasibility of our proposal, we have (i)

implemented our solution on top of the CHANGELEDGE system [5], and (ii) conducted

an experimental evaluation considering the design and refinement of changes

typically executed in IT infrastructures. Due to space constraints, we focus our

analysis on five of these changes. As a result of the refinement of preliminary plans

into actionable workflows, we have observed the correctness and completeness of the

produced workflows (characterizing a more qualitative analysis of the proposed

solution), in addition to performance indicators (quantitative analysis).

The IT infrastructure employed is equivalent to the environment of a research &

development department of an organization. It is composed of 65 workstations,

located in seven rooms, running either Windows XP SP2 or GNU/Linux. The

environment is also composed of four servers, Server1, Server2, Server3, and Server4,

whose relevant settings to the context of our evaluation are presented in Table 1.

Finally, the content of the Definitive Media Library is summarized in Table 2.

Table 1. Server settings

Server Name Installed Operating System Available Disk Space Total Physical Memory
Server1 None 20,480 MB 2,048 MB
Server2 Windows 2003 Server 71,680 MB 4,096 MB
Server3 Debian GNU/Linux 51,200 MB 4,096 MB
Server4 Debian GNU/Linux 102,400 MB 4,096 MB

91

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 79

Table 2. System requirements for the software present in the DML 1

Software Name Disk Space Memory Software Dependencies

e-Commerce Web App2 512 MB 128 MB SQL Server and Internet Information Server (IIS)
IIS 5.1 15 MB 16 MB Windows XP Service Pack 2 (Win XP SP2)
IIS 7.0 15 MB 16 MB Windows Vista Service Pack 1 (Win Vista SP1)

.Net Framework 3.5 280 MB 256 MB Internet Explorer (IE), IIS, and Win XP SP2
SQL Server 2005 425 MB 512 MB IE, Win XP SP2, and .Net Framework
SQL Server 2008 1,460 MB 1,024 MB IE and Win Vista SP1

IE 7 64 MB 128 MB Win XP SP2
Windows XP SP 2 1,800 MB - Windows XP

Windows Vista SP 1 5,445 MB - Windows Vista
Windows XP 1,500 MB 128 MB -

Windows Vista 15,000 MB 1,024 MB -

In regard to the submitted RFCs, the first two have as objective the installation of

an e-Commerce web application (WebApp), one of them having Server1 as target CI

and the other, Server3. The third RFC comprises two operations: one to install and

configure a network monitoring platform on Server4, and the other to install and

configure an authentication server on Server3. The fourth RFC comprises the

migration of the entire system installed on Server3 to Server4. Finally, the fifth RFC

consists in updating software packages installed in 47 out of the 65 stations that

compose the IT infrastructure (typical procedure in several organizational contexts).

A partial view of the actionable workflow generated from the first RFC is

presented in Fig. 5. Decision structures within the workflow were omitted for the sake

of legibility. Observe that the linkage between the activities present in the workflow

reflect the dependencies between the installed packages. For example, the e-

Commerce Web application depends on services provided by the SQL Server 2005

Database Management System and Internet Information Server 5.1. SQL Server 2005,

in its turn, depends on the previous installation of the .Net Framework 3.5.

The reader may also note that implementing this actionable workflow requires,

considering the information in Table 2, about 4,596 MB of disk space, and a

minimum of 1,168 MB of available physical memory, from Server1. Since this server

has sufficient disk space for the installation procedures present in the workflow, the

implementation of this RFC is likely to succeed. Moreover, all the installed software

should execute normally, given that the target server has sufficient physical memory.

Activity
Download
Service

Pack 2

Activity
Invoke SP
2 Installer

Activity
Invoke
.Net 3.5
Installer

Activity
Insert SQL
Server

2005 CD

Activity
Invoke SS

05 Installer

Activity
Configure
Domain

Password

Activity
Download
.Net 3.5

Activity
Invoke IIS
5.1

Installer

Activity
Download
Internet
Explorer 7

Activity
Invoke IE
7 Installer

Activity
Modify IIS
5.1 Cfg for
WebApp

Activity
Modify SS
05 Cfg for

WebApp

Activity
Invoke
WebApp

Installer

Activity
Reboot
Computer

Activity
Insert
Windows

XP CD

Activity
Invoke
WinXP
Installer

Activity
Reboot
Computer

Activity executed automatically

Activity executed by a human operator

Fig. 5. Partial view of the actionable workflow for the installation of WebApp

1 Source: http://www.microsoft.com
2 The e-Commerce Web Application system requirements were estimated.

92

80 W.L. da Costa Cordeiro et al.

An alternative plan to the one present in Fig. 5 is the one in which SQL Server

2008 is installed instead of SQL Server 2005, and Internet Information Server 7.0,

instead of IIS 5.1. As a consequence, Windows Vista and Windows Vista Service Pack

1 would be installed as well, instead of Windows XP Service Pack 2 and Windows XP,

due to the pre-requisite information. For the same reason, the installation of .Net

Framework 3.5 would not be present in this alternative plan. This plan would require

22,496 MB of available disk space from Server1 to be executable, amount beyond the

20,480 MB currently available. Therefore, it would not be generated by our solution,

since it is impractical considering the imposed resource constraints.

Table 3. Complexity of the change scenarios considering the number of activities and affected

configuration items (pre and post refinement)

Preliminary plan Refined plan
Scenario

Activities
Affected
Stations

Affected
OSes

Affected
Software

Activities
Affected
Stations

Affected
OSes

Affected
Software

1 1 1 0 1 19 1 1 6
2 1 1 0 1 23 1 1 22
3 4 2 0 2 30 2 1 26
4 46 3 0 5 182 3 1 47
5 235 47 0 6 613 47 2 29

Table 3 presents, synthetically, the computational processing spent by the

CHANGELEDGE system to refine and generate actionable workflows for the five RFCs.

We highlight Table 3 the number of activities, as well as the number of computer

systems (stations), operating systems, and software affected in both the preliminary

(specified by a human operator) and refined plans (generated by the system). Taking

scenario 4 as example, one may note that the final change plan has 182 activities,

automatically refined from a 40% smaller plan.

The performance of the CHANGELEDGE system to generate the actionable workflows

characterized above is presented in Table 4. Our experiments were conducted on a

computer equipped with a Pentium
tm

 Centrino processor, 1.7 GHz of CPU clock, 2,048

KB of cache, and 512 MB of RAM memory. The system has performed satisfactorily,

demanding from a few hundreds of milliseconds (544) to a few dozens of seconds (57)

to generate the aforementioned plans. We have also calculated a confidence interval of

95% for the measured times, considering 10 repetitions of the refinement process for

each change document. As shown in Table 4, we expect the refinement time to vary

minimally, for each scenario. The results show that our solution not only generates

complete and correct plans, but has potential to reduce, in a significant way, time and

efforts demanded to this end.

