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Abstract 
This work presents novel hydrodynamic formulations that reconcile the con-
tinuum hypothesis with the emergence of electromagnetic interactions among 
molecules from fundamental principles. Two models are proposed: a relati-
vistic version of the Navier-Stokes equations derived from commutation rela-
tions, and a Helmholtz-like system obtained by applying the Hodge operator 
to the extended Navier-Stokes equations. Preliminary analysis suggests that 
the second model, with its nonlinear terms serving as a generalized current, 
can reproduce microscopic quantum effects. It shows promise for generating 
self-consistent field equations via Bäcklund transformations, remaining valid 
across all scales despite the breakdown of the continuum hypothesis. 
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1. Introduction 

One of the most common questions about mathematical modelling concerns 
about the reliability of partial differential equations. We usually answer this 
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question by talking about variational principles, Euler-Lagrange equations and 
Noether’s theorem. We also use them to present a number of continuous sym-
metries admitted by some equations, which correspond to certain conservation 
laws, and then assume that these laws are totally reliable. 

However, this answer eventually leads to doubts about the circumstances in 
which we should accept conservation laws. Taking into account that uncertainty 
principle allows violating some of these laws during small time intervals, and 
that there exists a scale for which the continuous hypothesis is no longer ad-
missible [1], it seems difficult to find a definitive answer which is not simply 
based on the agreement with experimental data. 

Another common question, concerning about the nature of the potentials, was 
partially solved in the realm of differential geometry. Nevertheless, when one 
asks about how forces act over material bodies, we only mention connections, 
bundles and “minimal” coupling, as we were confident that no further questions 
could arise from the profound implications of these concepts over the conven-
tional phenomenological point of view. 

It occurs that the only way to ensure that a given principle is totally reliable 
consists ultimately in showing that it comes from an identity. At first, this an-
swer also seems unsatisfactory, because it apparently leads to a trivial conclusion 
about the underlying dynamics of the equations of motion. However, it is possi-
ble to show that new crucial information is generated from commutation rela-
tions. In that sense, we can realize that commutation relations are widely used in 
the formulation of models as well as in the resolution of the resulting equations. 
In the case where de application of a commutation relation on any field reduces 
to an identity, we obtain a model that is inherently exact, unlike conservation 
laws that are subject to experimental verification [2]. 

More specifically, there are homogeneous commutation relations which pro-
duce physical laws in macroscopic scale, when some assumptions about the re-
gularity of the dependent variables are considered. This assumption does not 
remain valid in microscopic scale, so the resulting inhomogeneous commutation 
relations must be supplemented by the corresponding anti-commutation ones. 
Such a procedure generates a self-consistent field model where bosonic and fer-
mionic parts are not only strongly coupled but also undistinguishable from naive 
traditional considerations about spin and statistics. Therefore, it is essential to 
construct models that are minimally biased in the pattern identification and the 
corresponding assignment of concepts to them. This formulation should not 
consist of a differential equation but an evolution equation involving only diffe-
rential operators. In order to avoid conceptualization, that is, identifying a field 
with a particular physical quantity, the basic formulation must be independent 
of the field on which the operators are applied. 

In that sense, the first model formulated is a relativistic version of the Navi-
er-Stokes equations containing an extra term related to interactions. This system 
is obtained from commutation relations instead of classical conservation laws. In 
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this model, the zeroth component of the velocity vector is the non-dimensional 
mass density, which can be regarded as the projection of the velocity along the 
time axis. This definition is consistent with the definitions of the four vectors 
current in Maxwell and Dirac equations. 

The second model is analogous to the classical system of Helmholtz equations. 
This system is achieved by applying the hodge operator over the exterior deriva-
tive of the extended Navier-Stokes equations. Since the hodge of the exterior de-
rivative is a natural extension of the rotational operator to four dimensions, the 
extended Helmholtz equations are readily obtained from the corresponding 
Navier-Stokes ones by means of a conventional procedure. 

