
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALEX GLIESCH

Heuristic algorithms for districting

problems

Ph.D. thesis

Advisor: Prof. Marcus Ritt

Porto Alegre

June 2023

CIP - Catalogação na Publicação

Gliesch, Alex
 Heuristic algorithms for districting problems /
Alex Gliesch. -- 2023.
 189 f.
 Orientador: Marcus Ritt.

 Tese (Doutorado) -- Universidade Federal do Rio
Grande do Sul, Instituto de Informática, Programa de
Pós-Graduação em Computação, Porto Alegre, BR-RS,
2023.

 1. Distritamento. 2. Heurística híbrida. 3.
Partições conexas. 4. Busca alternada. 5. p-medianas.
I. Ritt, Marcus, orient. II. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os
dados fornecidos pelo(a) autor(a).

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhões

Vice-Reitora: Profa. Patricia Pranke

Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves

Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas

Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho

Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“I am, somehow, less interested in the weight and convolutions of Einstein’s brain

than in the near certainty that people of equal talent have lived and died in cotton

fields and sweatshops.”

— Stephen Jay Gould

ACKNOWLEDGEMENTS

This thesis, in its completed form, is the product not just of my work, but also of

the people who helped to make this journey a reality. To everyone who has played

a part, however large or small, I owe my deepest thanks, but extend a special thank

you to the following people.

I begin by acknowledging my parents Werner and Ursula, and my stepmother Lena

for their encouragement and support. You fostered in me a deep intellectual curiosity

and a passion for questioning, which have led me on the path of research.

Second, a heartfelt thank you to my Ph.D. advisor, Marcus. Your dedication to

intellectual rigor and high academic standards have shaped my way of approaching

problems, and were instrumental in my formation as a researcher.

Lastly, to my loving partner, Micheli, thank you for your enduring patience, em-

pathy, and love. You’ve seen me at my best and at my worst through this journey,

providing sustenance, comfort, and a steadfast belief in my abilities when I needed

them most.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 8

LIST OF FIGURES . 9

LIST OF TABLES . 10

LIST OF ALGORITHMS . 12

ABSTRACT . 13

RESUMO . 15

1 INTRODUCTION . 17

1.1 Motivation and contributions of this thesis 20

1.1.1 Contribution 1: A generic heuristic for districting 20

1.1.2 Contribution 2: A hybrid heuristic for the Maximum Dispersion Problem 21

1.2 Structure of this thesis . 22

2 BACKGROUND . 23

2.1 Applications . 23

2.1.1 Political districting . 23

2.1.2 Service districting . 24

2.1.3 Distribution districting . 26

2.1.4 Sales districting . 27

2.1.5 Land allocation . 28

2.2 Modeling domain-specific criteria . 29

2.3 Typical districting optimization criteria 31

2.3.1 Balance . 31

2.3.2 Compactness . 33

2.3.3 Connectivity . 38

2.3.4 Similarity to existing or previous plans 39

2.3.5 Routing criteria . 41

2.3.6 Number of districts . 43

2.3.7 Other criteria . 44

2.4 Solution methods . 47

2.4.1 MIP-based approaches . 47

2.4.2 Metaheuristic approaches . 59

3 A GENERIC HEURISTIC FOR DISTRICTING 70

3.1 Introduction . 71

3.2 Problem definition and notation . 73

3.3 Proposed algorithm . 74

3.3.1 Initial solutions . 75

3.3.2 Optimizing solutions by alternating search 77

3.3.3 Optimizing balance . 79

3.3.4 Optimizing compactness . 81

3.3.5 Dynamic updates for local search candidates 84

3.4 Problem instances . 94

3.4.1 A note on the experimental configurations of the following experiments 95

3.5 Computational experiments . 96

3.5.1 Calibrating the parameters of our heuristic 97

3.5.2 Experiment 1: p-median objective . 97

3.5.3 Experiment 2: p-center objective . 99

3.5.4 Experiment 3: diameter objective . 100

3.6 Extension to routing criteria . 103

3.6.1 Modeling routing costs . 103

3.6.2 Extending the heuristic to include routing costs 104

3.6.3 Computational experiments . 109

3.7 Extension to similarity criteria . 116

3.7.1 Modeling redistricting problems with similarity criteria 117

3.7.2 Extending the heuristic to include similarity constraints 119

3.7.3 Computational experiments . 120

3.8 Conclusions and outlook . 126

3.8.1 Outlook . 127

4 A HYBRID HEURISTIC FOR THE MAXIMUM DISPERSION PROBLEM . 129

4.1 Introduction . 129

4.2 Problem definition . 132

4.3 Upper bounds . 134

4.3.1 The unrestricted MaxDP and graph coloring 135

4.3.2 An improved upper bound . 136

4.4 A hybrid heuristic for the MaxDP . 138

4.4.1 Initial solutions . 139

4.5 Improving dispersion . 140

4.5.1 Local search . 141

4.5.2 An ejection chain algorithm for improving dispersion 141

4.6 Balancing solutions . 146

4.6.1 Selecting two groups . 147

4.6.2 Finding improving exchanges between two groups 150

4.7 Computational experiments . 151

4.7.1 Test instances and methodology . 152

4.7.2 Experiment 1: upper bounds . 153

4.7.3 Experiment 2: solving UMaxDP . 155

4.7.4 Experiment 3: balancing solutions . 158

4.7.5 Experiment 4: comparison to the exact approach of Fernández et al. [61]160

4.7.6 Experiment 5: final results on test instances 163

4.7.7 Summary of results . 164

4.8 Conclusion . 164

5 CONCLUSION . 166

RESUMO EXPANDIDO EM PORTUGUÊS . 168

REFERENCES . 170

LIST OF ABBREVIATIONS AND ACRONYMS

LP Linear Programming

IP Integer Programming

MIP Mixed-Integer Programming

MaxDP Maximum Dispersion Problem

PMDP p-Median Districting Problem

PCDP p-Center Districting Problem

DDP Diameter Districting Problem

TSP Traveling Salesperson Problem

VRP Vehicle Routing Problem

CVRP Capacitated Vehicle Routing Problem

RCL Restricted Candidate List

VNS Variable Neighborhood Search

LKH Lin-Kernighan Heuristic

LIST OF FIGURES

1.1 Example of a districting plan. 18

2.1 An example of ways to manipulate districts to obtain partisan ad-

vantage. 25

2.2 “The Gerry-Mander”, by E. Tisdale (1812). 25

2.3 Example of a solution to a districting problem in a land allocation

domain. 29

2.4 An example of different district similarity measures. 40

2.5 An example of a districting solution with routes. 42

3.1 The “shortest path escape” process. 82

3.2 Effect of λ on routing costs. 114

4.1 An example of the EX procedure. 145

4.2 Four example iterations of the successiveGroupExchanges proce-

dure of algorithm optBal. 149

4.3 Example objective function when fractionally balancing two groups. 151

LIST OF TABLES

2.1 Publications that consider balancing as a constraint, objective, or

both. 33

2.2 References for the most common compactness measures in the lit-

erature. 37

3.1 Test instance data. 96

3.2 Parameter calibration: optimization ranges and best setting found

by irace. 97

3.3 Results for the p-median objective. 98

3.4 Results for the p-center objective. 100

3.5 Results for the diameter objective. 101

3.6 Calibrating TSP algorithms A2 and A3. 111

3.7 Relative deviations of tour lengths between the different TSP algo-

rithms used. 112

3.8 Effect of different values of λ in the objective function. 113

3.9 Calibrating bd for determining routing budgets per instance. 115

3.10 Results for the variant with routing budget constraints. 115

3.11 Comparison of different variants regarding district depots. 116

3.12 Results for the uniform model after 10 steps, using soft and hard

similarity constraints. 122

3.13 Results for the uniform model after 5 and 10 steps when similarity

is a hard constraint. 123

3.14 Results for the gravity model after 5 and 10 steps when similarity

is a hard constraint. 124

3.15 Number of iterations, time to best and total runtime for the gravity

model after 5 and 10 steps when similarity is a hard constraint. . . 125

3.16 Local and global similarity in the gravity model after 5 and 10 steps. 126

4.1 Calibrating parameter σ of Uσh. 153

4.2 Comparison of upper bounds UCh , URBh and Uσh. 155

4.3 Comparison of our ejection chain-based algorithm to the approach

of Fernández et al. [61] for the UMaxDP. 157

4.4 Effectiveness of upper bounds for algorithm optDisp, for WEEE in-

stances . 158

4.5 Comparison of our algorithm for balancing solutions to a VNS ap-

proach. 160

4.6 Comparison of our heuristic algorithm to the exact algorithm of Fer-

nández et al. [61], for instances of type WEEE. 161

4.7 Comparison of our heuristic algorithm to the exact algorithm of [61],

for instances of type study. 162

4.8 Results of “Hase” for large instances. 163

LIST OF ALGORITHMS

1 General evolutionary algorithm structure 67

2 Main loop of the proposed hybrid heuristic. 74

3 Constructive heuristic for generating new solutions. 76

4 Improving the balance of solutions through a series of tabu searches. . 79

5 Caching strategy for TSb. 93

6 Algorithm UB to compute an improved upper bound. 137

7 Algorithm generateSubinstance to generate subinstances with high up-

per bounds. 137

8 Hybrid alternating search heuristic “Hase”. 138

9 Algorithm greedyConstructive to generate initial solutions. 140

10 Algorithm optDisp to improve dispersion. 141

11 Local search LS to improve dispersion. 142

12 The full ejection chain algorithm to improve dispersion. 144

13 Algorithm optBal to balance solutions. 148

ABSTRACT

In this thesis we study districting, a general class of optimization problem which

asks for the grouping of small geographical units into disjoint clusters, called districts.

Districting problems appear in a wide variety of applications, ranging from political

districting for elections, to service districting for the distribution of commercial prod-

ucts or the provision of urban services, to the allocation of parcels of farmland into

lots. Across the many domains three core requirements are almost always present:

that districts be contiguous, geometrically compact, and mutually balanced with re-

spect to attributes associated to the units. Given the broad range of applications,

however, these and other planning criteria have been modelled mathematically in

different ways, which has led to many distinct optimization problems. In the first part

of this thesis, we review in detail the different formulations and common solution

methods found in the districting literature.

Since the core problem of finding balanced and connected partitions is NP-hard, so-

lution methods for districting have so far focused on heuristics. However, upon review

we find that methods are typically developed independently, with a focus on appli-

cations. In the second part of this thesis we look at districting from an application-

independent point of view. We propose an extendable heuristic framework that can

solve a large set of districting problem variants, and apply it to the three versions

of the problem that consider different objective functions for minimizing dispersion,

namely a p-median, a p-center and diameter function. In separate analyses, we fur-

ther extend it towards domain-specific criteria, like routing costs and redistricting.

Our heuristic is competitive when compared to other methods which are tailored to a

single variant, and improves best known bounds in many cases.

One particular problem which originates in the design of waste collection territo-

ries is called the Maximum Dispersion Problem. Differently from classical districting

problems, it asks for maximally dispersed rather than compact partitions. The third

part of this thesis focuses on solving the Maximum Dispersion Problem. We propose

a hybrid heuristic for it which combines a number of components with proven effec-

tiveness in the literature, as well as a new upper bounding scheme. Despite being

a heuristic our method finds optimal solutions more often than a current exact ap-

proach, and can handle much larger instances.

Keywords: Districting. Territory design. Compactness. Hybrid heuristic. Connected

partitions. Alternating search. Maximum Dispersion Problem. p-Median Problem.

p-Center Problem. Metaheuristics..

RESUMO

Algoritmos exatos e heurísticos para problemas de distritamento

Nesta tese nós estudamos problemas de distritamento, que são uma classe geral de

problemas de otimização que pedem o agrupamento de pequenas unidades geográ-

ficas em clusters disjuntos, chamados distritos. Este tipo de problema aparece numa

variedade de aplicações, que vão desde o distritamento político para eleições, ao dis-

tritamento de serviços para a distribuição de produtos comerciais ou a prestação de

serviços urbanos, até à atribuição de parcelas de terras agrícolas em lotes. Dentre os

muitos domínios estão quase sempre presentes três requisitos fundamentais: que os

distritos sejam contíguos, geometricamente compactos, e mutuamente equilibrados

no que diz respeito a atributos associados às unidades. Dada a vasta gama de aplica-

ções, estes e outros critérios de planejamento têm sido modelados matematicamente

de diferentes maneiras, o que leva a vários problemas de otimização distintos. Na

primeira parte desta tese apresentamos de maneira sistemática as diferentes formula-

ções de problemas distritamento, e os métodos de solução mais comuns encontrados

na literatura.

Dado que o problema central de encontrar partições equilibradas e conectadas é NP-

difícil, os métodos de solução para problemas de distritamento têm sido, até agora,

heurísticos. Contudo, ao revisar a literatura pode-se observar que estes métodos são

tipicamente desenvolvidos de forma independente por pesquisadores, com foco nas

aplicações. Na segunda parte desta tese nós olhamos para distritamento sob um

ponto de vista independente de aplicação. Nós propomos uma framework heurística

extensível que pode lidar com um conjunto grande de variantes de problemas de dis-

tritamento, e a aplicamos às três variantes mais comuns que consideram differentes

funções objetivo para minimizar a dispersão: a p-median, p-center e diameter. Além

disso, em análises separadas nós estudamos a sua extensão para critérios específicos

de domínio, como custos de roteamento e redistritamento. A nossa heurística é com-

petitiva quando comparada com outros métodos que são desenvolvidos com foco em

uma única variante, e melhora os melhores bounds conhecidos em muitos casos. Um

problema particular que tem origem no planejamento de territórios de recolhimento

de resíduos chama-se o Maximum Dispersion Problem. Diferentemente dos proble-

mas de distritamento clássicos, ele pede partições com dispersão máxima em vez de

compactas. A terceira parte desta tese foca na resolução do Maximum Dispersion Pro-

blem. Propomos uma heurística híbrida que combina uma série de componentes que

se mostraram eficazes na literatura, e um novo esquema para obter upper bounds.

Apesar de ser heurístico, nosso método encontra mais frequentemente soluções óti-

mas do que métodos exatos da literatura, e pode lidar com instâncias muito maiores.

Palavras-chave: Distritamento. Planejamento de territórios. Compacidade. Heurís-

tica híbrida. Partições conectadas. Busca alternada. Maximum Dispersion Problem.

Branch-and-price. Geração de colunas. Problema p-Median. Problema p-Center. Me-

taheurísticas..

17

1 INTRODUCTION

Given a connected planar graph G = (V,E) of n = |V | vertices and a set P = [p]1 of

p points, a districting problem seeks a partition S1∪S2∪ ·· · ∪Sp = V of the vertices

into p groups called districts. Districting is also sometimes called territory design, and

in this thesis we use both terms interchangeably. The vertices V, commonly called

basic units or geographical units, represent geographical entities such as city blocks or

neighborhoods, which must be grouped into districts. The p-partition of V given by

S= (S1, . . . ,Sp) defines a solution, also commonly known as a districting plan.

Districting formulations have been used to model several real-world prob-

lems [111]. The most common such problem is that of partitioning an urban area

(e.g. a city) into regions, to which service providers will be independently allocated

by a central planning body. Examples of such services are police patrolling, waste

collection, salt spreading, home care provision, or product deliveries, to name a few.

A second kind of problem is political or electoral districting, where in a by-district

election system urban areas must be divided into politically unbiased voting sections

of equal population. Moreover, we also find districting problems in rural domains,

where small parcels of farmland, possibly with different geographical characteristics

such as soil quality, elevation or access to water, must be grouped together into lots of

equal productivity. An example of a districting plan for the distribution of commercial

goods is shown in Figure 1.1.

Multiple definitions exist as to what makes districting plans feasible or acceptable,

and for which planning criteria they should be optimized towards. This is mainly

determined by the application at hand, and can vary significantly from domain to

domain. The following three criteria however are nearly always present, and go back

to the work of Hess et al. [100] in political districting during the 1960s.

Balance: districts should be balanced with respect to attribute (also called activity)

vectors wav ∈ R+, a ∈ A associated with the units, for a given set A of attribute

1For positive integer i, we use the notation [i] = {1, . . . , i }.

18

Figure 1.1: Example of a districting plan with n = 5000 basic units and p = 50 dis-
tricts, in the city of Monterrey, Mexico (instance from Ríos-Mercado and
López-Pérez [182]).

types. These attributes may represent different aspects of the units depending

on the application. For example, in service districting domains it is common

to use attributes related to the cost or time of servicing a unit, to avoid idle or

overworked service agents, and in electoral districting it is desired that districts

have an equal number of voters, for reasons of fairness. A district Si is said to be

balanced if, for each attribute a ∈A, its total value wa(Si) =
∑
u∈Siw

a
u is within

given lower and upper limits Ua and La.

Connectivity: each district should be a connected subgraph of G. In some domains,

connectivity is also called contiguity. It serves to facilitate traversal along the

units of a district, and to avoid the need to leave the district’s borders to access

parts of it.

Compactness: districts should form geometrically compact shapes, ideally convex

and neither too long nor too narrow. Computationally, this often translates to

minimizing some dispersion function C(S) of distances d ∈ RV×V+ between the

units, given by the problem input. Compact districts facilitate traversal by ser-

vice agents, as paths over territories with compact shapes tend to be shorter,

and in political domains can provide visual clues as to whether districts have

been manipulated to gain partisan advantage, a tactic known as gerrymander-

19

ing [90]. Despite the existence of several compactness measures, there currently

is no consensus as to which one best captures human preference [27, 116]. Be-

cause of this, applications rarely specify how C(S) should be computed, and

districting plans tend to be evaluated visually in a case-by-case basis.

The usual way of representing these three requirements is through the following

mathematical model:

minimize
S∈S

C(S) (1.1a)

subject to La 6wa(Si)6Ua, ∀ i ∈ P,a ∈A, (1.1b)

G[Si] is connected, ∀ i ∈ P, (1.1c)

where S=
{
V
p

}
denotes the set of all p-partitions of V.

Model (1.1) constitutes the basic building block which the vast majority of district-

ing problems extend. Besides balance, compactness and connectivity, domain-specific

criteria are extremely common. Some examples include minimizing differences to

prior districting plans, in so-called redistricting problems [82, 22] which are common

in political districting; forbidding enclaves, i.e. districts within districts [120, 80];

satisfying conflict relations between basic units, where some pairs of units cannot

be grouped together because of local rivalries [182]; minimizing the sum of intra-

or inter-district routing costs, computed e.g. as optimal Traveling Salesman Problem

(TSP) tours over districts [28, 83, 152], a common criterion in service or product

distribution contexts; or guaranteeing physical access by all districts to some re-

source [80, 213], such as e.g. a road network or highway. Many of these criteria

appear in several domains, but are often modeled mathematically in different ways.

This combination of requirements makes districting particularly challenging, as

most requirements translate into NP-hard subproblems whose interaction creates diffi-

cult optimization problems. For example, finding balanced partitions is akin to the Bin

Packing Problem [70]; compactness functions are usually modeled as discrete loca-

tion problems (p-medians and p-centers being the two most common dispersion mea-

sures [115]), as geometric partition problems [117], or as minimum k-partitions [3];

conflict constraints between the units combined with the disjoint partition require-

ment equates to the Vertex Coloring Problem [109]; routing constraints often require

solving variants of the Vehicle Routing Problem [125]; and the combination of bal-

ancing and connectivity defines the Balanced Connected k-Partition Problem [14]. In

fact, to find balanced district partitions alone is NP-hard: the case with p= 2 districts,

20

A = {1} and U1 = L1 generalizes the Subset Sum Problem [69]. Therefore, it follows

that districting as described by Model (1.1) in general is NP-hard.

Because districting is difficult, the focus of computational solutions thus far has

been on heuristics. Given a problem formulation that minimizes a discrete dispersion

function (e.g. p-median or p-center function) subject to connectivity and balancing

constraints, current heuristic methods can consistently find feasible solutions for in-

stances with up to 104 basic units [77, 182, 184]. Some exact solutions based on

branch-and-bound over integer programming (IP) models have also been proposed,

but with current computational capabilities they are limited to instances of 500 to

700 basic units [187, 192, 211], with Validi et al. [212] recently reporting results for

some instances with up to 1000 units, but with considerable computational effort.

1.1 Motivation and contributions of this thesis

In this thesis we propose computational methods to solve districting problems. We

make three main contributions. In the following sections we present our motivation

and a short summary of each. Then, we outline the structure of this thesis.

1.1.1 Contribution 1: A generic heuristic for districting

Because applications are so diverse, the literature on districting problems is notice-

ably fragmented, despite early efforts to propose unified models [113, 114]. As put

by Kalcsics et al. [114] about the districting literature, “the tendency to separate the

model from the application and establish the model itself as a self-contained topic

of research cannot be observed”. Upon review, we find few published comparisons

between methods across different domains, and it is common for new algorithms to

be proposed even if similar or identical formulations have been studied in the past.

Also notable are a lack of standard instance sets with best-known values, with many

works considering only one or two case studies particular to the domain at hand,

and the fact that many implementations and data sets are unavailable because they

are proprietary. This poses a major barrier of entry for new researchers, especially

ones who are not in contact with a real-world application, since it makes it difficult

to assess the effectiveness of a new algorithm or whether a new instance is hard or

trivial.

With the above in mind, our first contribution is a heuristic for districting that can

handle a large combination of different criteria found in the literature, and thus can be

compared to most existing methods. Our focus here are single-objective formulations.

21

Our aim is for this heuristic to serve as a baseline of comparison, and to promote

the study of districting problems from an algorithmic standpoint, independently of

applications. The proposed method uses a novel strategy that alternates between two

neighborhood searches, one that optimizes the objective and another that minimizes

constraint violations. This is embedded into a randomized multistart framework.

In an extensive experimental work we show that our heuristic can handle the three

most common dispersion measures found in the literature (p-median, p-center and

diameter), as well as other popular criteria (balancing multiple attributes, similar-

ity to previous plans and routing costs), and that it is reasonably competitive when

compared to other methods. In many cases, we improve over best-known solutions.

To foster its reuse our implementation has been made available in public repositories

online, and can be extended to include new optimization criteria without changing

the main algorithm.

The details of our heuristic are explained in Chapter 3, which combines our work

published in the following conference papers:

• A. Gliesch, M. Ritt, and M. C. Moreira. A multistart alternating tabu search for

commercial districting. In A. Liefooghe and M. López-Ibáñez, editors, European

Conference on Evolutionary Computation in Combinatorial Optimization, volume

10782 of Lecture Notes in Computer Science, pages 158–173, Cham, Switzerland,

2018. Springer.

• A. Gliesch and M. Ritt. A generic approach to districting with diameter or center-

based objectives. In M. López-Ibáñez, editor, GECCO ’19: Proceedings of the Ge-

netic and Evolutionary Computation Conference, pages 249–257, Prague, Czech

Republic, July 2019. ACM.

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A heuristic algorithm for

districting problems with similarity constraints. In 2020 IEEE Congress on Evo-

lutionary Computation (CEC), pages 1–8, Glasgow, United Kingdom, July 2020.

IEEE.

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A hybrid heuristic for

districting problems with routing criteria. In 2020 IEEE Congress on Evolutionary

Computation (CEC), pages 1–9, Glasgow, United Kingdom, July 2020. IEEE.

1.1.2 Contribution 2: A hybrid heuristic for the Maximum Dispersion Problem

Our second contribution is a new heuristic for the Maximum Dispersion Problem

(MaxDP) [61, 78]. Given a set of weighted units, the MaxDP aims to partition them

22

into groups such that each group is as close as possible to a target weight, and the

dispersion, defined as the maximum distance between two objects in the same group,

is maximal. This problem is closely related to districting, with some authors also clas-

sifying it as a districting problem [179, 185], even though it maximizes a dispersion

function rather than minimizing it, and does not require groups to be connected.

The heuristic we propose combines several components which we show to be in-

dependently effective. They include an ejection chain-based heuristic for improv-

ing dispersion, and an iterated, truncated branch-and-bound algorithm for balancing

pairs of districts. We also propose better upper bounds for the problem, which help

to terminate the heuristic early and prove optimality by matching it to lower bounds.

When compared to the existing exact method in the literature [61], our heuristic finds

solutions significantly faster, and more often provably optimal.

The details of our method are shown in Chapter 4, which presents the following

published article:

• A. Gliesch and M. Ritt. A hybrid heuristic for the maximum dispersion problem.

European Journal of Operational Research, 288(3):721–735, 2021.

Moreover, some of the methods we proposed for the MaxDP were used to develop

a new heuristic for finding critical subgraphs in the context of the Vertex Coloring

Problem. This has led to the following publication, which we did not include in this

thesis since it is not related to districting:

• A. Gliesch and M. Ritt. A new heuristic for finding verifiable k-vertex-critical

subgraphs. Journal of Heuristics, 28:61–91, 2022.

1.2 Structure of this thesis

This thesis is organized as follows. In Chapter 2 we provide a literature review on

the most common districting problems, with a focus on models and solution methods,

as well as the notation used in the rest of this thesis. Next, in Chapter 3 we present our

general heuristic for districting problems. Last, in Chapter 4 we present the proposed

hybrid heuristic for the MaxDP. We conclude in Chapter 5 with an overview of our

contributions.

23

2 BACKGROUND

In this chapter we present the main districting models considered in this thesis and

provide a general background on districting from a technical standpoint, in terms of

the most common optimization criteria, formulations, and solution methods. We also

introduce some mathematical notation. Since our focus here are the technical aspects

of districting from a computational perspective, we provide only a brief overview of

real-world applications in the next section, and then shift our attention to the formal

definitions of optimization criteria and to solution methods. For a more in-depth

discussion on the applications of districting, we refer the reader to the surveys in

Kalcsics and Ríos-Mercado [111] and Ríos-Mercado [178].

Since the scope of this chapter are classical districting problems which follow the

general structure of Model (1.1), we leave out the Maximum Dispersion Problem, and

review its related literature in Chapter 4.

2.1 Applications

Kalcsics and Ríos-Mercado [111] classify districting applications in 4 major areas:

political districting, sales territory design, service districting and distribution district-

ing. As we shall see, there is some overlap particularly for the latter three, and some

applications could fit into multiple areas. In the following we give a brief overview

of each of these four classes, then mention a fifth area of application we believe is

relevant: land allocation.

2.1.1 Political districting

Political districting concerns the design of constituencies (districts) from which po-

litical representatives are elected in a by-district election system. The basic units to

be grouped are usually census tracts: polygonal regions of an urban area that are

used by national censuses. In the United States, census tracts average about 4000

24

inhabitants [26]. To ensure that the voting power, and therefore the political repre-

sentativeness among voters is equivalent, governments generally adhere to a “one-

person, one vote” principle that requires districts to have as equal a population as

possible [145]. The strictness of this requirement varies from country to country. In

the United States, for example, the year 2000 census identified that districts differ in

population by no more than 1% [215], whereas in Germany a more lenient limit of

15% difference from the average population is imposed [87].

As the population of census tracts changes over time, political districts must be pe-

riodically redrawn lest they become imbalanced in the number of voters. This process

is called redistricting. To avoid significant changes to districts, a typical requirement

in redistricting is that a minimum degree of spatial similarity be maintained between

the old and new districts.

Because the political party currently in power is usually in charge of redistricting,

district shapes are sometimes manipulated in order to concentrate the opposition’s

voting power in just a few districts, while simultaneously diluting its remaining vot-

ers over a larger number of districts. This tactic, illustrated in Figure 2.1, is called

“cracking and packing” [196] and dramatically increases the chances of reelection to

the party currently holding office, as it maximizes the number of “wasted” votes for

the opposing party, i.e. votes over the minimum amount needed to win the district.

The general technique of manipulating districts to obtain partisan advantage is

known as gerrymandering [90]. The term originated from a satirical cartoon pub-

lished in 1812, which we show in Figure 2.2, depicting a drawing of a salamander

over a highly manipulated districting plan for the state of Massachusetts, whose gov-

ernor at the time was Elbridge Gerry. The practice of gerrymandering famously pro-

duces districts with bizarre and distorted shapes, and criteria such as contiguity and

compactness have been historically used as indicators of whether a district has been

gerrymandered [215].

2.1.2 Service districting

Service districting includes various districting applications concerning the provision

of municipal services. Both Butsch [27] and Kalcsics and Ríos-Mercado [111] mention

two distinct subclasses within service districting.

The first concerns applications that design fixed service facilities, typically located

centrally in their designated district to facilitate access to them. These facilities can

be either pre-existing, a planning decision, or a mixture of both, e.g. if one wants to

25

(a) (b) (c)

Figure 2.1: An example of how districting plans can be manipulated to disproportion-
ally favor either the orange (circles) or blue (squares) party. In 2.1a, blue
wins 3-0 despite the ratio of 9:6 voters for blue:orange. In 2.1b, blue wins
2-1, a result which reflects the voter distribution. In 2.1c, orange wins 2-1,
despite being a minority in the general population. Source: User “cmglee”
at English Wikipedia [210].

Figure 2.2: “The Gerry-Mander”, by E. Tisdale, which coined the term gerrymander-
ing, showing a highly manipulated districting plan for the state of Mas-
sachusetts, United States. Originally published in the Boston Gazette,
March 26th 1821.

26

build a new facility to accommodate increase demand, given that a set of facilities

already exist. The three main applications are the planning of school [59, 194],

health care [201, 58], and police districts [30]. In all three, each facility (school,

hospital or police station) is associated with an “area of influence” (i.e. a district)

such that basic units, usually city blocks, are serviced preferably or exclusively by the

facility they are assigned to. To avoid imbalanced districts with respect to the amount

of resources and personnel needed, which is often limited by the size of the facility

itself, districts should deviate as little as possible in the amount of service provided.

Districts that minimize travel times from units to the facility (in the case of school

or hospital districts) or from the facility to units (in the case of police districts) are

generally sought, and often the maximum travel time is limited by a constraint. This

translates indirectly to compactness.

The second subclass covers applications that provide service to individual streets

of a city. These include e.g. postal services [193], waste and recycling collection [94,

135], police patrolling [39, 133], electric or hydraulic meter reading [42], and salt

spreading and winter gritting operations [140, 159, 160, 36]. In this case the basic

units are street segments, and the intersections between them define the adjacencies.

This makes them edge-based districting problems, which are different in essence from

districting problems which are based on grouping the vertices of a graph. If it is not

possible to visit both sides of a two-way street on the same trip, each side of a street

segment can be considered as a separate basic unit. The goal is to divide a city into

districts, each of which will be assigned to a shift or a fixed service provider, e.g. a

delivery agent or a truck. To ensure balanced workloads districts must have similar

visiting costs, and for maximum efficiency the overall visiting costs should be as low

as possible. When a fixed cost is associated with visiting each street, the cost of a

district is typically be modelled as a Chinese Postman Tour, which can be computed

in polynomial time, and particularly efficiently if the district is Eulerian. With this in

mind, some authors optimize for the “Eulerian-ness” of a district, i.e. the number of

units with even degree in the induced subgraph [28, 68]. Most authors, however, use

contiguity and compactness as proxy functions for the tour costs.

2.1.3 Distribution districting

Distribution districting concerns problems where basic units must be visited peri-

odically over a planning horizon. It appears chiefly in domains related to logistics

where a number of available delivery agents (e.g. trucks), originating from a central

27

depot, must deliver products to clients. Differently from services like postal or waste

collection, however, the set of units to be visited at each time step is not known in

advance.

The visiting of clients at each time step is usually modeled by a set of TSP tours

bounded by a maximum distance, which is determined by time availability, fuel or ve-

hicle storage capacity. One way to tackle the distribution problem is therefore to solve

multiple Capacitated Vehicle Routing Problems [209], one in each time step. Unfor-

tunately this can be costly, depending on the number of units, and most importantly

results in consecutive solutions that are substantially spatially dissimilar.

A common alternative is to use a “cluster-first, route-second” strategy [76] where

a partition is first made that matches parts (territories) to delivery agents. At each

time step agents then compute TSP tours only over units in their assigned territory.

In distribution districting, the “cluster” part is modeled as a districting problem. De-

mands are usually modeled as stochastic variables [97, 127], since they are priorly

unknown, and so clusters minimizing expected costs are sought. There are many

advantages to this approach. Computationally, it shifts the cost of partitioning to a

prior step and amortizes it, as it is generally easier to compute, over a time limit of T

steps, Tp independent TSP tours over n/p units than to solve T Capacitated Vehicle

Routing Problems over n units. Moreover, in practice drivers become familiar with

their assigned territories and over time become more efficient in them [111], which

helps to reduce travel costs and improve service quality, such as through developing

customer relations, for example.

Although the focus of distribution districting is to minimize routing costs, balanced,

compact and contiguous districts are still generally desired. Balancing is used to avoid

overworked or idle agents, while connectivity and compactness combined are a good

proxy objective for low routing costs [83, 76, 28], and are easier to optimize by

computational methods.

2.1.4 Sales districting

Sales districting is a mix between service and distribution districting, but in princi-

ple closer to the latter. In sales districting clients, each representing a basic unit, are

allocated to the salespersons of a company. The goal is to achieve an allocation that is

fair to the salespersons with respect to both their workload per period of time, which

is proportional to the total travel distance plus visitation time for the assigned clients,

and to the expected profit margin, which is influenced by both the number of ac-

28

counts and their size. To quote Kalcsics and Ríos-Mercado [111] “territories with low

sales potential, intense competition, or too many small accounts lead to low morale,

poor performance, a high turnover rate, and an inability to assess the productivity

of individual territories”. Besides fairness the total profit, given by the total income

minus the visitation costs, should generally be as high as possible [50, 44].

While the potential income per client is typically fixed, as in distribution districting

district workloads are ideally modeled by TSP tours over the set of client locations.

Some authors approximate tour costs by considering a fixed visiting cost to each unit.

Also in the same spirit of distribution districting, most solutions use compactness

and contiguity as proxies in place of routing costs. Moreover, in the sales domain

contiguity has a secondary benefit: preventing salespersons from intruding into one

another’s territory to reach clients. Contiguity can be hard to define, however, since

adjacencies between clients are sometimes unclear [111].

2.1.5 Land allocation

Lastly, we cite here a fifth domain we believe falls into the scope of districting,

but that is seldom mentioned. It concerns the grouping of small parcels of farmland,

typically given as a rectangular grid, into larger territories called lots. Lots are then

assigned either to different owners, or to a specific type of crop which will be planted

there. Here, each parcel corresponds to a basic unit and each lot to a district.

To ensure access to every part of a lot by the farmer, lots must be contiguous and

sometimes need to have access to a road network. Commonly it is required that lots

be fairly balanced with respect to their expected crop yield over time, which is de-

termined by attributes of parcels such as soil type, elevation, or how close they are

from a water source [151, 80]. In other cases, each lot simply has a predefined target

area [21, 75]. Moreover, lots should have compact shapes resembling regular poly-

gons with few edges [46, 47], since this facilitates both the use of farming machinery

and the physical delimitation of the lots with e.g. fences [62]. This relates directly to

compactness.

In this discrete case we observe clearly the three districting pillars of balance, con-

nectivity and contiguity. Therefore, this is a classical districting problem. On the other

hand, some authors also consider a continuous version where no basic units are given,

and lots are defined as polygons on the plane [21, 46, 47]. In this case, it is debatable

whether this should be considered a districting problem. We note, however, that the

geometric method of Kalcsics et al. [114] for districting seems particularly well-suited

29

Figure 2.3: Example of a solution to a districting problem in a land allocation domain.
Figure from Gliesch et al. [80].

to tackle the continuous version.

Figure 2.3 shows an example solution to a problem originating in land redistri-

bution in Brazil [80]. This was the original problem that motivated our study of

districting.

2.2 Modeling domain-specific criteria

As we have just seen, districting problems are often accompanied by domain-

specific criteria other than compactness, balance and connectivity. Besides the many

criteria cited in the previous section, they can also include variations such as a second

compactness function, if compactness with respect to different criteria is desired (see

e.g. Garfinkel and Nemhauser [71]), or to treat the balancing of a certain attribute as

an objective rather than a constraint (see e.g. Salazar-Aguilar et al. [188]).

In the context of our base model (1.1) additional criteria are typically modeled in

one of three ways: i) as a soft objective to be minimized, or as a hard constraint

where ii) local (per district) or iii) global (comprising all districts) maximum limits

are imposed. Let us denote by ZG ⊆ RS a set of functions which encode optimization

criteria defined over entire solutions, i.e. global criteria, and ZL ⊆ RP(V) be a set of

functions which encode criteria defined over single districts, i.e. local criteria (here,

P(V) denotes the power set of V). Often global criteria are simply aggregates of

30

local criteria using some linking function f, i.e. zg(S) = f(zl(S1), . . . ,zl(Sp)) for some

zg ∈ZG and zl ∈ZL, with common linking functions being the maximum and the sum.

Formally, the inclusion of additional planning criteria results in the general formu-

lation below, which reduces to Model (1.1) if ZG = ZL = ∅:

minimize
S∈S

C(S)+
∑
z∈ZG

λzz(S) (2.1a)

subject to La 6wa(Si)6Ua, ∀ i ∈ P,a ∈A, (2.1b)

G[Si] is connected, ∀ i ∈ P, (2.1c)

z(Si)6U
z, ∀ i ∈ P,z ∈ ZL, (2.1d)

z(S)6Uz, ∀z ∈ ZG. (2.1e)

Upper limitsUz ∈R+ are imposed for hard criteria z∈ZG∪ZL, such that no feasible

plan can exceed them. Here we assume, without loss of generality, that all criteria

are to be minimized. For each global criterion z ∈ ZG, a weight value λz ∈R+ is given

that defines the objective function as a weighted sum of “soft” criteria, including

compactness. This is a common approach for representing districting problems with

many soft criteria as single-objective models, since in many cases it can be difficult

to define limits Uz that work well on every instance of a domain. Note that in the

above we use z as a index to both U and λ, thus viewing them as functions of type

(S→R)→R. As we shall see in Section 2.3.2, this is also why compactness is usually

handled as an objective, rather than as a constraint.

A common alternative is to consider a multiplicative weight λC to the compactness

term C such that λC +
∑
z∈Zg λ

z = 1, in order to have the objective function be a

convex combination of the different criteria that is easier to manipulate according to

the desired output. The same effect could be obtained, however, by appropriately

setting λz, z ∈ ZG, hence to maintain the basic model (1.1) as a subproblem we did

not include λC in Model (2.1).

More generally, the extended model above could even include balancing, connectiv-

ity or compactness as generic functions in ZL or ZG, instead of explicitly. As we shall

see in the next sections, some authors do handle these criteria in different ways, such

as by considering balancing as a soft objective, compactness as a constraint, or re-

laxing connectivity by minimizing the number of connected components per district.

This would however make the model too generic, as it could represent many other

problems than districting. Moreover, these variants are not the norm. Therefore, in

31

this thesis we limit our scope to Model (2.1).

Finally, we note that although our focus here are single-objective formulations,

as an alternative to the weighted sum approach of (2.1a) many authors have mod-

eled districting as a multiobjective problem with two [190, 188, 191, 42, 43],

three [44, 40, 41, 174, 201, 94] or even four [87] global criteria as minimization

objectives. Multiobjective formulations are naturally relevant in districting: since soft

criteria such as compactness are often ambiguous or ill-defined, it can be desirable

to have decision makers select plans by examining a set of Pareto-optimal solutions.

All multiobjective formulations we are aware of minimized C(S) along with a set of

global criteria, which always included some balancing term defined as the sum of

violations to a subset of constraints (2.1b). Some remove balance constraints (2.1b)

altogether, in favor of minimizing imbalance as an objective [42, 43, 201, 87].

2.3 Typical districting optimization criteria

In this section we review in detail the most common requirements in districting, in-

cluding balance, compactness, connectivity, with a focus on mathematical definitions.

When applicable we explain the domains where each requirement is relevant, and

how it could be included in Model (2.1).

2.3.1 Balance

To balance some type of resource among the districts is a goal shared by all district-

ing problems. Most of the time, these resources are aggregates of numerical attributes

associated with basic units, which must be evenly distributed over the districts. Most

commonly, limits L and U are defined as maximum relative deviations from the mean

attribute over all districts µ =
∑
v∈Vwv/p, and a tolerance term τ > 0 is given such

that L = (1− τ)µ and U = (1+ τ)µ. Tolerance τ is usually between 0.01 and 0.1,

depending on how strictly balancing should be enforced.

The classical attribute from the political districting domain is population: in the

United States, for example, a strict “one-person, one-vote” principle is sought [145],

such that the voting power of two voters in the same state should be roughly equiv-

alent. This is correlated with districts having equal populations; consequently, toler-

ances τ in political districting tend to be stricter [212]. Another common attribute

from the service and sales districting domains is workload: the time or cost of servic-

ing a basic unit by a service provider or salesperson assigned to each district. Having

homogeneous workloads helps to avoid overworking or idling. In sales districting

32

one also finds attributes such as product demand, number of customers or expected

profits, where fairness with respect to potential profits of individual salespersons is

desired [220]. Other examples come from land partitioning [80, 46], where parcels

of land (basic units) can be associated with area, soil quality or monetary value, and

must be evenly divided into lots (districts). The number of units assigned to a district,

called district size, can also be viewed as a resource to be balanced. In this case, each

unit has an attribute value of 1. For example, some authors [201, 40, 41, 166] impose

lower and upper limits on district sizes, while others [39, 80] impose a limit on the

ratio between the largest and smallest districts.

The requirement to balance multiple attributes simultaneously, which Model (1.1)

considers, is not uncommon. As we have seen this happens often in sales district-

ing domains where both workload and expected profits per salesperson must be

balanced [29, 183, 184, 220, 102]. Some works even consider three attributes:

workload, number of customers, and product demand [181, 180]. In most cases,

the balancing of multiple attributes is enforced by constraints (1.1b), although a

few works considering two attributes choose to constrain one and optimize the

other [188, 190, 191]. For ease of exposition, unless specifically stated in this chapter

we shall assume a single attribute, and thus omit subscripts a.

Besides attributes, some works also seek to balance district routing costs, which

dynamically depend on the current solution. For example, Lei et al. [128, 129] min-

imize, among other criteria, the relative deviation to the mean of the sum of unit

attributes (in this case, revenue per unit) minus the cost of a TSP tour over the dis-

trict, while Lin et al. [136] and Moreno et al. [152] treat routing costs as a hard

constraint where an upper limit to it is imposed. On the same note, Muyldermans

et al. [159, 160] seek to balance Eulerian tour costs, but as fixed attributes of units

which are determined by pre-processing the input graph. This is for an edge-based

districting problem variant, however, which is fundamentally different from vertex-

based districting.

According to Kalcsics and Ríos-Mercado [111], there is no clear trend on whether

to consider balancing as a hard constraint or as an objective to be optimized, and

some works even do both (see Table 2.1). When treated as a constraint, it is almost

always through two-sided constraints of type (1.1b), although some authors [39, 18]

use constraints w(Si)6U | ∀ i ∈ P for upper limit U, and do not impose lower limits.

If p−bKc6 1 for K= pµ/U, however, then a lower limit of L=U(1+(K−bKc−1)(p−

bKc)) is automatically guaranteed, which can result in balance if U is appropriately

chosen. The same reasoning applies when setting only lower limit constraints, and in

33

Constraint
[68, 100, 99, 92, 91, 112, 113, 114, 188, 190, 191, 65, 212, 211,
146, 103, 71, 220, 33, 130, 45, 63, 9, 144, 29, 183, 187, 189, 182,
139, 54, 184, 40, 181, 180, 177, 81]

Objective [28, 19, 67, 74, 102, 46, 159, 160, 87, 30, 12, 42, 43, 174, 22, 23]
Both [17, 199, 16, 41, 40, 80, 188, 190, 191, 94, 201]

Table 2.1: Publications that consider balancing as a constraint, objective, or both.

our experience optimal solutions usually have either tight U- or L-constraints, but not

both.

When treated as an objective, individual district imbalances have been aggregated

in different ways. Let b(Si) = |(w(Si)−µ)|/µ define the imbalance of district i relative

to the mean µ. Some authors minimize the sum of deviations
∑
i∈Pmax{0,b(Si)−τ }

of the imbalance with respect to tolerance τ [19, 67, 74, 23, 22], while others simply

minimize the sum of imbalances bsum(S) =
∑
i∈Pb(Si) [188, 201, 199, 174, 102, 46,

160, 42], regardless of τ. Another common approach is to minimize the maximum

imbalance bmax(S) = maxi∈Pb(Si) [16]. Butsch et al. [28] discuss the drawbacks

of both sum and max approaches: the sum allows for highly imbalanced districts to

be compensated by balanced ones, while the maximum does not take into account

the imbalance of all districts. Therefore, Butsch et al. [28] choose to minimize a

convex combination αbsum(S)+(1−α)bmax(S), α∈ [0,1], of both; Camacho-Collados

et al. [30] adopt the same approach. Another mixed formulation, by Goderbauer and

Winandy [87], minimizes both bsum and |{b(Si) > 0.15 | i ∈ P }| in a multiobjective

problem, where the second term represents the number of districts with imbalance

larger than τ= 0.15.

2.3.2 Compactness

The main reason for optimizing towards compact districts comes from political dis-

tricting, since as we have seen in Section 2.1.1 highly compact districts are less likely

to have been manipulated for partisan advantage. Besides political districting, com-

pactness also has beneficial properties in other applications and is generally desired.

For example, in distribution districting when delivery routes are to be computed over

the districts, it has been shown that compactness can serve as a proxy for routing

costs [83, 76]. Moreover, some compactness functions are correlated with connectiv-

ity [187].

There exists some ambiguity in the literature concerning the terms “compactness”

and “dispersion”. The confusion arises due to the inverse relationship between them:

34

minimizing compactness leads to dispersed districts, whereas minimizing dispersion

yields compact districts. Despite this, the term "minimizing compactness" is often used

where "minimizing dispersion" would be more accurate. Since compact districts are

generally preferred in the context of districting, this inconsistency has not negatively

impacted research, as the meaning remains clear. Therefore, in this thesis we use the

terms “compactness” and “dispersion” interchangeably, trusting that the reader will

interpret these terms like in the established convention, where compact districts are

preferred.

Despite its prevalence, compactness as an optimization criterion has been notice-

ably hard to define. According to Butsch [27], a compact district shape can loosely be

said to “[be] nearly round-shaped or square, undistorted, without holes, and [have]

a smooth boundary”. In practice, however, there are often no clear guidelines on

how to distinguish compact from non-compact districts other than by inspection by a

human expert, commonly called the “eyeball test”.

Historically several quantitative compactness measures have been proposed in at-

tempts to mirror the eyeball test. In his review of compactness, Butsch [27] describe

29 different measures, while Horn et al. [106] show no fewer than 32 measures that

were used to evaluate political districting plans in the United States. Most of these

measures have been thoroughly criticized in the literature, however, since pathologi-

cal examples are easy to construct, yielding solutions which are compact in theory but

deemed unacceptable by the subjective eyeball test [217, 11]. In a recent survey with

public officials and judges in the United States, Kaufman et al. [116] show that none

of 7 commonly used compactness measures accurately predicts human preference,

but that nonetheless there seems to be a general consensus among the community as

to what constitutes compactness: the so-called “you know it when you see it” concept.