Table 4. Refinement processing time

Confidence Interval of the Refinement Time
Scenario Refinement Time (ms)

Lower Bound (ms) Upper Bound (ms)
1 544 535 552
2 942 937 947
3 1,754 1,736 1,771
4 3,879 3,811 3,947
5 57,674 57,482 57,866

93

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 81

6 Conclusions and Future Work

Change design is an undoubtedly fundamental building block of the IT change

management process. However, existing computational solutions to help the

generation of consistent, actionable change plans are still maturing and need more

work so as to eliminate some usual simplification assumptions. In this paper, we have

proposed a solution to automate the generation of change plans that take into account

runtime resource constraints. This is a very important aspect to be considered in order

to compute feasible plans, i.e., plans in which no technical or human resource

constraint is going to be violated during the execution of the plan.

The obtained results, although not exhaustive, were quite positive. The actionable

workflows generated automatically from preliminary plans (designed by human

operators) have respected the restrictions imposed by the target environment (e.g.,

memory and disk space constraints). Furthermore, the refinement of change plans ran

on the order of hundreds of milliseconds to dozens of seconds. This time is certainly

of lower magnitude than the time that would be required by an experienced operator

to accomplish the same task.

As future work we intend to investigate decision support mechanisms to help

operators understand the trade-offs between alternative change designs. In addition,

since our problem of IT change design concerns the realization of action sequences

from a description of the goal and an initial state of the IT environment, we plan to

explore how IT change design can take advantage of AI planning techniques [13].

There may be techniques from this field that our approach could benefit from,

whether they are on the topic of knowledge representation, planning algorithms, or

the integration of planning and scheduling.

References

1. Information Technology Infrastructure Library. Office of Government Commerce (OGC)

(2008), http://www.itil-officialsite.com

2. IT Infrastructure Library: ITIL Service Transition, version 3. London: The Stantionery

Office, p. 270 (2007)

3. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.-L., Krishnan, V.: The CHAMPS system:

change management with planning and scheduling. In: IEEE/IFIP Network Operations and

Management Symposium, vol. 1, pp. 395–408, 19–23 (2004)

4. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what

can be done about it? In: 4th Usenix Symposium on Internet Technologies and Systems,

Seattle, USA (2003)

5. Cordeiro, W., Machado, G., Daitx, F., et al.: A Template-based Solution to Support

Knowledge Reuse in IT Change Design. In: IFIP/IEEE Network Operations and

Management Symposium, Salvador, Brazil, pp. 355–362 (2008)

6. Dumitra , T., Ro u, D., Dan, A., Narasimhan, P.: Ecotopia: An Ecological Framework for

Change Management in Distributed Systems. In: de Lemos, R., Gacek, C., Romanovsky,

A. (eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 262–286. Springer,

Heidelberg (2007)

94

82 W.L. da Costa Cordeiro et al.

7. Trastour, D., Rahmouni, M., Bartolini, C.: Activity-based scheduling of IT changes. In:

First ACM International Conference on Adaptive Infrastructure, Network and Security,

Oslo, Norway

8. Sauvé, J., Santos, R., Almeida, R., Moura, A.: On the Risk Exposure and Priority

Determination of Changes in IT Service Management. In: Distributed Systems: Operations

and Management, San José, CA, pp. 147–158 (2007)

9. Machado, G., Cordeiro, W., Daitx, F., et al.: Enabling Rollback Support in IT Change

Management Systems. In: IFIP/IEEE Network Operations and Management Symposium,

Salvador, Brazil, pp. 347–354 (2008)

10. Distributed Management Task Force: Common Information Model,

http://www.dmtf.org/standards/cim

11. The Workflow Management Coalition Specification: Workflow Process Definition

Interface - XML Process Definition Language,

http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT

Press, McGraw-Hill (2001) ISBN 978-0-262-53196-2

13. Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J., Wu, D., Yaman, F.: SHOP2: An

HTN Planning System. Journal of Artificial Intelligence Research 20, 379–404 (2003)

95

APPENDIX D PUBLISHED PAPER – IM 2009

In this attachment we present the paper entitled “ChangeMiner: A Solution for
Discovering IT Change Templates from Past Execution Traces”, a deliverable re-
cently accepted for publication in conference proceedings. The paper proposes the
mechanism, inspired on process mining techniques, to discover change templates
from past execution traces. Built upon the notion of change templates, the mecha-
nism focuses on generating templates that capture the essence of previously executed
change processes. The generated templates, in turn, enable the reuse and applica-
bility of such processes in scenarios having settings diverse from the original ones
(e.g., different dependency relationships among affected IT components, or specific
system requirements). The experimental evaluation, conducted using synthetically
generated change traces, shows the potentialities of using change traces in the design
and planning of IT changes.

• Title: ChangeMiner: A Solution for Discovering IT Change Templates from
Past Execution Traces

• Conference: IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM 2009)

• URL: http://www.ieee-im.org/2009/

• Date: 1-5 June 2009

• Venue: Hofstra University, Long Island, NY, USA

96

 Abstract– The main goal of change management is to ensure
that standardized methods and procedures are used for the
efficient and prompt handling of changes in IT systems, in order
to minimize change-related incidents and service-delivery
disruption. To meet this goal, it is of paramount importance
reusing the experience acquired from previous changes in the
design of subsequent ones. Two distinct approaches may be
usefully combined to this end. In a top-down approach, IT
operators may manually design change templates based on the
knowledge owned/acquired in the past. Considering a reverse,
bottom-up perspective, these templates could be discovered from
past execution traces gathered from IT provisioning tools. While
the former has been satisfactorily explored in previous
investigations, the latter – despite its undeniable potential to
result in accurate templates in a reduced time scale – has not
been subject of research, as far as the authors are aware of, by
the service operations and management community. To fill in
this gap, this paper proposes a solution, inspired on process
mining techniques, to discover change templates from past
changes. The solution is analyzed through a prototypical
implementation of a change template miner subsystem called
CHANGEMINER, and a set of experiments based on a real-life
scenario.

I. INTRODUCTION

The importance of Information Technology Service
Management (ITSM) has increased significantly in the recent
years, mainly due to the ever-growing importance of IT to
support the business of modern companies and organizations
[3]. In this context, the IT Infrastructure Library (ITIL) [1]
has become an important and widely accepted best practice
collection for ITSM, helping organizations to properly
maintain their IT resources and services.