A preliminary analysis of the classical model obtained reveals that it contains 
sufficient degrees of freedom to emulate quantum behavior. More specifically, 
the nonlinear terms of the extended Helmholtz equations, which also constitutes 
natural extensions of advection and vortex-stretching terms, play the role of a 
generalized current, in the sense that it can reproduce several effects occurring 
in microscopic scale. This model is a promising starting point to generate 
self-consistent field (SCF) equations for quantum physics via Bäcklund trans-
formations. Bearing in mind that commutation relations reduce to identities 
when applied over sufficiently smooth fields, the SCF equations remain valid in 
any scale, even below a limit one for which the continuous hypothesis breaks 
down. 

In the next section, this idea will be introduced by obtaining Maxwell equa-
tions from commutation relations. 

2. Commutation Relations, Conservation Laws and  
Dynamical Equations 

This section begins with two examples, which explain the process in which a 
commutation relation is converted into a physical law. The first example is the 
commutation relation between time derivative and the curl operator, which can 
be converted into Faraday’s law. In fact, equation 

[ ], 0,t∂ ∇× =                           (1) 

generates an identity when the commutator is applied over a regular field f, i.e., 
the expression 

0t tf f∂ ∇× −∇×∂ =                       (2) 

is automatically satisfied for any smooth vector field f. Nevertheless, it can be 
recognized as the Faraday’s law after adopting the following conventions: 

f B∇× =                           (3) 

.t f E∂ = −                           (4) 

Hence, this law, given by 

0t B E∂ +∇× =                         (5) 

was obtained from an identity by assigning a specific meaning to certain fields. 
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Equation (5) can be generalized by including functions belonging to the null 
space of both operators involved in the commutation relation. In fact, a more 
general form of Equation (5) can be expressed as 

( ) ( ), ,t B g x y z E h ∂ + +∇× +∇                   (6) 

In this equation, g and h are arbitrary functions. These gauge type terms also 
appears in another example of differential equation obtained from commutation 
relation: 

[ ], 0.t∂ ∇ ⋅ =                          (7) 

From this relation, two differential equations can be produced. The first is a 
conservation law, whose explicit form is obtained by choosing 

f ρ∇ ⋅ =                           (8) 

and 

.t f j∂ = −                           (9) 

Thus, the identity 

0t tf f∂ ∇ ⋅ −∇ ⋅∂ ≡                      (10) 

becomes the continuity equation: 

0.t jρ∂ +∇ ⋅ =                        (11) 

The second equation is a dynamical law, which is generated by reduction of 
order. Considering that the definition of Equation (8) can be recognized as the 
Gauss law, given by 

,E ρ∇ ⋅ =                           (12) 

Equation (12) can be written, after using Equation (7), as 

( ) 0.t E j∇ ⋅ ∂ + =                        (13) 

Once the null space of the divergent operator is composed by the sum of a 
purely rotational field with the gradient of some harmonic function, Equation 
(13) is equivalent to 

( )2 0 .t E j B h h∂ + = ∇× +∇ ∇ =                 (14) 

This equation can be expressed in a more usual form: 

.t E B h j∂ −∇× =∇ −                     (15) 

The former result is a generalization of the Ampère’s law, given by 

.t E B j∂ −∇× = −                       (16) 

because there is an extra term ( h∇ ) which is absent in the original formulation. 
As will be showed later, this additional field plays the role of a pressure gradient 
in the corresponding hydrodynamic model. 

As in the former case, Equation (15) can be generalized by including gauge 
terms: 

( )( ) ( ), , .t E p x y z B q j∂ + −∇× +∇ = −               (17) 
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It occurs because ( ), , 0t p x y z∂ =  and 0q∇×∇ = . In this equation, the field 
h was intentionally omitted, in order to preserve the original form of the Ampère’s 
law. Finally, since B was defined as the curl of f, it is possible to establish another 
equation to complete the model for electromagnetism: 

0.B∇ ⋅ =                         (18) 

Therefore, the Maxwell Equations (6), (12), (17), and (18) are deducible from 
commutation relations by means of contextualization. In other words, these sets 
of physical laws were achieved from commutation relations by ascribing a 
physical meaning to some fields. In this process, first order operators applied 
over the same field f produce new fields whose meaning is familiar. 

