
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JOÃO MARCOS FLACH

Lambda Calculus meets Machine
Learning

Thesis presented in partial ful�llment

of the requirements for the degree of

Master of Computer Science

Advisor: Prof. Dr. Luís Lamb

Porto Alegre

August 2023

CIP — CATALOGING-IN-PUBLICATION

Flach, João Marcos

Lambda Calculus meets Machine Learning / João Marcos

Flach. – Porto Alegre: PPGC da UFRGS, 2023.

94 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação, Porto Alegre, BR–

RS, 2023. Advisor: Luís Lamb.

1. Machine learning. 2. Lambda calculus. 3. Neural network.

4. Sequence-to-sequence model. 5. Transformer model. 6. Sym-

bolic AI. 7. Neuro-symbolic computation. I. Lamb, Luís. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof
a
. Jane Fraga Tutikian

Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves

Diretora do Instituto de Informática: Prof
a
. Carla Maria Dal Sasso Freitas

Coordenador do PPGC: Prof. Sérgio Luis Cechin

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“DO IT FOR HER”

— Homer Simpson

AGRADECIMENTOS

Gostaria de primeiramente agradecer a Deus, por me dar forças para terminar

meu trabalho quando achei que já não era possível.

Gostaria de agradecer também à minha família por ter me apoiado nesse mo-

mento tão difícil. Agradeço especialmente à minha companheira Izabela, com a qual

pude contar em todos os momentos. Nossas longas conversas caminhando pela praça

sempre conseguiam me ajudar a desembaraçar meus pensamentos e foram fundamen-

tais para que eu conseguisse entregar esta dissertação; à minha querida �lha Matilda,

que sempre carregava em seu rosto um sorriso para ensolarar meus dias mais nublados;

e à Furiosa e Cidinha, que nunca deixaram de demonstrar todo o carinho que sentem

por mim.

Além disso, agradeço aos meus amigos que sempre estiveram do meu lado nessa

jornada, especialmente meu consultor o�cial de assuntos acadêmicos, Renan, e meu ca-

marada Lucas. Também gostaria de agradecer aos parceiros do meu time de hockey

Blades que, mesmo durante a pandemia, mantiveram contato e ajudaram a enfrentar

esse período tão difícil na vida de todos nós.

Por �m, gostaria de agradecer a todos que, direta ou indiretamente, me ajudaram

nessa jornada.

ABSTRACT

Neural Networks are usually used in the context of machine learning to solve statistical

problems and calculate approximations. However, its use for symbolic learning has

been increasing in the past years, placing them in the Neurosymbolic realm. To

study the capabilities of Neural Networks in this kind of task, several works have

already explored the ability of these networks to learn mathematical operations, such

as addition and multiplication, logic inference, such as theorem provers, and even

execution of computer programs. The latter is known to be a task too complex for

neural networks. Therefore, the results were not always successful and often required

the introduction of biased elements in the learning process, in addition to restricting

the scope of possible programs to be executed. In this work, we will be interested in

studying the ability of Neural Networks to learn how to execute programs as a whole.

To achieve this, we propose a di�erent approach. Instead of using an imperative pro-

gramming language with complex structures, we use the Lambda Calculus (λ-Calculus),

a simple yet Turing-Complete mathematical formalism, which serves as the basis for

modern functional languages. As the execution of a program in λ-Calculus is based on

reductions, we will show that learning how to perform these reductions is enough to

execute any program.

Keywords: Machine learning. lambda calculus. neural network. sequence-to-sequence

model. transformer model. symbolic AI. neuro-symbolic computation.

Cálculo Lambda encontra Aprendizado de Máquina

RESUMO

Redes neurais são geralmente utilizadas para resolver problemas estatísticos e calcular

aproximações. No entanto, seu uso para aprendizagem simbólica vem aumentando nos

últimos anos, colocando-as no domínio Neuro-Simbólico. Para estudar as capacidades

das Redes Neurais nesse tipo de tarefa, vários trabalhos já exploraram a capacidade des-

sas redes em aprender operações matemáticas, como adição e multiplicação, inferências

lógicas, como provadores de teoremas, e até execução de programas de computador. Esta

última tarefa é conhecida por ser muito complexa para redes neurais. Portanto, nem sem-

pre os resultados são bem-sucedidos, e muitas vezes exigem a introdução de elementos

enviesados no aprendizado, além de restrição no escopo de programas a serem executa-

dos. Neste trabalho, estaremos interessados em estudar a capacidade das Redes Neurais

em aprender a executar programas como um todo. Para isso, propomos uma abordagem

diferente. Ao invés de usar uma linguagem de programação imperativa, com estruturas

complexas, usamos o Lambda Calculus (λ-Calculus), um formalismo matemático sim-

ples, mas Turing-Completo, que serve de base para as linguagens funcionais modernas.

Como a execução de um programa em λ-Calculus é baseada em reduções, mostraremos

que basta aprender a fazer essas reduções para que possamos executar qualquer pro-

grama.

Palavras-chave: Aprendizado de máquina. cálculo lambda. redes neurais. mode-

los sequência para sequência. modelo transformer. IA simbólica. computação neuro-

simbólica.

LIST OF FIGURES

Figure 2.1 Figure illustrating how the de Bruijn indexes are calculated, based on

their relative positions. ... 36

Figure 3.1 An example of a question answered right by a state-of-the-art chatbot,

the ChatGPT. The reasoning behind the answer is correct and probably based

on statistical data that the model was trained on... 41

Figure 3.2 An example of a question answered incorrectly twice by a state-of-

the-art chatbot, the ChatGPT. The correct answer should be two hours, not

eight. The reasoning behind the answers is incorrect and probably based on

statistical data that the model was trained on. ... 41

Figure 3.3 An example of a lambda term evaluated wrongly by a state-of-the-art

chatbot, the ChatGPT. The right answer should be “lambda a. lambda b. a”. 42

Figure 3.4 General scheme of the seq2seq model applied on the One-Step Beta

Reduction task. ... 43

Figure 3.5 Model architecture of the Transformer. The encoder is represented on

the left, and the decoder on the right.. 45

Figure 3.6 Architecture of the self-attention layer in the Transformer architecture.... 46

Figure 3.7 Example of a gradient descent algorithm in a simple function, showing

the di�erence the learning rate can make on the convergence to the optimal

answer... 48

Figure 4.1 Scheme of how all the datasets for the OBR tasks are generated. It

starts with the three Lambda Sets (RLS, CBLS, and OBLS), and ends with all

12 datasets that are available for the OBR task... 53

Figure 4.2 Scheme of how all the datasets for the MBR tasks are generated. It starts

with the two Lambda Sets (CBLS and OBLS), and ends with all 9 datasets that

are available for the MBR task. ... 54

Figure 5.1 Examples of mathematical expression trees, as well as their string rep-

resentations, generated by the algorithm used to generate intermediate trees 61

Figure 5.2 Di�erence between implicitly putting the variable of the abstraction in

the node, and explicitly putting the variable as a leaf, as implemented in this

work. ... 61

Figure 6.1 Graph displaying the progression for the training of the One-Step Beta

Reduction task, for the closed bool dataset, with the random vars convention,

with a learning rate of 1 × 10−4. After epoch 20, the accuracy started to

oscillate at unacceptable rates... 71

Figure 6.2 Graph displaying the progression for the training of the One-Step Beta

Reduction task, for the random datasets, over the three di�erent conventions. .. 72

Figure 6.3 Graph displaying the progression for the training of the One-Step Beta

Reduction task, for the closed bool datasets, over the three di�erent conventions.73

Figure 6.4 Graph displaying the progression for the training of the One-Step Beta

Reduction task, for the open bool datasets, over the three di�erent conventions.73

Figure 6.5 Graph displaying the progression for the training of the One-Step Beta

Reduction task, for the mixed datasets, over the three di�erent conventions. 74

Figure 6.6 Graph displaying the progression for the training of the Multi-Step

Beta Reduction task, for the closed bool datasets, over the three di�erent

conventions. .. 74

Figure 6.7 Graph displaying the progression for the training of the Multi-Step

Beta Reduction task, for the open bool datasets, over the three di�erent con-

ventions. ... 75

Figure 6.8 Graph displaying the progression for the training of the Multi-Step

Beta Reduction task, for the mixed datasets, over the three di�erent conventions.75

Figure 6.9 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the OBR task using the traditional convention... 77

Figure 6.10 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the OBR task using the random vars convention. 77

Figure 6.11 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the OBR task using the de Bruijn convention. .. 77

Figure 6.12 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the MBR task using the traditional convention. 78

Figure 6.13 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the MBR task using the random vars convention. 78

Figure 6.14 Graph showing the evaluation accuracy (%) for each model, repre-

sented by the grouped bars, and each dataset, represented by the di�erent

colors, for the MBR task using the de Bruijn convention. ... 78

LIST OF TABLES

Table 2.1 Convertion table of Lambda Terms from the in�x representation to the

tree representation... 24

Table 2.2 Convertion table of Lambda Terms from the in�x representation to the

pre�x representation. .. 25

Table 5.1 Table showing the lambda encoding for the boolean values true and

false, as well as some algorithms for common boolean operators. 65

Table 5.2 Table showing the minimum, maximum, and average sizes of the input

λ-terms for each dataset. The datasets considered were the ones that use the

traditional convention... 69

Table 5.3 Table showing the minimum, maximum, and average number of reduc-

tions generated by each Lambda Set. The mixed dataset considered here is the

one with terms coming only from the closed bool and open bool Lambda Sets. ... 69

Table 6.1 Values for the learning rate hyperparameter chosen for each of the tasks

and lambda sets trained. The value started with 1×10−4 and it was lowered as

the trained showed an unacceptable oscillation, indicating the learning would

not converge.. 71

Table 6.2 Accuracy and the average string similarity for the evaluation of the

models trained. * Rounded from 0.998... 76

Table 6.3 Accuracy (%) for the evaluation of the models over di�erent datasets, for

the OBR task. For each of the three di�erent conventions (trad, random vars,

and De Bruijn), the model trained with each dataset (rows) was evaluated with

each dataset (columns). The last column indicates the average accuracy of the

model over the di�erent datasets. .. 79

Table 6.4 Accuracy (%) for the evaluation of the models over di�erent datasets, for

the MBR task. For each of the three di�erent conventions (trad, random vars,

and De Bruijn), the model trained with each dataset (rows) was evaluated with

each dataset (columns). The last column indicates the average accuracy of the

model over the di�erent datasets. .. 79

LIST OF ABBREVIATIONS AND ACRONYMS

AI Arti�cial Intelligence

NN Neural Network

LR Learning Rate

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

LC Lambda Calculus

LT Lambda Term

DB de Bruijn

OBR One-Step Beta Reduction

MBR Multi-Step Beta Reduction

LS Lambda Set

RLS Random Lambda Set

CBLS Closed Bool Lambda Set

OBLS Open Bool Lambda Set

LIST OF SYMBOLS

λ Lambda Abstraction on in�x notation

α Alpha

β Beta

f, x, y, z, ... Lambda Variables

V Set of Lambda Variables

M,N,P,M ′, N ′, ... Lambda Terms

Λ Set of Lambda Terms

ΛDB Set of Lambda Terms on de Bruijn Notation

@ Lambda Application

L Lambda Abstraction on pre�x notation

FV Free Variables

=α Alpha Equivalence

→β Beta Reduction

→→β Multi-Step Beta Reduction

=β Beta Equivalence

CONTENTS

1 INTRODUCTION... 14
1.1 Goals... 14
1.2 Related Work.. 15
1.3 Dissertation Structure .. 17
2 LAMBDA CALCULUS ... 19
2.1 History and Importance .. 19
2.2 Concept.. 20
2.3 Syntax... 22
2.3.1 Lambda Terms as Trees ... 23

2.3.2 Pre�x Notation .. 24

2.4 Bound vs Free Variables... 26
2.5 Substitution .. 27
2.6 Alpha Equivalence .. 28
2.7 Beta Reduction... 30
2.8 Encodings .. 32
2.9 Computation .. 34
2.10 De Bruijn Index ... 35
2.10.1 Conversion Algorithms ... 36

2.10.2 Computation .. 38

3 ARTIFICIAL INTELLIGENCE... 39
3.1 Machine Learning ... 39
3.2 Neural Networks.. 40
3.3 Neurosymbolic AI ... 40
3.4 Sequence-to-sequence .. 43
3.5 Transformer ... 44
3.6 Hyperparameters .. 47
3.6.1 Learning Rate... 48

4 METHODOLOGY ... 49
4.1 Tasks... 49
4.2 Lambda Sets and Datasets.. 50
4.3 Training ... 53
4.3.1 Con�gurations ... 54

4.4 Code and Implementation... 55
4.5 Experiments and Results... 55
5 GENERATING LAMBDA DATASETS .. 58
5.1 Format.. 59
5.2 Generating Lambda Sets .. 60
5.2.1 Generating Intermediate Trees .. 60

5.2.2 Finishing the Trees ... 63

5.2.3 Problems with this Generation .. 63

5.3 Generating Lambda Terms with Reduced Scope.. 64
5.4 Generating the Final Datasets .. 66
5.4.1 One-Step Beta Reduction .. 66

5.4.2 Multi-Step Beta Reduction.. 67

5.5 Term Sizes ... 68
5.6 Number of Reductions ... 68

6 RESULTS.. 70
6.1 Training Results .. 70
6.1.1 Learning Rate... 70

6.1.2 Results.. 72

6.2 Evaluation Across Datasets ... 76
7 DISCUSSION ... 80
7.1 Training Results .. 80
7.1.1 One-Step Beta Reduction .. 80

7.1.2 Multi-Step Beta Reduction.. 82

7.2 Evaluations Across Datasets ... 83
7.2.1 One-Step Beta Reduction .. 84

7.2.2 Multi-Step Beta Reduction.. 85

8 CONCLUSION AND FUTUREWORK... 86
8.1 Conclusions .. 87
8.1.1 Main Contributions .. 87

8.2 Future Work ... 88
REFERENCES .. 90
APPENDIX A — RESUMO EXPANDIDO.. 93

14

1 INTRODUCTION

In the �eld of machine learning, one key objective is to understand the best way

to approach the task of learning from data. One approach, which has been referred to as

rule-based inference, emphasizes the use of explicit logical rules to reason about the data

and make predictions or decisions. The other perspective, known as statistical learning,

involves using mathematical models to automatically extract patterns and relationships

from the data (RUMELHART; MCCLELLAND, 1986).

Traditionally, neural networks have been employed in the statistical learning,

solving problems such as speech recognition, machine translation, handwriting recog-

nition, etc., rather than the symbolic learning. However, recent advancements in the

�eld have resulted in the introduction of models that are changing the landscape and

allowing us to tackle a wider range of problems, including symbolic ones, using neu-

ral networks. When neural networks are applied to symbolic problems, the result is a

hybrid approach that combines the advantages of both. This combination of the two ap-

proaches falls under the realm of Neurosymbolic AI (KAUTZ, 2022). This �eld combines

the advantages that each of the paradigms presents (GARCEZ; LAMB; GABBAY, 2009),

and there has been increasing focus on the area in the last years (GARCEZ; LAMB, 2020).

In this work, we intend to explore the capacity of Machine Learning models,

speci�cally, the Transformer (VASWANI et al., 2017), to learn to perform computations, a

symbolic �eld that has been traditionally seen as being too complex for neural networks

to handle. For this, we use a simple but powerful formalism, the Lambda Calculus (λ-

Calculus), as the underlying framework (BARENDREGT, 1984).

1.1 Goals

The idea of training a machine learning model to perform computations is rela-

tively new and involves teaching the model to understand the underlying logic and rules

involved in mathematical operations. The majority of the works in this �eld tend to re-

strict the domain of the programs the model can take as input. Therefore, our research

question is: “Can a Machine Learning model learn to perform computations?”.

Considering that computer programs do not have a �xed size, for the machine

learning part, we use a sequence-to-sequence (seq2seq) model, which can take inputs

and produce outputs of any length. Speci�cally, we use a model that has been widely

15

used for several kinds of applications and also tested for symbolic tasks, the Transformer

(VASWANI et al., 2017).

For the computations, we use the λ-Calculus, a formalism that, although sim-

ple and compact, can perform any computation, according to the Church-Turing thesis

(SIPSER, 1996). In essence, the λ-Calculus can be seen as a programming language con-

sisting of terms (λ-terms) that can be subject to reductions. The λ-Calculus actually

is at the core of many modern programming languages, especially the functional ones

(MICHAELSON, 2011). The λ-terms can be viewed as programs, and the reductions can

be interpreted as computations performed within the formalism. Applying a single re-

duction to a term represents an one-step computation in the λ-Calculus. On the other

hand, a full computation involves applying reductions successively on a term that has a

normal form until it reaches it, i.e., no more reductions are possible. With these ideas in

mind, we propose two hypotheses aimed at answering our research question:

• H1: The Transformer model can learn to perform a one-step computation

on Lambda Calculus.

• H2: The Transformer model can learn to perform a full computation on

Lambda Calculus.

It is clear that the hypothesis H1 is easier to validate than H2 since a one-step

computation is simpler to perform than a full computation. Thus, the purpose of these

hypotheses is to gradually enhance our comprehension of the subject matter and enable

us to provide an answer to our research question.

1.2 Related Work

In the work of Zaremba and Sutskever (2014), seq2seq models are used to learn to

evaluate short computer programs using an imperative language with the Python syn-

tax. But their domain of programs is restricted as their programs are short and can use

just some arithmetic operations, variable assignment, if-statements, and for loops (not

nested). Every program prints an integer as output. Our goal is rather not to limit the do-

main of programs that our model can learn, focusing solely on the syntactic operations

performed to achieve the result.

