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ABSTRACT

In a planning task, an agent must choose the most efficient action from a po-

tentially large set of actions at each step. During a heuristic search, logic-based

planners use preferred operators to reduce the branching factor significantly. This

work presents a method for sampling and learning preferred operators, aiming

for their applicability across the entire state space of a planning task. We demon-

strate that these learned preferred operators have competitive results compared

to the current best logic-based approach. Our objective is to identify ideal pre-

ferred operators, situated along the shortest paths leading to some goal. How-

ever, due to the huge size of search state spaces, we introduce a novel sampling

strategy tailored for extracting preferred operators that approximate the ideal

ones. Our research shows we can obtain high-quality preferred operators from a

sample set covering a fraction of the state space. To understand this new category

of preferred operators, we conduct controlled experiments using planning tasks

where we have access to the entire state space with perfect cost-to-goal estimates.

We systematically compare the proposed approach to baselines, evaluate the ef-

fectiveness of learned preferred operators learned from several sample set sizes,

and assess their performance when combined with different heuristic functions.

Keywords: Classical planning. Heuristic search. Preferred operators. Machine

learning.



Descoberta e Aprendizado de Operadores Preferidos para Planejamento

Clássico com Redes Neurais

RESUMO

Em uma tarefa de planejamento, um agente deve escolher a ação mais eficiente

de um conjunto potencialmente grande de ações em cada passo. Durante uma

busca heurística, planejadores lógicos usam operadores preferidos para reduzir

significativamente o fator de ramificação. Este trabalho apresenta um método

para amostragem e aprendizagem de operadores preferidos, visando sua aplica-

bilidade em todo o espaço de estados de uma tarefa de planejamento. Demons-

tramos que esses operadores preferidos aprendidos têm resultados próximos à

melhor abordagem lógica atual. Nosso objetivo é identificar os operadores prefe-

ridos ideais, que estão situados ao longo dos caminhos mais curtos que levam a

algum objetivo. No entanto, devido ao enorme tamanho dos espaços de estado,

apresentamos uma nova estratégia de amostragem adaptada para extrair opera-

dores preferidos que aproximam os ideais. Nossa pesquisa mostra que podemos

obter operadores preferidos de alta qualidade a partir um conjunto de amostras

que abrange uma fração do espaço de estados. Para obter uma compreensão

mais aprofundada sobre essa nova categoria de operadores preferidos, realiza-

mos experimentos controlados usando tarefas de planejamento sobre as quais

temos acesso a todo o espaço de estados com estimativas perfeitas de custo para

o objetivo. Nós comparamos sistematicamente a abordagem proposta com ba-

selines, avaliamos a eficácia dos operadores preferidos aprendidos com variados

tamanhos de conjuntos de amostras e avaliamos o desempenho quando combi-

nados com diferentes funções heurísticas.

Palavras-chave: Planejamento clássico. Busca heurística. Operadores preferidos.

Aprendizado de máquina.
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1 INTRODUCTION

Planning tasks can be solved through heuristic search, which systemati-

cally expands potential states in a search space based on an informed guess, or

heuristic, about which states are likely to lead to a solution. In planning, preferred

operators act in conjunction with heuristic functions and help reduce the number

of expanded states during the planning process by prioritizing states considered

advantageous.

This study introduces a novel approach to deriving preferred operators

in planning tasks. Unlike the traditional logic-based methods, we use a sample-

based approach to discover preferred operators. By training a neural network

(NN) with a sample set consisting of pairs of states and their preferred operators

discovered during the sampling procedure, the NN learns to generalize preferred

operators for the given planning task.

1.1 Planning

Planning involves determining a series of operators (or actions) that trans-

form a given initial state to satisfy a goal condition. In a classical planning task,

the agent acts in a fully-observable environment, i.e., with access to all relevant

information of the current state of the world, such as the positions of objects.

The agent starts in a initial state and needs to fulfill a specific goal condition.

This is achieved by using deterministic operators to modify the current state of

the world. A solution plan for the planning task is as a sequence of operators

that successfully satisfy the goal condition when applied to the initial state. A

state expansion involves the application of all relevant operators to a given state,

thereby generating its successor states.

For example, in a Blocks World task, consider the initial state (left) and the

goal state (right) shown in Figure 1.1. The agent needs to apply a sequence of

operators to reach the goal state from the initial state. We can define operators

such as “pick up block X”, “put block X on block Y”, and “put block X on the

table.” In this example, the agent can find one of the possible plans by applying

the following operators: pick up block G, put block G on the table, pick up block

B, put block B on block G, and put block R on block B.
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Figure 1.1 – Initial state and goal state of a Blocks World task.
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Planners are software systems specifically designed to find plans for plan-

ning tasks. Planners that do not rely on reasoning about SAT formulas may use

several algorithms and techniques to explore the search space of possible opera-

tors and states in order to find an optimal plan, where the best possible solution

is returned, or a satisfactory plan, where a suboptimal solution can be returned.

Planning systems typically take as input a formal representation of the planning

problem, including the initial state, goal condition, and a set of available opera-

tors. The formal representation of a planning task can be specified using various

notations (Section 2.1). In this study, we focus on discovering a satisfactory plan

for a given task using a best-first search algorithm.

1.2 Heuristic Search

Planners commonly use a best-first search algorithm such as greedy best-

first search (GBFS) (DORAN; MICHIE, 1966). GBFS arranges states in a priority

queue based on their cost-to-goal estimate (also known as heuristic value or h-

value) provided by the heuristic function. It first expands states with the lowest

cost-to-goal estimate to find a solution. Various domain-independent heuristics

effectively compute the cost-to-goal estimate of a state by using domain logic,

which has information that permits reasoning about operators and other rules,

such as mutual exclusive relations (mutexes) that indicate infeasible states. These

heuristics are based mainly on techniques such as abstractions (CULBERSON;

SCHAEFFER, 1998), delete relaxation (HOFFMANN; NEBEL, 2001), and land-

marks (HOFFMANN et al., 2004; HELMERT; DOMSHLAK, 2009). The heuristic

function is the most important component of a planner since it guides the search.
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1.3 Preferred Operators

Operators considered advantageous for specific reasons, such as generat-

ing states closer to the goal, are referred to as preferred operators (HELMERT,

2006; RICHTER; HELMERT, 2009). These operators are used alongside heuristic

functions to assist planners in minimizing the number of expanded states when

solving a planning task. By prioritizing the expansion of states generated by pre-

ferred operators, planners benefit from additional guidance, often resulting in a

higher success rate for solving tasks than relying only on the heuristic function.

Learning preferred operators shares similarities with learning policies, as both

involve selecting actions more likely to result in desirable outcomes. The existing

methods for identifying preferred operators are currently limited to logic-based

approaches. The current most effective method uses the preferred operators com-

puted alongside the Fast-Forward (FF) heuristic (HOFFMANN; NEBEL, 2001), as

implemented in the Fast Downward planning system (HELMERT, 2006). Plan-

ners incorporating preferred operators emerged as winners in the satisficing track

of the International Planning Competition (IPC) in the years 2004 (HELMERT,

2006), 2008 (RICHTER; WESTPHAL, 2010), 2011 (RICHTER et al., 2011), and

2018 (SEIPP; RÖGER, 2018).

1.4 Learning with Neural Networks

Learning with NNs refers to a machine learning approach that involves

designing and training interconnected layers of artificial neurons, known as neu-

ral networks, inspired by the biological brain. It involves learning hierarchical

representations of data, where each layer in the network progressively extracts

more complex and abstract features. Through the usage of NNs, learning algo-

rithms can automatically discover and capture patterns from large-scale datasets

in various tasks, including image classification, speech recognition, and natural

language processing.

Learning models based on NNs can learn in different ways. This study

focuses on supervised learning, which uses labeled datasets to classify or make

predictions. In this case, a dataset used to train an NN can be represented as

multiple pairs in the format (y, x). The target y refers to the desired output or
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label associated with a specific input instance x. With supervised learning, an

NN can effectively learn and generalize from the provided labeled data to make

accurate predictions or classify new, unseen inputs.

1.5 Learning in Planning

In recent years, interest in using NNs to learn heuristic functions (FERBER

et al., 2020; YU et al., 2020; SHEN et al., 2020; FERBER et al., 2022; O’TOOLE

et al., 2022; BETTKER et al., 2022) or policies (TOYER et al., 2018; TOYER et al.,

2020; STÅHLBERG et al., 2022) to solve planning tasks has increased. The gen-

eral approach for supervised methods is to generate a set of samples as pairs of

states and cost-to-goal values and use them for training an NN. However, it is

challenging to learn effective heuristic functions since state spaces tend to grow

exponentially in size as the amount of information needed to describe them in-

creases, but the portion of the state space that we can actually sample is relatively

small. Logic-based heuristics can be applied to any domain, while learned heuris-

tics depend on the learning model, and even with domain-independent models,

transfer learning can be difficult (SHEN et al., 2020). Moreover, learned heuristics

are generally slow to compute, thus they need to be more informed, i.e., expand

fewer states when compared to logic-based heuristics to reach the goal. These

characteristics also apply to learning preferred operators.

1.6 Contributions

This study represents the first attempt to discover preferred operators from

a sample set and use an NN to learn them. We present a new sampling method

and a novel sample-based technique for identifying preferred operators. The

technique involves backward search from the goal condition (also known as re-

gression), constructing a graph with sampled states representing their successor-

predecessor relationships, and determining the operators used to reach the goal

condition as preferred operators for each state. We show that an NN can learn

the preferred operators from a subset of the state space and effectively extend

this learning to the entire state space across diverse planning domains. Further-
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more, the proposed approach outperforms the current best logic-based preferred

operator method in the benchmark tasks. In particular, this work presents:

• A novel method based on shortest path graphs to discover preferred oper-

ators in an existing sample set (Section 3.2).

• A new sampling method tailored for discovering preferred operators (Sec-

tion 3.3).

• An analysis of the quality of the learned preferred operators and a compar-

ison to existing logic-based methods (Chapter 4).
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2 BACKGROUND

This chapter provides essential information for comprehending the subse-

quent chapters of this work.

2.1 Classical Planning Notation

In this section we present two ways to represent a classical planning task.

The first one, STRIPS (FIKES; NILSSON, 1971), represents a planning task using

propositional facts (Boolean variables). The second way, SAS+ (BÄCKSTRÖM;

NEBEL, 1995), represents a planning task using multi-valued state variables.

2.1.1 STRIPS

Definition 1 (STRIPS Planning Task). A planning task in STRIPS representation is

defined by Π = ⟨F ,O, s0, s∗⟩, where F has all the possible facts (propositions) that can

be used to describe a state,O is a set of operators, s0 ⊆ F is an initial state, and s∗ ⊆ F is

the goal condition that specifies the facts that should be true to solve the task. A state s is

defined as s ⊆ F , where each fact in s can be true (f ∈ s) or false (f /∈ s). An operator o ∈
O is defined by a triple ⟨pre(o), add(o), del(o)⟩ that specifies its precondition, add-effects

and delete-effects, respectively, which are denoted as sets of facts.