In order to deal with changes in IT systems, ITIL defines
the change management process [2]. This process has the goal
of maximizing the value of changes to business, by means of
minimizing change-related incidents and service-delivery
disruption. To this end, change management recommends the
use of standardized methods and procedures for efficiently
and promptly handling all change requests.

Following ITIL’s definition of change management, the
change initiator should express required changes in
documents called Requests for Change (RFC). RFCs must be
accompanied by a change plan, designed by an IT Operator,
which specifies the steps necessary to materialize the RFC.
The subsequent phases of a traditional change process are
planning, evaluation, test, authorization, scheduling,
implementation, and record of the executed actions in the
Configuration Management Database (CMDB).

To meet the previously mentioned change management
goals, it is of paramount importance reusing the experience
acquired from the execution of previous changes in the design
of subsequent ones. Ideally, this reuse can be done
considering two distinct approaches. In a top-down approach,
IT operators may design change models based on the
knowledge owned/acquired in past changes. Considering a
reverse, bottom-up perspective, change models could be
discovered from logs gathered from IT provisioning tools.

There have been several investigations approaching the
top-down perspective of change design [6][7]. Proposed
solutions, however, often require recurrent changes to be
designed “from scratch”, hence hampering the reuse of
knowledge acquired from previous ones. We started to
address this issue in a previous work [4], by introducing the
concept of change templates as a mechanism to promote the
reuse of knowledge accumulated with past IT changes.
Nonetheless, the use of change traces to discover change
models has not been addressed in the field of change
management.

We highlight three reasons for extracting change templates
from traces. First, templates discovered from these traces are
less prone to be incomplete, and more appropriate for a
broader range of change scenarios. Conversely, manually
designed templates may contain errors and/or be incomplete,
considering that knowledge about changes may be scattered
among IT operators and paper procedures. Furthermore, the
lack of visibility of the entire IT infrastructure makes difficult
to design templates generic enough to enable their

CHANGEMINER: A Solution for Discovering IT

Change Templates from Past Execution Traces

Weverton Luis da Costa Cordeiro,

Guilherme Sperb Machado, Fabrício Girardi Andreis,

Juliano Araújo Wickboldt, Roben Castagna Lunardi,

Alan Diego dos Santos, Cristiano Bonato Both,

Luciano Paschoal Gaspary,

Lisandro Zambenedetti Granville
Institute of Informatics

Federal University of Rio Grande do Sul, Brazil

{weverton.cordeiro, gsmachado, fgandreis,

jwickboldt, rclunardi, adsantos,

cbboth, paschoal, granville}@inf.ufrgs.br

David Trastour
1
,

Claudio Bartolini
2
,

1
HP Laboratories Bristol, UK

2
HP Laboratories Palo Alto, USA

{david.trastour,

claudio.bartolini}@hp.com

97

applicability in several similar contexts. Second, several
changes may have been executed in an ad hoc fashion [16]
(i.e., without any documented change plan). This is often the
case, for example, during emergency changes, or in
organizations that do not adopt a proper methodology to
design changes. In these cases, template mining provides an
opportunity to reuse the knowledge behind such ad hoc
processes, demanding fewer efforts than would be required to
manually design the change template. Third, discovering
change templates from the automated analysis of execution
traces has potential to reduce significantly the time consumed
in the specification of new templates. In contrast, the manual
design of change templates, often conducted “from scratch”,
tends to be a time-consuming (and also error prone) task.

The use of historic data to extract process models has been
largely investigated by several communities (please refer to
Rozinat et al. [5] for a research overview). Nevertheless,
despite the potential benefits to the IT change management
process, this topic has not been addressed in previous
investigations [4][7][16].

To bridge this gap, in this paper we propose a mechanism
to extract change templates from historic traces recorded in
provisioning systems. In contrast to the already established
workflow mining techniques, our solution focuses on
generating templates that capture the essence of previously
executed change processes. The discovered templates, in turn,
enable the reuse and applicability of such processes in
scenarios having settings diverse from the original process
(e.g., different dependency relationships among affected IT
components, or specific system requirements).

The mechanism proposed in this paper is evaluated through
the use of CHANGEMINER, a prototypical implementation of a
change template miner subsystem, and a rich set of
experiments. During the evaluation, we have observed the
completeness and correctness of the change templates
extracted from several change execution data, in addition to
performance indicators.

The reminder of this paper is organized as follows. Section
II discusses related work. Section III briefly reviews the
building blocks that support our solution. Section IV details
the process to discover change templates from execution
traces. Section V emphasizes implementation aspects and
presents the results achieved with an experimental evaluation.
Finally, Section VI concludes the paper with remarks and
outlines directions for future work.

II. RELATED WORK

In this section we review some investigations in the field of
IT management and briefly describe some process mining
techniques that support our work.

A. Management of IT Systems

Several aspects of IT management have been addressed in
recently published work. Important steps have been taken, for
example, towards formalization of change-related documents
[6], automated planning of IT changes [4][8], and business-
driven scheduling of IT changes [16].

There have also been investigations on automated planning
and scheduling of change operations (e.g., CHAMPS [7] and
CHANGELEDGE [4]), and on deployment of change operations
over managed IT infrastructures (e.g., Opsware [10]). These
solutions, however, require IT operators to explicit design

change plans, and do not offer support to discover change
processes from the analysis of execution traces.

 In a previous work [4], we have proposed the concept of
change templates as a mechanism to formalize, preserve, and
reuse knowledge acquired from previous changes. Template
association, composition, generalization, and specialization
are explored as techniques that facilitate the reuse of
knowledge during the design of changes. In a subsequent
work [8], we have proposed a conceptual solution for the
automated refinement of preliminary change plans into
actionable workflows. Our solution accounts for the impact
that computed actions will cause over the managed IT
infrastructure, when computing the subsequent ones. Finally,
in another previous work [11], we have introduced the
concept of atomic groups in the design of change plans with
the purpose of providing an end-to-end solution to IT change
management with rollback support.

Despite the progresses achieved in the field, as previously
discussed, the use of a mechanism to extract templates from
previously executed changes has not been addressed in
previous investigations. The need for such a mechanism is
underscored by the fact that operator errors account to the
largest fraction of service-delivery disruption caused by failed
changes [12]. In the following subsection, we highlight some
of the most prominent techniques that enable the discovery of
process models from execution traces.

B. Process Mining

The idea of extracting workflow processes from execution
logs has been explored in the field of software engineering
and workflow management [5]. Seminal techniques proposed,
however, were not able to mine workflows having and/or
branches/joins [13]. As a consequence, the resulting
workflows were limited to a purely sequential behavior.