3. A New Formulation for Fluid Mechanics 

The former argument induces to ask whether one can apply the same strategy to 
obtain a mathematical model for other areas of physics. For the specific case of 
fluid mechanics, the commutation relation employed to obtain Navier-Stokes 
type equations, namely [ ], 0t∂ ∇ ⋅ = , also generates the Ampère’s law. 

However, before obtaining the equations of motion for fluid mechanics, it is 
important to establish a correspondence between the dependent variables in 
both models. For instance, the field f, identified with the Maxwell vector potential 
Aµ, in the electromagnetic model, corresponds to the velocity vector in hydro- 
dynamics. This correspondence arises after differentiating Equation (17) respect 
to the time variable: 

( )( ) ( ), , .tt t tE p x y z B q j∂ + − ∂ ∇× +∇ = −∂          (19) 

Once [ ], 0t∂ ∇× =  and function p does not depend on time, it yields 

( ) .tt t tE B q j∂ −∇×∂ +∇ = −∂                 (20) 

In this equation, it is possible to eliminate the time derivative of the magnetic 
induction. Substituting Equation (6) in Equation (20), a Klein-Gordon type 
equation is obtained: 

.tt tE E j∂ +∇×∇× = −∂                    (21) 

It occurs because 

.E E E∇×∇× =∇∇ ⋅ −∇ ⋅∇                  (22) 

However, due to (12), the first term in the right hand side of (22) results 

,E ρ∇∇ ⋅ = ∇                        (23) 

and the second term is the Laplacian of the electric field: 
2 .E E∇ ⋅∇ =∇                       (24) 

Hence, Equation (21) becomes 
2 .tt tE E jρ∂ −∇ =∇ − ∂                    (25) 

In an analogous way, another version of the Klein-Gordon equation is obtained 
by differentiating either Equation (5) or Equation (6) respect to t. For simplicity, 

https://doi.org/10.4236/oalib.1110192


J. Zabadal et al. 
 

 

DOI: 10.4236/oalib.1110192 6 Open Access Library Journal 
 

Equation (5) is chosen to be differentiated, resulting 

0.tt tB E∂ +∇×∂ =                        (26) 

Replacing Equation (15) in Equation (26), it yields 

( ) 0.tt B B j∂ +∇× ∇× − =                      (27) 

Since 
20 .B B B B∇×∇× =∇∇ ⋅ −∇ ⋅∇ = −∇                 (28) 

Equation (27) can be written in the form 
2 .tt B B j∂ −∇ =∇×                        (29) 

The structure of the source terms in Equations (25) and (29) leads to conclude 
that the Maxwell potential also must obey an inhomogeneous Klein-Gordon 
equation, whose source is the current j. Indeed, this result is a well-known model 
[3]: 

2 .tt A A jµ µ∂ −∇ = −                       (30) 

For classical systems, the current is defined as 

,j vρ=                           (31) 

where v denotes the velocity vector. The source in Equation (30) accounts for 
few point charges travelling with a certain velocity. Therefore, this equation 
describes a flow of a very low-density gas, composed by few charged particles, 
which do not interact with each other, but only with the external potential A. 
Hence, each particle travels along independent paths whose trajectories can be 
described by parametric equations. For dense gases and liquids, the current 
corresponds to the inertial terms of the Navier-Stokes equation. In this case, the 
fluid is regarded as a continuous medium, so the material derivative of the 
velocity field accounts for the parametric equations in an implicit way. 