Compactness measures generally fall into two categories: contour (or geometric),

and distance (or discrete) [52]. Broadly speaking, contour measures take into ac-

count geometric elements of the polygon that defines the district on the plane, such

as perimeter length, area, or angles of intersection, and assume units are associated

with coordinates on the plane. Distance measures, on the other hand, are computed

as discrete functions over an arbitrary distance matrix d ∈ RV×V defined over the ba-

sic units. In most cases d is Euclidean (and therefore symmetric), but not always,

especially in urban domains where tunnels, overpasses and one-way streets are com-

mon. In practice, often multiple compactness measures are used in combination to

assess a district before it can be considered acceptable [161, 52, 22, 28].

According to Barnes and Solomon [11], the three most frequently used contour

35

measures are the Polsby-Popper score [167], given by

Cpp(Si) = 4π
area(Si)

perimeter(Si)2 ; (2.2)

the Reock score [171], given by

Creock(Si) =
area(minimumEnclosingCircle(Si))

area(Si)
; (2.3)

and the Convex Hull score [161], given by

Cch(Si) =
area(convexHull(Si))

area(Si)
. (2.4)

Here functions area, perimeter, minimumEnclosingCircle and convexHull return the

area, perimeter, minimum enclosing circle and convex hull, respectively, of the 2D

shape of a district. Besides these three, other less used measures in computational

studies include diameter/area2 [39], diameter2/area [71], perimeter2/area [67],

(2π
√

area/π)/perimeter [22, 128], or combinations of several elements such as edge

lengths, intersection angles, and number of boundary points [46, 47]. These mea-

sures are local, i.e. defined over single districts, and aggregate into global measures

by summing: C(S) =
∑
i∈PC(Si). As discussed at length by Duchin and Tenner [52],

however, contour measures are often problematic, since they are prone to:

1. coastline paradox problems, where districts with boundaries produced by natu-

ral features such as coastlines are heavily penalized,

2. resolution instability, where the map resolution used to compute the score can

have a drastic impact in its value,

3. numerical issues caused by the choice of map projection and coordinate system,

4. the “empty-space problem”, where sparsely-populated areas are given the same

importance as densely-populated ones.

As a consequence, although contour measures appear very frequently in the dis-

tricting applications literature, the literature on computational methods heavily fa-

vors distance-based measures, since they are much easier to compute and optimize

over graph-based representations.

The two most common distance-based measures are the p-median

Cpm(S) =
∑
i∈P

min
c∈Si

∑
j∈Si

djc (2.5)

36

and the p-center

Cpc(S) = max
i∈P

min
c∈Si

max
j∈Si

djc, (2.6)

which are derived from the well-known discrete location problems of the same

names [126]. They are centroid-based measures, meaning they implicitly define cen-

ter units for each district Si: cpm(Si) = argminc∈Si
∑
j∈Si djc for the p-median, and

cpc(Si) = argminc∈Simaxj∈Si djc for the p-center. These centers turn out to be useful

in a number of ways, for example in iterative algorithms such as location-allocation,

as we shall see in Section 2.4.1.1, in defining depots for routing applications, or as

root vertices for enforcing connectivity in MIP formulations.

The p-median function is far more prevalent in the literature than the p-center, but

often appears disguised as variants. Instead of distances dij, many authors compute

p-medians over different pairwise weight functions. One example is the weighted mo-

ment of inertia [100, 220, 212], which considers non-symmetric weights ωij =wjd2
ij

that take into account attribute values wj. Other weight functions exist which differ

on whether attribute wj or distance dij are present and whether they are squared,

and Kalcsics and Ríos-Mercado [111] provide a thorough discussion on the advan-

tages and drawbacks of each variant. Note, however, that any weight function ω can

substitute d in (2.5) without loss of generality, hence all such problems can be seen

as variations of the p-median problem.

Besides centroid-based measures, two other discrete measures stand out. One is

the discrete diameter

Cdm(S) = max
i∈P

max
j,k∈Si

djk, (2.7)

defined as the maximum pairwise distance among units in a district, and the other is

the sum of edge distances within each district

Cspe(S) =
∑
i∈P

∑
{ j,k }∈E(Si)

djk, (2.8)

which is to be maximized. Here, E(V ′) denotes the induced edge set of V ′ ⊆ V.

Another measure minimizes the number of cut edges Ccut between districts,

i.e. edges in E whose endpoints are in different districts. This can be loosely seen

as minimizing the districts’ “discrete perimeters”, and has been shown to have several

advantages over other measures in political domains [52, 211]. Minimizing Ccut is

equivalent to maximizing Cspe when dij = 1 ∀i, j ∈ V: in this case, Ccut = |E|−Cspe,

since counting unit distances for every edge within a district leaves out only the cut

edges. Therefore, throughout this thesis we refer to both Ccut and Cspe interchange-

37

p-median
[102, 166, 18, 74, 77, 82, 83, 17, 212, 199, 220, 12, 99, 100, 103,
146, 65, 184, 139, 182, 189, 191, 190, 188, 187, 113, 112, 34, 91, 68]

Diameter [77, 81, 180, 33, 30, 136, 16, 42, 43, 183, 71, 39]
Cut edges [211, 45, 63, 9, 144, 52, 31, 53, 19, 104]
p-center [154, 177, 181, 54, 187, 29]
Others [174, 22, 23, 127, 128, 129, 201, 71, 132, 47, 46, 41, 40, 67, 107, 28,

152, 39]

Table 2.2: References for the most common compactness measures in the literature.

ably. Moreover, some authors minimize the total cut weighted by d [104, 19, 53], in

which case Ccut = |E|−Cspe holds for any d.

Distance-based measures that group local compactness values into global compact-

ness by taking the maximum, rather by summing, such as p-center and diameter, have

the property that there are only O(n2) possible values for the compactness. This al-

lows for very efficient strategies in heuristic [81, 77] and exact [192] methods based

on bounding and binary search, which we discuss in Section 2.4.1.5. However, it

also allows a high degree of freedom for assignments below the maximum, and lets

non-compact districts be compensated by compact ones, which is generally unde-

sired [111]. On the other hand, sum-based have the property of being “responsive”,

meaning that a change in a single basic unit has an immediate impact on the com-

pactness value [184]. This fits well the criterion proposed by Horn et al. [106] that

a compactness measure should be easy to understand, because decision makers are

more likely to trust easy-to-understand measures.

Nearly all optimization models for districting consider compactness as an objective,

hence our decision to write Model (2.1) as such. This is mainly due to the fact that

upper or lower limits for compactness constraints are hard to specify, since compact-

ness is subjective and values vary significantly across instances. As put by Butsch

[27], “the definition of a threshold is actually impossible since the transition from

non-compact to compact is fuzzy”. This also corroborates previous observations that

a hard limit does not work well in practice [219, 161]. Still, some authors have

worked with hard limits for the discrete diameter [136, 16, 71, 39], which may be

easier to specify as the diameter allows only O(n2) values. Yet another type of con-

straints does not use thresholds, but rather requires that the convex hulls of districts

must not overlap [152, 114].

Table 2.2 summarizes references in the literature for the most common compact-

ness functions. Although this is not an exhaustive list, a general trend can be seen

towards the four distance-based measures discussed above. To our knowledge, none

38

among the measures classified as “Others” have been reused by multiple research

groups. Finally, we note that there is a vast literature on compactness, and in this

section have provided an overview of it. For an in-depth discussion, we refer the

interested reader to the overview in Butsch [27].

In the rest of this thesis we call the classical problems that result from setting

objective C in Model (1.1) to Cpm, Cpc and Cdiam the p-Median Districting Prob-

lem (PMDP), p-Center Districting Problem (PCDP), and Diameter Districting Problem

(DDP), respectively. Previously, Salazar-Aguilar et al. [187] have called the PMDP

and PCDP the Median-Based and Center-Based Territory Design Problems. We have

renamed them here to frame them in a districting perspective, and to more explicitly

relate them to the classical p-Median and p-Center Problems.

2.3.3 Connectivity

As we briefly discussed above, some compactness functions are related to connec-

tivity. One example is the p-median, which, as shown by Salazar-Aguilar et al. [187],

tends to produce optimal solutions that are already connected. This is the case par-

ticularly in artificial instances such as in rectangular grids or Delaunay triangulations,

where distances d are Euclidean or near-Euclidean, and satisfy the triangle inequality.

The intuition behind this is not hard to spot: units which are close together in space

are more likely to be connected. A much smaller effect has been observed for the

p-center and cut edges measures [187, 211].

Because many compactness functions are correlated with connectivity, many au-

thors do not enforce it explicitly [54, 107, 154, 65, 16, 18, 103], although some

state that this is a desired property. Others simply repeatedly restart a random-

ized method until a connected solution is found [100]. In heuristic search, Salazar-

Aguilar et al. [190] note that enforcing connectivity as a hard constraint can greatly

restrict the search space and pose a hurdle to further improving solutions. To

mitigate this, many authors penalize disconnectivity by minimizing the number of

disconnected districts as an objective, and discard disconnected solutions at the

end [190, 188, 191, 12, 33, 94]. Another approach has been to repair disconnected

solutions using post-processing methods when the algorithm stops [212, 28, 24], or

after a recombination operator in a genetic algorithm [67, 40, 80]. In MIP formula-

tions, as we will see connectivity constraints lead to very large models and are usually

treated by lazy constraints [187, 212] or by restricting the solution space, thereby for-

going optimality [146, 65].

39

Some methods find connected solutions by construction, and thus the corre-

sponding models do not impose connectivity directly. Two examples are the algo-

rithms of Ricca et al. [175] and Brieden et al. [24] based on Voronoi and short-

est path diagrams, respectively. The same is true for greedy constructive heuris-

tics which grow districts incrementally by assigning neighbor units, although these

are almost always followed by metaheuristics that do treat connectivity explic-

itly [136, 81, 53, 30, 181, 191].

So far we have considered connectivity as given by input graph G. Some au-

thors [114, 108, 152], however, use a geometric notion independent of G, whereby

basic units are associated with coordinates on the plane and a solution is considered

“connected” if the intersection areas of the convex hulls of the districts are zero. This

can also be seen as a form of compactness requirement, and helps to guarantee the

absence of enclaves [114, 152]. In the context of districting and routing (see Sec-

tion 2.3.5), it further prevents routes from crossing a different district [111].

2.3.4 Similarity to existing or previous plans

In practice, districting is usually applied several times over a planning horizon.

The need to reoptimize districts, also called redistricting, arises when due to evolving

attributes, current districts get increasingly inefficient or even infeasible. A typical

example are electoral districts of roughly the same population, which after changes

in its distribution (e.g. by migrations between regions), become imbalanced. Since

creating entirely new districting plans can be costly, redistricting problems seek to

find an improved or optimal solution that accommodates the attribute changes while

also maintaining a high similarity to the current plan.

Similarity measures quantify by how much districts have changed over time [215].

As noted by Williams, Jr. [217], there is comparatively little literature on similar-

ity measures, and these are often not formally defined. For example, according to

Goderbauer and Winandy [87], in Germany there exist no clear legal guidelines for

how much electoral districts may deviate from existing solutions, but state that it

should be as little as possible, as long as balancing constraints are satisfied.

A typical measure for the similarity of a pair of districts is the overlap distance

oa(Si,Sj) =wa(Si∩Sj)/wa(Si∪Sj), (2.9)

defined in terms of overlaps with respect to some attribute a ∈ A. The choice of at-

tribute a depends on the application and can be, for example, area [22, 23, 182],

40

A
B

C

A

BC

Figure 2.4: A simple example with p = 3 districts and different similarity measures.
Similarities are 0.5, 1/3, and 2/3, for matching-based mapping, center-
based mapping, and the mapping of Bozkaya et al. [22], respectively.

such that wa(Si) = |Si|, or population [24]. When a reference solution S0 is given

which corresponds the existing districting plan, a similarity measure usually requires

a mapping m : P→ P of old to new districts to evaluate changes in individual units.

Given such a mapping, the local similarity of district Si could be defined e.g. as

σL(Si) = oa(Si,S0
m(i)). Global similarity measures usually aggregate by the average,

i.e. σG(S) =
∑
i∈PσL(Si)/p, and thus have range [0,1], with σG(S) = 0 for totally dis-

similar solutions and σG(S) = 1 for identical ones.

Most redistricting problems in the literature fit into this model. A natural choice for

mapping m is a bijection, which can be computed by a perfect matching maximizing

the sum of pairwise district similarities. However, mapping m is not always bijective.

Bozkaya et al. [22, 23] map each district to the counterpart in the original plan with

the most overlap, i.e. m(i) = argmaxj∈PσL(Si,S
0
j). An advantage of this approach is

that it also works if S and S0 have a different number of districts. A simpler choice

for m in problems where centers are defined, such as when local routing depots or

p-median compactness are present, can be to use the fixed mapping defined by the

district centers of the initial solution. This approach is used, for example, by Brieden

et al. [24].

Figure 2.4 illustrates the effect of these different similarity measures. Observe that,

when we require a high similarity (0.8 or more) these measures produce the same

mapping m, and consequently the same similarity.

If similarity is considered a hard constraint, typically a lower limit σG 6 σG(S) is

imposed on the global similarity [42, 43]. Some authors, however, consider it a soft

objective and maximize σG [22, 23]. Ríos-Mercado and López-Pérez [182] consider

similarity both as a constraint and as an objective, but in the objective function a

different overlap measure o ′(Si,Sj) = 0.5
∑
v∈Si |v/∈Sj dvcpm(i) is used to penalize dis-

similarity in terms of p-median compactness, where cpm(i) is the p-median of Si.

Another approach by both Brieden et al. [24] and D’Amico et al. [39] does not con-

sider similarity explicitly, but uses S0 as a starting point for its optimization method,

41

which naturally results in a certain degree of similarity.

2.3.5 Routing criteria

Routing criteria in districting arise when the basic units in a district need to be

attended periodically, but there is a cost to do so. A route attending district Si is

typically modeled by a tour which visits all units in Si in an order such that the total

tour cost R(Si) is minimal. These tours represent, for example, routes used by delivery

trucks in the distribution of commercial products to businesses. Combining districting

and routing can be useful when immutable districts are desired, but routes must be

optimized periodically over a planning horizon. In this case, usually districts are

assigned to fixed service providers, who attend any demand arising within it. As we

have mentioned in Section 2.1.3, doing so allows providers to become familiarized

with the region, which helps to reduce travel costs and improve service quality, such

as through developing customer relations, for example. Such demands are typically

modeled as stochastic variables [97, 127].

Real-world routes are often constrained by time availability, fuel or vehicle storage

capacity, and so frequently budget constraints R(Si) 6 R | ∀ i ∈ P on the length of

each route are imposed [183, 136], for some budget R. Alternatively, some authors

minimize the total length of routes R(S) =
∑
i∈PR(Si) as a soft objective [94, 127,

129, 160, 28]. Often routes are required to start and end at a specified depot hi ∈ V.

Depots can be different for each district [159, 160], or the same [152, 136], in which

case a global depot hG=hi ∀ i∈ P is given. Still, some problems do not use depots and

consider open routes (e.g. in waste collection where routes finish at a dump [94]).

In Figure 2.5, we show an example of a districting plan with routes connecting to a

global depot.

Two overlapping problems here are vehicle routing and location routing. In vehicle

routing, clients need to be attended from a central depot by vehicles of a limited

capacity, minimizing the total travel distance [209]. For a fixed fleet of p vehicles

the routes partition the clients into p regions that are attended by the same vehicle.

Differently from our problem, there are no constraints concerning connectivity or

compactness of the resulting regions, and no balancing requirements except from

the demand upper bound given by the capacity of the vehicle. In location-routing

problems, on the other hand, the focus lies on facility location: one must open a set

of facilities and assign clients to them. In addition, routes must be constructed for the

clients each facility attends. Vehicles are usually capacitated, and thus several routes

42

3

1

7

5

5

4

2

6

3

9

9

8

3

5

1

3

2

9
�

Figure 2.5: An example of a districting solution with routes. There are p = 3 dis-
tricts; units v are labeled with their single attribute w1

v . The districts are
connected and balanced with a tolerance τ = 2.5%. The central depot is
marked by a black square, edges are dashed, routes are shown in different
colors. Note how the routes from the central depot pass over units from
different districts and the curved connection is the shortest intra-district
path going over the green unit labeled 2.

may be required to attend the clients assigned to a facility [169, 2]. In contrast, in

combined districting and routing opening costs are not usually considered, and it is

assumed that the clients of each district can always be visited with a single tour.

Most commonly, routes are modeled as Traveling Salesman Problem tours. Usually

edge costs are given by the instance, and distances between other unit pairs in
(
V
2

)
\E

are defined as shortest path distances in G. This means that, in practice, the resulting

routes may visit some units more than once, or even make a detour outside their

assigned district. This is sometimes undesirable in the distribution of goods, as it can

be annoying to customers if e.g. a delivery truck passes by them without stopping. A

problem variant may exclude such detours by requiring routes to stay within district

boundaries, in which case distances vary according to each particular districting plan.

This variant is rare, however, since maintaining shortest path matrices for each district

is computationally expensive [208].

Since the TSP is NP-hard [69], it is usually too costly to keep optimal routes while

optimizing the districts, despite the existence of high-quality heuristics [137] and

exact methods based on branch-and-cut algorithms [5]. To this end, as we have seen

many authors consider a “cluster-first, route-second” approach, which partitions the

units first without accounting for routing costs, and computes routes after [76]. A

selection mechanism (e.g. a multistart or evolutionary heuristic) then typically filters

43

solutions by their routing costs. In the case of districting, compactness functions can

be a proxy objective for routing costs in the first phase [83].

Another approach, used for example in Lei et al. [127, 128, 129], has been

to approximate routing costs during optimization with the Beardwood-Halton-

Hammersley [13] formula, which states that the length of an optimal TSP tour on

n uniformly-distributed vertices on the surface of an area A, with Euclidean dis-

tances, converges to H = bd/
√
An for large n and some constant bd (empirically

bd ≈ 0.714 [6]). Moreno et al. [152] note, however, that uniform distributions may

not always be safely assumed in urban scenarios, and propose to use the approxima-

tion method of Çavdar and Sokol [222], which does not depend on the distribution

of the units and can be further extended to allow a global depot. Nonetheless, some

authors have opted to compute exact tours during optimization [183], which leads to

a higher precision at the cost of running time.

In service districting domains which service the streets of a city, such as postal

services or salt spreading operations, the consideration of routing costs induce an

arc routing subproblem. In this case the basic units are rather the edges of a dual

graph, and adjacencies are defined by vertex incidences, which makes the problem

different from vertex-based districting. Peculiar to this variant is that, if the number

of edges in a district is even, routes can be Eulerian tours, which can be computed

in polynomial time [101]. Because of this, many authors focus on obtaining Eulerian

districts. Butsch [27], for example, optimize towards districts with an even number

of edges within a neighborhood search heuristic, while García-Ayala et al. [68] set

an upper limit on the number of units with even degree in the districts’ induced

subgraphs, and solve the problem by branch-and-cut. Another approach has been to

preprocess the input graph so that basic units aggregate edge-disjoint cycles, which

guarantees Eulerian districts. Bodin and Levy [20], for example, match each odd-

degree arc with an opposite arc of the same length, while Muyldermans et al. [159,

160] decompose the input graph into cycles forming a checkerboard pattern.

2.3.6 Number of districts

Although we have limited our scope to problems with a fixed number of districts,

some problems minimize p as an objective. This is the case, for example, in service or

sales districting domains when service-providing agents have a limited capacity in the

number of basic units they can visit, or if the inclusion of a new district is costly [57,

221], meaning a trade-off exists between opening a new district or assigning some

44

units to districts that are further way.

When p is to be minimized, balancing is always enforced through constraints

B(Si)6U | ∀ i ∈ P for some upper limit U and local balancing criterion B ∈ ZL. Some

authors minimize p as the sole objective [136, 152], while others minimize p among

other soft objectives such as balancing and compactness [154, 53]. Another approach

by Steiner et al. [201] does not minimize p, but constrains it to a range [pmin,pmax],

while in Lei et al. [127] p affects the costs of global criteria in the objective, but is not

minimized or constrained.

We note that an algorithm to solve Model (2.1) could be embedded in a binary

search if one wishes to minimize the number of districts, assuming that there exists

some p ′ such that every p < p ′ result in feasible problems, and every p> p ′ result in

infeasible ones. This is usually true, due to balancing upper limit constraints. We are

not aware of any works that do this, however.

2.3.7 Other criteria

Besides the major criteria above, many optimization models for districting consider

problem-specific criteria which have not been widely used outside the application

they were proposed for. In this section we review the most relevant.

2.3.7.1 Efficiency gap and responsiveness

A recent trend in political districting has been to optimize a fairness criterion, rather

than compactness. This is due to many existing compactness measures still being sus-

ceptible to partisan manipulation, as we saw in Section 2.3.2. One fairness criterion

is the efficiency gap [202, 92, 15], defined as the difference between the number of

“wasted” votes for the two parties in a two-party political system. Here, a vote is con-

sidered wasted if it was cast for a losing party, or if it exceeds the minimum amount

of votes needed to win a particular district. In order to compute it, vote share dis-

tributions of the units are obtained using historical results from previous elections.

Another, less used criterion is responsiveness [214], defined as the derivative of a

party’s expected seat share with respect to the number of votes it receives.

2.3.7.2 Joint and disjoint assignments

Some authors have considered disjoint assignment constraints [182, 16], whereby a

set K⊆V2 of conflicting or incompatible unit pairs is given such that, if { i, j }∈K, units

45

i and j cannot be placed in the same district. Units can be incompatible for several

reasons, such as belonging to different administrative districts, being separated by

geographical obstacles that are difficult to traverse like bodies of water or dirt roads,

or requiring resources or equipment which cannot be carried simultaneously in a

single trip. We note that disjoint assignment constraints could be transformed into

balancing constraints by creating, for each k = { i, j } ∈ K, a new attribute such that

wki =w
k
j = 1, wkv = 0 ∀v ∈ V \ { i, j }, Lk = 0 and Uk = 1. This can increase the number

of attributes, however, and may pose difficulties for some algorithms. We are not

aware of any works that do this. A related variant is joint assignment [29], in which

each unit pair in K must be placed together.

2.3.7.3 Accessibility

Sometimes it is desirable that all districts have access to some kind of resource.

Here, a given set R ⊂ V denotes units containing a resource, and R(Si) = |Si ∩ R|
quantifies the degree of access of district Si with respect to R. This type of requirement

is common in problems of land allocation and redistribution. For example, Demetriou

et al. [46, 47] optimize, among other things, the number
∑
i∈P[R(Si) > 0] of lots

(districts) with access to roads, while Gliesch et al. [80] require that lots with access

to water be smaller than lots without access to water, i.e. R(Si)> 0∧R(Sj) = 0⇒ |Sj|>

|Si| ∀i, j∈ P. In another application in parliament seating assignment, Vangerven et al.

[213] require each seating arrangement (district) to have a minimum number of seats

(units) in the front row, i.e. R(Si)> R̄ ∀i ∈ P for some lower limit R̄.

2.3.7.4 Administrative boundaries

In political districting having districts that do not overlap with boundaries of ad-

ministrative regions such as cities, counties or provinces can be beneficial to the or-

ganization and management of elections [175]. This criterion is commonly called

administrative conformity. According to Goderbauer and Winandy [87], German po-

litical redistricting laws state that “where possible, the boundaries of administrative

subdivisions should be respected”, but do not specify how this should be quantified.

Ricca and Simeone [174] treated conformity by minimizing the number of

edges within districts with endpoints belonging to different administrative regions,

while Bozkaya et al. [22, 23] maximized the ratio of the largest population in a dis-

trict with respect to some administrative region and the district’s population. Yet other

authors do not optimize conformity explicitly, but force units belonging to the same

46

city to be in the same district, which can be done in a pre-processing step [162, 8].

2.3.7.5 Absence of enclaves

Another common requirement concerns the absence of enclaves, which happen

when a district neighbors exactly one other district, and does not touch the outer

fringe of the instance. This arises when having to cross another district in order to

access a location or resource is undesirable. Note that the notion of enclave here

only applies when outer fringes are clearly defined, such as state or city limits, or

natural boundaries. Gliesch et al. [80] handle this problem by discarding solutions

with enclaves in their genetic algorithm, since they do not occur often, while Steiner

et al. [201] merge the enclave with the enclosing district.

In neighborhood search heuristics, one way to address enclaves could be to dis-

allow moves that produce them, since the number of neighbors of a district can be

maintained in amortized constant time, and these moves are rare enough that they

would likely not constrain the search.

2.3.7.6 Representativeness of minority groups

In political districting, there is often a significant divide in the voting patterns of dif-

ferent social or racial groups. For example, in the United States voters of lower income

households tend slightly towards Republican candidates [72, 147], whereas people

of African and Native American descent overwhelmingly vote Democratic [216, 147].

As a consequence, depending on how districts are laid out it is possible that minority

groups cannot elect any representatives to advocate for their interests, since by being

a minority they are not able to win any districts.

One way to mitigate this issue is to give preference to homogeneous districts with

respect to minority groups. Doing so increases the likelihood (or even guarantees)

that candidates preferred by these minorities will win, since by grouping minority

voters together they become the majority in some districts. This may come at the

price of lowered compactness, however [49]. In the automated districting literature,

we cite two works that do this. Bozkaya et al. [22] considers the grouping of voters by

income class. To ensure that districts comprise units of similar income, they minimize

as a soft objective the sum, over all districts, of the standard deviation of income

among the units of a district. Meanwhile, Arredondo et al. [8] consider indigenous

communities. In their work, a basic unit is considered to be “indigenous” if over τ% of

its population is of indigenous descent, for some parameter τ. Then, their proposed

47

mathematical formulation ensures that the number of districts with more indigenous

than non-indigenous units is larger than some threshold pI < p.

2.4 Solution methods

In this section we give an overview of the most common solution methods for

districting problems. We begin by reviewing MIP-based approaches, both exact and

heuristic, in Section 2.4.1; then, in Section 2.4.2 we review metaheuristic approaches.

2.4.1 MIP-based approaches

The first mathematical model for districting, which we shall call the Hess model,

was proposed by Hess et al. [100] for a p-Median Districting Problem variant in the

context of political districting. It is defined as follows.

minimize
∑
i,j∈V

xijdij (2.10a)

subject to
∑
j∈V
xjj = p, (2.10b)

∑
j∈V
xij = 1, ∀ i ∈ V, (2.10c)

Lxjj 6
∑
i∈V
xijwi 6Uxjj, ∀ j ∈ V, (2.10d)

G[{ i | xij = 1 }] is connected, ∀ j ∈ V, (2.10e)

xij ∈ {0,1 }, ∀ i, j ∈ V. (2.10f)

Semantically, variables x ∈ {0,1 }V×V encode

xij =

1, if unit i is assigned to the district with center in j,

0, otherwise.
(2.11)

The objective function (2.10a) minimizes the p-median compactness, and thus a

value xjj = 1 denotes that a district exists which has j as its p-median. In the original

model, distances between units were in fact moment-of-inertia weights ωij = wid2
ij

for given Euclidean distances d ∈ R2, but for generality we assume here that dis-

tances d are arbitrary and given by the problem input. Constraints (2.10b) ensure

exactly p medians (districts) are selected. Partition constraints (2.10c) ensure that

48

each unit is assigned to exactly one district. Constraints (2.10d) ensure districts are

balanced; in the original paper, L and U were defined with respect to a tolerance τ

around the average attribute value for all districts, as we saw in Section 2.3.1. Hess

et al. [100] did not treat connectivity explicitly in their model, and instead solved

this issue by discarding disconnected solutions and restarting their method. Since

connectivity is one of the three defining criteria of districting problems, here we in-

clude constraints (2.10e) explicitly, and in Section 2.4.1.4 we discuss several ways to

implement them.

To improve LP bounds, nearly all authors add valid inequalities of the type

xij 6 xjj ∀ i, j ∈ V (2.12)

to the Hess model [176, 212, 187]. They enforce that unit i cannot be assigned to

center unit j if j itself is not selected as median.

Without constraints (2.10d) and (2.10e), the Hess model corresponds to the clas-

sical p-Median Problem where the set of possible medians constitutes the set of basic

units. Moreover, if only upper balance (knapsack) constraints are enforced, the model

becomes the Capacitated p-Median Problem. The Hess model can be easily modified

towards the p-Center Districting Problem (see e.g. Salazar-Aguilar et al. [187] for a

formulation), and so the same observations above are true for the p-Center and Ca-

pacitated p-Center Problems. A complete definition of the (Capacitaded) p-Median

and p-Center Problems can be found in Laporte et al. [126].

Since computers at the time were not sufficiently powerful to solve Model (2.10)

with branch-and-bound algorithms, even on smaller instances, Hess et al. [100] pro-

posed a heuristic to solve it based on location-allocation [35], which we explain in

the next section. Later, as computer capabilities grew and commercial MIP solvers be-

came widespread, solving the Hess model by branch-and-bound algorithms became a

standard in exact methods [187, 212]. Moreover, several authors have extended the

Hess model with additional constraints in order to model domain-specific require-

ments [16, 199, 19, 102, 182].

2.4.1.1 Location-allocation

The location-allocation heuristic, originally proposed by Cooper [35] and first used

in districting by Hess et al. [100], is one of the most used heuristics for the p-Median

Districting Problems and its variants [103, 65, 184, 212, 113, 218]. It is closely

related to the well-known k-means algorithm for clustering [142], and consists of

49

two phases: location and allocation, over which it iterates until convergence, i.e. until

the results from consecutive iterations are the same.

The location phase consists of heuristically fixing the center variables xjj, j ∈ V in

the Hess model, so that p center variables are fixed to 1 and n−p center variables are

fixed to 0. This is enough to satisfy constraints (2.10b). Partition constraints (2.10c)

then enforce that, if xjj is fixed to 0, all xij, i ∈ V \{ j } must be fixed to 0, and that if xjj
is fixed to 1, all xji, i ∈ V \ { j } must also equal 0. This ultimately reduces the number

of variables in the model from n2 to (n−p)p. Let the set C include the unit indices

j ∈ V for which the corresponding center variables xjj are fixed to 1. The simplified

model, here illustrated with a p-median objective, can then be written as:

minimize
∑
i∈V

∑
j∈C
xijdij (2.13a)

subject to
∑
j∈C
xij = 1, ∀ i ∈ V, (2.13b)

L6
∑
i∈V
xijwi 6U, ∀ j ∈ C, (2.13c)

xij ∈ {0,1 }, ∀ i ∈ V, j ∈ C. (2.13d)

The allocation phase solves Model (2.13) to obtain a districting plan. Because of

its reduced number of variables, today’s MIP solvers can handle this model for in-

stances of up to 3000 units within reasonable time [212]. However, in the past,

when computer resources were limited, the allocation model was solved heuristically.

The most common heuristic is to compute its LP relaxation, and then to use a split

resolution rule for rounding fractional (split) variables in the LP solution. This is par-

ticularly effective, since Fleischmann and Paraschis [65], Hojati [103] have shown

that optimal LP solutions to Model (2.13) admit no more than p−1 split variables

when only one balancing attribute is considered, and when the p-median function

is minimized. For multiple attributes no theoretical bound on the number of split

variables is known, but Ríos-Mercado et al. [184] show empirically that for two

attributes it is usually less than 2p. Several split resolution rules have been pro-

posed [100, 65, 103, 113, 24, 184], some of which have the property of being opti-

mal with respect to some desired property of districting plans, e.g. balance [113, 195].

Moreover, if L andU are heuristically set such that L=U, which can be done by setting

tolerance τ= 0 or by assigning L=U= (U+L)/2, the LP relaxation of the allocation

problem can be computed in polynomial time using network flow algorithms [65],

which are much faster than solving Model (2.13) with the Simplex method.

50

Given solution S obtained from the allocation phase, the location phase reassigns

C by computing, for each district Si, its center in the next iteration as the optimal

p-median cpm(Si). To obtain the centers for the first iteration, multiple methods have

been proposed. A common one is to simply select a random subset of V [100, 212].

As observed by Resende and Werneck [173] and Validi et al. [212], this simple rule

works surprisingly well if location-allocation is executed with several (10 or more)

random restarts. A second approach has been to set the initial centers as the optimal

p-medians or p-centers of a heuristic solution, obtained e.g. by solving the Hess model

with a MIP solver until a feasible solution is found, by running an existing metaheuris-

tic [184], or by a nearest-neighbor allocation starting from randomly-chosen starting

points [184].

Note that Model (2.13) did not include connectivity constraints. This is because

they usually make the model too difficult to solve in practical time. To mitigate this,

some location-allocation methods simply discard disconnected solutions at the end

and restart the method with different initial centers [100]. Because optimally com-

pact solutions are often connected, as we discussed in Section 2.3.3, this strategy is

often sufficient for smaller instances. Another approach has been to use a split reso-

lution rule which gives preference to repairing disconnectivity [184]. More recently,

Validi et al. [212] proposed a post-processing method that fixes units in the interior

of districts (i.e. units without neighbors assigned to another district), and then solves

a reduced model with full connectivity constraints using a MIP solver to obtain the

remaining assignments.

2.4.1.2 Labeling models

Although the Hess model has been the standard for problems with centroid-based

objectives, it can be too hard to solve for compactness functions which do not depend

on centers such as the (weighted) cut edges or the diameter [211]. For such functions,

it is common to use labeling variables x ∈ {0,1 }V×P such that

xip =

1, if unit i is assigned to the district with label p,

0, otherwise.
(2.14)

51

With labeling variables, the Diameter Districting Problem can be written as:

minimize D (2.15a)

subject to D> dij(xip+xjp−1), ∀ i, j ∈ V,p ∈ P, (2.15b)∑
p∈P

xip = 1, ∀ i ∈ V, (2.15c)

L6
∑
i∈V
xipwi 6U, ∀p ∈ P, (2.15d)

xip ∈ {0,1 }, ∀ i ∈ V,p ∈ P, (2.15e)

G[{i | xip = 1}] is connected, ∀p ∈ P, (2.15f)

D ∈ R+. (2.15g)

Here, constraints (2.15b) ensure that diameter D is lower bounded by the distance

between units i and j assigned to the same district p: the right-hand side is only

positive if both i and j are selected in p.

For the Minimum Cut Districting Problem, additional variables yep ∈ {0,1 }E×P rep-

resenting whether edge e was cut in district p are also needed. The following model,

due to Hojny et al. [104], again omitting connectivity constraints, formulates the

problem:

minimize
∑
e∈E

∑
p∈P

weyep (2.16a)

subject to xip−xjp 6 yep, ∀e= { i, j } ∈ E, i < j,p ∈ P, (2.16b)

(2.15c) to (2.15f),

yep ∈ {0,1 }, ∀e ∈ E,p ∈ P. (2.16c)

Constraints (2.16b) link variables x and y, and indicate that edge e = { i, j } is cut

by district p if unit i is assigned to p, but j is not, with a convention that i < j.

These constraints are sufficient for correctness. Hojny et al. [104] also propose to use

additional constraints

xjp−xip 6 yep ∀e= { i, j } ∈ E, i < j,p ∈ P, (2.17)

xip+xjp+yep 6 2 ∀e= { i, j } ∈ E,p ∈ P, (2.18)

for strength, but Validi and Buchanan [211] report that in practice they do not yield

much improvement. Note that Model (2.16) could also be written with a reduced

variable set ye ∈ {0,1 }E representing only whether an edge was cut; however, as

52

observed by Validi and Buchanan [211] this leads to poor LP bounds.

Labeling-based models have a high degree of symmetry in variables x. This is

because district labels P can be permuted arbitrarily to obtain equivalent solutions.

One way to mitigate this issue is to introduce constraints

∑
i∈V
xipwi 6

∑
i∈V
xiqwi ∀p,q ∈ P,q < p, (2.19)

which induce an ordering of districts with respect to attribute weights [148]. Another

way has been to use extended partitioning orbitope formulations [211, 104], which

have shown to be very effective in similar problems.

2.4.1.3 Set partitioning/covering approaches

Shortly after the work of Hess et al. [100], Garfinkel and Nemhauser [71] proposed

a set partitioning formulation over the set F of all feasible districts with respect to

balancing constraints (1.1b) and connectivity constraints (1.1c). It considers variables

zi ∈ {0,1 }F, such that

zi =

1, if district i ∈ F is selected in the solution,

0, otherwise,
(2.20)

and is defined as:

minimize
∑
j∈F
cjzj (2.21a)

subject to
∑
j∈F
zj = p, (2.21b)

∑
j∈F
δijzj = 1, ∀ i ∈ V, (2.21c)

zj ∈ {0,1 }, ∀ j ∈ F. (2.21d)

Here cj denotes the objective cost of district j ∈ F, and δij = 1 if unit i is included

in j, and 0 otherwise. Constraints (2.21b) ensure that exactly p feasible districts are

selected, and partition constraints (2.21c) ensure that each unit appears exactly once

among the selected districts.

One advantage of this formulation is that any type of objective function can be

used, as long as costs cj are appropriately set. Garfinkel and Nemhauser [71] used

53

C(Si) = diameter(Si)/area(Si)2. As noted by Moreno et al. [152], constraints (2.21c)

can usually be substituted by covering constraints
∑
j∈F δijzj > 1 ∀i ∈ V without af-

fecting LP bounds. This often results in easier LPs and has the advantage that the cor-

responding dual variables are always positive. The original formulation by Garfinkel

and Nemhauser [71] also had additional constraints which specified upper bounds

on the compactness and diameter of districts in F, which we omit here for generality,

but did not include connectivity constraints.

The method proposed by Garfinkel and Nemhauser [71] exhaustively enumerates

F and then solves Model (2.21) by a tree search with custom pruning rules. As

expected, due to the sheer size of F their method could only solve small instances.

Later, Mehrotra et al. [146] proposed to use the LP relaxation of Model (2.21) as

lower bound in a branch-and-bound algorithm for the PMDP. This bound is tighter

than the one obtained from linear relaxation of the Hess model, since balancing and

connectivity constraints are convexified, and the former, being knapsack constraints,

do not have the integrality property [143]. Since F is exponentially-sized, Mehrotra

et al. [146] solved the relaxation by column generation. The corresponding pricing

subproblem to obtain new columns is defined over variables yi ∈ {0,1 }n, such that

yi =

1, if unit i ∈ V is in the selected column,

0, otherwise,
(2.22)

and is defined as follows:

minimize
u∈V

−π0 +
∑

i∈V\{u }
yic̄iu (2.23a)

subject to L6
∑
i∈V
wiyi 6U, (2.23b)

y induces a connected subgraph of G, (2.23c)

yu = 1, (2.23d)

yi ∈ {0,1 } ∀ i ∈ V \ {u }. (2.23e)

Here, π0 ∈ R is the dual variable associated with constraint (2.21b), π1 ∈ Rn is the

dual variable vector associated with constraints (2.21c), and c̄iu = diu−π1
i are the re-

duced costs. This decomposes into n independent subproblems, one for each center

u. To improve convergence, Mehrotra et al. [146] added to the restricted master prob-

lem all subproblem solutions found with negative reduced cost. Since these subprob-

lems were still too difficult to solve optimally, however, Mehrotra et al. [146] solved

54

them heuristically, making their branch-and-bound algorithm an inexact method.

In the realm of heuristic solutions, some authors have proposed to

solve Model (2.21) with a non-exhaustive set of columns generated by a random-

ized heuristic [152, 92, 213]. One issue with this approach is that generating enough

districts to guarantee multiple feasible partitions can be challenging. Gurnee and

Shmoys [92] propose a way to mitigate this problem by generating districts accord-

ing to a binary partition tree, such that any pair of district sets originating from two

sides of a branch always “fit” together in the partition.

2.4.1.4 Connectivity

Many ways to handle graph connectivity in MIP models have been proposed over

the years, and for districting problems no method seems to be a clear winner when

it comes to solution speed [211]. Hence, we have thus far refrained from specifying

exactly how connectivity should be modeled, and in this section present the most

relevant formulations in the districting literature to do so. For the definitions that

follow, let N(v) = {u | {u,v } ∈ E } denote the neighbor set of v, and let the boundary

∂(S) =
⋃
v∈S(N(v) \ S) of a set of units S be the set of all units neighboring S that

outside of S.

The first formulation, due to Drexl and Haase [50] and later used by others [187,

68, 182, 192], uses subtour elimination constraints of the form

∑
i∈∂(S)

xij−
∑
i∈S
xij > 1− |S| ∀ j ∈ V, S⊆ V \ (N(j)∪ { j }) (2.24)

over the Hess model variables. They read: “for any subset S of units assigned to

center j that does not contain j or a neighbor of j, at least one neighboring unit to S

must be assigned to j”. Since there are exponentially many such constraints, solution

methods typically add them during branch and bound as they are violated in integer

solutions. The separation problem is to find connected components for each center j

by breadth-first or depth-first search, and can be solved in O(n); a cut is then added

for each component that does not contain j. The downside of this formulation is that

it requires root vertices to be defined for each district. This is trivial for the Hess

model where the center xjj is naturally required in a district centered at j, but would

require additional root variables in a Labeling-based formulation.

A similar formulation with an exponential number of constraints is based on cutset

55

inequalities [163, 32, 212, 211]. It uses constraints of the form

xij 6
∑
c∈C

xcj ∀ i, j ∈ V, C ∈ Cij, C 6= ∅, (2.25)

where each separator C∈Cij is a subset of units such that there exists no path between

i and j in G \C. Since any separator can be extended by more units without losing

its property, Cij are considered to be inclusion-wise minimal. Like constraints (2.24),

since Cij can have exponential size, in practice cutset constraints are added lazily

during branch-and-bound. The separation problem consists of finding, for each pair

of non-adjacent units i and j, a minimum cost vertex cut in the subgraph induced

by units {u ∈ V | xuj = 1 }: if a cut exists which costs less than xij, then a constraint

is violated. These cuts could be found efficiently e.g. with Gomory-Hu trees [89] or

algorithms specific for planar graphs [123]. As noted by Validi et al. [212], how-

ever, this tends to be computationally too expensive and in practice does not provide

much improvement over the simple heuristic of Fischetti et al. [64], which finds non-

minimal violated separators. In the same vein, Miyazawa et al. [148] propose to

contract edges having endpoints assigned to the same district, which generates larger

cuts but makes the separation problem considerably smaller.

With respect to formulations based on lazy cuts, Sandoval et al. [192] note that, in

most cases, disconnected components identified in the separation problem are single-

tons, i.e. they have only one unit. They therefore consider inequalities

xij 6
∑
k∈N(i)

xkj, ∀i, j ∈ V (2.26)

which force that, for each unit, at least one of its neighbors must be assigned to the

same district. Including these inequalities improves linear bounds and significantly

reduces the number of cuts added, but make the linear relaxation more difficult to

solve, and the experience of Sandoval et al. [192] was inconclusive on whether they

ultimately improve the method. In the context of finding minimum-weight arbores-

cences, Ritt and Pereira [186] propose to include them fully for smaller instances and,

for larger instances, to add them lazily as they are violated in fractional solutions.

Another well-known class of connectivity constraints are based on network flow.

Shirabe [199] and later others [163, 212, 211] use a multi-commodity flow approach

for the Hess model, which uses additional flow variables fjuv for each j∈ P and (u,v)∈
A, where A is the directed version of E. Each fjuv denotes the amount of flow of type

56

j passing through arc (u,v). The formulation uses constraints

∑
v∈N(u)

(fjvu− f
j
uv) = xuj, ∀ j,u ∈ V, j 6= u, (2.27a)

∑
v∈N(u)

fjvu 6Mxij, ∀ j,u ∈ V, j 6= u, (2.27b)

∑
v∈N(j)

f
j
vj = 0, ∀ j ∈ V, (2.27c)

fjuv > 0, ∀(u,v) ∈A, j ∈ V, (2.27d)

where M is a sufficiently large constant, typically n−1. Validi and Buchanan [211]

note that a better value forM for a given center j ∈ V center is the maximum number

of reachable units, starting from j, using a path of total weight at most U. This can

be obtained in O(n+m logn) with a weighted graph search. To avoid using big-M

constraints (2.27b) altogether, Validi et al. [212] proposed an alternative formulation

which uses binary variables fabuv denoting whether arc (u,v) is in a path connecting a

to b; however, in their experiments they found this formulation to be ineffective.

Related to the formulation above, recently Hojny et al. [104] and Validi and

Buchanan [211] used a single-commodity flow formulation over the Labeling vari-

ables:

∑
u∈V

ruj = 1 ∀ j ∈ P, (2.28a)

ruj 6 xuj ∀u ∈ V, j ∈ P, (2.28b)∑
v∈N(u)

(fuv− fvu)6 1−M
∑
j∈P
ruj ∀u ∈ V, (2.28c)

fuv+ fvu 6M(1−ye) ∀e= {u,v } ∈ E, (2.28d)

fuv > 0 ∀(u,v) ∈A, (2.28e)

ruj ∈ {0,1 } ∀u ∈ V, j ∈ P. (2.28f)

Here, fuv denotes the amount of flow passing through arc (u,v). Since labeling formu-

lations do not use district centers, additional variables rij are required that indicate

whether unit u is the root of district j in the flow tree.

Finally, some authors [65, 146, 92] have used a tree-like formulation over Hess

57

variables:

xij 6
∑

k∈N(i) |skj<sij

xkj ∀ i, j ∈ V, i 6= j. (2.29)

It forces the district of center j to be a subtree of a shortest-path tree rooted at j.

Here sij denotes the shortest path from i to j, and the constraints read “unit i can

only be assigned to center j if some neighbor of i closer to j is also selected”. This

formulation is much more efficient than the others presented above, but may exclude

some feasible districts and is therefore not optimal.

2.4.1.5 Extended MIP-based methods

Problems where the set of possible objective values is small often admit tailored so-

lution techniques. Two examples in districting are diameter and p-center, whose sets

of possible values are the
(
n
2

)
distinct distances between units. Let D= {d1, . . . ,dR } be

the set of distances between units such that d1 < · · ·< dR, and consider, for example,

the p-Center Districting Problem. A simple way to take advantage of the reduced

number of objective values is to perform a binary search between d1 and dR, where

at each intermediate step dk a feasibility problem F(k):

exists x (2.30a)

subject to xij = 0, ∀i, j ∈ V,dij > dk, (2.30b)

(2.10b) to (2.10f)

is solved. Here, constraints (2.30b) disable all assignments with distances larger than

dk. If F(k) is infeasible, then no solution to the original p-center problem of value

less than or equal to dk exists and dk+1 is a lower bound; otherwise, dk is an upper

bound. This follows from the observation that, for all k ∈ [R−1], the solution set of

F(k+1) is a superset of the solution set of F(k). Once a k is found such that dk is

both an upper and lower bound, then by definition dk is the optimal p-center solution

value.

