Universidade Federal do Rio Grande do Sul
Instituto de Matemética

Programa de Pés-Graduagao em Matematica

Simple Modules of the Quantum Double of a
Nichols Algebra of Unidentified Diagonal Type

Carolina Noele Renz

Porto Alegre, 19 outubro de 2015.



PhD thesis presented by Carolina Noele Renz ! in partial fulfillment of the re-
quirements for the degree of Doctor in Mathematics at Universidade Federal do Rio
Grande do Sul.

Professor Orientador:

Prof. Dr. Antonio Paques

Professor Co-orientador:

Prof. Dr. Nicolds Andruskiewitsch (UNC)

Banca Examinadora:
Prof. Dr. Alveri Alves S’antana (UFRGS)
Prof. Dr. Barbara Pogorelsky (UFRGS)
Prof. Dr. Cristian Vay (UNC)

Prof. Dr. Ivan Angiono (UNC)

! Bolsista da Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior - CAPES

2



Agradecimentos

Agradeco ao professor Nicolas Andruskiewitsch pela orientacdo e ensinamentos
e a Ivan Angiono pela paciéncia e dedicacdao. Aos professores Antonio Paques e
Alveri S’antana pelo apoio e direcionamento, e a Cristian Vay pelas correcoes e
apontamentos. A Barbara pela amizade, encorajamento e parceria.

Assim como aos muitos amigos e colegas pela compreensao e carinho.

Aos argentinos, colombianos e brasileiros que me acolheram e auxiliaram durante
minha estadia em Cordoba.

Aos meus pais, Paulo e Rosangela, cujas preocupacoes e apoio acompanharam
todo o meu desenvolvimento na pesquisa.

A minha psicoléga Lucianne, meus bebés e suas familias no trabalho voluntario a
que estou vinculada, aos companheiros do Centro Espirita Léon Denis, ao Polindémio
(meu gato) e a todos que contribuiram para a felicidade e equilibrio necessarios a
esta conquista.

Muito obrigada!



Resumo

Nesta tese estd a classificacao de todas as 47 possiveis representacoes irredutiveis
do duplo quantico de uma algebra de Hopf associada a algebra de Nichols da dlgebra
de tipo nao identificado de menor dimensao (144).

Abstract

In this thesis we classify all 47 possible irreducible representations of the quantum
double of a pointed Hopf algebras attached to the Nichols algebra of the unidentified
algebra of smallest dimension (144).
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Chapter 1

Introduction

Finite-dimensional Nichols algebras were classified by Heckenberger in [H2| and we
can consider three families: standard braidings, (that were introduced in [AA]);
braidings of super type, ([AAY]) and a finite list of braidings whose connected
components have rank less than eight that are called unidentified. A Nichols algebra
of a braided vector space (V, ¢) is a quotient of its tensor algebra by a suitable ideal
I(V) then a important question about Nichols algebras is to obtain a minimal set
of relations generating I(V). For the first family this is in [A4] and for the second
family the problem is solved for the generic case in [Y], and for the non-generic case,
except by some considerations for small orders on the entries of the braiding matrix,
in [AAY]. A complete list of relations satisfied by the generators of the Nichols
algebras, depending on the matrix entries can be found in |A4]. Angiono in [A3]
gave a complete list of relations generating the defining ideal for the Nichols algebra
of each braiding of this kind and also the list of positive roots for each case and the
dimension for the small ranks.

In this thesis we compute and describe all the irreducible representations (and
their dimensions) of a finite-dimensional pointed Hopf algebra, which is the Drinfeld
double of a Nichols algebra of unidentified type of smallest dimension (144). There
are 47 different cases according with the sets of factors of the Shapovalov determinant
who are annhilated. For that purpose, we compute the lattices of submodules of the
Verma modules. The parametrization of the simple modules of the mentioned Hopf
algebras is deduced from a result of Radford and Schneider (|RS|) which generalizes
the method employed in the representation theory of finite-dimensional semisimple
Lie algebras and comes from the consideration of the generalized version of the
Shapovalov determinant, introduced by Heckenberger and Yamane for these Drinfeld
doubles of Nichols algebras ([HY]). This determinant has a factorization, and the
Verma module is irreducible if no one of these factors is zero. This factorization
also helps to describe the other 46 cases, when either one or two of the factors are
0, generating on most cases explicit relations on the module. We describe explicitly
the submodules on each case. Cases 2-10 has one of the factors equal to 0 and
the other cases have exactly two factors equal to 0, and we compute the results of
the relations obtaining the basis to the module, but this is not always simple and
easy. Therefore, we also related the Cases 11-47, with each other in two possible



ways, using a morphism between submodules as in Lemma 5.2.5 and this provides
relations between the diagrams of the module that we exemplify in Appendix B.



Chapter 2

Preliminaries

2.1 Notation

The base field k is algebraically closed of characteristic zero; we set k* = k —0. For
each integer N > 1, Gy denotes the group of N-roots of unity in k, and G/y is the
corresponding subset of primitive roots of order N. If G is a group, then we denote
by G the group of multiplicative characters (i. e., one-dimensional representations)
of G; and by Z(G) the center of G.

We shall use the notation for ¢-factorial numbers: for each ¢ € k*, n € N,
0<k<n,

(n)y = 1+q"‘---+qn_lv (n)g! = (1)¢(2)g -+ (n)g-

A braided monoidal category is a collection (C, ®, 1, a,r, [, c) where C is a category,
® : C xC — C is a functor called tensor product; 1 is an object in C; axyz :
(XRY)RZ - X@(Y®RZ),rx : X - X®1,Ix : X = 10X, cxy : XQY = Y®X
are natural families of isomorphisms that satisfies some suitable coherence diagrams
[M, page 252]. In particular, for X € C, the map ¢ = cx x is called a braiding and
satisfies the braid equation

(c®id)(id @e)(c ®id) = (id ®c)(c ® id)(id ®c). (2.1)

2.2 Hopf algebras

Definition 2.2.1. Let (H,m,u, A, ¢) be a bialgebra. Then H is a Hopf algebra if
there exists an element S € Homy(H, H) which is an inverse to idy under convolu-
tion. S is called an antipode for H.

Note that S satisfies

> (Shayhey =eh) D =D ha)(She)

We use the Heyneman-Sweedler notation A(z) = ) x(1) ® x(2); the summation
sign will be often omitted. The composition inverse of S is denoted by S.
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Let H be a Hopf algebra. There are a left and a right action of H* on H given
by

f=h=nhaflhe), h— f = f(ha)he, heH, feH" (2:2)

We denote by G(H) the set of grouplike elements of H. The tensor category of
finite-dimensional representations of H is denoted Rep H.

A left integral in H is an element T € H such that hYT = ¢(h)Y for all h € H;
a right integral in H is an element A € H such that Ah = ¢(h)A for all h € H.
The space of left, respectively right, integrals is denoted [;(H), respectively I,.(H).
Assume that H is finite-dimensional. Then dim [;(H) = 1 = dim[,(H). The
distinguished grouplike elements of H and H* are the (unique) ay € G(H*), gy €
G(H) such that

Ta=ag(a)Y, pv = p(gg)v, foralla e H,pe H", (2.3)

where T, respectively v, is an arbitrary non-zero left integral in H, respectively
non-zero right integral in H*.

Example 2.2.2. Let G be a finite group and kG its group algebra, with basis
(R)hea. Then (kKG)* ~ kY, with basis (04)neq, On being the function that is 1 in h,
0 elsewhere. Then

o =) _henkG)=I(kG), 5. € I,(k%) = L(k%). (2.4)
heG

Hence the distinguished grouplike elements are trivial. Alternatively, if G = I is
abelian, then d. = ||~ 37 5 x.