Once established a qualitative correspondence between the current j and the 
advection term v v⋅∇ , it is necessary to replace the charge density in Maxwell 
equations by a non-dimensional mass density for the hydrodynamic model. The 
immediate consequence of this assumption is that v must be a four vector whose 
zeroth component is the non-dimensional density. Hence, the hydrodynamic 
model consists in four nonlinear Klein-Gordon equations given by 

2 .ttv v v v∂ −∇ = − ⋅∇                    (32) 

As in the former examples, this model can be generalized by including extra 
terms, such as the pressure gradient, which generalizes Equation (15) in the 
context of electromagnetic theory (see Equation (15)). In short, once the Max-
well potential is substituted by the four vectors defined as 

( ), , , ,v u v wρ=                      (33) 

the respective current is obtained by taking the four dimensional divergence 
over the tensor product 
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In fact, 

( ) ( ) ,j v v v v v v vµν µ ν µ ν µ ν
µ µ µ µ= ∂ = ∂ = ∂ + ∂              (35) 

which is equivalent to 

( ) ( ) ( ) ( ) .tj v v v v v v vρ= ∇ ⋅ + ⋅∇ = ∂ + ⋅∇              (36) 

Thus, even for incompressible fluids, the hydrodynamic model contains addi-
tional terms, which comes from a natural extension of the Gauss and Ampère’s 
Law: 

( )2 .ttv v v v h∂ −∇ = −∇ ⋅ ⊗ +∇                   (37) 

Once v0 is the density function, the two last terms cancels each other due to 
the continuity equation. Moreover, the scalar function is readily identified with 
the pressure field, i.e., 

.ph
ρ
−

=                            (38) 

Therefore, equation (36) reduces to 

( )2 ,tt
pv v v v
ρ
∇

∂ −∇ = −∇ ⋅ ⊗ −                    (39) 

or 

( ) 2 .tt
pv v v v
ρ
∇

∂ + ⋅∇ ⋅ = ∇ −                     (40) 

In cartesian coordinates, this model is written as 
2

2
2

1 .pu v w
t x y z tt

ρ ρ ρ ρ ρρ ρ
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + + + = ∇ −

∂ ∂ ∂ ∂ ∂∂
              (41) 

2
2

2
1 .u u u u u pu v w u

t x y z xt
ρ

ρ
∂ ∂ ∂ ∂ ∂ ∂

+ + + + = ∇ −
∂ ∂ ∂ ∂ ∂∂

              (42) 

2
2

2
1 .v v v v v pu v w v

t x y z yt
ρ

ρ
∂ ∂ ∂ ∂ ∂ ∂

+ + + + = ∇ −
∂ ∂ ∂ ∂ ∂∂

              (43) 

2
2

2
1 .w w w w w pu v w w

t x y z zt
ρ

ρ
∂ ∂ ∂ ∂ ∂ ∂

+ + + + = ∇ −
∂ ∂ ∂ ∂ ∂∂

              (44) 

Aside from the second order time derivatives, which are responsible to a 
memory effect, this model also accounts for electromagnetic interactions. This 
mechanism is not contemplated in the original form of the Navier-Stokes equa-
tions. Notice that the zeroth component of the velocity field acts as an interaction 
term. This term ensures that even in the limit of vanishing density, two parallel 
streamlines can eventually generate a vortex if the corresponding velocities are 
different. This effect resembles two particles travelling at different speed, 
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which interact with each other at relatively small distances. This scattering ef-
fect is a noticeable feature whose consequences will be discussed in the next 
sections. 

4. The Generalized Vorticity 

Equations (41) to (44) constitute a generalization of the Navier-Stokes system, 
which can be easily converted into a new version of the Helmholtz equations. 
Applying the exterior derivative over the system, it results a new one containing 
six nonlinear Klein-Gordon equations, whose current is defined as the difference 
between two nonlinear terms, and the vorticity arises as a tensor. This structure 
also appears in an extension of the Newton’s law. This point of view is useful to 
confirm the correspondence between the velocity field and the Maxwell potential. 
The starting point to obtain the vorticity tensor from the classical law 

,F ma=                          (45) 

is to extend it to four dimensions as 
2

2
d ,
d

xV m
t

µ

−∇ =                        (46) 

where V stands for the Coulomb potential and the second order time derivative 
can be written as 

2

02
d d d d .

d d dd
x x v v

t t tt

µ µ
µ 

= = = ∂ 
 

                  (47) 

However, the Coulomb potential is the zeroth component of the Maxwell 
vector field, hence, 

0 0.V A Aµ∇ = ∇ = ∂                       (48) 