In STRIPS, we say that operator o is applicable to state s if its preconditions

are satisfied by s, i.e., pre(o) ⊆ s, and produces a successor state s′ = succ(s, o) =

(s\del(o))∪eff(o). In other words, we progress a state s with operator o by setting

the propositions in del(o) to false and in add(o) to true. The set of successor states

of s is denoted by succ(s) = {succ(s, o) | o ∈ O, pre(o) ⊆ s}.
STRIPS formulas use conjunction of propositions with logical connectives

to express compound preconditions and effects. STRIPS has no negated precondi-

tions, and it is not possible to directly specify conditional effects, where the effect

of an action depends on the initial state. However, we can simulate conditional

effects by creating new operators in the planning task.

Definition 2 (Plan). A sequence of operators π = (o1, . . . , ok) is valid for a state s0 if

produces a sequence of states s1, . . . , sk such that si = succ(si−1, oi). A sequence π for
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the initial state s0 is called a plan if s∗ ⊆ sk. The plan length is defined as |π|. Among

all the valid plans, the one with the minimum length is referred to as an optimal plan π∗.

An optimal plan is the shortest plan that successfully achieves the goal condition from the

initial state. Since in this work we only consider unitary cost operators, the plan cost is

equal to the plan length.

Heuristics based on delete-relaxation obtain the heuristic from a relaxed

version of the planning task. A relaxed planning task in STRIPS is defined as

Π+ = ⟨P ,O′, s0, s
∗⟩, where O′ = {⟨pre(o), add(o), ∅⟩ | o ∈ O}, i.e., the delete-effects

of the planning task are ignored. Relaxed tasks can be solved efficiently even

though finding the optimal solution is NP-hard (BYLANDER, 1994). For exam-

ple, the heuristic hadd approximates the perfect heuristic value for a state s as the

sum of the costs of achieving each proposition in s∗ independently of the others.

2.1.2 SAS+

We also use the SAS+ representation to describe classical planning tasks

independent of any particular domain. SAS+ shares similarities with STRIPS, but

it allows state variables to have an arbitrary and potentially non-binary finite do-

main. These multi-valued variables can express mutexes that are not explicitly

recognized in STRIPS. Suppose we have a planning task with a robot in a grid

with n possible locations it needs to visit. With STRIPS, we need n facts to indi-

cate all the possible locations where the robot can be, and the STRIPS representa-

tion does not explicitly capture the mutex that the robot cannot exist in multiple

locations simultaneously. In SAS+, this information can be naturally expressed

using a single multi-valued variable for the location of the robot. The variable

has a finite domain consisting of the n possible locations, enforcing that the robot

can only occupy one location at a time. Thus, only one proposition from the n

possibilities can be true in any state.

Definition 3 (SAS+ Planning Task). A SAS+ task is defined as Π = ⟨V ,O, s0, s∗⟩,
where V is a set of state variables, and each variable v ∈ V has a finite domain dom(v),

that represents the possible mutually exclusive values of each variable, O is a set of

operators where each operator o ∈ O is defined as a pair of preconditions and effects

(pre(o), eff(o)), both partial states s defined as a partial function s : V → D, where
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D = ∪v∈V dom(v), such that s(v) ∈ dom(v) whenever s(v) is defined. Otherwise, s(v)

is undefined and written as s(v) = ⊥. Given a partial state s, var(s) ∈ V is a finite set

which lists all variables assigned in s. A (complete) state s is a partial state defined on

all variables in V , i.e, var(s) = V . The state s0 defines the initial state, and the partial

state s∗ defines the goal condition.

An operator o ∈ O is applicable to a state s if its preconditions are fulfilled

by s, i.e, s ⊆ pre(o), and it generates a successor state s′ = succ(s, o) := eff(o) ◦ s.

Here, s′ = t ◦ s is defined as s′(v) = t(v) for all v such that t(v) is defined, and for

all other cases, s′(v) = s(v). The set of all successor states resulting from state s

is denoted by succ(s) = {succ(s, o) | o ∈ O, s ⊆ pre(o)}. A state variable can never

be made undefined once made defined by an operator.

We can represent planning tasks in STRIPS using SAS+ by converting each

fact to a state variable with domain true and false. On the other hand, SAS+ can be

represented in STRIPS by converting each possible variable assignment to a fact.

Note that SAS+ supports partial assignments while STRIPS assumes all states

are complete (unmentioned facts are considered false). SAS+ tasks are generally

more concise than STRIPS tasks. In STRIPS, if we have n facts, the size of the set

of states would be 2n. In SAS+, with n variables, the size of the set of states would

be dom(v1)× dom(v2)× . . .× dom(vn).

2.2 Regression

Progression involves determining the successor states of the current state

by applying a sequence of operators, and regression involves determining prede-

cessor states that can lead to the current partial state. In regression, an operator o

is considered relevant for partial state s if effr = dom(eff(o))∩dom(s) ̸= ∅, and con-

sistent if s ⊆ eff(o)|effr . Relevance requires that at least one variable is defined both

in the effect and in the partial state to be regressed, and consistency requires an

agreement on such variables. An operator o is backward applicable in partial state s

if it is both relevant and consistent with s, and it leads to a predecessor pred(s, o)

given by pred(s, o) = pre(o) ◦ (s|dom(s)\effr). Note that s ⊆ succ(pred(s, o), o), but

can differ from s since the operator o may have changed the values of variables

that were not defined in s.
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A partial state s has predecessors pred(s) = {pred(s, o) | o ∈ O}, where or

is applicable to s. A regression sequence from state s0 is valid if oi can be applied

to si−1 and produces si = pred(si−1, oi). All partial states sk can reach a partial

state s0 ⊆ s in at most k forward applications of the reversed operator sequence.

Since the goal is a partial state, a valid regression sequence ρ = (o1, . . . , ok) will

generate a sequence of partial states that can reach the goal in at most k steps.

Note that progression and regression in planning are asymmetric because each

state in the regression (backward) state space can represent a set of states in the

progression (forward) state space (ALCAZAR et al., 2013).

2.3 State Spaces

Let S be a set of states, s0 ∈ S be an initial state, s∗ ∈ S be the goal condi-

tion, and succ : S → 2S be a successor function, which maps each state to a set of

possible successor states and determines the available transitions. A state space

is a tuple SP = ⟨S, s0, s∗, succ⟩.

Definition 4 (State Space of Π). For any planning task Π with states S, initial state

s0, goal condition s∗, and successor function succ, the corresponding state space of Π is

denoted as SP(Π) = ⟨S, s0, s∗, succ⟩.

The forward state space (FSP) refers to the set of states that can be reached

from the initial state s0 by applying the successor function succ in the forward

direction. It represents the states that can be reached forward from the initial

state towards the goal condition.

Definition 5 (Forward State Space of Π). The forward state space for a planning task

Π is denoted as FSP(Π) = ⟨SF, s0, s
∗, succ⟩, where SF is the set of states reachable from

the initial state, and succ : SF → 2SF is the successor function that maps each state to

a set of possible successor states and determines the available transitions in the forward

direction.

In other words, FSP(Π) is defined as the subset of states and transitions

within SP that are relevant to the planning task Π and the forward expansion

towards the goal condition. States from the FSP are expanded when solving a

task, for example by using a best-first search algorithm.
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The backward state space (BSP), on the other hand, refers to the set of

states that can be reached from the goal condition s∗ by applying a predecessor

function pred. It represents the states that can be reached backward from the goal

condition towards the initial state (regression).

Definition 6 (Backward State Space of Π). The backward state space of a planning

task Π is denoted as BSP(Π) = ⟨SB, s0, s
∗, pred⟩, where SB is the set of states reachable

from the goal condition and pred : SB → 2SB is a predecessor function that maps each

state to a set of possible predecessor states and determines the available transitions in the

backward direction.

2.4 Heuristic Functions

A heuristic function h : S → R≥0 ∪ {∞} estimates the optimal plan length

from a state s to the goal s∗, where the perfect heuristic function is defined as

h∗(s) = |π∗
s |, i.e., the length of the optimal plan from s to s∗. Heuristic functions

are used to guide search algorithms, optimization techniques, or decision-making

processes by providing informed estimates or approximations based on available

information or problem-specific knowledge. The goal of a heuristic function is to

efficiently guide the search or decision-making process towards more promising

paths or solutions, even in the absence of complete or perfect information. A

heuristic function can have several properties that indicate its quality, such as:

• Admissibility: h(s) ≤ h∗(s), i.e., the heuristic never overestimates the true

cost-to-goal.

• Consistency (or monotonicity): h(s) ≤ h(s′)+ cost(o) for all transitions from

a state s to a successor s′, i.e., s o−→ s′, where cost(o) is the cost of applying

operator o to reach s′ from s.

• Goal-awareness: h(s) = 0 for all goal states.

• Safeness: h(s) =∞ implies h∗(s) =∞, for example in dead-ends.

Heuristics are typically derived from a model of the task, such as the SAS+

model introduced earlier, but can also be obtained by learning the map of some

state s to its heuristic value h(s), where the desired output of the NN can be

either the direct cost-to-goal estimates or some form of encoding representing

these estimates.
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In this study, we use a propositional representation of a state to learn

heuristic functions and preferred operators (FERBER et al., 2020; YU et al., 2020;

FERBER et al., 2022; O’TOOLE et al., 2022; BETTKER et al., 2022). We use the

notation from Bettker et al. (2022). Consider a planning task Π = ⟨V ,O, s0, s∗⟩,
where V = {v1, . . . , vn} is a set of variables, and D(vi) = {di1, . . . , di,si} the do-

mains of variable vi, where i ∈ [n]. A state s is represented as a sequence of facts

F(s) = (f11, f12, . . . , f1,s1 , . . . , fn1, fn2, . . . , fn,sn). Each fact fij = [s(vi) = dij] corre-

sponds to a variable vi taking on a specific value dij in state s. If the variable vi

has the assigned value dij in state s, then the fact fij is considered true. The facts

Fi = {fi1, . . . , fi,si} associated with variable vi must adhere to the consistency

condition
∑

f∈Fi f ≤ 1. This means that each variable can take at most one value.

When vi is undefined,
∑

f∈Fi
f = 0.

For example, let F be a set of facts, and let fi, fj ∈ F be two facts. We say

that fi and fj are mutex if ¬(fi ∧ fj) holds, i.e., fi and fj cannot both be true at

the same time in any valid state of the planning problem. We use the notation

mutex(F) to denote when the constraint
∑

f∈F [f ] ≤ 1 must be satisfied for the

states of the planning task.