2.3  Yetter-Drinfeld modules

Definition 2.3.1. Let G be a finite group. A Yetter-Drinfeld module over kG is a
G-graded vector space M = @, . M; provided with a linear action of G such that
t- M, = M- for any t,h € G; morphisms of Yetter-Drinfeld modules are linear
maps preserving the action and the grading.

The category K&VD of Yetter-Drinfeld modules over G is semisimple. Moreover,
let M € ¥¢YD, t € G and v € M,. If there exists x € G such that h-v = x(h)v, for
all h € G, then we say that v € M}*; necessarily, t € Z(G). Furthermore, if G =T
is abelian, then any M € {GYD satisfies M = @, o5 M

The category £¥&VD is a braided tensor category with the usual tensor product
of gradings and actions, and where cxy : X ® Y = Y ® X is given by

clx®y)=t-yux, reX,teG,yey. (2.5)



2.4 Braided Hopf algebras

Definition 2.4.1. Let G be a finite group. A braided Hopf algebra in XGYD is a
collection (R, -, A), where

e ReX yD
e (R,-) is an algebra such that - and the unit are morphisms in £¥&)D;

e (R,A) is a coalgebra such that A and the counit ¢ are morphisms in £&YVD;
e A is an algebra map in the sense Aom = (m ® m)(id ®cp r ® id)(A @ A);
e R has an antipode Sg, i. e. a convolution inverse of the identity of R.

Let A, H be Hopf Algebras and m : A — H and + : H — A Hopf algebra
homomorphisms. Assume that w = idy, so that 7 is surjective, and ¢ is injective.
Then

R:=A“"={a€cA: (ido7m)A(a) =a® 1}

is a braided Hopf algebra in ¥4)D with the following structure:

e The action - of H on R is the restriction of the adjoint action composed with
L.

e The coaction is (1 ® id)A.
e R is a subalgebra of A.
e The comultiplication is Ag(r) = r1)tnS(r2)) @ r), for all r € R.

Definition 2.4.2. Let R be braided Hopf algebra in £4VD. The vector space RQkG
whose multiplication and comultiplication are given by

(r#h) (s#f) = T(h(l) : 5)#h(2)f
A(r#th) = rW# @) ko) @ () o #he),

is a Hopf algebra, called the bosonization, or bicrossproduct, of R by kG, and denoted
R#kG,

Let R be a finite-dimensional braided Hopf algebra in XeYD. A left integral in R
isa T € R such that rT = ¢(r)Y for all € R. Right integrals are defined similarly.
The space of left integrals, respectively right, is denoted I;(R), respectively I,(R).
Then [;(R) € YD and I,.(R*) € kGyD have dimension 1; hence

I(R) = L(R)], for some z € Z(G), v € G: (2.6)
L(R") = I(R")", for some ¢ € G, p € G. (2.7)

See [T] for more details.
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Let T € I;(R), v € I,(R*). The relation with the integrals of the bosonization is
given by the following result. Recall [, 0. from (2.4).

Lemma 2.4.3. [R1, Buf (i) Y#([c — v) = [¢ T € LL(R#KG).
(11) v#o. € I.((R#kG)"). O

The distinguished grouplike elements of R and R* are the (unique) ar € G(R"),
gr € G(R) such that Tr = ar(r)Y, pv = p(gr)v, for all r € R, p € R*. We give
next the distinguished grouplike elements of the bosonization R#kG.

Theorem 2.4.4. [Bu, 4.8, 4.10] Let R be a finite-dimensional braided Hopf algebra
in XGYD, the distinguished grouplike elements of H = R#KG are ay = ar#y™*
and gg = grl. O

Remark 2.4.5. |[AG] Let R = 3. R; be a finite-dimensional graded braided Hopf
algebra in X6 VD, with Ry = k and Ry # 0. Then Ry = [;(R) = I,(R). Thus R,
and similarly R*, are unimodular. Hence oy = v~ and gy = ¢, by Theorem 2.4.4.

2.5 Braidings of diagonal type

Let 0 e Nand I = {1,2,...,0}.
Let q = (gij)ijer € kKT such that

gij are roots of 1 for all 7,5 € I, )

Let ¢;; := qijqji- The generalized Dynkin diagram of the matrix q is a graph with
f vertices, the vertex ¢ labeled with ¢;;, and an arrow between the vertices ¢ and j
only if ¢;; # 1, labeled with ¢;;. For instance, given ( € G/, and 1 a square root of

4 4 11
(¢, the matrices ((Cll _11>, (ncll 711) have the diagram:

off Lol (2.10)

where we indicate the vertices 1,2 by o, e, respectively.

Let V' be a vector space with a basis X = {x; : ¢ € [}. Definec: VeV - VeV
by ¢(x; ® x;) = ¢;jx; ® x;, 1,7 € L. Then ¢ is a solution of the braid equation (2.1).
The pair (V, ¢) is called a braided vector space of diagonal type; such braided vector
spaces are related with Yetter-Drinfeld modules over group algebras of finite abelian
groups.

2.6 Nichols algebras

Definition 2.6.1. Let (V,¢) be a braided vector space of diagonal type attached
to a matrix q as in the previous subsection. A braided graded Hopf algebra R =
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Q)50 B(n) € ¥&YDis called a Nichols algebra of V and denoted by B(V) ifk ~ R(0)
and V ~ R(1) € X6yD, P(R) = R(1) and R is generated as an algebra by R(1).
See [AS3| for various precise alternative definitions and its rol in the classification
of pointed Hopf algebras.

Let (a;);er be the canonical basis of Z!. Since c is of diagonal type, T'(V) admits
a unique Z'-graduation such that degz; = «;; then I(V) is a Z-homogeneous ideal
and B(V) is Z'-graded, see [AS3, Proposition 2.10], |L, Proposition 1.2.3].

Remark 2.6.2. Two braided vector spaces of diagonal type with the same generalized
Dynkin diagram are called twist equivalent; if this is the case, then the corresponding
Nichols algebras are isomorphic as graded vector spaces [AS3, Proposition 3.9|.

We now list some notation for elements in 7'(V') or B(V').

e [z,y]. := product o (id —c¢) (z ® y), for z,y in T'(V') or B(V).
e ad.z(y) := [z,y]., in case x € V and y in T (V') or B(V).

® Ty, = (adewyy) -+ (adexy, ) (x4,), 41,02, -+ ik € L.

Let AY be the set of degrees of PBW generators of B(V), counted with their
multiplicities [H1]. We can see that it does not depend on the PBW basis, [H1, AA].

2.7 The Drinfeld double

A quasitriangular (QT for short) Hopf algebra is a pair (A, R), where A is a Hopf
algebra and R = ), a; ®b; is an invertible element in A ® A such that for all h € A,

AP(h) = RAMR™, (A®id)R =RPR®, (iJd®A)R =R¥RZ.  (2.11)

Here R? =R ®1, R¥® =1 R, R?® =3 ,a; ® 1 ®b;. The Drinfeld element of
(A, R)is u=>3,8(b)a; it is invertible with u™ =", 5;8%*(a;). Then

w:=uSu)" =8u)tuedA), uS(u) € Z(A);
S*(h) = uhu', S*(h) = whw ™, he A

Let Q@ = Ry R; then A(u) = Q' (u®@u) = (u®@u)Q~ '

Definition 2.7.1. [RT1] A QT Hopf algebra (H,R) is ribbon if there exists v €
Z(H), called the ribbon element, such that

v =uS(u), S(v) =, Av)=Q ' (vev).
Then w =uv! € G(H) and S§?(h) = whw™! for all h € H.