Sandoval et al. [192] propose to repeat this process 4 times with increasing levels

of relaxation, where each level starts from an improved lower bound (the optimal

solution to the last level) rather than simply d1. This reduces the amount of effort at

the last level, where the full model is solved. In their method, a binary search is only

used on the first level, and the last 3 levels iterate over the distances linearly from the

58

lower bound. In some cases, however, a linear search starting down from an upper

bound may be more efficient [61], since MIP solvers often take significantly longer to

prove infeasibility than to find a feasible solution.

Elizondo-Amaya et al. [54] use a similar approach to compute lower bounds. For

fixed k ∈ [R], the problem

maximize
∑
i,j∈V

xijwi (2.31a)

subject to
∑
j∈V
xjj 6 p, (2.31b)

∑
j∈V
xij 6 1, ∀i ∈ V, (2.31c)

(2.10d), (2.10f) and (2.30b)

is considered. It allows some units and districts to be unassigned, but solutions which

cover V are preferred by the objective, which maximizes the total attribute of the

assigned units. The authors prove that, if any upper bound to Model (2.31) is smaller

than
∑
i∈Vwi, then dk+1 must be a lower bound, as no feasible solution of value dk

or less exists. They use a Lagrangean relaxation of constraints (2.31c) for an upper

bound, and find the optimal k via binary search.

Besides the p-center objective, this type of strategy was used also by Fernández

et al. [61] for the Maximum Dispersion Problem, and could be adapted for the diam-

eter objective, although we are not aware of any published works that do so.

A different approach is due to Validi et al. [212] for the p-Median Districting Prob-

lem. It considers the following Lagrangean relaxation of the Hess model, which re-

laxes partition constraints (2.10c) and balancing constraints (2.10d), and drops con-

nectivity constraints:

minimize
∑
i,j∈V

xijdij+
∑
i∈V
αi

(
1−
∑
j∈V
xij

)
+

∑
j∈V

|λj|
(
xjj−

∑
i∈V
xijpi/L

)
+
∑
j∈V

|νj|
(∑
i∈V
xijpi/U−xjj

)
(2.32a)

subject to (2.10b) and (2.10f).

Here, α ∈ Rn, λ ∈ Rn and ν ∈ Rn are the Lagrangean multipliers corresponding to

the dualized constraints. This relaxation decomposes into p subproblems which can

be solved combinatorially in O(n) time, and so the optimal multiplier vectors for α,λ

and ν can be efficiently found by gradient descent. The authors then show that the

59

reduced costs of the x variables in the Lagrangean optimal solution can be computed

in constant time. By comparing these reduced costs to an upper bound UB obtained

by a heuristic, the x variables may be fixed to either 0 or 1, as follows. Let x∗ij be the

optimal solution to the Lagrangean with value z∗, and let cij be the reduced cost of

negating variable x∗ij (i.e. setting it to 0 if x∗ij = 1, or setting it to 1 if x∗ij = 0). Then, if

z∗+ cij > UB, variable xij can be safely fixed to x∗ij. This approach fixes, on average,

over 95% of variables in political districting instances of 1000 or fewer units, leading

to many instances being solved during the solver’s presolve phase.

2.4.2 Metaheuristic approaches

Besides methods based on linear or integer programming, districting has mainly

been solved by heuristics which systematically explore the solution space using com-

binatorial operators. There are many metaheuristic frameworks in the literature [73],

but for districting three categories are prevalent: pure constructive heuristics, neigh-

borhood search-based heuristics, such as local search, tabu search, or GRASP (which

combines local search with a greedy constructive heuristic), and evolutionary algo-

rithms. In this section we outline the main strategies within these categories.

2.4.2.1 Initial solutions and constructive heuristics

Optimization methods must be initialized either by solutions built computationally,

or by existing solutions extracted from real-world applications. In districting, the lat-

ter approach has the advantage that existing plans are usually readily available and

often satisfy implicit criteria which may have not been formulated, since they were

drawn by human experts. (This may not always true in the case of gerrymandered

electoral districts, however, where non-compact plans are purposefully drawn for po-

litical advantage.) On the other hand, because typically only one solution (or a series

of related solutions evolved over a time period) is available, starting from existing

plans does not provide the solution variability needed for multistart or evolutionary

heuristics, which rely on generating a large number of distinct solutions. Hence, only

a few authors use this approach [94, 39, 33].

Among computational methods, the most widely used are constructive heuristics.

Starting from a seed unit defining a singleton district, a constructive heuristic itera-

tively assigns neighboring units to it according to a greedy, sometimes randomized

criterion. This process is done either simultaneously for all p districts, or sequentially,

such that districts are built one at a time. During construction solutions are allowed

60

to be partial functions, i.e. to not cover V, and so lower balancing constraints are

relaxed. Non-partial solutions are called complete. For a partial solution S let us de-

fine its set of unassigned units as S̄ = V \
⋃
i∈P Si, and denote by S[u→i] the solution

resulting from the assignment of unit u ∈ S̄ to district Si. Generally only assignments

u→i where N(u)∩ Si 6= ∅ are allowed, so S remains connected, although some au-

thors allow disconnected districts under a penalty to the objective function, as we

saw in Section 2.3.3.

A few methods consist purely of a constructive heuristic [159, 160, 136], but in

most cases constructive heuristics are embedded within a larger metaheuristic frame-

work. For example, they may be followed by a neighborhood search procedure such

as local search, used to generate several solutions in the initial population of a genetic

algorithm, or in destroy/repair heuristics where an operator deletes part of a solution

and then reconstruct it [67, 190, 80, 42, 43].

Constructive heuristics generally differ in three aspects:

1. how seeds are selected,

2. how the assignment order is determined,

3. whether districts are built simultaneously or sequentially (i.e. one at a time).

When districts are built simultaneously, seeds are pre-selected and the heuristic

iteratively executes the feasible assignment a with minimum φ(S[a]), for some fit-

ness function φ, until S is complete. Function φ is usually a weighted sum of the

compactness objective and constraint violations [159, 160, 29, 181, 183, 191, 180,

28, 42, 43, 30], and some authors use φ(S[u→i]) = wudusi , where si is the seed

of district i, which amounts to building discrete weighted Voronoi regions over the

initial seeds [175, 130, 46, 80]. In order to determine the next assignment all fea-

sible assignments must be considered, and, depending on the choice of φ, caching

techniques can be used to save effort [132, 94]. For very large instances where even

updating a cache is costly, however, a common technique is to execute the best b as-

signments in a batch, where b is a parameter [80]. Another approach is to select the

next assignment in two stages: first, a district i ∈ P is greedily selected according to

some fitness function φ1 (e.g. balancing constraint violations), and then, among all

neighboring units to Si, one is selected according to a different function φ2 (e.g. com-

pactness) [94, 191].

When districts are built one at a time, the first seed is selected randomly and units

are assigned to the current district until no feasible assignment exists, or until a “clos-

ing” criterion is met, usually when w(Si) > L [53, 136, 181, 183, 180, 42, 43, 127].

Next, a new seed is chosen from which a new district is “opened”. As above, assign-

61

ments are made greedily with respect to fitness φ. Since new districts can be added

as long as there are unassigned units left, this sequential approach is more common

in problems where p is not fixed or is to be optimized [53, 127, 201]. However,

some authors also use it for fixed p followed by a repair heuristic that merges or splits

districts [181, 42, 43, 23, 136].

Regarding seed selection, most simultaneous construction methods simply sample

the p seeds uniformly from V [30, 53, 132, 23, 22, 201, 12, 46, 127, 41]. This pro-

vides a high degree of variability without requiring a randomized assignment strategy,

but, as in location-allocation, may depend on further optimization or multiple restarts

to avoid poor initial random seed configurations. Another approach, originally pro-

posed by Erkut et al. [56] and used by several authors [183, 191, 180, 190], is to

choose the first seed randomly from V and each next seed as the unit whose min-

imum distance to the other seeds is maximal, i.e. si = argmaxu∈S̄minj∈[i−1]dusj for

1 < i 6 p. This ensures the initial seeds are better dispersed over the topology. In

routing domains with local depots, it is also common to select the depots themselves

as seeds [159, 160]. Yet another approach is taken by Gliesch et al. [80], who first

expand discrete weighted Voronoi regions starting from random seeds, and then set

the initial seeds as the weighted centroids of these regions. This equates to executing

a single step of k-means clustering [142].

When districts are built sequentially, the selection of new seeds often takes into

account the current partial solution by choosing the next seed as the unit that would

have next been greedily assigned to the previous district [127, 128, 129], although

some methods simply pick the next seed randomly from S̄ [53, 132, 22, 23, 201, 67].

Also common is to select the next seed as the unassigned unit of smallest degree [42,

43, 181], since this supposedly favors contiguous districts [181].

Besides constructive heuristics, less-used initial solution approaches are through

location-allocation [184], geometric partitioning methods [28, 113], or other heuris-

tics which do not fit into the constructive framework above. Of these, we note two

that stand out. The first is based on the hierarchical agglomerative algorithm for

clustering [158], and was used by Caballero-Hernández et al. [29]. Differently from

constructive heuristics, it starts with every basic unit being a district in itself, and

iteratively merges neighboring districts until only p districts remain; each next pair

of districts to be merged is selected by a greedy mechanism. The second, proposed

by Ricca and Simeone [174], works on a decomposition of the input graph into trees.

First, a random spanning tree of G is generated using graph search. Then, p seed

units are greedily chosen. Next, while there exist two or more seeds within the same

62

tree, select two such seeds and delete some edge on the unique path between them,

thus splitting the tree. At the end p trees remain, each inducing a district.

2.4.2.2 GRASP and multistart heuristics

A common way to randomize constructive heuristics is to use a semi-greedy or α-

greedy approach [172]. At each iteration, instead of greedily executing assignment

abest that minimizes fitness φ, it selects uniformly at random an assignment a ∈ RCL
for some restricted candidate list RCL ⊆ A, where A denotes the set of all feasible

assignments. The most common choice for RCL is

RCL=
{
a ∈ A | φ(S[a]) ∈ [φbest,(1−α)φbest+αφworst]

}
, (2.33)

for φbest = φ(S[abest]), φworst = max{φ(S[a]) | a ∈ A }, and α ∈ [0,1]. Parameter α

dictates how much variability is desired compared to a greedy solution, with α =

0 leading to a pure greedy solution and higher values of α favoring more diverse

solutions at the expense of quality. In districting, nearly all randomized constructive

heuristics use this definition of an RCL. A less used option for the RCL is to select the

best K elements from A, for some parameter K [80].

Multistart algorithms have been extremely popular for districting [132, 174, 29,

181, 183, 191, 180, 42, 43, 30] and are the main use case for randomized constructive

heuristics. They consist of repeatedly generating a new semi-greedy solution and

attempting to improve it through a neighborhood search algorithm, while recording

the best solution seen so far. This is usually repeated for a fixed number of iterations

or until a time limit is reached. When the neighborhood search is a local search,

this equates to the well-known GRASP heuristic [172]. Ideally, the blend between

randomness and solution quality provided by the semi-greedy construction should

allow each iteration to explore a different part of the search space, while also reducing

the burden on the neighborhood search since it starts from a relatively high-quality

solution.

Within the GRASP framework, several extended techniques have been pro-

posed [172]. We note three in the districting literature.

First, Ríos-Mercado and Fernández [181] use a filtering mechanism to discard un-

promising initial solutions. The rationale is that, since the local search is the com-

putational bottleneck, only solutions which are likely to improve the incumbent Sbest
should be submitted to it. To this end, they maintain the average improvement β̄ in

fitness yielded by the local search relative to the initial solution, and only run the lo-

63

cal search for solutions S with ψ(S)β̄(1− β̄) < ψ(Sbest), where ψ is the local search’s

fitness function.

A second approach, called reactive GRASP, is to use a self-adjusting α. It considers

a set A= {α1, . . . ,αm } of possible values for α with probabilities p1, . . . ,pm associated

with value. Iteratively after a fixed number of moves, probabilities are updated so that

values of α which lead to better solutions are favored. Ríos-Mercado and Fernández

[181] use this approach for districting and set pi = qi/
∑
j∈[m]qj, where qi =A−8

i and

Ai is the average fitness for solutions obtained with α= αi.

Third, Ríos-Mercado and Escalante [180] combine GRASP with path relinking. Path

relinking consists of transforming a source solution into a target solution through

a sequence of modifications, and returning the best intermediate solution. In this

case, path relinking is done by iteratively shifting boundary units from one district

to another, such that the Hamming distance between some pair of matched districts

decreases. Given source S1 and target S2, such a matching is obtained by computing a

maximum weight matching in the complete bipartite graph Kp,p, where the weight of

edge { i, j } is the distance between the initial seeds for S1
i and S2

j . The authors propose

two approaches to use this: i) to generate a fixed number B of multistart solutions

and execute path relinking between all pairs from B, and ii) an evolutionary GRASP

(see Section 2.4.2.4 for details).

2.4.2.3 Neighborhood search heuristics

Neighborhood search heuristics iteratively modify a solution using moves chosen

from some set N of operators over solutions, called a neighborhood. Ultimately, the

goal is to find an improved solution with respect to some fitness function ψ. Most

methods define ψ=φ, but not all. In districting methods the most common neighbor-

hood search heuristics are local search [53, 94, 181, 191, 190, 207, 130, 42, 43, 184],

tabu search [175, 28, 22, 23, 19, 128, 127, 94], and simulated annealing [94, 53, 39,

132, 175, 17]. Below we give a brief overview of the three. For an in-depth discussion

on them, see Gendreau and Potvin [73].

Local search iteratively selects the best improving move from N with respect to ψ,

and stops when no more improving moves exist. This strategy is also commonly

called best-improvement local search. A variant is first-improvement local search,

which immediately executes the first improving move encountered while iterat-

ing over N. In this case, usually one iterates over N in a random order, or in a

round-robin fashion over multiple executions.

64

Tabu search, originally proposed by Glover [85], always executes the best move

fromN, even if it does not improve the incumbent. To avoid cycling, i.e. moving

to a worse neighbor from a local optimum and then immediately going back, a

tabu list is used to exclude the most recent moves. More specifically, when a

move is made its arguments (e.g. a district or a basic unit) are declared tabu

and cannot take part in another move for a certain number of iterations, called

the tenure. The search typically stops after a predefined maximum number of

iterations without improvement.

Simulated annealing considers moves from N in random order, and each move is

executed with probability p = e
∆
T , where ∆ is the change in ψ induced by the

move, and T is a temperature variable. Temperature T starts at a fixed T = Tinit

and is multiplied by a cooling rate α < 1 after each iteration. The search stops

once T reaches a predefined value Tmax.

The central component in these strategies is the neighborhood N. In districting the

typical neighborhood used by nearly all heuristics is shift [29, 181, 180, 191, 183, 94,

42, 43, 53, 30, 132, 28, 22, 23, 174, 190, 207]. In the following, we overload nota-

tion and also consider solutions S : V → P(V) as functions mapping units to districts,

such that S(u) = Si if u∈ Si. A shift u→imoves unit u to the district with index i, and

removes it from its current district. Given solution S, we denote by S[u→i] the solu-

tion that results from shift u→i, i.e. from setting Si← Si∪ {u } and S(u)← S(u)\ {u }.

Therefore, the shift neighborhood is defined as

Nshift(S) = {u→i | i ∈ P, u ∈ ∂(Si), S(u)\ {u} is connected }. (2.34)

Because of the connectivity requirement, a shift u→i is only feasible when u is on the

boundary of district Si. Since the perimeter of a planar region generally scales relative

to the square root of its area, when distances are Euclidean and unit locations are

uniformly distributed on the plane, experimentally we have observed that |Nshift| ≈√
np [81].

Although shifts are sufficient to transform a solution into any other, a local search

limited to improving shifts may miss promising parts of the search space which require

passing through worse intermediate solutions. To this end, composite moves are

sometimes used.

Among composite moves, the perhaps natural extension to shifts are swaps. Swaps

have been used extensively in similar partition problems [25, 95, 179], but less so

for districting [94, 22]. A swap u↔v exchanges the districts assigned to units u and

65

v. Specifically, given solution S, S[u↔v] denotes the solution obtained by setting

S(u)← (S(u)∪ {v })\ {u } and S(v)← S(v)∪ {u })\ {v }, and the swap neighborhood is

thus defined as

Nswap(S) ={u↔v | u,v ∈ V, u ∈ ∂(S(v)), v ∈ ∂(S(u)), (2.35)

both (S(u)∪ {v })\ {u } and (S(v)∪ {u })\ {v } are connected }.

If we maintain the assumption that |Nshift| ≈
√
np, for a given pair of districts the

maximum number of possible swaps between them is
(√n/p

2

)
=O(n/p), in the worst

case where the districts only border each other. Consider now a graph G ′ obtained

from any feasible solution by substituting each district by a vertex, and the adjacencies

between districts by edges. Because G is planar, G ′ must also be, and therefore it can

have at most 3p− 6 edges. This means the number of pairs of adjacent districts

is bounded by 3p− 6. Thus, the size of the swap neighborhood is approximately

(3p−6)
(√n/p

2

)
=O(n).

Other, less-used composite moves are double shifts [28], where two feasible shifts

are realized simultaneously, 3-chains [25, 149], where, given units u,v and w and

solution S, u is shifted to S(v), v to S(w), and w to S(u), and whole-boundary

moves [151], where, for districts i and j, every unit of Si neighboring some unit

of Sj is moved to Sj. The main drawbacks of elaborate composite moves is that their

neighborhoods tend to grow exponentially with the number of units involved, and

designing efficient dynamic update functions gets increasingly difficult.

Shifts and composite moves are often combined in a variable neighborhood search

(VNS) fashion [95]. The idea is to consider composite moves only if no improving

shifts are found; otherwise, the best shift is executed. This can save a considerable

amount of effort since composite neighborhoods are significantly larger than Nshift
and, in the majority of cases, if an improving composite move exists an improving

shift exists as well. As we shall see in Chapter 3, this happens in up to 80% of cases

when using swaps. Despite this, due to their asymptotically larger neighborhoods

composite moves usually remain the bottleneck.

Another bottleneck can be to check whether a move violates connectivity con-

straints (e.g. by removing a bridge unit from a district). The naïve implementation

executes a breadth-first or depth-first search at an average cost of O(n/p) on the dis-

trict, which may easily dominate the running time. Surprisingly, very few authors

mention this cost or how it could be mitigated. To our knowledge, prior to this thesis

the only works on this topic were by King et al. [118, 119, 120], who proposed a

sophisticated data structure that checks for disconnectivity by exploiting the fact that

66

G is planar. Unfortunately, their implementation is not available. In Chapter 3, we

show a simple solution to this problem that works for shifts and swaps and runs in

O(n/|N|) amortized time

Depending on the nature of ψ, it may be easy to identify moves which never lead

to an improved solution, or which are improbable do to so. For example, when min-

imizing imbalance through local search Butsch et al. [28] only consider shifts u→i
if w(S(u)) > w(Si), since the remaining moves cannot improve it. To optimize com-

pactness, the same authors consider only shifts u→i where S(u) is among the λ least

compact districts, for some parameter λ, and in order to favor Eulerian tours, they

only considers shifts that reduce the number of odd-degree units in the induced sub-

graphs of the districts. Similarly, Li et al. [132] limit their neighborhood to shifts u→i
which ψ(S[u→i]) is maximal for some fixed u, and Hanafi et al. [94] only allow shifts

u→i and swaps u↔v where w(S(u)) is maximal, i.e. units can only be removed from

the heaviest district.

Some criteria, especially compactness, tend to be easier to optimize in partial rather

than complete solutions, since connectivity constraints severely limit the set of avail-

able moves [190]. Therefore, when neighborhood search is preceded by a construc-

tive algorithm, some authors define ψ differently from the constructive heuristic’s

fitness φ. The most common choice for ψ is a weighted sum of the compactness ob-

jective and constraint violations [174, 29, 181, 183, 191, 180, 28, 42, 43, 30, 22, 23,

184]:

ψ(S) = C(S)+
∑

constraint types c

λcVc(S), (2.36)

for parameter weights λc ∈ R.

When there are multiple constraint types (e.g. several balancing attributes, rout-

ing budgets, minimum similarity constraints), a common strategy is strategic oscilla-

tion [86, 22, 183, 185], which updates weights λ every µ iterations by setting

λc =

αλc if Vc > 0 in all previous µ̄ iterations,

λc/α if Vc = 0 in all previous µ̄ iterations,

λc otherwise,

(2.37)

for given parameters α,µ, µ̄ > 1.

67

2.4.2.4 Evolutionary algorithms

Given a solution set P obtained by repeated executions of some heuristic, evolution-

ary algorithms iteratively update P in order to improve its best element with respect

to some fitness function ψ. Set P is called the population or reference set. Most evolu-

tionary algorithms comprise the following components:

1. a recombination operator recombine : [S]a→ [S]b which takes a solutions from

P and combines them to produce a set of b solutions (in most cases a = 2 and

b= 1),

2. a mutation operator mutate : S→ S that modifies a solution, usually in a ran-

dom way to obtain variability,

3. selection operators selectRecombine : P(S)→ [S]a and selectMutate : S→ S

to choose solutions to undergo the above two operations, typically through k-

tournaments [88],

4. an improvement operator improve : S→ S, typically a neighborhood search,

5. an update operator update : P(S)×P(S)→ P(S) that, given sets P1 and P2,

selects the population of the next iteration from P = P1∪P2, typically with |P|=

|P1|.

Algorithm 1 General evolutionary algorithm structure

Input: a solution set P
Output: a solution Sbest s.t. ψ(Sbest)6 argminS∈Pψ(S)

1: repeat
2: Sbest← argmin{ψ(S),S ∈ P∪ {Sbest} }
3: Pnew←∅
4: Pr← selectRecombine(P) . recombination
5: for R ∈ Pr do
6: R← recombine(R)
7: Pnew← Pnew∪ { improve(S) | S ∈ R3}
8: Pm← selectMutate(P∪Pnew) . mutation
9: for S ∈ Pm do

10: S←mutate(S)
11: Pnew← Pnew∪ { improve(S) }
12: P← update(P,Pnew)
13: until termination criterion
14: return Sbest

The different evolutionary algorithms vary in the definition of the 5 operators

above. For example, in genetic algorithms [105] update typically clamps the pop-

68

ulation down to the best |P| solutions, and do not use improve; memetic algo-

rithms [153] extend genetic algorithms by using improve as a neighborhood search.

In scatter search [84], often mutate is not used and update maintains a set of |P|

maximally diverse solutions with respect to some distance metric d(S,S ′) between

solutions. Evolutionary GRASP [172] follows the same idea as scatter search, but

selectRecombine randomly picks a single solution S1 and recombine generates a

semi-greedy solution S2 to be combined with S1, typically through path relinking.

Algorithm 1 shows the general structure for these four algorithms.

In districting, evolutionary approaches are limited to the four algorithms described

above: genetic algorithms [33, 201, 12, 67, 80, 46, 129, 40, 41], memetic algo-

rithms [17, 207], scatter search [190] and evolutionary GRASP [180]. In the follow-

ing we briefly describe some of the more interesting component choices that have

been proposed, which we believe could be useful across multiple districting domains.

Most authors mutate solutions by applying a fixed number of randomly chosen

moves from Nshift [33, 17, 201, 40, 41]. This is often computationally costly, how-

ever, since connectivity constraints must be updated after every move. Another ap-

proach, due to Gliesch et al. [80], is to set all units u such that minv∈∂(S(u))dG(u,v)6

k as unassigned, where dG(u,v) is the graph distance (in hops) from u to v. Then,

the resulting partial solution is reconstructed using a semi-greedy approach. Similarly,

Tavares-Pereira et al. [207] select a random subset of districts to simultaneously re-

construct using the merge-based constructive heuristic of Caballero-Hernández et al.

[29], which we saw in Section 2.4.2.1.

Regarding recombination, given two solutions S1 and S2 a common approach is to

“cut” a subset of districts from S1 and “paste” them onto S2, therefore substituting

the overlapping assignments and relabeling disconnected parts. Since it is unlikely

that this covers perfectly the intersected districts in S2, typically this leads to a solu-

tion with more than p districts. Tavares-Pereira et al. [207] and Steiner et al. [201]

repair this by iteratively merging districts according to some heuristic, until there are

p left. Lei et al. [129], on the other hand, set all non-overlapped units in the inter-

sected districts of S2 as unassigned, and reconstruct the solution using a semi-greedy

algorithm. If the problem allows a variable p, however, no repair heuristic is needed,

e.g. in Datta et al. [40, 41].

Another recombination method was developed independently by Gliesch et al. [80]

for a genetic algorithm and Salazar-Aguilar et al. [190] for scatter search. Given

solutions S1 and S2, first a correspondence between districts is obtained through a

minimum cost matching m on the weighted bipartite graph Kp,p where the cost of

69

edge { i, j } is |S1
i ∩S2

j |. Next, a partial solution S is constructed such that Si = S1
i ∩S2

m(i)

and, if Si = ∅ for any i, a new seed is introduced among the unassigned units. Then,

S is completed by a semi-greedy algorithm and returned.

We also mention the evolutionary GRASP method of Ríos-Mercado and Escalante

[180], which recombines solutions through path relinking. We described this proce-

dure in detail in Section 2.4.2.2.

Most evolutionary approaches for districting use the same solution encoding we

have thus far, i.e. a mapping V → P. However, other encodings sometimes provide

more flexibility when choosing recombination and mutation operators, and open the

possibility of using well-known operators from the literature. We note two examples

from the literature.

First, Bação et al. [12] consider a variant of the p-Median Districting Problem and

encode solutions as a list S = (s1, . . . ,sp) of median units, such that a districting plan

can be constructed by greedily assigning each unit from V to its nearest median.

Mutation is done by moving one median to a neighbor unit, and recombination by

Uniform Crossover [204]: from two parent solutions, each median in the recombined

solution has equal chance of being selected from either parent. Demetriou et al. [46]

use a similar approach for a continuous version of the land allocation problem. In

their case, medians are the (x,y) coordinates of centroids which are expanded into p

regions through weighted Voronoi diagrams. They mutate by displacing a median by

a random vector in the plane and recombine through Blend Crossover [205]: given

two parent solutions (s1
1, . . . ,s1

p) and (s2
1, . . . ,s2

p) and parameter λ ∈ R, a recombined

solution (s1, . . . ,sp) is constructed such that si = λs1
i +(1−λ)s2

i .

Second, Forman and Yue [67] encode solutions as permutations of V. To build

a districting plan, their method iterates linearly over a permutation adding units to

the current district, until an attribute threshold is reached. Then, a new district is

started. Since this is unlikely to yield connected solutions, the authors propose a

heuristic to repair disconnectivity. Mutation is done by a random move from the

2-opt neighborhood [38], and crossover by Maximal Preservative Crossover [155],

which, given S1 and S2, selects a randomly-chosen contiguous subsequence r from

S1, deletes every element of r from S2, then inserts r in a random location in S2.

70

3 A GENERIC HEURISTIC FOR DISTRICTING

In this chapter we present our generic heuristic for districting problems. The chap-

ter combines the contributions of the following four conference papers:

• A. Gliesch, M. Ritt, and M. C. Moreira. A multistart alternating tabu search for

commercial districting. In A. Liefooghe and M. López-Ibáñez, editors, European

Conference on Evolutionary Computation in Combinatorial Optimization, volume

10782 of Lecture Notes in Computer Science, pages 158–173, Cham, Switzerland,

2018. Springer.

• A. Gliesch and M. Ritt. A generic approach to districting with diameter or center-

based objectives. In M. López-Ibáñez, editor, GECCO ’19: Proceedings of the Ge-

netic and Evolutionary Computation Conference, pages 249–257, Prague, Czech

Republic, July 2019. ACM.

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A hybrid heuristic for

districting problems with routing criteria. In 2020 IEEE Congress on Evolutionary

Computation (CEC), pages 1–9, Glasgow, United Kingdom, July 2020. IEEE.

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A heuristic algorithm for

districting problems with similarity constraints. In 2020 IEEE Congress on Evo-

lutionary Computation (CEC), pages 1–8, Glasgow, United Kingdom, July 2020.

IEEE.

Abstract. Districting is the general problem of partitioning a set of geographic units

into clusters, called districts. Districts must be geometrically compact, contiguous,

and mutually balanced with respect to attributes of the units. In this chapter we pro-

pose a single-objective heuristic that can solve the three most common problems in

districting: the p-Median, p-Center and Diameter Districting Problems with multiple

balancing attributes, and can be extended to consider additional criteria. In a multi-

start way our heuristic iteratively constructs greedy solutions and improves them by a

hybrid approach that alternates between optimizing compactness and satisfying bal-

71

ancing constraints. We further propose dynamic data structures to efficiently evaluate

candidate solutions under small modifications, which we show to be independently

effective and applicable to other methods. Experimentally our heuristic is competitive

when compared to approaches from the literature which are specific to each objec-

tive, and improves best known solutions in many cases. Finally, in separate analyses

we extend our heuristic to include two common domain-specific districting criteria,

similarity to existing solutions and routing costs, and in experiments show that it can

effectively handle these variants with few modifications.

3.1 Introduction

Because districting has been used in such distinct applications ranging from land

allocation to electoral districting, as we saw in Chapter 2, problem formulations vary

depending on the specific requirements of each domain. Ultimately, the combina-

tion of a particular compactness measure among a wide range of choices, the way

balancing is handled, and the set of additional domain-specific criteria make each

problem in the literature unique from a computational standpoint. This leads to so-

lution methods being tailored to each problem, often to exploit familiar structures

suitable to specific algorithms.

As a consequence, one observes a certain fragmentation in the districting litera-

ture: problems are studied independently and solution methods are developed anew

without reuse of algorithmic components from other methods. This is despite many

formulations sharing key elements which often make underlying problems compu-

tationally similar. Examples are common compactness functions (e.g. p-median or

p-center) or difficult domain-specific requirements (e.g. routing), where it is likely

that a method that is effective for one problem will also be for similar ones. Com-

parisons between methods from different research groups are also rare, and to our

knowledge, as of writing the only two cases are from Validi and Buchanan [211] and

Ríos-Mercado et al. [184].

Until now, few authors have studied districting as a standalone problem, indepen-

dent of domain [113, 114, 160]. To quote Kalcsics et al. [113] in their review from

2005 about the districting literature, “the tendency to separate the model from the

application and establish the model itself as a self-contained topic of research cannot

be observed”. As a result, we see a comparative lack of baseline algorithms and stan-

dard instance sets with best known values which could be drawn upon to determine

the effectiveness of a newly developed method, or to assess the difficulty of a new

72

problem variant. Contributing to this are that many implementations belong to pri-

vate companies who are unwilling to open their source code, and that many authors

consider only one or two instances as case studies, which leads to low statistical confi-

dence when drawing conclusions. This creates a barrier of entry for new researchers,

which are left with few options for testing a new method short of self-comparisons

through component and ablation analyses, and artificial instance generation.

In this chapter we look at districting problems from an algorithmic, application-

independent point of view. We propose a generic single-objective heuristic solver for

problems following the general formulation given in Model (1.1), that can serve as

a baseline solution for multiple problem variants. We have implemented it with the

p-Median, p-Center and Diameter Districting Problems (PMDP, PCDP and DDP) in

mind, since these are the most common variants and have been studied over several

domains. Despite this, our method can be modified to consider all the compactness

functions described in Section 2.3.2, and extended towards additional criteria.

Algorithmically, our method uses a multistart method which builds solutions by a

greedy algorithm and improves them by an alternating search heuristic. This heuristic

is novel in the literature, and draws upon approaches that have been effective in the

past. It alternates between a tabu search to improve the objective, and a series of con-

strained tabu searches to improve constraint violations, which are embedded within

a binary search. Our implementation uses data structures to efficiently recompute

criteria such as compactness and connectivity under neighboring operations, which

provide a significant speedup. These data structures are independent of our heuristic,

and could be included in other neighborhood search methods.

We have tuned the parameters of our method experimentally, and compared it to

a number of existing approaches from the literature for the PMDP, PCDP and DDP.

Results show that, despite being a generic solution, it produces competitive results

for all problem variants, and in most cases improves best-known values for instances

from the literature.

Finally, to base our claim on the extendability of our method, as proofs-of-concept

we have further extended it to include routing and similarity criteria, two common

requirements, and provide thorough experimental analyses on the resulting methods.

This chapter is organized as follows. In Section 3.2 we review the districting formu-

lation we consider in this chapter, and give some mathematical notation for the next

sections. In Section 3.3 and subsections therein we give a detailed description of our

heuristic, including our specific approaches for the p-median, p-center and diameter

objectives, for balancing solutions, and the dynamic data structures for recomputing

73

neighbor moves. Next, in Section 3.4 we introduce the domain and problem instances

we used in our experiments. In Section 3.5 we report on computational experiments

where we calibrate the parameters of our method, and compare it to other approaches

in the literature for the PMDP, PCDP and DDP. Then, in Sections 3.6 and 3.7 we show

how we extended our heuristic to include routing and similarity requirements, re-

spectively. We conclude in Section 3.8.

3.2 Problem definition and notation

We consider the following domain-independent districting problem, which we pre-

sented originally in Chapter 1:

minimize
S∈S

C(S) (3.1a)

subject to La 6wa(Si)6Ua, ∀ i ∈ P,a ∈A, (3.1b)

G[Si] is connected, ∀ i ∈ P. (3.1c)

From the set S of possible solutions, each defined as a p-partition S = (S1, . . . ,Sp) of

input graph G, the problem seeks a solution Sminimizing some compactness function

C(S), such that S is i) balanced, i.e. for each attribute identifier a ∈ A and district Si
the total attribute value wa(Si) =

∑
u∈Siw

u
a of Si with respect to a is between lower

and upper bounds La and Ua, and ii) connected, i.e. every district Si is a connected

subset of G. Any solution satisfying these two constraints is considered feasible.

In this chapter we focus particularly on the three most common districting variants,

which we introduced in Chapter 2: the p-Median, p-Center and Diameter Districting

Problems (PMDP, PCDP and DDP, respectively), with multiple balancing attributes.

These problems differ in their definition of the compactness function C(S), which

are:

Cpm(S) =
∑
i∈P

min
c∈Si

∑
j∈Si

djc (3.2)

for the p-median, i.e. the sum, over all districts, of the minimum sum of distances

from the district units to a center cpm;

Cpc(S) = max
i∈P

min
c∈Si

max
j∈Si

djc (3.3)

for the p-center, i.e. the maximum, over all districts, of the min-max distance from

74

Algorithm 2 Main loop of the proposed hybrid heuristic.

1: Sbest←∅
2: repeat
3: S← selectInitialSolution()
4: T = {S }

5: for i ∈ [Amax] do
6: S ′← optimizeCompactness(S)
7: S ′← optimizeBalance(S ′, S)
8: if B(S ′)> 0 or S ′ ∈ T then
9: break

10: S← S ′

11: T← T∪ {S}
12: Sbest← argmin{BC(Sbest),BC(S) }
13: until time limit reached
14: return Sbest

any unit in the district to a center cpc; and

Cdiam(S) = max
i∈P

max
j,k∈Si

djk (3.4)

for the diameter, i.e. the maximum, over all districts, of the maximum pair distance

between units.

Our method can handle either choice of compactness as an input parameter. We

assume d ∈ RV×V is a pairwise distance matrix between the basic units, also given by

the problem input.

Finally, we review the notion of imbalance, which we have introduced in Sec-

tion 2.3.1. The imbalance ba(Si) = max{0,wa(Si) −Ua, La−wa(Si) } of district Si
with respect to attribute a ∈ A is given by the magnitude of the violation of con-

straints (1.1b), and the imbalance B(S) =
∑
a∈A
∑
i∈Pba(Si) of a solution S is given

by the sum of individual imbalances for all districts and attributes. By this definition,

both b and B return values greater than zero for infeasible solutions, and zero for

feasible solutions.

3.3 Proposed algorithm

Algorithm 2 outlines the main loop of our proposed algorithm. Repeatedly, in a

multistart way it constructs a solution using a randomized greedy algorithm (line 3),

and improves it by a hybrid alternating search heuristic (lines 6–7), returning at the

end the best solution Sbest found over all repetitions. We use by default a time limit

75

as a termination criterion, but this could be substituted by e.g. a maximum number

of multistart iterations. The best solution is selected with respect to the lexicographic

fitness function BC(S) = (B(S),C(S))1, as it gives preference to solutions which are

closer to being feasible, when no feasible solution exists.

Our method is similar to GRASP [172], with two key differences. First, during

construction we do not select candidates randomly from a restricted candidate list,

as is standard, but select the best overall candidate in two stages by different criteria,

and use filter lists to select only high-quality solutions. Second, instead of improving

solutions by local search, we use a heuristic which alternates between two different

algorithms to improve compactness and balance, in order. When improving balance,

we restrict the search to solutions of compactness no larger than the incumbent’s.

In each iteration of the alternating part (lines 5–11), to prevent cycling we store

the current solution in a hash table T, and move on to the next multistart iteration

if cycling is detected (lines 8-9). Since the total number of intermediate solutions

is expected to be small (less than 1000, on average), and cycling is rare, this is not

performance- nor memory-critical. We also stop when the solution is still infeasible

after an attempt to balance it (line 8), since it is unlikely that it will become balanced

in a later iteration, or after a maximum number Amax of alternations. We use param-

eter Amax to avoid alternating indefinitely between low and high compactness values

without a global improvement. In practice this does not happen often, however, and

thus in our implementation we have fixed Amax = 100 as a fallback.

In the following subsections we present the components of our heuristic in detail.

Section 3.3.1 explains the construction and filtering of new solutions through proce-

dure selectInitialSolution. Then, in Section 3.3.2 we outline the general idea behind

the alternating heuristic, and in Sections 3.3.3 and 3.3.4 we explain procedures opti-

mizeBalance and optimizeCompactness. Last, in Section 3.3.5 we describe our data

structures to efficiently update balance, connectivity and compactness dynamically

under neighborhood search.

3.3.1 Initial solutions

Initial solutions are constructed in two steps. First, we use a dispersion heuristic

to select p initial units (s1, . . . ,sp), which will serve as seeds for each district. Then,

we grow districts from these seeds by iteratively assigning to them a greedily-selected

unassigned unit on their boundary, until the solution is complete. Algorithm 3 out-

1Given tuples x = (x1, . . . ,xn) and y = (y1, . . . ,yn) of n > 1, we say that x < y lexicographically iff
x1 < y1 ∨ (x1 = y1 ∧ (x2, . . . ,xn)< (y2, . . . ,yn)). If n= 1, then x < y iff x1 < y1.

76

Algorithm 3 Constructive heuristic for generating new solutions.

1: procedure GREEDYCONSTRUCTIVE

2: s1← a randomly selected unit from V

3: for i= 2, . . . ,p do
4: pick random subset V ′ ⊆ V \ {s1, . . . ,si−1 } such that |V ′|=

√
n

5: si← argmaxu∈V ′minj∈[i−1]dusj

6: Si← {si } ∀i ∈ P
7: for i ∈ P do
8: ci← argmin{C(Si∪ { j }) | j ∈ ∂(Si) }
9: while S is not complete do

10: k← argmin{
∑
a∈Awa(Sk) | k ∈ P }

11: Sk← Sk∪ck
12: for i ∈ P s.t. ci = ck do
13: ci← argmin{C(Si∪ { j }) | j ∈ ∂(Si) }
14: return S

lines the method.

The first step is a modification of the greedy constructive heuristic proposed by

Erkut et al. [56]. It was originally developed to solve the dispersion problem of find-

ing p elements from a set of points on the plane such that the minimum distance

between any two elements is maximized. The first seed s1 is selected uniformly at

random from V. Then, for each i = 2, . . . ,p in increasing order, we pick a subset

V ′ ⊆ V \ {s1, . . . ,si−1 } of size
√
n uniformly at random, and define the i-th seed as

si = argmaxu∈V ′minj∈[i−1]dusj. In other words, we select repeatedly the unit from V ′

that maximizes the minimum distance to the previously chosen units. Ríos-Mercado

and Escalante [180] used a similar strategy, with the difference that seeds si are cho-

sen from V ′ = V \ {s1, . . . ,si−1}. We decided to use a smaller, randomly selected V ′

because, with a time complexity of Θ(p2|V ′|), the method was too slow for larger

instances when |V ′| =O(n). Our approach also has the advantage of increased vari-

ability and, in practice, we have found no loss in average solution quality.

The second step starts from partial districts Si = {si } | ∀i ∈ P. We maintain in

memory, for each district Si, the candidate unit ci ∈ ∂(Si) that minimizes C(Si∪ {ci}).
(Recall that ∂(Si) represents the boundary of district Si, as defined in Section 2.4.1.4.)

If multiple such units exist, one is chosen randomly. At first, we compute ci for every

district by iterating over each boundary ∂(Si). Then, we repeatedly select the district

Sj with smallest total attribute
∑
a∈Awa(Sj) and assign S := S[cj→j], until S is com-

plete. We recompute ci for all districts Si with ci = cj after every assignment, because

the boundaries of these districts change, and so the set of possible entry candidates

for them also does. There are on average only O(1) such districts, however, since G

77

is planar and thus has an average degree no larger than 6. To maintain dynamically

the candidate costs c is significantly more efficient than the alternative of recomput-

ing them at each iteration. Note that because only boundary units are considered,

connectivity is preserved.

This strategy is greedy in the way that it selects a candidate with smallest increase

in compactness C for each district. This steers the construction towards more compact

initial solutions, as opposed to a different strategy that might, for example, try to find

solutions that are as balanced as possible by minimizing B. The rationale is that, in

practice, highly imbalanced solutions can be made feasible quickly by our balancing

heuristic, while it is substantially harder to improve compactness. Moreover, early

experiments showed that the quality of solutions obtained after neighborhood search

highly depends on the compactness of the initial solutions. Still, by selecting the

district with minimum total attribute at each step, we ensure a certain balancing and

prevent districts in denser regions from growing too large.

3.3.1.1 Filtering

Since the alternating improvement phase is much more time-consuming than the

construction phase, we filter out low-quality initial solutions to focus our computa-

tional effort in more promising ones. At each multistart iteration we construct p

randomized greedy solutions and add them to a pool P of possible initial solutions.

We then select the solution S ∈ P with minimum CB(S) = (B(S),C(S)), compared

lexicographically, to be improved next, and remove S from P. Set P is carried over

to the next iteration. To limit memory usage, we limit |P| to 2p and discard the

max{0, |P|− 2p } worst solutions with respect to CB at each iteration. Here we are

greedy with respect to CB, as opposed to BC, since as we mentioned previously, em-

pirically the initial imbalance of a solution was not a good predictor of how difficult

it is to balance it in the alternating phase.

3.3.2 Optimizing solutions by alternating search

To optimize different criteria alternatingly is not a completely new approach in

districting [28, 128]. The main idea is to focus the effort on optimizing one objective

at a time through a custom neighborhood that only considers moves with respect to

that objective, while (to some extent) ignoring others. A common alternative would

be to perform a single search using a composite fitness function that assigns weights to

each objective, as is done e.g. by Bozkaya et al. [22] and Ríos-Mercado and Escalante

78

[180]. The main drawback of this alternative is that it is difficult to find weights that

work well for all instances.

Both alternating procedures optimizeBalance and optimizeCompactness are based

on tabu search. To improve compactness, we use a tabu search over a specific neigh-

borhood depending on the compactness function being considered (e.g. p-median,

p-center or diameter). In Sections 3.3.4.1 to 3.3.4.3 we give full descriptions of these

neighborhoods. To improve balance, we execute a series of tabu searches on neigh-

borhoods bounded by a maximum increase to compactness. Let S be the incumbent

before optimizing for compactness, and S ′ after it (see line 7 in Algorithm 2). Specif-

ically, using upper and lower bounds C(S) and C(S ′) we apply a binary search to find

the smallest c∗ ∈ [C(S ′),C(S)] for which a tabu search aimed at reducing imbalance

and bounded by C(S ′)6 c∗ obtains a feasible solution. We explain the full procedure

in detail in Section 3.3.3.

Note that, although we use tabu search, this alternating strategy is agnostic of the

choice of optimization algorithm for balancing or improving compactness, and other

heuristic could be used instead, or even an exact method.

The neighborhoods used by our tabu searches are based on shift and swap moves.

We have introduced tabu search as well as shifts and swaps in Section 2.4.2.3, and in

the following we review them in the context of our heuristic.

A shift u→i is an operator over solution S= (S1, . . . ,Sp) which moves unit u ∈ S(u)
to district Si. We denote by S[u→i] solution S after applying shift u→i. (Recall that

S(u) is the district that u is currently assigned to, i.e. u ∈ S(u)). Similarly, a swap

u↔v exchanges the assigned districts of units u and v in S, and we denote by S[u↔v]
the resulting solution after swapping u and v.

Tabu search is a non-monotone local search proposed by Glover [85]. It itera-

tively executes the best neighboring operator on the current solution, with respect

to some fitness function. In our case, the fitness function depends on the criterion

being optimized – either compactness or balance. If multiple best candidates exist

for a neighboring move, one is selected randomly. To avoid cycling, some operators

are declared “tabu” after a neighboring move, and cannot be selected again for t it-

erations, where t is a parameter called tabu tenure. Specifically, after executing a

shift u→i we mark all operators in {u→j | j ∈ P } and {u↔v | v ∈ V } as tabu. Simi-

larly, after swap u↔v we mark as tabu all operators in {w→j | j ∈ P,w ∈ {u,v } } and

{w1↔w2 | w1 ∈ V,w2 ∈ {u,v } }. Moreover, we discard all moves which violate district

connectivity, since they are infeasible. In Section 3.3.5.1 we show how these moves

can be detected efficiently. Each tabu search terminates after Imax iterations without

79

Algorithm 4 Improving the balance of solutions through a series of tabu searches.

1: procedure IMPROVEBALANCE(S, Su)
2: U← C(Su)
3: if B(Su)> 0 then
4: U← 2U
5: L← C(S)
6: R← S

7: while L< U∧B(S) 6= 0 do
8: S ′← TSb(S,(U+L)/2)
9: if B(S ′) = 0 then

10: R← S ′

11: U← C(R)−dmin
12: else
13: S← S ′

14: L← (L+U)/2+dmin

15: return R

improvement, where Imax is a parameter, and returns the intermediate solution of

best fitness.

3.3.3 Optimizing balance

To balance solutions we use tabu searches over restricted neighborhoods, which are

defined by setting an upper limit c̄ such that no move can lead to a solution whose

compactness exceeds c̄. We use binary search to find the minimum value of c̄ with

which a feasible solution can be found. We outline this in Algorithm 4.