2.5 Greedy Best-First Search

Greedy best-first search (GBFS, Algorithm 1) is a best-first search algo-

rithm typically used by planners to solve planning tasks by expanding the FSP.

GBFS organizes states in a priority queue based on their cost-to-goal estimate,

which is determined by a heuristic function h. GBFS expands states with the

lowest cost-to-goal estimate first in order to find a solution. Unlike the A∗ al-

gorithm (HART et al., 1968), GBFS does not consider the cost of the path taken

(g-value). This can make GBFS efficient when the heuristic function is accurate,

but it sacrifices optimality guarantees, whereas A∗ is optimal when the heuristic

used is both admissible and consistent.
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Algorithm 1 Greedy best-first search

1: procedure GBFS(s0, s∗, h)
2: Q← priority queue ordered by lowest h
3: if h(s0) <∞ then
4: Insert s0 into Q with priority h(s0)
5: Mark the initial state s0 as visited
6: end if
7: while Q is not empty do
8: s← state with the highest priority in Q
9: Remove s from Q

10: if s satisfies the goal condition s∗ then
11: return the solution
12: end if
13: S ′ ← {s′ | s′ ∈ succ(s)}
14: for all successor states s′ ∈ S ′ do
15: if s′ has not been visited and h(s′) <∞ then
16: Mark s′ as visited
17: Insert s′ into Q with priority h(s′)
18: end if
19: end for
20: end while
21: return failure (no solution found)
22: end procedure

2.6 Preferred Operators

Preferred operators can be described as operators that, given a particular

state s, tend to generate successors more likely to satisfy the goal condition when

compared to other successors of s. Preferred operators provide a way to priori-

tize the expansion of certain states over others during the search. Although the

method of identifying preferred operators varies, Hoffmann and Nebel (2001) in-

troduced the first approach in the original Fast-Forward (FF), where preferred

operators are computed alongside the FF heuristic. Specifically, the FF planner

computes a relaxed planning graph (Algorithm 2) that represents the relaxed

task, ignoring delete-effects. From the relaxed planning graph, FF extracts the

relaxed plan (Algorithm 3) with its length as the cost-to-goal estimate for a state

s. To extract the relaxed plan, the algorithm marks the goal facts that need to

be achieved at each layer k of the relaxed planning graph, then iterate from the

last layer to the initial layer, marking the actions at layer k that achieve the goal

facts of the same layer. The preferred operators, then called helpful actions, are de-
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Algorithm 2 Computing the relaxed planning graph

1: procedure RELAXEDPLANNINGGRAPH(relaxed planning task Π+)
2: P0 ← s0 # Initial proposition layer.
3: k ← 0 # Index of the current layer.
4: while s∗ ⊈ Pk do
5: k ← k + 1
6: # Computes the action layer Ok at layer k, i.e., all the actions
7: # with the preconditions satisfied in the preceding layer.
8: Ok ← {o ∈ O | pre(o) ⊆ Pk−1}
9: Pk ← Pk−1

10: for all o ∈ Ok do
11: # Computes the proposition layer Pk at layer k.
12: Pk ← Pk ∪ add(o)
13: end for
14: if Pk = Pk−1 then
15: return failure
16: end if
17: end while
18: G+ ← [P0, O1, P1, . . . , Ok, Pk] # The relaxed planning graph.
19: return G+

20: end procedure

fined as the set {o | pre(o) ⊆ s, add(o) ∩ S∗
k=1 ̸= ∅}, where S∗

k=1 denotes the set of

goal facts at layer 1 of the relaxed plan (note that the preconditions of operators

that add a fact of the goal are also inserted to S∗ as subgols). In summary, the

preferred operators of the FF planner are a subset of all possible operators that

satisfy two conditions: they can be applied given the current state and contribute

to achieving at least one goal fact at the first layer of the relaxed plan.1

In the original implementation of the FF planner, the preferred operators

prune the search space and only evaluate successors generated via preferred

operators. However, this makes the search incomplete (RICHTER; HELMERT,

2009), i.e., it does not guarantee a solution or determine if there is none, and FF

restarts without preferred operators if they fail.

The current approach to extract preferred operators is the one implemented

in the Fast Downward planning system (HELMERT, 2009), based on domain

transition graphs, compatible with SAS+, instead of planning graphs as previ-

ously described, where the preferred operators obtained with the computation

of the FF heuristic are the current best. Fast Downward extends the “vanilla”

GBFS algorithm to support preferred operators and ensure completeness. This is

1Algorithms 2 and 3 were modified from Wickler and Tate (2013).
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Algorithm 3 Extracting the relaxed plan

1: procedure RELAXEDPLAN(relaxed planning graph G+, goal facts s∗)
2: P ← proposition layers of G+

3: O ← action layers of G+

4: plan← ∅
5: # firstlayer(x,y) returns the number of the first layer at which x appears in y.
6: # M = maximum(index of the first layer where each fact of s∗ first appears in P ).
7: M ← max{firstlayer(s∗i , P ) | s∗i ∈ s∗}
8: for k ← 0 to M do
9: # S∗

k are the goal facts that need to be achieved in Pk.
10: S∗

k ← {s∗i ∈ s∗ | firstlayer(s∗i , Pk) = k}
11: end for
12: for k ←M to 1 do
13: for all s∗k ∈ S∗

k do
14: # Selects the action o that achieves the goal fact s∗k
15: # and appears for the first time in layer k.
16: o← firstlayer(o,Ok) = k | s∗k ∈ add(o)
17: plan← plan ∪ {o}
18: # Now add the preconditions of o as sub-goals to S∗

19: # in the layer where p first appears.
20: for all p ∈ pre(o) do
21: S∗

firstlayer(p,P ) ← S∗
firstlayer(p,P ) ∪ {p}

22: end for
23: end for
24: end for
25: return plan
26: end procedure

achieved by introducing a dual-queue approach: the “default queue” receives all

generated states (default behavior without preferred operators), while the “pre-

ferred queue” only accepts states generated by preferred operators. We call this

DQ-GBFS (dual-queue greedy best-first search). In this version of the algorithm,

the expansion of states occurs alternately from both queues or may use boost-

ing (RICHTER; HELMERT, 2009). With a boost value n, when a state with a lower

h-value than any previously expanded state is encountered during the search

(meaning the search progresses) the preferred queue is used for the next n ex-

pansions, as long as it has elements. The boost value is cumulative, so each time

the search progresses, n expansions are added to the remaining number of subse-

quent expansions from the preferred queue.

In Fast Downward, the initial expansion in the search originates from the

default queue, so even if we have preferred operators that always generate a suc-

cessor closest to the goal, an inaccurate heuristic can result in a suboptimal plan.
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Furthermore, there are cases where a preferred operators generates a successor

state that has already been generated. Consequently, the state is not added to

the preferred queue, which means it cannot be expanded first (as the preferred

queue has higher priority), and another state, potentially further from the goal, is

expanded instead.

2.7 Neural Networks

A multi-layer perceptron is a commonly used NN architecture comprising

an input layer, one or more hidden layers, and an output layer. The neurons

within the hidden layers typically apply an activation functions to the weighted

sum of their inputs, which can introduce linear and nonlinear transformations.

A bias term represents a constant value that is optionally added to the weighted

sum of inputs of a neuron before applying the activation function, introducing an

offset in the activation that allows the NN to account for any systematic errors or

deviations in the data. The weights and biases of the neurons are learned through

a process called backpropagation, which optimizes a loss function using gradient

descent or its variations. For more information on backpropagation and gradient

descent, refer to Goodfellow et al. (2016).

The mean squared error (MSE) loss function is commonly used for regres-

sion problems, where the goal is to predict continuous values. By minimizing the

MSE, the NN aims to make its predictions as close as possible to the actual values.

Definition 7 (Mean Squared Error). Given a prediction ŷ and the corresponding target

value y, the MSE loss is computed as the mean of the squared differences between the

prediction and the target:

MSE(ŷ, y) =
1

N

N∑
i=1

(ŷi − yi)
2,

where ŷi represents the i-th element of the prediction vector ŷ, yi represents the

i-th element of the target vector y, and N is the total number of elements in the vectors.

The binary cross-entropy (BCE) loss function is commonly used for bi-

nary classification problems, where the goal is to predict a binary outcome, or

multi-label classification problems where there can be more than one correct out-

come (TSOUMAKAS; KATAKIS, 2007).
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Definition 8 (Binary Cross-Entropy). Given a prediction ŷ and the corresponding bi-

nary target value y, the BCE loss is computed as the average of the element-wise cross-

entropy between the prediction and the target:

BCE(ŷ, y) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

where ŷi represents the i-th element of the prediction vector ŷ, yi represents the

i-th element of the target vector y, and N is the total number of elements in the vectors.

In this study, we use a feedforward NN with residual blocks. Let us con-

sider a feedforward NN with L layers. For simplicity, assume each layer has the

same number of neurons, denoted by N . The input to the network is represented

x, and the output is denoted by y. The activation function of a neuron in the l-th

layer is denoted as al(·), and the weights connecting the i-th neuron in layer l− 1

to the j-th neuron in layer l are denoted as wl
ij . The bias of the j-th neuron in

layer l is denoted as blj . The output of the j-th neuron in layer l is given by:

zlj =
N∑
i=1

wl
ija

l−1
i + blj

The activation of the j-th neuron in layer l is then computed as:

alj = al(zlj)

Fig. 2.1 shows an example of a simple fully-connected NN. Common acti-

vation functions include sigmoid, rectified linear units (ReLU), and tanh (Fig. 2.2).

The data “fed” to an NN is typically divided into two sets. The training

set is used to train the model by adjusting its parameters based on input samples

and corresponding target values. The validation set is used to evaluate the per-

formance of the model and detect overfitting during training, which occurs when

a model excessively fits the training data but fails to generalize to unseen data.

An epoch is an iteration of the entire training dataset, involving feeding

each sample, updating weights based on the loss function, and performing for-

ward and backward propagation. Early stop, or patience, halts training if there is

no improvement in a chosen metric for a specified number of consecutive epochs,

preventing overfitting and and preserving the performance of the model at the

point of best validation metric.
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Figure 2.1 – A neural network with n input neurons, two hidden layers with m neurons,
and an output layer with k neurons.
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Figure 2.2 – Sigmoid, ReLU, and tanh activation functions.
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Definition 9 (Early Stop). Let M represent the chosen metric (e.g., validation loss)

and n denote the number of consecutive epochs without improvement allowed. Given the

current epoch t, the training is stopped if the following condition is met:

M(t) > min{M(t− 1),M(t− 2), . . . ,M(t− n)}

where M(t) represents the metric value at epoch t.

During training, data can be fed in batches, which are subsets of train-

ing samples processed together in each epoch iteration. This method enhances

computational efficiency by simultaneously processing multiple samples, instead

of updating network weights after each training sample (which is inefficient).