There are some other studies that also claim to have developed models that learn

algorithms or learn to execute computer code, including Kaiser and Sutskever (2015),

16

Graves, Wayne and Danihelka (2014), and Trask et al. (2018). However, the domain

of these works is restricted to some arithmetical operations or sequence computations

(copying, duplicating, sorting, etc.). Additional works concentrate on acquiring an un-

derstanding of program representation. For example, Maddison and Tarlow (2014) builds

generative models of natural source code, while Mou et al. (2014) applies neural networks

to determine if two programs are equivalent.

In Vaswani et al. (2017), the Transformer model was �rst introduced, bringing

several key advancements and improvements compared to the state-of-the-art seq2seq

models prevalent at that time. This new model boasted improved parallelism, reduced

sequential processing requirements, and the ability to handle longer sequences, among

other things.

These innovative features have contributed to the widespread adoption of the

Transformer model in various Machine Learning applications, including some that in-

volve symbolic mathematics. In a study by Lample and Charton (2019), the Transformer

model was applied to learn how to symbolically integrate functions, yielding promis-

ing results. The authors demonstrated that the model was capable of learning how to

compute integrals in a way that was both accurate and e�cient, outperforming existing

methods in many cases. This study highlights the versatility and potential of the Trans-

former model, making it a valuable tool for tackling a wide range of machine learning

tasks, especially in areas that require symbolic reasoning and mathematical operations.

Also, recent developments in chatbot technology have been enabled by the

Transformer model. One example of a chatbot that has emerged as a result of this de-

velopment is the ChatGPT a
, which is based on a state-of-the-art AI model, the GPT-3,

from Brown et al. (2020). The chatbot can answer questions about a variety of subjects

(ROOSE, 2022), and it can also perform some basic symbolic reasoning. However, the

symbolic reasoning is still limited, as it gives some incorrect answers to very simple

questions.

In the present work, we shift the paradigm from the imperative paradigm that all

other works have used to the functional paradigm, which is the case for the λ-Calculus.

With this, we try to abstract the idea of learning to compute computer programs to learn-

ing to perform reductions on λ-terms. With this approach, we were able to obtain an

accuracy of 88.89% for learning the one-step β-reduction on completely random terms

and 99.73% on terms that represent boolean expressions. Also, for the full computation

a
available at <https://openai.com/blog/chatgpt/>

https://openai.com/blog/chatgpt/

17

task, we were able to obtain an accuracy of 97.70% for terms that represent boolean

expressions. If we consider the string similarity metric, where we compare how many

characters of the λ-term the model predicted right, the majority of our results had a

similarity above 99%. With these results, we think that this change in the paradigm and

the use of the Transformer model are two improvements that can be led into account in

future research.

1.3 Dissertation Structure

The remainder of the current study is organized as follows:

• Chapters 2 and 3 provide most of the essential background information required

to understand this dissertation. In particular, Chapter 2 presents a concise in-

troduction to the λ-Calculus. The chapter covers the fundamental aspects of

the formalism, including its syntax, semantics, and core concepts. On the other

hand, Chapter 3 focuses on the Arti�cial Intelligence and Machine Learning �eld,

providing an overview of Neural Network models, with a speci�c emphasis on

Sequence-to-Sequence (seq2seq) models, especially the Transformer, which we are

going to be utilizing in this study.

• Chapter 4 provides a detailed overview of the methodology that is going to be em-

ployed in the experiments conducted in this dissertation. It explains the various

steps involved in the experimental process, such as data generation and prepa-

ration, model selection, and evaluation metrics. The chapter also discusses the

experimental design, including the research questions being investigated and the

hypotheses being tested, as well as the speci�c techniques and tools used to con-

duct the experiments.

• Chapter 5 focuses on the process of generating the datasets that are going to be

utilized in the experiments conducted in this dissertation. The chapter describes

the methods used to generate these datasets, including selecting relevant param-

eters and the speci�c algorithms and techniques employed.

• Chapters 6 and 7 presents the outcomes of the experiments conducted in this dis-

sertation, along with an analysis and discussion of the �ndings. They summarize

the analysis and interpretation of the data obtained from the experiments and the

extent to which they support the hypotheses and research questions.

18

• Finally, Chapter 8 provides a summary of the key �ndings and their signi�cance,

as well as the potential paths for future research.

19

2 LAMBDA CALCULUS

The Lambda Calculus (λ-calculus or LC) is known to be a simple and elegant

foundation for computation. It is a formal system based on functions and is based on

function abstraction, which captures the notion of function de�nition, and function ap-

plication, which captures the notion of the application of a function to its parameters.

It is the base for modern functional programming languages, like Racket, Haskell, and

others (MICHAELSON, 2011). It was introduced by Alonzo Church in the 1930s, and has

become one of the main computational models (HINDLEY; CARDONE, 2006).

In this chapter, we �rst present a brief history of the λ-calculus, talk about its

importance and give an overall look at its main aspects. Then, we introduce its tradi-

tional syntax and a tree notation used to propose a pre�x notation for the λ-terms. Later,

we show some de�nitions, based on the notation of Machado (2013), which was based

on the de�nitions by Barendregt (1984). Next, we present some encodings for integer

and boolean arithmetic, as well as some examples of computations using the λ-calculus.

Finally, we show another alternative notation for the formalism.

2.1 History and Importance

The e�ervescence of ideas and theories for the foundations of mathematics in

the early XX century, and the aim of solving one of the greatest mathematical problems

of the time - The Entscheidungsproblem, German word for the Decision Problem - ended

up with two di�erent ways of giving the problem a solution, almost at the same time.

Each of those ways turned out to be the answer to a subject that was in the mind of

philosophers, logicians, and mathematicians for centuries: “What can a machine do?”.

Also, it was the beginning of one of the greatest discoveries of all times: the computer

(DAVIS, 2001).

To give the Entscheidungsproblem a solution, each author had to propose an idea

of what e�ective computability is. In Cambridge, Alan Turing proposed the Turing Ma-

chine (TURING, 1936). Across the ocean, in Princeton, Alonzo Church proposed the

Lambda Calculus (CHURCH, 1936). Although Church had proposed a version of the LC

years before (CHURCH, 1932), it was in 1936 that he proposed the version that we know

today (HINDLEY; CARDONE, 2006). Later, Turing proved that the two formalisms were

actually equivalent (TURING, 1937).

20

Later, the Church-Turing Thesis was proposed, saying that the computational

capacity of the Turing Machine - and the Lambda Calculus - is the maximum limit of

any computational model (SIPSER, 1996). As the notion of algorithms and computable

functions are intuitive, this thesis is not demonstrable. However, since it is accepted as

true for computer science, it is also known as the Church-Turing Hypothesis (DIVERIO;

MENEZES, 2009).

Although the Turing Machine is the most famous and in�uential computational

model, the Lambda Calculus has its importance too. Not only by its historical importance

but also because it is a very small and expressive formalism and is the base for sev-

eral languages that follow the functional programming paradigm, such as Lisp, OCaml,

Haskell, among others (MACHADO, 2013). It also serves as a core formalism for other

formalisms, such as type theory (CHURCH, 1940).

2.2 Concept

Lambda Calculus is a formal system that captures the core notion of functions

- its de�nition and application (MACHADO, 2013). Here, it is important to distinguish

between the two main notions of functions: functions as graphs and functions as rules.

Functions as graphs is the notion taught in school, where a function is de�ned by sets of

pairs, like (x, f(x)). The other notion, function as rules, is considered the process of going

from the argument to the value, a process that is encoded by the function de�nition. It

is easy to see that the second notion is much closer to computer science than the �rst

one since you are looking at the function as rules, i.e., as an algorithm. The notion that

the LC regards is the latter. (BARENDREGT, 1984)

As was said, LC takes only the necessary part of functions to build its theory.

Consider this function, written as we normally write function:

f(x) = x+ 1

This is the de�nition of a function f a
. After de�ned, we can apply it to an

element of its domain (in this case, a number) to produce a value:

a
One can argue that this is not e�ective the de�nition of f , but an equation in which f is in (DIVERIO;

MENEZES, 2009): f(x)− x+ 1 = 0

21

f(1) = 1 + 1

f(1) = 2

This is the application of the function f . When we apply a function to an argu-

ment, we produce a value. In fact, f is just the name of a function that, given a number,

returns its successor. If we write g(x) = x + 1 or h(x) = x + 1, they are, in fact, the

same function, with di�erent names.

So, as shown, a function is not its name. You have to separate the name of the

function from the function itself. But with ordinary mathematics (the one we learn in

school), we can not write the function separate from its name. We need a new notation,

and that is the main goal of the Lambda Language. With this language, we can write the

function that f, g and h represents as:

λ x. x+ 1

This term is saying that it is a function (because of the λ), it takes one argument

that we are calling x, and returns its successor
b
. The general form of Lambda Terms

(λ-terms or LTs) would be:

λ < argument > . < body >

Without a name, a function can be applied to its argument by just writing the

function itself and then the argument. Usually, a blank space is left in between. So, f(1)

could be written as:

(λ x. x+ 1) 1

Later, we are going to see how we compute terms like this one, using the same

b
It is important to note that in pure LC, which we are going to use in this work, we do not have

numbers or mathematical operations. So, this term actually is not part of the lambda language (because

of the number 1 and the + operation). But, for the sake of understanding the concept of functions, we

ignore this for now

22

notion of how we would compute f(1), i.e., substituting x in the body of the function.

2.3 Syntax

In this section, we present the syntax of λ-terms (LTs). We start with the formal

de�nition, as follows
c
:

De�nition (λ-terms). Let V be a countable set of names. The set of λ-terms Λ is the

smallest set such that

x ∈ V
(VAR)

x ∈ Λ

x ∈ V M ∈ Λ
(ABS)

(λx.M) ∈ Λ

M ∈ Λ N ∈ Λ
(APP)

(M N) ∈ Λ

The �rst rule introduces that every variable is an LT. The second rule says that

given a variable x and an LT M , the term (λx.M) is an LT, and expresses the notion

of function abstraction, being a function that receives one parameter - called x - and

returns M as the result. The third rule says that given two LT M and N , (M N) is

an LT, and expresses the notion of function application, meaning that the function M

is being called with N as its parameter (MACHADO, 2013). Using this de�nition, it is

possible to recursively write an in�nite number of terms. Here are some examples:

1. x

2. y

3. x y

4. λ x. x

5. (λ x. x) (λ y. y)

6. λ x. (x (λ y. y))

7. λ x. x λ y. y

8. λ x.x y

c
In this de�nition, parenthesis are used around the abstractions and applications, but we use it just

when it is necessary to avoid ambiguity

23

9. x y z

10. λf.((λx.f (x x)) (λx.f (x x)))

Note that the terms 5, 6, and 7 are very similar, and only di�er from the paren-

thesis, which dictates the order of the operations. The term 5 is an application of two

abstractions and the term 6 is an abstraction of an application. The term 7, however, is

not clear. So, when the parentheses are missing, the following rules apply (MACHADO,

2013):

1. The scope of a λ abstraction extends to the rightmost term, until “stoped” by a

parentheses. For example:

λx.x y = λx.(x y) 6= (λx.x) y

2. The application is left associative. For Example:

x y z = (x y) z 6= x (y z)

It is important to notice that in this version of λ-Calculus, the pure version, the

formalist does not have any type of data, like numbers or booleans, neither it provides

any primitive operations, like sum, multiplication, and, or, etc. It only has the concept of

functions and their application. Everything else is built upon those concepts.

2.3.1 Lambda Terms as Trees

As seen in Machado (2013) and Jung (2004), lambda terms can be seen as trees,

with abstractions and applications as internal nodes and variables as leaves. With this

representation, ambiguities and the need for parenthesis are eliminated.

For this, we consider: A variable is a leaf, and an application is a binary node

(represented by @) with the left term as the left branch and the right term as the right

branch. And the abstraction is a binary node (represented by λ), where the left branch

must be a single variable, representing the variable of the term and the right child is an

LT, representing the body of the term. Often, the abstraction is seem abbreviated with

the node represented by λ x. Table 2.1 shows how to convert from the original notation

(string) to the tree notation.

Now we can see that the tree representation of terms 5 and 6 are, in fact, di�erent:

24

Table 2.1: Convertion table of Lambda Terms from the in�x representation to the tree

representation.

Type String Tree Abbr.

Var v v

Abs (M N) @

M N

App λ v. M λ

v M

λv

M

Source: The authors.

(λ x. x) (λ y. y) ⇒

@

λx

x

λy

y

λ x. (x (λ y. y)) ⇒

λx

@

x λy

y

2.3.2 Pre�x Notation

The representation of LT as trees eliminates any ambiguity that we may have.

But, as subsequent chapters show, a way of representing LT as strings is needed for our

work. Pre�x notation (aka Polish Notation) is a very useful way to do this since it also

removes the need for parenthesis (HAMBLIN, 1962).

25

So, a 1-to-1 mapping for trees and sequences (strings) is needed. To achieve this,

we propose the use of the Polish Notation, traversing the tree with the preorder ordering,

where a node is visited, then its left children, and then its right children. This generates

terms without parenthesis but adds the application symbol (@), which is implicit in the

in�x notation when the application is written as the juxtaposition of two lambda terms.

We also change the λ symbol for this representation, using the uppercase letter “L”. Table

2.2 shows how to convert from the original notation (in�x) to the pre�x notation.

Table 2.2: Convertion table of Lambda Terms from the in�x representation to the pre�x

representation.

Type In�x Notation Tree

Pre�x

Notation

Var v v v

Abs (M N) @

M N

@ M N

App λ v. M λ

v M

L v M

Source: The authors.

So it is possible to write complex terms without the need for parentheses and

without ambiguity. Rewriting the terms 5 and 6 from the previous sections in pre�x

forms:

(λ x. x) (λ y. y) ≡ @ L x x L y y

λ x. (x (λ y. y)) ≡ L x @ x L y y

For this work, we consider λ-terms in the three mentioned forms (in�x notation,

pre�x notation, and tree notation) as interchangeable. We use the in�x notation for a

more user-friendly representation. To enhance visualization of the terms, we utilize tree

notation. On the other hand, for the learning tasks outlined in Chapter 1, we use pre�x

notation. The reason we chose pre�x notation for the learning tasks is that it o�ers a

well-organized structure, derived from a tree-like representation. This structure allows

26

for a clearer and more straightforward representation of expressions. Furthermore, the

pre�x notation has a distinct advantage over other notations, as it is unambiguous and

eliminates the need for parentheses. We expect that this makes it easier to process ex-

pressions, particularly for the purposes of learning and understanding complex mathe-

matical concepts.

2.4 Bound vs Free Variables

A variable in a λ-term can be bounded or free, depending on its relative position.

This position is relative to the scope of the abstractions of the term. In a term with the

format λx.M , we say that M is the scope of the parameter x, and every occurrence of

x inside M is said to be bound. Otherwise, the variable occurrence is said to be free

(MACHADO, 2013).

In other words, if we want to see if a variable x is bound or free, we can look

at the term as a tree and go from the variable in question to the root of the tree. If in

this path we �nd a lambda abstraction with x as the variable (λx), we say that this x is

bound. Otherwise, it is free. A term can have both bounded and free occurrences of a

variable. For instance, in the following term, the two xs in green are bounded by the

green abstraction. However, the red x is not bounded by any abstraction, therefore, it is

a free variable.

λf

@

λx

@

f @

x x

x

27

The formal de�nition of the free variables (FV) of a term is the following:

De�nition (Free Variables). FV (M) is the set of free variables inM and can be de�ned

inductively as follows:

FV (x) = {x}

FV (λx.M) = FV (M)− {x}

FV (M N) = FV (M) ∪ FV (N)

In addition, the λ-term M is said to be closed if FV (M) = ∅, i.e., every variable

is bounded by some abstraction. Otherwise, M is said to be open.

2.5 Substitution

The foundation behind function application is the substitution operation. In this

operation, we substitute the parameters of the function for the term that is passed as

argument (MACHADO, 2013). It is similar to what is done in mathematics when we

calculate the result of a function f(x), substituting x by a number inside the body of the

function. Here, the syntax is the following:

M [x := N] (2.1)

meaning that we must substitute every free occurrence of x insideM byN . Here

are some examples of substitutions:

1. x [x := z] = z

2. y [x := z] = y

3. λx.y [y := z] = λx.z

4. λx.y [x := z] = λx.y

5. λx.x [x := z] = λx.x

6. λx.y [y := λy.y] = λx.λy.y

28

7. λx.y [y := x] = λx.x ?

Notice that some terms remain the same after the substitution. That is because

there are no occurrences of the substitution variable free in that term. Also, substitution

7 has a question mark because the substitution captured the new variable as bound, and

it should not be considered a valid substitution. This problem is called capture of free

variable. The formal de�nition of substitution is as follows:

De�nition (Substitution).

x[y := N] =

N if x = y

x if x 6= y

(λx.M)[y := N] =

λx.M if x = y

λx.(M [y := N]) if x 6= y and x /∈ FV (N)

(M P)[y := N] = M [y := N] P [y := N]

The only source for the capture of a free variable is when we apply a substitution

to a function abstraction. The de�nition above for (λx.M)[y := N] avoids the capture

of a free variable by simply leaving unde�ned the result of performing the substitution

in case x ∈ FV (N).