Remark 2.7.2. If (A,R) is a QT Hopf algebra and 7 : A — B is a surjective
morphism of Hopf algebras, then (B, (r®m)(R)) is a QT Hopf algebra. Clearly, the
Drinfeld element of B is w(u). Hence, if A has a ribbon element v, then (B, (7 ®
7)(R)) is ribbon with ribbon element 7(v).

12



By a celebrated construction of Drinfeld, every finite-dimensional Hopf algebra
H gives rise to a QT Hopf algebra. For this, we first recall the left and right coadjoint
actions of H on H* given by

h—»f:h(l)éf/—gh(g), f«—h:gh(l)éf’—h(g), he H fe H. (2.12)

If H is finite-dimensional, consider the left coadjoint action of H on H*, respectively
the right coadjoint action of H* on H; these actions make H*°°P into a left H-module
coalgebra, and respectively H into a right H*“P-module coalgebra.

Definition 2.7.3. The Drinfeld double D(H) := H**P b H is the following Hopf
algebra: as a coalgebra, this is H*“P? ® H; the algebra structure and antipode are
given by

(f s h)(f o i) = f(hqy = fig)) B2 (hezy <« fo))h (2.13)
1D(A):1A*[>41A:5A[>41A (2.14)
S(feah)=S(he) = S(fay) = fz) = S(h)) (2.15)

for all f, f' € A*, h,h € A.
Let {h;} be a basis of H, {f;} its dual basis of H* and R := ) _.(e > hy)®(f; > 1).

Theorem 2.7.4. [Dr] If H is a finite-dimensional Hopf algebra, then (D(H),R) is
a QT Hopf algebra. [

We now give an alternative description of the Drinfeld double as a cocycle de-
formation. Let B be a bialgebra. An invertible bilinear form o : B® B — k is a
2-cocycle if

O'(LE(D, y(l))0($(2)y(2), Z) = U(y(l)a Z(l)>0(1’, y(2)z(2))7 Vx, Y,z € B. (216)

Then the cocycle deformation of B by o is the bialgebra B, where B = B as
coalgebra, with product defined by z-y = o (21, ya))z@y2) 0 (2@), @), for z,y €
B, and with the same identity as B [D]. If B is a Hopf algebra, then so is B?, with
antipode

SU(ZE) = 0'(1‘(1),3<C(](2)))S<1](3)) 0'_1(8(113(4)),1‘(5)), r € B.

Theorem 2.7.5. [DT, Remark 2.8] If H is a finite-dimensional Hopf algebra, then
its Drinfeld double is a cocycle deformation of H*“P @ H by o, where

o(f@h f o) =c(f)(h fYe(), hKEH fffeH. O (217
We state a criterium from [KR] to decide whether a Drinfeld double is ribbon.

Theorem 2.7.6. [KR, Theorem 3] The Drinfeld double (D(H),R) is ribbon iff there
erist k € G(H), 6 € G(H*) such that

=gy, =ag, Sh)=k(B—-h=p"Yk" VheH 0O (218)
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2.8 Spherical Hopf algebras

Definition 2.8.1. A spherical Hopf algebra is a pair (H,w), where H is a Hopf
algebra and w € G(H), called the pivot, such that

(i) S*(r) = wrw™!, z € H,

(i1) try (Yw) = try(Yw™'), ¥ € Endg(V), for all V € Rep H.

Let (H,w) be a spherical Hopf algebra. The quantum dimension of M € Rep H
is

qdim M = try(w) = trp(w™). (2.19)

Theorem 2.8.2. [BaW1i]If (H,R) is a ribbon Hopf algebra then (H,w) is spherical
with pivot given by w = uv™! where u,v are the ribbon and Drinfeld elements. [
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Chapter 3

Doubles of Nichols algebras

3.1 Hopf algebras attached to reduced data

Let q = (gij)ijer be a matrix of elements in k* satisfying (2.8), (2.9) and
dim B(V) < oc. (3.1)

Definition 3.1.1. [ARS]| Let I" be a finite abelian group. A reduced YD-datum (for
q over I') is a collection D,y = ((L;)icr, (K;)icr, (Xi)ier) where K;, L; € T, x; € T
for ¢ € I, such that

¢ = X (K:) = xi(Lj) foralli,j €1, (3.2)
KZLZ 7£ 1 for all - € I.

We attach Yetter-Drinfeld modules V and W to the reduced datum D,..q by
V = ®aky; € KLYD, with basis v; € V¥, i €1, (3.4)
W = @ekw; € XLYD, with basis w; € W) i el (3.5)

Definition 3.1.2. [ARS| Let Dy = ((Li)ier, (K;)ier, (Xi)ier) be a reduced YD-
datum. We define U(D,..q) as the quotient of the biproduct T'(V & W)#kI" modulo
the ideal generated by

1(V),
(W), .

it is clear that U(D,.q) is a Hopf algebra quotient of T'(V & W )#kI.
The structure of Hopf algebra is given by
Alv) =1+ K;@u, Alw)=w;®1+L;®w;, Alg)=g®g, geT,
S(vi) = —K; v, S(wi) = =L wy, S(g)=g', gel.
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Example 3.1.3. Let A be a finite abelian group and (g;)ic1, (0;)icr where g; € A,
o; € A, i € I, such that g;; = 0;(g;) for 7, j € I. Then we have a reduced datum D,..q
for I' = A x A given by

K; = g, L; = oy, Xi = (0i, 9:), 1€ L.

Theorem 3.1.4. In the context of Example 3.1.3, U(D,eq) is isomorphic to , there-
fore it is a QT Hopf algebra.

Proof. We argue as in |[ARS, Theorem 3.7|. First, the V in (3.4) also belongs to
—~ -1
KAVD by v; € Vi, i € I Similarly the W in (3.5) belongs to J2YD by w; € Wi
1€l
Let H = B(V)#kA and U = B(W)#kA. The coproduct and the antipode are
determined by

A) =101+ g0v, Alz)=z®0 " +1Qz, Sv)=—g; v, S(z)=—z0.

Define (|) : H ® U — k the bilinear form

(vilz) = 0, (i) =0, (glz)=0, (g]x)=xlg9), geAxehijel

It is a non-degenerate skew-Hopf bilinear form since (for example)

= —(g; '1z)(wilo; ") = (g7 D) (vil )
= —(g; '[1) (vil )

= —(vi|zjo;) = (vi|Sz).

This imply that H*“°P ~ U as Hopf algebras.

By [ARS, Theorem 3.7| there exist a unique 2-cocycle o : (H**“P@ H) ® (H* P ®
H) — ksuch that U(D,eq) ~ (H*°P@H), given by o(f&h, f'@h’") = e(f)(h|f")e(H)
for f, f € H* and h,h' € H. Therefore U(D,.q) is a cocycle deformation of H. By
Theorem 2.7.5 U(D,q) is the Drinfeld double of H, hence U(D,..q) is QT by Theorem
2.7.4 and Remark 2.7.2. O

Let g€ A and a € A be the distinguished grouplike elements of H and H*.
Corollary 3.1.5. If there exist k € A, § € A such that
k=g, B = a, S*(h)y=k(B—=h+—pHE? Vh € H, (3.9)
then U(D,eq) is ribbon.

Proof. This follows from Theorem 2.7.6 and Remark 2.7.2. [
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We look for conditions on A for the existence of (k, ) € A x A satisfing equation
(3.9). Continue in the context of example 3.1.3, let V = @, kv; and suppose that
AY ={pi,..., Bu} is finite, following [A2, Th 3.9] we have that

{vgar v 0 < mj < N, } (3.10)
is a basis of B(V) where Ng = ord(qs) = h(vg) for 8 € AK. The fact that B(V) is a
finite-dimensional graded braided Hopf algebra implies that T = vg\i ot vgﬁ e

Ng, —

LB(V)) = L(B(V)) and v = wy ™ - -.wi™ ™' € L(B(W)) = L(B(W)). Remem-
ber that B(W) ~ B(V)* as braided Hopf algebras.