Larger batch sizes enable parallel processing but demand more memory, while
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Figure 2.3 – A residual block with two hidden layers.

layer 1 a(x)

activation

layer 2 ⊕
add

x+ F(x)

a(x)

activation
x

skip connection
(identity)

x

F(x)

smaller batch sizes consume less memory but may lead to slower training con-

vergence due to more frequent weight updates.

Standard NNs may suffer from the vanishing gradient problem (HOCHRE-

ITER, 1991). The gradients tend to diminish as they propagate backward through

multiple layers, making it challenging for earlier layers to learn meaningful rep-

resentations. This problem hampers the optimization process and restricts the

overall performance of the network.

Residual Neural Networks (ResNets) (HE et al., 2016) can reduce the van-

ishing gradient problem. ResNets use skip connections that bypass layers, allow-

ing the information to flow directly from one layer to another. This bypassing

mechanism mitigates the vanishing gradient problem and facilitates the training

of deep networks. Fig. 2.3 has a visual representation of a small residual block with

a skip connection.

Definition 10 (Skip Connection). Let us consider a ResNet architecture with L layers.

The output of the l-th layer is denoted by al, and the output of the previous layer is denoted

by al−1. The residual connection between the l-th and l − 1-th layers can be represented

as:

al = al−1 + F(al−1,W l),

whereF represents a residual function, typically implemented as a fully connected

layer, and W l denotes the learnable parameters of this function.
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2.8 Learning Heuristic Functions

There have been several studies on learning heuristic functions to solve

planning tasks. These studies can be categorized into two primary approaches.

The first approach heavily relies on domain logic to generate samples and instan-

tiate networks. Its objective is to generalize across domains or a planning formal-

ism. On the other hand, the second approach minimally uses domain logic for

generating samples and focuses on generalization within a state space.

The first approach uses structured NNs with architectures specifically de-

signed to align with the characteristics and requirements of the given input task.

Examples include learning domain-independent heuristic functions with hyper-

graph NNs (SHEN et al., 2020), and learning policies with action schema net-

works (TOYER et al., 2018; TOYER et al., 2020) and graph NNs (STÅHLBERG et

al., 2022). These approaches are generally applicable to state spaces that differ

from the ones they were originally trained on. The major limitation of this set of

approaches is the heavy reliance on domain logic, and it can also have significant

computational overhead, as in the case of action schema networks. Moreover, in

domain-independent approaches such as hypergraph NNs, where the network

can be applied to a different domain than the one it was originally trained on,

the search performance is considerably inferior when compared to logic-based

heuristics in terms of coverage (number of solved tasks within a given time limit).

The second approach uses supervised learning to train a feedforward NN

with pairs of states and cost-to-goal estimates. Samples can be generated with

forward search from the initial state (FERBER et al., 2020), backward search from

the goal (YU et al., 2020; O’TOOLE et al., 2022; BETTKER et al., 2022), or a combi-

nation of both (FERBER et al., 2022). This set of approaches requires fewer com-

putational resources but is limited to the specific state space they were trained on.

Search performance is also a problem, since these approaches typically solve less

tasks than simple logic-based heuristics such as goal-count. An advantage is that

this set of approaches relies on domain logic to a lesser extent, and only during

sample generation, such as determining applicable operators and mutexes.

Regarding sampling by backward search, Yu et al. (2020) use depth-first

search, O’Toole et al. (2022) use random walks, and Bettker et al. (2022) use a

combination of breadth-first search and random walks. In these cases, the cost-
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to-goal estimates are assigned as the lowest distance from the goal at which the

states were generated. Ferber et al. (2022) use a combination of backward and for-

ward searches, using bootstrap learning (ARFAEE et al., 2011). Specifically, Bet-

tker et al. (2022) introduce several cost-to-goal improvement methods to enhance

sample quality and emphasize that the effectiveness of learned heuristics relies

on two crucial factors: a sample set that encompasses diverse regions of the state

space and accurate cost-to-goal estimates; one without the other is insufficient.

In this study, we aim to use minimal domain logic. As such, we use learned

heuristic functions and learned preferred operators in most experiments. In par-

ticular, we follow the second set of approaches described previously. In the fol-

lowing sections, we introduce relevant concepts for the proposed approach to

compute sample-based preferred operators in Chapter 3.

2.8.1 Generating Samples with FSM

To learn heuristic functions, sampled states are labeled with a cost-to-goal

estimate. In regression-based methods, the value assigned to a sampled state is

determined by its distance to the goal condition. In this work, we generate sam-

ples by regression, expanding partial states in the backward state space BSP. Pre-

cisely, we follow the best-performing approach used by Bettker et al. (2022), us-

ing a combination of breadth-first search (BFS) with multiple random walk (RW)

rollouts, named “focused sampling method” (FSM), which aims to achieve good

coverage near the goal (BFS) while obtaining a diverse set of samples from the

remaining state space (RW).

A regression rollout refers to a sequence of partial state expansions, con-

cluding under two conditions: when the last expanded state has no predecessors

or when it reaches the regression limit (depth) L. The process of generating sam-

ples halts once the desired number of samples N is reached. Random walks can

have multiple rollouts due to the regression limit L, whereas BFS has a single

rollout. Repeated states are not sampled and expanded during each RW rollout

to avoid cycles during a backward search, and the current rollout ends abruptly

if only repeated states are available to continue the search. However, repeated

states are permitted between rollouts. Bettker et al. (2022) set the regression limit

to L =
⌈
LF/eff

⌉
, where eff =

∑
o∈O | eff(o)|/|O|, i.e., the number of facts per mean
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number of effects in the operators of the input task. Unlike using a fixed L (YU et

al., 2020; O’TOOLE et al., 2022), this adaptive L aims to approximate the longest

distance d∗ between the goal condition and any potential initial state.

FSM consists of two phases. The first phase uses BFS to generate pFSM of the

N samples. The BFS expands a state from layer k and generates n states from layer

k + 1. These generated states are sampled only when N + n ≤ pFSMN ; otherwise,

no states are sampled, and BFS expands another state. The set of unexpanded

states, i.e., leaves, is denoted as Q. The second phase involves multiple random

walk rollouts starting from randomly selected states in Q. This process continues

until the sample set reaches N . During the random walk phase, states already

sampled in the BFS phase are not sampled again.

After finishing regression, Bettker et al. (2022) improve the cost-to-goal

estimates of each sampled partial state, and complete them to full states (Sec-

tion 2.8.2). Generally, accurate cost-to-goal estimates result in improved learned

heuristics, leading to fewer expanded states during a search. However, this cor-

relation is not always guaranteed (HOLTE, 2010). To enhance the cost-to-goal es-

timates of each sampled state, Bettker et al. (2022) developed two methods used

in this study. The first method, SAI (Section 2.8.3), minimizes estimates across

repeated samples, while the second method, SUI (Section 2.8.4), minimizes esti-

mates across the successors of samples.

2.8.2 Sample Completion

Regression sampling produces a set of partial states with undefined vari-

ables. However, during the search, the NN is trained on complete states and

expects complete states as input. Each partial state can be completed by assign-

ing a value s(v) ∈ dom(v) to all fact pairs (v, s(v)) where s(v) = ⊥. As Bettker et

al. (2022) and Ferber et al. (2022), we use a method that assigns a random value

s(v) ∈ dom(v) to each undefined variable to complete partial states, ensuring that

the assigned values satisfy mutexes derived from the planning task. We process

the undefined variables in random order and assign them random values that do

not violate the mutexes. The undefined variables are set to false if we cannot com-

plete the state after 10K attempts. We use the mutexes automatically deduced by

Fast Downward (HELMERT, 2006; HELMERT, 2009).
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2.8.3 Sample Improvement

It is possible to generate duplicate states with different estimates due to

multiple random walk rollouts. Thus, we update the cost-to-goal estimate for

each sampled state s to the minimum estimate h(s) = min{hi | s = si, i ∈ [N ]}.
This procedure is called “sample improvement” (SAI), and is applied twice: first

on partial states after regression is complete, and then on the completed states, as

two partial states can be transformed into the same state.

2.8.4 Successor Improvement

Sampling neighboring states in the state space is also common, especially

for states close to the goal. Using the following approach, we can leverage this

to enhance the cost-to-goal estimates, starting by constructing a graph G with the

relations between all partial states in the sample set.

Definition 11 (Sample Set Graph). A sample set graph is a directed and labeled graph

G = (V,A) defined by the states obtained in the sampling. Each vertex is labeled by

a sampled partial state, i.e., V = {si | i ∈ [N ]}. (Note that the undefined variables

of a partial state can typically be completed in multiple ways, so each vertex represents

a set of complete states.) Set A contains an arc (s, t) for each operator o ∈ O where

succ(s, o) ⊆ t.

With partial states generated by regression, we can always find at least one

successor, except for the goal s∗. We compute the shortest paths to the goal in the

graph G using Dijkstra’s algorithm. Afterward, we update the cost-to-goal esti-

mates of each state accordingly. This process is called “successor improvement”

(SUI) and is applied after regression, before completion. Fig. 2.4 illustrates how

SUI enhances cost-to-goal estimates in practice.
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Figure 2.4 – Constructing the sample set graph G and updating the h-values of sampled
states. The h-value of each state is in parenthesis.
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(a) Collected samples from two regression rollouts (blue
and orange).
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(b) Constructed graph G with new successor-predecessor
relationships.
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(c) Updating the cost-to-goal estimates according to the
newly discovered relationships.
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3 PROPOSED APPROACH

Our objective is to discover preferred operators from a sample set and use

them to train a NN for predicting preferred operators. In this chapter, we first

introduce ideal preferred operators, then show the proposed approach for iden-

tifying preferred operators within an existing sample set. Finally, we present a

sampling algorithm designed for discovering preferred operators.

3.1 Ideal Preferred Operators

Ideally, we want preferred operators that help solve a task with the least

effort, which we call ideal preferred operators.

Definition 12 (Ideal Preferred Operator). An ideal preferred operator generates a

state with the shortest distance to the goal among all successors. Given a state s and

an operator o ∈ O where succ(s, o) = t, o is considered an ideal preferred operator if

h∗(t) = mins′∈succ(s) h
∗(s′).

Every state s that has a plan is associated with at least one preferred op-

erator. These preferred operators generate successor states t where h∗(t) < h∗(s).

Thus, only goal states and dead-end states lack preferred operators.

Fig. 3.1 presents a visual example where o4 is an ideal preferred operator

of state s1, since it leads to the successor state s4 of minimum h-value among all

successors of s1.

Figure 3.1 – Example of an ideal preferred operator o4 of state s1. The h-value of each
state is in parenthesis.
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Property 1. In a solvable planning task with unitary cost operators, if DQ-GBFS is

guided by a blind heuristic function (equal value for all the expanded states but goal-

aware and safe), tie-breaks by larger g-value, uses ideal preferred operators, only expands

states from the preferred queue, and includes the initial state s0 in the preferred queue,

then the number of expansions made by DQ-GBFS will be equal to the number of states

that are part of an optimal path.