To tackle this limitation, Maruster et al. [13] have proposed
a mechanism to mine workflows from event logs, which
explicitly distinguishes decision points that route the
workflow enactment. In a subsequent work [14], the authors
have extended the class of workflows their technique can
mine, by enabling their algorithm to mine short loops from
event logs. More recently [15], the authors have proposed a
supplementary mechanism that enables understanding how
environment data influences in the routing of a workflow
execution. The proposed mechanism, called Decision Miner,
was implemented and evaluated in the context of a process
mining framework called ProM.

The solution for change template mining, proposed in this
paper, adopts some principles and techniques introduced in
the field of process mining. In the following sections, we
describe the proposed solution in detail.

III. CONCEPTUAL SOLUTION FOR CHANGE TEMPLATE MINING

In order to support template mining, we have introduced a
new component in the conceptual solution for planning and
implementation of changes, proposed in a previous work [4].
This fundamental component – not approached in the original
conceptual solution due to its complexity – materializes our
mechanism for template mining and couples adequately,
without any significant modification, in the already proposed
conceptual solution.

In our solution, the discovery of change templates from
execution traces represents the primary step for the

98

conduction of a change management process. Fig. 1 presents
an overview of the extended solution, highlighting the newly
proposed component and interactions.

The IT Operator starts a change mining process by
interacting with component Change Miner (flow 1 in Fig. 1).
In this initial step, the operator indicates the traces that will be
used for the analysis and subsequent template extraction. The
execution traces consumed in this process are available from
the Configuration Management Database (flow 2). These
traces are typically recorded by the component Deployment
System (a generic abstraction for IT provisioning tools) (3),
during the execution of previous changes over the
Configuration Items (CIs) present in the IT infrastructure. The
Change Miner generates change templates that capture high-
level steps involved in the changes associated to the analyzed
traces. Thereafter, the resulting templates can be modified by
the operator as to precisely reflect his/her needs (1), and
finally stored in the Change Templates repository (4).

Fig. 1. Extended conceptual solution.

The extracted change templates may be latter (re)used, as
envisaged in our original conceptual solution, in the design of
future RFCs, solicited by change initiators, and preliminary
change plans, by operators (interacting with the component
Change Designer). Afterwards, the newly designed
preliminary plans may be refined into actionable workflows
(using the component Change Planner), and subsequently
deployed over the managed CIs (with the aid of a Deployment
System). Please refer to our previous work [4] for additional
information about the use of change templates in the
conduction of IT change management processes.

Having presented a general view of the solution, in the
following subsections we describe, in more detail, the
intermediate, grained-level phases of the change template
discovery process, the models for the persistence of execution
traces and specification of change documents, and the concept
of change management templates.

A. Template Discovery Process Overview

The solution for template mining, encapsulated in the
component Change Miner, comprises three distinct, well-
defined steps. These steps are materialized by subcomponents
Workflow Miner, Decision Miner, and Template Converter,
illustrated in Fig. 2. The relationship between these
subcomponents and with external entities is described next.

Once the change mining process is started by the operator,
the component Change Miner triggers the execution of the
subcomponent Workflow Miner. The purpose of this
subcomponent is to extract workflows that reflect the
behavior of similar changes executed in the past. To this end,

it consumes, from IT-related repositories (flow 1 in Fig. 2),
execution traces generated by IT provisioning tools. By
analyzing these traces, the Workflow Miner is able to discover
the low-level activities (and their relationship) that composed
the past changes. This subcomponent produces typical
workflows of activities having and/or branches/joins.

Fig. 2. Change miner subcomponents.

The workflows generated in the previous step are then
processed by the subcomponent Decision Miner (flow 2).
Also exploring historical information present in the
Configuration Management Database (3), this subcomponent
identifies how data has influenced the execution routing.
Subsequently, it populates the and/or branches/joins present
in the workflows with the conditions that needed to be
satisfied for the transitions to take place. Finally, the resulting
workflows are consumed by the subcomponent Template
Converter (4). This subcomponent will abstract the change
procedures described in the workflows as to enable their
applicability in several, diverse change contexts. Thereafter,
as previously mentioned, the resulting templates may be
modified by the operator and stored in the Change Templates
repository (5) for future (re)use.

B. Change Record and RFC & Change Plan models

The solution for extraction of change templates from
change traces requires the use of models to (i) represent
historic data gathered from different provisioning tools, and
(ii) support the specification of change templates resulted
from the mining process. In this subsection we cover, in more
detail, the models that support our solution.

We have adopted a subset of the Common Information
Model (CIM) [17] to represent traces generated by
provisioning tools from different software vendors. This
model allows representing log information generated by
general-purpose systems and, consequently, enabling the
applicability of our solution in several contexts. Fig. 3
presents a partial view of the model.

The root class of the model is ManagedElement. Through
specialization, it allows the representation of the several
Configuration Items (CIs), as well as IT personnel, which
compose the IT infrastructure. One of the specialized classes,
LogicalElement, enables the representation of IT provisioning
systems that are employed for the implementation of changes
over the managed CIs. Instances of class MessageLog
represent, in the context of our work, the several changes
executed over these CIs. Class LogRecord, in turn, holds
information about tasks executed during the change process
(in other words, it enables the representation of execution
traces). These traces may be associated to one or more
ManagedElement, in this case representing that the associated

Change
Designer

Change
Planner

CI

Change
Templates

Definitive Media
Library

Change
Miner

Operator
Change
Initiator

Operator

(1)

(2)

(3)

(4)

Config. Mgmt.
Database

Deployment
System

Change Miner

Change
Templates

Config. Mgmt.
Database

Operator

(1)

Workflow
Miner

Decision
Miner

Template
Converter (2) (4) (5)

(3)

99

element was involved in the generation of that trace.
In regard to the Requests for Change & Change Plan

model, it enables the design of change-related documents and
relies on both (i) guidelines presented in the ITIL Service
Transition book [2], and (ii) the workflow process definition,
proposed by the Workflow Management Coalition (WfMC)
[9]. A partial view of the model is presented in Fig. 4.

Fig. 3. Model for the representation of execution traces.

Classes such as RFC and Operation (highlighted in white)
allow expressing changes, in a high level of abstraction,
designed by the change initiator. Going down to the level of
change plans, classes ChangePlan, Activity, and Transition
Information (highlighted in grey) support the modeling of
workflows that materialize changes specified in RFC
documents.

Fig. 4. RFC & Change Plan model.

C. Change Management Templates

In the scope of this research, we define change templates as
parameterized building blocks that can be reused in similar,
recurrent change requests. A request template, defined by
means of the classes in white from the model of Fig. 4,
defines a set of prototypical operations to be performed on the
IT infrastructure. These operations have a type and a number
of parameters (Integer, String, etc., or a reference to a CI
affected by the operation) to be consumed during the change.