Substituting (47) and (46) in (45), it yields 

0
0 .A m vµ

µ∂ = ∂                         (49) 

This equation can suffer another generalization by swapping the fixed index 
from 0 to 3: 

.A m vν µ
µ ν∂ = ∂                         (50) 

The skew symmetric form associated to Equation (50), namely 

( ) ,A A m u uν µ µ ν
µ ν ν µ∂ − ∂ = ∂ − ∂                  (51) 

contains two exterior derivatives: the Maxwell tensor and the generalized vortic-
ity one, which consists in an extension of the vorticity vector which accounts for 
viscous effects and electromagnetic interactions. In a complete analogy with 
electromagnetism, the Maxwell tensor, defined as 

,F A A Aνµ ν µ
µ ν= ∂ − ∂ = ∂                    (52) 

https://doi.org/10.4236/oalib.1110192


J. Zabadal et al. 
 

 

DOI: 10.4236/oalib.1110192 9 Open Access Library Journal 
 

becomes 

0
0

0
0

x y z

x z y

y z x

z y x

E E E
E B B

F
E B B
E B B

µν

− − − 
 − =
 −
 

−  

                 (53) 

when expressed in terms of the electric Field and the magnetic induction. Ana-
logously, the vorticity tensor, defined as 

,v vνµ ν µ
µ νω = ∂ − ∂                       (54) 

is written as 

0
0

.
0

0

x y z

x z y

y z x

z y x

µν

ε ε ε
ε ω ω

ω
ε ω ω
ε ω ω

− − − 
 − =
 −
 

−  

                 (55) 

When expressed in terms of the classical velocity vector and an additional 
field which accounts for compression and decelerating processes. These processes 
are characteristic of interaction potentials, whose connection with relativistic 
mechanisms will be explained as follows. 

Imagine a two dimensional element suffering space-time shear stress in the x-t 
plane. In other words, after reaching a “solid interface” whose orientation is pa-
rallel to the time axis, the element is deformed by deviation of the mainstream 
from x to the time direction. 

In this case, applying the classical no slip condition at this “wall” is equivalent 
to prescribe an interacting field. It must be taken into account that no distinc-
tion can be clearly verified between the actions of a “real boundary” or a short 
ranged electromagnetic field over the main flow. In fact, even in mathematical 
formulations there is no significant difference between advection terms and sca-
lar potential ones. Although advection terms contain first derivatives and poten-
tials arise in zeroth order terms, this difference is only apparent. More specifically, 
relativistic models can be formulated in the following tensor form: 

.U Tµ ν µ ν µν∂ Ψ = Ψ +                       (56) 

This system constitutes Bäcklund transformations for Klein-Gordon type 
equations. Here Ψ  represents the four vector wave function, U is a vector field 
and T a tensor one, which accounts for gauge potentials. In fact, applying the 
divergent operator over Equation (56), it yields 

( ) .U U Tµ µ µ µ
µ ν µ ν µ ν µν∂ ∂ Ψ = ∂ Ψ + ∂ Ψ + ∂               (57) 

The second term in the right hand side of Equation (57) is clearly inertial. 
In this case, the components of the corresponding velocity vector are easily 
identified as Uμ. However, Equation (57) can be rewritten in such a way that the 
first derivatives of the wave functions no longer appear in the resulting system. 
Replacing Equation (56) in Equation (57) and regrouping terms, the following 
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auxiliary model is obtained: 

( ) .U U U U T Tµ µ µ µ µ
µ ν µ µ µν ν µν∂ ∂ Ψ = ∂ + + Ψ + ∂           (58) 

This is a typical Klein-Gordon equation, which contains only second deriva-
tives and zeroth order terms. These terms accounts for mass and scalar poten-
tials, which are responsible to the scattering effect. Hence, advection terms are 
hidden in this structure, so there is no reason to distinguish between a vector 
potential field and a velocity one. 