We start with initial solution S, which is likely imbalanced, and the current best

solution Su. We assume that C(S) 6 C(Su). Let the initial lower and upper limits

of the binary search be L = C(S) and U = C(Su). If Su is not feasible, however,

which can happen in the first alternation, we set U = dmax as a fallback, where

dmax = maxi,j∈V dij. Let also R be the solution to be returned, with R = S initially.

We then binary search for the smallest c̄∗ ∈ [L,U) such that the solution resulting

from a tabu search TSb(S, c̄∗) is balanced. We explain method TSb in the next section.

At each step of the binary search, we execute a constrained tabu search TSb(S, c̄) with

maximum allowed compactness c̄ = (U+L)/2 (line 8). If the resulting solution S ′ is

balanced, independently of its compactness value, we update return solution R← S ′

and upper limit U = C(R)−dmin (line 11), where dmin = mini,j∈V duv is the smallest

distance between any two units. Otherwise, if S ′ is not balanced, we update the cur-

rent solution S and the lower limit L = (U+L)/2+dmin (line 14). We use step size

dmin since we found it empirically to be a good compromise between precision and

80

the total number of calls to TSb.

3.3.3.1 Balancing tabu search

Given a solution S to be balanced and an upper limit c̄ > C(S), each tabu search

TSb : S×R→ S returns a solution S ′ such that C(S ′)6 c̄ and B(S ′)6B(S). Tabu search

TSb uses shifts and swap moves. Specifically, it considers neighborhoods

Nbshift(S, c̄) =
{
m ∈Nshift(S) | C(S[m])6 c̄

}
(3.5)

and

Nbswap(S, c̄) =
{
m ∈Nswap(S) | C(S[m])6 c̄

}
, (3.6)

in a VNS-like fashion. Here, we use the definition of the standard shift and swap

neighborhoods Nshift and Nswap from Section 2.4.2.3. At each iteration, we first

look for non-tabu shiftsm∈Nbshift which minimize BC(S[m]) and that are improving,

i.e. B(S[m])< B(S). If such a move is found, we apply it immediately and move on to

the next iteration; otherwise, we search for swaps in Nbswap under the same criteria.

We then apply the best move found with respect to BC. By using BC here we aim at

moves with minimum imbalance, and use minimum compactness as a tie-breaker.

This VNS-like strategy which considers first shifts, then swaps in order has been

generally effective for other grouping problems [25, 107] and, as we have argued

in Section 2.4.2.3, is effective since empirically there are many more possible swaps

than there are shifts, since |Nbshift| ≈ p
√
n/p and |Nbswap| ≈ n. In fact, preliminary

experiments showed that in over 80% of cases where improving moves are found,

they are shifts. Besides the usual stopping criterion of Imax consecutive iterations,

search TSb also stops as soon as the incumbent is balanced, i.e. when B(S) = 0.

The effectiveness of binary search here is motivated by the fact that B(TSb(S,c))

is expected to be monotonically decreasing as c̄ grows: given some c̄1 and c̄2 such

that c̄1 < c̄2, the neighborhood explored by search TSb(S, c̄2) is a superset of the

one explored by TSb(S, c̄1). Thus, TSb(S, c̄2) typically has more available improving

neighboring moves and should be more likely to reach better solutions. Of course,

since TSb is a heuristic algorithm this may not always be the case, but empirically we

find that it is nearly always so.

81

3.3.4 Optimizing compactness

We optimize compactness with a single tabu search. It uses a custom neighborhood

for each choice of compactness function. This is because it is common for compactness

functions to have optimization landscapes where the majority of moves do not yield

a change in the objective, thus making it wasteful to explore them fully. This is

especially the case for functions like the p-center and diameter, which aggregate local

compactness values by the maximum and thus “hide” intermediate values.

In this section we detail the neighborhoods used for the p-median, p-center and

diameter compactness functions. Our algorithm is agnostic of the choice of compact-

ness measure, however, and can be extended to other measures by simply defining a

search neighborhood.

3.3.4.1 Optimizing diameter

When optimizing the diameter, we consider only moves in the neighborhood

Ndm(S) = {u→i ∈Nshift(S) | u ∈ Kdm(S) },

where the set Kdm(S) = {u∈V | ∃v∈ S(u), duv=C(S) } contains diameter-critical units

which are incident to some maximum diameter of S. These are the only moves which

have the potential to improve C(S)

Note that if |Kdm(S)| > 2 even shifting a unit from Kdm(S) might not change C,

since there will still exist another pair of units with equal distance (except if a unit

is incident to multiple diameters). This situation happens frequently when d is Eu-

clidean and unit locations are regularly distributed on the plane, such as in a grid,

for example. It is clear, however, that reducing the cardinality of Kdm is still an im-

provement. Thus, we rank moves accordingly with a lexicographic objective function

C ′(S) = (C(S), |Kdm(S)|).

A special situation occurs when no units in Kdm(S) are on the boundary of another

district, meaning that Ndm(S) = ∅ and thus no moves can be made. This represents a

plateau that is particularly difficult to escape, since it requires at least as many moves

as the length of the shortest path from a unit in Kdm(S) to the boundary of some

district. In practice, it is very unlikely that this specific set of moves will be performed

during the balancing tabu search TSb. Therefore, when this kind of plateau is reached,

we attempt to escape it as follows. We search G for a path π of smallest Euclidean

distance starting from any unit u ∈ Kdm(S) and ending at a unit v ∈ ∂S(u). We then

82

a b

c d e f

g h

.

. . .
(a) Before “shortest path escape”.

a b

c d e f

g h

.

. . .
(b) After “shortest path escape”.

’

Figure 3.1: The “shortest path escape” process. We use “· · ·” to mean that the solution
continues with other districts at that point. In Figure 3.1a, the two farthest
units g and f are not on the boundary of any other district (i.e. Ndm = ∅).
We therefore search for the shortest distance path from either g or f to
the boundary of , and find feb. We then assign all units in feb to ,
obtaining the solution in Figure 3.1b. Notice that, after this process, the
search is able to continue, since Ndm = {c→ }.

assign all units in π, including u but not v, to district S(v). If this leads the original

district containing u to become disconnected, however, we stop and give up on this

attempt. Otherwise, reassigning unit u forces a change in Kdm, and consequently in

C ′. An exception is when u remains in Kdm paired to the same number of units and

distances as before, but this is rare. We repeat this procedure at most spmax times, or

until |Ndm| 6= ∅. In our implementation we have fixed spmax = 25, since this value was

more effective in a calibration performed in an earlier version of our algorithm [81].

Using a standard shortest paths algorithm that orders active units with a priority

queue, finding path π takes, on average, O(n/p logn/p) steps. Figure 3.1 illustrates

the process, which call “shortest path escape”.

3.3.4.2 Optimizing p-center

To optimize the p-center objective we use two different neighborhoods. To ex-

plain them, let us first define the set of p-center-critical units Kpcu (S) = {u ∈ V | duk =

C(S),k = cpc(S(u))} of solution S as the set of units whose distance to their district

center is equal to C(S), and the set of p-center-critical districts Kpcd (S) = {S(u) | u ∈
Ku(S) } of S as the set of districts that contain a critical unit. Here, as we have defined

in Section 2.3.2, cpc(Si) = argminc∈Simaxj∈Si djc defines the p-center of a district Si.

83

The first neighborhood we consider is

N1
pc = {u→i ∈Nshift(S) | u ∈ Kpcu (S) }.

It aims to shift critical units out of critical districts, in an attempt to reduce the local

compactness of critical districts. This consequently reduces global compactness of the

solution, since it depends on the critical districts.

The second neighborhood,

N2
pc = {u→i ∈Nshift(S) | S(u) ∈ Kpcd (S),u /∈ Kpcu (S) } },

shifts non-critical units out of critical districts. This is to induce a change to the

optimal district center cpc, in such a way that it is moved closer to critical units and

thus decreases the district’s local compactness.

We explore N1
pc and N1

pc in order, similarly to the balancing tabu search TSb. We

first consider non-tabu moves m ∈ N1
pc which minimize C(S[m]). If no improving

move exists for it, we then consider N2
pc in the same manner. Neighborhood N1

pc

takes precedence here since, in practice, it is about a factor
√
n/p smaller than N2

pc

and yields the best move in the majority of cases. Still, searching N2
pc is nonetheless

effective.

We have also experimented with a third neighborhood N3
pc = {u→i ∈ Nshift(S) |

i ∈ Kpcd (S)} in which a critical district receives a unit which may become the new

optimal district center, thus removing the critical status of the district’s critical units.

This neighborhood was seldom better than the two previous ones, yielding the best

move in less than 1% of cases, on average, and is time-consuming to explore fully.

Therefore, we have excluded N3
pc from the final algorithm.

Like in Kdm, notice that if |Kpcu (S)| > 2 shifting a critical unit will not reduce com-

pactness C, since other critical pairs exist which induce it. Therefore, as we have done

for the diameter we use a lexicographic objective C ′(S) = (C(S), |Kpcu (S)|), such that

moves which lead to smaller p-center-critical sets are preferred.

3.3.4.3 Optimizing p-median

Because the p-median function accounts for the distances to centers of not only

some but all units, as it aggregates by the sum, to use a restricted neighborhood

like Ndm or Npc would disallow some improving moves. Therefore, we optimize the

84

p-median using the full shift neighborhood Nshift, as defined in Section 2.4.2.3:

Npm(S) =Nshift(S) = {u→i | i ∈ P, u ∈ ∂(Si), S(u)\ {u} is connected }.

We have also experimented with searching Nswap, but empirically it slowed down

the search without any significant improvement in the quality of resulting solutions.

Finally, we note that for both p-median and p-center we compute the value of each

candidate move optimally. This contrasts with the common strategy to approximate

optimal values by assuming the centers do not change, i.e. to compute the compact-

ness of candidates with the current centers fixed, and only recompute optimal centers

when actually applying the neighboring move. Using optimal rather than approxi-

mate values for candidates leads to better informed neighboring decisions, since we

can account for moves which improve compactness through changing optimal district

centers. In the next section, we show how we dynamically and efficiently compute

these optimal values.

3.3.5 Dynamic updates for local search candidates

During neighborhood search or a constructive algorithm which examines many can-

didate moves, several values must be recomputed in order to ascertain the potential

of each move. These include, for example, (dis)connectivity tests, or the expected

imbalance and compactness of the resulting solution. If implemented in a naïve way,

i.e. without taking into account pre-computed information from the current solution,

these computations become a bottleneck of high computational complexity that dom-

inates the running time of the algorithm. This is particularly evident in larger instance

sizes, or large neighborhoods such as Nswap.

In this section we discuss relevant data structures and speed-up techniques we have

used in our implementation of these components to avoid this effect. We analyze their

theoretical runtime complexity in contrast to a naïve approach, and discuss how they

might be improved.

3.3.5.1 Dynamic connectivity

A shift or a swap operation may break the connectivity of a solution if a moved

unit was an articulation vertex of the subgraph induced by its previous district. The

straightforward way to test connectivity loss is to perform a depth- or breadth-first

85

search on the district from which a unit was removed. This takes O(n/p) time, as-

suming an average district size of n/p. The majority of authors do not discuss how

disconnectivity tests are implemented.

We propose a better approach that maintains a flag array indicating whether each

unit is an articulation vertex in its district. For each district, this can be updated

in O(n/p) average time with the algorithm of Tarjan [206]. Since updating is only

required after a neighboring move has been made, and only for the 2 districts involved

in the move (note that both shift and swap moves only change 2 districts), each move

incurs an update cost of O(2n/p) =O(n/p). Therefore, given a neighborhood of size

k, the amortized update cost per neighbor is O(n/(kp)). For Nshift, for example,

since |Nshift| ≈ p
√
n/p this cost becomes O(n/(p2

√
n/p)), while for Nswap, since

|Nswap|≈ n the amortized update cost is constant as O(n/(np)) =O(1/p) =O(1).

When considering a candidate shift u→i we simply test whether i is an articulation

node: if yes, then shift u→i leads to a disconnected solution and should be discarded.

Since this only requires checking whether a flag is set, it is done in O(1). Similarly,

for a swap u↔v we discard the move if either u or v is an articulation node. Note that

this may inadvertently discard valid moves in the special case where G∩ (S(u)\ {u})
is not connected, but G∩(S(u)\{u}∪ {v}) is. In practice, however, this situation rarely

happens, and since we have not identified a method to test this condition in constant

time, we have found that the performance gained by ignoring such cases compensates

for the possible lost moves.

The approach above is simple to implement and effective in practice, since it has

low amortized computational cost and ultimately becomes shadowed by other com-

ponents of our method. Still, we note two approaches in the literature which have

better time complexity. The first is the algorithm of Łącki and Sankowski [122] for

decremental connectivity in planar graphs, as it allows both tests and updates in con-

stant time. However, the algorithm has only been discussed in theoretical terms and,

to our knowledge, no implementation of it exists. The second is the geo-graph al-

gorithm of King et al. [118] developed specifically for districting, which has a time

complexity of O(∆(G)), which amounts to O(1) if G is planar. Unfortunately, the

authors did not respond to our requests to share their implementation and, since the

algorithm is not simple, it was outside our scope to reimplement it.

86

3.3.5.2 Dynamic imbalance

To compute the expected imbalance B(S) of candidate solutions, for each district

Si we maintain in memory its total value wa(Si) with respect to each attribute a ∈A.

These values are updated in constant time when a unit u is inserted or removed from

district Si by setting, respectively,

wa(Si)←wa(Si∪ {u }), ∀a ∈A, (3.7)

wa(Si)←wa(Si \ {u }), ∀a ∈A, (3.8)

where

wa(Si∪ {u }) =wa(Si)+wau, ∀a ∈A, (3.9)

wa(Si \ {u }) =wa(Si)−w
a
u, ∀a ∈A, (3.10)

Given that individual imbalances ba(Si) can be computed in constant time using

wa(Si) for a ∈A, i ∈ P (recall the definition of ba(Si) from Section 3.2), the expected

imbalance of a solution resulting from candidate shift u→i can be obtained also in

constant time through

B(S[u→i]) = B(S)+
∑
a∈A

(
−ba(Si)+ba(Si∪ {u }) (3.11)

−ba(S(u))+ba(S(u)\ {u })

)
.

Similarly, the expected imbalance of a swap u↔v is computed through

B(S[u↔v]) = B(S)+
∑
a∈A

(
−ba(S(u))+ba((S(u)∪ {v })\ {u }) (3.12)

−ba(S(v))+ba((S(v)∪ {u })\ {v })
)

.

3.3.5.3 Dynamic diameter compactness

When district Si receives a unit, a trivial way to update its local diameter is to check

the distance from the new unit to all units currently in Si, in O(|Si|) time. However,

if a unit is removed from Si, without any cached information a brute-force method

might check all pairwise distances in O(|Si|2) time, which becomes a bottleneck. This

approach is used by some authors [180].

87

One solution is to maintain a max-heap of all pairwise distances for each district,

such that the critical pair is always on top. In this way, the optimal diameter for

district Si can be maintained in O(|Si| log |Si|) time. Using a lazy removal strategy

for pairs which are no longer in Si, at most |Si| insertions or removals will be made

from the heap after each move. Empirically this complexity tends to be much lower,

however, since the worst case only happens when the removed unit is the closest to

every single other unit in the district, which is extremely rare. The downside to this

approach is that it requires O(n2/p) memory over all districts, on average.

When distances are Euclidean and plane coordinates associated with each unit are

available, which is the case of all instance sets we use, we propose a different ap-

proach. It uses the fact that the most distant pair of points of a point set on the plane

must lie on that point set’s convex hull [198]. We therefore maintain the convex hull

of each district dynamically. Over each convex hull, we compute diameters using the

rotating calipers algorithm of Shamos [198], which runs inO(k) where k is the size of

the convex hull. Har-Peled [96] showed that the convex hull of a set of n uniformly-

distributed points (a premise which can be reasonably assumed in the instances we

considered) has expected size O(logn), and so, assuming an average of n/p units per

district, each diameter is computed in O(logn/p). Finally, the maximum diameter of

a solution can be obtained by inspecting all p districts inO(p), whose diameter values

we also cache.

To compute convex hulls we use the monotone chain algorithm of Andrew [4],

which runs in O(k logk) time for any set of k points or in O(k) time if the points are

already sorted lexicographically by their coordinates. We maintain the latter condi-

tion. Before neighborhood search we sort the list of units of every district by their

coordinates, and keep them sorted after each neighboring move using a simple linear

update of average cost O(n/p), for both insertions and deletions. This lets us up-

date diameters in O(n/p) after a neighboring move (recall that shift and swap moves

change at most 2 districts), which incurs an O(n/(pk)) amortized cost per candidate

on a neighborhood of size k. This could be further improved using the algorithm

of Overmars and van Leeuwen [164] which maintains convex hulls of k points in

O(log2k) time per update, but we did not find any available implementations of this

algorithm.

Using the strategies above, we compute the expected diameter of a candidate shift

88

u→i as

Cdm(S[u→i]) = max
{

max
j∈P

Sj /∈{S(u),Si}

CdmSj , ∆dmSi , ∆dmS(u)

}
, (3.13)

where

∆dmSi = max
{
CdmSi , min

v∈CH(Si)
duv
}

, (3.14)

∆dmS(u) =
[
CdmS(u) = Cdm(S)

]
rc
(
CH(S(u)\ {u })

)
, (3.15)

are the expected local compactness values for Si and S(u), respectively. The first term

of (3.13) accounts for the diameter of districts that are not included in the shift, and

is obtained in O(p) by taking the maximum of the local district diameters CdmSj , j ∈
P, which are cached in memory. The second term, ∆dmSi , defines the new diameter

of district Si after the move and is computed by considering the distance between

u and every point on Si’s convex hull CH(Si) in expected time O(log |Si|). Finally,

∆dmS(u) defines the new diameter of district S(u) after losing unit u. It is computed

in O(|S(u)|) time by re-computing S(u)’s convex hull without u and executing the

rotating calipers algorithm rc on the result. Note that computing ∆dmS(u) is only needed

if S(u) is diameter-critical, since removing a unit from a district cannot increase its

diameter. Hence, to encode this we multiply the third term by [CdmS(u) = Cdm(S)]
2,

which short-circuits the rest of the expression if it is 0. Because there are p districts,

this is expected to occur with probability 1/p, on average, and so expected amortized

cost of computing ∆dmS(u) is O(|S(u)|/p). Assuming an average of n/p units per district,

computing expressions (3.13) therefore has an expected amortized cost of O(p+

logn/p+n/p2) per shift.

This extends to swaps in the same manner. Given candidate swap u↔v, the ex-

pected diameter of the resulting solution is computed as

Cdm(S[u→i]) = max
{

max
j∈P

Sj /∈{S(u),S(v)}

CdmSj , ∆dmS(v)
′
, ∆dmS(u)

′
}

, (3.16)

2For a given boolean expression b, Iverson’s bracket operator [b] returns 1 if b is true, and 0 otherwise.

89

where

∆dmS(u)
′
= max

{
min

w∈CH(S(u)\{u })
dvw, (3.17)

[
Cdm(S) ∈ {CdmS(u),C

dm
S(v) }

]
rc
(
CH(S(u)\ {u })

)}
,

and vice-versa for ∆dmS(v)
′. The asymptotic costs calculation is similar as for shifts, and

we omit it here. Note that we test whether either S(u) or S(v) was critical – in other

words, whether the global diameter may have decreased – for both ∆dmS(u)
′ and ∆dmS(v)

′,

since it is possible e.g. that S(v)\ {v} will be diameter-critical in S[u↔v] even though

S(u) (and not S(v)) was critical in S.

3.3.5.4 Dynamic p-median compactness

To compute the p-median compactness dynamically we maintain two sets of values:

the optimal p-median value CpmSi for each district i ∈ P, and the local compactness

δ
pm
ui of district Si if u were made district center, for every u ∈ V and i ∈ P. Upon

neighboring moves we update these values in O(n) as follows. When unit u is to be

inserted into district Si, we set

δ
pm
vi ← δ

pm
vi +duv ∀v ∈ V, (3.18)

C
pm
Si
←min

{
δ
pm
vi | v ∈ Si∪ {u }

}
, (3.19)

and if u is to be removed from Si, we set

δ
pm
vi ← δ

pm
vi −duv ∀v ∈ V, (3.20)

C
pm
Si
←min

{
δ
pm
vi | v ∈ Si \ {u }

}
. (3.21)

We note that this could be improved by updating δpmvi only for v∈ Si∪∂(Si) (i.e. only

if v is liable to be part of a feasible neighboring move involving Si, either by being in

Si or on its boundary). Since, as we have argued in Section 2.4.2.3, the boundary of

a set of n uniformly distributed points has a size of roughly
√
n, this would lead to an

average update cost of O(
√
n+n/p). However, this would require a data structure

which dynamically maintains ∂, which we did not use in our implementation.

When considering candidate moves, using Cpm and δpm we can then compute the

90

p-median value of a candidate shift u→i in O(n/p) as

Cpm(S[u→i]) =
(∑

j∈P
Sj /∈{S(u),Si}

C
pm
Sj

)
+∆pmSi +∆pm

S(u)
, (3.22)

where

∆
pm
Si

= min
{
δ
pm
vi +duv | v ∈ Si∪ {u }

}
, (3.23)

∆S(u) = min
{
δ
pm
vj −duv | j : Sj = S(u), v ∈ S(u)\ {u }

}
(3.24)

are the expected changes to the compactness values of districts i and S(u), respec-

tively. Similarly, we compute the expected value of a swap u↔v also in O(n/p) as

Cpm(S[u↔v]) =
(∑

j∈P
Sj /∈{S(u),S(v)}

C
pm
Si

)
+∆pm

S(u)
′
+∆pm

S(v)
′, (3.25)

where

∆
pm
S(u)

′
= min

{
δ
pm
wj +dvj−duj | j : Sj = S(u), w ∈

(
S(u)∪ {v }

)
\ {u }

}
(3.26)

and vice-versa for ∆pm
S(v)
′.

Given a neighborhood of size k, updates to Cpm and δpm take O(n/k) amortized

time per candidate, while computing candidate costs values takes O(n/p) per candi-

date. For bothNshift andNswap this ultimately incurs an amortized cost per candidate

of O(n/p), as the latter costs are the bottleneck. This is significantly more efficient

than a brute-force approach which might recompute the local compactness of both

districts in O((n/p)2) time.

3.3.5.5 Dynamic p-center compactness

The idea behind dynamic p-centers is similar to that of dynamic p-median. We

maintain three sets of values: the optimal p-center value CpcSi for each district i ∈ P
and, for each u ∈ V, i ∈ P, the largest and second-largest distances δpcui and γpcui from

u to any unit in i. Values δpcui can be interpreted as the compactness of district Si if u

were made its center, and γpcui as the compactness of Si if u were made center while

the unit incident to δpcui is removed.

91

Upon neighboring moves, we update Cpc, δpc and γpc in O(n2/p) as follows. When

unit u is to be inserted into district Si we set, in order,

γ
pc
vi ← sec

(
δ
pc
vi , γ

pc
vi , dvu

)
∀v ∈ V, (3.27)

δ
pc
vi ←max

{
δ
pc
vi , dvu

}
∀v ∈ V, (3.28)

C
pc
Si
←min

{
δ
pc
vi | v ∈ Si∪ {u }

}
, (3.29)

where sec(S) returns the second-largest value of list S. When unit u is to be removed

from district Si, we set

δ
pc
vi ←

{
γ
pc
vi , if δpcvi = duv
δ
pc
vi , otherwise

}
∀v ∈ V, (3.30)

γ
pc
vi ←

{
γ
pc
vi , if γpcvi > duv

sec
(
dvw |w ∈ Si \ {u }

)
, otherwise

}
∀v ∈ V, (3.31)

C
pc
Si
←min

{
δ
pc
vi | v ∈ Si \ {u }

}
. (3.32)

When considering candidate moves, using the three cached values we can compute

the p-center value of candidate shift u→i in O(n/p) as

Cpc(S[u→i]) = max
{

max
j∈P

Sj /∈{S(u),Si}

C
pc
Sj

, ∆pcSi , ∆
pc
S(u)

}
, (3.33)

where

∆
pc
Si

= min
{

max
{
duv,δ

pc
vi

}
| v ∈ Si∪ {u }

}
, (3.34)

∆
pc
S(u)

= min
{[
duv = δ

pc
vj

]
γ
pc
vj +

[
duv 6= δpcvj

]
δ
pc
vj | j : Sj = S(u), (3.35)

v ∈ S(u)\ {u }
}

. (3.36)

This extends to swaps in a similar way with

Cpc(S[u↔v]) = max
{

max
j∈P

Sj /∈{S(u),S(v)}

C
pc
Sj

, ∆pc
S(u)

′, ∆pc
S(v)
′
}

, (3.37)

92

where

∆
pc
S(u)

′
= min

{[
dwu = δ

pc
wj

]
max {dwv,γ

pc
wj } +

[
dwu 6= δpcwj

]
max {dwv,δ

pc
wj } (3.38)

| j : Sj = S(u), w ∈
(
S(u)∪ {v }

)
\ {u }

}
(3.39)

and vice-versa for ∆pc
S(v)
′.

Given a neighborhood of size k and assuming an average of n/p units per district,

updates to Cpc, δpc and γpc take O(n2/(pk)) amortized time per candidate in the

worst case. However, note that the second case of (3.31), which leads to the added

O(n/p) factor, need only be considered if duv>γ
pc
vi , i.e. only if duv is a critical distance

in Si \ {u }. In a scenario where the set of unique distances is roughly equal to the

set of unit pairs, which is generally expected in Euclidean domains, a critical unit

will be shifted on average once every n/p moves, leading to an average amortized

update cost ofO(n) per candidate. When combined with theO(n/p) costs to compute

candidates’ potential p-center values, this ultimately leads to an amortized cost of

O(n/p) per candidate in both Nshift and Nswap.

We note two ways by which this cost could be improved. First, similar to the

strategy mentioned in Section 3.3.5.3 one could use pn max-heaps to maintain δpcvi
and γpcvi in average time O((n/p) log(n/p)), thereby mitigating the cost of the second

case (3.31). This would have an added memory cost of O(n2), however. Second, like

in Section 3.3.5.4, in (3.27), (3.28), (3.30) and (3.31) one could update δpcvi and γpcvi
only for v ∈ Si∪∂(Si), which would lead to a worst-case update cost of O(

√
n(n/p)).

3.3.5.6 Caching movements on TSb

To avoid recomputing movements on the balancing tabu search TSb, we cache

the outcome of operators. Given a solution S and a maximum compactness value

c̄ for TSb, for each district i ∈ P we maintain a list Λi of potential shift and swap

moves incident to district i, sorted increasing by BC of the resulting solution. Lists

Λi are always updated with respect to shift moves, but include swap moves lazily as

needed, since the swap neighborhood is larger. Therefore, we also maintain binary

flags λi ∈ {0,1 } that indicate whether list Λi contains swap moves.

Algorithm 5 outlines the strategy. Initially, for all i ∈ P we set λi = 0 and Λi

to be a list of feasible shifts incident to district Si, sorted increasingly by expected

BC (lines 1–4). When computing the best neighboring move, we then proceed as

follows. For each i ∈ P we iterate over Λi until we find a feasible move, i.e. a move

93

Algorithm 5 Caching strategy for TSb.

1: for i ∈ P do . initialization, run before the search starts
2: λi← 0
3: Λi = {u→i ∈Nbshift(S, c̄) | u ∈ V, S[u→i] is feasible }
4: sort Λi increasingly w.r.t. BC.
5:
6: procedure CACHEITERATE(S)
7: mbest← null

8: for i ∈ P do
9: for m ∈Λi, in order of increasing BC(S[m]) do

10: if S[m] is infeasible then
11: remove m from Λi
12: else
13: mbest← argmin{BC(S[mbest]),BC(S[m]) }

14: return mbest

15:
16: procedure CHOOSENEXTMOVEFROMCACHE(S)
17: mbest← cacheIterate(S)
18: if mbest is null then
19: for i ∈ P such that λi = 0 do
20: Λi =Λi∪ {u↔v ∈Nbswap(S, c̄) | u,v ∈ V, S(u) = i, S[u↔v] is feasible }
21: sort Λi increasingly w.r.t. BC.
22: mbest← cacheIterate(S)
23: if mbest is not null then
24: for each district i incident to mbest, as well as i’s neighbors do
25: λi← 0
26: Λi = {u→i ∈Nbshift(S, c̄) | u ∈ V, S[u→i] is feasible }
27: sort Λi increasingly w.r.t. BC.
28: return mbest

m where S[m] is connected and C(S[m]) 6 c̄ (line 17, procedure cacheIterate). In

the process we discard all moves from Λi that come before m, since they are infea-

sible. Note that feasibility must be tested here and cannot be cached, since cached

moves in Λi may become infeasible as the search progresses. (However, we can still

do this test in O(1) by keeping, for each candidate move cached, the change in com-

pactness caused by it.) If any feasible move is encountered, we select the best such

move among all i∈ P. Otherwise, we iterate over the districts once again to add swap

moves to caches that do not include swaps (lines 18–22). Finally, we iterate once

again over each λi until we find a feasible move, discard infeasible moves seen in the

process, and select the best move encountered, if any (line 22).

After applying move mi, we reset λi and Λi for each district i incident to the se-

lected move, as well as each of i’s neighbors, since they could include moves that af-

94

fect i (lines 23–27). Because neighboring relations between districts induce a planar

graph (since G is planar) the average number of districts reset is at most 12 =O(1),

in contrast to O(p) if we did no caching. This saves us a factor p in time complexity

compared to computing the entireNshift andNswap neighborhoods, but could require

us to store all neighbors in memory, in the worst case. Note, however, that for the

p-center and diameter objectives we only need to store the first element of each Λk,

thus using constant space, since due to the maximum-based objective a feasible move

with respect to C(S)< c̄ will continue to be feasible regardless of later moves.

3.4 Problem instances

For our experiments we consider a problem in the sales districting domain. The

domain was originally introduced by Segura-Ramiro et al. [197], and later studied by

several authors [181, 187, 183, 189, 191, 182, 54, 177, 180, 184]. In it, basic units

consist of city blocks and districts of regions which will be serviced independently

by salespersons of a company. As is common in sales districting, these instances

include multiple balancing attributes, namely three: the workload, the number of

customers and the product demand of each city block. These attributes must be evenly

distributed among the districts. We used all three attributes in our implementation.

We chose this domain because it is likely the most widely studied in the districting

literature, and open source implementations as well as instance sets derived from

real-world data are available. Moreover, this domain has been studied in the light

of several classical optimization models which include Model (1.1) as a subproblem,

such as the PMDP, PCDP, DDP and variants thereof, which facilitates the assessment

of our heuristic.

We use three instance sets from the literature:

• RF, originally introduced by Ríos-Mercado and Fernández [181] for the p-Center

Districting Problem. It has two classes of instances, “DS” and “DT”, that differ

in the distribution of attribute values, each having 20 instances of size n = 500

with p = 10 districts each, for a total of 40 instances. Class DS selects attribute

values uniformly from fixed intervals, while class DT selects them from a non-

uniform symmetric distribution, which according to the authors models real-

world applications more closely.

• SRC, originally proposed by Salazar-Aguilar et al. [187] to test exact formula-

tions for the p-Center and p-Median Districting Problems. It contains 20 in-

stances of each size (n,p) ∈ {(60,4),(80,5),(100,6),(120,7) } and 10 of (n,p) ∈

95

{(150,8),(200,11) }, for a total of 80 instances. These comparatively smaller

instances reflect the instance sizes treatable by the exact method of Salazar-

Aguilar et al. [187] at the time. As in instance class RF/DS, all instances use

uniform attribute generation.

• RS, proposed by Ríos-Mercado and Salazar-Acosta [183] for a variant of the

Diameter Districting Problem with routing budget constraints. It has two sub-

classes: “DU”, with 30 instances of n = 1000 and p = 10, and “DT”, with 15

instances of n= 1000 and p= 10. Ríos-Mercado and Salazar-Acosta [183] state

that these instances were obtained using the generator from Ríos-Mercado and

Fernández [181], but it is not clear which attribute generation scheme was used.

All three sets RF, SRC and RS define planar coordinates to each unit drawn ran-

domly from a uniform distribution. Using these coordinates, distances duv are de-

fined as Euclidean distances. The original papers do not specify how planar graph

topologies for these instances were generated.

Because our methods are also able to handle larger instances, for a broader eval-

uation we have generated an additional instance set, which we named GRM after

the authors’ initials from Gliesch et al. [81]. It has 4 instances for each combina-

tion of n ∈ {1000,2500,5000,10000 } and p ∈ {n/200,n/100,n/62.5 }, for a total of

48 instances. The three levels of p roughly represent difficulties “easy”, “medium”

and “hard” with respect to achieving feasibility, as per our preliminary experiments.

We chose these size ranges since our method did not consistently find feasible so-

lutions for instances of n > 10000, whereas smaller instances than n < 1000 were

well-covered by other instance sets. We use the same uniform attribute generation as

in instance class DS from set RF, since we have found it to be more challenging than

the one used for class DT. As in sets RF, SRC and RS we define planar coordinates to

each unit, and use Euclidean distances. These coordinates were drawn uniformly at

random from [0,1000]2. The graph topology was obtained by computing a Delaunay

triangulation on the unit coordinates, which ensures connectivity and planarity.

Table 3.1 summarizes information about the instance sets used. To be consistent

with other works in this application domain, in all experiments we use balancing

tolerances τ1 = τ2 = τ3 = 0.05.

3.4.1 A note on the experimental configurations of the following experiments

Because this chapter combines computational analyses from four different publica-

tions, which in the interest of time we did not replicate, the experiments we report

96

Table 3.1: Test instance data.

Inst. # n p Attr. Dist. Source

SRC 100 60–200 4–11 Uniform Euclidean [187]
RF/DS 40 500 10 Uniform Euclidean [181]
RF/DT 40 500 10 Symmetric Euclidean [181]
RS/DU 30 1,000 10 — Euclidean [183]
RS/DT 15 1,000 40 — Euclidean [183]
GRM 48 1,000–10,000 5–160 Uniform Euclidean This work

in the following sections for the main heuristic (Section 3.5), for our extension to-

wards routing criteria (Section 3.6.3), and for our extension towards similarity crite-

ria (Section 3.7.3) used different experimental configurations and choices of instance

set. Namely, Section 3.5 uses instance sets SRC, RF and GRM, 10 replications, and

a time limit of 60 minutes; Section 3.6.3 uses sets SRC, RF, RS and only a subset

of GRM; and Section 3.7.3 uses sets SRC, RF and RS. Both Sections 3.6.3 and 3.7.3

run a single replicate with a fixed seed, limited to 10 minutes and 1000 multistart

iterations. We are confident, however, that the different experimental configurations

do not invalidate our analyses, since we only compare variants run under the same

configuration.

3.5 Computational experiments

In this section we report on experiments that assess the different components of our

heuristic, and compare it to other approaches in the literature for the PMDP, PCDP

and DDP. First, in Section 3.5.1 we calibrate the parameters of our heuristic using

an automatic calibration method. Then, in Sections 3.5.2 to 3.5.4 we compare our

method to existing approaches for the p-median, p-center and diameter objectives,

respectively. For both the p-median and p-center objectives we consider the exact

algorithm of Salazar-Aguilar et al. [187], which solves the Hess model with lazy con-

nectivity constraints of type (2.24), as we saw in Section 2.4.1.4. Further, for the

p-center objective we also consider the GRASP heuristic of Ríos-Mercado and Fernán-

dez [181]. Finally, to assess the diameter objective we consider the GRASP heuristic

of Ríos-Mercado and Escalante [180], as well as an earlier method developed in our

research group [81].

We have executed all experiments on a PC with an 8-core AMD FX-8150 processor

and 32 GB of main memory, running Ubuntu Linux 18.04. For each experiment, only

one core was used. Our algorithms were implemented in C++ and compiled with

97

Table 3.2: Parameter calibration: optimization ranges and best setting found by irace.

Parameter Optimization range p-med. p-cen. diam.

t {0.1,0.25,0.5,1,1.5,2,2.5,5 }p 1.5p 0.25p 5p
Imax {50,100,250,500,1000,2500,5000 } 100 1000 5000

GCC 7.2 with maximum optimization. The source code, instance sets and detailed

results are available upon request.

Each test was run with a time limit of 60 minutes. Since the method is stochas-

tic, we report averages over 10 replications. In these experiments we used instance

sets SRC, RF and GRM, and report results by instance set and number of units n.

For the heuristic methods we report the average deviation of the compactness value

relative to the best known value, in percent (C (r.d.)), the number of multistart it-

erations (Iter.), the percentage of multistart iterations which resulted in a feasible

solution (Fea. (%)), and the time to find the best solution, in seconds (t.t.b.). For

the exact methods, we report the percentage of instances for which an optimal solu-

tion was found (Opt. (%)), the running time in seconds (t), and the number of lazy

connectivity cut calls (Iter.).

3.5.1 Calibrating the parameters of our heuristic

We used the irace package version 3.1 in GNU R [138] to calibrate parameters t

(the tabu tenure) and Imax (the maximum number of tabu search iterations without

improvement) of our heuristic. We calibrated these parameters independently for the

p-median, p-center and diameter objectives. For each objective we ran irace with a

budget of 1000 executions and a time limit of 10 minutes per run. To avoid over-

fitting, for the calibration we used a separate instance set consisting of 48 random

instances, which we have generated with the same parameters and algorithm as in-

stance set GRM. As recommended by Lei et al. [128], we use tabu tenure values t

relative to the number of districts p.

Table 3.2 shows the parameter ranges and best values found by irace, for each of

the three objective functions.

3.5.2 Experiment 1: p-median objective

In this experiment we compare our approach to the exact method of Salazar-Aguilar

et al. [187] for the p-median objective, in the implementation provided by the au-

98

Table 3.3: Comparison of our proposed method to the exact approach of Salazar-
Aguilar et al. [187] for the p-median objective.

Inst. n
Our algorithm Salazar-Aguilar et al. [187]

C (r.d.) t.t.b. Iter. Fea. (%) Opt. (%) t Iter.

SRC 60 0.00 0 193,733 100 100 25 1.2
SRC 80 1.34 130 74,056 100 100 35 1.4
SRC 100 0.02 52 54,927 100 100 40 1.3
SRC 150 0.02 147 20,195 100 100 147 2.0
SRC 200 0.02 334 12,453 99 100 765 1.3

RF 500 0.04 701 1,999 89 — — —
GRM 1,000 0.03 661 255 100 — — —
GRM 2,500 0.13 853 101 94 — — —
GRM 5,000 0.28 882 50 98 — — —
GRM 10,000 0.35 955 21 91 — — —

Avg. 0.22 471 35,779 97 100 202 1.4

thors. It was written in C++, and we have compiled it in the same environment

as our own, using CPLEX 12.7.1. Their method iteratively solves Model (2.10) to

completion without connectivity constraints, then identifies violated constraints of

type (2.24) using graph search, and adds them to the model. This is repeated until

the exact solution provided by the solver is connected. Table 3.3 shows the compari-

son results.

We see that our heuristic found feasible solutions in 97% of multistart iterations,

on average, considering all instance sizes. Since the method is repeated over several

iterations (see column Iter.), this means it found at least one feasible solution in each

instance. For instances of size n ∈ {60,80,150,1000 } all multistart iterations were

feasible. The heuristic reached optimality in all instances of size n = 60, and overall

found optimal solutions in 84.6% of cases with n 6 200. For the remaining cases it

found solutions very close to optimality, on average within a factor of 0.02% of it. For

n = 80 it obtained poor results in two particularly difficult instances, which resulted

in a higher deviation. We have not identified what makes these instances so difficult,

but we suspect it is due to their particular graph topologies. As expected, the number

of multistart iterations decreases as n increases, since operator costs and neighbor-

hood sizes increase, which slows down the method. This same trend is not observed

however in feasibility rates, as our method consistently finds feasible solutions even

for n= 10000.

The exact method of Salazar-Aguilar et al. [187] found optimal solutions in all in-

stances of size n6 200, but timed out in all other cases for n> 500 without finding a

single feasible upper bound. A future investigation might shed some light on what the

tractable limits of this method are for 200<n< 500. In all instances it solved, it con-

99

verged to a connected solution in less than 2 iterations, in average. This corroborates

our observation from Section 2.3.3 that optimal p-median solutions are correlated

with connectivity when the planar topology is uniform.

Although our proposed heuristic performed slightly worse than the method

of Salazar-Aguilar et al. [187] in smaller instances, on average, it still found the

optimal solution in the vast majority of cases, or solutions very close to it in objective

value. Being a heuristic, it also finds feasible solutions in a fraction of the time of the

exact method, and can handle much larger instances.

3.5.3 Experiment 2: p-center objective

In this experiment we compare our heuristic to two approaches for the p-center

objective. First, we consider the exact method of Salazar-Aguilar et al. [187], which

is near identical to the exact method we saw in the last section, only it uses a p-center

version of the Hess model. Second, we consider the GRASP heuristic of Ríos-Mercado

and Fernández [181]. It uses a greedy constructive heuristic followed by a local

search, with an additional filtering technique to discard unpromising multistart solu-

tions and a dynamic calibration of GRASPS’s RCL parameter α. Because no source

code for this algorithm was available, we reimplemented it in C++ and compiled it

under the same environment as our own. For a fair comparison, in the reimplemen-

tation we used the dynamic update techniques discussed in Section 3.3.5. We have

fixed the parameters ρ,β and A of the method to the values recommended by Ríos-

Mercado and Fernández [181]: ρ = 1.0,β = 0.5 and A = {0.1,0.2,0.3,0.4,0.5 }, and

parameter λ to 0.95 as given by Ríos-Mercado [177].

Table 3.4 shows the results. We see that the exact method of Salazar-Aguilar et al.

[187] performs much worse for the p-center than for the p-median. For n = 150 the

exact method solved optimally only half the instances, while no instances of n> 200

were solved nor any upper bound was reached within the time limit. This is most

likely because the p-center objective is less correlated with connectivity, as we saw

in Section 2.3.3, and so the method requires more connectivity cuts and consequently

more solves, as shown by column Iter.

Considering instances solved optimally by the method of Salazar-Aguilar et al.

[187], our heuristic found optimality in 95.4% of cases, and obtained an average

relative deviation of 0.27% from the optimal solutions otherwise. For the remain-

ing instances, our heuristic found the best average p-center values in all cases, when

compared to the heuristic of Ríos-Mercado and Fernández [181]. On data set SRC

100

Table 3.4: Comparison of our proposed method to the heuristic of Ríos-Mercado and
Fernández [181] and the exact approach of Salazar-Aguilar et al. [187],
for the p-center objective.

Inst. n
Our algorithm Ríos-Mercado and Fernández [181] Salazar-Aguilar et al. [187]

C (r.d.) t.t.b. Iter. Fea. (%) C (r.d.) t.t.b. Iter. Fea. (%) Opt. (%) t Iter.

SRC 60 0.13 50 16,518 96 0.67 36 2,627,936 45 100 52 4.3
SRC 80 0.72 19 11,305 97 1.63 153 1,707,644 30 100 255 8.1
SRC 100 0.00 4 13,126 100 1.16 230 1,277,550 42 90 1,018 11.6
SRC 150 0.06 107 5,909 100 2.72 515 767,707 30 50 3,436 10.4
SRC 200 0.00 44 3,660 100 3.97 812 493,211 15 — — —

RF 500 0.31 499 1,086 97 13.11 870 111,890 15 — — —
GRM 1,000 0.79 688 254 100 27.29 934 25,531 7 — — —
GRM 2,500 1.68 949 57 99 65.82 1,149 6,468 6 — — —
GRM 5,000 1.62 946 23 99 101.89 1,827 2,243 5 — — —
GRM 10,000 1.76 980 9 94 161.57 2,347 725 2 — — —

Avg. 0.71 429 5,195 98 37.98 887 702,091 20 85 1,190 8.6

the heuristic of Ríos-Mercado and Fernández [181] performs a very large number of

iterations and thus obtains relatively good solutions, but as n grows it has difficulty

finding feasible solutions. This likely explains its poor solution quality for instance

sets RF and GRM, since the effectiveness of GRASP relies on having a large sample of

feasible solutions.

Compared to the p-median objective, the p-center version of our algorithm per-

forms 22.16 times fewer multistart iterations in the same amount of time. This is due

to the differences in the calibrated parameter Imax (see Table 3.2), which determines

the amount of time spent on each tabu search. Therefore, although the p-center ver-

sion performs fewer multistart iterations, it spends more time in each one. In practice,

however, given equal values for parameters t and Imax we found that the p-center is

usually faster, since balancing requires fewer binary search steps, on average. This

happens because the number of possible p-center objective values is limited to
(
n
2

)
.

3.5.4 Experiment 3: diameter objective

In this experiment we compare our heuristic to two approaches for the diameter

objective. First, we consider an earlier version of our method targeted only at the

diameter, which was published in Gliesch et al. [81]. It differs from the current

method in that it does not use a filtering strategy on multistart solutions, and uses a

simple tabu search overNshift to optimize balance, instead of the algorithm described

in Section 3.3.3. This method was implemented in C++ and compiled under the

101

Table 3.5: Comparison of our proposed method to the heuristic approaches of Gli-
esch et al. [81] and Ríos-Mercado and Escalante [180] for the diameter
objective.

Inst. n
Our algorithm Gliesch et al. [81] Ríos-Mercado and Escalante [180]

C (r.d.) t.t.b. Iter. Fea. (%) C (r.d.) t.t.b. Iter. Fea. (%) C (r.d.) Iter. Fea. (%)

SRC 60 0.00 0 888,007 100 0.61 52 285,632 100 — — —
SRC 80 0.00 0 461,409 100 0.14 28 108,174 96 — — —
SRC 100 0.00 0 280,698 100 0.24 62 114,601 97 — — —
SRC 150 0.00 18 130,446 100 0.21 78 144,994 100 — — —
SRC 200 0.03 64 24,169 100 0.04 68 69,743 98 — — —

RF 500 0.07 329 3,634 99 1.05 378 61,316 87 5.94 404 99
GRM 1,000 0.33 532 1,070 100 1.06 564 18,664 84 11.52 94 100
GRM 2,500 1.82 883 264 99 5.01 803 9,843 75 30.47 23 95
GRM 5,000 2.91 886 147 99 7.32 915 5,555 64 65.54 4 71
GRM 10,000 5.31 958 65 92 30.82 874 2,477 53 64.52 1 75

Avg. 1.05 367 178,991 99 4.65 382 82,100 85 35.66 84 82

same environment as our own.