2.6 Alpha Equivalence

Let us start this section with two examples of mathematical functions:

f(x) = x2 − 4

g(z) = z2 − 4

If we take the pairs (x, f(x)) and (z, g(z)), or if we take a look at their graphs,

we can see that both f and g represent the same mathematical function - a function that

takes one argument, square it, and subtract 4. The name of the parameter is unimportant

for the de�nition of the function. This also happens in LC. If we take the two functions:

29

λx.x y

λz.z y

We can see that they both represent the same function - a function that takes

one argument and applies it to y. However, they are syntactically di�erent terms. The

α-equivalence states that terms that di�er only by the choice of names for the bound

variables are considered equivalent to each other (MACHADO, 2013). We writeM =α N

to state that M and N are α-equivalents, and M 6=α N to state otherwise. The formal

de�nition is as follows:

De�nition (α-equivalence). The α-equivalence is the smallest equivalence relation on

Lambda terms such that

y /∈ FV (M)
(α)

λx.M =α λy.(M [x := y])

M =α M
′

M N =α M
′ N

N =α N
′

M N =α M N ′

M =α M
′

λx.M =α λx.M
′

The �rst rule (axiomα) denotes the idea of equivalence of terms by only changing

the bounded names. The other rules denote that this equivalence on a subterm extends

for the whole term.

Some authors, including Machado (2013), di�erentiates pre-terms from terms.

The pre-terms are what its been presented as terms and the terms are actually an equiv-

alence class of α-equivalent pre-terms. In this work, we use the word term indistinctly

to address both pre-terms and terms.

The same operations de�ned before extend now to the α-equivalent class. So,

now we can perform the substitution λx.y [y := x], since we can beforehand change the

name of the bound variables.

30

In this work, however, we use the Barendregt convention (BARENDREGT, 1984).

This convention states that, for the sake of simplicity, we can assume that the name of

the bound variables will always be unique. This assumption eliminates the possibility

of capturing free variables and allows the de�nition for the substitution for the lambda

abstraction to be much simpler: (λx.M)[y := N] = λx(M [y := N])

2.7 Beta Reduction

The β-reduction captures the notion of the function application, using the sub-

stitution operation. But before the de�nition of the β-reduction, the de�nition of a redex

must be given. Informally, a redex is a part of a term where a substitution can occur, i.e.,

we have an λ-abstraction followed by any other term. Formally:

De�nition (Redex). A redex (reducible expression) is any subterm in the format

(λx.M) N

for which the respective contractum is

M [x := N]

In addition, if a term does not have any redexes, the term is a normal form. Oth-

erwise, the term is reducible.

De�nition (β-reduction). The β-reduction (→β) is the smallest equivalence relation on

Lambda terms such that

(β) (λx.M) N →β M [x := N]

M →β M
′

M N →β M
′ N

N →β N
′

M N →β M N ′

31

M →β M
′

λx.M →β λx.M
′

The→β can be seen as just one-step computation and is related to the hypotheses

H1. The multi-step reduction is denoted by→→β and is related to the hypotheses H2. It

is de�ned as the re�exive and transitive closure of→β , as follows:

De�nition (Multi-step β-reduction). The multi-step β-reduction (→→β) is the smallest

relation on Lambda terms such that

M →→β M

M →β N

M →→β N

M →β N N →β P

M →→β P

Another relation between terms is the β-equivalence, which gives the notion of

terms that have the “same value”. It is de�ned as follows:

De�nition (β-equivalence). =β is the smallest relation on terms such that

M →→β P N →→β P

M =β N

A term can have a normal form, i.e., be reducible with β-reductions until it

reaches its normal form, but it can also not have a normal form, i.e., it can enter a loop

and never reach a normal form. For example, the term (λx.x x) (λx.x x) does not have

a normal form, because it β-reduces to itself. We say that a term M has a normal form

when exists a term N such that M =β N and N is a normal form.

Also, a term can have more than one redex, meaning that when we try to apply

the β-reduction on a term, we can have multiple possibilities. It is useful to have a strat-

egy to select which redex we want to reduce at each step of the computation. Formally:

32

De�nition (Evalutation Strategy). An evaluation strategy is a function that chooses a

single redex for every reducible term.

The two most usual evaluation strategies are: (i) lazy evaluation, where the redex

chosen is the leftmost, outermost redex of a term; and (ii) strict evaluation, where the

redex chosen is the leftmost, innermost redex of a term.

Choosing the evaluation strategy is very important to clearly de�ne which redex

to reduce through the β-reduction. Furthermore, it is not just a matter of personal pref-

erence, since there is a theorem that says that if a termM has a normal form P , then the

lazy evaluation strategy will always reach P fromM , in a �nite number of β-reductions.

Therefore, in this work, we always use the lazy evaluation strategy when performing β-

reductions on terms, to assure that, if the term has a normal form, we are able to reach

it.

2.8 Encodings

Lambda terms can be used to represent abstract ideas, such as numbers, lists,

boolean formulas, structures, trees, etc. The notion of encoding is well-known in Com-

puter Science. For example, our modern computers operate on binary code, i.e., inside

our computers, there are only zeroes and ones. But with only two digits, we are able

to represent integers, �oating points, strings, trees, etc, by de�ning some encodings.

For instance, in 8 bits, 00000001 can represent the integer 1, and 10000000 the integer

128. But we can use two’s complement to also represent negative numbers and now

10000000 represents the number −128 (SHUTE, 1993). There is not a “right” encoding,

just di�erent encoding and patterns that usually every computer architecture follows.

In LC, the idea is the same. We can use the structure of function abstractions

and applications to encode representations for numbers, booleans, strings, etc. As in

binary, there is no “right” encoding, just di�erent ones. But there are some well-known

encodings, such as Church encoding or Scott encoding. In this work, we utilize the

Church Encoding as it is the most widely recognized codi�cation, and its encoding for

the desired data and operations is simple and straightforward.

33

For instance, Church de�ned numbers in the following encoding:

λf. λx. x ≡ 0

λf. λx. f x ≡ 1

λf. λx. f(f x) ≡ 2

λf. λx. f(f(f x)) ≡ 3
...

(2.2)

And boolean values can be de�ned as:

λa. λb. a ≡ true

λa. λb. b ≡ false
(2.3)

Notice that false has the same encoding as 0 - their encodings are α-equivalent.

This is not a problem, since for binary this also happens. 01100001 can represent the

number 97 or the letter a, depending on the context. So, if we are working with booleans,

λf. λx. x means false, and if we are working with numbers, λf. λx. x means 0.

With the encodings de�ned, we can write algorithms, in the form of functions,

that operate on those data. Here, again there is not a “right” function for an operation.

We can de�ne functions over the numbers de�ned, such as the successor, addition, and

multiplication operations, as:

λn. λa. λb. a (n a b) ≡ succ

λn. λm. λa. λb. (n a (m a b)) ≡ add

λn. λm. λa. λb. (n (m a) b) ≡ mult

(2.4)

We can also de�ne functions over booleans, such as:

λp. λq. (p q p) ≡ and

λp. λq. (p p q) ≡ or

λp. λa. λb. (p b a) ≡ not

(2.5)

In the context of this work, a computation is considered a “meaningful compu-

tation” only if it is based on some known encoding.

34

2.9 Computation

Now we can demonstrate how we can use the λ-C to execute some computations,

using the lazy evaluation strategy.

Applying the addition with 2 and 3, for example:

(λ n.λ m.λ a.λ b.n a (m a b)) (λ f.λ x.f (f x)) (λ f.λ x.f (f (f x)))

→β (λ m.λ a.λ b.(λ f.λ x.f (f x)) a (m a b)) (λ f.λ x.f (f (f x)))

→β λ a.λ b.(λ f.λ x.f (f x)) a ((λ f.λ x.f (f (f x))) a b)

→β λ a.λ b.(λ x.a (a x)) ((λ f.λ x.f (f (f x))) a b)

→β λ a.λ b.a (a ((λ f.λ x.f (f (f x))) a b))

→β λ a.λ b.a (a ((λ x.a (a (a x))) b))

→β λ a.λ b.a (a (a (a (a b))))

= 5 by def. (2.2)

And applying the multiplication with 2 and 3:

(λ n.λ m.λ a.λ b.n (m a) b) (λ f.λ x.f (f x)) (λ f.λ x.f (f (f x)))

→β (λ m.λ a.λ b.(λ f.λ x.f (f x)) (m a) b) (λ f.λ x.f (f (f x)))

→β λ a.λ b.(λ f.λ x.f (f x)) ((λ f.λ x.f (f (f x))) a) b

→β λ a.λ b.(λ x.(λ f.λ x.f (f (f x))) a ((λ f.λ x.f (f (f x))) a x)) b

→β λ a.λ b.(λ f.λ x.f (f (f x))) a ((λ f.λ x.f (f (f x))) a b)

→β λ a.λ b.(λ x.a (a (a x))) ((λ f.λ x.f (f (f x))) a b)

→β λ a.λ b.a (a (a ((λ f.λ x.f (f (f x))) a b)))

→β λ a.λ b.a (a (a ((λ x.a (a (a x))) b)))

→β λ a.λ b.a (a (a (a (a (a b)))))

= 6 by def. (2.2)

Applying the boolean operations in the boolean expression

(true and (notfalse)). To translate to the LC, we have to rewrite the operands

as functions as follows: (and true (not false))).

(λp. λq. (p q p)) (λa. λb. a) ((λp. λa. λb. (p b a)) (λa. λb. b))

→β (λq. ((λa. λb. a) q (λa. λb. a))) ((λp. λa. λb. (p b a)) (λa. λb. b))

→β (λa. λb. a) ((λp. λa. λb. (p b a)) (λa. λb. b)) (λa. λb. a)

→β (λb. ((λp. λa. λb. (p b a)) (λa. λb. b))) (λa. λb. a)

→β (λp. λa. λb. (p b a)) (λa. λb. b)

→β λa. λb. ((λa. λb. b) b a)

→β λa. λb. ((λb. b) a)

→β λa. λb. a

= true by def. (2.3)

It is easy to get lost in the parenthesis when doing large computations. Here is

the previous example using the pre�x notation:

35

@ @ L p L q @ @ p q p L a L b a @ L p L a L b @ @ p b a L a L b b

→β @ L q @ @ L a L b a q L a L b a @ L p L a L b @ @ p b a L a L b b

→β @ @ L a L b a @ L p L a L b @ @ p b a L a L b b L a L b a

→β @ L b @ L p L a L b @ @ p b a L a L b b L a L b a

→β @ L p L a L b @ @ p b a L a L b b

→β L a L b @ @ L a L b b b a

→β L a L b @ L b b a

→β L a L b a

= true by def. (2.3)

2.10 De Bruijn Index

The De Bruijn (DB) index is a tool to de�ne λ-terms without having to name

the variables (BRUIJN, 1972). This eliminates the need to worry about variable names

when performing a substitution and the need for the alpha-equivalence de�nition. This

approach can be bene�cial for us, since the terms are agnostic to the variable naming

and are simpler, in the sense that they are shorter.

Basically, in this notation, the variable names are replaced by natural numbers.

The abstraction no longer has a variable name, and every occurrence of a variable is

represented by a number, that indicates at which abstraction it is binded. These nameless

terms are called de Bruijn terms, and the numeric variables are called de Bruijn indices

(PIERCE, 2002). For the sake of simplicity, we denote the free variables with the number

0, and the indices of the bound variables start at 1. This notation works by assuming

that each de Bruijn indice corresponds to the number of binders (abstractions) that the

variable is under. In other words, the abstraction that the variable is bound can be found

by counting the abstractions from the leaves to the root of the tree. Figure 2.1 illustrates

how the indices are calculated based on each variable position. Some examples of de

Bruijn terms are:

1. 0

2. 0 0

3. λ 1

4. (λ 1) (λ 0)

5. λ (λ (1 2))

6. λ ((λ 2 (1 1)) (λ 2 (1 1)))

7. λ (λ 1 (λ 1)) (λ 2 1))

36

Figure 2.1: Figure illustrating how the de Bruijn indexes are calculated, based on their

relative positions.

Source: The authors.

The syntax for the de Bruijn terms is similar to the traditional λ-Calculus, and

can be formalized as:

De�nition (de Bruijn λ-terms). The set of de Bruijn λ-terms ΛDB is the smallest set

such that

n ∈ N
(VAR)

n ∈ ΛDB

M ∈ ΛDB
(ABS)

(λ M) ∈ ΛDB

M ∈ ΛDB N ∈ ΛDB
(APP)

(M N) ∈ ΛDB

The β-reduction on this notation is not trivial, since the operation changes the

relative position of the variables inside the terms. So, the indices must be recalculated

for every reduction. Although one of the goals of this work is for the model to learn

to perform the β-reduction over de Bruijn terms, for our dataset generation, we do not

perform the β-reduction directly on de Bruijn terms. Rather, we convert them to the

traditional notation, perform the reduction and then convert them back to de Bruijn. So,

for the sake of simplicity, we do not explore the de�nition for the β-reduction on de

Bruijn terms.

2.10.1 Conversion Algorithms

Since we could not �nd an algorithm for converting between traditional notation

and De Bruijn notation, we propose the following two algorithms:

37

1 def t o _ d e _ b r u i j n (term , s t a c k = []) :

2 i f i s ins tance (term , Var) :

3 i = g e t _ i n d e x (s t a c k , term)

4 return Var (i)

5 e l i f i s ins tance (term , Abs) :

6 new = s t a c k . copy ()

7 new . append (term . var)

8 return Abs (Var (’ ␣ ’) , t o _ d e _ b r u i j n (term . body , new))

9 e l i f i s ins tance (term , App) :

10 return App (t o _ d e _ b r u i j n (term . l e f t , s t a c k) , t o _ d e _ b r u i j n (term . r i g h t , s t a c k))

The above algorithm is a recursive algorithm, that traverses the lambda term tree,

deleting the variable from the abstractions and substituting the variable names in their

bodies for DB indexes. It has a stack to store the order that the variables appeared on the

term. The algorithm works as follows: on lines 2, 4, and 8, it checks if the current node

is a variable, abstraction, or application, respectively. If it is a variable, on line 3 it gets

an index from the stack, based on the current node using the function get_index, which

returns the position of the variable on the stack. Then, it returns the index calculated as

a variable on line 4. If it is an abstraction, on line 6 it creates a copy of the current stack

for this recursive execution, then on line 7 it appends the variable of the abstraction

to the new copy of the stack and on line 8 it returns the abstraction with its variable

deleted and the recursion applied to its body. Finally, if it is an application, on line 10 it

just continues the recursion for both terms, left and right.

1 def f r o m _ d e _ b r u i j n (t e r m _ t r e e , s t a c k = [] , c = 0) :

2 i f i s _ v a r i a b l e (t e r m _ t r e e) :

3 v = g e t _ v a r (s t a c k , index (t e r m _ t r e e))

4 return v

5 e l i f i s _ a b s t r a c t i o n (t e r m _ t r e e) :

6 v = a l p h a b e t [c]

7 s t a c k . append (v)

8 return Abs (v , f r o m _ d e _ b r u i j n (t e r m _ t r e e . body , s t a c k , c + 1))

9 e l i f i s _ a p p l i c a t i o n (t e r m _ t r e e) :

10 return App (f r o m _ d e _ b r u i j n (t e r m _ t r e e . l e f t , s t a c k , c) ,

11 f r o m _ d e _ b r u i j n (t e r m _ t r e e . r i g h t , s t a c k , c))

The above algorithm is also a recursive algorithm that traverses the lambda term

tree, assigning variable names for the abstractions and substituting the DB indexes based

on their corresponding bindings. It has a stack to store the names of the variables for

all the abstractions the current node is under and a counter to store the position of the

38

next variable name we can use from the alphabet. The algorithm works as follows: on

lines 2, 5, and 9, it checks if the current node is a variable, abstraction, or application

respectively. If it is a variable, i.e., a DB index, on line 3, it gets a variable from the stack,

using the function get_var, which returns the variable in the stack that is on the index of

the current node. Then, it returns it on line 4. If it is an abstraction, on line 6 it assigns

a new variable name from the alphabet to the current node, then on line 7, it appends

this variable to the stack. Then, on line 8 it continues the recursion on the body of the

abstraction, increasing the counter since it used a variable from the alphabet. If it is an

application, on lines 10 and 11 it just continues the recursion for both terms, left and

right.

For this algorithm, we must de�ne two things: an alphabet and the order of its

elements. For this work, we use the English alphabet, both lowercase and uppercase,

minus the uppercase letter “L”, which we use for the lambda symbol. For the order, we

can de�ne any order we want. In this work, we use two orders: (i) the alphabetical order,

where the next variable name to be used is always the next variable in the alphabet and

(ii) the random order, where the next variable name to be used is randomly assigned.

2.10.2 Computation

As we have done with the traditional notation, with de Bruijn notation we can

also write the terms in pre�x notation. Here is the computation example from the pre-

vious section in the de Bruijn pre�x notation:

@ @ L L @ @ 2 1 2 L L 2 @ L L L @ @ 3 1 2 L L 1

→β @ L @ @ L L 2 1 L L 2 @ L L L @ @ 3 1 2 L L 1

→β @ @ L L 2 @ L L L @ @ 3 1 2 L L 1 L L 2

→β @ L @ L L L @ @ 3 1 2 L L 1 L L 2

→β @ L L L @ @ 3 1 2 L L 1

→β L L @ @ L L 1 1 2

→β L L @ L 1 2

→β L L 2

= true by def. (2.3)

As we can see, this notation is shorter than the traditional notation. Also, we do

not have to worry about the names of the variables. However, the β-reduction is harder

on this notation. So, we use this notation to see the di�erence in performance for our

model to learn the β-reduction over di�erent representations of terms.

39

3 ARTIFICIAL INTELLIGENCE

Arti�cial Intelligence (AI) is an interdisciplinary �eld that focuses on the devel-

opment of intelligent models that can perform tasks that typically require human intelli-

gence, such as perception, reasoning, and decision-making. AI systems can be designed

to learn from experience and improve their performance over time, leading to the de-

velopment of various applications in areas such as healthcare, �nance, transportation,

natural language applications, etc.

In this chapter, we present an overview of the speci�c �elds and methods of AI

we use in this work. We start by presenting the Machine Learning sub�eld, followed

by a presentation on Neural Networks. Next, we introduce the Neurosymbolic domain.