5. The Extended Advection Term and the Space-Time Vortex  
Stretching 

After justifying the correspondence between velocity fields and interaction po-
tentials, it is convenient to introduce the concepts of extended advection and 
space-time vortex stretching, whose relevance is crucial to understand interac-
tions from a different point of view. The tensor form of the Helmholtz equation 
can be contracted by applying the hodge operator, resulting in a set of four equ-
ations in which the usual vorticity becomes a four vector. This procedure gene-
rates a new set of Klein-Gordon equations: 

2 .tt v vω ω ω ω∂ −∇ = ⋅∇ − ⋅∇                   (59) 

Following the terminology of classical fluid mechanics, we define the terms in 
the right hand side as the extended advection ( v ω⋅ ) and the space-time vortex 
stretching ( vω ⋅ ). 

In a certain sense, these terms constitute a generalization of the classical cur-
rent. It comes out that Maxwell equations represent the bosonic system of a 
complete set whose fermionic counterpart are the Dirac equations or any other 
system obtained from the Klein-Gordon model via factorization [4]. The current 
j in electromagnetism is defined in terms of a bilinear form involving the Dirac 
wave functions. In this bilinear form, the wave functions play the role of com-
ponents of a velocity vector and the corresponding conjugates may be regarded 
as the vorticity field in a coarse-grained medium. It is important to keep in mind 
that in a scale for which the continuous hypothesis breaks down, it makes no 
sense to attribute identity to particles, so the internal and external degrees of 
freedom become undistinguishable. Therefore, the advection term and the vor-
tex stretching work as discrete translational parcels whose nature is essentially 
analogous to a trembling motion. Roughly speaking, “zitterbewegung” would be 
emulated by the extended Helmholtz equation, provided that a four dimensional 
complex version of the original model can be deduced by symmetries. 

At this point, it becomes convenient to summarize the former arguments in a 
wider principle. For each quantum model, which stands for the fermionic part of 
a system describing the behaviour of a physical phenomenon in microscopic 
scale, there exists a supplementary set of equations, which accounts for the re-
spective bosonic part. The link between these models is identified by the poten-
tials in the fermionic system and currents in the respective bosonic part. Al-
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though the isolated models seem linear, the coupling between fermions and bo-
sons is hidden in a unique nonlinear self-consistent system of equations. This 
system can be written in terms of either the wave functions only or exclusively in 
terms of the corresponding potentials. In the next section, this principle will be 
exploited in order to obtain a self-consistent model from the Klein-Gordon equ-
ation. 

6. A Self Consistent Model for the Klein-Gordon Equation 

A four dimensional system of equations for fluid mechanics seems to be a prom-
ising starting point to formulate self-consistent models for microscopic scale. In 
other words, the hydrodynamic model contains no currents, but only extended 
velocity fields, so it can be regarded as a “macroscopic self-consistent projection” 
of a complete set of equations in quantum field theory. A simple way to extend 
such a classical model to the microscopic scale consists in applying a generalized 
“analytic continuation”, based on symmetries of quantum models or Bäcklund 
transformations. The possibility of simulating quantum behavior using classical 
models was implicitly pointed out by Giese [5], whose classical interpretation of 
the “zitterbewegung” apparently solved one of the most interesting puzzles of 
quantum mechanics: elucidating the underlying dynamics of the Dirac equations 
[4] [6] [7] [8] [9]. Besides, it was demonstrated that classical diffusion equations 
exhibit quantum behavior when the corresponding diffusion coefficient is an 
imaginary parameter. For practical purposes, applying an analytic continuation 
over a classical model constitutes a more convenient way to obtain self-consistent 
formulations and solutions than employing iterative procedures, such as “ab in-
itio” calculations. These schemes require a high computational effort even to 
simulate the evolution of small quantum systems, such as in chemical reactions 
between inorganic molecules. Finding mappings between nonlinear classical 
models and microscopic ones seems to be a straightforward way to perform the 
simulation of huge molecular systems. This is the main purpose of the proposed 
formulation. 