Second, we consider the heuristic of Ríos-Mercado and Escalante [180], whose

original source code the authors have made available. The heuristic uses GRASP to

generate a set of solutions, then performs path relinking between all solution pairs

to potentially obtain a better intermediate solution. Because it was originally imple-

mented in MATLAB, for a fair comparison we have translated it to C++ and compiled

it under the same platform as our own. As we have done for the method of Ríos-

Mercado and Fernández [181], we included the optimization techniques of Sec-

tion 3.3.5 in the reimplementation. During this process, we discovered that the orig-

inal implementation did not always maintain connectivity during the path relinking

process. To address this, we have adapted their method to simply stop path relinking

once no more moves which maintain connectivity are available. Finally, since our

multistart approach is based on a time limit, in our experiments we repeated their

full method with different random seeds until the time limit is reached, and report

the best solution found.

Table 3.5 shows the results. For the method of Ríos-Mercado and Escalante [180]

column “Iter.” reports the number of repetitions of their algorithm, and column “Fea.

(%)” reports the percentage of these repetitions which produced a feasible solution.

Because in the original experiment, published in Gliesch et al. [81], we only used

instance sets RF and GRM, here we report results of Ríos-Mercado and Escalante

[180]’s method for these two sets only.

When compared to the version published in Gliesch et al. [81] we see a large im-

102

provement in our method with respect to average solution values, finding solutions

with a relative deviation of 1.05% to the best known solution, compared to 4.65%

of the previous variant. For instances of size n 6 500 the current method produced

the best known solution in nearly all executions, and for n6 100 it generates signifi-

cantly more feasible solutions in the same amount of time, and finds the best known

solutions almost immediately. As n grows, however, the total number of multistart

iterations decreases rapidly, leading to comparatively higher diameters in some cases.

This decrease in performance at higher values of n is likely due to the increased dif-

ficulty of finding balanced solutions.

In general, we see that the method of Gliesch et al. [81] has more difficulty in

balancing instances with high p/n ratios, especially as the number of units n grows.

On the other hand, the performance of our current method is less dependent on the

number of districts p. One reason for this may be the caching strategy for TSb (see

Section 3.3.5.6), which reduces the cost of visiting the shift and swap neighborhoods

by a factor of p, and which the original method did not use. Moreover, the current

method found feasible solutions in 99% of multistart iterations, compared to a rate

of 85% of Gliesch et al. [81]’s method, which also decreases rapidly for n > 2500.

The cause of this difference is that the original method did not use a binary search

strategy for optimizing balance, but a single tabu search instead.

Looking at the method of Ríos-Mercado and Escalante [180] we see that it has a

high probability of finding a feasible solution in a single execution, 84% on average.

Because path relinking is time-consuming, however, the number of re-executions was

comparatively low, and so was the likelihood of finding feasible solutions. The method

also found solutions of worse diameters, compared to the two other approaches. We

believe the reason is its difficulty in balancing solutions, which reduces the pool of

solutions path relinking can choose from. Yet, we note that in instance class DS from

set RF the method of Ríos-Mercado and Escalante [180] was consistently better than

that of Gliesch et al. [81]. We are not sure why this is the case.

Our method was significantly faster per iteration when optimizing for the diameter,

when compared to p-center and p-median. This is despite the high value of parameter

Imax, which sets the maximum number of non-improving tabu search iterations. This

improved performance stems from the lower asymptotic costs of computing expected

diameter values of neighborhood search candidates, as we have described in Sec-

tion 3.3.5: for both p-center and p-median this takes O(n/p) time, on average, while

by using a specific algorithm that exploits the fact that instances are Euclidean, we do

the same for the diameter in O(p+ logn/p+n/p2) time.

103

3.6 Extension to routing criteria

In this section we show how we have extended our heuristic to include routing

costs, as either a constraint or as an objective. We have reviewed routing criteria

in Section 2.3.5. Our goals are both to show how our heuristic can be extended

to new optimization criteria, and to establish a baseline algorithm and best known

values for the resulting problem. In Section 3.6.1 we present how we model routing

costs. Then, in Section 3.6.2 we explain the changes we have made to the heuristic.

These include a modified objective function, an updated constructive algorithm, and

a heuristic approach to compute and dynamically update district routes, which is, in

most cases, near optimal. Finally, in Section 3.6.3 we describe how we update existing

instance sets to include routing criteria, and report on experiments for the different

versions of our method.

The work presented in this section has been published in the following conference

paper:

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A hybrid heuristic for

districting problems with routing criteria. In 2020 IEEE Congress on Evolutionary

Computation (CEC), pages 1–9, Glasgow, United Kingdom, July 2020. IEEE.

3.6.1 Modeling routing costs

We model routes as shortest Traveling Salesman Problem (TSP) tours that start

and end at predefined depot units. Namely, given district Si the route which attends

it is modeled by a tour which starts and ends at a depot unit hi ∈ V associated with

Si, and visits all units of Si in an order such that the total tour cost is minimal. We

denote this optimal cost by R(Si). We assume input graph G is connected, and define

the cost of each tour edge u–v as duv if u and v are neighbors, or as the cost of

a shortest path between u and v in G using distances d as edge weights, otherwise.

These shortest path distances are precomputed, meaning we allow routes to visit units

outside their respective districts. An alternative would be to require routes to stay

within their districts. We do not consider this variant, however, since as mentioned

in Section 2.3.5 optimal distances must be recomputed after every neighboring move,

making it too computationally costly.

Depot units h1, . . . ,hp are fixed to each district. For simplicity we consider depots

to be locally unique, i.e., hi 6= hj | ∀i, j ∈ P, although some variants may also consider

a single global depot for all districts, or ignore depots altogether. The algorithms

104

proposed here can also handle these variants, however, and in Section 3.6.3.6 we

briefly examine them in an experiment. Note that not necessarily hi ∈ Si, since we

allow cross-district routes. In Figure 2.5 we have presented an example of a districting

and routing problem with a global depot.

The following formulation summarizes the resulting optimization problem, which

follows the structure of Model (2.1):

minimize
S∈S

λR(S)+(1−λ)C(S) (3.40a)

subject to R(Si)6 R, ∀i ∈ P, (3.40b)

La 6wa(Si)6Ua, ∀ i ∈ P,a ∈A, (3.40c)

connected(Si), ∀ i ∈ P. (3.40d)

As objective, given solution S we optimize a convex combination of the compactness

C(S) and the total routing cost of all districts R(S) =
∑
i∈PR(Si), given weight λ ∈

[0,1]. Further, we impose a budget constraint R(Si)6 R on the cost of each tour, given

R ∈ R+. Both λ and R are part of the problem input. To reflect real-world scenarios,

we assume routing is always either handled as a constraint by setting λ = 0, or as an

objective, by setting R =∞. We have chosen this type of formulation rather than a

multi-objective one to avoid modifications to our main heuristic. We note however

that a Pareto front for the multiobjective problem optimizing both C and R could be

obtained from systematically varying either (or both) λ and R.

To maintain our focus on routing criteria, in this section we fix C = Cpm. We have

chosen the p-median here because, as we saw in Section 2.3.2 it is correlated with

connectivity, and accounts for the compactness of all districts locally, as a contrast to

the p-median and diameter which only consider the least-compact district.

3.6.2 Extending the heuristic to include routing costs

In the following subsections we describe how we have extended our method of Sec-

tion 3.3 to include routing costs. The core algorithm remains unchanged, and thus

we only discuss our modifications to it. Two changes however apply to the algorithm

as a whole.

First, we extend the definition of imbalance B to include violations to routing bud-

get constraints, and thus define

E(S) =
∑

a∈A,i∈P
ba(Si)/µa+

∑
i∈P

max{0,R(Si)−R }/R(Si) (3.41)

105

as the sum of violations to both constraints (3.40c) and constraints (3.40b). Con-

straint violations are normalized by µa = µa =
∑
v∈Vw

a
v/p and R(Si) respectively, to

keep both in the same order of magnitude. We replace every call to B(S) in the main

algorithm with a call to E(S).

Second, we replace every call to C(S) with a call to the objective

Z(S) = λR(S)/Ur+(1−λ)C(S)/Uc (3.42)

of Model (1.1), with both terms normalized by constants Ur and Uc. This allows a

more intuitive choice of λ. We explain how we define Ur and Uc in Section 3.6.2.6.

3.6.2.1 Computing routing costs

For each district i ∈ P, we keep a permutation Ti of Si ∪ {hi } representing district

i’s current TSP tour, and let R(Ti) be its cost. Because the TSP is NP-hard [69], main-

taining optimal tours during optimization is a computational bottleneck, particularly

when compared to other aspects of the algorithm such as modifying solutions or re-

calculating p-median values. This remains true even when considering efficient exact

solvers like Concorde [5], which was used in the local search of Ríos-Mercado and

Salazar-Acosta [183], but dominated the running time of our algorithm by a large

margin in early tests. Therefore, during optimization we compute tours heuristically,

allowing us to complete GRASP iterations faster and thus execute more iterations in

total. This, however, means we allow suboptimal tours during optimization, and so

not necessarily R(Ti) = R(Si).

Routing costs are evaluated at several different stages of the algorithm, each with

distinct requirements regarding performance and precision (i.e., gap from the optimal

cost). For example, the routing costs of neighbors during the tabu search must be

computed quickly lest they become a bottleneck. On the other hand, at the end of

each multistart iteration we update the globally best solution, and so a high-precision

heuristic is desired, even if it is slower. With this in mind, we have identified five

different levels of increasing precision and decreasing performance requirements for

the evaluation of routing costs:

1. When evaluating a candidate shift or swap move during tabu search. This action

is performance-critical, since it happens at the inner-most loop of the algorithm.

All other attributes of solutions, such as balancing constraints, p-median values,

or connectivity can be kept dynamically in time O(n/p), and so a TSP heuristic

here must ideally also be computed in similar time.

106

2. When executing a tabu search move, i.e., applying a shift or swap to a solution,

or when assigning fringe units during greedy construction. This is executed

once every O(n) candidate move evaluations, on average, and so the cost of a

more expensive algorithm here is amortized over the n evaluations.

3. At the end of each tabu search. This happens after at least Imax moves have been

made. A better TSP heuristic here helps mitigate possible deviations from opti-

mality that may have been propagated by successively using a simpler heuristic

earlier.

4. At the end of each multistart iteration. In practice this happens after around

25 tabu searches, on average. Besides reducing imprecisions from lower lev-

els, a more precise algorithm here helps to select the best solution among all

multistart iterations.

5. When the algorithm halts. Here, we always recompute tours optimally.

3.6.2.2 Solving the TSP

In the literature there are several TSP heuristics with varying trade-offs between ef-

fectiveness and running times [93, 6]. For our purposes we consider three: a constant-

time greedy insertion heuristic GU, which we propose in Section 3.6.2.3; 2-opt local

searches (2OPT), which are easy to implement and generally fast if the initial solution

is close to a local minimum; and the Lin-Kernighan [137] heuristic (LKH), which is

among the most effective and widely used heuristics for the TSP today. For the LKH

we use the implementation in the Concorde solver [5] and consider two variants, LK1

and LK2, with different parameter configurations: LK1 uses stallCount = 1000 and

maxKicks=n/5, where stallCount is a stagnation parameter and maxKicks defines the

number of perturbation steps, while LK2 uses stallCount = 5000 and maxKicks = n.

Variant LK1 is aimed to be faster at the cost of slightly worse tours, while LK2 invests

more time in finding better solutions.

Let A1, . . . ,A5 be parameters that define the algorithms used in levels 1-5 described

in Section 3.6.2.1. We have fixed A1 to be GU, as it is imperative that evaluations at

the lowest level be efficient. Because the best choice of A2 and A3 was not obvious,

we consider A2 ∈ {GU,2OPT } and A3 ∈ {2OPT,LK1 }, and calibrate this choice experi-

mentally in Section 3.6.3.2. For A4 we use LK2, since an effective heuristic is needed

to select the best multistart solution. For the exact algorithm A5 we use Concorde’s

exact solver. Algorithms 2OPT, LK1, LK2 and the exact solver are warm-started by the

existing, already optimized tours, which improves their performance considerably.

107

Note that, since heuristic solutions for the TSP are upper bounds on the optimal

tours, if any heuristic tour satisfies budget constraints then the corresponding optimal

tour also does. Similarly, any value of Z computed with heuristic tours is an upper

bound on the optimal value of Z.

3.6.2.3 The greedy update heuristic

In order to update TSP tours efficiently upon unit insertions and removals, we

propose the following fast greedy heuristic, which we call GU after “greedy update”. It

assumes the given tour has been previously optimized by a more precise TSP heuristic,

and therefore tries to maintain the original permutation as much as possible.

When removing unit u from tour T i, GU simply removes u and maintain the rest

of the permutation intact, i.e., we link the units that come before and after u in T i.

Because T i must always include depot hi, however, if u= hi we simply do not remove

it.

When adding unit u to tour Ti, we choose some position j∈ {0, . . . , |Ti| } and insert u

after the j-th unit in Ti, maintaining the rest of the tour intact. Of course, the quality

of the resulting tour depends on the choice of j. One way to select it would be to test

all possible locations and take the one leading to the shortest tour. Since there are

O(n/p) possible candidates on average, however, this is too slow for our purposes, as

GU should ideally take constant time. We therefore only consider positions j directly

before or after neighbor units of u that are also in Si. Our rationale here is that,

because instances generally have Euclidean topologies, in practice optimal tours tend

to visit neighboring units in G in sequence. Both the constructive algorithm and the

tabu searches only allow moves that keep connectivity, thus u is guaranteed to have

at least one such neighbor. Because G is planar its average unit degree is bounded by

6, and so examining u’s neighbors takes amortized constant time. Again, if u= hi we

do nothing, since in this case u is already present in Ti.

3.6.2.4 Changes to solution construction

Procedure greedyConstructive remains the same as we have described in Sec-

tion 3.3.1, but during it we compute objective Z differently from the rest of the

algorithm. If routing budget constraints are enabled, i.e. R 6=∞ and λ = 0, we ex-

ceptionally use a value λ = 0.5 when computing Z here. This is because the original

heuristic does not use B to select each next unit to be included, but rather chooses

the unit with smallest total attribute value. In this way we still give a preference to

108

initial solutions with shorter TSP tours when budget constraints are imposed, and

maintain the original greedy algorithm unchanged. Moreover, do not consider depots

when computing R, for reasons explained in the next section. Therefore, tours are

computed simply with the units of each district.

We note that the caching mechanism described in Section 3.3.1 which maintains

the best possible assignment in each district’s fringe is still valid under objective Z.

3.6.2.5 Matching depots to districts

Our greedy constructive heuristic provides no guarantee that districts will be nearby

their predefined depot locations h1, . . . ,hp, which are part of the problem input. This,

of course, can have a significant impact on final routing costs, since a far away depot

will induce additional travel times, and the alternating strategy is unlikely to restruc-

ture the solution enough to mitigate this. One way to address this issue could be to

set the initial seed of each district in greedyConstructive as its associated depot. This

would lead to very poor solutions, however, if depots are not evenly distributed over

the instance topology. Therefore, we have opted for another approach.

Because districts are anonymous, i.e., they share the same balancing constraints,

routing budgets and do not have location requirements, any assignment of depots to

districts is valid, so we choose one minimizing total routing costs. We achieve this by

solving a minimum cost bipartite matching subproblem on a graph of parts v1, . . . ,vp
and u1, . . . ,up, where the cost of an edge (vi,uj) is the cost of a TSP tour over units

Si∪ {hj }, where Si is the i-th district of the greedily constructed solution and hj the

depot of index j given by the instance. This optimal matching can be computed in

O(p3) time by the algorithm of Munkres [157], and each match (v∗i ,u
∗
j) corresponds

to depot hj servicing district Si. We therefore reorder the list h of depots accordingly.

In practice, computing p2 optimal TSP tours to build the above graph is usually

too expensive computationally, and so we compute these tours heuristically. We first

optimize each Ti, i ∈ P by 2OPT starting from a list of units in Si in the order which

they were added by greedyConstructive. Next, for each pair i, j ∈ P we compute T ji
as tour Ti with hj inserted to it by GU, or simply T ji = Ti if hj ∈ Si. We then optimize

T
j
i once again with 2OPT, and set the cost of edge (vi,uj) to R(T ji). Since T ji is only

a slight modification over Ti to include hj, in practice it is already close to a local

minimum and 2OPT takes only a few iterations.

Note that the above is applied only once per multistart solution, after greedy con-

struction. We have also considered running this procedure before each call to A4 or

109

A5 to reorganize depots and potentially obtain better solutions, but in practice this

was not effective.

3.6.2.6 Normalizing objective terms

In order to keep compactness C and routing costs R in the same order of magnitude,

thus allowing a more intuitive choice of λ, we divide them by upper bounds Uc and

Ur. This places both terms within [0,1]. These bounds are obtained by generating

a dummy solution Sd through a simple algorithm, and setting Uc = C(Sd) and Ur =

R(Sd). Solution Sd is obtained as follows. First, p initial seed units, one per district,

are selected uniformly at random. Then, while there are unassigned units, we iterate

cyclically over the districts, each time assigning to the current district the unit of least

index on its boundary, if it exists. Routes are updated by GU at every assignment,

and we run 2OPT on each district at the end. Since upper bounds are only used for

normalization in the interest of choosing the λ weight, solution Sd does not need to

be feasible. In practice, final solution values deviate on average 4.4% from Uc, and

21.3% from Ur.

3.6.3 Computational experiments

We have implemented and run the modified method under the same environment

described in Section 3.5, over all four instance sets SRC, RF, RS and GRM. Since

computing routing costs slows down the heuristic considerably, in the following ex-

periments we excluded instances of size n> 5000 from GRM. To avoid recalibrations,

we fixed parameters t = 1.5p, Amax = 100 and Imax = 100 to the best values found

in Section 3.5.1 for the p-median. It is likely that better parameter settings could

be obtained from re-executing irace with the modified method. However, this would

require a separate calibration for each value of λ and R, which was outside our time

budget. To save time, we limited each run in the experiments below to both 1000

multistart iterations and 10 minutes of runtime, and use a fixed seed. The time used

by algorithm A5 to compute the exact tours at the end is not counted towards the

time limit, and so we do not include it in the tables below.

3.6.3.1 Setting instance depots

Because the instances described in Section 3.4 were originally proposed for models

without routing criteria, no district depots are given. We assume that, in real-world

110

scenarios, depots tend to be more or less dispersed over the input graph. Therefore,

we define p depots for each instance by executing the randomized p-dispersion algo-

rithm of Section 3.3.1 with a fixed random seed, prior to the main algorithm. Since

this defines the instances, the time used to do this is not counted towards the time

limit.

We define routing budgets R for each instance in a separate experiment, reported

in Section 3.6.3.4.

3.6.3.2 Experiment 1: influence of different TSP algorithms

In this experiment we calibrate algorithms A2 and A3 used to recompute district

routes after neighboring moves and after tabu searches, respectively. As mentioned

in Section 3.6.2.2, we make this choice experimentally since it was not clear what

the best algorithm choice in these two situations is. We considered the choices

A2 ∈ {GU,2OPT} and A3 ∈ {2OPT,LK1}. In the case A2 = 2OPT, when applying a

neighboring move we first execute GU to update the given tour, and then optimize it

by 2OPT. For this calibration we have fixed λ= 0.5 and no routing budgets. Table 3.6

shows the results. For each instance set and parameter choice we report averages of

the final objective value (Z (r.d.)), shown as the relative deviation (in percent) to the

best known values, the number of multistart iterations (Iter.), and the total running

time in seconds (t).

We see that for all data sets the configuration (A2,A3) = (2OPT,LK1) achieved the

best average Z values, despite being slightly slower when considering running times

and iteration counts. This configuration includes the two heuristics of highest time-

over-quality ratios, which suggests that investing more effort in finding better TSP

routes during optimization pays off. The differences in performance between the

four settings were not significant, since all allowed enough multistart iterations for

feasible solutions to be found. Among the other three settings there are no clear

losers or winners. In the experiments that follow, we have therefore fixed (A2,A3) =

(2OPT,LK1).

Table 3.7 shows, for configuration (2OPT,LK1) and each instance class, the average

tour size n/p and the ratios between tour costs obtained at the five stages consid-

ered. Here, each column Ai/Aj displays the average difference, in %, between tour

costs found by algorithm Ai when it was executed on a tour previously computed by

algorithm Aj.

We see that the proposed greedy update heuristic A1 =GU generally obtains results

111

Table 3.6: Calibrating TSP algorithms A2 and A3.

Inst. A2 A3 Z (r.d.) Iter. t

SRC 2OPT 2OPT 0.01694 1,000.0 70.2
SRC 2OPT LK1 0.01231 1,000.0 76.3
SRC GU 2OPT 0.01682 1,000.0 65.0
SRC GU LK1 0.01382 1,000.0 71.1

RF 2OPT 2OPT 0.24025 373.2 600.0
RF 2OPT LK1 0.20466 390.5 600.0
RF GU 2OPT 0.29308 403.3 600.0
RF GU LK1 0.25944 416.5 600.0

RS 2OPT 2OPT 0.34796 164.8 600.0
RS 2OPT LK1 0.20894 162.5 600.0
RS GU 2OPT 0.44179 176.4 600.0
RS GU LK1 0.40115 171.6 600.0

GRM 2OPT 2OPT 0.34927 19.2 600.0
GRM 2OPT LK1 0.25759 24.3 600.0
GRM GU 2OPT 0.30405 20.1 600.0
GRM GU LK1 0.44132 25.8 600.0

that are very close (under 0.08% difference, on average) to the local minima found by

A2 = 2OPT. This shows that, despite making some simplifications to be computable

in constant time, GU can be an effective way to maintain tours dynamically. Looking

at n > 500, we also see GU scales well for larger tours. The largest deviations are

found between A3 = LK1 and A2 = 2OPT, and are likely due to the large disparity

in effectiveness between these two heuristics. This same effect has been observed

before by Johnson and McGeoch [110]. Column A4/A3 shows only a small difference

between LK2 and LK1, specially for smaller instances, which could indicate that the

LKH stagnates quickly and additional restarts do not help. Looking at the last column,

we see that LK2 is always optimal for n 6 200, and very close to optimal (less than

0.005%) for n > 500, and thus is usually successful in selecting the best multistart

iteration.

3.6.3.3 Experiment 2: effect of weight λ

In this experiment we analyze the effects of using different values of λ when

considering routing as objective. Recall that λ is the weight given to routing

costs R in Z, leaving a weight of 1 − λ for compactness C. We consider values

λ ∈ {0,0.2,0.4,0.6,0.8,1.0}, and no routing budgets. At λ = 0.0 (i.e., with routing

costs disabled) for performance we do not update routes during neighborhood search.

112

Table 3.7: Relative deviations of tour lengths between the different TSP algorithms
used.

Inst. n n/p A2/A1 A3/A2 A4/A3 A5/A4

SRC 60 15.0 0.1098 1.6274 0.0035 0.0000
SRC 80 16.0 0.0999 1.7490 0.0026 0.0000
SRC 100 16.7 0.1085 1.7289 0.0032 0.0000
SRC 120 17.1 0.0998 1.7041 0.0028 0.0000
SRC 150 18.8 0.0983 1.9437 0.0040 0.0000
SRC 200 18.2 0.1066 1.9533 0.0044 0.0000
RF 500 50.0 0.0417 2.0347 0.0223 0.0004
RS 1,000 75.0 0.0615 1.6006 0.0241 0.0013
GRM 1,000 120.8 0.0224 1.1444 0.0361 0.0044
GRM 2,500 123.6 0.0344 1.1705 0.0976 0.0047

Avg. 47.1 0.0783 1.6657 0.0201 0.0011

The same is done for C when compactness is disabled at λ= 1.0. Table 3.8 shows the

results. For each instance set and value of λ we report the average deviation C (r.d.)

of the compactness and the total routing costs R (r.d.) relative to the best known

values, as well as the total number of multistart iterations (Iter.).

We observe a clear progression in the quality of p-median values with decreasing λ:

all best known values for p-median are found at λ= 0. For routing costs, on the other

hand, we see an interesting effect: the best R was consistently found not at λ = 1.0,

but rather between λ= 0.6 and λ= 0.8. This can be better seen in Figure 3.2, where

we plot the progression of route cost deviations as a function of λ, averaged over all

instances. We believe this effect is due to p-median values being related to short TSP

tours: geometrically compact districts are intuitively faster to traverse, and it is likely

that Cpm has a better neighborhood landscape than R for shifts and swaps.

Looking at the number of iterations we see that variants λ = 0 and λ = 1.0 are the

fastest, since they need not compute R and C, respectively. There does not seem to be

a clear trend in performance for the other values of λ.

3.6.3.4 Experiment 3: determining routing budgets for instances

Since instances do not specify routing budgets R, we define them experimentally.

Ideally R should not be so low as to make all instances infeasible, nor so high as to

make them trivial by allowing even unoptimized tours to satisfy them.

We use the Beardwood-Halton-Hammersley formula [13] as a base for our choice

of R. It states that the cost of an optimal TSP tour on n uniformly distributed units on

113

Table 3.8: Effect of different values of λ in the objective function.

Inst. λ C (r.d.) R (r.d.) Iter.

SRC 0.0 0.00 5.26 1,000.0
SRC 0.2 0.33 5.32 1,000.0
SRC 0.4 1.28 3.00 1,000.0
SRC 0.6 2.68 1.43 1,000.0
SRC 0.8 4.56 0.49 1,000.0
SRC 1.0 7.07 0.23 1,000.0

RF 0.0 0.00 5.38 619.7
RF 0.2 0.60 3.51 384.8
RF 0.4 1.46 1.51 391.8
RF 0.6 2.68 0.92 383.1
RF 0.8 5.94 0.28 346.4
RF 1.0 11.88 0.57 679.8

RS 0.0 0.00 3.61 231.9
RS 0.2 0.93 3.56 157.1
RS 0.4 2.07 1.55 159.6
RS 0.6 4.14 0.58 163.6
RS 0.8 7.13 0.36 159.4
RS 1.0 11.14 1.01 262.3

GRM 0.0 0.00 3.45 25.7
GRM 0.2 0.80 2.28 24.7
GRM 0.4 2.22 0.79 25.1
GRM 0.6 4.45 0.41 22.3
GRM 0.8 8.23 0.66 17.4
GRM 1.0 13.38 1.15 63.8

surface of areaA, with Euclidean distances, converges toH=bd/
√
An for large n and

some constant bd. Here we extrapolate the formula to p districts by setting R=H/p,

and since units are associated with plane coordinates, use area A as the axis-aligned

bounding box of all the units. Parameter bd has been empirically determined to be

about 0.714 [6]; however, since input graphs here are usually not complete and thus

routing distances d not always Euclidean, we have found bd < 0.8 to be too tight a

constraint in almost all cases. Further, since our instance sets use different generators

for their topologies, and because instance difficulties also vary according to n and p,

it is unlikely that a single bd works well for all instances. Thus, we choose bd in a

per-instance basis.

For each instance we considered bd ∈ {0.8,0.85,0.9, . . . ,1.25,1.3} and executed 10

multistart iterations of our algorithm with no time limit. In order to choose budgets

that are challenging, we then selected the smallest bd∗ for which at least 2 such

iterations were feasible. Table 3.9 reports, for each instance set and n, the average bd∗

114

●

●

●

●

●
●

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
λ

R
 [r

d.
%

]

Figure 3.2: Effect of λ on routing costs, averaged over all instances.

found, as well as the actual number of feasible iterations (Fea.) obtained at bd = bd∗.

We also report the average ratio between the mean tour cost R∗/p of the best known

solutions and the calibrated budget R= bd
∗/
√
An.

We see that bd∗ has a mean of 1.02, suggesting that routing costs for the instances

considered deviate about 30% from the empirical value 0.714 of the Beardwood-

Halton-Hammersley formula. The selected values bd∗ found feasible solutions in 3.65

out of 10 iterations, on average, and in at most 5.92 iterations for GRM instances of

n = 1000, indicating that the generated budget constraints were neither trivial nor

impossible to satisfy. The difference between the chosen budgets and the tour costs

of the best known solutions was 20.8%, on average.

3.6.3.5 Experiment 4: routing budgets

In this experiment we solve our model with the routing budget constraints defined

in Section 3.6.3.4. We use λ = 0 to disable routing costs in the objective function.

Table 3.10 shows, for each instance set and n, the average deviations (in %) of the

compactness (C (r.d.)) and routing costs (R (r.d.)) relative to the best known values,

as well as the time (t), in seconds, the number of multistart iterations (Iter.), and the

percentage of multistart iterations that were feasible (Fea. (%)).

115

Table 3.9: Calibrating bd for determining routing budgets per instance.

Inst. n bd
∗ Fea. R∗/(pR)

SRC 60 1.10 4.15 1.19
SRC 80 1.08 4.60 1.19
SRC 100 1.05 3.40 1.21
SRC 120 1.09 3.10 1.23
SRC 150 1.06 3.20 1.24
SRC 200 1.11 2.70 1.30
RF 500 1.01 2.68 1.26
RS 1,000 0.89 3.53 1.15
GRM 1,000 0.86 5.92 1.12
GRM 2,500 0.91 3.25 1.19

Avg. 1.02 3.65 1.21

Table 3.10: Results for the variant with routing budget constraints.

Inst. n C (r.d.) R (r.d.) t Iter. Fea. (%)

SRC 60 1.64 5.68 30.6 1,000.0 51.3
SRC 80 1.14 5.34 49.5 1,000.0 43.3
SRC 100 0.99 7.03 57.6 1,000.0 35.1
SRC 120 1.25 8.12 70.7 1,000.0 27.3
SRC 150 1.22 8.76 94.5 1,000.0 27.8
SRC 200 0.82 9.45 117.0 1,000.0 23.9
RF 500 0.14 6.87 593.2 730.4 25.0
RS 1,000 0.18 3.94 600.0 156.6 30.5
GRM 1,000 0.12 3.83 600.0 64.9 38.4
GRM 2,500 0.76 5.20 600.0 22.0 35.2

Avg. 0.83 6.42 281.3 697.4 33.8

We see that average compactness values C stay within 0.83% of the best known

values, but nonetheless did not match them. This suggests budget constraints were

binding, as procedure improveBalance (which, in this version, also minimizes routing

budget constraint violations) likely was unable to make highly compact solutions fea-

sible. Relative deviations of total routing costs Rwere high (6.42%, on average), since

after satisfying budget constraints improveBalance stops considering routing costs at

all. Feasibility rates per multistart iteration averaged only 33.8%; however, given the

high number of total iterations, all runs found feasible solutions.

116

Table 3.11: Comparison of different variants regarding district depots.

Inst. n
No depots Global depot

C (r.d.) R (r.d.) C (r.d.) R (r.d.)

SRC 60 -0.94 -1.72 -0.67 10.74
SRC 80 0.06 -3.65 0.01 13.49
SRC 100 -0.71 -1.30 -0.45 17.93
SRC 120 -0.37 -2.33 0.40 19.32
SRC 150 0.06 -2.17 -0.18 22.59
SRC 200 -0.62 -2.09 -0.53 29.64
RF 500 -0.83 -1.23 0.36 17.01
RS 1,000 -1.66 -1.70 0.12 24.46
GRM 1,000 -1.13 -0.07 0.43 12.00
GRM 2,500 -2.41 -0.86 1.39 22.90

Avg. -0.85 -1.71 0.09 19.01

3.6.3.6 Experiment 5: different variants regarding routing depots

In this experiment we consider two additional variants regarding routing depots.

The first uses a global depot hG for all districts, which we define in the instances as

the optimal 1-center unit hG = argmini∈V maxj∈V dij. The second does not use any

depots. The adaptations to our algorithm required to treat these variants are minor,

and omitted here. For each variant we ran our algorithm on all instances with λ= 0.5.

Table 3.11 reports, instance set and n, the average compactness (C (r.d.)) and routing

costs R (r.d.) of each variant as relative deviations (in percent) from the values of the

default configuration, which uses a local depot to each district.

We observe that the variant with no depots finds 1.71% smaller routes, on average,

compared to local depots. This was expected, as this variant incurs no additional costs

when hi /∈ Di. The single depot variant had significantly higher routing costs: 19%

on average, which comes from all district tours having to visit hG, regardless of the

distance. Concerning C, we find that the variant without any depots was consistently

better for most instance sizes. A possible explanation is that, because routes are

shorter, R plays a lesser role in Z compared to C, and thus Z is more biased towards

compactness.

3.7 Extension to similarity criteria

In this section we present how we have extended our heuristic to include similarity

criteria, which are common in redistricting problems. We have reviewed this type of

117

criteria in detail in Section 2.3.4. As in Section 3.6, our goals are to show how our

heuristic can be extended without changing its underlying algorithms, and to estab-

lish a baseline for future comparison for the resulting districting problem. This section

is organized as follows. In Section 3.7.1 we present how we have modeled similar-

ity criteria within Model (2.1). Next, in Section 3.7.2 we present the modifications

made to our heuristic to handle these new criteria. They include a hard and a soft

constraint strategy, changes to solution construction to ensure initial solutions are

similarity-feasible, and efficient data structures to maintain similarity values. Last,

in Section 3.7.3 we present how we modified existing instances to be redistricting

problems using attribute diffusion models, and report on experiments for the differ-

ent versions of our method.

The work presented in this section has been published in the following conference

paper:

• A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A heuristic algorithm for

districting problems with similarity constraints. In 2020 IEEE Congress on Evo-

lutionary Computation (CEC), pages 1–8, Glasgow, United Kingdom, July 2020.

IEEE.

3.7.1 Modeling redistricting problems with similarity criteria

The main reason for applying redistricting is when the existing attribute values have

changed and thus lead to inefficient districts (e.g., when the total sum of the distances

of voters to their voting center gets too large) or to infeasible solutions (e.g., when the

current districts start to violate balancing constraints). In this sense, we assume that a

reference solution S0 = (S0
1, . . . ,S0

p) exists which corresponds to a previous districting

plan, which has been optimized for an instance with different attribute vectors.

To avoid major changes to plan S0, which can be costly, it is often desired that

solutions produced by automated districting do not deviate much from S0. This is

commonly modeled by either a global similarity requirement, whereby any solution S

should be similar to S0 according to some global similarity metric σG(S,S0), or a local

similarity requirement, such that districts Si, i ∈ P in a solution S should individually

be similar to the corresponding district S0
i in S0, according to a local similarity metric

σL(Si,S0
i).

Although as we saw in Section 2.3.4 some authors model similarity as an objective,

the most common approach is to model similarity as constraints that set lower limits

to the global or local similarities of a solution. In this section, we take the latter

118

approach. This leads to the following optimization model, which follows the structure

of Model (2.1):

minimize
S∈S

C(S) (3.43a)

subject to σG(S,S0)> σG (3.43b)

σL(Si,S0
i)> σ

L ∀i ∈ P, (3.43c)

La 6wa(Si)6Ua ∀ i ∈ P,a ∈A, (3.43d)

connected(Si) ∀ i ∈ P. (3.43e)

It minimizes compactness subject to balancing (3.43d), connectivity (3.43e), and

similarity constraints. Constraint (3.43b) imposes a lower limit σG to the global simi-

larity, while constraints (3.43c) impose a lower limit σL to the local similarity of each

district. We assume that always at most one of (3.43b) and (3.43c) will be active, i.e.,

either σG = 0 or σL = 0.

For the same reasons given in Section 3.6.1, for the experiments in this section

we fix C = Cpm. Still, the changes introduced here work identically irrespective of

compactness measure.

3.7.1.1 Similarity measures

We recall from Section 2.3.4 the definition of overlap distance

oa(Si,Sj) =wa(Si∩Sj)/wa(Si∪Sj) (3.44)

between two districts with respect to some attribute a. Using it, we define the local

similarity between two districts as the total overlap distance between them, for all

attributes:

σL(Si,S0
i) =

∑
a∈A

oa(Si,S0
i). (3.45)

This definition is different from the typical approach which defines overlap distances

over area, i.e., over the unitary attribute a with wa(Si) = |Si| [22, 23, 182], but is

more generic since it can also be extended to include area.

With the above, we define the global similarity of a solution as the average local

similarity

σG(S,S0) =
∑
i∈P
σL(Si,S0

i)/p. (3.46)

119

In this way σG has range [0,1], with σG(S) = 0 for totally dissimilar solutions and

σG(S) = 1 for identical ones.

One may recall from Section 2.3.4 that many authors use a mapping m between

districts in S0 and a newly constructed solution, in order to match district pairs for

which similarity must be considered. We do not use this approach. As we shall see

in Section 3.7.2.1, during solution construction we seed new districts from the district

with same index in S0, and thus ensure that m(i) = i is always a feasible match.

3.7.2 Extending the heuristic to include similarity constraints

In the following we describe how we have adapted our heuristic to include similar-

ity constraints. As in Section 3.6.2, since the core of the method remains unchanged,

we discuss only our changes.

3.7.2.1 Changes to solution construction

We changed procedure greedyConstructive to generate initial solutions which al-

ways satisfy similarity constraints (3.43b) and (3.43c). To achieve this, instead of

using a dispersion heuristic to generate initial seeds, we seed each district Si with

a unit si chosen uniformly at random from S0
i . Then, when expanding the districts,

while either σL(Si,S0
i) > σ

L or σG(S,S0) > σG greedyConstructive restricts the set of

candidate units to include in district Si to ∂(Si)∩S0
i . After feasibility is guaranteed,

the construction proceeds normally.

3.7.2.2 Handling similarity during neighborhood search

We considered two different strategies to handle similarity: as hard constraints and

as soft constraints. We compare them experimentally in Section 3.7.3.2.

When using hard constraints, only neighboring moves which result in a similarity

above lower limits σL and σG are allowed during neighborhood search. This ensures

intermediate solutions are always feasible with respect to similarity constraints, but

may significantly reduce the number of moves available.

When using soft constraints, as we have done for routing budgets in Section 3.6.2

we extend the definition of imbalance to include violations to similarity constraints.

120

Therefore, we define

E(S) =
∑

a∈A,i∈P
ba(Si)/µa (3.47)

+
∑
i∈P

max{0,σL(Si,S0
i)−σ

L }/σL(Si,S0
i)

+max{0,σG(S,S0)−σG }

as the sum of constraint violations to constraints (3.43b), (3.43c) and (3.43d), and

replace every call to B(S) in the main algorithm with a call to E(S). We normalize the

violations to local similarity constraints so they are in the same order of magnitude

as the other two. Note that σG is already in [0,1].

3.7.2.3 Maintaining similarity dynamically

We can compute both local and global similarities dynamically under shifts and

swaps in O(p). We maintain, for each district i ∈ P and attribute a ∈ A, the total

attribute values ιai =wa(Si∩S0
i) and ωai =wa(Si∪S0

i) of Si’s intersection and union,

respectively, with its corresponding district in the reference solution. Using ω and ι

we can compute σL(Si,S0
i) =

∑
a∈A ι

a
i /ω

a
i , and σG(S,S0) =

∑
i∈PσL(Si,S

0
i)/p, both in

O(p).

Values ω and ι are maintained in constant time after neighboring operations. Ini-

tially, we set ιai = 0 and ωai = wa(S
0
i) for all i ∈ P,a ∈ A. Then, when a district Si

gains a unit u, we set

ιai ← ιai +wau[u ∈ S0
i], (3.48)

ωai ←ωai +wau[u /∈ S0
i], (3.49)

and when a district Si loses a unit u, we set

ιai ← ιai −wau[u ∈ S0
i], (3.50)

ωai ←ωai −wau[u /∈ S0
i]. (3.51)

3.7.3 Computational experiments

In this section we report on computational experiments to assess our extension to

similarity constraints. We implemented and ran our modifications under the same

121

environment described in Section 3.5. For these experiments we used instance sets

SRC, RF and RS. Like for routing, to avoid a recalibration we use parameter values

t = 1.5p, Amax = 100 and Imax = 100, use a fixed seed, and limit runs to both 1000

multistart iterations and 10 minutes of runtime. In Section 3.7.3.1 we extend the in-

stance sets of Section 3.4 to redistricting through attribute modification models. Next,

in Section 3.7.3.2 we evaluate the effectiveness of using soft versus hard constraints

for maintaining similarity. Then, in Section 3.7.3.4 we assess the effect of different

similarity metrics.

3.7.3.1 Modifying existing instances towards redistricting problems

Since the instance sets of Section 3.4 do not include data from previous districting

plans, for each instance we have generated both a reference solution S0 and modified

attribute vectors to model this. Note that instance topologies remain the same. Solu-

tion S0 is taken as the best solution found for the p-median objective in each instance

over the experiments of Section 3.5. To model changes in attribute values over time

we use a discrete diffusion model, detailed in the following.

Instead of the input graph G = (V,E) we consider its directed version Gd = (V,A),

with A = {(u,v) | u,v ∈ V, {u,v } ∈ E }, where each edge {u,v } ∈ E has been expanded

into two arcs (u,v) and (v,u). A diffusion model is defined by a doubly stochastic

matrix Pa = (pauv)u,v∈V for each attribute a ∈ A, i.e.,
∑
u∈V p

a
uv = 1 for all v ∈ V and∑

v∈V p
a
uv = 1 for all u ∈ V. Here pauv is the probability that a unit of attribute a at

u ∈ V diffuses to unit v ∈ V. In particular, pauu is the probability of a unit of attribute

a at unit u remaining at its current unit. Diffusion is limited to neighbors, meaning

pauv = 0 for all (u,v) 6∈A. In one step of the diffusion, values of attribute a∈A change

to Para where ra = (rav)v∈V is the vector of the a-th attribute’s values.

We consider two diffusion models: a uniform model and a migration model. In

both we define a basic probability pr for an attribute unit to remain at the current

basic unit, and set pavv = pr for all a ∈A,v ∈ V. In our experiments we used pr = 0.95

which models a high probability of remaining at the current unit. We then distribute

the remaining probability 1−pr over the neighbors of a unit. In the uniform model,

we define pauv = (1−pr)/|N(u)| for all v ∈ N+(u), where N+(u) are the (outgoing)

neighbors of unit u in graph Gd. This represents an unspecific diffusion to the neigh-

bors.

In the migration model, we model the concentration of attributes in centers.

This usually applies to the population. To this end we use the gravity model

122

Table 3.12: Results for the uniform model after 10 steps, using soft and hard similarity
constraints.

Inst. n b0 (%)
Hard constraint Soft constraint

b (%) C (r.d.) Sim. (%) b (%) C (r.d.) Sim. (%)

SRC 60 100.0 100.0 0.0 100.0 100.0 0.0 100.0
SRC 80 100.0 100.0 0.0 100.0 100.0 0.0 100.0
SRC 100 85.0 100.0 2.0 100.0 100.0 6.4 100.0
SRC 120 80.0 100.0 1.5 100.0 100.0 1.0 100.0
SRC 150 70.0 100.0 2.3 100.0 100.0 2.3 100.0
SRC 200 80.0 100.0 0.7 100.0 100.0 3.6 100.0
RF/DS 500 30.0 100.0 −17.2 100.0 100.0 −17.1 100.0
RF/DT 500 85.0 100.0 −1.7 100.0 100.0 −2.0 100.0
RS/DT 1,000 0.0 100.0 −21.4 100.0 100.0 −22.4 100.0
RS/DU 1,000 70.0 100.0 −1.2 100.0 100.0 −1.1 100.0

Avg./Tot. 70.0 100.0 −3.5 100.0 100.0 −2.9 100.0

of migration that assumes that interaction between places u,v is proportional to

I(u,v) = (rau)
αu(rav)

αv/d
γ
uv for some attribute a ∈ A [203]. Following Poot et al.

[168] we select values αv ∈ U[0.8,0.9] for all units v ∈ V, and γ ∈ U[0.8,0.9]. As

before, we set pavv = pr for all v ∈ V, and distribute the remaining probability 1−pr

over the neighboring units. For each neighbor u ∈ N(v) we define a utility value of

Uv(u) = I(u,v). Then the probability of a attribute value rav migrating to neighbor u

is pavu =Uv(u)/
∑
u∈N(v)Uv(u).

3.7.3.2 Comparison of hard and soft constraints for similarity

In our first experiment we analyze whether it is better to handle similarities as a

hard or a soft constraint. Recall that when treated as hard constraints, local and

global similarities are always maintained above the minimum values σL and σG. Con-

sequently, initial solutions that do not satisfy minimum similarity constraints, and

neighborhood search moves that violate them are discarded. On the other hand,

when treated as a soft constraint we allow arbitrarily low similarities, in particular af-

ter improving the compactness, but insist in subsequent balancing steps on a feasible

solution.

For this comparison we generated modified instances with a uniform diffusion

model of 10 steps, and used σL = 0.8 and σG = 0, i.e., only local similarity enabled.

Table 3.12 shows the results when using hard and soft constraints. For a more detailed

comparison, here we report separately the results for instances of type DS and DT of

123

Table 3.13: Results for the uniform model after 5 and 10 steps when similarity is a
hard constraint.

Inst. n
5 steps 10 steps

b0 (%) b (%) C (r.d.) Sim. (%) b0 (%) b (%) C (r.d.) Sim. (%)

SRC 60 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
SRC 80 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0
SRC 100 90.0 100.0 1.5 100.0 85.0 100.0 2.0 100.0
SRC 120 100.0 100.0 −0.8 100.0 80.0 100.0 1.5 100.0
SRC 150 70.0 100.0 2.1 100.0 70.0 100.0 2.3 100.0
SRC 200 100.0 100.0 −1.1 100.0 80.0 100.0 0.7 100.0
RF/DS 500 40.0 100.0 −19.9 100.0 30.0 100.0 −17.2 100.0
RF/DT 500 90.0 100.0 −1.7 100.0 85.0 100.0 −1.7 100.0
RS/DT 1,000 33.3 100.0 −21.3 100.0 0.0 100.0 −21.4 100.0
RS/DU 1,000 76.7 100.0 −1.0 100.0 70.0 100.0 −1.2 100.0

Avg./Tot. 80.0 100.0 −4.2 100.0 70.0 100.0 −3.5 100.0

instance set RF, as well as types DT and DU of instance set RS. For each instance group

we report the percentage b0 of instances where reference solution S0 is balanced in

the diffused model, and for each variant the percentage b of balanced solutions ob-

tained after optimization, the relative deviation C (r.d) = (C(S0) −C(S))/C(S0), in

percent, of each solution S’s compactness from the compactness of the reference so-

lution, and the percentage (Sim.) of solutions that satisfied similarity constraints.

We see that in all cases our method found a new feasible, balanced solution. The

compactness of the instances after redistricting is sometimes smaller, and the im-

provement increases with the instance size. This can be explained by the additional

computation time invested. Comparing compactness values, we see that the hard

constraints overall work slightly better, and so we use this strategy in the next exper-

iments.

3.7.3.3 Effect of different attribute modification models

In this experiment we look at both the uniform and gravity diffusion models. For

each instance we run both models with 5 and 10 steps, and then solve it using simi-

larity as a hard constraint. As before, we used σL = 0.8 and σG = 0.

Tables 3.13 and 3.14 show results for the uniform and gravity diffusion models,

respectively, with the same columns as Table 3.12. In both models we observe that

with an increasing number of diffusion steps, the percentage of initially balanced

instances decreases. Similarly, relative p-median values generally increase. This is

124

Table 3.14: Results for the gravity model after 5 and 10 steps when similarity is a
hard constraint.