Proof. Base case: Initially, the only state in the preferred queueQ is the initial state

s0. DQ-GBFS expands states exclusively from the preferred queue. Since the task

is solvable, we have h∗(s0) < ∞, and because the blind heuristic is safe, then

hblind(s0) < ∞. Thus, DQ-GBFS does not ignore s0. If s0 is a goal state, then

DQ-GBFS returns it. If not, DQ-GBFS expands s0, and this expansion satisfies the

property since s0 is part of any optimal path.

Inductive step: Assume that after k expansions, an optimal path exists such

that only states from the optimal path were expanded. At the k-th expansion, DQ-

GBFS expands a state s. Since the expansion occurred, s is not a goal state and had

the largest g-value gs in the queueQ before its removal. Given the blind heuristic,

every state in Q has equal and finite h-values. Therefore, s was removed from Q
because DQ-GBFS tie-breaks by larger g-value. We must prove that the (k+1)-th

state removed from the queue Q is a successor of s and part of an optimal path.

By Definition 12, every ideal preferred operator generates a state with the

shortest distance to the goal among all successors. Thus, when expanding state s

at the k-th expansion step, DQ-GBFS will generate all successors of s, including

all successors generated by ideal preferred operators. Because state s is part of

an optimal path, s has at least one successor t generated by an ideal preferred

operator that is also part of an optimal path, such that h∗(t) = mins′∈succ(s) h
∗(s′),

and h∗(t) < ∞. Since the blind heuristic is safe, hblind(t) < ∞. Therefore, DQ-

GBFS does not ignore t and inserts it in the queue Q. The maximum g-value of a

state in Q after the removal of s and before the insertion of its successors is equal

to gs. If there was a larger g-value than gs, then state s would not be removed.

Furthermore, all the successors of s have g-values of gs + 1.

Consider the (k+1)-th removal from the queueQ. If one of the successors

of s is a goal state s∗, then h(s∗) = 0 because blind is goal-aware, so DQ-GBFS will

remove it from the queue Q since a goal state has the minimum h-value among

all states, and return the solution. Otherwise, since all the states in Q have equal



38

and finite h-values, and DQ-GBFS tie-breaks by larger g-values, DQ-GBFS will

remove and expand one of the successors of state s generated by ideal preferred

operators, with a distance to the goal of h∗(s) − 1, i.e., an expansion of a state

generated by an ideal preferred operator makes progress on an optimal path.

Thus, since the (k + 1)-th step satisfies the property, we conclude that the

number of expansions made by DQ-GBFS will be equal to the number of states

that are part of an optimal path, i.e., the length of the optimal path equals the

number of expansions of DQ-GBFS.

3.2 Discovered Preferred Operators

Obtaining ideal preferred operators is challenging for large tasks as we

need access to the entire search state space, and computing the h∗-values for all

states may be intractable. To address this, we compute the preferred operators

within a sample set of the state space, without relying on h∗-values or logic-based

methods such as computing relaxed planning graphs. We construct a sample set

graph G (Definition 11 on page 34) by mapping operators that transition between

two samples and then determine the operators contributing to a shortest path

to the goal. In the graph G, each arc represents an applicable operator between

two sampled states. Except for the goal condition, every sample has at least one

successor, so it is feasible to trace multiple paths from a sampled state to a goal

condition. We can identify the preferred operators for reaching a goal condition

by selecting the operators associated with a shortest path.

Definition 13 (Discovered Preferred Operators). Let G = (V,A) be a graph repre-

senting a set of samples, and let G′ = (V,A′) be the shortest path directed acyclic graph

generated using Dijkstra’s algorithm. Dijkstra’s algorithm is applied to G to find a short-

est path from the goal condition to each vertex v ∈ V . For each vertex v, the arcs in A

that belong to a shortest path to v are included in A′. The discovered preferred operators

of the set of states s (since s is a partial state with undefined variables) are the operators

represented by the outgoing arcs a ∈ A′ of the vertex labeled by s.

The quality of the shortest paths relies on the accuracy of the h-values as-

signed to each sampled state, since they influence the construction of the shortest

path graph G′. If the h-values are accurate (close to h∗), the algorithm is more
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likely to prioritize the paths that are truly the shortest to reach the goal condition.

However, if the h-values are inaccurate, the algorithm may be misled and priori-

tize suboptimal paths, leading to lower-quality (or missing) discovered preferred

operators. Furthermore, a state can have multiple discovered preferred operators

if it has multiple shortest paths. Fig. 3.2 has an example of a sample set graph G

with two shortest paths from the partial state s1 to the goal s∗. The preferred op-

erators of s1 are thus {o2, o3}. In the same example, suppose s3 had an inaccurate

h-value of 4 instead of 2. In this case, we would fail to “discover” operator o2 as

a preferred operator, since s3 would have a greater h-value than s1.

Figure 3.2 – Example sample set graph with two shortest paths (red, orange) from s1 to
the goal s∗. The h-value of each state is in parenthesis.
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3.3 Generating Samples with XRS

The sample generation approach described in Section 2.8.1 is unsuitable

for learning preferred operators due to duplicate samples within rollouts. This

leads to a sample set that contains numerous repeated samples, which offer no

additional value when constructing the shortest path graph G′ for identifying

preferred operators. Consequently, this approach fails to expand the state space

and identify additional preferred operators effectively. To address this, we devel-

oped a new sample generation method designed to discover preferred operators,

dubbed “expansion from random successors” (XRS), divided into two phases.
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Let S1 and S2 denote the sets of samples generated in the first and second

phases of XRS. The complete sample set is represented by S = S1 ∪S2, consisting

of N distinct samples. Let k1 and k2 be variables satisfying k1+ k2 = 1. In the first

phase of the algorithm, we use BFS by applying backward applicable operators

from the goal condition until expanding k1N states, which are then added to S1.

In the second phase, we maintain two structures first initialized during BFS: an

open queue, containing states generated but not yet expanded, and a closed set,

comprising states that have been expanded and already sampled. During each

iteration, we randomly select a state from the open queue, move it to the closed

set, add it to the sample set S2, and insert its predecessors into the open queue

if they are not already present in open or closed. The sampling process contin-

ues until |S2| = k2N . See Algorithm 4. The primary distinction between phases

one and two is the selection process for expanding states from the open queue.

Unlike phase one, where the first-in, first-out approach of BFS is used, phase two

involves randomly selecting a state from the open queue for expansion. We do

not use a regression limit L as in FSM, but in practice our maximum regression

depth remained close to d∗ (Appendix A on page 59).

After regression, we apply SAI and SUI, extract the preferred operators,

and complete the states as previously described. We compare XRS with FSM for

discovering preferred operators in Section 4.4.
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Algorithm 4 Sampling states using XRS

1: procedure XRS(s∗, N , k1, k2)
2: open = ∅
3: S1 = ∅
4: # Phase 1: populates S1 and open with BFS.
5: S1, open← BFS(s∗, open, k1N )
6: closed = S1

7: # Phase 2: populates S2 with random elements s from open.
8: S2 = ∅
9: while |S2| < k2N do

10: if open = ∅ then
11: return S1 ∪ S2 (backward state space fully expanded)
12: end if
13: i← random index of open
14: # Initialize a partial state s.
15: s← open[i]
16: Remove element at open[i]
17: closed← closed ∪ {s}
18: S2 ← S2 ∪ {s}
19: P ← {s′ | s′ ∈ pred(s)}
20: for all partial states s′ ∈ P do
21: if s′ /∈ (open ∪ closed) then
22: Insert s′ into open
23: end if
24: end for
25: end while
26: return S1 ∪ S2

27: end procedure
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4 EXPERIMENTS

This section presents four experiments. In the first (Section 4.2), we inves-

tigate learning preferred operators and establish an upper-bound performance

measure using the ideal preferred operators, comparing them to the proposed

approach. The second experiment (Section 4.3) evaluates learning discovered

preferred operators from sample sets of varying sizes and compares them to a

logic-based preferred operator. The third experiment (Section 4.4) compares the

results with preferred operators learned from a sample set generated using two

distinct sampling methods, as described in Section 2.8.1 and Section 3.3. Finally,

in the fourth experiment (Section 4.5), we analyze the learned preferred operators

in conjunction with several logic-based heuristic functions.

4.1 Configuration

We use the same network architecture as Ferber et al. (2022), O’Toole et al.

(2022), and Bettker et al. (2022) with modifications to support learning preferred

operators. Specifically, we use a ResNet with He initialization (HE et al., 2015),

consisting of two hidden layers followed by a residual block containing two hid-

den layers. Each hidden layer has 250 neurons and is ReLU-activated. The train-

ing uses the Adam optimizer (KINGMA; BA, 2015) with a learning rate of 10−4,

a batch size of 64, and a patience of 100 epochs. We use the MSE loss function

to learn heuristic values in a regression context, and for learning preferred oper-

ators, we opt for the BCE loss since learning preferred operators is a multi-label

classification problem. The input of the NNs consists of samples in the format

⟨F(s), h(s)⟩ for the regression network, or ⟨F(s), Opref ⊆ O⟩ for the classification

network, where F(s) is a Boolean representation of the input state s, with 0 if a

proposition is false and 1 otherwise (Section 2.4), h(s) is the target value repre-

senting the h-value for s, and Opref are the target values in the representing the

preferred operators for state s.

The output for the regression network is a single ReLU-activated neuron

representing the learned h-value, and the output for classification is a sigmoid-

activated tensor with values in the range [0, 1] and a size equal to the number

of operators of the input task. In the case of classification, each output neuron
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Figure 4.1 – Example tensor with two preferred operators as target values.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

s

corresponds to an indexed operator. For example, in a planning task with ten

operators, in which a sampled state s has target preferred operators two and five,

the indexes two and five of the output tensor must be maximized (Fig. 4.1). Fi-

nally, the training set has 90% of the data, while the validation set contains the

remaining 10%.

4.1.1 Extracting Preferred Operators

We extract the predicted preferred operators from the NN by selecting the

operator with the highest output value. Additionally, if there are any operators

with output values greater than 0.9, we include them in the selection. We do this

to avoid false positives since most tasks considered in this work have a mean

number of preferred operators close to one. Through experimentation, we found

that this strategy produced better results than selecting only operators with out-

put values above an arbitrary threshold, as lowering the threshold resulted in

poorer performance.

4.1.2 Dataset

Our dataset consists of planning tasks with unitary operators and state

spaces ranging from 40K to 1M states, identical to the dataset used by Bettker et

al. (2022). We generate samples using state spaces from the following domains:

Blocks World (Blocks), Grid, N-Puzzle, Rovers, Scanalyzer, Transport, and Visi-

tAll, which are common in the IPC. We chose these state spaces because they have

small descriptions and sizes, allowing us to access the h∗-values of every state. Ta-

ble 4.1 has relevant information regarding each state space, and Appendix B on

page 60 contains a small description of each domain. The output neurons in the

classification NN correspond to the number of operators, whereas the regression
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Table 4.1 – Information on the training tasks used for each domain. The forward state
space size, the number of facts, and the number of operators.