6.1. Bäcklund Transformations for the One Dimensional  
Klein-Gordon Equation 

So far, the models obtained from commutation relations are closely related with 
Klein-Gordon type equations. This subsection is dedicated to exploit some non-
trivial consequences of this fact, as well as to establish a nonlinear Klein-Gordon 
equation via Bäcklund transformations. This model is expressed in terms of a 
scalar potential, and represents a self-consistent version of the original Klein- 
Gordon equation [10] [11]. The corresponding solutions, given by Weierstrass p 
functions, present a quasi-periodic behaviour which allows representing some 
realistic multiparticle states using a single potential term. 

The one dimensional Klein-Gordon equation, expressed exclusively in terms 
of an interaction potential, is given by 
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2 2 2

2 2 2
V V V
t x

∂ ∂
− =

∂ ∂
                          (60) 

From this equation it is possible to obtain a system of nonlinear PDEs via split 
and reduction of order: 

V
x

∂
= Ψ

∂
                              (61) 

2 2

2 2
V V

xt
∂ ∂Ψ

− =
∂∂

                           (62) 

Indeed, differentiating Equation (61) respect to x and adding to Equation (62) 
restores Equation (60). Imposing the consistency between two possible defini-
tions of the third order derivative Vxtt, namely 

2 2

2 2
V VV

xx t x
∂ ∂ Ψ ∂

= +
∂∂ ∂ ∂

                        (63) 

and 
2 2

2 2
V

x t t
∂ ∂ Ψ

=
∂ ∂ ∂

                          (64) 

it yields 

2 2

2 2 .VV
xt x

∂ Ψ ∂ Ψ ∂
= +

∂∂ ∂
                       (65) 

Finally, using Equation (61) in order to eliminate Vx, the original Klein-Gordon 
arises: 

2 2

2 2 .V
t x

∂ Ψ ∂ Ψ
= + Ψ

∂ ∂
                        (66) 

Although Bäcklund transformations do not constitutes a simple way to isolate 
fermionic and bosonic parts of a quantum model, this approach is particularly 
useful to reinterpret and unify the underlying dynamics of some differential equa-
tions in classical and quantum physics. For example, the same procedure applied 
over a nonlinear version of the Schrödinger equation produces a KdV-type model 
by differentiation respect to x. This subject will be discussed in future works. 

6.2. Bäcklund Transformations for the One Dimensional  
Klein-Gordon Equation 

The nonlinear model obtained is readily solved in two steps: reduction to an 
ODE and mapping into a first order PDE. It occurs that all autonomous and 
homogeneous PDEs can be converted into an ODE by writing the derivatives 
respect to a new argument defined as a linear combination of the original inde-
pendent variables. Defining a new independent variable as 

0 1 2u c c x c t= + +                           67) 

and rewriting the derivatives in terms of this argument, it results 

( )
2 2

2 2
2 1 2

d .
2d

V Vc c
u

− =                          (68) 

https://doi.org/10.4236/oalib.1110192


J. Zabadal et al. 
 

 

DOI: 10.4236/oalib.1110192 13 Open Access Library Journal 
 

The solutions of this nonlinear ODE are the Weierstrass p functions: 

( )0,0, .pV W k c=                           (69) 

Notice that this solitonic solution can be easily extended to three dimensions, 
since u(x,t) can be expressed as a linear combination of all space-time coordi-
nates. The resulting travelling wave solution will be employed to reinterpret 
some relativistic effects whose consequences leads to elucidate certain interac-
tion processes. 

A closer look at the solutions given by Equation (69) reveals a new point of 
view about symmetries and conservation laws. Notice that some particular cases 
of these solutions resembles the classical Lennard-Jones potential. 

7. Conclusions 

This section begins with a summary of the main conclusions obtained so far, in 
order to emphasize the basic assumptions which will be employed as a starting 
point to a more profound discussion. 

1) Commutation relations are more reliable than conservation laws, because it 
remains valid even when the second ones are violated. 

2) Physical models arise naturally as a consequence of ascribing a particular 
meaning to the vector fields over which the operators involved in commutation 
relations are applied. 

3) This procedure allows identify some extra terms which are absent in the 
original formulations. 