Inst. n
5 steps 10 steps

b0 (%) b (%) C (r.d.) Sim. (%) b0 (%) b (%) C (r.d.) Sim. (%)

SRC 60 100.0 100.0 0.0 100.0 60.0 100.0 95.4 100.0
SRC 80 90.0 100.0 8.9 100.0 25.0 90.0 47.0 100.0
SRC 100 25.0 100.0 41.7 100.0 5.0 100.0 65.4 100.0
SRC 120 35.0 100.0 40.2 100.0 0.0 75.0 249.4 100.0
SRC 150 50.0 100.0 24.1 100.0 0.0 100.0 190.9 100.0
SRC 200 30.0 100.0 21.5 100.0 0.0 80.0 144.1 100.0
RF/DS 500 10.0 100.0 −4.1 100.0 0.0 100.0 37.2 100.0
RF/DT 500 10.0 100.0 3.3 100.0 0.0 100.0 11.7 100.0
RS/DT 1,000 0.0 100.0 −3.9 100.0 0.0 20.0 16.8 100.0
RS/DU 1,000 10.0 100.0 1.2 100.0 0.0 100.0 7.8 100.0

Avg./Tot. 36.0 100.0 13.3 100.0 9.0 86.5 86.6 100.0

expected, since the attribute distributions get increasingly different, which require a

compromise in compactness in order to simultaneously satisfy balancing and similar-

ity constraints. Instance sets RF/DS and RS/DT are exceptions to this, however, and

in all cases the heuristic found better p-median values after attribute diffusion. This

is explained by the fact that diffusion models lead to a concentration of attributes in

regions of small Euclidean area, which allows for balanced districts to exist which are

more compact.

Comparing both models we see that the percentage of initially infeasible instances

is much lower in the gravity model, with 36% and 9% after 5 and 10 steps. The

reason for this is that the gravity model is a global model where all basic units in-

teract, and thus the change in attributes is comparatively higher. Furthermore, the

gravity model leads to a concentration of attribute values. As a consequence these

instances are more realistic but also harder to solve. This is corroborated by higher

p-median values. After 5 steps the heuristic still is able to find a feasible solution for

all instances, but after 10 steps the heuristic fails in 15% of instances when using the

gravity model, on average. In all cases, solutions satisfied the minimum similarity

constraint.

In Table 3.15 we show performance data for the gravity model. For 5 and 10

steps we present the average number of iterations (Iter.), the average time find the

best solution (tb, in seconds), and the total runtime (t, in seconds). We can see

that for the smaller instances with up to 200 units, the limit of 1000 iterations is

reached in less than two minutes, and the best solution is found quickly, within at

125

Table 3.15: Number of iterations, time to best and total runtime for the gravity model
after 5 and 10 steps when similarity is a hard constraint.

Inst. n
5 steps 10 steps

Iter. tb t Iter. tb t

SRC 60 1,000.0 0.0 3.9 1,000.0 0.1 7.3
SRC 80 1,000.0 0.0 14.9 1,000.0 0.1 20.0
SRC 100 1,000.0 0.2 17.2 1,000.0 0.5 24.4
SRC 120 1,000.0 0.1 34.7 1,000.0 1.6 51.6
SRC 150 1,000.0 0.2 38.6 1,000.0 2.0 64.4
SRC 200 1,000.0 2.0 62.8 1,000.0 19.6 103.0
RF/DS 500 968.6 147.6 546.2 974.1 198.7 512.7
RF/DT 500 1,000.0 85.3 436.6 998.8 115.1 468.9
RS/DT 1,000 1,000.0 216.2 429.2 1,000.0 199.4 414.1
RS/DU 1,000 259.8 158.3 600.0 268.5 240.0 600.0

Avg./Tot. 922.8 61.0 218.4 924.1 77.7 226.6

most 20 seconds. The larger instances also achieve close to 1000 iterations within

10 minutes, except for RS/DU which always hits the time limit after less than 300

iterations. The performance of the heuristics is mainly driven by instances size, and

less dependent on the number of steps. We do not show results for the uniform model,

which are very similar.

3.7.3.4 Effect of different similarity metrics

In this section we look at the difference between local and global similarity mea-

sures. We ran our algorithm twice for each instance after 5 and 10 steps of the gravity

model: with σG = 0 and σL = 0.8, then with σG = 0.8 and σL = 0.

Table 3.16 shows, for each instance set and number of diffusion steps, the small-

est local similarity sl = mini∈PσL(Si,S0
i) over all p districts and the global similarity

sg = σG(S,S0) obtained from the first and second runs, respectively. We find that fi-

nal similarity values are always well above the lower limit of 80%, hinting that the

difficulties in finding feasible solutions lie in the balancing step. Consequently, as

expected similarity values decrease with an increasing number of steps, as balancing

becomes more difficult.

Setting σG = 0.8 ensures 80% of overall attributes are fixed to the same districts as

in the reference solution, but this percentage may be larger or smaller for individual

districts. On the other hand, setting σL = 0.8 forces each district to individually be at

least 80% similar to the corresponding district. As a consequence, to satisfy local sim-

126

Table 3.16: Local and global similarity in the gravity model after 5 and 10 steps.

Inst. n
5 steps 10 steps

sl (%) sg (%) sl (%) sg (%)

SRC 60 100.0 100.0 96.3 97.3
SRC 80 98.4 99.0 91.5 96.0
SRC 100 94.0 97.7 90.9 96.1
SRC 120 95.1 98.6 89.2 94.2
SRC 150 95.8 98.2 89.1 94.9
SRC 200 94.1 98.3 86.1 93.5
RF/DS 500 90.0 95.1 88.3 94.0
RF/DT 500 97.2 99.0 95.2 98.4
RS/DT 1,000 87.2 95.5 92.8 98.2
RS/DU 1,000 97.0 98.9 95.1 98.3

Avg./Tot. 94.9 98.0 91.5 96.1

ilarity constraints with lower limit σL guarantees also σG(S,S0)> σL, i.e., the feasible

space induced by constraints (3.43b) in Model (3.43) is always stricter than the one

induced by constraints (3.43c). The reverse is not true, however, since global similar-

ity alone may lead to a solution where a few districts suffer a large change. Hence,

we believe that imposing a local, per-district similarity lower bound is preferable.

3.8 Conclusions and outlook

In this chapter we have proposed a heuristic that is generally effective across the

multiple districting variants encompassed by Model (2.1). Despite the existence of

several domain-specific requirements, the three pillars of districting: compactness,

connectivity and balance are present in nearly all problems. We believe these three

criteria remain major facet-defining forces even when problems are extended with

more constraints, and thus a method effective the core subproblem will be effective,

too, when it is extended. In a similar vein, although they differ in definition, as we

have seen in Chapter 2 the many compactness measures are aimed at one goal: to

achieve geometrically compact districts. Therefore, a method which is very effective

for some compactness measure will remain effective if it is swapped.

We have implemented and tested our method on the three most common districting

subproblems: the p-Median, p-Center and Diameter Districting Problems with multi-

ple attributes. We showed experimentally that it is effective in solving large instances

of all three, and yields state-of-the-art results when compared to methods which are

targeted at a single variant. Algorithmically, our method uses a multistart approach

127

which builds solutions greedily, then improves them by a search strategy that alter-

nates between the optimization of the objective function and the problem constraints.

When optimizing constraint violations, to maintain past progress we limit solutions

to a maximum worsening of the objective. A key advantage to this approach is that,

since the optimization of both objective and constraints are decoupled, we can use

different heuristics which may be more suitable to certain criteria, e.g. by taking ad-

vantage of underlying problem structures. In our case, we use tabu searches over

specific neighborhoods to optimize compactness, and a series of tabu searches within

a binary search strategy to optimize balance.

In separate studies we demonstrated the extendability of our heuristic by including

two common criteria found in districting: similarity to a previous plan and routing

costs. In both cases we showed that additional objective terms can be treated by

redefining compactness function C as a weighted sum of criteria, and that local (per-

district) and global (over all districts) constraints can be included by summing their

relative violations to the imbalance B. Both modifications required few changes to

the existing method, and did not significantly impact its performance. Additionally,

we showed how existing instances might be adapted to include these requirements.

Finally, we proposed efficient algorithms to dynamically recompute compactness

functions, balancing constraints, routing criteria and (dis)connectivity under changes

incurred by neighborhood search. Experimentally this provided a significant speedup,

since these computations are clear bottlenecks. These dynamic algorithms are not

specifically tied to our method, and could be used in other optimization algorithms

for districting, making them an independent contribution.

3.8.1 Outlook

We have identified four promising directions to improve our heuristic. First, in pre-

liminary experiments we observed that the constructive heuristic and filtering mech-

anism of Section 3.3.1 play a large role in the final solution quality, which beckons

a deeper analysis of filtering strategies [172]. Second, it would be worthwhile to

investigate the addition of a shaking mechanism [141] to the alternating strategy.

Currently, once the alternating search stagnates we discard the current solution and

start a new multistart iteration, and so rely mainly on the constructive heuristic for

variability. By applying a small perturbation to the current solution, i.e. “shaking” it,

we may reach unvisited parts of the search space without foregoing the current im-

provements in balance and compactness. Third, in terms of search neighborhoods we

128

find that Nshift and Nswap often overlook longer improving paths that go over sev-

eral worsening moves before finally improving the incumbent. To address, very large

neighborhood search strategies [1] could be effective. We provide a deeper discus-

sion of this issue in the next chapter, in Section 4.6, and show one such strategy that

was effective for the Maximum Dispersion Problem. Fourth, we believe that due to its

alternating nature that zigzags between solutions of e.g. high compactness and low

imbalance, our solver could be effective in generating Pareto fronts for bi-objective

formulations, which are common in districting. Therefore, it would be useful to de-

velop a clear methodology to achieve this.

129

4 A HYBRID HEURISTIC FOR THE MAXIMUM DISPER-

SION PROBLEM

In this chapter we present our hybrid heuristic for the Maximum Dispersion Prob-

lem, published in the following article:

• A. Gliesch and M. Ritt. A hybrid heuristic for the maximum dispersion problem.

European Journal of Operational Research, 288(3):721–735, 2021.

Abstract. In this chapter we propose a hybrid heuristic for the Maximum Dispersion

Problem, which asks to find a balanced partition of a set of objects such that the

shortest intra-part distance is maximized. In contrast to districting problems, disper-

sion problems aim for a large spread of objects in the same group. They arise in many

practical applications such as waste collection and the formation of study groups. Our

heuristic alternates between finding a balanced solution, and increasing the disper-

sion. Balancing is achieved by a combination of a minimum cost flow algorithm to

find promising pairs of parts and a branch-and-bound algorithm that searches for an

optimal balance, and the dispersion is increased by a local search followed by an ejec-

tion chain method for escaping local minima. We also propose new upper bounds for

the problem. In computational experiments we show that the heuristic is able to find

solutions significantly faster than previous approaches. Solutions are close to optimal

and, in many cases, provably optimal.

4.1 Introduction

The Maximum Dispersion Problem (MaxDP) is to find a partition of a set of

weighted objects such that the total weight of each part is close to a given target

weight, and the dispersion, defined as the minimum distance between two objects in

the same group, is maximal. Dispersion problems can be understood as the opposite

of clustering problems, and arise in many practical situations. We give two example

130

applications from the literature.

The first is the design of waste collection territories in Germany in accordance

with the European Waste Electrical and Electronic Equipment (WEEE) recycling di-

rective [165]. This directive requires to assign waste collection stations to companies

such that stations assigned to the same company are as dispersed as possible, in or-

der to prevent regional monopolies. The problem extends the MaxDP by considering

additional application-specific criteria, for example allowing the same station to be

assigned to multiple companies. The main model for this application has been intro-

duced by Fernández et al. [60], who also propose a GRASP algorithm to find heuris-

tic solutions. Recently, Ríos-Mercado et al. [185] proposed a tabu search heuristic

and Ríos-Mercado and Bard [179] an exact approach by mixed integer programming

(MIP) to solve the same model.

The second application was considered first by Baker and Powell [10] and con-

cerns the design of heterogeneous learning groups. Here, study groups comprised of

students with backgrounds as different as possible are desired, to promote intercul-

tural and interdisciplinary exchanges. The distances between students are given by

the weighted differences between binary attribute vectors associated with each stu-

dent. Thus, the problem can also be modeled as finding balanced groups of maximum

dispersion.

The MaxDP was introduced by Fernández et al. [61] as a generalization of the

two applications above. They propose an exact solution method based on mixed

integer programming. It uses the fact that an instance of the MaxDP with n objects

has at most
(
n
2

)
solution values and iteratively solves a series of models with fixed

upper and lower bounds on the solution value. The exact method is reported to solve

instances of sizes up to 700 objects for instances of the WEEE application, and 300

objects for study group instances. Fernández et al. [61] also show that the MaxDP

is NP-hard, by reduction from the Partition Problem. Moeini et al. [150] have also

proposed a variable neighborhood search (VNS) to heuristically find solutions for the

MaxDP. However, the authors consider only instances of the WEEE application of

relatively small size (up to 500 objects), which can be solved exactly by the method

of Fernández et al. [61].

Upper bounds on the MaxDP can be obtained by relaxing the constraints on the

total group weight. The resulting unrestricted MaxDP (UMaxDP) problem can be

solved by reduction to a series of graph coloring subproblems. Fernández et al. [61]

propose an upper bounding scheme which considers the optimal solution of a set of

smaller, heuristically generated subinstances. Ríos-Mercado and Bard [179] consider

131

the design of recycling districts based on MIP models and also use upper bounds to

UMaxDP in order to improve the models.

There are a number of related grouping problems in the literature. In contrast

to the MaxDP, which asks for dispersed groups, as we saw in Chapter 2 districting

problems generally ask for units to be assigned to contiguous and compact groups.

The Capacitated Clustering Problem [156] seeks groups of a given maximum overall

weight and minimizing the sum of distances from the median object of each group. In

terms of dispersion-based objectives, the Maximally Diverse Grouping Problem, first

studied by Arani and Lotfi [7], asks that objects be partitioned into groups meeting

balancing criteria and that maximize the sum of intra-group distances. Brimberg et al.

[25] and Lai and Hao [124] have proposed heuristics based on incremental neighbor-

hoods to solve it. In the context of location theory, the p-Dispersion Problem [55] asks

for facilities to be located such that the minimum distance between two facilities is

maximized. Some problem variants consider equity measures such as the minimum

differential dispersion among selected facilities among a set of candidates [170, 51].

In this chapter we propose a heuristic to solve the MaxDP. Starting from a greedy

initial solution, it iteratively alternates between improving the dispersion and balanc-

ing the solution. The heuristic stops when the dispersion cannot be improved, or

optimality can be shown, by a matching upper bound.

The main contributions of this chapter are:

1. a hybrid method combining a local search to improve dispersion with an effec-

tive ejection chain algorithm to resolve conflicts, which operates in the space of

imbalanced solutions,

2. an algorithm for balancing solutions, that repeatedly selects two promising

groups based on information computed by solving a minimum cost flow problem

and applies a truncated branch-and-bound that searches for the best strategy to

balance them,

3. a proof that two existing upper bounds from the literature are the same, and a

new family of better upper bounds, together with algorithms to compute them

efficiently,

4. a new set of large, challenging instances,

5. a detailed computational analysis that shows that the overall heuristic can solve

more instances than previous methods in one to two orders of magnitude less

time, and expands the limit of solvable MaxDP instances from 800 to about

4000 objects.

132

Although the method is heuristic, combined with the new upper bound many solu-

tions are provably optimal; in particular, we solve more instances to optimality than

previous approaches.

The rest of this chapter is organized as follows. In the next section we give a formal

definition of the problem. In Section 4.3 we review existing upper bounds and pro-

pose an improved upper bound. The proposed heuristic algorithm is outlined in Sec-

tion 4.4, and Sections 4.5 and 4.6 explain in detail the algorithms used to improve

the dispersion and to balance solutions. In Section 4.7 we report on experiments that

assess the effectiveness of the proposed heuristic, as well as each of its components.

We conclude in Section 4.8.

4.2 Problem definition

An instance I = (V,m,d,a,α) of the MaxDP is defined by a set of objects V of size

n= |V |, the desired number of groupsm, a matrix d∈Rn×n+ of distances the objects, a

vector a ∈ Rn+ of object weights, and a balancing tolerance parameter α ∈ [0,1]. Note

that we use a different notation from the one introduced for districting in Chapter 1,

in order to be consistent with the MaxDP literature [61]. Let R= {dij | i, j ∈ V } be the

set of unique distance values, and d1 < · · ·< d|R| denote these distances in increasing

order. For convenience, we also introduce a value d0 < d1.

We define a solution as a function S : V → [m] mapping objects to groups. We

allow S to be partial. In a partial solution the objects in V \dom(S) are unassigned or

free. A solution S is complete if all objects are assigned, i.e., dom(S) = V. We write

Sk = S
−1(k) for the set of objects assigned to group k in solution S.

The dispersion of group k is defined as D(Sk) = mini,j∈Sk dij, and the dispersion

of solution S as D(S) = mink∈[m]D(Sk). Given some dispersion value d we call a

pair of objects { i, j } a d-pair in S if dij = d and S(i) = S(j), and a D(S)-pair a critical

pair. Objects i and j are conflicting in S if dij < D(S). Note that, by definition of D,

conflicting objects cannot belong to the same group. Let C(S) be the set of critical

pairs in S. During optimization we often use a extended objective function D ′(S) =

D(S) − ε|C(S)|, where ε� mini,j∈V dij is a small constant, to break ties and order

solutions by the number of moves necessary to increase their dispersion. This is

especially important for instances of type “study” (see Section 4.7.1) where object

distances are integer and |R|�
(
n
2

)
, making |C(S)| generally large.

Let w(C) =
∑
i∈Cai be the total weight of the set of objects C, and Mk be a given

target weight for group k. We assume that
∑
k∈[m]Mk =

∑
i∈V ai. The imbalance of

133

group k is the excess of the relative deviation of its weight from the target over α,

namely B(Sk) = max{0,−α+ |w(Sk)−Mk|/Mk }, and the imbalance of a solution S is

the total imbalance B(S) =
∑
k∈[m]B(Sk). The imbalance B represents the constraint

violations of the classical balancing constraints given in the problem definition [61].

We say that group k is balanced if B(Sk) = 0, otherwise it is imbalanced. A solution S is

balanced or feasible if all its groups are balanced. The tolerance parameter α allows a

small deviation from the target weights, since the underlying packing problems may

not always be feasible.

The goal of MaxDP is to find a balanced solution of maximum dispersionD. We also

define the unrestricted MaxDP (UMaxDP, for short), which simply asks for a solution

of maximum dispersion without balancing constraints. The UMaxDP is NP-hard, by

reduction from the Vertex k-Coloring Problem [61]. Note that, since it is a relaxation

of the original problem, the optimal solution value u∗ur of the UMaxDP is an upper

bound on the optimal value of the MaxDP.

For completeness we next give a mathematical model for the MaxDP. Let xik ∈ {0,1 }

be a variable that indicates that object i ∈ V is part of group k ∈ [m]. Then we can

formulate

maximize min
i,j∈V

∑
k∈[m]

dijxikxjk (4.1)

subject to
∑
k∈[m]

xik = 1, ∀i ∈ V, (4.2)

Mk(1−α)6
∑
i∈V
aixik 6Mk(1+α) ∀k ∈ [m], (4.3)

xik ∈ {0,1 } ∀i ∈ V,k ∈ [m]. (4.4)

In this formulation, the objective function (4.1) maximizes the distance among any

two object assigned to the same group. Note that the objective function is quadratic

and contains a minimum; both elements can be linearized by standard techniques.

Constraints (4.2) guarantee that each object is assigned to exactly one group, and

constraints (4.3) make sure that solutions are balanced.

Finally, we define two operators over solutions, which are akin to the operators

of the same names for districting problems we have defined in Section 2.4.2.3. A

shift i→k reassigns object i to group k ∈ [m]\ {S(i) }. Similarly, a swap i↔j swaps the

assignments of objects i and j with S(i) 6= S(j), i.e., i will be shifted to group S(j) and

j to S(i). We use the notation S[i→k] and S[i↔j] to refer to solution S after applying

the respective operation, and denote the sets of all possible operations for solution S

134

as Nshift(S) and Nswap(S), for shifts and swaps, respectively.

In the rest of the chapter, when solution S is clear from the context we will omit S in

unary functions such as B or D. Further, to make all procedures completely defined,

unless otherwise stated we break ties by giving preference to a smaller object index i

followed by a smaller group index k, when applicable.

4.3 Upper bounds

In this section we introduce new upper bounds for the UMaxDP. Since α is not

relevant for the UMaxDP, we consider instances I = (V,m,d) and write D(I) =

maxS∈S(I)D(S) for the optimal solution value over all complete solutions S(I) of I.

We call I ′ = (V ′,m,d) a k-subinstance if V ′ ⊆ V has size k = |V ′|. Let Ik be the set

of all k-subinstances of instance I. Note that the optimal value of a k-subinstance I ′

of I is an upper bound on the optimal value of I, since any solution of I with given

dispersion d when restricted to I ′ has dispersion at least d.

Fernández et al. [61] have proposed an upper bound UC = minI ′∈Im+1D(I ′), which

is the least upper bound obtained by solving all (m+1)-subinstances of an instance

I. An (m+1)-subinstance can be solved optimally in time O(m2) by computing the

maximum distance between two objects and putting them in the same group, with all

remainingm−1 items in a group by themselves. Since it is impractical to consider all(
|V |
m+1

)
subinstances, the authors propose a relaxed upper bound UCh which considers

only a sample of all subinstances. Samples are generated heuristically by a greedy

algorithm and improved by a local search.

Ríos-Mercado and Bard [179] show that (m+2)-subinstances can also be solved

in time O(m2), and consequently extend the above idea to consider all (m+ 2)-

subinstances. They define an upper bound URB = minI ′∈Im+2D(I ′) as the least upper

bound over all (m+2)-subinstances, and an efficiently computable heuristic version

URBh , which samples (m+2)-subinstances generated by a greedy algorithm. Empiri-

cally URBh outperforms UCh on the tested instances. We refer the reader to the original

papers for details on how UCh and URBh are computed.

We generalize this idea to a family of decreasing upper bounds U1>U2>U3> · · ·>
U|V |−m, where Uσ is the least upper bound over all (m+σ)-subinstances. Observe that

U1 = UC and U2 = URB, and U|V |−m = u∗ur is the optimal solution of UMaxDP, since it

contains all vertices.

In Section 4.3.1 we first explain the relation between UMaxDP and graph coloring

and show that U1 = U2, and then propose in Section 4.3.2 a heuristic to generate

135

(m+σ)-subinstances for a given parameter σ, which can be solved by exact graph

coloring algorithms in order to obtain better upper bounds.

4.3.1 The unrestricted MaxDP and graph coloring

The UMaxDP has a solution S with dispersion D(S) > d iff the intersection graph

Gd = (V,Ed(V)), where Ed(V) = { {u,v } | u,v ∈ V,duv 6 d }, is m-colorable. Such a

solution can be obtained by computing a minimum vertex coloring for Gd. If there

are at mostm colors, each color can form a group, and by definition of the intersection

graph the distance between vertices in the same group cannot be d or less, soD(S)>d

follows. Thus, the UMaxDP can be solved by finding the largest di, i ∈ [|R|] for which

Gdi−1 is m-colorable.

Bounds can also be formulated by considering cliques. If the intersection graph

Gd contains an (m+ 1)-clique it is not m-colorable, and thus d is an upper bound

on the dispersion. Thus we obtain an upper bound by finding the smallest di such

that contains an (m+1)-clique. Fernández et al. [61] show that upper bound UC is

equivalent to the smallest di such that ω(Gdi)>m+1, where ω(G) is the size of the

largest clique in G.

Since the size of any clique of a graph G is a lower bound on the size of any coloring

of G, the size of its largest clique, ω(G), is a lower bound on the size of the smallest

coloring, its chromatic number χ(G). Note that if Gu∗ur has no chromatic gap (i.e.,

ω(Gu∗ur) = χ(Gu∗ur) =m+1) then U1 = UC = u∗ur is optimal. Otherwise, Gu∗ur has no

(m+1)-clique and u∗ur < U1. Graphs with a chromatic gap tend to be harder to color

by exact coloring algorithms, since the lower bound given by the clique number is

weak [37]. In general, Uσ (and thus all Uk with k> σ) can still be optimal for larger

chromatic gaps of Gu∗ur. However, this does not hold for U2, as the following theorem

shows.

Theorem 4.3.1 Upper bounds U1 and U2 are the same, i.e., U1 = U2.

Thus, U2 = URB can never improve over U1 = UC. The sampling-based heuristic

versions UCh and URBh still can produce different results, if they fail to find the right

subinstances that witness these upper bounds.

For the proof of Theorem 4.3.1 we use the following result of Dirac [48]:

Theorem 4.3.2 If 06n6 k−1, a k-chromatic graph either contains a complete (k−n)-

graph as a subgraph or has at least k+n+2 vertices.

136

Proof. If U2 < U1, there must be an (m+2)-subinstance I ′ = (V ′,m) that witnesses

this, i.e., the intersection graph W = GU2(V ′,E(V ′)) has m+2 vertices, and χ(W) =

m+1.

Now by Theorem 4.3.2 with n = 0 and k =m+1, W either contains a complete

(m+1)-subgraph or has at least m+3 vertices. Since it has m+2 vertices it must

contain a complete (m+1)-subgraph K. But then U1 = minI ′∈Im+1D(S)6D(K)6U2,

since K ∈ Im+1, contradicting our assumption. �

4.3.2 An improved upper bound

Given a parameter σ > 2 and instance I = (V,m,d), we search for an improved

upper bound Uσh by searching for an (m+σ)-subinstance of I whose graph induced

by the current upper bound is not (m+1)-colorable. If the search is successful, the

current upper bound can be reduced, since the graph induced by u∗ur must be (m+1)-

colorable. The choice of σ must be small enough such that the coloring subproblems

can be solved optimally within reasonable time, but at least as large as the smallest

subgraph of Gu∗ur of chromatic number m+ 1. We calibrate parameter σ in Sec-

tion 4.7.2.1.

Starting from an initial upper bound du = UCh , algorithm UB iteratively generates,

for each i∈ V, an (m+σ)-subinstance Ii = (Vi,m,d)⊆ I using a constructive heuristic

seeded by object i, followed by a local search procedure, as explained below. For each

Ii it then computes an exact coloring of the induced subgraph Hiu = (Vi,Edu(Vi)).

Here, we use the implementation of Lewis et al. [131] of the exact coloring algorithm

of Korman [121]. IfHiu is notm-colorable, then du is not optimal, and can be reduced.

Algorithm UB then binary searches for the largest 1 6 u ′ < u such that χ(Hiu ′) 6m,

and updates u with this value. At most O(n+ log2 |R|) exact colorings are computed.

It processes the graphs Hiu in order of decreasing degree of node i and stops if an

improving subinstance is found or if a time limit is reached. In the end, UB returns

the final upper bound UGRσ = du. The full method is given in Algorithm 6.

Each set Vi is constructed by starting with Vi = { i } and iteratively adding the next

object j ∈ V \Vi such that the number of edges |Edu(Vi)| is maximized, with ties bro-

ken by maximum degree, until |Vi| = m+σ. Then, algorithm UB performs a first-

improvement local search that swaps objects in Vi with objects in V \Vi, again aiming

to maximize |Edu(Vi)|. It iterates over the candidates in a round-robin fashion, start-

ing from the first object index. Here, we search for subgraphs with as many edges

as possible, as opposed to other criteria, since |Edu(Vi)| is fast to compute and em-

137

Algorithm 6 Algorithm UB to compute an improved upper bound.

Input: an instance I= (V,m,d) and a subinstance size σ > 0.
Output: an improved upper bound Uσh 6 UCh .

1: procedure UB(I, σ)
2: du← UCh(I)
3: let V = {v1, . . . ,vn } such that δ(v1)> δ(v2)> · · ·> δ(vn)
4: for i ∈ [n] do
5: Vi← generateSubinstance(I,σ,du,vi)
6: Hiu← (Vi,Edu(Vi))
7: if χ(Hiu)>m then
8: u← binarySearch(Vi,1,u−1)
9: break

10: return du

pirically it has a large influence on the chromatic numbers. Smith-Miles et al. [200]

have thoroughly studied the relevance of several other metrics to the difficulty of

graph coloring instances, and found the density (and thus the number of edges, for a

graph of fixed size) to be among the three most important. Algorithm 7 outlines this

procedure.

Algorithm 7 Algorithm generateSubinstance to generate subinstances with high up-
per bounds.

Input: an instance I = (V,m,d), a subinstance size σ > 0, the current upper bound
index u, and a seed object vi ∈ V.

Output: a subset Vi ⊆ V of size σ such that vi ∈ Vi.
1: procedure GENERATESUBINSTANCE(I, σ, du, vi)
2: Vi← {vi }

3: do
4: j← argmax { |Edu(Vi∪ {j})|+δ(j)/n, j ∈ V \Vi }

5: Vi← Vi∪ { j }
6: while |Vi|< σ

7: do
8: V ′i ← Vi
9: for j ∈ Vi cyclically, in increasing order of index do

10: for k ∈ V \Vi cyclically, in increasing order of index do
11: if |Edu((Vi \ { j })∪ {k })|> |Edu(Vi)| then
12: Vi← (Vi \ { j })∪ {k }
13: while Vi 6= V ′i
14: return Vi

Note that since algorithm UB only considers a sample of n subgraphs, Uσh may not

be as low as Uσ; we show in Section 4.7.2.2, however, that with an appropriate choice

of σ it always improves existing upper bounds in practice. By starting with UCh , we

ensure Uσ is at most UCh , but any feasible upper bound can be used as an initial value

138

for du. Here, we chose UCh rather than URBh as it is faster to compute and empirically

smaller.

4.4 A hybrid heuristic for the MaxDP

Algorithm 8 Hybrid alternating search heuristic “Hase”.

1: ub← UB()
2: S0← infeasible solution
3: D(S0)← d0

4: S1← greedyConstructive()
5: repeat
6: Si← optBal(Si,D(Si))
7: if Si is imbalanced then
8: binary search for the largest d ∈ (D(Si−1),D(Si))∩R s.t. B(optBal(Si,d)) =

0
9: if no such d exists then

10: if i= 1 then
11: return optimal solution of model (F), or S0 if none found
12: return Si−1

13: else
14: return optBal(Si,d)
15: if D(Si) = ub or time limit reached then
16: return Si

17: i← i+1
18: Si← optDisp(Si−1,ub)
19: until D ′(Si) =D ′(Si−1)
20: return Si

We propose a hybrid heuristic which we call Hase (derived from “hybrid alternating

search”) to solve the MaxDP. Its overall structure follows our proposed alternating

approach of Chapter 3 for solving districting problems. Algorithm 8 summarizes the

method. Hase alternates between balancing solutions and increasing the dispersion.

This is repeated until a time limit is reached or a feasible solution with a dispersion

equal to the upper bound is found.

Algorithm optBal tries to balance a solution. Since balancing a solution may reduce

its dispersion arbitrarily, optBal is restricted to produce only solutions with a minimal

acceptable dispersion d. In the first trial d is set to the dispersion of the current solu-

tion, and thus the dispersion is not allowed to decrease. However, if this fails, Hase

uses a binary search to find the largest dispersion that can be successfully balanced.

The search interval includes all dispersion values between the last solution that could

be balanced, and the first solution that could not. In this case a regress in disper-

139

sion is allowed in order to find a feasible solution. After finding the largest feasible

dispersion, Hase assumes that no larger dispersion is feasible and stops.

Otherwise, if optBal is able to balance the current solution of highest dispersion,

algorithm optDisp tries to increase the dispersion. To achieve this, it is allowed to

produce imbalanced solutions. If the dispersion cannot be improved, the heuristic

terminates. Otherwise, the next iterations starts to balance the improved solution, if

required.

Algorithm optDisp starts from a balanced solution and stops whenever the disper-

sion improves, which typically entails only a small change. This is done to avoid a

large regress in the solution’s imbalance, such that from the second iteration of opt-

Bal starts from a nearly balanced solution, and thus tends to be much faster. Further,

by doing small, incremental improvements the algorithm avoids terminating with an

imbalanced solution when reaching the time limit. In the special case where optBal

fails with d = d1, in a final effort to find any feasible solution Hase tries to solve a

feasibility MIP model (F), given by

exists x ∈ {0,1 }V×[m] (F)

subject to x satisfies (4.2), (4.3), and (4.4).

If model (F) is infeasible, then Hase returns S0 with a proof of infeasibility; otherwise,

it returns solution x. If (F) cannot be solved within the remaining time limit, Hase

also returns S0, but without an infeasibility guarantee. In the following subsection we

explain the greedy construction of an initial, possibly imbalanced solution that will be

balanced in the first iteration. Next, in Section 4.5.2 we explain algorithm optDisp,

which tries to increase the dispersion by alternating between a local search and a

tree-based ejection procedure, followed algorithm optBal in Section 4.6, which tries

to balance a solution by a truncated branch-and-bound method.

4.4.1 Initial solutions

A greedy constructive algorithm generates initial solutions. It first seeds the m

groups with m objects from an (m+ 1)-subinstance IUCh witnessing UCh (i.e., whose

maximum pairwise distance is equal to IUCh) generated using the method of Fernández

et al. [61], excluding the object of lowest index that is part of the maximum pairwise

distance. This is done to select initial seeds which are as close to each other as

possible. No additional step is required to find these seeds, as IUCh is obtained when

computing the upper bound in algorithm UB.

140

The algorithm then iteratively selects the group k with the smallest fraction of

achieved target weight w(Sk)/Mk and assigns to it a free object i which maximizes

D ′(S[i→k]), with ties broken by minimum imbalance. This choice of the next as-

signment gives preference to initial solutions of high dispersion, as opposed to more

balanced ones. Still, some initial balancing is ensured by preferring assignments with

minimum imbalance. The algorithm stops when all objects have been assigned. Be-

cause both D ′ and B are recomputed in constant time upon object insertions, the so-

lution is constructed from the seeds in time O(n2). Algorithm 9 outlines the method.

Algorithm 9 Algorithm greedyConstructive to generate initial solutions.

Output: an initial solution.
1: procedure GREEDYCONSTRUCTIVE

2: let (v1, . . . ,vm+1,k,d) be an (m+1)-subinstance witnessing UCh ,
s.t. ∃j : vj > vm+1 ∧dvjvm+1 > dik∀i,k ∈ [m]

3: Sk← {vk } ∀k ∈ [m], inducing solution S
4: do
5: k← argmink∈[m]w(Sk)/Mk

6: i← argmaxi∈[n]\⋃l∈[m]Sl
D ′(S[i→k])−εB(S[i→k])

7: Sk← Sk∪ { i }
8: while dom(S) 6= V
9: return S

4.5 Improving dispersion

Algorithm optDisp improves the dispersion of a solution by alternating between a

local search (LS) and a recursive exchange procedure (EX) based on a tree search. LS

repeatedly performs shift and swap operations, and stops if it cannot further improve

the incumbent (see Section 4.5.1). Then, EX attempts to find a longer sequence of

moves to escape the current local minimum (see Section 4.5.2). optDisp alternates

between LS and EX until either the current extended dispersion D ′ cannot be im-

proved, dispersion D has improved, the upper bound is achieved or a time limit is

reached. At the end, if D has improved optDisp runs LS once more. Note that since

10 ignores balancing constraints, it may produce and work with infeasible solutions.

Because it requires D ′ to improve at each iteration and stops once D is improved,

optDisp iterates at most |C(S)|=O(
(
n
2

)
) times. Algorithm 10 outlines the method.

141

Algorithm 10 Algorithm optDisp to improve dispersion.

Input: a solution S0 and an upper bound ub.
Output: a solution S such that D ′(S)>D ′(S0).

1: procedure OPTDISP(S0, ub)
2: S← S0

3: do
4: S ′← S

5: S← LS(S)
6: S← EX(S)
7: while D ′(S) 6=D ′(S ′)∧D(S0) =D(S)< ub∧ in time limit
8: if D(S0)<D(S)∧ in time limit then
9: S← LS(S)

10: return S

4.5.1 Local search

Algorithm LS searches neighborhoods Nshift and Nswap iteratively performing a

shift or a swap which increases the dispersion D ′ until no more improving moves ex-

ist. Since |Nswap(S)|� |Nshift(S)|, LS first explores Nshift fully and considers swaps

only if there is no improving shift. It uses a first-improvement strategy and explores

each neighborhood in a round-robin fashion, i.e., each call to LS continues the search

cyclically from the point where the previous call stopped. Note that only operations

on objects in critical pairs can improve D ′(S), so LS considers the reduced neighbor-

hoods { i→k | i ∈⋃C(S),k ∈ [m]\ {S(i)} } for shifts and { i↔j | i ∈⋃C(S), j ∈ [n]\S(i) }

for swaps. These neighborhoods have sizes O(|C|m) and O(|C|n), respectively. Algo-

rithm 11 outlines the method.

The number of critical pairs |C| varies according to the instance and can poten-

tially be as large as
(
n
2

)
, if all objects are in the same location. In practice, however,

instances of the WEEE application typically have |C| < 10, while instances of study

group design have more duplicate distances and average |C|≈ n/m. Using a dynamic

data structure to update D ′ in time O(n2 logn) and evaluate D ′ for candidate moves

in time O(m), each iteration takes O(n2(m+ logn)) time, since the swap neighbor-

hood dominates.

4.5.2 An ejection chain algorithm for improving dispersion

Algorithm EX searches for an improving ejection chain [85]. The idea is to eject

some object i ∈ ⋃C(S) from its current group (i.e., free that object), obtaining a

partial solution with better D ′(S), and then to insert i into some other group k 6= S(i).

142

Algorithm 11 Local search LS to improve dispersion.

Input: a solution S0.
Output: a solution S such that D ′(S)>D ′(S0).

1: procedure LS(S0)
2: S← S0

3: do
4: S ′← argmax {D ′(S[i→k]) | i ∈⋃C(S),k ∈ [m]\ {S(i) } }
5: if D ′(S ′)>D ′(S) then
6: S← S ′

7: continue
8: S ′← argmax {D ′(S[i↔j]) | i ∈⋃C(S),S(j) 6= S(i) }
9: if D ′(S ′)>D ′(S) then

10: S← S ′

11: while D ′(S) =D ′(S ′)∧ in time limit
12: return S

This can lead to a sequence of accommodating moves. Insertions are recursively done

as follows. Let d ′ be the dispersion D(S) before the ejection of i and κ(i,k,S) = { j |

j ∈ Sk,dij 6 d ′ } be the set of conflicting objects induced by the placement of object

i into some group k. When attempting to insert i into k, EX ejects every object

j ∈ κ(i,k,S) from k, and recursively tries to reinsert each object j into the solution

using the same procedure. Note that κ(i,k,S) is non-empty for all k at recursion

depth 0, since we assume that the current solution is a local minimum of Nshift. If

an object is moved to another group, it is fixed, and cannot be moved again in that

recursion branch. Reinserting an object i is considered successful if i is not fixed and

inserting all j ∈ κ(i,k,S) is successful for some k ∈ [m] (the basic case is κ(i,k,S) = ∅,
i.e., there are no conflicts).

This process can also be described by an AND/OR tree. Here, OR nodes branch on

the possible groups an ejected object can be moved into, and only one branch must

succeed for the OR node to be considered feasible, whereas AND nodes branch on

the conflicts induced by an insertion, and all branches (each, in turn, an OR node

representing a conflict) must be successfully placed for the AND node to be feasible.

Algorithm EX considers the possible receiving groups k ∈ [m] in order of non-

decreasing number of conflicts |κ(i,k,S)|, i.e., it prefers groups which will eject the

least number of objects, and thus likely require fewer recursive calls. We have found

this to be significantly better than an arbitrary group ordering. EX discards groups k

where κ(i,k,S) contains a fixed object, since they cannot be successful. When rein-

serting the ejected objects, it first tries objects which are more likely to fail: since all

objects in κ must be inserted, a single failure allows to fathom unsuccessful nodes

143

early. To this end, EX keeps track of the number ϕ(i,k) of unsuccessful placement

attempts for each object i and group k and the total number of failed insertions

ϕ(i) =
∑
k∈[m]ϕ(i,k), and attempts to reinsert ejected objects in decreasing order

of ϕ(i), with ties broken by i. The value of ϕ is maintained across multiple calls to

EX.

Since at least one object is fixed at each node in the recursion tree, the recursion

depth is bounded by n. However, this still leads to a search space that is too large to

be explored in practical time. Therefore, inspired by the well-known heuristic of Lin

and Kernighan [137] for the TSP, we introduce parameters p1, p2 and p3 such that:

• at depth d 6 p1 EX expands all possible insertions of the current object into

other groups,

• at depth p1 < d 6 p2 EX only recurses on groups k with a single conflict

(|κ(i,k,S)|6 1),

• at depth p2 < d 6 p3 EX adopts an aggressive backtracking approach and re-

curses only on the group k with smallest lexicographic (ϕ(i,k),k) among the

groups with a single conflict,

• at depth d > p3, if there are still conflicts the node is pruned, i.e., the current

branch is declared unsuccessful.

Algorithm 12 shows the ejection chain approach. It processes the objects i∈⋃C(S)
in order of non-decreasing ϕ(i), i.e., it prefers objects which have been easy to place,

since only one successful insertion is needed. Each of these objects is ejected and

then EX attempts to reinsert it, and stops as soon as a reinsertion is successful (since

in this case D ′(S) must have improved; otherwise, there would still be unassigned

conflicting nodes). Assuming groups have on average n/m objects, each recursive

call takes time O(n) at depth d6 p2, and O(n/m) time at depth p2 < d6 p3.

Figure 4.1 shows the EX procedure on an example with m = 3 and (p1,p2,p3) =

(1,2,3). We represent OR nodes as squares and AND nodes as circles. Consider the

critical pair set C = { {u1,u2} } with {u1,u2 } ⊆ S3, and assume this is the first call to

EX, i.e., ϕ(u) = 0 for all u. Since ϕ(u1) = ϕ(u2), the tie is broken lexicographically

and EX starts by trying to eject u1. At depth d = 1 it can move u1 to either S1 or

S2. Since |κ(u1,S2)| < |κ(u1,S1)|, it explores the branch u1→S2 first. This branch

induces the ejection of u3, which can, in turn, be placed in S1 or S3. Since the search

is now at depth d = 2 > p1, subtree u3→S3 is pruned since |κ(u3,S3)| > 1. Next,

branch u3→S1 induces the ejection of u4, which can be placed in either S2 or S3.

Because the search depth now is 3> p2, however, EX prunes u4→S3 since it can only

144

Algorithm 12 The full ejection chain algorithm to improve dispersion.

Input: a complete solution S0.
Output: a complete solution S with D ′(S)>D ′(S0) if successful, or S0 on failure.

1: procedure EX(S0)
2: for i ∈⋃C(S0) in order of non-decreasing ϕ(i) do
3: S← ejectionChain(S0,∅, i,0)
4: if S 6= S0 then
5: return S
6: return S0

7:
8: procedure EJECTIONCHAIN(S0, F, i, d)
9: S← S0;F← F∪ { i }

10: first← true
11: for k ∈ [m]\ {S0(i) } in order of increasing (|κ(i,k,S)|,ϕ(i,k),k) do
12: if κ(i,k,S)∩F 6= ∅ then
13: continue
14: if (d > p3 and κ(i,k,S) 6= ∅) or (d > p2 and ¬first) or (d > p1 and

|κ(i,k,S)|> 1) then
15: break
16: for j ∈ κ(i,k,S) in order of decreasing ϕ(j) do
17: S ′← ejectionChain(S,F, j,d+1)
18: if S ′ = S then
19: continue next k-loop
20: S← S ′

21: return S
22: first← false
23: return S0

145

u1 u2

u1→S1 u1→S2

u5 u6 u3

u3→S1 u3→S3

u4

u5→S2 u5→S3 u6→S2 u6→S3

∅ u7

u4→S2 u4→S3

u1

u7→S1 u7→S3

∅

d = 1

d = 2

d = 3

Figure 4.1: An example of the EX procedure.

explore the one branch (since κ(u4,S2) = κ(u4,S3) = 1 and ϕ(u4,S2) =ϕ(u4,S3) = 0

the tie was broken by group index). When visiting branch u4→S2 EX finds that u1

generates a conflict. However, since u1 is fixed and may not be ejected again, this

branch is pruned and EX backtracks to u1→S1. Movement u1→S1 induces ejections

u5 and u6. Because these are AND nodes, both u5 and u6 must be successfully

placed in order to find a feasible sequence. Moving u5→S2 yields no conflicts and

can be done immediately, regardless of subtree u5→S3. When reinserting u6, EX

prunes subtree u6→S3 since at depth 2 > p1 it has more than one child. Moving

u6→S2 therefore causes u7 to be ejected. Finally, u7 is immediately placed in S1 as

κ(u7,1,S) = ∅. Since all AND nodes led to a leaf node with no conflicts, the set of

movements {u1→S1,u5→S2,u6→S2,u7→S1 } is feasible and increases the dispersion.

146

4.6 Balancing solutions

A common approach to improve balance in similar problems is a variable neigh-

borhood search (VNS) that first examines neighborhood Nshift, and if no improving

shift can be found, neighborhood Nswap [25, 179]. If no improving move is found,

the search continues from a perturbed solution. In our experience VNS-like methods

for the MaxDP quickly reach local minima, and the perturbation step is typically not

enough to escape them. This is mainly because these two operators can fail to explore

large sections of the search space through improving paths. Although shifts are uni-

versal, in the sense that any solution can be transformed into any other using them,

often finer adjustments to group weights can only be achieved by long, not strictly

improving sequences of shifts. Different operators such as 3-chain [25] or double

(triple) shifts [28], or other, more elaborate ones often help mitigate the issue, but

they tend to have neighborhoods too large to be fully explored at each iteration.

We therefore propose a more flexible approach to generate longer move sequences

which includes by design the shift and swap neighborhoods, outlined in Algorithm 13.

It repeatedly selects two groups k and l and searches for a sequence of exchanges

between them, which we denote as a group pair exchange, such that their relative

imbalances are reduced, and the dispersion does not fall below some given limit

d. If such a sequence can be found, it is applied, and the algorithm considers the

next pair of groups. Group pair exchanges are obtained by a truncated branch-and-

bound procedure bb (explained in Section 4.6.2) which aims at an optimal exchange

of objects between two groups. Because the entire branch-and-bound tree must be

exhausted if no improving exchange exists, which usually is too costly, this procedure

expands at most BBmax nodes. Initially BBmax is set to BBlo
max.