We then proceed to discuss the limitations of purely neural architectures and exam-

ine sequence-to-sequence models. Finally, we provide a description of the Transformer,

which is the model we use in this research.

3.1 Machine Learning

Machine Learning (ML) is a subset of AI that involves the development of al-

gorithms and models that can learn from data to make predictions or decisions. ML

algorithms can be trained on vast amounts of data, allowing them to identify patterns

and relationships in the data and improve their accuracy over time (GOODFELLOW;

BENGIO; COURVILLE, 2016). There are three main types of ML algorithms: supervised

learning, unsupervised learning, and reinforcement learning (BISHOP; NASRABADI,

2006).

Supervised learning algorithms are trained on data where the output or target

variable is known. These algorithms can be used to make predictions about new, un-

seen data, such as classifying images or predicting stock prices. Unsupervised learning

algorithms are also trained on data, but the output or target variable is unknown. These

algorithms can be used to identify patterns and relationships in the data, such as cluster-

ing data into groups or detecting anomalies in data. Reinforcement learning algorithms

are designed to learn from interactions with an environment, where the algorithm re-

ceives a reward or penalty for each action it takes. These algorithms can be used in

various applications, such as game-playing and robotics. This work focuses on super-

vised learning, particularly on connectionist AI (neural network models).

40

3.2 Neural Networks

Arti�cial Neural Networks (NNs) were inspired by the structure and function

of the human brain and are designed for processing large amounts of data to identify

patterns and relationships. Their fundamental unit is the Neuron, which essentially "ac-

tivates" when a linear combination of its inputs surpasses a certain threshold. A Neural

Network is merely a collection of interconnected neurons whose properties are deter-

mined by the arrangement of the neurons and their individual characteristics (RUSSELL;

NORVIG, 2021).

These neurons are often organized in layers. The input data is fed into the �rst

layer, and the output of each neuron in a given layer is used as the input for the next

layer until the �nal layer produces the output of the network. The connections between

the neurons are represented by weights that are updated during the training process to

minimize the error between the predicted output and the actual output.

NNs have been applied to a wide range of tasks, including image classi�cation,

speech recognition, and natural language processing, among others. One of the main

advantages of NNs is their ability to model non-linear relationships between inputs and

outputs. This makes NNs a powerful tool for solving complex real-world problems.

3.3 Neurosymbolic AI

As seen in the introduction of this work, even state-of-the-art neural models have

trouble with symbolic reasoning. One example is the ChatGPT a
, which utilizes an ad-

vanced AI model based on the Transformer architecture, known as GPT-3, developed

by Brown et al. (2020). According to Roose (2022), this chatbot has the ability to pro-

vide answers to inquiries on diverse topics. As shown in Figure 3.1, it also can handle

some symbolic reasoning. Nevertheless, the capacity for symbolic reasoning remains

restricted, as it generates incorrect responses to elementary questions, as seen in Fig-

ure 3.2. Even within our domain of study, the chatbot tries to answer questions, but it

presents di�culty in giving the correct response, as illustrated in Figure 3.3.

What we can devise from this is that even though the chatbot is excellent at an-

swering general questions, it does not perform well when asked to carry out symbolic

reasoning. So, an architecture that takes advantage of both symbolic AI and neural mod-

a
available at <https://openai.com/blog/chatgpt/>

https://openai.com/blog/chatgpt/

41

Figure 3.1: An example of a question answered right by a state-of-the-art chatbot, the

ChatGPT. The reasoning behind the answer is correct and probably based on statistical

data that the model was trained on.

Source: Image generated by the authors, at <https://openai.com/blog/chatgpt/>, on

05/01/2023

Figure 3.2: An example of a question answered incorrectly twice by a state-of-the-art

chatbot, the ChatGPT. The correct answer should be two hours, not eight. The reasoning

behind the answers is incorrect and probably based on statistical data that the model was

trained on.

Source: Image generated by the authors, at <https://openai.com/blog/chatgpt/>, on

05/01/2023

els could still give good general answers and also present better symbolic reasoning.

The Neurosymbolic AI is a �eld of arti�cial intelligence that combines the

strengths of symbolic and connectionist AI. Symbolic AI represents knowledge in a

structured, human-readable form and uses reasoning and rule-based systems to per-

form tasks. Connectionist AI, on the other hand, represents knowledge as patterns in a

network of simple processing units to learn from data. The neurosymbolic models aim

to merge the two approaches by incorporating symbolic reasoning and/or representa-

tion with the learning and generalization capabilities of neural networks. The following

quote from the book Garcez, Lamb and Gabbay (2009) summarizes the idea:

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

42

Figure 3.3: An example of a lambda term evaluated wrongly by a state-of-the-art chatbot,

the ChatGPT. The right answer should be “lambda a. lambda b. a”.

Source: Image generated by the authors, at <https://openai.com/blog/chatgpt/>, on

05/01/2023

The aim of neural-symbolic computation is to explore the advantages that

each paradigm presents. Among the advantages of arti�cial neural networks

are massive parallelism, fault tolerance (robust learning), e�cient inductive

learning, and e�ective generalization capabilities. On the other hand, sym-

bolic systems provide descriptions (as opposed to only discriminations); can

explain their inference process, for example through automatic theorem prov-

ing; and use powerful declarative languages for knowledge representation

and reasoning.

In Kautz (2022), six di�erent forms of neurosymbolic AI are presented, accord-

ingly to how and where the two di�erent approaches are combined. In the present work,

we use the Neuro: Symbolic→ Neuro b
approach, meaning that we take a symbolic do-

main (the λ-calculus reductions) and apply it to a neural architecture (the Transformer).

b
Using Kautz (2022) notation.

https://openai.com/blog/chatgpt/

43

3.4 Sequence-to-sequence

Although neural networks are versatile and e�ective, they are only suitable for

problems where inputs and targets can be represented by �xed-dimensional vector en-

codings. This is a signi�cant constraint, as many crucial problems are better expressed

using sequences of unknown lengths, such as speech recognition and machine transla-

tion. It is evident that a versatile method that can learn to translate sequences to se-

quences without being restricted to a speci�c domain would be valuable. (SUTSKEVER;

VINYALS; LE, 2014).

Sequence-to-sequence (seq2seq) models, emerged from this necessity. They are

a type of deep learning model used for tasks that involve mapping an input sequence to

an output sequence of variable length. They have been traditionally applied to various

natural language processing tasks, such as machine translation, text summarization, and

text generation, among others.

Given that we can see the computations in lambda calculus as strings transfor-

mations, we can look at the computations we want to learn in this work as machine

translation tasks. Also, these strings do not have �xed sizes. So, we have opted to em-

ploy the sequence-to-sequence model for our work. Figure 3.4 shows the general layout

for our algorithm.

Figure 3.4: General scheme of the seq2seq model applied on the One-Step Beta Reduction

task.

Source: The authors.

Among the di�erent architectures for assembling seq2seq models, the most com-

mon are the Recurrent Neural Networks (RNN) (LIPTON; BERKOWITZ; ELKAN, 2015),

the Long Short-Term Memory (LSTM) (SUTSKEVER; VINYALS; LE, 2014), the Gated Re-

44

current Unit (GRU) (CHUNG et al., 2014) and the Transformer (VASWANI et al., 2017).

In this work, we chose to use the Transformer.

3.5 Transformer

The Transformer model is a type of neural network architecture that was intro-

duced in Vaswani et al. (2017). It is designed to handle sequential data, such as natural

language, and has quickly become one of the most popular models for tasks such as nat-

ural language processing, machine translation, text classi�cation, and question answer-

ing. One of the key innovations of the Transformer model is its use of a self-attention

mechanism, which allows the model to dynamically weigh the importance of di�erent

parts of the input sequence. This allows the Transformer to capture long-range depen-

dencies in the data, which is particularly useful for processing sequences of variable

lengths. Another advantage of the Transformer is its parallelization capacity, which al-

lows it to be trained e�ciently on large amounts of data. The Transformer model can

be trained in parallel on multiple sequences, which is not possible with other traditional

sequence-to-sequence models.

Now a detailed description of the model is presented, including its architecture

and internal operation. In terms of architecture, the Transformer consists of an encoder

and a decoder, both of which are composed of a series of multi-head self-attention layers

and fully connected feed-forward layers, which can be seen in Figure 3.5. The encoder

and decoder have slightly di�erent architectures, with the decoder also including an

additional masked self-attention mechanism that prevents it from seeing future positions

in the sequence.

In the Transformer, each input token is represented as a �xed-length embedding

vector. However, these embeddings do not encode any information about the position

of the token within the sequence, which can be important for capturing the sequential

relationships between di�erent parts of the data. To address this issue, the Transformer

uses positional encoding, which adds positional information to the input embeddings.

The encoder works by taking as input a sequence of tokens, such as words or

characters, and processing it into a sequence of hidden states that capture the meaning of

the input sequence. To achieve this, each self-attention layer computes a weighted sum

of the input tokens, with the weights determined by a learned attention mechanism.

This allows the model to dynamically weigh the importance of di�erent parts of the

45

Figure 3.5: Model architecture of the Transformer. The encoder is represented on the

left, and the decoder on the right.

Source: Vaswani et al. (2017)

input sequence, allowing it to capture long-range dependencies in the data. The output

of each self-attention layer is then passed through a feed-forward layer, which provides

a non-linear transformation of the data.

The decoder works by taking the encoded representation of the source sentence

and the output from the previous time step as input and generating the output sequence

one token at a time. The decoder consists of multiple identical layers, each of which con-

tains three sublayers: Masked Multi-Head Attention, Multi-Head Attention, and Feed-

Forward Network. After passing through these three sublayers, the decoder output is

passed through a softmax activation function to obtain a probability distribution over

the vocabulary. The token with the highest probability is selected as the next output

token. This process is repeated for each time step until the end-of-sequence token is

46

generated or a maximum output length is reached.

The self-attention layer allows the model to capture dependencies between dif-

ferent parts of the input sequence and is shown in Figure 3.6 (left). It takes three inputs:

queries, keys, and values. These are linear projections of the input sequence, which are

learned during training. The queries, keys, and values are used to compute an attention

weight matrix, which determines how much each position in the input sequence attends

to every other position. The attention weight matrix is computed by taking the dot

product of the queries with the keys and applying a softmax function to the result. This

produces a probability distribution over the keys for each query, indicating how much

each key attends to the query. The values are then weighted by the attention weights

and summed, producing a weighted sum of the values that represent the attended input

sequence.

Figure 3.6: Architecture of the self-attention layer in the Transformer architecture.

Source: Vaswani et al. (2017)

The self-attention layer also includes a mechanism called multi-head attention,

which allows the model to attend to multiple aspects of the input sequence, which can

be seen in Figure 3.6 (right). This is achieved by splitting the queries, keys, and values

into multiple smaller sets, and computing the attention weight matrix for each set sep-

arately. The results of each set are then concatenated and projected back to the original

dimensionality, allowing the model to attend to di�erent aspects of the input sequence

in parallel.

The Transformer architecture also includes feed-forward layers, which are basic

47

types of neural networks, in both the encoder and decoder. The feed-forward layers

are important for the Transformer because they allow the model to capture complex

relationships between the input and output. The self-attention layers are powerful tools

for attending to di�erent parts of the input sequence, but they are limited in their ability

to learn complex non-linear transformations. In other words, the feed-forward layers

provide a way for the model to learn more complex relationships between the input and

output.

The Transformer was the model chosen for this work for several reasons. First,

it has parallelization features, which signi�cantly speeds up the training time. Also,

it presents better performance than all other seq2seq models on a variety of natural

language processing. But, besides the better technical features, the main reason we chose

the model is for its self-attention mechanism. To perform the β-reduction over lambda

terms, it is necessary to substitute every occurrence of the variable in question with

the term. So, we think that the self-attention can be used to “pay attention” to every

occurrence of the variable in question on the λ-term when performing the task.

3.6 Hyperparameters

Our model, like most NN models, can be seen as a function that takes a dataset

as input and produces a function (prediction function) as the output. In practice, how-

ever, our model also has some parameters besides the dataset. We call these parameters

Hyperparameters. Bengio (2012) de�nes a hyperparameter for a learning algorithm A

as:

(...) a variable to be set prior to the actual application of A to the data, one

that is not directly selected by the learning algorithm itself. It is basically an

outside control knob.

These control knobs are not easy to set, and adjusting them can be a cumbersome

task. The process of setting those values requires experience and trial and error, being

based more on luck than on science (SMITH, 2018).

Traditional Neural Networks have some hyperparameters that we can pass, such

as the number of layers, the size of each layer, the activation function, the learning

rate, etc. The model we use - the Transformer - is more complex, and therefore, has

even more hyperparameters, such as the number of attention heads and the number

48

of layers in the encoder and decoder. Preliminary results showed that using the same

hyperparameters that Lample and Charton (2019) used for its symbolic mathematics

training is a suitable option for our purposes. Since the goal of this work is not to �nd

the optimal hyperparameters, we settled for this choice. However, we needed to adjust

one hyperparameter during the training - the learning rate.

3.6.1 Learning Rate

When the model is learning, at each step, it tries to get closer to the answer.

The amount by which it tries to get closer depends on the steepness of the function on

that point and on a scaling factor, which we call Learning Rate (LR) (MURPHY, 2012).

Choosing this hyperparameter is di�cult because there is a trade-o�. If we pick an LR

too small, the training takes too long. But if we pick an LR too big, the training can start

to diverge from the desired output. Figure 3.7 shows a real example of a gradient descent

algorithm over a simple function, with two di�erent LRs, one smaller and one bigger. We

can see that with the smaller LR, the function converges to the optimal answer. However,

with the bigger LR, the function starts to diverge and probably never �nds the optimal

solution. Thus, in our work, we had to adjust this hyperparameter for each training, so

they do not start to diverge.

Figure 3.7: Example of a gradient descent algorithm in a simple function, showing the

di�erence the learning rate can make on the convergence to the optimal answer.

(a) Small LR, converging to the optimal answer. (b) Big LR, diverging from the optimal answer.

Source: Murphy (2012)

49

4 METHODOLOGY

In this chapter, we describe the methodology we have devised to test and validate

our hypothesis and answer the research question we have proposed. This methodology

guided the research process, and we believe that by following this methodology, we have

conducted a rigorous and replicable research process.

We start by outlining the research question and hypothesis the study seeks to

address, providing an explanation of how the hypothesis relates to the tasks we are

proposing. Following that, we provide details on the datasets used to achieve the re-

search goals, including details such as the generation of the data and the types and the

number of datasets used. Next, we provide information about the speci�c AI techniques

and tools we used in our study, including the machine learning model we chose, the

hyperparameters we set, and any other technical details that are relevant. In addition,

we discuss the technical aspects of our work, such as the con�guration of the machine

where the model was trained and the pieces of code that were used. This information

is important for reproducibility and for other researchers who may want to build upon

our work. Finally, we describe how we present and evaluate the results of our study,

including the metrics used to evaluate the model, as well as how we present them.

4.1 Tasks

Our research question is: Can a Machine Learning model learn to perform

computations? In other words, we want to investigate whether machine learning al-

gorithms can be used to perform computational tasks and whether they are capable of

learning to perform these tasks through training. To answer this question, two hypothe-

ses were proposed:

• H1: The Transformer model can learn to perform a one-step computation

on Lambda Calculus.

• H2: The Transformer model can learn to perform a full computation on

Lambda Calculus.

For each of these hypotheses, we propose a di�erent task for our model to learn.

The hypothesis H1 is related to the task of performing the One-Step Beta Reduction

(OBR). This hypothesis claims that the model is able to perform a single reduction step

50

in λ-Calculus, taking a λ-term and transforming it according to the β-reduction rules.

The hypothesis H2 is related to the task of Multi-Step Beta Reduction (MBR).

This hypothesis suggests that the model is able to perform multiple reduction steps in

lambda calculus, taking a normalizable λ-term, i.e., a λ-term that has a normal form, and

transforming it into its normal form through multiple beta reduction steps.

The primary focus of our research question is aligned with the second hypothesis.

However, we chose to begin with an easier hypothesis as a starting point. The �rst task

is considered easier because it requires the execution of a single computational step,

which is less complex than performing a full computation. This approach enables us

to gradually build up our understanding and con�dence before moving on to the more

challenging second hypothesis.

The Lambda Calculus was chosen as the underlying formalism because it is very

simple but still Turing-Complete, i.e., it is powerful enough to express any computa-

tion that can be expressed in any other algorithmic system, according to the Church-

Turing thesis (SIPSER, 1996). Using modern imperative programming languages, the

model would have to learn several abstract concepts to grasp the notion of computa-

tion, such as variable assignment, loops, conditional statements, arithmetic operations,

etc. In contrast, with λ-Calculus, the model can, instead, focus solely on learning the

β-reduction.

To support these hypotheses, we plan to generate several datasets for each of the

tasks and use these datasets to train machine learning models. By training the models

on these datasets, we aim to determine if the models are able to learn and perform the

tasks associated with each hypothesis.

4.2 Lambda Sets and Datasets

Since, to the best of our knowledge, there are no existing references on gener-

ating lambda terms in the literature, we need to develop the generation process from

scratch. To generate the datasets that the models are going to train on, we �rst gener-

ate Lambda Sets (LSs) containing only lambda terms. From these LSs, we generate the

datasets needed for the trainings. Thus, we generate three LSs:

• Random Lambda Set (RLS): This LS is generated as random and unbiased as

possible, using the techniques from Section 5.2. Thus, this LS can have terms that

51

do not have a normal form. With the datasets generated from this LS, we want

to assert that the model can learn the β-reduction, regardless if the input terms

represent meaningful computations or if they have a normal form.