Plan templates, defined by means of the classes in gray,
comprise steps necessary to materialize recurrent changes
described in RFCs/request templates. The large-grained
activities that compose a plan template also have a number of
parameters, which must be filled in during its instantiation
into a change plan. Please refer to our previous work [4] for
an in-depth explanation on the concept of change templates.

IV. CHANGE TEMPLATE MINING

The conceptual solution and building blocks presented in
the previous section form the fundamental basis for our

change template mining solution. Starting from past execution
traces, our solution extracts the workflows behind the
implemented changes and, afterwards, transforms them into
change templates. In our first iteration at this problem, we
focus on the extraction of templates that comprise simple
execution routing structures, i.e., composed of and/or
branches/joins. In the following subsections, we depict our
solution in more detail. Subsection A presents how actionable
change plans are extracted from execution traces, and
Subsection B details how the extracted plans are transformed
into change templates.

A. Discovering Change Processes from Logs

As presented in Subsection III.B, subcomponent Workflow
Miner is responsible for extracting the actionable change
plans (or actionable workflows) executed for the
implementation of past changes. To materialize the
conceptual functionality of this subcomponent, we have
tailored some concepts from already established process
mining techniques [13][14] to the context of change
management.

There are simplification assumptions adopted by process
mining techniques which are also applicable in our work.
First, they assume that each event present in an execution
trace refers to an activity (i.e., a well defined step in the
workflow). Second, each event refers to a case (i.e., a
workflow instance). Finally, they assume that events present
in the trace are totally ordered. Researchers in the field of
process mining argue that, in fact, any information system
using transactional systems will offer this information in
some form [13]. In the context of our work, activity maps to
change action (the smallest unit of a change present in an
RFC document), cases represent instances of execution of
RFCs onto the target IT environment, and IT provisioning
tools are examples of transactional systems.

TABLE I
EXAMPLE OF CHANGE LOG

Change trace number Executed change actions
Trace 1 a1, a3, a5, a6, a4, a9

Trace 2 a1, a3, a4, a5, a6, a9

Trace 3 a2, a5, a6, a3, a4, a9

Trace 4 a1, a7, a3, a8, a4, a9

Trace 5 a2, a3, a7, a4, a8, a9

Trace 6 a2, a3, a5, a4, a6, a9

In order to enable the applicability of process mining
concepts in the field of change management, we denote ai {0
 i n} as being a change action (smallest unit of a change)
performed over the managed IT infrastructure. Sequences of
change actions are represented by change traces. Finally, a
change log L is a set of all traces related to a same process.
We assume that L may be created by grouping together, from
the log repository, traces that share a same attribute value
(e.g., the same change ID). To facilitate the understanding of
the process, we illustrate each step considering the example of
change log presented in Table I. In this example, there are six
change traces, each composed by nine executed tasks.

The process for the extraction of change plans from
execution logs is comprised of four high-level steps, which
are described below.

1) Creation of the Dependency/Frequency Table: The
Dependency/Frequency (D/F) table [13] contains information
about the frequency of occurrence of events registered in the

1
hasOperation

*

RFC

Operation

ChangePlan ActivitySet

Transition
Information

Leaf
Activity

Block
Activity

SubProcess
Definition

1
hasChangePlan

1

allActivitySet

* 1

allTransitionInformation

1

*
allActivity

1

* from

to * *

* *

Activity

Log

User

Entity
Logical
Element

ManagedSystem

Element

Organizational

Entity

Managed

Element

EnabledLogical

Element

MessageLog

Operation

Log

1

*

RecordForLog

LogRecord
RecordInLog

LogManages

Record

RecordApplies

ToElement

*

*

1

1

*

*

100

change log (e.g., number of executions of each change action,
and number of succession relationships that occur between
them). The information contained in the D/F table are (i) the
identifier of task ai and aj, (ii) the overall frequency of task ai,
(iii) the overall frequency of task aj, (iv) the frequency in
which task ai directly succeeds another task aj (aj > ai), (v) the
frequency in which task aj directly succeeds another task ai (ai
> aj), (vi) the frequency in which ai directly or indirectly
succeeds another task aj, but before the next occurrence of aj
(aj >>> ai), and (vii) the frequency in which aj directly or
indirectly succeeds another task ai, but before the next
occurrence of aj (ai >>> aj). Table II shows an excerpt of D/F
table for the change log illustrated in Table I. We highlight
the number of times in which a3 > a4 holds, suggesting that a3
and a4 are likely to be connected in the workflow.

TABLE II
DEPENDENCY/FREQUENCY TABLE

ai aj # ai # aj (aj > ai) (ai > aj) (aj >>> ai) (ai >>> aj)
a3a1 500 404 236 0 404 0
a3a2 500 96 56 0 96 0
a3a3 500 500 0 0 0 0
a3a4 500 500 0 160 0 500
a3a5 500 339 114 147 0 339
a3a6 500 339 27 86 0 339

2) Calculation of the Local Metric, Global Metric, and
Causality Metric: The Local Metric (LM) expresses the
tendency of succession relation by comparing the magnitude
of (ai > aj) versus (aj > ai). The Global Metric (GM), in
contrast, determines the likelihood of succession between two
change actions ai and aj considering the overall frequencies of
these actions. Finally, the Causality Metric (CM) indicates the
chance that action ai causes the occurrence of action aj. Table
III presents the values for metrics LM, GM, and CM
computed for the pairs of activities presented in the first field
of Table II. For example, the high values of LM, GM, and
CM for the pair a3, a4 reinforce the observation done for the
data in Table II.

TABLE III
VALUES FOR METRICS LM, GM, AND CM

ai aj LM GM CM
a3a1 0 0 0
a3a2 0 0 0
a3a3 0 0 0
a3a4 0.98 0.32 1.00
a3a5 0.50 0.09 0.32
a3a6 0.67 0.17 0.13

3) Computation of the Existence of Direct Succession
Between Tasks: In this step, the three metrics LM, GM, and
CM, computed in the previous step, are combined using a
Logistic Regression Model [14]. The output of this

combination is the probability π that two events ai and aj,
present in the log, are in a direct succession relationship.

4) Generation of the Actionable Change Plan: This last
step consists in identifying and/or branches/joins between
tasks, considering the succession relationship information
present in the D/F table. After identified, they are explicitly
incorporated into the workflow. Finally, the activities in the
discovered plan are associated to the Configuration Items they
affect. Fig. 5 illustrates the change plan extracted from the
change log partially illustrated in Table I.

Fig. 5. Change plan for the change log from Table I.