Let \g € A and pg € A such that g - vs = Ag(g)vg and f - ws = f(pg)ws for
gEA,feKandﬁeAK.

Remark 3.1.6. Let {;};er be the canonical basis of Z'. If 8 = pay + may € AY for
i,j € I then \g = 070} and up = g/gj".

Lemma 3.1.7. v and { of equations (2.6) and (2.7) are given by

Ng,, —1 Ng,, —1 Ng, —1

B Ng, —1 B

Y= M A C= g™y (3.11)

In particular, the distinguished grouplike elements of H are a = )\gyg”ﬁl e AglNﬁlﬂ

dg=p et Nat

and g = gy, M,

Proof. Let g € A, from the graduation of B(V') we have that T = vg]iM_l . -vgfl_l

sog- T = (g]\}vﬁM%NﬁM—jlv. . .1(g.vﬁl)Nﬁ1—1 = Ay, (g)NﬁM—l o Ag, (g)Nﬁ];lT’lthiS irjnvplies

that v = )\Bfle ~--)\Bflf . In a similar way we obtain that ¢ = M@ENF 51‘3171

Last part of the statement follows by Remark 2.4.5. m
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Chapter 4

Unidentified Nichols algebras

We now consider a matrix q = (g;j)1<i j<2 € k2*2 such that its associated generalized

11
Dynkin diagram is given by (2.10), that is o¢" o ! where ¢ € G),; here we

indicate the vertices 1,2 by o, e, respectively. Let V' be the associated braided vec-
tor space of diagonal type, with basis Ey, Ey. According to [H2| the corresponding
Nichols algebra is finite-dimensional; this is the smallest Nichols algebra of uniden-
tified type (up to Weyl equivalence) in the sense of [A3]. Recall the notation in page
12. By [A3], a consequence of [A1l, A2|, we know that the Nichols algebra B(V') has
a presentation by generators E, E, and relations

E} = B3 = [Eiio, Ey). =0, (4.1)

where Ey1212 = [Ehi2, B2,
The set of positive roots is AK = {1,201 + ag, 3a; + 29, a1 + aa, a2}, and the
corresponding PBW-basis is

{ESQEEQEE%IQQE?EQEfW 0<ag,a11212<1; 0<a2<3; 0<ang,a < 2}-
(4.2)

We obtain a new PBW-basis by reordering the PBW-generators:

{EP ENPENBRRERES?| 0<as,a11212 < 1; 0< a2 <3; 0 <an,a <2}
(4.3)

Thus dim B(V) = 2432 =144 and T = EQE%2E11212E1212E12 € Il(B(V))
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Lemma 4.0.1. The following relations are valid in B(V')

E1Ey = Erp + qiaFa By,

E1Eys = q12CC B2 B,

E\E}y = Enss + q2€(1 + ) BB+
012 EL B,

E{E, = Evis + ¢, BBy + ¢, B EY,

Ei12Ey = —qiy B2 Ers + 1P EY,

EnsEf = —qi2C* (1 + () Er2Brisia+
G12C By B,

Er1212E12 = Q12<10E12E112127

E\Ey = Ens + qi2C B By,
E1Ei1215 = @12 112121 + 127 (1 + ) Ef,
ElEfz = Q12C10E12E11212 + Q%2C5E122E112+
G125 B,
E{E1» = —¢},E110Er + ¢1,CCEnEY,
Er2E12 = Er1912 + q2CE12 Eo,
E112Ef2 = ¢1o¢M By Eriniat
G126’ By B,
ErsEnn1s = ¢12¢° Eris12 B,

E212E, = Q?2E2E11212 + C]fzfz(l + C)Efz, Eoby = —qaEs B,

Proof. Tt follows from the defining relations of B(V') that

By = By, By = E1Ey + 01(g92) B2 B,

Er = [Eh E12} = E1Fip + 01(9192)E12E1

B = [Bug, Eio] = Eip B + U%(9192)02(9192)E12E112
[Ea, Ero] = [E1z, Eiio12] = [Eri212, Eiia] = [Eiia, E1] = 0

so, applying repeatedly E;, i = 1,2 to these relations we obtain all the enunciated

relations.

]

Remark 4.0.2. By [Al, Theorem 4.9], we also have F},, = E? 5, = Ef, = 0.

4.1 Ribbon structure

We now consider the Hopf algebra U := U(D,.q) within the context of Example
3.1.3. Thus A is a finite abelian group provided with g1, g» € A, 01, 02 € A such

4
that (01(91) 02(91)) = (Q (hz); recall that ¢ € G),. Then U ~ D(H) where

o1(g2) 02(92) g1 —1

H = B(V)#kA. We need the explicit relations in 4. As in [ARS, H3, HY]| we set

E; = v;, F; = w;o;

1

inU fori=1,2. (4.4)

Let U~ (respectively U™) be the subalgebra of U generated by Fy, F, (respectively
E4, E5). Recall the notation listed in the Subsection 2.6.

Lemma 4.1.1. The following equalities hold:

_ -1 _-1
F12—QQ11U1201 0q

5 4 -3 -2
Fii212 = (P qy1wi121207 “05 7,
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PT’OOf. By (41), w% =0= U):l)) = [wllglg,wlg]c. Also g;w; = qj;-lwl-gj, o;W; = qi?wl-aj,
1 <i,j <2, hence F} = F? = 0. For the remaining equality, we first compute

Fig = F1Fy — g FyFy

—1 -1 -1 —1

-1 _-1 -1 _-1
= W1G21W201 09 — (21W2W101 0Oy

_ -1 _-1
= (§21W1201 0y .

In the same way we prove that FHQ = FF,— ¢ q21F12F1 = (*¢3 w0, %05 and
Fii212 = FriaF12 — CQ21F12F112 = C QQ1UJ1121201 02 Flnally

4
[F11212, Fu] = Fli12F12 — CCga1 FiaFii212
5 5 9 5 —4 -3
= (C o1 W11212W12 - ¢ qQ1w12w11212)01 oy, = 0.

]

Theorem 4.1.2. [ARS, Section 3.2] [H3, Proposition 5.6] The Hopf algebra U is
presented by generators g € A, 0 € A\, E1, Ey, Fy, F5 and relations for 1 <1i,j,k <2

E? = B = [Fiag, Ein) =0,  gE; = xi(9)Eig, oE; = o(g;)Eio,
F12 = F22 = [F11212, F12] =0, gF; = Xi_l(g)Figa of; = U( )FU
EkE_EEkzéki(gi_0;1)7 go =og,

and the relations defining A, A [

Lemma 4.1.3. The following equalities hold:

F1Eys = B Fy + qia(¢ — 1) Eyoy !, By = EpFy + (¢M = 1)Eigs,
F1Eqiz = EnaFy + qia*(1+ ) Erpoy FyEy = EoFy — (3)<7E12927
Fi1E11212 = Enigin by + Qm(CB - 1)E%201 , FaErgie = Enaiabs — Ea B 9o,