• Closed Bool Lambda Set (CBLS): This LS has its terms representing closed

boolean expressions and is generated using the methods from Section 5.3. Thus,

all terms in this LS have a normal form. With the datasets generated from this

LS, we want to assert that the model can learn the β-reductions from meaningful

computations. Also, these datasets are useful to validate the models trained with

the datasets from the RLS, i.e., to validate if the model that learned from random

terms can perform meaningful computations.

• Open Bool Lambda Set (OBLS): This LS have its terms representing open

boolean expression, with free variables in them, and is also generated using the

methods from Section 5.3. With the datasets generated from this LS, we want to

assert that the model can learn the β-reductions from meaningful computations,

even if the terms have free variables. These datasets are also useful to validate the

models trained with other datasets.

For the One-Step Beta Reduction task, we generate datasets based on the three

LSs proposed. However, for the Multi-Step Beta Reduction task, we do not utilize the

Random LS to generate datasets, as the terms produced randomly may not have a normal

form and result in an in�nite loop during the multi-step β-reduction. The other two LSs

are guaranteed to have terms that have a normal form since they are built using only

boolean expressions.

In addition to the LS mentioned above, for each task, we create an extra LS, which

we refer to as a “Mixed Lambda Set” (MLS). These LSs are a combination of the other LSs

used on each task. Thus, for the OBR, the MLS is composed of terms coming from the

RLS, CBLS, and OBLS, in the same proportion. For the MBR, the MLS is formed by terms

coming from the CBLS and OBLS, in the same proportion. With these LSs we want to

assert that the model can learn from a domain that contemplates several kinds of terms.

Since we are interest in comparing the training with di�erent notations, instead

of generating only one dataset from each lambda set, we generate three with di�erent

variable naming conventions:

• De Bruijn: This convention uses the pre�x de Bruijn notation, presented in Sec-

tion 2.10. We utilize this convention because it uses a shorter notation and

52

presents a way of representing λ-terms without the need of naming the variables,

which can be bene�cial for our model.

• Traditional: This convention uses the pre�x traditional notation, presented in

Section 2.3 To achieve this version, we take the de Bruijn version and give names

to the variables, using the algorithm from Section 2.10.1. The order for variable

naming used for this convention is the alphabetical order. We utilize this conven-

tion because we want to compare the results of the learning process using the de

Bruijn notation with the traditional notation.

• Random Vars: This convention also uses the pre�x traditional notation. How-

ever, for this version, we take the de Bruijn version and give names to the variables

using the same algorithm as above, but now using a random order for the variables.

We utilize this notation because we want to check if the way we name the variables

matter for the performance of the models.

Therefore, for the OBR task, we ultimately have a total of 12 datasets, as illus-

trated in Figure 4.1. Regarding the MBR task, we have a total of 9 datasets in the end, as

depicted in Figure 4.2
a
. It is noteworthy that the LS utilized for both tasks are identical,

meaning that the initial λ-terms for the datasets that employ the same LS are consistent

across both tasks. These 21 datasets provide us with a broad set of test cases to evaluate

the performance of our models. Chapter 5 explains thoroughly how the lambda sets and

the datasets are generated.

Each dataset contains around one million examples, and we further divide each

dataset into train, validation, and test sets. Adhering to the methodology outlined by

Lample and Charton (2019), we allocate a total of about 10 thousand examples for both

the validation and test sets. This division of the datasets into train, validation, and test

sets allows us to e�ectively train our models and evaluate their performance on inde-

pendent data. By utilizing a large number of examples in each dataset and following

established best practices, we want to ensure that our results are robust and representa-

tive of the underlying task.

After generating the datasets, we clean them, deleting pairs that: (i) have un-

dergone α-reductions, since we are following the Barendregt Convention; (ii) the �rst

element is already in normal form because we want all pairs to represent β-reductions;

(iii) appears repeated on the dataset.

a
All the 21 datasets generated are available at <https://bit.ly/lambda_datasets>.

https://bit.ly/lambda_datasets

53

Figure 4.1: Scheme of how all the datasets for the OBR tasks are generated. It starts with

the three Lambda Sets (RLS, CBLS, and OBLS), and ends with all 12 datasets that are

available for the OBR task.

Source: The authors.

4.3 Training

To learn the tasks mentioned before, we use a neural model. Since the λ-terms we

are using do not have a �xed size, we need our model to accept inputs of varying lengths

and generate outputs accordingly. To achieve this, we use a sequence-to-sequence model

(seq2seq), which allows for inputs and outputs of di�erent sizes. Speci�cally, we use the

Transformer model, proposed by Vaswani et al. (2017). This model has been widely

used for di�erent applications, including symbolic ones as demonstrated by Lample and

Charton (2019).

For the hyperparameters, preliminary tests showed us that the parameters used

by Lample and Charton (2019) were acceptable for our tasks. If needed, they can be

adjusted during the training process. So, the initial hyperparameters are the following:

• Number of encoding layers - 6

• Number of decoding layers - 6

54

Figure 4.2: Scheme of how all the datasets for the MBR tasks are generated. It starts with

the two Lambda Sets (CBLS and OBLS), and ends with all 9 datasets that are available

for the MBR task.

Source: The authors.

• Embedding layer dimension - 1024

• Number of attention heads - 8

• Optimizer - Adam (KINGMA; BA, 2014)

• Learning rate - 1× 10−4

• Loss function - Cross Entropy

4.3.1 Con�gurations

The experiments were conducted on a server located in our Machine Learning

laboratory, situated at the Informatics Institute - UFRGS. The server has the following

con�gurations:

• CPU: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

• RAM: 32 GB (2 x 16 Gb) DDR4 @ 2667 MHz

• GPU: Quadro P6000 with 24 Gb

• OS: Ubuntu 18.04.5 LTS

Our initial aim was to have each training session run for a duration of 12 to 24

55

hours. Preliminary results showed that each training consisting of 50 epochs with an

epoch size of 50000 would take between 12h to 30h to complete. So, we chose this ar-

rangement. This con�guration allows the model to process a total of 2.5×106
equations,

which is 2.5 times the size of the dataset.

With this machine, model, and con�guration we are using, we can safely have

inputs with up to 250 tokens. With more than that, we end up with memory shortage.

4.4 Code and Implementation

In this work, we utilized two distinct pieces of code. The �rst piece, adapted from

Lample and Charton (2019)
b
, contributed for two main purposes: (i) it assisted in the

generation of the lambda sets described above, by generating intermediate λ-terms and

(ii) it handled the learning process. The second piece of code is our own implementa-

tion, which deals with the speci�cs of the λ-Calculus
c
. Our implementation, coded in

Python, is a simulator of the Lambda Calculus, supporting both traditional notation and

De Bruijn notation, as well as both notations in pre�x and su�x manner. It is entirely

based on the substitution operation, which is the fundamental operation of Lambda Cal-

culus.

The lambda calculus simulator is used to generate the λ-terms for the lambda sets

from the intermediate terms generated by the code adapted from Lample and Charton

(2019). Also, it is used to generate the datasets from the lambda sets, generating the re-

spective reductions from the terms in the LSs. It achieves all this by doing the lambda cal-

culus speci�cs, such as parsing terms, computing reductions, converting terms between

the di�erent notations, etc. This code can be used by anyone that needs a Lambda Cal-

culus parser and/or simulator. It also computes metrics for the datasets and has drawing

functions to generate images of the terms as trees.

4.5 Experiments and Results

Our idea was to use the cross-validation technique to assess the statistical signif-

icance of our results. However, given that each training took approximately 1 day, and

we had 21 datasets to train, it was not possible to apply the technique. So, we use just

b
This code is available at <https://github.com/jm�ach/SymbolicLambda>

c
This code is available at <https://github.com/jm�ach/lambda-calculus>

https://github.com/jmflach/SymbolicLambda
https://github.com/jmflach/lambda-calculus

56

one cross-validation iteration for each training.

To evaluate the performance of the model during the training, the accuracy of

the model to predict the data on the test dataset is calculated and recorded after each

epoch. This accuracy metric is a measure of how well the model is able to make correct

predictions on the data it has seen during training. For each of the models trained, we

display a graph showing the evolution of the accuracy of the model (y-axis) over the

epochs (x-axis).

The model’s accuracy determines whether the predicted string matches the ex-

pected output. However, accuracy may not be the only relevant metric for evaluating

the performance of a model in text generation or other similar tasks. In some cases, it

may be useful to measure the similarity between the predicted string and the expected

one, even if they are not identical. So, additionally, we used a string similarity metric

to compare how close the predicted string is to the expected one. For this, we used a

common string similarity metric, the Levenshtein distance, which measures the number

of changes (insertions, deletions, or substitutions) needed to transform one string into

the other (LEVENSHTEIN et al., 1966). This metric actually provides the absolute dif-

ference between the two strings, so we divide this distance by the maximum distance

possible between the two strings (which is the length of the longer string) to generate

a percentage of dissimilarity. Then, we just subtract this value from 1 to get a percent-

age of similarity between the two strings. So, for each trained model, we also provide a

string similarity value. The formula used is as follows:

str_sim(s1, s2) = 1− lev_dist(s1, s2)

max(len(s1), len(s2))

As part of our analysis, we also assess the capacity of the models trained with

each dataset to evaluate the other datasets. We achieve this by performing addi-

tional evaluations with each of the already trained models. For this, we use a model

trained with one dataset to evaluate the other datasets that use the same notation and

are designed for the same task. For example, we take the model that trained on the

obr_rand_trad dataset and evaluate how it performs on the obr_cb_trad, obr_ob_trad

and obr_mix_trad datasets.

By evaluating a model on the other datasets, which it did not train on, we can

better understand the model’s strengths and weaknesses, as well as its ability to gen-

eralize to new data. If the model performs well on other datasets of the same type, it

57

may be a good sign that the model has learned meaningful patterns in the data and can

be applied to new, unseen data. If the model performs poorly on other datasets, it may

indicate that the model has, for instance, over�t to the original training data or the data

was not adequate.

58

5 GENERATING LAMBDA DATASETS

In Chapter 3 we made clear that the learning model we are using in this work

is a type of supervised learning. Thus, data is a key component in the learning process.

The quality and relevance of the data that is provided to the model determine its ability

to solve the proposed tasks and make accurate predictions e�ectively. This happens

because the model uses the data in the training set to form a general understanding

of the relationship between input and output and to extrapolate that understanding to

new examples. In this work, we are interested in two main tasks: the task of learning

how to perform a single beta reduction given a lambda term, which we call One-Step

Beta Reduction (OBR), and the task of learning how to reach the normal form of lambda

terms by performing a sequence of one step beta reductions, which we call Multi-Step

Beta Reduction (MBR). When the distinction is not needed, we use the word “reduction”

to refer to either of the tasks.

The examples on the datasets represent lambda terms and their respective re-

ductions. Given a literature review, there are no datasets available for the tasks we are

interested in. Also, there are no datasets composed solely of lambda terms. So, in this

chapter, we discuss di�erent methods on how we can generate the datasets we are going

to be used to achieve our goals. To achieve this, �rst, we explain how to generate sets of

random lambda terms, that we refer to as Lambda Sets (LSs), which we can later use to

generate the datasets for the speci�c tasks.

We start explaining how to generate the terms completely randomly, inserting

as little bias as possible. Then, we discuss some issues with the data generated by this

technique and show how to avoid those issues, limiting the scope for the terms gener-

ated. Finally, we explain how to use the LSs generated to produce the �nal datasets for

the desired tasks.

Having the lambda terms dataset, applying the reductions is straightforward. So,

generating the LSs is the most challenging step of the dataset generation. To accomplish

this, we use an existing algorithm to generate intermediate term trees and then transform

those trees into lambda terms.

Also, as mentioned before, we want to create versions of the datasets in De Bruijn

(DB) notation to compare the di�erence in the ability of the models to learn both repre-

sentations.

59

5.1 Format

The lambda terms on the datasets are represented as lambda terms in pre�x nota-

tion. So, each dataset consists of a simple text �le with each line representing an example

of a reduction, with the following style:

BETA <M> <N>

<M> and <N> are lambda terms in pre�x notation. For the OBR task, <N> is the

β-reduction of <M>, using the lazy evaluation strategy. For the MBR task, <N> is the

normal form of <M>. The word BETA and <M> are separated by a blank space. The

terms <M> and <N> are separated by a tab character.

For the strings that represent the lambda terms, we use the uppercase letter “L”

to represent the λ symbol and “@” for the application symbol. This convention is im-

portant only for making the terms more human-readable because, in the learning stage,

the model translates all tokens into numbers. Below, there are some examples of how

the dataset should look at the end of the generation for both the OBR and MBR tasks, in

in�x notation to be more human-readable, and pre�x notation, which is exactly how it

appears on the training datasets. It is important to note that the �nal datasets that are

used in this work contain terms that are larger in size than the examples shown here.

These examples are provided only as a demonstration and are not representative of the

complexity and size of the actual terms that are present in the �nal datasets.

OBR task with in�x notation:

BETA (λb. ((λp. λa. λb. (p b a)) (λa. λb. b))) (λa. λb. a) (λp. λa. λb. (p b a)) (λa. λb. b)

BETA (λp. λa. λb. (p b a)) (λa. λb. b) λa. λb. ((λa. λb. b) b a)

BETA λa. λb. ((λa. λb. b) b a) λa. λb. ((λb. b) a)

BETA λa. λb. ((λb. b) a) λa. λb. a

OBR task with pre�x notation, with the same terms as the in�x notation example:

BETA @ L b @ L p L a L b @ @ p b a L a L b b L a L b a @ L p L a L b @ @ p b a L a L b b

BETA @ L p L a L b @ @ p b a L a L b b L a L b @ @ L a L b b b a

BETA L a L b @ @ L a L b b b a L a L b @ L b b a

BETA L a L b @ L b b a L a L b a

NBR task with in�x notation:

BETA (λb. ((λp. λa. λb. (p b a)) (λa. λb. b))) (λa. λb. a) λa. λb. a

BETA (λp. λa. λb. (p b a)) (λa. λb. b) λa. λb. a

BETA λa. λb. ((λa. λb. b) b a) λa. λb. a

BETA λa. λb. ((λb. b) a) λa. λb. a

60

NBR task with pre�x notation, with the same terms as the in�x notation example:

BETA @ L b @ L p L a L b @ @ p b a L a L b b L a L b a L a L b a

BETA @ L p L a L b @ @ p b a L a L b b L a L b a

BETA L a L b @ @ L a L b b b a L a L b a

BETA L a L b @ L b b a L a L b a

5.2 Generating Lambda Sets

Our goal in this section is to produce a set of randomly generated lambda terms

as trees. Since, to the best of our knowledge, there are no references for the generation

of lambda terms in the literature, we have to formulate the generation from the begin-

ning. Also, the task of generating uniformly random trees is not a trivial task (LAMPLE;

CHARTON, 2019). So, we adapt an existing algorithm that generates random mathemat-

ical expression trees. With this algorithm, we �rst sample a set of intermediate trees, that

represents the structure of the lambda term trees. Then, we de�ne a pipeline for dealing

with the lambda calculus speci�cs of the generation, taking these intermediate trees and

generating the lambda terms.

5.2.1 Generating Intermediate Trees

We start by generating random intermediate trees that represent the shape of

the �nal lambda trees. However, the task of generating uniformly random trees is not

a trivial task. The naive approach tends to generate deeper trees over broader ones

(LAMPLE; CHARTON, 2019). To generate truly random trees, we use the algorithm

proposed by Lample and Charton (2019) to generate intermediate trees.

In this algorithm, the internal nodes of the trees are operators, and the leaves

are variables or numbers. The sets of possible operators and leaves are parameters of

the algorithm. The algorithm then generates random trees representing mathematical

expressions using those arguments. Besides that, one thing that is important is the ar-

ity of each possible operation, because it represents the number of children that the

node has. Figure 5.1 shows some expression trees the algorithm could generate with

[(add, 2), (sin, 1), (f, 2)] as possible internal nodes and [1, 2, 3, x, y, z] as possible leaves.

61

Figure 5.1: Examples of mathematical expression trees, as well as their string represen-

tations, generated by the algorithm used to generate intermediate trees

x

sin 2

sin sin f z z add f 1 y add 3 sin z

Source: The authors.

Figure 5.2: Di�erence between implicitly putting the variable of the abstraction in the

node, and explicitly putting the variable as a leaf, as implemented in this work.

L v M L v M

Source: The authors.

The problem is that this algorithm was made to generate trees that represent

mathematical expressions. To use this algorithm for our purposes, we need to adapt it

from generating mathematical expressions to generating lambda terms. For this, we have

to determine the set of possible internal nodes and leaves to provide to the algorithm.

In Section 2.3.1, we have demonstrated how lambda terms can be represented as

trees. Table 2.1 shows that the internal nodes of a term are the lambda abstractions and

applications. The leaves, on the other hand, are the lambda variables, and they can be

names, such as x, y, z, or numbers if we are using the de Bruijn Notation.

So, it seems straightforward to use two “operators”: abstraction (abs) and appli-

cation (app). But we also have to provide the arity of those operations. For the app it is

easy since we can see it as an operator with two “arguments”, so, its arity would be 2.

But for the abs, it is not so simple. When the lambda trees were presented, the variable

name of the abstraction was implicitly put in the abstraction node. But in the string we

want to generate, each token is a node by itself, including the variable of the abstraction.

Figure 5.2 shows how the lambda tree is actually built.

So, if we look at the abstraction as an operator, we have to decide its arity. It

62

has two “arguments”: a variable name - the binding of the abstraction - and a body. But

they are not both arbitrary lambda terms, as it is in the application. So, the arity is not

2, because it can not have any type of lambda term as the �rst argument. But it is also

not 1, because it needs 2 arguments. So, the arity kind of sits between 1 and 2.