The reader may note, in the workflow presented in Fig. 5,
that activities a3 and a4 are in a direct succession relationship,
confirming the evidences presented in Tables II and III.

Having presented an overview of the process to extract
change plans from execution logs, the following subsection
focuses on how these extracted plans are converted into
change templates.

B. Extracting Templates from Process Models

Our solution for the conversion of an actionable change
plan into a change template is materialized by a conceptual
algorithm, illustrated in Fig. 6. The conceptual algorithm,
denoted by f, takes as input the change plan C to be
converted, the current state of the IT infrastructure I, and the
Definitive Media Library (DML) R. The output is a change
template T that comprises the high-level steps necessary to
implement the same change described in C in a broader range
of scenarios.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

f (C, I, R) = T {
 declare A = set of activities from the change plan C
 declare S: empty set of activities
 declare T: empty change template

 for each activity ai ∈ A do
 S = S ∪ {set of dependencies of ai, considering I and R}
 T = A - S
 declare B = set of activities a from the change template T
 for each activity ai ∈ B do {
 for each activity bi ∈ B do {
 if (ai bi and there is a path from ai to bi in change plan C) {
 declare cond : null logical expression
 P = {set of paths Pi that connect ai to bi in change plan C}
 for each transition ti arriving at bi do {
 if (∃ Pi ∈ P | ti ∈ Pi)
 cond = cond + (or (condition of transition ti))
 }
 connect ai to bi in T using as condition the logical expression cond
 }
 }
 }
 declare D: empty set of variables v of managed elements
 for each activity ai ∈ B do {
 transform all managed elements e affected by ai into variables v
 D = D ∪ {list of variables v present in activity ai }
 }
 add D to the list of variables of the change template T
 return T
}

Fig. 6. Conceptual algorithm for converting change plans into templates.

Fig. 7 illustrates the functioning of f using a simplified
example. The change plan C presented in the figure –
extracted using the change mining technique presented in the
previous subsection – comprises the steps necessary to install
a Web Application (WebApp).

As a first step towards the conversion of an actionable
workflow into a change template, the set of activities that
belong to the change plan C is copied to A (line 2 in Fig. 6).
Next, an empty set of activities S (line 3), and an empty
template T (line 4) are created. The newly created template T,
in this case, will hold the result of the conversion process.

Activity 9
Install WebApp

 Activity 2
Upgrade

GNU/Linux Activity 7
Install

PostgreSQL

Activity 3
Install Apache

Activity 4
Install PHP

Activity 5
Install MySQL

Activity 6

Install Plug-in

for MySQL

Activity 8
Install Plug-in

for PostgreSQL

Activity 1
Install

GNU/Linux

Conditional Transition

Unconditional Transition

101

Subsequently, for each activity ai that belongs to A (line 6),
f computes the set of dependencies that must be satisfied prior
to its execution, considering information about the target IT
infrastructure I and dependencies between software packages
available in R. The result of this computation is added to S
(line 7). At this point, S is composed only of activities that
satisfy any dependency of any other activities of the change
plan C. In the example illustrated in Fig. 7, S will be
composed of activities Install WebSrv, Install DBServer, and
LibX. In this case, WebSrv and DBServer are software that
must be installed prior to the installation of WebApp
(according to WebApp’s SwChecks, present in the DML).
LibX, in turn, is a software dependency for both WebServer
and DBServer (as both require its prior installation, according
to their SwChecks, also shown in the DML). Since activity
Configure DNS is not an explicitly dependency found in the
DML, it is not added to S.

Fig. 7. Illustration of the template conversion process.

After processing the activities in A, the computed
dependencies (in S) are excluded from A, and the remaining
ones are added to T (line 8). At this point, T is composed only
of activities that cannot be deduced through automated
analysis of dependencies between elements from IT-related
repositories. In the example of Fig. 7, the template T (box 1)
is composed of activities Install WebApp and Configure DNS.

The activities that have been just added to T do not have
any relationships to one another (i.e., there are no
conditional/unconditional transitions between them). This
information must be obtained by observing how activities are
linked to each other in the original change plan C. In order to
compute this information, the set of activities contained in
template T is copied to B (line 9). Subsequently, for each pair

of ordered activities (ai, bj) ∈ B (lines 10-11), if there is at
least a path of activities starting in ai and ending in bj in the
original change plan C (line 12), the following steps are

performed. First, cond is initialized with a null logical
expression (line 13). Subsequently, all different paths of
activities Pij from ai to bj are stored in P (line 14) (Pij, in this
case, is an ordered set of transitions that form a path of
activities from ai to bj). Then, for each transition tk that arrives
at activity bi (line 15), if this transition belongs to any of the
paths in P (line 16), the condition of this transition is used to
build a logical expression, which will be concatenated to cond
(line 17). After all transitions that arrive to bj are processed, ai
is connected to bj in the change template T (line 19), using as
transition condition the logical expression stored in cond. In
Fig. 7, the template T shown in box 1 was modified by the
addition of the transitions between the activities that compose
it, yielding the one presented in box 2.

Once the transitions between activities that compose the
change template T are created, f processes all managed
elements affected by activities in T, converting references to
them into variables. These variables are an important aspect
of change templates, as they permit to abstract the managed
elements that will be affected by the change (please refer to
Cordeiro et al. [4] for further information on template
variables). As a first step towards the processing of these
variables, D is declared as a set of variables v of managed
elements, i.e., pointers to elements belonging to the IT
infrastructure (line 23). Next, for each activity ai of template
T present in B (line 24), the managed elements affected by
these activities are abstracted, i.e., the activity will no longer
be associated to a concrete managed element. Instead, it will
reference variables v having the same class of the affected
managed elements e (line 25). The variables resulted from
this abstraction will be added to D (line 26).

In the example illustrated in Fig. 7, activity Install WebApp
affects two managed elements: the software to be installed
(WebApp), and the computer in which it will be installed
(Server2). After the abstraction step (line 25), the software
installed by Install WebApp becomes Z (and has type
SoftwareElement), and the computer in which the software is
installed becomes X (of type ComputerSystem). Configure
DNS, in turn, modifies software settings of the network’s
domain name server, located in computer Server3. After the
abstraction, the element affected by this activity becomes Y
(ComputerSystem). All these three variables are stored in the
set of variables D, as illustrated in Fig. 7.

As a last step, the variables present in D are added to the
list of variables of the change template T (line 28) and
returned to the change operator (line 29). In Fig. 7, the change
template resulted from this process has three variables, X, Y,
and Z, and is composed of two activities, ordered according to
the relationship information acquired from the previous
change plan C. At this point, the change template T is ready
for use in the instantiation of similar future changes.