Domain FSP size # facts # operators

Blocks 65990 64 98
Grid 452353 76 252
N-Puzzle 181440 81 192
Rovers 565824 32 57
Scanalyzer 46080 42 300
Transport 637632 66 572
VisitAll 79931 31 48

NN used for learning heuristics produces a single numerical value as its output.

The number of facts determines the input neurons.

We evaluate the results based on the number of expanded states since all

planning tasks are solved. Each forward state space FSP has 50 randomly gen-

erated initial states, resulting in 50 planning tasks. In the tables, each cell repre-

sents the mean value across 50 planning tasks and 25 seeds, i.e., 5 sample seeds

× 5 network seeds. Each sample seed represents a different set of samples, while

the network seeds are used to initialize the parameters of the NN. Additionally,

when referring to a specific number of samples, we use the notation “n percent

of the state space” to denote a fraction of the FSP, e.g., 5% of Block World’s FSP

is ⌈65990× 0.05⌉ = 3300 samples.

4.1.3 Training

We implement sample generation in Neural Fast Downward (FERBER et

al., 2020) and use PyTorch 1.9.0 (PASZKE et al., 2019) to define and train the NNs.

We conducted the experiments on Ubuntu 20.04 LTS GNU/Linux machines with

an AMD Ryzen 9 3900X 12-core processor (4.2 GHz), a memory limit of 4 GB, and

one core per process. The NNs were trained until convergence, with the most

complex networks requiring approximately two hours of training (Appendix E

on page 63). We did not use GPUs due to our small training datasets.
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4.1.4 Evaluation

We measure search performance by the number of expanded states since

we have perfect coverage for all the selected domains. We use the Fast Down-

ward planning system (HELMERT, 2006) with vanilla GBFS guided by a heuristic

function to solve all 50 initial states of each domain using a 5 minute search time

limit for each initial state. When preferred operators are used along the heuristic

function, we use DQ-GBFS. Due to better experimental results, for the following

experiments, we use a boost value of 1000, as in Richter and Helmert (2009). Re-

sults for searches with boosting disabled are available in Appendix C on page 61.

4.1.5 Sampling

We obtain the learned heuristic ĥ by training over samples generated as de-

scribed in Section 2.8.1, with the best configuration from Bettker et al. (2022), i.e.,

sample set size equal to 1% of the state space, regression limit of L =
⌈
LF/eff

⌉
,

and setting the quantity of samples generated by BFS to pFSM = 10% of the total

number of samples. As Bettker et al. (2022), 20% of the total number of samples

are randomly generated samples, with cost-to-goal estimates equal to the maxi-

mum estimate of the existing samples obtained through regression plus one.

Since in this work we are only interested in the effects of learned preferred

operators, the learned heuristic functions ĥ for each task have the fixed configura-

tion described earlier. To obtain the learned discovered preferred operators p̂oG,

we train the NNs over sample sets generated according to the method described

in Section 3.3, with k1 = 0.1 and k2 = 0.9, since these values had better results in

preliminary experiments (Appendix D on page 62). In this configuration, we do

not use randomly generated samples.

4.2 Learning Preferred Operators

This section establishes baselines for comparing our proposed approach

of learned discovered operators. In particular, we compare task-solving perfor-

mance with several configurations. We present results using (DQ-)GBFS guided
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Table 4.2 – Expanded states of (DQ-)GBFS guided by h∗, ĥ, and ĥ with ideal preferred
operators and discovered preferred operators.

h∗ ĥ

Domain - - po∗ p̂o∗ p̂oG∗
p̂oG

Blocks 19.4 57.0 21.0 42.1 43.0 43.0
Grid 20.8 66.5 23.1 23.2 70.4 67.4
N-Puzzle 22.6 80.9 23.9 28.0 53.3 53.3
Rovers 10.3 13.4 10.7 10.6 12.2 12.2
Scanalyzer 9.2 28.3 10.6 10.7 29.1 30.7
Transport 13.3 25.2 13.9 13.9 21.3 21.4
VisitAll 11.9 21.8 12.8 12.8 21.2 20.5

Geo. mean 14.5 35.0 15.7 17.7 30.7 30.6

by the perfect heuristic h∗ and the learned heuristic ĥ, with and without pre-

ferred operators. We also use two classes of preferred operators. The first class

represents the ideal preferred operators po∗ and p̂o∗, where po∗ is an oracle and

p̂o∗ was trained over the complete FSP of each task. The second class represents

the proposed approach with learned discovered operators p̂oG∗
and p̂oG, which

were trained on a 1% sample set obtained through regression with the method

described in Section 3.3, the only difference being that p̂oG∗
has perfect h∗-values

for each sample.

Table 4.2 shows that all approaches using preferred operators lead to fewer

expansions than using only the learned heuristic ĥ. In particular, ĥ with the ideal

preferred operators po∗ and p̂o∗ closely approach the optimal expansion values

with h∗. The ideal preferred operators serve as performance limits, representing

the best achievable results as defined in Section 3.1. When comparing the learned

ideal preferred operators p̂o∗ with the oracle po∗, we find that the NN can learn

the preferred operators for the entire state space in all domains, except for Blocks

World and N-Puzzle, where performance degrades but remains better than ĥ.

The learned ideal preferred operators p̂o∗ surpass using only the learned

heuristic ĥ in all domains. They significantly reduce the number of expansions

by over 50% in Grid, N-Puzzle, and Scanalyzer. When we reduce the state space

to 1% and use the shortest path graph G′ to identify preferred operators, the pro-

posed approach p̂oG exhibits an increase of approximately 73% in the geometric

mean of expanded states compared to the learned ideal preferred operators p̂o∗.

Still, ĥ with p̂oG expand fewer states than using only ĥ in all domains except Grid
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and Scanalyzer, with significant improvements in mean expansions of approxi-

mately 25% and 34% observed in Blocks World and N-Puzzle, respectively.

When comparing the discovered preferred operators p̂oG∗
to p̂oG, both have

close results despite p̂oG∗
using the perfect heuristic h∗ to compute the shortest

paths in the sample set. The reason for this similarity is that the arcs in the short-

est path graph G′ for p̂oG are largely retained when compared to p̂oG∗
, and equiv-

alent states in the sample sets of both methods tend to have similar preferred

operators, indicating that they are likely to have similar shortest paths to follow.

In particular, close to 100% of the samples have the same set of preferred opera-

tors in p̂oG∗
and p̂oG in all domains except Scanalyzer (92%) and VisitAll (68%).

For all states with different preferred operators in all domains, the preferred op-

erators of p̂oG are a subset of the preferred operators of p̂oG∗
. As seen in Table 4.2,

this difference is negligible for Scanalyzer and VisitAll, where p̂oG∗
and p̂oG dif-

fer by less than one expansion on average. This result indicates that discovering

preferred operators from the shortest path graph G′ with quality similar to ideal

preferred operators is possible even without perfect h∗-values.

This experiment demonstrated the effectiveness of learning high-quality

preferred operators that enhance suboptimal heuristics. The learned ideal pre-

ferred operators p̂o∗ outperformed ĥ in all domains, improving the geometric

mean of expansions by about 50%. The proposed approach p̂oG had fewer ex-

pansions than ĥ in five out of seven domains, improving the geometric mean by

approximately 13%.

4.3 Discovering Preferred Operators on Different Sample Set Sizes

In this experiment, we use (DQ-)GBFS guided by the learned heuristic ĥ

and compare the learned discovered preferred operators p̂oG to the logic-based

preferred operators poFF from FF (HOFFMANN; NEBEL, 2001) implemented in

Fast Downward (HELMERT, 2006). In addition to using a sample set equivalent

to 1% of the forward state space, as in the previous experiment, we also examine

other percentages: 5,%, 10%, 20%, 30%, 40,%, 50%. Table 4.3 shows the results.

By increasing the sample set size, the number of arcs and vertices in the

shortest path graph G′ expands, leading to the discovery of new shortest paths.

As expected, the performance of the learned discovered preferred operators p̂oG
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Table 4.3 – Expansions of (DQ-)GBFS guided by ĥ without preferred operators, and with
poFF and p̂oG trained on the discovered learned operators, varying the size of the sample

set according to different percentages of the state space size. Rovers maintained the
same results from 20% onward as they sampled the complete backward state space,

which numerically represents approximately 15% of the forward state space.

ĥ

p̂oG

Domain - poFF 1% 5% 10% 20% 30% 40% 50%

Blocks 57.0 41.1 43.0 26.2 29.6 32.2 34.9 38.0 38.8
Grid 66.5 32.7 67.4 53.0 46.4 27.4 23.8 23.6 22.9
N-Puzzle 80.9 100.2 53.3 34.8 31.6 28.5 28.1 27.4 27.4
Rovers 13.4 18.5 12.2 11.7 13.0 17.2 17.2 17.2 17.2
Scanalyzer 28.3 17.1 30.7 18.1 13.0 11.7 11.5 11.6 11.5
Transport 25.2 17.0 21.4 16.3 15.8 15.1 14.7 14.4 14.3
VisitAll 21.8 18.7 20.5 17.1 15.7 15.7 15.8 16.1 16.3

Geo. mean 35.0 28.0 30.6 22.4 21.0 19.8 19.5 19.7 19.6

improves as the sample set size increases, reaching a plateau after 20%. How-

ever, Rovers shows an exception where the learned preferred operators result in

increased expansions after 5%. In this domain, both the logic-based preferred

operators poFF and p̂oG trained on a 1% sample set size yield worse results than ĥ

alone. This suggests that in Rovers, preferred operators may not be helpful since

ĥ already approaches optimality (13.4 vs. 10.3), as shown in Table 4.2.

As shown in Section 2.6, in Fast Downward, repeated generated states are

not added to the preferred queue. This is more significant in Blocks World and

Rovers, increasing the number of expansions. Furthermore, this happens more

frequently when training over larger sample sets, as multiple preferred opera-

tors are predicted more frequently. To mitigate this issue, a potential approach

may be disabling boosting or using a more restrictive threshold when extracting

preferred operators.

Training with 5% of the sample set size is sufficient to achieve 20% fewer

expansions on average compared to poFF, i.e., the learned preferred operators p̂oG

can outperform logic-based ones given a large enough sample set size. Specifi-

cally, with 5%, we achieve better results than poFF except in Grid (53.0 vs. 32.7)

and Scanalyzer (18.1 vs. 17.1). As the sample size increases, we eventually sur-

pass poFF in all domains. Notably, poFF degrades performance in N-Puzzle com-

pared to only using ĥ, whereas p̂oG with a 1% sample set substantially improves
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it.