4) Such a generalization always produces Klein-Gordon type equations. 
5) The Klein-Gordon equation can be mapped into a nonlinear model con-

taining only a scalar potential. 
6) This nonlinear model can be readily converted into an ODE whose argu-

ment is defined as a linear combination of the original independent variables. 
7) The explicit solutions of the resulting ODE are the Weierstrass p functions 

(Wp), whose local qualitative behaviour resembles the classical Lennard-Jones 
potential. 

8) A single Wp function is capable to represent the physical behaviour of a 
multiparticle potential, so the computational effort required to proceed a simu-
lation of many body quantum systems can be significantly reduced. 

9) While the explicit solutions exhibit soliton behaviour, the corresponding 
space of implicit solutions represents realistic skyrmions. 

These preliminary conclusions encourage us to step forward in the following 
direction: obtaining exact solutions to Yang-Mills type equations which repre-
sent not only instantons, but more comprehensive structures in space-time. The 
viability of the proposed study is justified by the fact that the classical vector 
identity, given by 

∇×∇× = ∇∇⋅−∇ ⋅∇                          (70) 

can be immediately converted into a more general commutation relation in four 
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dimensions, namely 
[ ], d d∇ ∇⋅ = ∗                            (71) 

where * is the Hodge operator and d stands for the exterior derivative. This in-
homogeneous commutation relation can be converted into a Yang-Mills type 
model, after choosing a particular vector field over which the operators in both 
sides of Equation (71) could be applied. Choosing f = A it results 

[ ], * ,A d dA∇ ∇⋅ =                         (72) 

This equation has some interesting features whose similarity with the ex-
tended Helmholtz equation is noticeable. A preliminary analysis of the nonlinear 
terms in the right hand side of the hydrodynamic model furnishes strong evi-
dence that some crucial features of microscopic scale can be reproduced by the 
extended Helmholtz equations. The term v·ω is responsible not only by the 
transport of the vortices and dissipating them by generating high frequency 
perturbations in the velocity field, such as in the Kolmogorov cascade. It is also 
responsible by attractive forces between these coherent structures, which main-
tains the integrity of the vortex wake as it were a stable resonant molecular 
structure. The term ω·v performs a kind of “parallel transport” of velocity vec-
tors along “wiggly” space-time hyper surfaces. The combination of these two ef-
fects resembles some features of quantum field dynamics which have no coun-
terpart in classical models, such as vacuum fluctuations, asymptotic freedom, 
particle creation and annihilation, as well as skyrmionic structures. 

Even the most trivial feature associated with the advection term of the ex-
tended Helmholtz equation, e.g., the “scattering between two adjacent mole-
cules”, produces remarkable effects. One of the immediate consequences of the 
scattering effect is that turbulence may arise in almost any scale below a given 
upper limit, provided that coherent structures of different sizes can be produced 
and destroyed from “almost uniform” flows, depending on the magnitude of the 
free average velocity. In this point of view, viscosity appears as a measure of the 
average molecular weight of the clusters, which constitute the focuses of coher-
ent motion. When a given cluster of molecules collides with other one or even 
with a solid wall, the coherent structure may be decomposed, producing smaller 
“oligomers”, which are associated with regions of lower viscosity. This argument 
corroborates the need to redefine a local Reynolds number based on more than 
one scale [12]. Once fluctuations are generated by deviations, which ultimately 
consists in scattering, a local Reynolds number would represent a more adequate 
measure of the turbulence than the corresponding usual definition, which de-
pends only on a macroscopic characteristic length. It is also possible to infer that 
the drag crisis arises as a consequence of an intense fragmentation of the clusters 
near the wall, a process which is similar to a local reversible phase transition. In 
this case, the clusters reach a minimum size, corresponding to individual mole-
cules, which offers a very low resistance to the main flow. 

These qualitative ideas will be fully exploited in future works, when the results 
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obtained via numerical and analytical solutions will furnish subsidies to show 
the fundamental differences between the original and extended Helmholtz equa-
tions in a more detailed way. Although some interesting scenarios in fluid me-
chanics were yet obtained, we also intend to simulate events in microscopic scale, 
in order to verify the limitations of the proposed formulation. 
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