V. EXPERIMENTAL EVALUATION

Our template mining solution is supported by
CHANGEMINER, a prototypical implementation of a
subsystem within the CHANGELEDGE system [4]. To prove
the conceptual and technical feasibility of our proposal, we
have conducted an experimental evaluation considering the
extraction of change templates from synthetically generated
traces. This decision was made because it enables a more
thorough analysis of the solution, by enabling the comparison
of the extracted templates with the real processes that have

Sw: WebSrv

Sw: DBServer

S
w

C
he

ck
s

Sw: LibX

Install WebSrv

Install LibX

WebApp : Sw

WebServer : Sw

LibX : Sw

Definitive Media Library

Install WebApp
SwActions

Sw: LibX

Install DBServer DBServer : Sw

IT Infrastructure

Installed
Sw

Installed
OS Srv3: Computer

System
Linux: Operating

System

DNSServer: Sw
Element

MailServer: Sw
Element

Srv1: Computer
System

Srv2: Computer
System

has operation

RFC
Name: Extracted Change Template
Type: Template

has change
 template

Operation
Name: Extracted Operation
Type: Template

X: Computer
System

Z: Software
Element

Activity
Install

WebApp

Activity
Configure

DNS

Y: Computer
System

Activity

Install LibX

Activity
Install WebSrv

Activity

Install DBServer

Activity
Install

WebApp

Activity
Configure

DNS

Change Plan C

Activity
Install

WebSrv

Activity
Install

DBServer

Activity
Install
LibX

Activity
Install

WebApp

Activity
Configure

DNS

S =
Activity
Install

WebApp

Activity
Configure

DNS

(1)

D =

X: Computer System

Z: Software Element

Y: Computer System

Installed
Sw

Change Template T

(2)

Change Template T

102

implemented the changes. Due to space constraints, we focus
our analysis on three of these templates. As a result of the
template mining process, we have observed the correctness
and completeness of the obtained templates, in addition to
performance indicators.

The IT infrastructure employed in the case study was
composed of four servers: Server1, having no operating
system installed on top of it; Server2, having Windows 2003
installed; Server3, and Server4, both having Debian
GNU/Linux installed.

In regard to the change logs consumed during the mining
process, they were generated by simulation of the execution
of four different RFCs on the previously described IT
environment. For each RFC, we have generated one change
log with 500 change traces. Each simulation has considered
uniform distributions for the time spent in the execution of
each activity, as well as distinct probabilities, defined
empirically, for choices present in the change plans.

The first two RFCs used in the simulation had as objective
the installation of an e-Commerce Web application (WebApp),
one of them having Server1 as target CI and the other, Server3.
The third RFC comprised the migration of the entire system
installed on Server3 to Server4. Information about the number
of activities and types of transitions that composed the change
plan associated to each of the three RFCs is presented in
Table IV.

TABLE IV
CHARACTERISTICS OF THE CHANGE PLANS

RFC Activities Conditional Transitions Unconditional Transitions
1 26 16 29
2 84 26 115
3 245 100 383

A partial view of the log generated from the execution of
the first change is presented in Table V, whereas the
characteristics of the templates extracted from the logs of the
three RFCs are summarized in Table VI. An interesting point
to highlight is that templates 1 and 2, generated from RFCs 1
and 2, respectively, encode the prototypical steps (illustrated
in Fig. 8) to implement a same general change. This is
explained by the same goal that both RFCs share, even
though they are concerned with distinct environments, i.e.,
having different sets of dependencies to be fulfilled.

TABLE V
PARTIAL VIEW OF THE CHANGE LOG FROM THE FIRST RFC

Change Trace Executed change actions
Trace 1 a1, a4, a5, a3, a7, a6, a8, a9
Trace 2 a1, a2, a5, a7, a4, a3, a6, a8, a9

Trace 3 a1, a2, a4, a3, a5, a6, a7, a8, a9

Trace 4 a1, a5, a4, a3, a6, a7, a8, a9
Trace 5 a1, a4, a3, a6, a5, a7, a8, a9

TABLE VI
CHARACTERISTICS OF THE EXTRACTED TEMPLATES

Template Activities Conditional Transitions Unconditional Transitions
1 9 2 15
2 9 2 15
3 57 0 65

Figs. 8 and 9 show a partial view of the templates extracted
from the execution traces of the first and third changes,
respectively. The reader may note, in the change template
from Fig. 8, that Activity 2, Install Security Updates for

WebApp, is conditionally executed (for example, whenever
the system in which WebApp is installed requires these
updates). An indication of existence of this decision may be
observed, for example, in traces 3 and 4. In the first trace,
Activity 2 is executed after Activity 1, Install WebApp. In the
second, though, Activity 2 is not executed. The reader may
also note that the order of execution of Activities 3, 4, 5, 6,
and 7 varies in the change traces, indicating the existence of
parallelism upon their execution. As shown in Fig. 8, this
behavior is also captured and materialized in the extracted
change template.

Fig. 8. Partial view of the change template extracted from the change log of
the first RFC.

As for the change template illustrated in Fig. 9, we
highlight the size and complexity of the depicted change
template, extracted from a change log that comprised over
245 distinct, low level change actions. It is important to
mention that the completeness and generality of these
templates is highly influenced by the number of change traces
available during the template mining process. For example, if
a smaller set of change traces were used to compute the
change template from Fig. 9, the representativeness of the 245
activities would be affected, thus making the template mining
mechanism to interpret some (or most of them) as noise. As a
consequence, the resulting template would be less complete
and general (e.g., composed of fewer activities or transitions
between them).

The performance of CHANGEMINER to extract the
previously mentioned templates is presented in Table VII.
Our experiments were conducted on a computer equipped
with a Pentium

tm
 Centrino processor, 1.7 GHz of CPU clock,

2,048 KB of cache, and 512 MB of RAM memory.

TABLE VII
TIME CONSUMED DURING THE TEMPLATE MINING PROCESS

Change
Scenario

Mining Time (s)
Confidence Interval of the Mining Time
Lower Bound (s) Upper Bound (s)

1 31 29 33
2 36 34 39
3 112 104 121

The CHANGEMINER subsystem has performed
satisfactorily, demanding a few dozens of seconds (from 31 to
112) to generate the templates. We have also calculated a
confidence interval of 95% for the measured times,
considering 10 repetitions of the template mining process for
each change. As shown in Table VII, we expect the template
mining processing time to vary minimally, for each scenario.
The results show that our solution not only generates
complete and correct change templates, but has potential to
reduce, in a significant way, time and efforts demanded to this
end.