Fig. 4.2 shows the standard deviations for the expansions in Table 4.3.

Smaller sample sets generally exhibit higher variability in the number of ex-

panded states. For instance, with a 1% sample set size, Blocks World, Grid,

N-Puzzle, and Scanalyzer have standard deviations of approximately 12, 27, 8,

and 10, respectively. As the sample set size increases, the standard deviation

decreases, except for Blocks World, which maintains a standard deviation of ap-

proximately 10. Notably, all domains, except Blocks World, have standard devi-

ation values close to one for sample set sizes of 20% and above. Bettker et al.

(2022) also observed similar variability in their results.

4.4 Comparison to Alternative Sampling Method

This experiment compares the number of expansions between two meth-

ods for discovering operators. The first method is the sampling approach pro-

posed in Section 3.3, while the second method is the one introduced by Bettker

et al. (2022) and described in Section 2.8.1 (differently from learning ĥ, we ex-

clude randomly generated samples since applicable operators do not necessarily

generate them). Table 4.4 shows the results.

The learned preferred operators p̂oG consistently expands fewer states than

p̂oFSM, except for Blocks World (from 20% onward) and VisitAll. Considering all

the sample set sizes, p̂oG has about 14% fewer expansions on average. Notably,

p̂oFSM needs ten times the number of samples (e.g., 50% vs. 5%) to achieve com-

parable results to p̂oG on average, highlighting the efficiency of XRS in contrast to

FSM when it comes to learning preferred operators.

In Section 3.3 we mention FSM has many repeated states, which are not

considered when constructing the shortest path graph. To provide quantitative

insights, we examined a sample set size of 5% consisting of samples with partial

states (without completion). While 100% of the states generated by XRS in all

domains are unique, for FSM the percentages of unique states are as follows:

72% in Blocks World, 84% in Grid, 96% in N-Puzzle, 58% in Rovers, 89% in

Scanalyzer, 96% in Transport, and 86% in VisitAll.
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Table 4.4 – Expansions of DQ-GBFS guided by ĥ with p̂oG and p̂oFSM using FSM
from Bettker et al. (2022), varying the size of the sample set according to different

percentages of the forward state space size.

1% 5% 10% 20%

Domain p̂oG p̂oFSM p̂oG p̂oFSM p̂oG p̂oFSM p̂oG p̂oFSM

Blocks 43.0 56.8 26.2 31.7 29.6 30.4 32.2 32.8
Grid 67.4 74.3 53.0 67.8 46.4 67.3 27.4 69.9
N-Puzzle 53.3 67.6 34.8 48.5 31.6 38.1 28.5 32.3
Rovers 12.2 12.1 11.7 13.1 13.0 15.7 17.2 19.9
Scanalyzer 30.7 33.7 18.1 21.0 13.0 14.5 11.7 11.9
Transport 21.4 23.6 16.3 19.9 15.8 18.2 15.1 16.9
VisitAll 20.5 19.8 17.1 15.6 15.7 15.3 15.7 14.8

Geo. mean 30.6 34.2 22.4 26.4 21.0 24.3 19.8 23.8

30% 40% 50%

p̂oG p̂oFSM p̂oG p̂oFSM p̂oG p̂oFSM

Blocks 34.9 33.2 38.0 32.1 38.8 32.3
Grid 23.8 64.5 23.6 59.1 22.9 55.0
N-Puzzle 28.1 29.6 27.4 28.9 27.4 27.7
Rovers 17.2 20.8 17.2 21.3 17.2 21.4
Scanalyzer 11.5 11.6 11.6 11.5 11.5 11.7
Transport 14.7 16.1 14.4 15.8 14.3 15.5
VisitAll 15.8 14.9 16.1 15.6 16.3 15.4

Geo. mean 19.5 23.2 19.7 22.9 19.6 22.5

4.5 Using Learned Preferred Operators with Other Heuristic Functions

We now examine the effects of using the learned preferred operators p̂oG,

trained on a 1% sample set size, on the performance of (DQ-)GBFS guided by

different logic-based heuristic functions. Specifically, we use the more informed

heuristics hFF and hadd, the less informed heuristic hGC (goal-count), and the blind

heuristic hblind without information. We also compare our results with poFF.

The outcomes are summarized in Table 4.5. When using p̂oG with the hGC

heuristic, we significantly reduce the number of expansions from 124.9 to 41.4.

This performance is competitive with the baseline hFF and hadd heuristics without

preferred operators, yielding fewer expansions in Blocks World, N-Puzzle, and

VisitAll. Additionally, when using hGC with p̂oG trained on a 5% sample set size

instead of 1% as shown in the table, we achieve a geometric mean of 28.1 (vs.

41.4), which is about 25% lower than the results obtained with the baseline hFF
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Table 4.5 – Expansions of (DQ-)GBFS guided by logic-based heuristics without preferred
operators, and with preferred operators obtained by FF poFF and the preferred

operators p̂oG trained on a 1% sample set size.

hFF hadd

Domain - poFF p̂oG - poFF p̂oG

Blocks 183.0 52.8 46.6 94.9 51.2 39.4
Grid 33.6 30.0 30.0 48.5 33.3 30.5
N-Puzzle 139.9 205.9 59.1 155.7 198.0 69.3
Rovers 11.5 10.6 10.6 11.4 19.0 10.6
Scanalyzer 28.5 16.9 29.3 21.6 14.3 23.4
Transport 17.8 15.6 19.9 17.9 16.4 20.0
VisitAll 27.3 23.8 20.4 30.4 29.4 19.6

Geo. mean 39.0 30.0 27.0 37.1 33.2 26.0

hGC hblind

- poFF p̂oG - poFF p̂oG

Blocks 332.7 62.5 60.5 54K 10K 306.8
Grid 265.6 60.4 91.5 51K 11K 152.0
N-Puzzle 818.7 1.2K 77.4 67K 67K 368.3
Rovers 61.5 17.5 21.2 4K 832.1 126.4
Scanalyzer 31.9 18.4 28.9 5K 3K 446.1
Transport 200.5 44.1 40.2 145K 15K 193.4
VisitAll 16.7 13.9 19.7 2K 2K 277.5

Geo. mean 124.9 51.3 41.4 19.7K 6.7K 244.3

and hadd heuristics. These findings highlight that using preferred operators can

lead to more significant performance improvements in task-solving compared to

changing to a more informed heuristic, as previously noted by Corrêa et al. (2022).

Less informed heuristics diminish the effectiveness of poFF. Notably, hblind

with p̂oG reduces the number of expansions by approximately 99%, whereas poFF

reduces the expansions by about 66%. In blind search, the heuristic function does

not serve to guide the search process – it only assists in identifying a goal state.

Therefore, the preferred operators act as a policy. The results indicate that poFF

fails to effectively serve as a guiding policy for the search, while the learned pre-

ferred operators p̂oG successfully fulfill this role.

Overall, these findings demonstrate the adaptability of p̂oG with differ-

ent heuristics. We also show the standard deviation of expanded states for each

domain in Fig. 4.3. Generally, using more informed heuristics with the learned

preferred operators lead to reduced standard deviations.
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Figure 4.2 – Mean number of expansions and its standard deviation per domain for
DQ-GBFS guided by ĥ with p̂oG trained using sample sets of different sizes.
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Figure 4.3 – Mean number of expansions and its standard deviation per domain for
DQ-GBFS guided by different logic-based heuristics and p̂oG.
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5 CONCLUSION

Researchers have extensively investigated learning sample-based heuris-

tic functions for solving planning tasks. However, in this study, we explored the

sampling and learning of preferred operators for the first time. Preferred oper-

ators are akin to policies, but they serve a distinct purpose as filters within the

context of heuristic search, assisting the heuristic function rather than seeking

a solution. Meanwhile, policies in reinforcement learning aim to find solutions

based on rewards: the goal is to find the policy that maximizes the expected cu-

mulative reward.

The findings suggest that learning-based approaches have a considerable

potential to outperform logic-based methods. We show that learned preferred

operators can surpass logic-based preferred operators like poFF over the consid-

ered planning tasks. Furthermore, the learned preferred operators have fewer ex-

pansions than poFF when paired with uninformed or less informed heuristics, al-

though further investigation is needed to understand this phenomenon fully. The

experiments highlight the ability to discover preferred operators and train an NN

capable of generalizing for the entire task using a subset of the state space. Anal-

ysis between successor and predecessor states proved to be an effective method

for discovering preferred operators from a limited sample set.

A limitation of learned preferred operators is the number of samples re-

quired for training. Our experiments used small state spaces and a relatively

simple NN as a first step to explore learning preferred operators. Consequently,

we had access to the complete state space of a task. However, this is infeasible for

harder tasks, as state spaces tend to grow exponentially as the amount of informa-

tion needed to describe them increases, meaning that if computational resources

are a concern, even sampling 1% of the state space can be impractical. Another

problem involves the size of the output tensor, where certain domains have thou-

sands of classes in larger tasks, significantly affecting training efficiency.

Future research can improve learning efficiency by investigating alterna-

tive learning architectures for generalizing preferred operators with smaller sam-

ple sets or using an alternative representation of preferred operators as the output

tensor. Additionally, inspired by Lipovetzky et al. (2015), future research could

expand our proposed approach to non-logic domains such as Atari games.



55

Overall, this research presents new opportunities for enhancing heuristic

search in planning using learned preferred operators, highlighting the potential

of learning-based methods requiring minimal domain logic.
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APPENDIX A — MAXIMUM REGRESSION DEPTH WITH XRS

Table A.1 shows the maximum regression depth reached (h-value) found

in samples generated with XRS using different sample set sizes, compared to the

longest distance d∗ between the goal condition and any potential initial state in

the forward state space, and the regression limit L by Bettker et al. (2022).

Table A.1 – Maximum regression depth found in samples generated with XRS on
different sample set sizes, compared to the longest distance d∗ and the regression limit L.

XRS

Domain d∗ L 1% 5% 10% 20% 30% 40% 50%

Blocks 24 17 20 22 23 24 25 25 26
Grid 32 44 15 19 21 23 24 24 25
N-Puzzle 31 41 21 26 28 31 32 33 34
Rovers 19 27 15 18 19 20 20 20 20
Scanalyzer 15 20 10 14 15 16 17 16 17
Transport 17 35 12 16 17 19 20 20 20
VisitAll 15 17 11 14 16 17 17 18 18
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APPENDIX B — TASKS OF EACH DOMAIN

The Blocks World domain involves manipulating blocks on a table to achieve

a desired configuration through a sequence of actions. We used a planning task

with 7 blocks.

In the Grid domain, an agent capable of holding a key traverses a grid,

with certain cells being locked and requiring specific keys to open. We used a

planning task with a 4×4 grid, four locked cells, and three keys with two possible

shapes, circle or square.