To overcome this, we actually generate the terms in de Bruijn notation. With this

notation, we do not need to specify the name of the variable binding, and then we can

simply say that the arity for the lambda abstraction is 1.

For the leaves, that represent the lambda variables, generating the terms using

the DB representation also gives an advantage. We want to separate the generation of the

“shape” of the trees from the lambda term speci�cs. So, we simply generate the number

1 for every index at this stage, as a placeholder for the �nal DB indexes. This also allows

us to generate more than one tree for every tree generated in this step because we can

sample as many trees as we want from one intermediate tree. With this, we are able to

use their algorithm as a black box, without any modi�cation. But the original algorithm

from Lample and Charton (2019) also receives a sample probability for every operation

in the set of the operations desired. For example, if we pass 0.7 for the app and 0.3 for

the abs, the chance of a node being an app is 70% and 30% for the abs. The problem with

this is that all trees generated have a similar proportion of applications and abstractions.

But there are terms that have way more abstractions than applications and vice-versa.

We want a dataset that has terms with very distinct forms. So, since we wanted the

proportion of apps and abs to be variable, we actually modi�ed their algorithm in such

a way that it randomly change these probabilities between a range of values.

Another di�erence is that their algorithm not only generates the expressions but

already generates pairs of mathematical expressions for the �nal dataset - for instance,

a function and its integral. But since the lambda terms are not yet completed we do not

do this here. We perform this step later, once the terms have been completed. For now,

we are only generating pairs with the following format:

BETA <intermediate_tree> null

With this, we have a set of randomly generated intermediate trees that we can

use to sample lambda terms.

63

5.2.2 Finishing the Trees

The terms generated in the previous section are in de Bruijn notation and with

all variable indexes set to one. Now, our algorithm goes through every tree generated

and makes the lambda speci�cs adjustments. First, we set the DB indexes to their �nal

values. Once this step is completed, we obtain a set of λ-terms in de Bruijn notation,

which already is a Lambda Set. But since we are interested in generating datasets in de

Bruijn, traditional and random vars conventions, in the next step we explain how we

convert this DB LS to the other two conventions, transforming the terms from the DB

notation to the traditional notation, i.e., give names to the lambda variables, using two

di�erent naming techniques.

To execute the �rst step, our idea is to �rst compute the maximum value that the

index can assume to be binded by some abstraction, i.e., to not represent a free variable.

After, we generate a random number between 1 and the maximum index computed,

following a distribution. To generate terms that have free variables, we can change the

range for this generation. As mentioned before, it is possible to apply this step several

times for the same intermediate tree to generate di�erent λ-terms.

For the second step, we need to convert from the De Bruijn notation to the tra-

ditional notation, with names instead of numeric indexes to represent variables. This

step is not trivial because there is no one-to-one correspondence between terms in DB

notation and terms in traditional notation. One DB term can have an in�nite number of

counterparts in traditional notation, all alpha-equivalents. To achieve this, we use the

algorithm proposed in Section 2.10.1. As seen in that Section, we need to de�ne the

alphabet and the order for the variable naming. For the alphabet, we use the English

alphabet. For the order, we use two di�erent approaches: (i) the alphabetical order, and

(ii) the random order. With the alphabetical order, we want to make the terms more

predictable to the model. With the random order, we want to reduce the predictability

of the terms, training a model that is more agnostic to the naming of the variables.

5.2.3 Problems with this Generation

The dataset generated with this approach has some problems. First, the majority

of the terms generated by this approach are not meaningful, i.e., they do not represent

anything based on the encodings that we use. Although this can be seen as a major

64

problem, we still use this dataset in our training because our goal is to learn the β-

reduction, regardless of the meaning of the terms.

So, for instance, the chance of this algorithm generating the number 10 -

λf.λx.(f(f(f(f(f(f(f(f(f(fx)))))))))) - , a term with 10 abstractions in a row, is vir-

tually zero. it is unrealistic to expect the model to learn how to handle numbers if the

dataset probably does not contain numbers.

Also, since these terms do not represent any computations that have a practical

or meaningful application, they may not have a normal form, i.e., they may enter a loop

when performing a sequence of β-reductions.

5.3 Generating Lambda Terms with Reduced Scope

As seen in the previous section, when we try to generate lambda terms sampling

random trees directly from lambda terms nodes, we end up with terms that are, in fact,

lambda terms, but probably do not correspond to known encodings
a
, such as those

presented in Section 2.8.

A solution for this issue would be to generate terms that actually represent mean-

ingful computations, such as the sum of two numbers, or a binary search tree converter.

To achieve this, we could change the level of abstraction we are generating the ex-

pressions. Instead of directly generating lambda trees, we could, for instance, generate

arithmetic expression trees and later, using known lambda encodings and algorithms for

numbers and arithmetic operations, translate the generated expressions to lambda terms.

This way the generation would still be random, but we end up with terms that represent

something on our encoding. Of course, by doing this, we are limiting the scope of the

computations our dataset is representing, but since one can argue that our last dataset

is not representing signi�cant computations, this could be an improvement.

The newly introduced method has the capability to produce terms for any domain

of interest. However, for this study, we must designate a particular domain in order to

create the data set and train the model. One common domain that researchers choose is

arithmetic (ZAREMBA; SUTSKEVER, 2014; KAISER; SUTSKEVER, 2015; TRASK et al.,

2018). But arithmetic in lambda calculus has two main problems for this approach. First,

since the de�nition of numbers is basically a unary de�nition, the terms are lengthy. So,

a
One can argue that, since we can create any encoding we want, for any term, there exists an encoding

that that term has a meaning

65

Table 5.1: Table showing the lambda encoding for the boolean values true and false, as

well as some algorithms for common boolean operators.

Boolean λ-term DB pre�x λ-term
true λa.λb.a L L 2

false λa.λb.b L L 1

and λp.λq.p q p L L @ @ 2 1 2

or λp.λq.p p q L L @ @ 2 2 1

not λp.λa.λb.p b a L L L @ @ 3 1 2

Source: The authors.

performing operations with big operands would generate terms that our con�guration

would not support. Second, some algorithms are counter-intuitively complex, such as

the subtraction using the Church encoding (BARENDREGT, 1997).

Thus, we move to another domain: boolean arithmetic. In this regard, the lambda

calculus is an excellent tool. The terms are short and the encodings are very simple. Table

5.1 shows the encoding for the values (True and False), as well as some algorithms for

common boolean operations.

Looking at the table, we can see that the traditional boolean operators have a

simple algorithm. For our work, we are interested in the operators and, or, and not since

they are enough to produce any other boolean operator (HARRIS; HARRIS, 2010). For

the leaves, we can choose if we want to generate closed or open boolean expressions,

i.e., if we want the expressions to have only concrete values (true and false), or variables

too.

So, to generate this type of dataset, we use the algorithm we used in section 5.2.1.

Instead of the lambda-speci�c nodes, we can use nodes of the expressions we want to

generate. In our case, we use [and, or, not] as the internal nodes and [true, false] - or

variables for open expressions - as leaves.

After generating the boolean expressions, we can translate them to Lambda Cal-

culus, using the encoding/algorithms presented in table 5.1. To follow the same ap-

proach as the previous datasets, we �rst generate the DB version of it and then use the

same steps of the previous section to generate the dataset in the traditional notation.

This dataset also has the advantage of having terms that behave more predictably since

all of them have a normal form.

66

5.4 Generating the Final Datasets

Now that we know how to generate Lambda Sets, both randomly and domain-

speci�c, we can use them to generate the datasets the network takes as input. This

generation depends on the tasks we want to perform, which are two: One-Step Beta

Reduction and Multi-Step Beta Reduction. They are similar but have some di�erences,

and we are going to see how to generate them in this section.

5.4.1 One-Step Beta Reduction

For this task, we generate pairs of the type:

BETA <M> <N>

where <M> and <N> are lambda terms and <N> is the One-Step Beta Reduction

of <M>. In Sections 2.7 and 2.9, we saw that we can apply the beta reduction on a term

iteratively until it reaches its normal form (or enters a loop). So, for example, the term

and true false in lambda generates the following reductions:

@ @ λ p λ q @ @ p q p λ a λ b a λ a λ b b

→β @ λ q @ @ λ a λ b a q λ a λ b a λ a λ b b

→β @ @ λ a λ b a λ a λ b b λ a λ b a

→β @ λ b λ a λ b b λ a λ b a

→β λ a λ b b

So, instead of just computing one beta reduction for each term we have and gen-

erating only one pair to the �nal dataset, we can generate several pairs, one for each

reduction we were able to compute. The previous example can generate the following

pairs:

BETA @ @ L p L q @ @ p q p L a L b a L a L b b @ L q @ @ L a L b a q L a L b a L a L b b

BETA @ L q @ @ L a L b a q L a L b a L a L b b @ @ L a L b a L a L b b L a L b a

BETA @ @ L a L b a L a L b b L a L b a @ L b L a L b b L a L b a

BETA @ L b L a L b b L a L b a L a L b b

We just have to be careful because, as the terms generated randomly can go into

a loop, we must de�ne a limit on the maximum number of reductions we apply in a term.

Also, the beta-reductions of a term can produce a bigger term than the original one, so

we have to remove the pairs that contain terms that exceed the limit our con�guration

has.

67

So, our main algorithm here is: given a set of terms, we go through every term

and perform the beta reduction with the lazy strategy until the term reaches its normal

form or the number of reductions reaches the limit de�ned. For every reduction made,

we generate a pair on the dataset. Since we want the terms on the datasets to represent

beta-reductions, if a term does not have a redex, i.e., it is already in a normal form, we

leave it out of the dataset. Also, sometimes a term has to undergo an alpha-reduction to

achieve its beta-reduction. We leave the corresponding pair out of the dataset. This does

not reduce the power of the model, because, as mentioned in Section 2.6, we follow

the Barendregt convention and so we can assume we do not need to perform alpha

reductions. For simplicity, we just remove those terms from the dataset. Finally, we also

remove from the dataset pairs that appear more than once on the dataset.

5.4.2 Multi-Step Beta Reduction

For this task, we generate pairs of the type:

BETA <M> <N>

where <M> and <N> are lambda terms and <N> is the normal form of <M>. To

achieve the normal form of a term, we must iteratively compute the beta reduction on

the term until it does not have any possible reduction. So, we must go through every

term and compute its beta reduction until it reaches its normal form. We already did it

in the previous section. However, since the term achieving the normal form is crucial

for this task, it is not desirable to use a set of terms generated using the random method

from Section 5.2. The reason for this is that since the terms are completely random,

they are unpredictable and may not have a normal form, i.e., they may get stuck in a

loop when reductions are applied.

Using the example 5.4.1 of the previous subsection, we can simply take the �rst

and last element from the list of reductions and make a pair to the dataset:

BETA @ @ L p L q @ @ p q p L a L b a L a L b b L a L b b

So, for every term, we generate a pair on the dataset. But we can see that every

term on the list generated has the same normal form. So, another possibility is to take

advantage of this fact and, for every term in the list of reductions, generate a pair with

68

the last term for the dataset. For the example 5.4.1:

BETA @ @ L p L q @ @ p q p L a L b a L a L b b L a L b b

BETA @ L q @ @ L a L b a q L a L b a L a L b b L a L b b

BETA @ @ L a L b a L a L b b L a L b a L a L b b

BETA @ L b L a L b b L a L b a L a L b b

The �rst approach generates a dataset in which every pair represents a boolean

expression and its result after evaluation. The second loses this semantics since the

intermediate terms no longer hold the meaning of being a boolean expression written

in lambda calculus. But it has the advantage of being more agnostic to the semantics of

the terms on the dataset.

5.5 Term Sizes

As mentioned in Section 4.3.1, the maximum number of tokens that our con�g-

uration allows is 250. So, our generation must respect this limit. For the random dataset,

establishing this limit was easy, since there is a parameter in Lample and Charton (2019)

algorithm called max_len that allows us to generate only terms that have a size below

this number. However, for the boolean datasets, it was not so simple, since we must

take the generated boolean term and convert it to a lambda term. So, we can not set

the max_len for this generation. Also, when performing beta reductions, the terms can

grow bigger before they start to reduce their size. After conducting several tests, we

determined that the parameter for the maximum number of internal nodes to provide

to the algorithm should be set to 5. With this con�guration, we were able to generate

the terms sizes listed in Table 5.2. While we calculated these sizes using the traditional

convention datasets, we expect similar results for the other datasets (with the exception

of the de Bruijn convention, which should produce smaller term sizes).

5.6 Number of Reductions

During this chapter, it was discussed that for certain Lambda Sets, we iteratively

generate the reductions for each term until it reaches its normal form. Thus, another

important metric we consider is the number of reductions that each term had to undergo

to reach its normal form. This number can be seen as how many computational steps are

69

Table 5.2: Table showing the minimum, maximum, and average sizes of the input λ-

terms for each dataset. The datasets considered were the ones that use the traditional

convention.

Task Dataset min max avg

OBR

random 5 249 127.2± 64.99
closed bool 9 193 97.6± 26.76
open bool 5 181 66.46± 21.73
mixed 5 249 86.93± 46.56

MBR

closed bool 9 193 97.55± 26.75
open bool 5 181 66.46± 21.72
mixed 5 181 77.96± 28.02

Source: The authors.

necessary for evaluating a given term. Table 5.3 shows the average number of reductions

that the terms of each Lambda Set have undergone to generate their respective datasets

- for both the OBR and MBR tasks.

Table 5.3: Table showing the minimum, maximum, and average number of reductions

generated by each Lambda Set. The mixed dataset considered here is the one with terms

coming only from the closed bool and open bool Lambda Sets.

Lambda Set min max avg

closed bool 3 100 18.8± 12.22
open bool 1 100 18.88± 10.42
mixed 2 100 18.82± 11.32

Source: The authors.

70

6 RESULTS

This chapter presents the results obtained from the implementation of the pro-

posed AI model, the Transformer, to solve the tasks of One-Step Beta Reduction (OBR)

and Multi-Step Beta Reduction (MBR), over the datasets generated. Here, we provide

a detailed account of the �ndings from the experiments conducted and to show the ef-

fectiveness of the algorithm in solving the targeted problem. We aim to present the

�ndings in a clear and organized manner, to facilitate understanding and interpretation.

The results include relevant tables and graphs to support the claims made in the study.

We �rst present the results from the training, for both the One-Step Beta Re-

duction and Multi-Step Beta Reduction tasks. Next, we present the results from the

evaluations across the datasets.

6.1 Training Results

This section showcases the results of the training for both the OBR and MBR

tasks. Initially, we highlight an issue encountered during the trainings, concerning one

of the hyperparameters - the learning rate. Then, we display the training graphs for each

of the tasks and each of the evaluated datasets. After, we present a table showing the

�nal accuracies for all models, as well as the string similarity metric.

6.1.1 Learning Rate

Some training experiments displayed oscillation in the accuracy, indicating that

the initial learning rate (1×10−4) was too high. Figure 6.1 shows an example of training

where the accuracy oscillates at unacceptable rates. So, we had to adjust the learning

rate for these trainings. We initially used the same value for all trainings, but decreased

it based on the degree of oscillation. Table 6.1 shows the �nal learning rates for each

training executed. Although the learning rate was adjusted for di�erent trainings, we

kept it consistent for the three conventions in each lambda set, for comparison purposes.

It is important to note that we did not perform a thorough search for the optimal learn-

ing rate, instead selecting a parameter that resulted in a satisfactory and converging

accuracy.

71

Figure 6.1: Graph displaying the progression for the training of the One-Step Beta Reduc-

tion task, for the closed bool dataset, with the random vars convention, with a learning

rate of 1× 10−4. After epoch 20, the accuracy started to oscillate at unacceptable rates.

Source: The authors.

Table 6.1: Values for the learning rate hyperparameter chosen for each of the tasks and

lambda sets trained. The value started with 1 × 10−4 and it was lowered as the trained

showed an unacceptable oscillation, indicating the learning would not converge.

Task Lambda Set Learning Rate

One-Step Beta

Reduction

random 1× 10−4

closed bool 6× 10−5

open bool 8× 10−5

mixed 1× 10−4

Multi-Step Beta

Reduction

closed bool 3× 10−5

open bool 5× 10−5

mixed 5× 10−5

Source: The authors.

72

6.1.2 Results

This section presents graphs and tables that illustrate the training outcomes for

every model trained. The graphs display the model’s accuracy for the test dataset of the

respective training dataset as it evolves over the training epochs. Each graph showcases

the results for all three conventions utilized in this study: the traditional convention, the

random vars convention, and the de Bruijn convention. In an e�ort to avoid an excessive

amount of information on the graphs, we chose to display only the model’s accuracy and

omit the model’s loss, given that each graph already represents three results. It would

also be repetitive, considering the inverse correlation between the loss and the accuracy

seen in the training outcomes.

For the OBR task, the training for the random datasets can be seen in Figure 6.2,

the closed bool in Figure 6.3, the open bool in Figure 6.4, and the mixed in Figure 6.5. For

the MBR task, the training for the closed bool datasets can be seen in Figure 6.6, the open

bool in Figure 6.7, and the mixed in Figure 6.8. Besides the graphs, Table 6.2 shows the

�nal accuracies, i.e., the accuracy of the last epoch for all the models trained, for both

OBR and MBR tasks. The table also depicts the average string similarity percentage,

calculated using the Levenshtein distance shown in Section 4.5.

Figure 6.2: Graph displaying the progression for the training of the One-Step Beta Re-

duction task, for the random datasets, over the three di�erent conventions.

Source: The authors.

73

Figure 6.3: Graph displaying the progression for the training of the One-Step Beta Re-

duction task, for the closed bool datasets, over the three di�erent conventions.

Source: The authors.

Figure 6.4: Graph displaying the progression for the training of the One-Step Beta Re-

duction task, for the open bool datasets, over the three di�erent conventions.