Activity 1
Install WebApp

Activity 3
Create User

admin at
Database

Activity 4
Load Database
Schema

Activity 6
Grant Privileges
for User admin at

Database

Activity 7
Reload Web

server Settings

Activity 8
Start Web

Application

Activity 9
Publish
WebApp’s

Address at the
Network`s DNS

Activity 5
Reconfigure

Web server for
WebApp
Settings

Activity 2
Install Security
Updates for

WebApp

Conditional Transition

Unconditional Transition

103

Fig. 9. Partial view of the change template generated for the third RFC.

VI. CONCLUSIONS AND FUTURE WORK

Historic data generated by IT provisioning tools has a huge
potential to reveal knowledge behind the conduction of past
changes over managed IT infrastructures. However, the lack
of a mechanism to extract IT change process from these logs,
along with proper support to enable the applicability of these
processes to a broader range of change scenarios, has
hampered the reuse of such knowledge in practice. To address
these issues, we have proposed CHANGEMINER, a solution
that enables the capture and reuse of knowledge – through the
use of change management templates – from historic data
generated during the implementation of past changes.

The experiments performed to evaluate our solution,
although not exhaustive, have showed the feasibility of using
execution logs to produce new change templates. The
templates extracted have captured the nuances of the changes
implemented by the original plans. Furthermore, the
extraction of templates ran on the order of dozens of seconds.
This time is certainly of lower magnitude than the time that a
human operator would spend designing the same templates.

It is important to mention that the change templates
extracted with our solution are not influenced by traces that
describe changes that have failed. Since these traces differ
significantly from the traces that describe successful changes,
the events registered by them (e.g., direct and indirect
succession between activities) are regarded as noise. As a
consequence, they become statistically irrelevant to the
change plan mining process.

One simplification assumption that we have adopted in our
solution was considering and/or branches/joins as not being
influenced by environmental data. In a future work, we intend
to incorporate decision mining techniques [15] to our
solution, in order to generate change templates composed of
decision structures that take into account these data.
Moreover, we plan to (i) evaluate our solution taking into
consideration real-life data (e.g., mining change logs
generated by Opsware [10]), and (ii) further investigate the
sensitivity of the template mining process to the number and
nature of the traces available, and the complexity of changes
available in execution logs.

REFERENCES

[1] Information Technology Infrastructure Library. Office of Government
Commerce (OGC), 2008. http://www.itil-officialsite.com.

[2] IT Infrastructure Library: ITIL Service Transition, v. 3. London: The
Stationery Office, 2007, 270 p.

[3] Sauvé, J. et al. On the Risk Exposure and Priority Determination of
Changes in IT Service Management. In: Distributed Systems:
Operations and Management, San José, USA, pp. 147-158, 2007.

[4] Cordeiro, W. et al. A Template-based Solution to Support Knowledge
Reuse in IT Change Design. In: IFIP/IEEE Network Operations and
Management Symposium, Salvador, Brazil, pp. 355-362, 2008.

[5] Rozinat, A. et al. Discovering Colored Petri Nets from Event Logs. In:
International Journal on Software Tools for Technology Transfer, Vol.
10, No. 1, pp. 57-74, 2008.

[6] Keller, A. Automating the Change Management Process with
Electronic Contracts. In: 7th IEEE International Conference on E-
Commerce Technology Workshops, pp. 99-107, 2005.

[7] Keller, A. et al. The CHAMPS system: change management with
planning and scheduling, In: IEEE/IFIP Network Operations and
Management Symposium. vol.1, pp. 395-408, 2004.

[8] Cordeiro, W. et al. A Runtime Constraint-Aware Solution for
Automated Refinement of IT Change Plans. In: Distributed Systems:
Operations and Management, Samos Island, Greece, pp. 69-82, 2008.

[9] The Workflow Management Coalition Specification. Workflow
Process Definition Interface - XML Process Definition Language.
http://www.wfmc.org/standards/ docs/TC-1025_10_xpdl_102502.pdf.

[10] Opsware Inc. Opsware Data Center Automation Platform.
http://www.opsware.com/.

[11] Machado, G. et al. Enabling Rollback Support in IT Change
Management Systems. In: IFIP/IEEE Network Operations and
Management Symposium, Salvador, Brazil, pp. 347-354, 2008.

[12] Oppenheimer, D.; Ganapathi, A.; Patterson, D. A. Why do internet
services fail, and what can be done about it? In: 4th Usenix Symposium
on Internet Technologies and Systems, Seattle, USA, 2003.

[13] Maruster, L. et al. Process Mining: Discovering Direct Successors in
Process Logs. In: 5th International Conference on Discovery Science,
vol. 2534 of Lecture Notes in Artificial Intelligence, pp. 364-373.
Springer-Verlag, Berlin, 2002.

[14] Medeiros, A. et al. Process Mining: Extending the alpha-algorithm to
Mine Short Loops. In: BETA Working Paper Series, WP 113,
Eindhoven University of Technology, Eindhoven, 2004.

[15] Rozinat, A.; van der Aalst., W. Decision Mining in ProM. In: Business
Process Management 2006, vol. 4102 of Lecture Notes in Computer
Science, pp. 420-425. Springer-Verlag, Berlin, 2006.

[16] Rebouças, R. et al. A Decision Support Tool to Optimize Scheduling
of IT Changes. In: IFIP/IEEE International Symposium on Integrated
Network Management, Munich, Germany, pp. 343-352, 2007.

[17] Distributed Management Task Force: Common Information Model.
http://www.dmtf.org/standards/cim.

Activity 1
Install Linux

Activity 2
Reconfigure
DNS

Activity 3
Create Ordinary
Users

Activity 4
Migrate root
Account Data

Activity 8
Migrate Ordinary
User’s Data

Activity 5
Install MySQL
Server

Activity 9
Migrate MySQL
Server Cfg Data

Activity 10
Reconfigure
DNS for DB

Activity 16
Migrate MySQL
Server Schema Activity 20

Start MySQL
Server

Activity 11
Migrate Apache
Settings

Activity 12
Reconfigure
DNS for WWW

Activity 17
Migrate Apache
Document Root

Activity 13
Install PHP

Activity 18
Migrate PHP
Settings

Activity 23
Reload DNS
Settings

Activity 6
Install Apache

Activity 7
Install Mail
Transport Agent

Activity 14
Migrate MTA
Settings

Activity 15
Reconfigure
DNS for SMTP

Activity 19
Migrate User’s
Mailboxes

Activity 21
Start Apache

Activity 22
Start Mail
Transport Agent

Activity 24
Install Webmail

Activity 28
Reload DNS
Settings

Activity 25
Migrate Webmail
Settings

Activity 27
Reconf. Apache
for Webmail

Activity 26
Reconf. DNS for
Webmail

104