After each iteration, regardless of whether an improving exchange between groups

k and l was found, the pair {k, l } is marked as tabu (i.e., it can only be selected if

no non-tabu moves exist) for τ iterations. Following the same rationale as in Sec-

tion 3.5.1, we set τ =m. Further, we denote a pair of groups {k, l } as hopeless if an

improving exchange between them is impossible. This happens if k and l are both

balanced, or if the last exchange between k and l did not find an improving sequence

and no other improving sequences incident to either k or l have been found since.

Algorithm optBal never selects hopeless pairs. In optBal tabu and hopeless pairs are

represented by the sets T and H, respectively. The algorithm stops if all pairs of

groups are hopeless, meaning either the incumbent is balanced or exchange attempts

for all imbalanced groups have failed. If the solution is still imbalanced, optBal dou-

147

bles BBmax and re-executes starting from the current solution, up to a maximum

BBmax = BBhimax, at which it stops. In our implementation, we use BBlomax = 211 and

BBhimax = 218.

In early tests we found that the main algorithm sometimes quickly converges to

solutions where balancing fails even for low dispersion bounds, causing an early ter-

mination of the algorithm, but that small modifications to the input solution are often

enough to allow balancing, if the instance is feasible. To exploit this, if balancing fails

we perform a deterministic shuffling step to slightly modify the current solution, and

re-execute the balancing algorithm. This is done at most ξ times, or until the resulting

imbalance is larger than a threshold θ, above which another attempt at balancing is

unlikely to succeed. In the end the solution with lowest imbalance B is returned.

To keep the all steps deterministic, shuffling is done as follows. The algorithm cycli-

cally iterates over pairs of groups in lexicographical order, starting from (1,1) in the

first call and later from the point where the previous execution stopped. Given pair

(k, l) it considers shifts u→l,u ∈ Sk in the order which the nodes in Sk are stored in

memory. (This order is mostly arbitrary, and is determined by the sequence of opera-

tions done so far on Sk.) It applies the first shift s encountered for which D(S[s])> d,

and moves on to the next pair of groups. The algorithm stops after ρ shifts. We

calibrate parameters ξ, θ and ρ in Section 4.7.4.1.

4.6.1 Selecting two groups

At each iteration, optBal selects the next pair of groups by solving a minimum cost

flow problem on an auxiliary bipartite graph. The main idea is to select the two groups

that would exchange the most weight if all possible shifts were allowed, regardless of

decreases in the dispersion.

Let each group k ∈ [m] be represented by two nodes vsk and vtk in different parts of

the graph, where vsk is a source node with supply w(Sk) and vtk is a sink node with

demand Mk. A pair of nodes vsk and vtl which is not hopeless is connected by an arc

(vsk,v
t
l) of different capacity and cost:

• If k = l the capacity is (1−α)Mk and the cost 1. The low cost is an incentive

for groups to maintain their lower target bound, and the capacity of (1−α)Mk

forces them to send the excess over the lower bound to other groups.

• If k 6= l and {k, l } is not tabu, the capacity is ∞ and the cost 2. This allows

groups to send any excess weight to other groups at a slightly higher cost.

• If k 6= l and {k, l } is tabu, the capacity is ∞ and the cost is an upper bound

148

Algorithm 13 Algorithm optBal to balance solutions.

Input: a solution S, and a minimum dispersion d.
Output: a solution S ′ such that B(S ′)6 B(S) and D(S ′)> d. S ′ = S

1: procedure OPTBAL(S, d)
2: for i ∈ [ξ] do
3: S ′← successiveGroupExchanges(S ′,d,BBlomax)
4: S← argmin{B(S),B(S ′) }
5: if B(S) = 0 or B(S ′)> θ then
6: break
7: S ′← deterministicShuffle(S ′,ρ)
8: return S
9:

10: procedure SUCCESSIVEGROUPEXCHANGES(S0, d, BBmax)
11: S← S0;T ←∅;H← { {k, l } | k and l are balanced in S0 }

12: repeat
13: k, l← selectTwoGroups(S,T ,H)
14: T ← (T ∪ { {k, l }})\ {pairs that have been tabu for more than τ iterations }
15: S ′← bb(S,k, l,BBmax)
16: if B(S ′)< B(S) then
17: S← S ′

18: H←H\ { { i, j } | { i, j }∩ {k, l } 6= ∅, i or j is imbalanced in S }
19: if B(S ′) = B(S) or k and l are balanced in S then
20: H←H∪ { {k, l } }
21: until B(S) = 0 or |H|=

(
m
2

)
22: if B(S)> 0 and BBmax 6 BBhimax then
23: return successiveGroupExchanges(S,d,2BBmax)
24: return S

149

vs1/10

vs2/2

vs3/3

vt1/5

vt2/5

vt3/5

4/4/1

2/4/1

2/4/1

3/∞
/2

3/∞
/21/

∞
/2

T = ∅
H = ∅
Flow: 15

Cost: 22

(a)

vs1/10

vs2/2

vs3/3

vt1/4

vt2/5

vt3/5

4/4/1

2/4/1

5/∞
/2

3/
∞/2

T = {{1, 2}}
H = {1, 2}
Flow: 14

Cost: 22

(b)

vs1/7

vs2/2

vs3/6

vt1/5

vt2/5

vt3/5

4/4/1

2/4/1

4/4/1

2/∞
/∞2/∞

/∞

1/
∞
/∞

1/
∞/2

T = {{1, 2}, {1, 3}}
H = ∅
Flow: 15

Cost: ∞

(c)

vs1/7

vs2/4

vs3/4

vt1/5

vt2/5

vt3/5

4/4/1

3/4/1

4/4/1

2/∞
/∞

1/∞
/∞

1/
∞/∞

T = {{1, 2}, {1, 3}, {2, 3}}
H = {2, 3}
Flow: 15

Cost: ∞

(d)

Figure 4.2: Four example iterations of the successiveGroupExchanges procedure of
algorithm optBal.

fu = 2
∑
i∈V ai on the maximum cost of all other edges. These arcs heavily

penalize flow exchange on tabu pairs.

After finding the minimum cost flow in this graph, which can be done in time

O(fum
2 logm) using the algorithm of Ford and Fulkerson [66], optBal selects the two

non-tabu groups incident to the edge of highest flow, with ties broken lexicographi-

cally. If no flow passes through edges incident to non-tabu pairs, tabu pairs are also

allowed to be selected.

Figure 4.2 illustrates four iterations of the main loop of successiveGroupExchanges

on an example withm= 3. In this example we considerM= (5,5,5) and α= 0.2 (i.e.,

groups can assume weights between 4 and 6). For each iteration we show the flow

graph with edge labels representing flow/capacity/cost, and node labels name/flow,

with the name of the vertex and the flow passing through it. We omit edges which do

not receive flow. Initially we have w = (10,2,3), T = H = ∅, and the edge of highest

150

flow is {vs1,vt2 } with flow 3 (here, the tie with {vs1,vt3 } has been broken lexicograph-

ically), so optBal selects pair {1,2 } to exchange objects (Figure 4.2a). Suppose now

that the branch-and-bound method fails to find an improving exchange between 1 and

2. In this case, {1,2 } is hopeless and optBal recomputes the minimum cost maximum

flow without edge {vs1,vt2 }, obtaining a highest flow 5 on edge {vs1,vt3 } (Figure 4.2b).

Procedure bb now finds an improving exchange between groups 1 and 3, with new

weights w = (7,2,6). Pair {1,2 } is no longer hopeless, since an improving exchange

incident to 1 was found, but {1,2 } and {1,3 } remain tabu. In the next iteration,

edge {vs1,vt3 } has the highest flow of 2 but is tabu and therefore optBal selects the

only non-tabu edge receiving flow, {vs3,vt2 } (Figure 4.2c). Executing procedure bb on

groups 2 and 3 yields weights w = (7,4,4). Since groups 2 and 3 are now balanced,

no improving exchange between them is feasible and the pair {2,3 } is hopeless. In

the fourth iteration all pairs are tabu, so optBal selects the edge with highest flow

{vs1,vt2 } for the next exchange (Figure 4.2d).

4.6.2 Finding improving exchanges between two groups

The subproblem of optimally exchanging objects between two groups is: given a

solution S and two groups k and l, find a sequence of shifts between them such that

new the dispersion is not less than D(S) and the new contribution Bkl(S) = B(Sk)+

B(Sl) of k and l to the imbalance of S is minimized. This problem is NP-complete,

since the special case where m = 2, D(S) = 0, M1 =M2 and α = 0 generalizes the

Subset Sum Problem.

Given S, k and l we represent a solution by x ∈ {0,1 }|Sk∪Sl| , where xi = 1 if i ∈
Sk ∪ Sl is to be shifted to the other group, and xi = 0 if i is to stay in its current

group. We use a branch-and-bound algorithm to solve the problem. At each node

in the search tree, the algorithm branches on the assignment of an unfixed variable

xi associated with the object of largest weight ai, as empirically this leads to fewer

expanded nodes. Since D(S) is not allowed to decrease, fixing a single variable can

potentially lead to a large sequence of fixations. When fixing xi = 1, all conflicting

xj (i.e., dij < D(S)) may also be set to 1, since i and j cannot be placed in the same

group. Similarly, fixing xi = 0, all conflicting xj can fixed to 0 as well. This is done

recursively: when fixing a conflicting xj, all of j’s conflicts are also fixed, and so on.

If we find that two conflicting objects should be fixed to the same group, the node

is infeasible and can be pruned. The algorithm expands nodes depth first, giving

preference to the child node of least lower bound, since this empirically leads to

151

0 r

0

0.2

0.4

0.6

0.8

1

−v
k
+
M

k
(1
−
α
)

v l
+
r
−
M

l
(1
+
α
)

v l
+
r
−
M

l
(1
−
α
)

−v
k
+
M

k
(1
+
α
)

rk

Figure 4.3: Example objective function when fractionally balancing two groups.

fewer expanded nodes. Because the decision variables represent the exchange of

objects between the groups, we can obtain an upper bound at any node by setting all

unfixed xi to 0 (i.e., they remain in their current group).

For each new node a lower bound on Bkl is computed and the node is fathomed

if it is not less than the current best value. Lower bounds are computed by ignoring

conflict and integrality constraints of the unfixed objects, i.e., solving a relaxed ver-

sion of the problem where any two objects can be placed together, and objects can be

partially assigned. Let vk and vl be the total weights of the objects fixed to groups k

and l, respectively, and let r = (
∑
i∈Sk∪Sl ai)−vk−vl be the weight of the remaining

objects that could still be assigned to the groups. The lower bound is then computed

by finding a real-valued split r= rk+rl of the remaining weight which minimizes Bkl,

where rk and rl are the weights that will be (partially) assigned to groups k and l,

respectively. This split is determined by minimizing the sum of expected imbalances

max{0, |vk+ rk−Mk|/Mk−α }+max{0, |vl+ r− rk−Ml|/Ml−α },

over all rk ∈ [0,r] (note that vk,vl,Mk,Ml and α are constants). This function is

piecewise linear and therefore the optimum value always occurs either at the bounds

of the domain or the extremes of some segment (see Figure 4.3 for an example). In

other words, the optimal rk can be found by examining, in O(1), the six values 0, r,

−vk+Mk(1±α), vl+ r−Ml(1±α) for rk.

4.7 Computational experiments

In this section, we report on computational experiments. We first describe in Sec-

tion 4.7.1 the instances and the general experimental methodology. In Section 4.7.2

we calibrate upper bound Uσh and compare it to upper bounds from the literature.

Next, in Sections 4.7.3 and 4.7.4 we calibrate and analyze the effectiveness of two

152

algorithmic components, namely solving the UMaxDP and balancing solutions, sepa-

rately. We also compare our approach to solving the UMaxDP to the literature. Finally,

in Sections 4.7.5 and 4.7.6 we present the main results. In Section 4.7.5 we compare

our approach to the exact approach of Fernández et al. [61], and in Section 4.7.6

we present and analyze results on large test instances. We summarize our results

in Section 4.7.7.

4.7.1 Test instances and methodology

We use two types of instances, “WEEE” and “study”, originating from the applica-

tions discussed in Section 4.1. For each type our test set comprises instances of sizes

n= 400i and m= 5+6i, for i ∈ [10] generated as proposed by Fernández et al. [61].

The number of objects n was chosen to match the range of instances solvable by our

heuristic algorithm (instances smaller than n = 400 were almost always solved op-

timally, while instances larger than n = 4000 were intractable within an hour). For

group size m we chose the largest (relative to n) of the three values used by Fernán-

dez et al. [61], since this leads to harder instances.

The WEEE instances consist of objects uniformly distributed in the plane, and dis-

tances d are Euclidean. The object weights are drawn uniformly from [1000,4000],

and the target weights Mk from [(1−β)Ā,(1+β)Ā], where Ā =
∑
i∈V ai/m is the

average group weight and β ∈ [1,4]/4 a slack parameter. For each combination (n,β)

the test set contains 10 replicates, for a total of 400 WEEE instances.

The distances of the study instances are generated using Likert scales [134]. Each

object is associated with a random vector in [5]25, and the distance between two

objects is the l1 distance between these vectors. The target weights are chosen in

the same way as for the WEEE instances, but here we use β ∈ {0,0.1 }. Again, for

each combination (n,β) the test set contains 10 replicates, for a total of 200 study

instances. As noted above, by definition of the distances we have |R|6 125 and there-

fore the set L of critical pairs of a solution is usually large.

Further, we use an additional set of instances, which is used to calibrate the dif-

ferent components of the algorithms. The calibration set consists of 10 instances for

each of the 10 values of n and m used in the test set, each with the largest value of β

(1 for WEEE instances, 0.1 for study instances), for a total of 200 instances. We used

the largest β because these instances are more difficult to balance.

Finally, we use a baseline set of 860 instances consisting of the same number of

replicates and parameters n, m and β as the ones used by Fernández et al. [61],

153

Table 4.1: Calibrating parameter σ of Uσh.

σ/m t UB (r.d.) ibest tcol

study

1.05 4.9 3.43 15.0 0.0
1.10 4.9 3.39 13.7 0.0
1.25 5.3 3.09 14.6 0.0
1.50 5.4 2.65 13.5 0.0
2.00 388.7 1.38 8.4 28.7
2.50 992.0 7.20 4.2 206.2
3.00 1,281.7 10.69 2.8 291.9

WEEE

1.05 11.7 0.21 13.0 0.0
1.10 11.7 0.20 34.5 0.0
1.25 12.1 0.17 36.9 0.0
1.50 114.4 0.06 29.4 5.8
2.00 583.8 0.08 15.4 237.1
2.50 731.4 0.13 5.9 438.0
3.00 857.0 0.15 4.9 479.0

where n ranges from 100 to 300 for study instances and from 200 to 700 for WEEE

instances. We use this data set to compare to the exact method of Fernández et al.

[61], since it cannot handle larger instances in practical time.

We have executed all experiments on a PC with an 8-core AMD FX-8150 proces-

sor and 32 GB of main memory, running Ubuntu Linux 18.04. For each test, only

one core was used. The heuristic algorithms were implemented in C++ and com-

piled with GCC 7.2 using maximum optimization. Model (F) is solved using CPLEX

12.7.1. Source code, data sets, instance generators, and detailed results are available

at https://github.com/AlexGliesch/maxdp.

4.7.2 Experiment 1: upper bounds

4.7.2.1 Calibrating parameter σ for upper bound Uσh

In this experiment we calibrate the subinstance size σ of upper bound Uσh on

the calibration data set. We have considered values σ = min{3, im } for i ∈
{0.05,0.1,0.25,0.5,1.0,1.5,2.0 }. Each run was limited to 30 minutes, and executes

only the algorithm to compute Uσh. Table 4.1 shows the results. For each value of σ

and instance type we report the running time t in seconds, the average relative devi-

ation of the upper bound from the best known upper bound (UB (r.d.)), the average

number of iterations ibest to find the upper bound, and the average running time tcol

in seconds of the exact coloring algorithm.

https://github.com/AlexGliesch/maxdp

154

We see that up to a certain point, larger subinstance sizes tend to yield better up-

per bounds. This is expected, since larger subinstances are more likely to contain

intersection graphs which are notm-colorable. After σ/m> 2 for study instances and

σ/m > 1.5 for WEEE instances, however, the intersection graphs become too large

to be colored optimally in feasible time, and thus the quality of the upper bounds

decreases, as the algorithm reaches the time limit before considering all n possible

subinstances. This is supported by the coloring times tcol: the values of σ/m where

the best upper bounds are found (σ/m = 2 for study and σ/m = 1.5 for WEEE in-

stances) appear to also be a sweet spot for coloring, where smaller σ lead to trivial

coloring subproblems and larger σ to subproblems which are too hard to solve in

feasible time. We therefore set σ = 1.5m in the following experiments, as this value

performs well for both instance types.

4.7.2.2 Comparing Uσh, UCh and URBh

In this experiment we compare the new upper bound Uσh to upper bounds UCh and

URBh from the literature on the test set. For a fair comparison, we start optimizing Uσh
from du = dR instead of du = UCh . Running times were limited to 30 minutes.

Table 4.2 shows the results. For each instance type and size we report averages

of the running time t in seconds, the relative deviation of the obtained bound from

the best known upper bound (UB (r.d.)) and the optimality rate (Opt. (%)), i.e., the

empirical probability of the upper bound to match the value found by our heuristic

(using results of Section 4.7.3).

We find that the proposed bound Uσh was smallest for all instance sizes, on average,

though often at the cost of being more computationally expensive. In particular, for

WEEE instances of size n > 2800 the running times increase sharply as the sampled

subinstances are larger and thus lead to harder coloring subproblems. Nonetheless,

we will show in Section 4.7.3.3 that using Uσh even in these cases is still effective, as it

leads to an overall faster execution. Regarding the other two bounds, UCh performed

poorly for study instances, but was slightly better than URBh for WEEE instances. As

we saw in Theorem 4.3.1 upper bounds UC = U1 and URB = U2 are the same, so the

differences between URBh and UCh are due to the sampling heuristics. We note that up-

per bound URBh was originally proposed by Ríos-Mercado and Bard [179] for a variant

of the MaxDP for a real-world problem in the context of WEEE waste collection. In

this context, the authors report that URBh was consistently better than UCh . The discrep-

ancy between our results and those of Ríos-Mercado and Bard [179] can be explained

155

Table 4.2: Comparison of upper bounds UCh , URBh and Uσh.

n
UCh URBh Uσh

t UB (r.d.) Opt. t UB (r.d.) Opt. t UB (r.d.) Opt.

study

400 0.0 11.74 0 0.1 2.14 0 0.1 0.53 0
800 0.1 15.32 0 0.5 2.38 0 0.2 0.00 0

1,200 0.2 16.97 0 1.9 0.87 0 0.5 0.00 0
1,600 0.4 20.35 0 4.8 2.16 0 1.2 0.00 0
2,000 0.8 20.19 0 10.1 2.05 0 2.3 0.00 0
2,400 1.3 18.93 0 19.1 0.00 0 3.8 0.00 0
2,800 2.1 19.03 0 32.7 1.17 0 6.0 0.00 0
3,200 3.1 18.04 0 52.6 1.17 0 8.9 0.00 0
3,600 4.5 20.72 0 80.0 1.59 0 12.7 0.00 0
4,000 6.7 18.97 0 117.5 2.61 0 18.0 0.00 0

Avg. 1.9 18.03 0 31.9 1.61 0 5.4 0.05 0

WEEE

400 0.0 0.00 100 0.1 2.11 60 0.1 0.00 100
800 0.1 0.37 90 0.5 0.39 80 0.3 0.00 100

1,200 0.4 0.03 90 1.9 3.60 60 0.8 0.00 100
1,600 0.9 1.12 90 5.1 1.86 40 2.2 0.00 100
2,000 1.8 0.18 80 11.6 0.25 70 4.4 0.00 90
2,400 3.2 0.12 70 23.0 0.95 50 7.9 0.00 80
2,800 5.3 0.41 40 41.5 2.93 0 266.0 0.00 68
3,200 8.3 0.93 58 68.8 3.60 10 199.3 0.00 68
3,600 12.4 0.22 30 108.4 3.35 8 55.2 0.00 50
4,000 18.7 0.25 28 162.0 3.17 10 411.6 0.00 28

Avg. 5.1 0.36 68 42.3 2.22 39 94.8 0.00 78

by the different nature of the problems investigated and of the instance generation

methods.

Looking at optimality rates, we can see that for the WEEE instances the upper

bounds frequently match the best heuristic value, and are useful for proving optimal-

ity. This is not the case for the study instances, where upper bounds never match the

heuristic value. For this reason, in the experiments that follow we do not compute

upper bounds for study instances.

4.7.3 Experiment 2: solving UMaxDP

4.7.3.1 Calibrating parameters p1, p2 and p3

We used the irace R package [138] to calibrate parameters p1, p2 and p3 of algo-

rithm EX. To test a parameter setting we generate an initial solution with the greedy

156

constructive algorithm of Section 4.4.1 and execute algorithm optDisp’ repeatedly un-

til the current solution cannot be improved or a time limit is reached. We ran irace on

the calibration data set with a budget of 4000 runs limited to 600 seconds each, over

parameter ranges p1 ∈ [8],p2 ∈ [16] and p3 ∈ [24]. We did not use upper bounds in

the calibration. The best values found were p1 = 4, p2 = 8 and p3 = 8, and are used

in further experiments.

4.7.3.2 Comparison to Fernández et al. [61]’s method for the UMaxDP

In this experiment we compare the proposed ejection chain approach to improving

dispersion to the approach of Fernández et al. [61], here called FKNU, to obtain lower

bounds to the unrestricted MaxDP. To obtain a lower bound with our method, we start

with an initial solution obtained by the algorithm of Section 4.4.1, and repeatedly

execute the EX procedure until it fails to improve D ′. FKNU starts from a dispersion

du = UCh and iteratively decrements index u. At each iteration, it attempts to color the

intersection graph Gdu with the heuristic algorithm TabuCol [98]. If TabuCol reports

χ(Gdu) 6m the algorithm returns the dispersion value du+1, otherwise it continues

until u = 1, in which case coloring is trivial since Gd1 has no edges. We use the

implementation of Lewis et al. [131] of TabuCol, with a fixed seed. Both algorithms

were executed with a time limit of 30 minutes.

Table 4.3 shows the results. For both approaches we report the time t in seconds

and the relative deviation (D (r.d.)) of the dispersion from the best known value.

Since in the last iteration our algorithm will continue optimizing until the search tree

is exhausted, which often consumes all available time, we also report the time to find

the best value tbest, in seconds. This is not applicable to FKNU, since it optimizes

top-down and stops as soon as a feasible solution is found.

We find that algorithm EX leads to better lower bounds, with two exceptions for

study instances of size 1200 and 4000, where it is slightly worse. On the WEEE

instances, in particular, lower bounds are significantly better. Finding better lower

bounds takes longer, often considerably, and we also can see that EX usually consumes

the available time, since it continues optimizing until the search tree is exhausted.

Algorithm EX scales better on the WEEE instances, finding better upper bounds faster

for n > 2800 objects. For such instances FKNU does not scale well with n since the

number of different distances |R|, and thus the average number of iterations required,

grows quadratically.

157

Table 4.3: Comparison of our ejection chain-based algorithm to the approach of Fer-
nández et al. [61] for the UMaxDP.

n
EX FKNU

t tbest D (r.d.) t D (r.d.)

study

400 99.5 0.4 0.00 0.4 1.84
800 1,727.9 2.6 0.00 0.7 0.00

1,200 1,725.4 13.4 0.26 1.4 0.00
1,600 1,800.0 31.0 0.00 2.8 0.00
2,000 1,800.0 64.2 0.00 4.7 0.00
2,400 1,800.0 32.0 0.00 7.5 0.00
2,800 1,800.0 102.9 0.00 10.9 0.00
3,200 1,800.0 48.6 0.00 15.4 0.00
3,600 1,800.0 81.5 0.00 20.9 0.00
4,000 1,800.0 92.5 0.98 27.2 0.00

Avg. 1615.3 46.9 0.12 9.2 0.18

WEEE

400 17.0 0.1 0.00 0.0 0.00
800 1,384.9 0.4 0.00 1.1 0.10

1,200 1,676.2 1.6 0.00 1.2 0.00
1,600 1,792.1 11.2 0.00 79.3 0.95
2,000 1,800.0 68.8 0.00 150.7 1.08
2,400 1,800.0 189.1 0.00 588.4 2.24
2,800 1,800.0 340.1 0.00 1244.0 45.30
3,200 1,800.0 347.1 0.00 1417.8 42.11
3,600 1,800.0 768.1 0.00 1547.5 69.60
4,000 1,800.0 1138.8 0.00 1800.0 86.89

Avg. 1,567.0 286.5 0.00 683.0 24.83

4.7.3.3 Effectiveness of upper bounds for the WEEE instances

In this experiment we evaluate the effectiveness of upper bound Uσh in reducing

total running time by allowing optimization to stop as soon as the upper bound is

reached, and thus skip the last iteration of EX. As reported in Section 4.7.2.2, upper

bounds were not effective for study instances, so here we consider WEEE instances

only. We use the results of the experiments of Sections 4.7.2.2 and 4.7.3.2. Table 4.4

shows, for each value of n, averages of the optimality rate Opt. (%) of Uσh, the time

t (EX) needed to compute EX, the time t (EX, last iter.) of the last iteration of EX, the

time t (Uσh) to compute Uσh, and the time t (EX+Uσh) which is the average time needed

to compute Uσh plus the time to best, for instances which were solved optimally, or the

total time, for instances which were not.

We see that the last iteration is the most time-consuming part of the EX method.

158

Table 4.4: Effectiveness of upper bounds for algorithm optDisp, for WEEE instances

n Opt. (%) t (EX) t (EX, last iter.) t (Uσh) t (EX+Uσh)

400 100 17.0 8.9 0.1 8.2
800 100 1,384.9 745.7 0.3 639.5

1,200 100 1,676.2 1,406.3 0.8 270.7
1,600 100 1,792.1 1,714.2 2.2 80.2
2,000 90 1,800.0 1,731.2 4.4 249.5
2,400 80 1,800.0 1,610.9 7.9 443.9
2,800 68 1,800.0 1,459.9 266.0 992.3
3,200 68 1,800.0 1,452.9 199.3 897.4
3,600 50 1,800.0 1,031.9 55.2 1,171.1
4,000 28 1,800.0 661.3 411.6 1,853.9

Avg. 78 1,567.0 1,182.3 94.8 660.7

The reason is that when no improvement is possible, EX must exhaust the search tree

before halting. Consequently, the last iteration consumes in average more than 75% of

the running time. We see in column t (Uσh) that the average time to compute the upper

bound is usually smaller than the time for the last iteration of EX. Therefore, when

the optimal solution is found and matches the upper bound, the overall running time

decreases. This is confirmed by the results in column t (EX+Uσh), where running times

are on average about 50% smaller than t (EX). As n grows, however, particularly after

n> 4000, optimality rates decrease and upper bounds becomes less advantageous.

4.7.4 Experiment 3: balancing solutions

4.7.4.1 Calibrating parameters ξ, θ and ρ

Parameters ξ, θ and ρ of optBal have been calibrated by irace, using the calibration

data set, with a budget of 4000 runs and a time limit of 30 minutes per run. Each

run executes the full algorithm with α = 0.001 and reports the dispersion value, or

−∞ if no feasible solution was found. We used parameter ranges ξ ∈ 5× [10],θ ∈
{0.1,0.25,0.5,1,2,5 } and ρ ∈ [0.01,0.2]. The best values found were ξ = 35, θ = 0.5

and ρ= 0.01, which are used in the remaining experiments.

4.7.4.2 Comparison to a variable neighborhood search-based approach

To evaluate the effectiveness of our balancing method, we implemented a VNS

approach as a baseline. The VNS iteratively searches for an improving operation

159

in the neighborhoods N∗shift = Nshift ∩ { i→ k | wS(i) >MS(i) and w(Sk) <Mk } (i.e.,

we only allow shifts where a group exceeding its target weight sends an object to a

group below its target weight), and Nswap. We use N∗shift since we found it to be

more effective than of Nshift in preliminary tests. The search explores the candidates

of each neighborhood in a round-robin fashion and applies improving candidates as

soon as they are encountered, proceeding then to the next iteration. If no improving

candidates are found, the current best solution is “shaken” and the search continues

from there. Shaking is done by performing up to nρvns random shifts which do not

lower the current dispersion. The search stops after a maximum ξvns shakes. We used

irace to calibrate parameters ρvns and ξvns as in Section 4.7.4.1, and found the best

configuration ρvns = 0.03 and ξvns = 50.

For the comparison, we executed both algorithms on the test set with α ∈
{5,1,0.1 }×10−2 for WEEE instances and α= 10−3 for study instances. We use these

values of α to be consistent with Fernández et al. [61]. Table 4.5 shows the results.

Since the VNS is stochastic, each test was replicated 7 times and we report averages.

For both approaches we report the time t in seconds of the balancing procedure, the

relative deviation (D (r.d.)) of the dispersion from the best known value, and the

optimality rate (Opt. (%)), which accounts the cases where upper bounds were met

and cases where the instance was proven infeasible by model (F). For each instance

size n we report averages over all values of α and β.

The results show that Hase produces better results than VNS, in less time. On

study instances both algorithms find solutions of almost the same quality in the same

time, but on WEEE instances Hase finds significantly better solutions and is about

40 % faster, with a single exception at n = 400 where the relative deviation of the

dispersion is slightly higher. In all study instances the execution stopped because EX

timed out, and every lower bound on UMaxDP found by EX was made feasible by

both approaches. This suggests that study instances are easy to balance, but that

improving their dispersion is hard. The running times also corroborate this. Since

|R| is small there are typically several critical pairs, and thus an increasingly larger

number of moves are necessary for each improvement to D. The better dispersion

values of Hase on WEEE instances can be explained by its higher success rate in

balancing solutions, so it can continue optimizing the dispersion. For both instance

types, the number of feasible solutions was the same, i.e., either both approaches

found a feasible solution, or none did. In 39% of executions our approach obtained

the best solution, while the VNS approach was better in 10% of cases.

160

Table 4.5: Comparison of our algorithm for balancing solutions to a VNS approach.

n
Hase VNS

t D (r.d.) Opt. (%) t D (r.d.) Opt. (%)

study

400 0.3 0.28 0.0 3.9 0.42 0.0
800 0.5 0.00 0.0 0.5 0.00 0.0

1,200 1.3 0.00 0.0 1.9 0.00 0.0
1,600 3.0 0.00 0.0 3.7 0.06 0.0
2,000 5.8 0.00 0.0 7.6 0.00 0.0
2,400 9.8 0.00 0.0 12.2 0.03 0.0
2,800 15.8 0.00 0.0 18.3 0.00 0.0
3,200 24.7 0.00 0.0 25.4 0.00 0.0
3,600 35.1 0.00 0.0 37.8 0.05 0.0
4,000 47.7 0.00 0.0 45.4 0.00 0.0

Avg. 14.4 0.03 0.0 15.7 0.06 0.0

WEEE

400 0.4 0.71 97.5 0.7 0.65 89.6
800 36.4 0.53 90.8 24.7 1.50 77.4

1,200 60.6 0.27 85.8 46.5 1.43 79.6
1,600 144.4 0.94 88.9 301.1 2.59 60.0
2,000 224.2 1.10 56.7 535.5 3.55 47.4
2,400 271.3 1.03 44.2 687.9 5.75 38.9
2,800 471.2 0.41 78.4 771.8 8.21 33.6
3,200 618.7 0.67 56.2 920.7 9.69 27.1
3,600 828.8 0.56 23.3 1,050.9 13.53 17.5
4,000 779.8 0.65 56.3 839.6 10.75 15.6

Avg. 343.6 0.69 67.8 517.9 5.77 48.7

4.7.5 Experiment 4: comparison to the exact approach of Fernández et al. [61]

In this experiment we compare our hybrid heuristic to the exact algorithm of Fer-

nández et al. [61], called FKN here, on the baseline data set, with a time limit of one

hour. We compare only to FKN because it dominates the heuristic of Moeini et al.

[150]. We implemented FKN using Julia 0.6.1 and CPLEX 12.7.1. The upper and

lower bounds of the algorithm are computed in C++ and given as parameters. Since

solving the MIP models are the bottleneck of FKN, the performance loss of using Julia

as opposed to C++ is negligible. Tables 4.6 and 4.7 show the results for WEEE and

study instances, respectively. We report averages for each set of instances with the

same number of objects n and slack β, since the number of groups m and slack α

have little influence on difficulty. The number of instances of each configuration is

given in column #. For each algorithm we report the running time t in seconds, and

the number of optimal solutions found (Opt.). For the hybrid heuristic, column (Opt.)

161

Table 4.6: Comparison of our heuristic algorithm to the exact algorithm of Fernández
et al. [61], for instances of type WEEE.

n β #
Hase FKN

t Opt. Prv. D (r.d.) t t (Opt.) Opt.

200

0.25 90 0.1 88 88 0.04 11.3 11.3 90
0.5 90 0.1 90 90 0.00 11.7 11.7 90

0.75 90 0.5 88 88 0.01 17.4 17.4 90
1 90 35.9 84 83 0.14 134.3 95.4 89

300

0.25 90 0.1 89 84 0.01 16.9 16.9 90
0.5 90 0.1 88 83 0.03 15.8 15.8 90

0.75 90 0.1 90 84 0.00 28.8 28.8 90
1 90 1.1 84 76 0.51 141.3 62.7 88

400

0.25 90 0.2 88 88 0.29 43.5 43.5 90
0.5 90 0.1 90 90 0.00 137.6 98.7 89

0.75 90 0.2 89 89 0.04 205.1 167.0 89
1 90 44.1 71 70 1.22 621.2 163.0 78

500

0.25 90 0.3 81 79 0.19 213.4 136.5 88
0.5 90 0.3 87 84 0.00 265.7 228.2 89

0.75 90 0.3 86 84 0.00 367.2 94.6 83
1 90 183.7 59 59 0.82 1,234.1 220.2 63

600

0.25 90 0.3 82 82 0.31 421.4 194.4 84
0.5 90 0.4 88 88 0.09 510.1 208.7 82

0.75 90 0.5 89 89 0.03 533.2 274.6 83
1 90 48.7 76 76 0.38 1,136.8 339.9 68

700

0.25 90 0.6 85 85 0.17 806.4 376.6 78
0.5 90 0.6 85 85 0.05 881.1 422.0 77

0.75 90 17.9 85 85 0.11 1,037.8 305.8 70
1 90 56.6 70 70 0.91 1,805.6 553.0 53

Total 16.4 2,012 1,979 0.22 441.6 170.3 1,981

considers both the case where optimality was proven by matching the upper bound,

and the case where the optimal solution was found but not proven. We also report

for Hase the number of solutions with optimality proofs (Prv.), and the average rela-

tive deviation (D (r.d.)) in percent from the optimal solution, considering only cases

where FKN found optimality. For FKN we report the average running time (t (Opt.)),

considering only instances which were solved optimally. In all cases, FKN either found

the optimal solution, proved infeasibility or reached the time limit without obtaining

any feasible solution.

For study instances, we see that FKN finds optimal solutions for all instances of

n = 100 and around half the instances of n = 200 and n = 300. Using upper bounds

162

Table 4.7: Comparison of our heuristic algorithm to the exact algorithm of [61], for
instances of type study.

n β #
Hase FKN

t Opt. Prv. D (r.d.) t t (Opt.) Opt.

100
0 20 1.2 18 14 0.31 21.1 21.1 20

0.1 20 0.4 17 13 0.46 135.3 135.3 20

200
0 30 5.5 16 8 0.00 1,826.3 274.3 16

0.1 30 11.1 15 9 0.00 2,063.0 53.2 13

300
0 20 38.0 9 5 0.38 2,310.9 735.3 9

0.1 20 24.1 8 5 0.43 2,470.5 776.3 8

Total 13.4 83 54 0.26 1,471.2 332.6 86

the hybrid heuristic was able to find provably optimal solutions on 54 tests, while

in the remaining 29 it found the optimal solution but was not able to prove it. For

n = 200 and β = 0.1 the hybrid heuristic found proven optimal solutions to 2 addi-

tional instances for which FKN did not. This suggests that, though results from Sec-

tion 4.7.2.2 indicated upper bounds were not effective on study instances of the test

set, they are sometimes useful on smaller instances. This is due to the baseline data

set also having instances with fewer groups m, while the test set considers only the

largest value of m used by Fernández et al. [61]. Overall, Hase found slightly fewer

optimal solutions, 83 compared to 86 of FKN. On the instances which FKN solved

optimally, the hybrid heuristic produces solutions which deviate, on average, 0.26%

from the optimal values.

For WEEE instances the hybrid heuristic found a more optimal solutions than FKN

(2012 compared to 1981), and most these, namely 1979, were proven optimal by

the heuristic. Again, this confirms that upper bounds are much tighter on WEEE

instances. After n= 600, Hase consistently finds more optimal solutions than FKN, as

instances become too large for the exact algorithm to solve in one hour. Considering

only instances where FKN found the optimal solution, our method produced solutions

within 0.22% of optimality, on average. We can also notice that, for WEEE instances,

there is a slight increase in difficulty for β = 0.75 and a sharp increase for β = 1, for

both approaches. For study instances, as expected β = 0.1 was slightly harder than

β= 0.

Concerning running times, the hybrid heuristic was significantly faster in all cases,

as expected, with running times 24.8 times smaller for study instances and 10.4 times

smaller for WEEE instances, on average.

163

Table 4.8: Results of “Hase” for large instances.

n D (r.d. ub) Opt. (%) Fea. t Iter.

study

400 12.85 0.0 100.0 687.5 15.2
800 19.11 0.0 100.0 3,339.2 4.2

1,200 21.78 0.0 100.0 3,600.0 3.3
1,600 22.42 0.0 100.0 3,600.0 3.4
2,000 22.22 0.0 100.0 3,600.0 3.6
2,400 24.01 0.0 100.0 3,600.0 3.5
2,800 24.41 0.0 100.0 3,600.0 3.4
3,200 25.68 0.0 100.0 3,600.0 3.5
3,600 24.83 0.0 100.0 3,600.0 3.6
4,000 25.67 0.0 100.0 3,600.0 3.5

Avg. 22.30 0.0 100.0 3,282.7 4.7

WEEE

400 13.52 90.8 100.0 0.5 2.7
800 13.66 84.2 100.0 48.2 9.1

1,200 6.41 85.8 100.0 65.5 11.8
1,600 9.62 69.2 100.0 194.6 29.2
2,000 9.42 56.7 100.0 470.9 46.0
2,400 9.97 44.2 100.0 677.3 60.0
2,800 8.57 37.5 90.0 1,422.5 76.4
3,200 8.91 32.5 100.0 1,468.3 102.3
3,600 9.50 28.3 100.0 1,970.1 114.4
4,000 11.01 19.2 80.0 2,231.5 119.2

Avg. 10.06 54.8 97.0 854.9 57.1

4.7.6 Experiment 5: final results on test instances

In this section we report full results for the hybrid heuristic on the test set. We have

run Hase with a time limit of one hour, and report in Table 4.8 the relative devia-

tion of the dispersion from the best upper bound (D (r.d. ub)), the optimality rate

(Opt. (%)), the rate of feasibility (Fea. (%)) over instances which were not proven

infeasible by model (F), the total running time t in seconds, and the number of itera-

tions (Iter.). For each instance type and number of objects n we report averages over

all values of α and β. As can been seen in Tables 4.6 and 4.7, the running times of the

exact approach of Fernández et al. [61] increase sharply with the number of objects

n, and the optimality rates decrease accordingly. We therefore do not report results

for FKN on the test set.

We observe that dispersion values for study instances deviate about 25% from the

upper bound, corroborating previous findings that the upper bounds are never effec-

tive for these instances. As a consequence no instance was solved to proven optimal-

164

ity. For WEEE instances, Hase usually either finds the optimal solution, or terminates

with a relatively large relative deviation from the upper bound (about 10%). This is

likely due to the heuristic reaching a difficulty barrier with respect to balancing, as up-

per bounds only consider the subproblem without balance constraints. As expected,

optimality rates decrease with increasing n.

Looking at the running times, we see that the hybrid heuristic tends to terminate

well before the time limit on WEEE instances, since upper bounds are tighter and

often match the dispersion values found. On study instances, on the other hand, due

to upper bounds not being as tight the hybrid heuristic times out for n> 1200, since

without optimality detection algorithm EX must be executed until completion.

Concerning feasibility rates, the hybrid heuristic either found a feasible solution

or proved infeasibility in 97% of the cases, except for a few difficult instances of size

n= 2800 and n= 4000. Out of the 1400 configurations (instance, α), 20 were proven

infeasible by model (F).

4.7.7 Summary of results

In summary, we have shown that the proposed upper bound Uσh is consistently bet-

ter than bounds URBh and UCh from the literature, and matched lower bounds found

by our heuristic more often. For WEEE instances, Uσh was effective in allowing Al-

gorithm 12 to skip its final iteration whenever it reached optimality, reducing run-

ning time by 58%. For study instances, no upper bound matched the lower bounds

found heuristically. In an analysis of individual components we have found that the

proposed ejection chain method 12 finds significantly better dispersion values than

algorithms from the literature, which were optimal in 78% of cases, and that the

proposed truncated branch-and-bound strategy is significantly better than a baseline

VNS approach. An effective balancing strategy allows heuristic Hase to execute more

iterations, and thus improve the dispersion further. Compared to the exact algorithm

of Fernández et al. [61] on smaller instances, Hase is up to two orders of magnitude

faster and finds more optimal solutions. In cases where Hase did not find optimal

values, their values deviate less than 0.26% from optimality, on average. Hase is also

able to solve instances with up to n= 4000 objects.

4.8 Conclusion

We have proposed a new, hybrid heuristic and an improved upper bound for the

Maximum Dispersion Problem, and have shown experimentally that good solutions

165

can be found one to two orders of magnitude faster than with previous methods.

These solutions are often provably optimal since they match the upper bounds.

Our strategy alternates between balancing the groups and increasing the maximum

dispersion. We have applied a similar strategy in our heuristic of Chapter 3, and be-

lieve that such an approach may be generally useful for solving location problems

with conflicting objectives of dispersion and balancing. The variable-depth ejection

chain strategy we proposed to improve dispersion may also be useful in other location

problems with similar max-min, or min-max objective functions with a polynomially

large set of objective values which can lead to cascading conflicts, such as the diame-

ter or p-center. Finally, our heuristic uses truncated and complete exact algorithms for

balancing, a strategy we believe is of general interest, and we show that they lead to

better results than simpler strategies. We believe that similar methods can be useful

in related grouping problems with balancing or capacity constraints.

We have further shown that two previously proposed upper bounds are in fact

the same, and that the new upper bound is considerably tighter and enables the

heuristic to often prove optimality. Our new upper bound is based on finding k-

vertex-critical subgraphs for a graph coloring subproblem, and in a separate work

we have further extended this idea towards a general heuristic for finding k-vertex-

critical subgraphs [79].

166

5 CONCLUSION

Districting problems have an extensive variety of applications, ranging from the

design of electoral districts to the allocation of farmland into lots. In this thesis we

have looked at districting from an application-independent point of view, as a pure

mathematical problem. This approach has seldom been taken in the literature, as

authors usually develop tailored solutions to a specific application.

In the first chapter of this thesis, we delved into various optimization criteria that

are common across the districting applications. We have framed these within a

generic single-objective model that considers the three most important districting

criteria: compactness, balance and connectivity, as well as potentially additional,

domain-specific criteria. As particular cases we have defined the p-Median, p-Center

and Diameter Districting Problems, which, although they appear as subsets of many

formulations, have previously received relatively little attention as standalone prob-

lems. In this first part, we also had a deeper look into the most common MIP formu-

lations and metaheuristic approaches used to solve districting problems.

In the second chapter, we have presented a hybrid heuristic that can efficiently

solve variants defined by this generic model. These include the p-Median, p-Center

and Diameter Districting Problems, which we addressed specifically in our implemen-

tation and experiments. We showed that our heuristic was effective in handling all

three variants, and compared favorably against existing methods that were targeted

at only one. In separate studies we considered the extension of the p-Median District-

ing Problem with two common domain-specific criteria: routing costs and similarity

to previous plans. We showed that our method can effectively handle these criteria

with little change or loss of performance.

In the third chapter, we investigated the Maximum Dispersion Problem, a location

problem closely related to districting that asks for dispersed rather than compact

groups. We proposed a hybrid method to solve it, that follows the same structure as

our general method for districting and combines several heuristic components which

we show to be independently effective. We also proposed an improved upper bound

167

for the problem. Our heuristic is able to find solutions significantly faster than other

methods, and in most cases proves optimality by matching values to upper bounds.

Algorithmically, the methods we proposed alternate between improving compact-

ness (or dispersion) and a binary search strategy that solves a series of constrained

balancing subproblems. Over a long development period we have implemented and

tested several heuristics, and ultimately settled on this alternating approach which

we believe is especially well-suited for location problems with conflicting optimization

criteria, such as compactness and balance. A key advantage is its independence on the

optimization algorithm used for each criterion. For example, in our general heuris-

tic for districting we used tabu search to improve both compactness and balance,

whereas for the Maximum Dispersion Problem we used an ejection chain algorithm

to improve dispersion and a hybrid method based on truncated branch-and-bounds

to improve balance.

Another major component of our methods was their heavy use of dynamic algo-

rithms to cache and efficiently update optimization criteria, such as balance, com-

pactness or connectivity, under neighboring operators. Since these updates are clear

bottlenecks during neighborhood search, this led to a significant speedup and al-

lowed greater flexibility in our heuristic design. These dynamic algorithms are of

general interest and could be used in other methods, making them an independent

contribution.

At the end of each chapter we have laid out our suggested directions for future

research. Overall, our work in this thesis represents a step towards the study of dis-

tricting from an application-independent perspective. We believe this is a worthwhile

pursuit, as it fosters contributions to the area from researchers who are not in di-

rect contact with a real-world application, and facilitates the reuse of methods across

districting domains, or, more generally, location problems.

168

RESUMO EXPANDIDO EM PORTUGUÊS

Esta tese de doutorado se concentra na análise e resolução de problemas de se-

torização ou distritamento. Esses problemas envolvem a divisão de um grafo planar

conectado G em p grupos chamados distritos ou territórios. O grafo G é composto

por n vértices, que são geralmente referidos como unidades básicas ou unidades ge-

ográficas. Estas unidades podem representar entidades geográficas como quarteirões

de cidades ou bairros, que devem ser agrupadas em distritos.

A setorização é utilizada em diversas aplicações do mundo real, desde a desig-

nação de áreas urbanas para prestadores de serviços (como policiamento, coleta de

resíduos, distribuição de sal, assistência domiciliar e entregas de produtos), até a de-

limitação de distritos eleitorais ou políticos e a criação de lotes de fazendas com igual

produtividade em áreas rurais.