R B}, = EoFy — qio(1 + C)(Branoy '+ FEY, = ELFy 4 o1 (1 + C°)Erago—

C ErioFp0; ), (3)g7E12E192>

FlE%2 = E%2F1 + 932(3)C5E2E1201_17 F2E%12 = E112F2 + (3)<7C4E112E12927
F1E132 = Eszl + Q?QCS(C - 1)E2E12‘71 , F2E?2 = E%2F2 + C8<1 - C)(E%2E192—
FugaBusie = EngwnFisn +07°05° — 6165, quC’Er2Biiages + 65,C° Fii21292),
FiuEy = ExFip + (1 — (M) Fioy ', FioBy = E1Fip + goi (1 — Q) Fagn,
FioE1p = EpFia+ 0705 — g1ga, FioE11212 = Ei1212F12 + (M E1129192,
FioFE19 = EoFis + 43(3)471519192, FiiaEs = EnaFis + 07%05 " — g3 g9,
FioE}, = Ef o Fia + CM(3) ¢ Bz Er g1 9o, FiiaBy = EsFiya + (( — 1) Floy .
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Proof. Using Theorem 4.1.2 and Lemma 4.0.1, we have that

By = Fi(EVEy — qioBhEy) = FLEV By — qiaF EL By
= (E1Fy — (g1 — 07 ") EBo — quEo FL By
= E1E>sFy — qiaEag + 63 Booy ' — qiaEs(ErFy — (g1 — 07 )
= E\ExFy — qiaBagy + Gy Bao1 ' — queEs BV Fy + iz Bagy — qizBroy
= Bl + (g5 — qi2)Esor " = EnnFy + qia(¢ — 1) Eroy

The other relations come from analogue computation. O

By Theorem 2.7.6, U would be ribbon if and only if there exist k& € G(H),
p € G(H*) related to the distinguished grouplike elements ay and gy of H by
(3.9), that is

kK = g, 2—ay,  S*(h)=k(B—h—=pNHk', VheH.

By Lemma 3.1.7, ag = o; 20,® and gy = gi%g5, only depending on g1, ga, 01, 09.

So, given I' abelian group, g1, g2 € I' and o4, 05 € T such that oi(gj) = q;j, we
choose

B=070" k=4lg

and we get 82 = 0y 20, %, k? = gl2¢5. Moreover, to verify the third equality it is
enough to check it on the generators g;, E;: S*(g;) = g: = k(8 — g — 1)k~ and
S*(E)) = g; 'Eig; = q;; " E;.

Now

k(B — By — Bk = 0i(k)B(9:) B = 4314597 052" Ei
k(B — E,— B3 Dk =B = (¢YE,
k(B — Ey— B k™ = (°Fy = —E,.

So, by Theorem 2.7.6 U s ribbon.

Example 4.1.4. We take A = Z5 = (¢2) and define g; = ¢5 and 0,09 € A such
that

o1(g2) = ¢, oa(g2) =—1;  hence  oi(q1) =¢',  oa(g) =1  (4.5)

In particular ord(g;) = 3, ord(g;) = 12, ord(cs) = 2 and 09 = of. It satisfies the
conditions of Example 3.1.3. In such a case, ag = € and gy = ¢5 = gi.
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Chapter 5

Representations of I/

We construct and classify the irreducible representations of the Drinfeld double of
previous section. They are quotient of Verma modules and depend on the values on
g;0;, 1= ]., 2.

5.1 Verma modules

We keep the setting from the previous Section; recall that I' = A x A. The algebra
U has a triangular decomposition Y ~ UT QKI'@U~. Let A € T' and extend it to an
algebra map kI' ® Y/~ — k by annihilating the elements of ¢/ ™; the corresponding
module is denoted by ky. The Verma module M(\) associated to A is the induced
module

M(X) =Ind{ oy ky > U/ (UF +UF, + Y U(g — Mg))). (5.1)

gel

Let vy be the residue class of 1 in M (\); then 1 — vy extends to an isomorphism of
Ut-modules U ~ M () by using the triangular decomposition. In what follows

._ parb e d e . perd c b ra
m(a, b,c,d,e) = EyE), BT 5, BB - vn, n(a,b,c,d,e) = ETE] BT 5, B, Ey - vy

for a,b,c,d,e € Z. Then m(a,b,c,d,e),n(a,b,c,d,e) # 0 if and only if a,c €
(0,1}, b € {0,1,2,3}, de € {0,1,2}, vy = m(0,0,0,0,0) = n(0,0,0,0,0) and
m(a,b,c,d,e), n(a,b,c,d,e) are bases of M(\).

Lemma 5.1.1. Set Wi () = span{m(a,b,c,d,e) | e # 0}, Wy(\) = span{m(a,b,c,d,2)},
W(A) = span{n(1,b,c,d,e)}. Then

a) Fy- Wi(A) € Wi(A),
Fy-m(a,b, c,d,i) € Mor") (D) (€8 = Magror))mla, b, e, d,i — 1) + Wi(\).
b) Fr-W(A) SW(A),
Fy-n(L,b,c,d,e) € Moy ) (1 — Mga02))n(0,b, c,d, e) + W ().
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In particular,
o Wi(X) is a U-submodule if and only if N(g101) = 1;
o Wy(\) is a U-submodule if and only if N(gio1) = (3;
o W(A) is a U-submodule if and only if N(ge0o2) = 1.

Proof. Tt follows by direct computation. n

5.2 Irreducible modules

Now we consider quotients of Verma modules as in [HY, Section 5|, [RS, Section 2.
The Z*-grading on U induce a Z*-grading on M () such that

M()\)gzu,g'v)\, ﬂGZQ.

Thus M(X\)g = koy, Ug - M(X), C M(N\)gy, for all B, v € Z2.
Remark 5.2.1. Let v € M(\) be such that F;-v =0 for i = 1,2. By the triangular
decomposition of U, U - v =UT - v. In particular, if v € M (), a # 0, then U - v is
a submodule such that ¢/ - vNkvy, = 0.

The family of U-submodules of M(A) contained in 4, M(A)g has a unique
maximal element N(\). The highest weight module of weight X is the quotient

L\) = M(A)/N(N).

The maximality of N()\) guaranties that it is Z?-homogeneous, so the quotient L(\)
inherits the Z*-grading of M (\). Moreover, as U is finite-dimensional, a Y-module L
is irreducible if and only if it is irreducible in the category of Z?-graded U-modules.
Remark 5.2.2. Let M be a finite dimensional simple U/-module. By |[RS, Corollary
2.6] M is irreducible if and only if M ~ L(\) for some X\ € I'.

A general diagram with the homogeneous component of a finite dimensional
simple U-module on each rank (a,b) = aay + bas is given in B.1
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X . L] L]
8
2 3 2
x . L] D ] ]
7
5 3
x L] o’ o® L] ) ]
6
2 7 4
X L] o° of . ] .
9
3 7 8 7 3
2 . . . L] L] . (]
4
4 8 2

X L] . o’ . o ]
3

® = dimension1
X L] o’ o’ . .3 N ¢" = dimensionn
2

2 3 2
. . . * .
1
L[] [ ] L] 4 X X X X X X X X X
0 1 2 3 4 5 6 i 8 9 10 11 12
Figure 5.1:

Let A be an associative algebra, V an A-module, and ¢ : A — A an algebra
automorphism. Then we consider the A-module V¢, where V? = V' as vector space
and the A-action is given by a > v = ¢(a) -v, v € V, a € A. Then W C V is an
A-submodule if and only if W¥ C V¥ is an A-submodule.

Example 5.2.3. There exists an algebra automorphism ¢ : U — U, such that
p(K) = K7 o(Li) = L, o(By) = FL7Y, o(F) = K E; [H3, Proposition 4.9
(4)]. Therefore, if v € V has weight A, then v € V¥ has weight A\~

As application we have the following results.

Lemma 5.2.4. Let X(\) := {z € L(\) : E;x = 0 for all i}. Then X(\) is a one-
dimensional subspace and there exists € T' such that X(\) C L(\),, L(\)¥ ~
L(p™).