Source: The authors.

74

Figure 6.5: Graph displaying the progression for the training of the One-Step Beta Re-

duction task, for the mixed datasets, over the three di�erent conventions.

Source: The authors.

Figure 6.6: Graph displaying the progression for the training of the Multi-Step Beta Re-

duction task, for the closed bool datasets, over the three di�erent conventions.

Source: The authors.

75

Figure 6.7: Graph displaying the progression for the training of the Multi-Step Beta Re-

duction task, for the open bool datasets, over the three di�erent conventions.

Source: The authors.

Figure 6.8: Graph displaying the progression for the training of the Multi-Step Beta Re-

duction task, for the mixed datasets, over the three di�erent conventions.

Source: The authors.

76

Table 6.2: Accuracy and the average string similarity for the evaluation of the models

trained. * Rounded from 0.998....
Task Lambda Set Convention ACC (%) STR SIM (%)

OBR

random

trad 88.89 99.83
random vars 69.30 99.51
de Bruijn 67.84 99.34

closed bool

trad 99.73 100.00 *

random vars 98.10 99.98
de Bruijn 98.16 99.99

open bool

trad 98.82 99.99
random vars 94.88 99.95
de Bruijn 97.94 99.97

mixed

trad 92.88 99.89
random vars 88.52 99.77
de Bruijn 87.93 99.73

MBR

closed bool

trad 82.75 97.97
random vars 76.08 97.06
de Bruijn 82.20 96.49

open bool

trad 97.70 99.92
random vars 80.92 98.19
de Bruijn 97.02 99.77

mixed

trad 97.63 99.89
random vars 76.58 98.15
de Bruijn 89.99 98.64

Source: The authors.

6.2 Evaluation Across Datasets

In this section, we show the results obtained by some additional evaluations with

the already trained models, for both the OBR and MBR tasks. We use a model trained

with one dataset to evaluate the other datasets that use the same convention and are

designed for the same task. For example, we take the model that trained on the obr_cb_db

dataset and evaluate how it performs on the obr_rand_db, obr_ob_db and obr_mix_db

datasets. We use the test datasets to perform these evaluations.

For the OBR task, the evaluation results for the models trained using the tradi-

tional convention can be found in Figure 6.9, the random vars convention in Figure 6.10,

and the de Bruijn convention in Figure 6.11. For the MBR task, the evaluation results

for the models trained using the traditional convention can be found in Figure 6.12, the

random vars convention in Figure 6.13 and the de Bruijn convention in Figure 6.14.

Besides the graphs, tables 6.3 and 6.4 shows the values found for the evaluations

with the trained models, for the OBR and MBR tasks, respectively.

77

Figure 6.9: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the OBR task

using the traditional convention.

Source: The authors.

Figure 6.10: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the OBR task

using the random vars convention.

Source: The authors.

Figure 6.11: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the OBR task

using the de Bruijn convention.

Source: The authors.

78

Figure 6.12: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the MBR task

using the traditional convention.

Source: The authors.

Figure 6.13: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the MBR task

using the random vars convention.

Source: The authors.

Figure 6.14: Graph showing the evaluation accuracy (%) for each model, represented by

the grouped bars, and each dataset, represented by the di�erent colors, for the MBR task

using the de Bruijn convention.

Source: The authors.

79

Table 6.3: Accuracy (%) for the evaluation of the models over di�erent datasets, for the

OBR task. For each of the three di�erent conventions (trad, random vars, and De Bruijn),

the model trained with each dataset (rows) was evaluated with each dataset (columns).

The last column indicates the average accuracy of the model over the di�erent datasets.

Convention Lambda Set random closed bool open bool mixed AVERAGE

traditional

random 88.89 63.69 72.66 80.47 76.43

closed bool 0.00 99.73 7.73 35.92 35.85

open bool 0.04 80.01 98.82 63.79 60.67

mixed 72.26 97.42 99.62 92.88 90.55

random

vars

random 69.30 22.17 42.27 64.65 49.60

closed bool 0.05 98.10 18.82 39.26 39.06

open bool 0.17 77.24 94.88 61.53 58.46

mixed 65.77 83.90 85.92 88.52 81.03

de Bruijn

random 67.84 47.15 58.35 61.14 58.62

closed bool 0.00 98.16 10.96 36.87 36.50

open bool 0.01 77.93 97.94 58.59 58.62

mixed 65.70 96.39 98.71 87.93 87.18

Source: The authors.

Table 6.4: Accuracy (%) for the evaluation of the models over di�erent datasets, for the

MBR task. For each of the three di�erent conventions (trad, random vars, and De Bruijn),

the model trained with each dataset (rows) was evaluated with each dataset (columns).

The last column indicates the average accuracy of the model over the di�erent datasets.

Convention Lambda Set closed bool open bool mixed AVERAGE

traditional

closed bool 82.75 15.85 49.66 49.42

open bool 92.21 97.70 96.86 95.59

mixed 96.20 93.28 97.63 95.70

random

vars

closed bool 76.08 24.79 50.98 50.62

open bool 75.23 80.92 84.25 80.13

mixed 72.72 50.68 76.58 66.66

de Bruijn

closed bool 82.20 20.20 57.83 53.41

open bool 90.02 97.02 95.37 94.14

mixed 88.43 78.64 89.99 85.69

Source: The authors.

80

7 DISCUSSION

In this chapter, we provide an in-depth discussion of the results, emphasizing

certain critical aspects of the �ndings. This discussion aims to provide an analysis of

the data obtained and o�er insights into the possible reasons behind the observed out-

comes. The discussion is made taking into account the research question proposed “Can

a Machine Learning model learn to perform computations?” and the hypothesis:

• H1: The Transformer model can learn to perform a one-step computation

on Lambda Calculus.

• H2: The Transformer model can learn to perform a full computation on

Lambda Calculus.

For this, we �rst analyze the results from the trainings, for both the One-Step

Beta Reduction and Multi-Step Beta Reduction tasks. Next, we analyze the results from

the evaluations across the datasets.

7.1 Training Results

In this section, we are going to discuss the results of the trainings presented in

Section 6.1. With these results, we are able to determine which datasets and conventions

performed better and try to conjecture some hypotheses about what happened in the

trainings.

7.1.1 One-Step Beta Reduction

In the training of the models for the OBR task, it was found that each model

achieved an accuracy of at least 67.84%. However, when only the best conventions

were considered, each model achieved a minimum accuracy of 88.89%. Additionally, one

model achieved a remarkable 99.73% accuracy. These �ndings can be seen in Table 6.2,

and they highlight the high level of accuracy and e�ectiveness of the models, particularly

when utilizing the optimal conventions, which supports hypothesis H1.

The metric for string similarity can also be seen in Table 6.2 and indicates that,

despite incorrectly predicting some terms, the model was able to accurately predict a

81

signi�cant portion of those terms, with all similarities being at least 99.34%. If we take

only the best conventions, this number goes up to 99.83%. Also, some models achieved

an outstanding performance of over 99.99% for this metric. Additionally, for example,

the model trained with the random dataset with the de Bruijn convention got a �nal

accuracy of 67.84%. However, the string similarity metric for the same training was

99.34%. This illustrates how much the model got the incorrect answers close to the

correct ones.

Upon analyzing the performance of the models on di�erent datasets, it is evi-

dent that the closed bool and open bool datasets were easier to learn compared to other

datasets, as we can see in Figures 6.2, 6.3, 6.4 and 6.5. The boolean datasets achieved

good accuracies in a shorter span of time and presented similar results between them-

selves. The random dataset was the hardest to learn, as shown in �gure 6.2. We think

this is due to the absence of more de�ned patterns among the terms. The mixed dataset,

as expected, fell between the random and the boolean datasets in terms of di�culty to

learn. However, its accuracy surprised us, since it was the most diverse dataset, meaning

that it learned to perform the OBR task both for random and boolean terms, with high

accuracies (92.88% for the optimal convention, as shown in Table 6.2).

It is worth noting that, although the accuracies for the random and the mixed

datasets were comparatively lower than those of the boolean datasets, the graphs illus-

trating their performance present a growing pattern, as illustrated in Figures 6.2 and

6.5. This indicates that further training with more epochs could yield higher accuracies

for these datasets.

Analyzing the performance of the models that use di�erent conventions in Table

6.2, it can be observed that the traditional convention consistently outperformed the

other two conventions, which exhibited similar levels of performance. However, the

only training that the convention really made a di�erence was on the random dataset,

which we saw, was the hardest one to learn. We suppose that, for the other datasets,

the di�erence of the convention did not matter because it was so easy for the model

to learn that even the “harder” conventions were not a problem. We also think that the

traditional convention performed overall better than the other two conventions because,

despite being based on a simpler convention, the beta reduction is more intricate for the

de Bruijn convention, and consequently, is harder to learn. Furthermore, when compared

to the random vars convention, the traditional convention, with its ordered naming rule,

tends to provide the model with more predictable outcomes.

82

7.1.2 Multi-Step Beta Reduction

For the training of the models for the MBR task, every model attained a mini-

mum accuracy of 76.08%. Nevertheless, when considering only the best conventions,

each model exhibited an accuracy of at least 82.75%. Furthermore, one model achieved

an exceptional 97.70% accuracy. These outcomes, which can be seen in Table 6.2, em-

phasize the e�ectiveness and high accuracy of the models, especially when using the

optimal conventions, which supports hypothesis H2.

The metric for string similarity, found at Table 6.2, indicates again that, even

though the model made incorrect predictions for some terms, it accurately predicted a

signi�cant portion of those terms, with all similarities being no less than 96.49%. Con-

sidering only the best conventions, this number increases to 97.97%. Additionally, some

models performed exceptionally well, achieving up to 99.92% for this metric. Again,

the models that did not obtain a good accuracy got an outstanding performance on this

metric. For instance, the model trained with the mixed dataset, using the random vars

convention, obtained an accuracy of 76.58%. Nevertheless, the string similarity metric

for the same training was 98.15%. This shows that for this task, the models also got the

wrong predictions very close to the correct ones.

For the closed bool dataset in the MBR task, it is important to notice that the

set of possible terms that the model should predict is small (namely, true and false). For

the traditional convention and, especially, for the random vars convention, the true and

false terms are not always the same term since there are many alpha-equivalent terms

for true and false using the English alphabet. But in the DB case, there are only two

distinct terms for the true and false (“L L 2” and “L L 1”, respectively). Thus, one might

expect that the closed bool dataset would be easier to learn since there are only a few

possible terms for the model to predict (only two in the DB case), while the open bool,

on the other hand, had output terms that di�er dramatically from one another.

But the opposite was actually observed, as we can see in Figures 6.6 and 6.7. The

closed bool dataset was found to be harder to learn than the open bool dataset, with the

model that trained on it having signi�cantly lower accuracies than the open bool model,

which seems counter-intuitive. Our hypothesis is that, precisely because the terms were

so similar in the closed bool dataset, the model resorted to guessing the output term from

a limited set of possibilities, based on some features of the inputs, instead of learning to

perform the reductions. But, since this was not possible for the open bool dataset, the

83

model was forced to actually learn to perform the multi-step beta reduction on the input

terms. The fact that the closed bool model already starts the training with around 55%

accuracy also corroborates our hypothesis that the model is learning to guess from a

limited set instead of learning the reductions.

The model trained with the mixed dataset seems to have overcome this issue, as

we can see in Figure 6.8. Considering the traditional convention, the accuracy of the

model was similar to the accuracy of the model trained on the open bool dataset, even

with half of its terms having come from the closed bool dataset. This actually supports

our previous hypothesis since we think that having more variability on the terms forced

the model to learn the reductions instead of only guessing between a small set of possible

outcomes.

For the trainings on di�erent conventions, Table 6.2 shows that the random vars

convention had the worst accuracies for the three datasets. However, only the models

trained on the open bool and on the mixed datasets presented a large gap between di�er-

ent conventions. We suppose that the naming convention did not change the guessing

factor on the learning process for the models that trained on the closed bool. What is

interesting is that the de Bruijn convention led to accuracies as good as the traditional

convention and signi�cantly better than the random vars convention for the models

trained on the open bool and closed bool datasets. This was unexpected since the β-

reduction on the de Bruijn notation is more intricate than on the traditional notation,

which the other two conventions use. This shows how important the order for the nam-

ing of the variables is for this task. For the model trained on the mixed dataset, the order

of the di�erent conventions was more aligned with the expected, with the traditional be-

ing the best convention, followed by the other two. But this result, although expected,

was unusual since the other models did not follow this order.

7.2 Evaluations Across Datasets

In this section, we are going to discuss the results of the evaluations across the

datasets presented in Section 6.2. These evaluations can give us some insights as to

whether the model really learned the reductions or if it just learned the reductions for

that speci�c set of terms.

84

7.2.1 One-Step Beta Reduction

The evaluations for this task have yielded promising results, especially for the

models trained with the mixed dataset. These models produced the best average accura-

cies for all models in the OBR tasks, as seen in Table 6.3. This shows that, as expected,

the model trained with the mixed dataset were able to better capture the diversity of

terms present on the di�erent datasets.

The models trained with both boolean datasets performed poorly for the evalu-

ation with the random dataset, with accuracies close to 0%, as we can see in Table 6.3.

We suppose that this happened because the terms in the random dataset are very dis-

tinct from the terms from the boolean datasets. Also, since the opposite did not happen,

we think that the random dataset contains terms that are actually harder to learn, as we

presumed in the previous section.

As expected, almost every model had a better accuracy on the evaluation with

the dataset it was trained on rather than with the others, as shown in Table 6.3. But one

result that may be seen as counter-intuitive is the evaluation of the model trained with

the mixed dataset. It had better accuracy for the open bool and closed bool datasets for

the traditional and de Bruijn conventions, which can be seen in Figures 6.9 and 6.11. We,

again, suppose that this happened because the random dataset is the hardest to learn.

Thus, since the mixed dataset has 1/3 of its terms from the random dataset, it turns out

to be harder to learn than the closed bool and open bool datasets. So, it ends up giving

a better evaluation for those two datasets than the dataset it was trained with, which

contains terms from the random dataset.

Another result that is interesting is that the model trained on the open bool

dataset was able to extrapolate and get good accuracies for the evaluation of the closed

bool dataset, with a minimum accuracy of 77.24%. But the opposite did not happen,

with accuracies as low as 7.73%, as we can see in Table 6.3. This shows that the model

trained with the open bool dataset had a better extrapolation quality, probably because

their terms are more diverse than the closed bool dataset.

Aside from what was mentioned, the di�erent conventions did not present a sig-

ni�cant di�erence between the evaluations, as shown in Figures 6.9, 6.10 and 6.11.

85

7.2.2 Multi-Step Beta Reduction

The evaluations for this task have, again, yielded good results, particularly for

the models trained with the open bool dataset. As shown in Table 6.4, the use of the

open bool dataset led to better average accuracies for almost all models in the MBR task.

Table 6.4 demonstrates that, as anticipated, the majority of models performed

better in the evaluations using the dataset they were trained on, as opposed to the other

datasets. However, the models trained with the open bool dataset had accuracies quite

close to one another for the three datasets evaluated, as seen in Figures 6.12, 6.13 and

6.14. In fact, as seen in �gure 6.10, it presented a better accuracy for the mixed dataset

rather than the dataset it was trained on. We presume that this happened because the

model trained with the open bool dataset was able to generalize better than the others.

Again, the models trained with the closed bool did not extrapolate and got good

accuracies for the other datasets, especially the closed bool, with accuracies as low as

15.85%, as seen in Table 6.4. But the opposite happened, with the open bool models

getting a minimum of 75.23% of accuracy for the closed bool dataset. We think that

this happened for the same reason discussed on Section 7.1.2, which is that the model

trained on the closed bool dataset just learned to guess the output from a limited set of

possible terms, not actually learning the β-reduction.

Once more, apart from what was stated, the di�erent conventions did not present

any main di�erences between the evaluations, as shown in Figures 6.12, 6.13 and 6.14.

86

8 CONCLUSION AND FUTUREWORK

In this research, the goal was to explore the following research question: “Can a

Machine Learningmodel learn to perform computations?”. To investigate this, we

proposed to use a machine learning model, the Transformer, to learn to perform compu-

tations using the λ-Calculus as the underlying formalism. To accomplish this, the study

proposed to teach the model both One-Step Beta Reduction, which represents a one-

step computation, and Multi-Step Beta Reduction, which represents a full computation.

Thus, two hypotheses were formulated:

• H1: The Transformer model can learn to perform a one-step computation

on Lambda Calculus.

• H2: The Transformer model can learn to perform a full computation on

Lambda Calculus.

We started presenting a theoretical background about the syntax, semantics, and

essential concepts of the λ-Calculus. Subsequently, the focus shifted to the �eld of ar-

ti�cial intelligence and its sub-�eld, machine learning, speci�cally the neural network

model. The challenges posed by traditional neural networks for this task were discussed,

followed by the introduction of seq2seq models, which can handle inputs and outputs

of any length. Finally, the study presented the Transformer model as the most suitable

solution due to its self-attention mechanism.

Later, we discussed the methodology employed in this study. In this discussion,

we provided an overview of the process used to generate the datasets, discussed the

speci�cs of the training process, shared some technical information about the machine

and code we used, and elaborated on how we conducted the experiments and analyzed

the results. as well as how we generate the datasets used. Then, we examined the speci�c

details of how we generate the datasets, explaining each step of the generation.

Finally, we presented the results obtained in this work, using tables and graphs

to display the data. We also presented a discussion about these results, where we high-

lighted the main �ndings of this study.

In this chapter, we present the conclusions of our work, highlighting the main

contributions we believe this research provided. Lastly, we propose suggestions for fu-

ture works based on the present study.