Vários critérios definem o que torna um plano de setorização aceitável ou viável

e, frequentemente, esses critérios variam de acordo com a aplicação. No entanto,

os critérios de balanceamento, conectividade e compacidade são quase sempre pre-

sentes. O critério de balanceamento exige que os distritos sejam balanceados em

relação a um conjunto de atributos associados às unidades, que podem representar

diferentes aspectos das unidades, dependendo da aplicação. Em distritos de serviço,

é comum usar atributos relacionados ao custo ou tempo de atendimento de uma

unidade, enquanto em distritos eleitorais é desejado que os distritos tenham um

número igual de eleitores. O critério de conectividade exige que cada distrito seja

um subgrafo conectado de G, para facilitar o trânsito ao longo das unidades de um

distrito. Por fim, o critério de compacidade exige que os distritos formem formas

geometricamente compactas, que facilitam a travessia por agentes de serviço e po-

dem fornecer pistas visuais sobre a manipulação de distritos para obter vantagem

partidária, uma tática conhecida como Gerrymandering.

Além desses critérios, existem também critérios específicos do domínio. Alguns

exemplos incluem a minimização das diferenças em relação aos planos de setoriza-

ção anteriores, a proibição de enclaves (distritos dentro de distritos), a satisfação de

relações de conflito entre unidades básicas e a minimização da soma dos custos de

roteamento intra ou interdistrital. A combinação desses requisitos torna a setorização

particularmente desafiadora, pois a maioria dos requisitos se traduz em subproblemas

NP-difíceis cuja interação cria problemas de otimização difíceis.

Devido à dificuldade do districting, o foco das soluções computacionais até agora

169

tem sido em heurísticas. Algumas soluções exatas baseadas em branch-and-bound

sobre modelos de programação inteira (IP) também foram propostas, mas com as ca-

pacidades computacionais atuais, elas se limitam a instâncias de 500 a 700 unidades

e 2-10 distritos, enquanto as instâncias do mundo real têm milhares de unidades e

dezenas de distritos.

Esta tese faz três contribuições principais.

A primeira contribuição é a proposta de uma heurística genérica para problemas

de distritamento que pode lidar com uma grande combinação de critérios diferentes

encontrados na literatura. A metodologia proposta alterna entre duas buscas de viz-

inhança, uma que otimiza o objetivo e outra que minimiza as violações de restrição.

Este método tem a vantagem de ser um algoritmo multistart aleatório que começa

a partir de várias soluções iniciais e tenta melhorar cada uma delas independente-

mente.

A segunda contribuição é a proposição de uma nova heurística para o Maximum

Dispersion Problem, que busca particionar um conjunto de unidades ponderadas em

grupos de tal forma que a dispersão, definida como a distância máxima entre dois

objetos no mesmo grupo, seja máxima. Esta heurística é de particular relevância

porque pode ser usada como um bloco de construção em vários outros problemas,

incluindo problemas de distritamento.

A terceira contribuição é a criação de um benchmark público para problemas de

distrito, que é atualmente uma das principais barreiras para a avaliação comparativa

dos algoritmos de distrito. A existência de um benchmark público permitirá a com-

paração justa dos algoritmos e acelerará o progresso na resolução de problemas de

distritamento.

170

REFERENCES

[1] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-

scale neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):

75–102, 2002.

[2] M. Albareda-Sambola and J. Rodríguez-Pereira. Location-routing and location-

arc routing. In G. Laporte, S. Nickel, and F. Saldanha da Gama, editors, Loca-

tion Science, pages 431–451. Springer International Publishing, Cham, Switzer-

land, 2019.

[3] K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing

Systems, 39(6):929–939, 2006.

[4] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions.

Information Processing Letters, 9(5):216–219, 1979.

[5] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Concorde TSP solver, 2006.

URL http://www.tsp.gatech.edu/concorde.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman

Problem: A Computational Study. Princeton University Press, Princeton, United

States, 2006.

[7] T. Arani and V. Lotfi. A three phased approach to final exam scheduling. IIE

Transactions, 21(1):86–96, 1989.

[8] V. Arredondo, M. Martínez-Panero, T. Peña, and F. Ricca. Mathematical polit-

ical districting taking care of minority groups. Annals of Operations Research,

305(1):375–402, 2021.

[9] E. A. Autry, D. Carter, G. Herschlag, Z. Hunter, and J. C. Mattingly. Multi-

scale merge-split Markov chain Monte Carlo for redistricting. Preprint

arXiv:2008.08054, 2020.

[10] K. R. Baker and S. G. Powell. Methods for assigning students to groups: a study

of alternative objective functions. Journal of the Operational Research Society,

53(4):397–404, 2002.

[11] R. Barnes and J. Solomon. Gerrymandering and compactness: Implementa-

tion, flexibility and abuse. Preprint arXiv:1803.02857, 2018.

http://www.tsp.gatech.edu/concorde

171

[12] F. Bação, V. Lobo, and M. Painho. Applying genetic algorithms to zone design.

Soft Computing, 9(5):341–348, 2005.

[13] J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through

many points. Mathematical Proceedings of the Cambridge Philosophical Society,

55(4):299–327, 1959.

[14] R. Becker, I. Lari, M. Lucertini, and B. Simeone. Max-min partitioning of grid

graphs into connected components. Networks, 32(2):115–125, 1998.

[15] G. Benade, N. Ho-Nguyen, and J. Hooker. Political districting without geogra-

phy. Operations Research Perspectives, 9:100227, 2022.

[16] E. Benzarti, E. Sahin, and Y. Dallery. Operations management applied to home

care services: Analysis of the districting problem. Decision Support Systems, 55

(2):587–598, 2013.

[17] P. K. Bergey, C. T. Ragsdale, and M. Hoskote. A simulated annealing genetic

algorithm for the electrical power districting problem. Annals of Operations

Research, 121(1):33–55, 2003.

[18] P. Bertolazzi, L. Bianco, and S. Ricciardelli. A method for determining the opti-

mal districting in urban emergency services. Computers & Operations Research,

4(1):1–12, 1977.

[19] M. Blais, S. D. Lapierre, and G. Laporte. Solving a home-care districting prob-

lem in an urban setting. Journal of the Operational Research Society, 54(11):

1141–1147, 2003.

[20] L. Bodin and L. Levy. The arc partitioning problem. European Journal of Oper-

ational Research, 53(3):393–401, 1991.

[21] S. Borgwardt, A. Brieden, and P. Gritzmann. Geometric clustering for the

consolidation of farmland and woodland. The Mathematical Intelligencer, 36

(2):37–44, 2014.

[22] B. Bozkaya, E. Erkut, and G. Laporte. A tabu search heuristic and adaptive

memory procedure for political districting. European Journal of Operational

Research, 144(1):12–26, 2003.

[23] B. Bozkaya, E. Erkut, D. Haight, and G. Laporte. Designing new electoral

districts for the city of Edmonton. Interfaces, 41(6):534–547, 2011.

172

[24] A. Brieden, P. Gritzmann, and F. Klemm. Constrained clustering via diagrams:

A unified theory and its application to electoral district design. European Jour-

nal of Operational Research, 263(1):18–34, 2017.

[25] J. Brimberg, N. Mladenović, and D. Urošević. Solving the maximally diverse

grouping problem by skewed general variable neighborhood search. Informa-

tion Sciences, 295:650–675, 2015.

[26] Bureau of the Census. Census tracts for the 2020 census. https://www.

census.gov/data.html, 2018. Retrieved in 12-12-2022.

[27] A. Butsch. Districting Problems - New Geometrically Motivated Approaches. PhD

thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2016.

[28] A. Butsch, J. Kalcsics, and G. Laporte. Districting for arc routing. INFORMS

Journal on Computing, 26(4):809–824, 2014.

[29] S. I. Caballero-Hernández, R. Z. Ríos-Mercado, F. López, and S. E. Schaeffer.

Empirical evaluation of a metaheuristic for commercial territory design with

joint assignment constraints. In J. E. Fernandez, S. Noriega, A. Mital, S. E.

Butt, and T. K. Fredericks, editors, Proceedings of the 12th Annual International

Conference on Industrial Engineering Theory, Applications, and Practice (IJIE),

pages 422–427, Cancun, Mexico, November 2007. ISBN: 978-0-9654506-3-8.

[30] M. Camacho-Collados, F. Liberatore, and J. M. Angulo. A multi-criteria po-

lice districting problem for the efficient and effective design of patrol sector.

European Journal of Operational Research, 246(2):674–684, 2015.

[31] D. Carter, G. Herschlag, Z. Hunter, and J. Mattingly. A merge-split proposal for

reversible Monte Carlo Markov chain sampling of redistricting plans. Preprint

arXiv:1911.01503, 2019.

[32] R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub. Im-

posing connectivity constraints in forest planning models. Operations Research,

61(4):824–836, 2013.

[33] C. Chou, S. Kimbrough, J. Sullivan-Fedock, C. J. Woodard, and F. H. Murphy.

Using interactive evolutionary computation (IEC) with validated surrogate fit-

ness functions for redistricting. In T. Soule, editor, Proceedings of the 14th An-

nual Conference on Genetic and Evolutionary computation (GECCO’12), pages

1071–1078, Philadelphia, United States, July 2012.

https://www.census.gov/data.html
https://www.census.gov/data.html

173

[34] V. Cohen-Addad, P. N. Klein, and N. E. Young. Balanced centroidal power

diagrams for redistricting. In Proceedings of the 26th ACM SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems (SIGSPA-

TIAL’18), pages 389–396, Seattle, United States, November 2018.

[35] L. Cooper. Heuristic methods for location-allocation problems. SIAM Review, 6

(1):37–53, 1964.

[36] Á. Corberán and G. Laporte. Arc Routing: Problems, Methods, and Applications.

SIAM, Philadelphia, United States, 2015.

[37] O. Coudert. Exact coloring of real-life graphs is easy. In Proceedings of the

34th Annual Design Automation Conference, pages 121–126, Anaheim, United

States, June 1997. ACM Press.

[38] G. A. Croes. A method for solving traveling-salesman problems. Operations

Research, 6(6):791–812, 1958.

[39] S. J. D’Amico, S.-J. Wang, R. Batta, and C. M. Rump. A simulated annealing

approach to police district design. Computers & Operations Research, 29(6):

667–684, 2002.

[40] D. Datta, J. Malczewski, and J. R. Figueira. Spatial aggregation and compact-

ness of census areas with a multiobjective genetic algorithm: A case study in

Canada. Environment and Planning B: Planning and Design, 39(2):376–392,

2012.

[41] D. Datta, J. Figueira, A. Gourtani, and A. Morton. Optimal administrative

geographies: An algorithmic approach. Socio-Economic Planning Sciences, 47

(3):247–257, 2013.

[42] L. S. De Assis, P. M. Franca, and F. L. Usberti. A redistricting problem applied

to meter reading in power distribution networks. Computers & Operations Re-

search, 41:65–75, 2014.

[43] A. M. P. de Mendonça. Distritamento Aplicado ao Problema de Faturamento em

Redes de Serviço. PhD thesis, Centro Federal de Educaçao Tecnológica Celso

Suckow da Fonseca, Rio de Janeiro, Brazil, 2020.

[44] R. F. Deckro. Multiple objective districting: A general heuristic approach using

multiple criteria. Journal of the Operational Research Society, 28(4):953–961,

1977.

174

[45] D. DeFord, M. Duchin, and J. Solomon. Recombination: A family of Markov

chains for redistricting. Harvard Data Science Review, 3:1–58, 2021.

[46] D. Demetriou, L. See, and J. Stillwell. A spatial genetic algorithm for au-

tomating land partitioning. International Journal of Geographical Information

Science, 27(12):2391–2409, 2013.

[47] D. Demetriou, L. See, and J. Stillwell. A parcel shape index for use in land

consolidation planning. Transactions in GIS, 17(6):861–882, 2013.

[48] G. A. Dirac. Some theorems on abstract graphs. Proceedings of the London

Mathematical Society, s3-2(1):69–81, 1952.

[49] R. G. Dixon. Democratic representation: Reapportionment in law and politics.

American Political Science Review, 63(2):567–568, 1969.

[50] A. Drexl and K. Haase. Fast approximation methods for sales force deployment.

Management Science, 45(10):1307–1323, 1999.

[51] A. Duarte, J. Sánchez-Oro, M. G. C. Resende, F. Glover, and R. Martí. Greedy

randomized adaptive search procedure with exterior path relinking for differ-

ential dispersion minimization. Information Science, 296:46–60, 2015.

[52] M. Duchin and B. E. Tenner. Discrete geometry for electoral geography.

Preprint arXiv:1808.05860, 2018.

[53] J. C. Duque, L. Anselin, and S. J. Rey. The Max-p-regions Problem. Journal of

Regional Science, 52(3):397–419, 2012.

[54] M. G. Elizondo-Amaya, R. Z. Ríos-Mercado, and J. A. Díaz. A dual bounding

scheme for a territory design problem. Computers & Operations Research, 44:

193–205, 2014.

[55] E. Erkut. The discrete p-dispersion problem. European Journal of Operational

Research, 46(1):48–60, 1990.

[56] E. Erkut, Y. Ülküsal, and O. Yeniçerioğlu. A comparison of p-dispersion heuris-

tics. Computers & Operations research, 21(10):1103–1113, 1994.

[57] R. Z. Farahani and M. Hekmatfar, editors. Facility Location: Concepts, Models,

Algorithms and Case Studies. Springer-Verlag, Berlin, Germany, 2009.

175

[58] H. Farughi, M. Tavana, S. Mostafayi, and F. J. Santos Arteaga. A novel opti-

mization model for designing compact, balanced, and contiguous healthcare

districts. Journal of the Operational Research Society, 71(11):1740–1759, 2020.

[59] J. A. Ferland and G. Guénette. Decision support system for the school district-

ing problem. Operations Research, 38(1):15–21, 1990.

[60] E. Fernández, J. Kalcsics, S. Nickel, and R. Z. Ríos-Mercado. A novel maximum

dispersion territory design model arising in the implementation of the weee-

directive. Journal of the Operational Research Society, 61(3):503–514, 2010.

[61] E. Fernández, J. Kalcsics, and S. Nickel. The maximum dispersion problem.

Omega, 41(4):721–730, 2013.

[62] J. Ferreira Neto. Private communication, 2018.

[63] B. Fifield, M. Higgins, K. Imai, and A. Tarr. Automated redistricting simulation

using Markov chain Monte Carlo. Journal of Computational and Graphical

Statistics, 29(4):715–728, 2020.

[64] M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Sal-

vagnin, and M. Sinnl. Thinning out steiner trees: a node-based model for

uniform edge costs. Mathematical Programming Computation, 9(2):203–229,

2017.

[65] B. Fleischmann and J. N. Paraschis. Solving a large scale districting problem:

a case report. Computers & Operations Research, 15(6):521–533, 1988.

[66] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal

of Mathematics, 8:399–404, 1956.

[67] S. L. Forman and Y. Yue. Congressional districting using a TSP-based genetic

algorithm. In E. Cantú-Paz, J. A. Foster, K. Deb, L. David, and R. Rajkumar,

editors, Genetic and Evolutionary Computation – GECCO 2003, volume 2723

of Lecture Notes in Computer Science, pages 2072–2083. Springer, Berlin, Ger-

many, 2003.

[68] G. García-Ayala, J. L. González-Velarde, R. Z. Ríos-Mercado, and E. Fernández.

A novel model for arc territory design: promoting Eulerian districts. Interna-

tional Transactions in Operational Research, 23(3):433–458, 2016.

176

[69] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the

Theory of NP-Completeness. Freeman, New York, United States, 1979.

[70] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C.-C. Yao. Resource con-

strained scheduling as generalized bin packing. Journal of Combinatorial The-

ory, Series A, 21(3):257–298, 1976.

[71] R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit

enumeration techniques. Management Science, 16(8):B495–B508, 1970.

[72] A. Gelman. Red State, Blue State, Rich State, Poor State: Why Americans Vote

the Way They Do. Princeton University Press, Princeton, United States, 2009.

[73] M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics. Springer,

New York, United States, 2nd edition, 2010.

[74] J. A. George, B. W. Lamar, and C. A. Wallace. Political district determination

using large-scale network optimization. Socio-Economic Planning Sciences, 31

(1):11–28, 1997.

[75] A. F. Gil, M. G. Sánchez, C. Castro, and A. Pérez-Alonso. A mixed-integer

linear programming model and a metaheuristic approach for the selection and

allocation of land parcels problem. International Transactions in Operational

Research, Forthcoming (DOI: 10.1111/itor.13115).

[76] B. E. Gillett and L. R. Miller. A heuristic algorithm for the vehicle-dispatch

problem. Operations Research, 22(2):340–349, 1974.

[77] A. Gliesch and M. Ritt. A generic approach to districting with diameter or

center-based objectives. In M. López-Ibáñez, editor, GECCO ’19: Proceedings of

the Genetic and Evolutionary Computation Conference, pages 249–257, Prague,

Czech Republic, July 2019. ACM.

[78] A. Gliesch and M. Ritt. A hybrid heuristic for the maximum dispersion problem.

European Journal of Operational Research, 288(3):721–735, 2021.

[79] A. Gliesch and M. Ritt. A new heuristic for finding verifiable k-vertex-critical

subgraphs. Journal of Heuristics, 28:61–91, 2022.

[80] A. Gliesch, M. Ritt, and M. C. Moreira. A genetic algorithm for fair land allo-

cation. In P. A. N. Bosman, editor, GECCO ’17: Proceedings of the Genetic and

Evolutionary Computation Conference, pages 793–800, Berlin, Germany, July

2017. ACM.

177

[81] A. Gliesch, M. Ritt, and M. C. Moreira. A multistart alternating tabu search for

commercial districting. In A. Liefooghe and M. López-Ibáñez, editors, Euro-

pean Conference on Evolutionary Computation in Combinatorial Optimization,

volume 10782 of Lecture Notes in Computer Science, pages 158–173, Cham,

Switzerland, 2018. Springer.

[82] A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A heuristic algorithm

for districting problems with similarity constraints. In 2020 IEEE Congress on

Evolutionary Computation (CEC), pages 1–8, Glasgow, United Kingdom, July

2020. IEEE.

[83] A. Gliesch, M. Ritt, A. H. S. Cruz, and M. C. O. Moreira. A hybrid heuristic

for districting problems with routing criteria. In 2020 IEEE Congress on Evolu-

tionary Computation (CEC), pages 1–9, Glasgow, United Kingdom, July 2020.

IEEE.

[84] F. Glover. Heuristics for integer programming using surrogate constraints. De-

cision S ciences, 8(1):156–166, 1977.

[85] F. Glover. Future paths for integer programming and links to artificial intelli-

gence. Computers & Operations Research, 13(5):533–549, 1986.

[86] F. Glover and J.-K. Hao. The case for strategic oscillation. Annals of Operations

Research, 183(1):163–173, 2011.

[87] S. Goderbauer and J. Winandy. Political districting problem: Literature review

and discussion with regard to federal elections in Germany. Technical report,

RWTH Aachen, Aachen, Germany, 2018.

[88] D. E. Goldberg and K. Deb. A comparative analysis of selection schemes used

in genetic algorithms. Foundations of Genetic Algorithms, 1:69–93, 1991.

[89] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the

Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[90] E. C. Griffith. The Rise and Development of the Gerrymander. Scott, Foresman,

United States, 1907.

[91] W. Gurnee. Scalable approximations of capacitated k-medians for political

districting. Technical report, Cornell University, Ithaca, United States, 2020.

178

[92] W. Gurnee and D. B. Shmoys. Fairmandering: A column generation heuristic

for fairness-optimized political districting. Preprint arXiv:2103.11469, 2021.

[93] G. Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and Its

Variations. Springer, Kluwer, Dordrecht, The Netherlands, 2002.

[94] S. Hanafi, A. Freville, and P. Vaca. Municipal solid waste collection: An ef-

fective data structure for solving the sectorization problem with local search

methods. Information Systems and Operational Research, 37(3):236–254,

1999.

[95] P. Hansen, N. Mladenović, J. Brimberg, and J. A. M. Pérez. Variable neigh-

borhood search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Meta-

heuristics, pages 57–97. Springer, Cham, Switzerland, 2019.

[96] S. Har-Peled. On the expected complexity of random convex hulls. Preprint

arXiv:1111.53404, 2011.

[97] D. Haugland, S. C. Ho, and G. Laporte. Designing delivery districts for the vehi-

cle routing problem with stochastic demands. European Journal of Operational

Research, 180(3):997–1010, 2007.

[98] A. Hertz and D. Werra. Using tabu search techniques for graph coloring. Com-

puting, 39(4):345–351, 1987.

[99] S. W. Hess and S. A. Samuels. Experiences with a sales districting model:

Criteria and implementation. Management Science, 18(4-part-ii):41–54, 1971.

[100] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpar-

tisan political redistricting by computer. Operations Research, 13(6):998–1006,

1965.

[101] C. Hierholzer and C. Wiener. Über die möglichkeit, einen linienzug ohne

wiederholung und ohne unterbrechung zu umfahren. Mathematische Annalen,

6(1):30–32, 1873.

[102] A. K. Hirose, C. T. Scarpin, and J. E. P. Junior. Goal programming approach

for political districting in Santa Catarina state: Brazil. Annals of Operations

Research, 287(1):209–232, 2020.

[103] M. Hojati. Optimal political districting. Computers & Operations Research, 23

(12):1147–1161, 1996.

179

[104] C. Hojny, I. Joormann, H. Lüthen, and M. Schmidt. Mixed-integer program-

ming techniques for the connected max-k-cut problem. Mathematical Program-

ming Computation, 13(1):75–132, 2021.

[105] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM

Journal on Computing, 2(2):88–105, 1973.

[106] D. L. Horn, C. R. Hampton, and A. J. Vandenberg. Practical application of

district compactness. Political Geography, 12(2):103–120, 1993.

[107] D. L. Huerta-Muñoz, R. Z. Ríos-Mercado, and R. Ruiz. An iterated greedy

heuristic for a market segmentation problem with multiple attributes. Euro-

pean Journal of Operational Research, 261(1):75–87, 2017.

[108] A. I. Jarrah and J. F. Bard. Large-scale pickup and delivery work area design.

Computers & Operations Research, 39(12):3102–3118, 2012.

[109] T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley, New York, United

States, 2005.

[110] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case

study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Lo-

cal Search in Combinatorial Optimization, pages 215–310. Wiley, Chichester,

United Kingdom, 1997.

[111] J. Kalcsics and R. Z. Ríos-Mercado. Districting problems. In G. Laporte,

S. Nickel, and F. Saldanha da Gama, editors, Location Science, chapter 25,

pages 703–741. Springer, Cham, Switzerland, 2nd edition, 2019.

[112] J. Kalcsics, T. Melo, S. Nickel, and H. Gündra. Planning sales territories – A

facility location approach. In P. Chamoni, R. Leisten, A. Martin, J. Minnemann,

and H. Stadtler, editors, Operations Research Proceedings, pages 141–148, Ger-

many, 2002. Springer.

[113] J. Kalcsics, S. Nickel, and M. Schröder. Towards a unified territorial design

approach – Applications, algorithms and GIS integration. Top, 13(1):1–56,

2005.

[114] J. Kalcsics, S. Nickel, and M. Schröder. A generic geometric approach to terri-

tory design and districting. Technical report, Karlsruhe Institute of Technology,

Karlsruhe, Germany, 2009.

180

[115] O. Kariv and S. L. Hakimi. An algorithmic approach to network location prob-

lems. SIAM Journal on Applied Mathematics, 37(3):513–560, 1979.

[116] A. R. Kaufman, G. King, and M. Komisarchik. How to measure legislative

district compactness if you only know it when you see it. American Journal of

Political Science, 65(3):533–550, 2021.

[117] J. M. Keil. Polygon decomposition. In J.-R. Sack and J. Urrutia, editors, Hand-

book of Computational Geometry, chapter 11, pages 491–518. Elsevier, Amster-

dam, The Netherlands, 2000.

[118] D. M. King, S. H. Jacobson, E. C. Sewell, and W. K. T. Cho. Geo-graphs: An

efficient model for enforcing contiguity and hole constraints in planar graph

partitioning. Operations Research, 60(5):1213–1228, 2012.

[119] D. M. King, S. H. Jacobson, and E. C. Sewell. Efficient geo-graph contiguity and

hole algorithms for geographic zoning and dynamic plane graph partitioning.

Mathematical Programming, 149(1-2):425–457, 2014.

[120] D. M. King, S. H. Jacobson, and E. C. Sewell. The geo-graph in practice: cre-

ating united states congressional districts from census blocks. Computational

Optimization and Applications, 69(1):25–49, 2018.

[121] S. M. Korman. Graph colouring and related problems in operations research.

PhD thesis, Imperial College London, London, United Kingdom, 1975.

[122] J. Łącki and P. Sankowski. Optimal decremental connectivity in planar graphs.

Theory of Computing Systems, 61(4):1037–1053, 2017.

[123] J. Łącki, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Single source–all

sinks max flows in planar digraphs. In IEEE 53rd Annual Symposium on Foun-

dations of Computer Science, pages 599–608, New Brunswick, Canada, 2012.

IEEE.

[124] X. Lai and J. K. Hao. Iterated maxima search for the maximally diverse

grouping problem. European Journal of Operational Research, 254(3):780–800,

2016.

[125] G. Laporte and I. H. Osman. Routing problems: A bibliography. Annals of

Operations Research, 61(1):227–262, 1995.

181

[126] G. Laporte, S. Nickel, and F. Saldanha da Gama, editors. Location Science.

Springer, Cham, Switzerland, 2nd edition, 2019.

[127] H. Lei, G. Laporte, and B. Guo. Districting for routing with stochastic cus-

tomers. EURO Journal on Transportation and Logistics, 1(1):67–85, 2012.

[128] H. Lei, G. Laporte, Y. Liu, and T. Zhang. Dynamic design of sales territories.

Computers & Operations Research, 56:84–92, 2015.

[129] H. Lei, R. Wang, and G. Laporte. Solving a multi-objective dynamic stochastic

districting and routing problem with a co-evolutionary algorithm. Computers

& Operations Research, 67:12–24, 2016.

[130] H. A. Levin and S. A. Friedler. Automated congressional redistricting. Journal

of Experimental Algorithmics, 24:1–24, 2019.

[131] R. Lewis, J. Thompson, C. Mumford, and J. Gillard. A wide-ranging computa-

tional comparison of high-performance graph colouring algorithms. Computers

& Operations Research, 39(9):1933–1950, 2012.

[132] W. Li, R. L. Church, and M. F. Goodchild. The p-compact-regions problem.

Geographical Analysis, 46(3):250–273, 2014.

[133] F. Liberatore, M. Camacho-Collados, and L. Quijano-Sánchez. Equity in the

police districting problem: Balancing territorial and racial fairness in patrolling

operations. Journal of Quantitative Criminology, 38:1–25, 2022.

[134] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,

22(140):5–55, 1932.

[135] H.-Y. Lin and J.-J. Kao. Subregion districting analysis for municipal solid waste

collection privatization. Journal of the Air & Waste Management Association, 58

(1):104–111, 2008.

[136] M. Lin, K.-S. Chin, C. Fu, and K.-L. Tsui. An effective greedy method for the

meals-on-wheels service districting problem. Computers & Industrial Engineer-

ing, 106:1–19, 2017.

[137] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the Traveling-

Salesman Problem. Operations Research, 21(2):498–516, 1973.

182

[138] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stüt-

zle. The irace package: Iterated racing for automatic algorithm configuration.

Operations Research Perspectives, 3:43–58, 2016.

[139] J. F. López-Pérez and R. Z. Ríos-Mercado. Embotelladoras ARCA uses oper-

ations research to improve territory design plans. Interfaces, 43(3):209–220,

2013.

[140] T. Lotan, D. Catrysse, and D. Van Oudheusden. Winter gritting in the province

of antwerp: a combined location and routing problem. Belgian Journal of

Operations Research, Statistics, and Computer Science, 36(2-3):141–157, 1996.

[141] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Framework

and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Meta-

heuristics, chapter 12, pages 129–168. Springer, New York, United States, 2nd

edition, 2019.

[142] J. MacQueen et al. Some methods for classification and analysis of multivari-

ate observations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the

Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:

Statistics, volume 1, pages 281–297, Oakland, United States, 1967.

[143] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Imple-

mentations. Wiley, New York, United States, 1990.

[144] C. McCartan and K. Imai. Sequential Monte Carlo for sampling balanced and

compact redistricting plans. Preprint arXiv:2008.06131, 2020.

[145] M. W. McConnell. The redistricting cases: Original mistakes and current con-

sequences. Harvard Journal of Law and Public Policy, 24:103, 2000.

[146] A. Mehrotra, E. L. Johnson, and G. L. Nemhauser. An optimization based

heuristic for political districting. Management Science, 44(8):1100–1114,

1998.

[147] J. Min and D. Savage. Why do american indians vote democratic? The Social

Science Journal, 51(2):167–180, 2014.

[148] F. K. Miyazawa, P. F. Moura, M. J. Ota, and Y. Wakabayashi. Partitioning a

graph into balanced connected classes: Formulations, separation and experi-

ments. European Journal of Operational Research, 293(3):826–836, 2021.

183

[149] M. Moeini and O. Wendt. A heuristic for solving the maximum dispersion prob-

lem. In A. Fink, A. Fügenschuh, and M. J. Geiger, editors, Operations Research

Proceedings 2016, pages 405–410, Cham, Switzerland, 2018. Springer.

[150] M. Moeini, D. Goerzen, and O. Wendt. A local search heuristic for solving

the maximum dispersion problem. In N. T. Nguyen, D. H. Hoang, T.-P. Hong,

H. Pham, and B. Trawiński, editors, Intelligent Information and Database Sys-

tems, volume 10751 of Lecture Notes in Computer Science, pages 362–371,

Cham, Switzerland, 2018. Springer.

[151] M. C. O. Moreira, J. A. Ferreira Neto, C. J. Einloft, and N. T. C. Silva. De-

senvolvimento Rural, Sustentabilidade e Prdenamento Territorial, chapter O uso

da busca tabu no ordenamento territorial em assentamentos rurais: reconfigu-

rando o SOTER-PA (Sistema de Ordenamento Territorial da Reforma Agrária e

Planejamento Ambiental), pages 265–272. Suprema, Visconde do Rio Branco,

Brazil, 2011.

[152] S. Moreno, J. Pereira, and W. Yushimito. A hybrid k-means and integer pro-

gramming method for commercial territory design: a case study in meat dis-

tribution. Annals of Operations Research, 286(1):87–117, 2020.

[153] P. Moscato. On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. C3P Report 826, California Institute of

Technology, Pasadena, United States, 1989.

[154] J. G. Moya-García and M. A. Salazar-Aguilar. Territory design for sales force

sizing. In R. Z. Ríos-Mercado, editor, Optimal Districting and Territory Design,

volume 284 of International Series in Operations Research and Management

Science, chapter 10, pages 191–206. Springer, Cham, Switzerland, 2020.

[155] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer. Evolution algorithms in

combinatorial optimization. Parallel Computing, 7(1):65–85, 1988.

[156] J. M. Mulvey and M. P. Beck. Solving capacitated clustering problems. Euro-

pean Journal of Operational Research, 18(3):339–348, 1984.

[157] J. Munkres. Algorithms for the assignment and transportation problems. Jour-

nal of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[158] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an

overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-

ery, 2(1):86–97, 2012.

184

[159] L. Muyldermans, D. Cattrysse, D. van Oudheusden, and T. Lotan. Districting

for salt spreading operations. European Journal of Operational Research, 139

(3):521–532, 2002.

[160] L. Muyldermans, D. Cattrysse, and D. V. Oudheusden. District design for arc-

routing applications. Journal of the Operational Research Society, 54(11):1209–

1221, 2003.

[161] R. G. Niemi, B. Grofman, C. Carlucci, and T. Hofeller. Measuring compact-

ness and the role of a compactness standard in a test for partisan and racial

gerrymandering. The Journal of Politics, 52(4):1155–1181, 1990.

[162] B. Nygreen. European assembly constituencies for Wales – comparing of meth-

ods for solving a political districting problem. Mathematical Programming, 42

(1):159–169, 1988.

[163] J. Oehrlein and J.-H. Haunert. A cutting-plane method for contiguity-

constrained spatial aggregation. Journal of Spatial Information Science, 2017

(15):89–120, 2017.

[164] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the

plane. Journal of Computer and System Sciences, 23(2):166–204, 1981.

[165] E. Parliament and T. C. of the European Union. Directive 2012/19/EU on

waste electrical and electronic equipment (WEEE), Jul. 2012. URL http:

//eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:

2012:197:0038:0071:EN:PDF.

[166] F. Pezzella, R. Bonanno, and B. Nicoletti. A system approach to the optimal

health-care districting. European Journal of Operational Research, 8(2):139–

146, 1981.

[167] D. D. Polsby and R. D. Popper. The third criterion: Compactness as a procedural

safeguard against partisan gerrymandering. Yale Law & Policy Review, 9(2):

301–353, 1991.

[168] J. Poot, O. Alimi, M. P. Cameron, and D. C. Maré. The gravity model of mi-

gration: The successful comeback of an ageing superstar in regional science.

Technical Report IZA DP No. 10329, IZA Institute of Labor Economics, Bonn,

Germany, October 2016.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:EN:PDF

185

[169] C. Prodhon and C. Prins. A survey of recent research on location-routing prob-

lems. European Journal of Operational Research, 238(1):1–17, 2014.

[170] O. A. Prokopyev, N. Kong, and D. L. Martinez-Torres. The equitable dispersion

problem. European Journal of Operational Research, 197(1):59–67, 2009.

[171] E. C. Reock. A note: Measuring compactness as a requirement of legislative

apportionment. Midwest Journal of Political Science, 5(1):70–74, 1961.

[172] M. G. C. Resende and C. C. Ribeiro. Optimization by GRASP: Greedy Random-

ized Adaptive Search Procedure. Springer, New York, United States, 2016.

[173] M. G. C. Resende and R. F. Werneck. A hybrid heuristic for the p-median

problem. Journal of Heuristics, 10(1):59–88, 2004.

[174] F. Ricca and B. Simeone. Local search algorithms for political districting. Eu-

ropean Journal of Operational Research, 189(3):1409–1426, 2008.

[175] F. Ricca, A. Scozzari, and B. Simeone. Weighted Voronoi region algorithms for

political districting. Mathematical and Computer Modelling, 48(9-10):1468–

1477, 2008.

[176] F. Ricca, A. Scozzari, and B. Simeone. Political districting: From classical

models to recent approaches. Annals of Operations Research, 204(1):271–299,

2013.

[177] R. Z. Ríos-Mercado. Assessing a metaheuristic for large-scale commercial dis-

tricting. Cybernetics and Systems, 47(4):321–338, 2016.

[178] R. Z. Ríos-Mercado, editor. Optimal Districting and Territory Design, volume

284 of International Series in Operations Research and Management Science.

Springer, Cham, Switzerland, 2020.

[179] R. Z. Ríos-Mercado and J. F. Bard. An exact algorithm for designing optimal

districts in the collection of waste electric and electronic equipment through

an improved reformulation. European Journal of Operational Research, 276(1):

259–271, 2019.

[180] R. Z. Ríos-Mercado and H. J. Escalante. GRASP with path relinking for com-

mercial districting. Expert Systems with Applications, 44:102–113, 2016.

186

[181] R. Z. Ríos-Mercado and E. Fernández. A reactive GRASP for a commercial

territory design problem with multiple balancing requirements. Computers &

Operations Research, 36(3):755–776, 2009.

[182] R. Z. Ríos-Mercado and J. F. López-Pérez. Commercial territory design plan-

ning with realignment and disjoint assignment requirements. Omega, 41(3):

525–535, 2013.

[183] R. Z. Ríos-Mercado and J. C. Salazar-Acosta. A GRASP with strategic oscillation

for a commercial territory design problem with a routing budget constraint. In

I. Batyrshin and G. Sidorov, editors, Advances in Soft Computing, volume 7095

of Lecture Notes in Artificial Intelligence, pages 307–318. Springer, Heidelberg,

Germany, 2011.

[184] R. Z. Ríos-Mercado, A. M. Álvarez-Socarrás, A. Castrillón, and M. C.

López-Locés. A location-allocation-improvement heuristic for districting with

multiple-activity balancing constraints and p-median-based dispersion mini-

mization. Computers & Operations Research, 126:105106, 2021.

[185] R. Z. Ríos-Mercado, J. L. González-Velarde, and J. R. Maldonado-Flores. Tabu

search with strategic oscillation for improving collection assignment plans of

waste electric and electronic equipment. International Transactions of Opera-

tional Research, 30(2):1002–1030, 2023.

[186] M. Ritt and J. Pereira. Heuristic and exact algorithms for minimum-weight

non-spanning arborescences. European Journal of Operational Research, 287

(1):61–75, 2020.

[187] M. A. Salazar-Aguilar, R. Z. Ríos-Mercado, and M. Cabrera-Ríos. New models

for commercial territory design. Networks and Spatial Economics, 11(3):487–

507, 2011.

[188] M. A. Salazar-Aguilar, R. Z. Ríos-Mercado, and J. L. González-Velarde. A bi-

objective programming model for designing compact and balanced territories

in commercial districting. Transportation Research Part C: Emerging Technolo-

gies, 19(5):885–895, 2011.

[189] M. A. Salazar-Aguilar, J. L. González-Velarde, and R. Z. Ríos-Mercado. A divide-

and-conquer approach to commercial territory design. Computación y Sistemas,

16(3):309–320, 2012.

187

[190] M. A. Salazar-Aguilar, R. Z. Ríos-Mercado, J. L. González-Velarde, and

J. Molina. Multiobjective scatter search for a commercial territory design prob-

lem. Annals of Operations Research, 199(1):343–360, 2012.

[191] M. A. Salazar-Aguilar, R. Z. Ríos-Mercado, and J. L. González-Velarde. Grasp

strategies for a bi-objective commercial territory design problem. Journal of

Heuristics, 19(2):179–200, 2013.

[192] M. G. Sandoval, J. A. Díaz, and R. Z. Ríos-Mercado. An improved exact algo-

rithm for a territory design problem with p-center-based dispersion minimiza-

tion. Expert Systems with Applications, 146:113150, 2020.

[193] M. G. Sandoval, E. Álvarez-Miranda, J. Pereira, R. Z. Ríos-Mercado, and J. A.

Díaz. A novel districting design approach for on-time last-mile delivery: An

application on an express postal company. Omega, 113:102687, 2022.

[194] O. B. Schoepfle and R. L. Church. A new network representation of a “classic”

school districting problem. Socio-Economic Planning Sciences, 25(3):189–197,

1991.

[195] M. Schröder. Gebiete optimal aufteilen. PhD thesis, Karlsruhe Institute of Tech-

nology, Karlsruhe, Germany, 2001.

[196] J. Schwartz. Cracked, stacked and packed: Ini-

tial redistricting maps met with skepticism and dis-

may. https : / / indyweek . com / news / northcarolina /

cracked-stacked-packed-initial-redistricting-maps-met-skepticism-dismay/,

2011. Retrieved in 12-12-2022.

[197] J. A. Segura-Ramiro, R. Z. Ríos-Mercado, A. M. Álvarez-Socarrás, and

K. de Alba Romenus. A location-allocation heuristic for a territory design prob-

lem in a beverage distribution firm. In International Conference on Industrial

Engineering Theory, Applications, and Practice, pages 428–434, 2007.

[198] M. I. Shamos. Computational Geometry. PhD thesis, Yale University, New

Haven, United States, 1978.

[199] T. Shirabe. Districting modeling with exact contiguity constraints. Environment

and Planning B: Planning and Design, 36(6):1053–1066, 2009.

https://indyweek.com/news/northcarolina/cracked-stacked-packed-initial-redistricting-maps-met-skepticism-dismay/
https://indyweek.com/news/northcarolina/cracked-stacked-packed-initial-redistricting-maps-met-skepticism-dismay/

188

[200] K. Smith-Miles, D. Baatar, B. Wreford, and R. Lewis. Towards objective mea-

sures of algorithm performance across instance space. Computers & Operations

Research, 45:12–24, 2014.

[201] M. T. A. Steiner, D. Datta, P. J. S. Neto, C. T. Scarpin, and J. R. Figueira. Multi-

objective optimization in partitioning the healthcare system of Paraná state in

Brazil. Omega, 52:53–64, 2015.

[202] N. O. Stephanopoulos and E. M. McGhee. Partisan gerrymandering and the

efficiency gap. University of Chicago Law Review, 82:831, 2015.

[203] Q. J. Stewart. The development of social physics. American Journal of Physics,

18(5):239–253, 1950.

[204] G. Syswerda et al. Uniform crossover in genetic algorithms. In Proceedings of

the 3rd International Conference on Genetic Algorithms, volume 3, pages 2–9,

George Mason University, United States, 1989.

[205] M. Takahashi and H. Kita. A crossover operator using independent component

analysis for real-coded genetic algorithms. In Proceedings of the 2001 Congress

on Evolutionary Computation, volume 1, pages 643–649, Seoul, Korea, 2001.

IEEE.

[206] R. E. Tarjan. A note on finding the bridges of a graph. Information Processing

Letters, 2(6):160–161, 1974.

[207] F. Tavares-Pereira, J. R. Figueira, V. Mousseau, and B. Roy. Multiple criteria

districting problems: The public transportation network pricing system of the

paris region. Annals of Operations Research, 154(1):69–92, 2007.

[208] M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths.

In Proceedings of the thirty-seventh annual ACM symposium on Theory of Com-

puting, pages 112–119, Baltimore, United States, May 2005.

[209] P. Toth and D. Vigo. Vehicle Routing: Problems, Methods, and Applications.

SIAM, Philadephia, United States, 2nd edition, 2014.

[210] User “cmglee” at English Wikipedia. Gerrymandering 9-6. https://

commons.wikimedia.org/wiki/File:Gerrymandering_9-6.png,

2010. Retrieved in 12-12-2022.

https://commons.wikimedia.org/wiki/File:Gerrymandering_9-6.png
https://commons.wikimedia.org/wiki/File:Gerrymandering_9-6.png

189

[211] H. Validi and A. Buchanan. Political districting to minimize cut edges. Mathe-

matical Programming Computation, 14:623–672, 2022.

[212] H. Validi, A. Buchanan, and E. Lykhovyd. Imposing contiguity constraints in

political districting models. Operations Research, 70(2):867–892, 2022.

[213] B. Vangerven, D. Briskorn, D. R. Goossens, and F. C. Spieksma. Parliament

seating assignment problems. European Journal of Operational Research, 296

(3):914–926, 2022.

[214] G. S. Warrington. Quantifying gerrymandering using the vote distribution.

Election Law Journal, 17(1):39–57, 2018.

[215] G. R. Webster. Reflections on current criteria to evaluate redistricting plans.

Political Geography, 32:3–14, 2013.

[216] I. K. White and C. N. Laird. Steadfast Democrats: How Social Forces Shape Black

Political Behavior. Princeton University Press, Princeton, United States, 2020.

[217] J. C. Williams, Jr. Political districting: A review. Regional Science, 74(1):13–40,

1995.

[218] S. Yanik, Ö. Sürer, and B. Öztayşi. Designing sustainable energy regions us-

ing genetic algorithms and location-allocation approach. Energy, 97:161–172,

2016.

[219] H. P. Young. Measuring the compactness of legislative districts. Legislative

Studies Quarterly, 13(1):105–115, 1988.

[220] A. A. Zoltners and P. Sinha. Sales territory alignment: A review and model.

Management Science, 29(11):1237–1256, 1983.

[221] A. A. Zoltners, P. Sinha, and S. E. Lorimer. Sales force effectiveness: a frame-

work for researchers and practitioners. Journal of Personal Selling & Sales Man-

agement, 28(2):115–131, 2008.

[222] B. Çavdar and J. Sokol. A distribution-free TSP tour length estimation model

for random graphs. European Journal of Operational Research, 243(2):588–

598, 2015.

	Acknowledgements
	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Resumo
	1 Introduction
	1.1 Motivation and contributions of this thesis
	1.1.1 Contribution 1: A generic heuristic for districting
	1.1.2 Contribution 2: A hybrid heuristic for the Maximum Dispersion Problem

	1.2 Structure of this thesis

	2 Background
	2.1 Applications
	2.1.1 Political districting
	2.1.2 Service districting
	2.1.3 Distribution districting
	2.1.4 Sales districting
	2.1.5 Land allocation

	2.2 Modeling domain-specific criteria
	2.3 Typical districting optimization criteria
	2.3.1 Balance
	2.3.2 Compactness
	2.3.3 Connectivity
	2.3.4 Similarity to existing or previous plans
	2.3.5 Routing criteria
	2.3.6 Number of districts
	2.3.7 Other criteria

	2.4 Solution methods
	2.4.1 MIP-based approaches
	2.4.2 Metaheuristic approaches

	3 A generic heuristic for districting
	3.1 Introduction
	3.2 Problem definition and notation
	3.3 Proposed algorithm
	3.3.1 Initial solutions
	3.3.2 Optimizing solutions by alternating search
	3.3.3 Optimizing balance
	3.3.4 Optimizing compactness
	3.3.5 Dynamic updates for local search candidates

	3.4 Problem instances
	3.4.1 A note on the experimental configurations of the following experiments

	3.5 Computational experiments
	3.5.1 Calibrating the parameters of our heuristic
	3.5.2 Experiment 1: p-median objective
	3.5.3 Experiment 2: p-center objective
	3.5.4 Experiment 3: diameter objective

	3.6 Extension to routing criteria
	3.6.1 Modeling routing costs
	3.6.2 Extending the heuristic to include routing costs
	3.6.3 Computational experiments

	3.7 Extension to similarity criteria
	3.7.1 Modeling redistricting problems with similarity criteria
	3.7.2 Extending the heuristic to include similarity constraints
	3.7.3 Computational experiments

	3.8 Conclusions and outlook
	3.8.1 Outlook

	4 A hybrid heuristic for the Maximum Dispersion Problem
	4.1 Introduction
	4.2 Problem definition
	4.3 Upper bounds
	4.3.1 The unrestricted MaxDP and graph coloring
	4.3.2 An improved upper bound

	4.4 A hybrid heuristic for the MaxDP
	4.4.1 Initial solutions

	4.5 Improving dispersion
	4.5.1 Local search
	4.5.2 An ejection chain algorithm for improving dispersion

	4.6 Balancing solutions
	4.6.1 Selecting two groups
	4.6.2 Finding improving exchanges between two groups

	4.7 Computational experiments
	4.7.1 Test instances and methodology
	4.7.2 Experiment 1: upper bounds
	4.7.3 Experiment 2: solving UMaxDP
	4.7.4 Experiment 3: balancing solutions
	4.7.5 Experiment 4: comparison to the exact approach of Fernandez.etal/2013
	4.7.6 Experiment 5: final results on test instances
	4.7.7 Summary of results

	4.8 Conclusion

	5 Conclusion
	Resumo expandido em português
	References