Proof. X () is a non-trivial subspace since there exists 8 € N maximal such that
L(N)g #0. Let . € X(\)g, © # 0, so the action of I is given by some u € T. Thus
there exists a Y-module map 7 : (Uz)? - L(p™'), x — v,-1. But Uz = L(\) and 7
is an isomorphism since L(\) is irreducible. Finally, 7(X(\)) C {x € L(\) : Fix =
0 for all i} = kuv,. O
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Lemma 5.2.5. Let v € V, with V a U-module, be such that Ev = 0, i1 = 1,2,
veVE Ifm(a,b,c,d,e) # 0 in L(p™") then FSFLF o, F4yFfv #0 in V.

Proof. Let W =Uv C V. Then W¥ is a highet weight {/-module since
Fiv=9(EL ") >v=FEL'v=u(L;")Ev=0.

Thus there exists a unique U-module map 7 : W¥ — L(u~!) such that m(v) = vy.
Now m(FgFb, Fe y,F, Ffv) is, up to a non-zero scalar,

ESE?QEfmmEmeTW(U) =m(a,b,c,d,e) #0,
SO F;F&Ffmanmev #0in V. O

Remark 5.2.6. There is an analogue result for n(a, b, c,d, e).

5.3 The case dimV =1

We consider for a moment the algebra corresponding to a braided vector space of
dimension 1. In this case the reduced datum consists of elements g € A, 0 € A. Set
q=o0(g), and N € N its order. The algebra U := U(D,.q) is close to u,(sly). It has

a presentation by generators g € A, 0 € A, E, F' with relations
EYN = FN =0, gFE = x(9)Ey, oF =o0(g)Eo,
EF -FE=g—o0 ', hF = x '(h)Fh, TF =71(¢gY)FT,
and hr =7hfor he A, 7 € /A\, and the relations defining A, A. Thus
E'F - FE = (j),F" (g —q¢" 7o), j €N, (5.2)
Lemma 5.3.1. Let )\ € f, n = dim L(A).
1. If XN(go) = ¢*77 for some j € {1,...,n—1}, then N = j.
2. If N(go) ¢ {¢’|j =0,1,...,n—2}, thenn = N.
Moreover L(X) has a basis vy, ...,v,—1 such that
Ev; = viy1, Fuvp= ()(¢"7"MNoyh) — Mg1))vier, hrv; = Mh7)o' (R)7T(g")vi. (5.3)
Proof. Same argument as for u,(sly). O

Corollary 5.3.2. Let M be an U-module, A € r. If v € My — 0 satisfies Fv = 0,
then there exists n such that v, Ev, ..., E" ‘v are linearly independent, where

1. either n=j if N(go) = ¢~ for some j € {1,...,N — 1},
2. orelsen=N—11if Mgo) ¢ {¢]j=0,1,...,n—2}.
Moreover F*E'v = a;v for some a; € k*.

Proof. Set vg = v, v; = E -v;_1. Then vy = 0, and the submodule M’ generated by
v is spanned by {v;}. Moreover there exists a surjective U-linear map M (\) — M,
vy > vg. Therefore it induces a surjective U-linear map M’ — L(\). O
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5.4 Irreducible modules

We use the following notation: \; = A\(g;0y), i =

1,2.

Definition 5.4.1. We set the following subsets of T

Ji

[

2

2

3

(SR

4

[}

5

R

[

8

7

NET M # LG A # =100 NN # —1, Mde £ ¢, ¢, A # 1,
AeT | =120#1,¢ ¢3¢ -1,¢,

Del A= #1,0,¢,00E.¢, ¢ 1),

{AeT [N = -1 #+1,¢5,¢",¢* ¢,

AT [ XN = ¢ N #£1,¢5%,¢0, ¢4 ¢,

e ={AeT | N2 =1, #41,¢5,¢0, ¢4 ¢?),

{>\ € f | )‘1)\2 = Ca )\1 7£ 17 C87C7C4a <9}’

~

J
310:{>\€f|)\1¢(@12,)\2:1},

Jn={rel | A =1X=C(}

Js={Ael | A =1X=C"}
Js={AeT | A =1x=C",
Jr={AeT | A =1, =",
T ={reT |\ =N =C,
Ty ={reTl | A =M=,
Jos ={AeT | A = N =2,

Jos = {A €T | A = (' A = (B,
Jyr={reT | A\ =N =",
Jog={AET | A\ = =1, = —1},
Ty ={AeT | A =—1,A = ('},
Tz ={AET | A = (% A\ = —1},
Jis = {r el | A = N\ =Y,

26

{)\ € f ’ )‘1)\2 = C47)\1 7é 17C87C47C27 _17C10}7
o={AeT | Mo =" A #1,¢5,¢,¢" ¢,

Jo={reT |\ =1x=C",

Ju={rel | A =1x=C

Je={AeT | A =1x=—1},
Js={ el |\ ==,
Joo ={AeT | A =5 Ay = (MY,
T ={AeT | A =% N =",
Jog={AET | A =% Ay = -1},

Jos = {AET | A =, N\ = (B,
Jos = {AeT | A =% N\ = ¢,
3302{)\€f|>\1=C2>)\2=C2}7
T ={AeT |\ =N =—1},
Ty ={AeT | A =" N =Y,



336:{>\€f\)\1:C7>\2:1}> 337:{)\€f‘)\1:C27)\2:1}7

Jois ={AeT | A = A =1}, Jao={AET | A1 = ¢4 A =11,
Jo={AeT | A\ = A\ =1}, Jp={ el |\ =-1,X=1},
Jo={AeT | A =(" A =1}, Jis={AET | A =% N\ =1},
Ju={reT | A= A\ =1}, Jis={reT | A\ =¢ N\ =1},
Jg={reT | A\ = A =1}, Jr={ el | A =1x=1}

Now we describe the modules L(\) for A on each subset as above.
Lemma 5.4.2. If A € 3y, then M(\) is simple.

Proof. This is a consequence of [HY, Proposition 5.16] since if

(AT =N = UGN = ENEATNT = YA+ 1)
(O = NN+ (NN =)A= 1) #£0

then M()) is a simple U-module. O

This comes by the generalized version of the Shapovalov determinant, introduced
by Heckenberger and Yamane for these Drinfeld doubles of Nichols algebras. This
determinant has a factorization, and the Verma module is irreducible if no one of
these factors is zero. It also helped on the work of the other cases. Cases 2-10 has
one of the factors equal to 0 and the resulting relation are explained in Remarks
5.4.5-5.4.15, so the simple modules are self-dual and the maximal submodules of the
Verma module are cyclic. The other cases have exactly two factors equal to 0, and
we compute the results of the relations from the Remarks obtaining what elements
are null in the module and what cannot be null. This computation give us basis
to the module, but this is not always simple and easy. Therefore, we also related
the Cases 11-47, with each other in two possible ways, using a morphism between
submodules as in Lemma 5.2.5 and this provides relations between the diagrams of
the module that we explain in Appendix B. We observe that the sufficient condition
on [HY, Proposition 5.16| for the irreducibility of M () is indeed necessary.

Lemma 5.4.3. If A € Jy, then dim L(\) = 48. A basis of L(\) is given by
Bo = {m(a,b,c,d,0)}.