87

8.1 Conclusions

Through comprehensive experimentation and analysis, it was demonstrated that

the Transformer model is capable of capturing the syntactic and semantic features of

λ-calculus, allowing for accurate and e�cient predictions. The results obtained were

positive, with overall good accuracies for both tasks at hand. For the One-Step Beta Re-

duction, we got accuracies up to 99.73%, and string similarity metric of over 99.99%.

For the Multi-Step Beta Reduction, we obtained accuracies of up to 97.70%, and string

similarity metric exceeding 99.90%. Besides that, the models presented a good general-

ization performance across di�erent datasets. Due to limitations of hardware and time,

our models trained for just 50 epochs. Considering that is a pretty low number com-

pared with substantial trainings of large models, and that we did not do a search for the

optimal hyperparameters, we can assure that the accuracy of our models can be even

higher than what was presented here.

These results illustrate the e�ectiveness of the model in learning the desired tasks

and support the two hypotheses raised in this study, and, subsequently, the research

question proposed. Also, these results showed that the Transformer’s self-attention

mechanism is well suited for capturing the dependencies between variables and func-

tions in λ-Calculus.

This work sheds light on the potential of deep learning models to learn abstract

mathematical concepts and provides a foundation for future work in this area. Further-

more, this research highlights the importance of incorporating structured and symbolic

knowledge into deep learning models. By applying the Transformer model to learn λ-

Calculus, we believe that this dissertation has contributed to the advancement of the

�eld of machine learning.

8.1.1 Main Contributions

We believe that the methods and results presented in this work have yielded some

signi�cant outcomes for future researches. The main contributions that have resulted

from this research can be summarized as follows:

• Dataset generation: Since datasets for lambda terms and reductions did not exist,

we built the generation for these datasets from scratch. These datasets and gener-

88

ation methods can be used in future researches in the lambda calculus domain.

• Lambda calculus learning: The outcomes from learning the reductions of lambda

calculus are promising and hold potential implications for future researches in the

�eld of AI and computer programs.

• Functional programming learning: The results obtained in this study can be taken

into account for shifting the programming paradigm from imperative to functional

in future researches in the �eld of learning to compute.

8.2 Future Work

Since our work changed the paradigm traditionally used for the underlying for-

malism of the computations intended to be learned, from the imperative to the functional

paradigm, we open a new set of possibilities for new studies. Also, our work had lim-

itations, both in time and computational power. Addressing these limitations through

increased resources would provide a way for further advancements. Furthermore, the

research was limited to a formalism - the λ-Calculus, that can be switched or extended.

Thus, for future works, we propose the following suggestions:

• Increased training: The current study trained the model for a limited number of

epochs. Further research could aim to train the best notation for more epochs to

see if performance can be improved.

• Hyperparameter optimization: The study used a set of prede�ned hyperparame-

ters for the Transformer model. A thorough search for the optimal hyperparam-

eters could be conducted to �nd the best set of hyperparameters for learning the

Lambda Calculus.

• Improved error analysis: The study provided a preliminary error analysis, but fur-

ther work could aim to conduct a more in-depth error analysis to better understand

the types of mistakes the model is making and to identify areas for improvement.

• Incorporating other formalisms: This study focused on learning Lambda Calculus,

but there are other formalisms such as Combinatorial Logic and Turing Machines

that could be trained by the model and compared with the current work.

• Solve typing problems: Learn a typed λ-Calculus to solve some typing problems,

which can be uncomputable: well-typedness, type assignment, type checking, and

type inhabitation.

89

• Learn more complex versions of the λ-Calculus: Learn the not-pure λ-Calculus,

with numbers and arithmetical and boolean operations already embbeded.

• Learn to compute a functional programming language: Learn a functional pro-

gramming language, that is based on λ-Calculus, such as Haskell or Lisp.

• Learn to detect loops: Use the same methods for the training, but instead of learn-

ing to perform the computations, learn to identify if a λ-term does not have a

normal form, i.e., if it is going to enter a loop when applying the reductions.

These future work suggestions have the potential to bring further advancements

in the application of machine learning models to the �eld of learning to execute com-

puter programs, especially using functional programming as the base paradigm, and

contribute to a deeper understanding of the underlying computational process.

90

REFERENCES

BARENDREGT, H. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 1984. (North-Holland Linguistic Series). ISBN 9780444867483. Available from

Internet: <https://books.google.com.br/books?id=eMtTAAAAYAAJ>.

BARENDREGT, H. The impact of the lambda calculus in logic and computer science.

Bulletin of Symbolic Logic, Cambridge University Press, v. 3, n. 2, p. 181–215, 1997.

BENGIO, Y. Practical recommendations for gradient-based training of deep

architectures. Neural Networks: Tricks of the Trade: Second Edition, Springer, p.

437–478, 2012.

BISHOP, C. M.; NASRABADI, N. M. Pattern recognition and machine learning.

[S.l.]: Springer, 2006.

BROWN, T. B. et al. Language models are few-shot learners. In: . [S.l.: s.n.], 2020. v.

2020-December. ISSN 10495258.

BRUIJN, N. G. D. Lambda calculus notation with nameless dummies, a tool for automatic

formula manipulation, with application to the church-rosser theorem. In: ELSEVIER.

Indagationes Mathematicae (Proceedings). [S.l.], 1972. v. 75, n. 5, p. 381–392.

CHUNG, J. et al. Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint arXiv:1412.3555, 2014.

CHURCH, A. A set of postulates for the foundation of logic. The Annals of
Mathematics, v. 33, 1932. ISSN 0003486X.

CHURCH, A. An unsolvable problem of elementary number theory. American Journal
of Mathematics, v. 58, 1936. ISSN 00029327.

CHURCH, A. A formulation of the simple theory of types. Journal of Symbolic Logic,

v. 5, 1940. ISSN 0022-4812.

DAVIS, M. Engines of Logic: Mathematicians and the Origin of the Computer.
[S.l.]: Norton, 2001. ISBN 9780393322293.

DIVERIO, T. A.; MENEZES, P. Teoria da Computação - Máquinas Universais e
Computabilidade. [S.l.]: Bookman Editora, 2009.

GARCEZ, A. d.; LAMB, L. C. Neurosymbolic ai: the 3rd wave. arXiv preprint
arXiv:2012.05876, 2020.

GARCEZ, A. S. d’Avila; LAMB, L. C.; GABBAY, D. Neural-Symbolic Cognitive
Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. Available from

Internet: <http://link.springer.com/10.1007/978-3-540-73246-4>.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT Press,

2016.

GRAVES, A.; WAYNE, G.; DANIHELKA, I. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

https://books.google.com.br/books?id=eMtTAAAAYAAJ
http://link.springer.com/10.1007/978-3-540-73246-4

91

HAMBLIN, C. L. Translation to and from polish notation. The Computer Journal,
v. 5, 1962. ISSN 0010-4620.

HARRIS, D.; HARRIS, S. L. Digital design and computer architecture. [S.l.]: Morgan

Kaufmann, 2010.

HINDLEY, J. R.; CARDONE, F. History of lambda-calculus and combinatory logic.

History, v. 5, 2006. ISSN 03666999.

JUNG, A. A short introduction to the lambda calculus. Computer, 2004.

KAISER, Ł.; SUTSKEVER, I. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

KAUTZ, H. The third ai summer: Aaai robert s. engelmore memorial lecture. AI
Magazine, v. 43, n. 1, p. 105–125, 2022.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

LAMPLE, G.; CHARTON, F. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

LEVENSHTEIN, V. I. et al. Binary codes capable of correcting deletions, insertions,

and reversals. In: SOVIET UNION. Soviet physics doklady. [S.l.], 1966. v. 10, n. 8, p.

707–710.

LIPTON, Z. C.; BERKOWITZ, J.; ELKAN, C. A critical review of recurrent neural

networks for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

MACHADO, R. An introduction to lambda calculus and functional programming. In: .

[S.l.: s.n.], 2013.

MADDISON, C.; TARLOW, D. Structured generative models of natural source code. In:

PMLR. International Conference on Machine Learning. [S.l.], 2014. p. 649–657.

MICHAELSON, G. An Introduction to Functional Programming Through
Lambda Calculus. Dover Publications, 2011. (Dover books on mathematics). ISBN

9780486478838. Available from Internet: <https://books.google.com.br/books?id=

gKvwPtvsSjsC>.

MOU, L. et al. Building program vector representations for deep learning. arXiv
preprint arXiv:1409.3358, 2014.

MURPHY, K. P. Machine learning: a probabilistic perspective. [S.l.]: MIT press,

2012.

PIERCE, B. C. Types and programming languages. [S.l.]: MIT press, 2002.

ROOSE, K. The brilliance and weirdness of chatgpt. The New York Times,
2022. Available from Internet: <https://www.nytimes.com/2022/12/05/technology/

chatgpt-ai-twitter.html>.

https://books.google.com.br/books?id=gKvwPtvsSjsC
https://books.google.com.br/books?id=gKvwPtvsSjsC
https://www.nytimes.com/2022/12/05/technology/chatgpt-ai-twitter.html
https://www.nytimes.com/2022/12/05/technology/chatgpt-ai-twitter.html

92

RUMELHART, D. E.; MCCLELLAND, J. L. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundations. [S.l.]: MIT

Press, 1986.

RUSSELL, S.; NORVIG, P. Arti�cial Intelligence A Modern Approach. [S.l.: s.n.],

2021. ISSN 1098-6596.

SHUTE, M. Computer architecture: a quantitative approach. Microelectronics
Journal, v. 24, 1993. ISSN 00262692.

SIPSER, M. Introduction to the theory of computation. ACM Sigact News, ACM New

York, NY, USA, v. 27, n. 1, p. 27–29, 1996.

SMITH, L. N. : Part 1–learning rate, batch size, momentum, and weight decay. arXiv
preprint arXiv:1803.09820, 2018.

SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to sequence learning with neural

networks. Advances in Neural Information Processing Systems, v. 4, p. 3104–3112,

2014. ISSN 10495258.

TRASK, A. et al. Neural arithmetic logic units. Advances in neural information
processing systems, v. 31, 2018.

TURING, A. M. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, s2-42, 1936. ISSN

1460244X.

TURING, A. M. Computability and λ-de�nability. Journal of Symbolic Logic, v. 2,

1937. ISSN 0022-4812.

VASWANI, A. et al. Attention is all you need. Advances in Neural Information
Processing Systems, v. 2017-Decem, p. 5999–6009, 2017. ISSN 10495258.

ZAREMBA, W.; SUTSKEVER, I. Learning to execute. arXiv preprint arXiv:1410.4615,

2014.

93

APPENDIX A — RESUMO EXPANDIDO

Tradicionalmente, redes neurais têm sido utilizadas para tratar de problemas es-

tatísticos, como reconhecimento de fala, classi�cação de imagem, processamento de lin-

guagem natural, entre outros. Por outro lado, tarefas simbólicas, como operações arit-

méticas, inferência lógica e execução de programas de computador não estavam na mira

da IA conexionista. Porém, avanços nesses campos levaram à emergência de modelos

que juntam a IA conexionista e IA simbólica, caindo no domínio neurosimbólico. Neste

trabalho, estamos interessados em investigar a capacidade de modelos de redes neurais,

particularmente o Transformer, em aprender a executar computações, domínio que é

visto como complexo demais para redes neurais. Para atingir esse objetivo, utilizamos o

cálculo lambda, um formalismo simples, porém poderoso, como base para nossos estu-

dos. O cálculo lambda foi desenvolvido por Alonzo Church na década de 1930, como um

meio de resolver o Entscheidungsproblem. É um sistema formal baseado em funções,

capturando a noção de de�nição e aplicação de funções. Além da importância histórica,

o Cálculo Lambda é um formalismo compacto e turing-completo, sendo base para várias

linguagens de programação funcionais modernas. Em sua essência, o Cálculo Lambda

pode ser visto como uma linguagem de programação, sendo constituído de termos que

podem sofrer reduções. Os termos podem ser interpretados como programas e as re-

duções podem ser vistas como as computações executadas sobre os termos. Aplicar uma

única redução a um termo representa um passo de computação no formalismo. Aplicar

reduções sucessivas até não existir mais reduções a serem aplicadas (caso o termo não

entre em loop) representa uma computação total. Neste trabalho, estaremos interessados

na execução dessas duas tarefas, as quais chamaremos de OBR (one-step beta reduction)

para a computação de um passo e MBR (multi-step beta reduction) para a computação

total. Para aprender a executar as computações, utilizaremos um modelo neural. Porém,

redes neurais tradicionais lidam somente com entradas e saídas de tamanho �xo. Por

isso, utilizaremos um modelo sequência-para-sequência (seq2seq), onde a entrada e a

saída podem ter tamanhos variáveis. Especi�camente, utilizaremos o Transformer, mod-

elo paralelizável baseado no mecanismo de self-attention, amplamente utilizado para

tarefas seq2seq, inclusive simbólicas.

Para guiar nosso trabalho, propomos a seguinte questão de pesquisa: “Um modelo

de aprendizado de máquina consegue aprender a executar computações?”. Para tentar re-

sponder essa questão, formulamos duas hipóteses: (i) O modelo Transformer consegue

94

aprender a executar uma computação de um passo no cálculo lambda; (ii) O modelo

transformer consegue aprender a executar uma computação total no cálculo lambda. O

foco principal da nossa pesquisa está alinhado com a segunda hipótese, porém, escol-

hemos começar com uma hipótese mais simples como ponto de partida. Como nosso

modelo de aprendizado aprende a partir de dados, e não havia referências para a ger-

ação de datasets com termos lambda na literatura, nós desenvolvemos o processo de

geração dos datasets do zero. Nesse processo, desenvolvemos dois métodos diferentes.

O primeiro gera termos lambda aleatoriamente, mesmo que eles não façam parte de

nenhuma codi�cação conhecida. O segundo, gera termos lambda dentro de um domínio

especí�co, seguindo uma codi�cação. Em nosso trabalho, o domínio escolhido para o

segundo método foi a álgebra booleana. Para os resultados, apresentamos a acurácia

dos modelos em cada época treinada, bem como uma métrica de similaridade de string,

baseada na distância de Levenshtein. Além disso, apresentamos uma avaliação de cada

modelo treinado no trabalho com os outros datasets utilizados.

Os resultados obtidos foram satisfatórios para ambas as tarefas e para a avali-

ação. Para a tarefa de OBR, obtemos acurácias de até 99.73%, e similaridade de strings

de mais de 99.99%. Para a tarefa de MBR, obtemos acurácia de até 97.97% e similaridade

de strings ultrapassando 99.90%. Além disso, os modelos apresentaram uma boa capaci-

dade de generalização entre os datasets diferentes. Por limitações de hardware e tempo,

nossos modelos treinaram por apenas 50 épocas cada, número pequeno comparado à

treinos de grandes modelos. Além disso, nós não �zemos uma busca pelos melhores

hiperparâmetros. Considerando essas limitações, podemos assegurar que os resultados

obtidos podem ser ainda melhores do que os mostrados neste trabalho. Esses resulta-

dos mostran a efetividade do modelo em aprender as tarefas propostas e suportam as

duas hipóteses levantadas neste estudo. Cremos que os métodos e resultados apresenta-

dos neste trabalho renderam alguns resultados signi�cativos para pesquisas futuras. As

principais contribuições oriundas deste trabalho são: (i) geração de datasets: métodos

para geração de datasets de termos lambda e suas reduções; (ii) aprendizado do cálculo

lambda: principal resultado do trabalho, mostra como esse aprendizado é promissor e

tem potenciais implicações para trabalhos futuros na área; (iii) aprendizado de lingua-

gens funcionais: os resultados obtidos podem ser levados em consideração para uma

mudança de paradigma, de imperativo para funcional, na área de aprendizado de exe-

cução de programas de computador.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Contents
	1 Introduction
	1.1 Goals
	1.2 Related Work
	1.3 Dissertation Structure

	2 Lambda Calculus
	2.1 History and Importance
	2.2 Concept
	2.3 Syntax
	2.3.1 Lambda Terms as Trees
	2.3.2 Prefix Notation

	2.4 Bound vs Free Variables
	2.5 Substitution
	2.6 Alpha Equivalence
	2.7 Beta Reduction
	2.8 Encodings
	2.9 Computation
	2.10 De Bruijn Index
	2.10.1 Conversion Algorithms
	2.10.2 Computation

	3 Artificial Intelligence
	3.1 Machine Learning
	3.2 Neural Networks
	3.3 Neurosymbolic AI
	3.4 Sequence-to-sequence
	3.5 Transformer
	3.6 Hyperparameters
	3.6.1 Learning Rate

	4 Methodology
	4.1 Tasks
	4.2 Lambda Sets and Datasets
	4.3 Training
	4.3.1 Configurations

	4.4 Code and Implementation
	4.5 Experiments and Results

	5 Generating Lambda Datasets
	5.1 Format
	5.2 Generating Lambda Sets
	5.2.1 Generating Intermediate Trees
	5.2.2 Finishing the Trees
	5.2.3 Problems with this Generation

	5.3 Generating Lambda Terms with Reduced Scope
	5.4 Generating the Final Datasets
	5.4.1 One-Step Beta Reduction
	5.4.2 Multi-Step Beta Reduction

	5.5 Term Sizes
	5.6 Number of Reductions

	6 Results
	6.1 Training Results
	6.1.1 Learning Rate
	6.1.2 Results

	6.2 Evaluation Across Datasets

	7 Discussion
	7.1 Training Results
	7.1.1 One-Step Beta Reduction
	7.1.2 Multi-Step Beta Reduction

	7.2 Evaluations Across Datasets
	7.2.1 One-Step Beta Reduction
	7.2.2 Multi-Step Beta Reduction

	8 Conclusion and Future Work
	8.1 Conclusions
	8.1.1 Main Contributions

	8.2 Future Work

	References
	Appendix A — Resumo Expandido