The N-Puzzle domain consists of a square grid with numbered tiles. The

objective is to rearrange the tiles from their initial scrambled state to a desired

goal condition. We used a planning task with a 3× 3 grid.

The Rovers domain involves rovers navigating a grid-based environment

with missions like exploration or resource gathering. Each rover has specific ca-

pabilities and limitations, including movement range, sensing, and interaction

abilities. We used a planning task with two rovers, each with one storage capac-

ity and one camera, and four waypoints with different objectives.

The Scanalyzer domain models automated greenhouse logistics, using imag-

ing facilities to collect plant data and conveyor belts to transport plants between

smart greenhouses and imaging facilities. We use a planning task with six con-

veyor belts and six batches of plants.

The Transport domain consists of transporting packages from one location

to another using trucks with specific capacities. We use a planning task with nine

cities, two trucks, and four packages.

The VisitAll domain consists of a robot that needs to visit all the cells of a

grid once. We use a planning task with a 4× 4 grid.
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APPENDIX C — DISCOVERED PREFERRED OPERATORS WITHOUT

BOOSTING

Table C.1 shows the number of expanded states using the discovered pre-

ferred operators p̂oG but no boosting during search, i.e., states are expanded al-

ternately from the default and preferred queues.

Table C.1 – Expansions of DQ-GBFS guided by ĥ with p̂oG trained with the discovered
learned operators varying the size of the sample set according to different percentages

of the state space size. Boosting is disabled.

p̂oG

Domain 1% 5% 10% 20% 30% 40% 50%

Blocks 43.6 32.0 33.3 34.6 34.6 36.1 36.5
Grid 63.7 55.6 47.5 35.0 31.9 31.5 30.9
N-Puzzle 57.5 44.1 42.1 40.5 39.8 38.9 39.0
Rovers 14.0 13.4 13.5 13.3 13.3 13.3 13.3
Scanalyzerunit 31.1 21.6 17.2 16.1 16.0 15.8 16.3
Transportunit 22.4 19.7 19.3 19.1 18.7 18.6 18.4
VisitAll 20.0 18.9 18.2 18.2 18.0 18.1 18.6

Geo. mean 31.6 26.2 24.6 23.2 22.7 22.7 22.9
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APPENDIX D — XRS WITH DIFFERENT VALUES OF k

Table D.1 shows the number of expanded states of p̂oG trained on sample

sets with varying k1, i.e., number of samples generated by BFS in the first phase

of XRS. The values of k1 used are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Note that

k2 = 1− k1.

Table D.1 – Expansions of DQ-GBFS guided by ĥ with p̂oG on 1% sample set size, with
varying number of samples generated by BFS (k1) in the first phase of XRS.

p̂oG

Domain 0.05 0.1 0.2 0.3 0.4 0.5 0.6

Blocks 38.9 43.0 42.9 45.2 48.9 54.5 54.6
Grid 72.0 67.4 77.0 77.0 79.1 79.0 81.6
N-Puzzle 57.2 53.3 49.5 53.8 51.8 51.2 52.6
Rovers 12.0 12.2 12.3 12.2 12.0 12.0 12.1
Scanalyzer 31.9 30.7 31.8 32.5 31.3 32.6 31.4
Transport 22.0 21.4 21.5 22.0 21.6 21.4 21.6
VisitAll 21.4 20.5 19.8 20.2 20.1 19.3 19.9

Geo. mean 31.2 30.6 31.0 31.8 31.8 32.2 32.5
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APPENDIX E — TRAINING DETAILS

Table E.1 presents the mean training information for the regression net-

works used to learn the heuristic ĥ across 25 different seed runs for each task,

trained over 1% sample set size. The table shows the epoch associated with

the minimum validation loss, the value of the minimum validation loss, and the

elapsed time required to train the NN. Table E.2 has the same information, but

for learning p̂oG with classification networks using varied sample set sizes, and

also showing the number of preferred operators per sample. All the networks

early-stopped.

Table E.1 – Training summary to learn ĥ over 25 seeds for each domain.

Domain Best epoch Val. loss Elapsed time (s)

Blocks 325.2 1.0601 19.1
Grid 1169.1 6.8435 402.6
N-Puzzle 312.6 43.0032 52.5
Rovers 15.7 27.6334 44.2
Scanalyzer 115.2 12.2408 7.2
Transport 1634.1 11.0641 739.2
VisitAll 71.2 5.2799 8.8
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Table E.2 – Training summary to learn p̂oG over 25 seeds for each domain.

Domain Sample set size (%) Best epoch Val. loss Elapsed time (s) # ops./sample

Blocks 1 167.9 0.0113 16.8 1.1
5 75.0 0.0130 53.9 1.2

10 52.9 0.0118 92.9 1.2
20 42.2 0.0104 174.2 1.3
30 38.6 0.0092 252.3 1.3
40 39.0 0.0083 342.7 1.4
50 35.4 0.0076 415.6 1.4

Grid 1 105.5 0.0022 99.2 1.2
5 53.1 0.0018 378.4 1.3

10 45.3 0.0016 730.3 1.3
20 39.2 0.0014 1448.1 1.3
30 35.8 0.0013 2079.7 1.3
40 34.3 0.0012 2758.8 1.3
50 34.5 0.0011 3449.9 1.3

N-Puzzle 1 115.0 0.0101 39.6 1.0
5 57.9 0.0069 145.5 1.0

10 48.6 0.0070 273.3 1.1
20 47.9 0.0069 557.3 1.1
30 44.8 0.0069 811.0 1.1
40 42.8 0.0070 1093.8 1.1
50 39.3 0.0070 1325.7 1.1

Rovers 1 30.6 0.0756 62.8 2.1
5 24.7 0.0735 305.7 2.9

10 22.8 0.0678 609.4 3.3
20 27.8 0.0619 966.3 3.4
30 27.4 0.0618 969.2 3.4
50 28.2 0.0618 986.9 3.4

Scanalyzer 1 186.9 0.0244 15.2 1.8
5 111.4 0.0158 54.8 2.5

10 107.7 0.0133 105.6 2.9
20 109.7 0.0131 213.7 3.3
30 109.9 0.0130 323.0 3.6
40 110.8 0.0132 441.9 3.8
50 115.0 0.0131 554.3 4.1

Transport 1 80.6 0.0041 170.6 1.3
5 45.7 0.0035 694.8 1.4

10 40.3 0.0036 1326.4 1.4
20 39.6 0.0035 2728.8 1.4
30 39.4 0.0036 3974.5 1.5
40 40.1 0.0036 5404.9 1.5
50 41.0 0.0036 6433.7 1.5

VisitAll 1 196.8 0.0258 21.8 1.4
5 105.7 0.0319 72.5 1.5

10 84.9 0.0335 130.1 1.5
20 75.2 0.0339 242.3 1.6
30 69.5 0.0338 355.1 1.7
40 73.3 0.0337 431.1 1.7
50 74.0 0.0333 540.4 1.8
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APPENDIX F — RESUMO EXPANDIDO

No contexto de tarefas de planejamento, os agentes precisam a selecionar

a melhor ação possível dentre um conjunto consideravelmente vasto de opções

disponíveis em cada etapa. Planejadores lógicos têm sido usados para lidar com

esse problema, aplicando operadores preferidos que reduzem significativamente

o fator de ramificação. Planejadores que incorporam operadores preferidos na

busca foram os vencedores da trilha satisficing da International Planning Com-

petition (IPC) em 2004 (HELMERT, 2006), 2008 (RICHTER; WESTPHAL, 2010),

2011 (RICHTER et al., 2011), and 2018 (SEIPP; RÖGER, 2018). No entanto, este

trabalho apresenta um método que vai além dessas abordagens convencionais,

introduzindo uma estratégia de amostragem e aprendizado de operadores preferi-

dos com o objetivo de generalização em todo o espaço de estados de uma tarefa

de planejamento.

O objetivo principal deste trabalho é identificar os operadores preferidos

ideais, que se encontram nos caminhos mais curtos que levam a um objetivo es-

pecífico. O desafio reside no fato de que os espaços de estado geralmente são

extremamente grandes, o que dificulta a exploração completa de todas as possi-

bilidades. Para contornar essa limitação, desenvolvemos uma nova abordagem

de amostragem adaptada, projetada para extrair operadores preferidos de alta

qualidade de um conjunto de amostras que representa uma fração do espaço

de estados completo. Os resultados demonstram que essa abordagem reduzida

ainda é capaz de alcançar excelentes desempenhos nas tarefas de planejamento

consideradas.

Para fornecer uma análise mais abrangente dessa nova categoria de oper-

adores preferidos, realizamos experimentos controlados em tarefas com espaços

de estados pequenos, onde conseguimos estimativas perfeitas para o goal. Com-

paramos sistematicamente os resultados da abordagem proposta com os oper-

adores preferidos do Fast-Forward (FF) (HOFFMANN; NEBEL, 2001; HELMERT,

2006), avaliamos a eficácia dos operadores preferidos aprendidos em diversos

tamanhos de amostra e exploraramos seu desempenho ao serem combinados

com diferentes funções heurísticas. Essa investigação detalhada permite uma

compreensão mais profunda das vantagens e limitações dos operadores preferi-

dos aprendidos.
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Este estudo representa a primeira tentativa de descobrir operadores preferi-

dos a partir de um conjunto de amostras e usar uma NN para aprendê-los. Ap-

resentamos um novo método de amostragem e uma nova técnica para identificar

operadores preferidos em amostras. A técnica de amostragem envolve regressão

do estado objetivo, construindo um grafo com estados amostrados que repre-

sentam suas relações sucessor-predecessor e determinando, para cada estado, o

conjunto de operadores usados para atingir o estado objetivo no menor caminho

como operadores preferidos. Este estudo revela que uma rede neural pode apren-

der os operadores preferidos a partir de um subconjunto do espaço de estados

e estender esse aprendizado de forma eficaz no espaço de estados em diversos

domínios de planejamento. A abordagem proposta supera o melhor método at-

ual de operadores preferidos do FF nas tarefas de referência. Em particular, este

trabalho apresenta:

• Um novo método de amostragem adaptado para descobrir operadores preferi-

dos.

• Um novo método baseado em grafos de caminho mais curto para descobrir

operadores preferidos em um conjunto de amostras existente.

• Uma análise da qualidade dos operadores preferidos aprendidos e uma

comparação com os operadores preferidos do FF.

Um exemplo de resultado consiste em uma rede treinada sobre uma quan-

tidade de amostras equivalente a 5% do espaço de estados completo de uma

tarefa. Nesse caso, os operadores preferidos aprendidos superam significativa-

mente uma busca guiada apenas por uma heurística aprendida, com diminuição

de 36% em número de estados expandidos. Além disso, eles também superam os

operadores do FF em média, com aproximadamente 20% de expansões a menos.
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