Proof. Define L'(\) = M(X)/U*tm(0,0,0,0,1). Notice that ¢*tm(0,0,0,0,1) =
Wi(A) is a proper submodule of M(A) by Lemma 5.1.1(a), and {m(a,b,c,d,0)}
is a basis for L'(\). We claim that L’()) is simple, so L(A\) = L'()\) and we finish
the proof. Let W be a non-zero submodule of L'(\). Then set w € W — 0, which
is a linear combination of {m(a,b,c,d,0)}. Fix a minimal element m(a,b,c,d,0)
with non-zero coefficient. Here we take the lexicographical order: m(a,b,c,d,0) <
m(a,b,c,d,0)iff a < a', ora =ad,b <V, etc. Then EilE B Eyw is
equal to m(1,3,1,2,0), up to a non-zero scalar, so m(1,3,1,2,0) € W.
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As A(goo2) # 1, we have that m(1,0,0,0,0) # 0. Now Ei9, Fi5 and g,o spam a
subalgebra as in Subsection 5.3 and

F12m(17 Oa 07 07 0) = 07 91920'10277?(1, 07 Oa 07 0) = )\(920—2)<11m(17 07 07 Oa 0)7
Eme(la 0,0,0,0) = X?X%(92_1>m(17 3,0,0,0).

By Corollary 5.3.2, m(1,3,0,0,0) # 0 since A(ga02)C™ # 41,3 (that is, A(g202) #
¢,¢*, ¢"). Similarly, as

Fi121om(1,3,0,0,0) =0, gigsoiosm(1,3,0,0,0) = —\(g202)*m(1,3,0,0,0),
E11212m<1a 37 07 07 0) - X?X%(gl_392_4)m(17 Sa ]-a 07 0)7

and —\(go02)? # 1 (since \(go02) # ¢3,¢?), we have that m(1,3,1,0,0) # 0. Again,
as
Fiiom(1,3,1,0,0) =0, gigooioam(1,3,1,0,0) = —A(g202)m(1,3,1,0,0),
E;ym(1,3,1,0,0) = xixa(91 g2 )m(1,3,1,2,0),
and —\(ga09) # 1,¢* (since A(go02) # —1,¢'%), we have that m(1,3,1,2,0) # 0.

Moreover Corollary 5.3.2 also implies that FyF, Fri012F7om(1,3,1,2,0) i vy, up
to a non-zero scalar. Therefore vy € W, so W = L’'(\) and L'()) is irreducible. [

Lemma 5.4.4. If A\ € J3, then dim L(\) = 96. A basis of L(\) is given by
Bs = {m(a,b,c,d,e)le = 0,1}.

Proof. Define L'(\) = M(\)/U"m(0,0,0,0,2), so {m(a,b,c,d,e)le =0, 1} is a basis
for L’(X). We claim that L'(\) is simple. Let W be a non-zero submodule of L'(\);
we have that m(1,3,1,2,1) € W.
We apply now Corollary 5.3.2 repeatedly. First m(1,0,0,0,0) # 0, since A(go02) #
1. Now Fi9, F1o and g, 0 spam a subalgebra as in Subsection 5.3 and
F12m =0, 91920102m = )\(9202)C7m,
E},m(1,0,0,0,0) = xix(g5 )m(1,3,0,0,0).

Then m(1,3,0,0,0) # 0 since A(g209)¢" # £1, 3 (that is, M(goos) # ¢5,¢5,¢M1Y). As

F11212m(1> 37 07 O, O) = 07 g%ggo_?a—gm<1a 37 07 07 O) = _>‘<9202)2m<1? 37 07 07 0)’
E11212m(1,3,0,0,0) = x3x3(g: °g5 )m(1,3,1,0,0),

and —\(g202)? # 1 (since \(g202) # ¢3,¢?), we have that m(1,3,1,0,0) # 0. Again,
as

F112m<1a 37 17 07 0) = Oa g%gQU%O-Qm(la 37 17 07 O) = Clo)\(.g?O-Q)m(la 37 ]-> 07 0)7
E%IQm(la 37 17 07 O) = X%X%(QJGQEG)m(lv 3a 17 27 0)7
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and ('N(ga02) # 1,¢* (since \(ga02) # €%, —1), we have that m(1,3,1,2,0) # 0. Fi-
nally Fum(1,3,1,2,0) = 0, uoum(1, 3,1,2,0) = ¢m(1, 3,1, 2,0), so m(1,3,1,2, 1) #
0. Moreover Corollary 5.3.2 also implies that Fo 3 Fii910F, Fim(1,3,1,2,1) is vy,
up to a non-zero scalar. Therefore vy € W, so W = L'(\) and L'()\) is irre-
ducible. []

Remark 5.4.5. Set w = m(0,0,0,1,2), if X2\y = —1, then Flw = Fyw = 0.

Proof. According to the Lemma 4.1.3, Fi1oE115 = E1oF110 + 07 %05 — g2gs, so
FipEnpEioy = (07705 — giga) Efus = Moy 205 1) a5 ¢H(ATAe + 1) Efu,.
As M(N) 4o, = M(N)3q, = 0, we have that FoE 5 E?0) = Fi1Ey19FE?v, = 0, so
0 = FiipEnaEfoy = Cqly Py FL v B vy,

]
Lemma 5.4.6. If A € 34, then dim L(\) = 48. A basis of L(\) is given by
By = {m(a,b,c,0,e)}.
Proof. Let w = F2FEy15E?vy. Explicitly,
2 2(3 8(¢8 — A\ (14 (3
w = (CS — )\1)(1 — )\1)E112’U)\ + —q21<2< )CEQEfU)\ — Q21C (C 5 1)( C )ElgEﬂ))\.

By Remark 5.4.5 w generates a proper submodule. Let L'(\) = M(\)/Uw: we claim
that it is irreducible. Note that kE? El 2, B3y Ea"m(a, b, c,0,¢) = km(1,3,1,0,2),
E:m(1,3,1,0,2) =0, i = 1,2, and then {m(a,b,c,0,¢e)} is a basis of L'(\). From
the hypothesis on Ay, Ay and
Fi5n(1,0,0,0,0) = 0, g1g20102n(1,0,0,0,0) = ¢°A;'n(1,0,0,0,0),
Priz12n(1,3,0,0,0) =0, gigioio3n(1,3,0,0,0) = =A7'n(1,3,0,0,0),
Fln(L 37 L 07 0) = 07 glo_ln(la 37 17 07 0) = _Aln(L 37 17 Oa 0)7

we deduce successively that n(1,3,0,0,0) # 0, n(1,3,1,0,0) # 0, n(1,3,1,0,2) # 0,
using Corollary 5.3.2.

Notice that km(1,3,1,0,2) = kn(1,3,1,0,2), so m(1,3,1,0,2) # 0 and there
exists F' € U such that Fm(1,3,1,0,2) = vy. Then we argue as in previous Lemmas
and the claim follows. ]

Remark 5.4.7. Set w = m(0,0,0,2,2), if \¥\; = (', then Flw = Fyw = 0.
Proof.

FiipEEfoy = Mo1205 1) a5, (A A — () Efuy.

As M(Ngaytas = M(N)sa140, = 0, we have that FyE?,Eivy = FyFiE},Fivy, =0,
S0

0= F112E1212E%"UA = CSQ%2F2F12E1212E12U/\-
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Lemma 5.4.8. If A € J5, then dim L(\) = 96. A basis of L(\) is given by
By = {m{a, b, d.c)ld # 2).
Proof. Let w = F}FE},E?vy. Explicitly,

Q?2C8(1+C3> Q%2§5(1‘|’C3)

w = m(0,0,0,2,0) — n(0,2,0,0,2) — n(0,1,0,1,1
q12C*(1 4+ ¢%) 032¢H (3) e
L 220 FC) 601.01)— n(1,0,0,1,2).
Y )" T ™ )

By Remark 5.4.7 Uw is a proper submodule. Let L'(\) = M (\)/Uw: we claim that it
is irreducible. Note that kE? Bl El 55, By P Ey*m(a, b, c,d, e) = km(1,3,1,1,2),
En(1,3,1,1,2) = 0, i = 1,2, and then {m(a,b,c,d,e)|d # 2} is a basis of L'(\).
From the hypothesis on Ay, Ay and

F2n(1,0,0,0,0) = 0, 919201021(1,0,0,0,0) = ¢°A'n(1,0,0,0,0),
Fii215n(1,3,0,0,0) =0, gigioio3n(1,3,0,0,0) = ¢*A;"n(1,3,0,0,0),
Fi1on(1,3,1,0,0) = 0, 92g:0%09n(1,3,1,0,0) = ¢*n(1,3,1,0,0),
Flm =0, glglm = Cg)\lm>

we deduce successively that n(1,3,0,0,0) # 0, n(1,3,1,0,0) # 0, n(1,3,1,1,0) # 0,
n(1,3,1,1,2) # 0, using Corollary 5.3.2.

Notice that km(1,3,1,1,2) = kn(1,3,1,1,2), so m(1,3,1,1,2) # 0 and there
exists F' € U such that Fm(1,3,1,1,2) = vy. Then we argue as in previous Lemmas
and the claim follows. n

Remark 5.4.9. Notice that Fhw = Fiow = 0 since Uon, +305 = Usay+30, = 0. As
F2F12F1212 = Qf2C4F1F112F11212 + Q?2C8F1F1212F12 + Q§2C7F12F112F122 + qf2C4F12F1212F2,
we have that

/\(0?03)1?210 = /\(Ufag)ﬁzﬁﬂF112F11212E11212E312Ef%\
= oy (1+ AN (" = AIN) (q12C* (1 + ) Evo By + (1 — (A1) Erp Eyoy) = 0,

so Fow = 0. As F? =0, we have that Fyw = 0.
Thus w = F2FZ,FE11212 %, E3vy, satisfies that Fow = 0, Fiw = 0 if A3\3 = —1.

Lemma 5.4.10. If A € Jg, then dim L(\) = 72. A basis of L(\) is given by
B¢ = {m(a,b,0,d,e)}.

Proof. Set w as in Remark 5.4.9, so it generates a proper submodule. Let L'(\) =
M (M) /Uw: we claim that it is irreducible.
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Notice that L'()\) is spanned by {m(a,b,0,d,e)}, E;m(1,3,0,2,2) =0, i = 1,2,
and kE} B B By m(a, b, ¢, d,e) = km(1,3,0,2,2). From the hypothesis on
)\17 )\2 and

Fiom(1,0,0,0,0) =0,  gig20100m(1,0,0,0,0) = ¢** A1 Aom(1,0,0,0,0),
Fi1om(1,3,0,0,0) =0,  gigooioam(1,3,0,0,0) = (A2Aym(1,3,0,0,0),
Fim(1,3,0,2,0) =0, qrom(1,3,0,2,0) = ¢*A\ym(1,3,0,2,0),

0, using Corollary 5.3.2. Moreover there exists ' € U such that F'm(1,3,0,2,2)

we deduce successively that m(1,3,0,0,0) # 0, m(1,3,0,2,0) # 0, m(1,3,0,2,2) #
1,3,0,2,2) =
vx. Then we argue as in previous Lemmas and the claim follows. O

Remark 5.4.11. Set w =n(1,1,0,0,0), if A\;A\s = ¢, then Flw = Fow = 0.
Proof.

FiaEyErpvy = Aoy 'og ) qua(M A2 — Q) Equa.
As M(M)2a, = 0, we have that Fy EyF19v) = 0, so

FioEs Ergvy = FiFy By Eravy.

Lemma 5.4.12. If X\ € J7, then dim L(\) = 36. A basis of L(\) is given by
B = {n(a,0,¢,d,e)}.

Proof. Let w = FyEyEpvy = (A" — 1)Eyp — (¢M — 1)E1E,. By Remark 5.4.11,
Uw C M(N). Let L'(A) = M(\)/Uw: we claim that it is irreducible. First no-
tice that {n(a,0,c,d,e)} is a basis of L'(\), En(1,0,1,2,2) = 0, i = 1,2, and
kBB B e Ea " n(a,0,c,d,e) = kn(1,0,1,2,2). Moreover

F115m(0,0,0,0,2) =0, G2 g2030,m(0,0,0,0,2) = ¢"Aym(0,0,0,0,2),
Fi121om(0,0,0,2,2) =0, @ giataim(0,0,0,2,2) = ¢A\m(0,0,0,2,2),
Fym(0,0,1,2,2) =0, g209m(0,0,1,2,2) = 3Xym(0,0,1,2,2),

so successively we prove that m(0,0,0,2,2) # 0, m(0,0,1,2,2) # 0, m(1,0,1,2,2) #
0, using Corollary 5.3.2.

Notice that km(1,0,1,2,2) = kn(1,0,1,2,2), so n(1,0,1,2,2) # 0 and there
exists F' € U such that Fn(1,0,1,2,2) = vy. Then we argue as in previous Lemmas
and the claim follows. O

Remark 5.4.13. Set w = n(1,2,0,0,0), if Ay Ay = (%, then Fiw = Fow = 0.
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Proof.
FiaBy Efyuy = (2)co (07 05 ) qia(MAs — (1) Es By
As M(N)ay 130, = 0, we have that Fy By E%vy = 0, so

FioEyEiyuy = FyFy By B2 v,

Lemma 5.4.14. If A € Jg, then dim L(\) = 72. A basis of L(\) is given by
Bs = {n(a,b,c,d.e)|bp < 1}.
Proof. Let w = FyEyE%,vy. Explicitly,
w=0Ay" = 1)E}, — 21¢°(1 = Q) E112E2 + ¢21¢(3) n EyEra B

By Remark 5.4.13, Uw € M(X). Let L'(A) = M(\)/Uw: we claim that it is
irreducible. First notice that {n(a,b,c,d,e)|b = 0,1} is a basis of L'(\).
Then E;n(1,0,1,2,2) = 0,i = 1,2, and kE? B Bl 5 By P Ean(a, b, ¢, d, e) =

kn(1,1,1,2,2). From the hypothesis on A;, Ay and

FllQW =0 93920502m = Clo)\lm,
F1121m(0,0,0,2,2) =0, g/g30705m(0,0,0,2,2) = (*A1m(0,0,0,2,2),
F1om(0,0,1,2,2) =0,  g1g2010om(0,0,1,2,2) = ¢*m(0,0,1,2,2),

Fym(0,1,1,2,2) =0, 9200m(0,1,1,2,2) = (*\om(0,1,1,2,2),

we deduce successively that m(0,0,0,2,2) # 0, m(0,0,1,2,2) # 0, m(0,1,1,2,2) #
0, and finally m(1,1,1,2,2) # 0, using Corollary 5.3.2.

Notice that km(1,1,1,2,2) = kn(1,1,1,2,2), so n(1,1,1,2,2) # 0 and there
exists F' € U such that Fn(1,1,1,2,2) = vy. Then we argue as in previous Lemmas
and the claim follows. O

Remark 5.4.15. Set w = n(1,3,0,0,0), if Ay Ay = (7, then Fiw = Fow = 0.
Proof.

FiaEyEyuy = (3)eoA(07 o5 Dqiz(MAe — () By Efyvy.
As M()\)2a;+4as = 0, we have that FyEyE}vy = 0, so

F1oEBy B vy = FILF By B vy,

Lemma 5.4.16. If A € Ty, then dim L(\) = 108. A basis of L(\) is given by

By = {n(a,b,c,d,e)|b # 3}.

32



Proof. Let w = FyEyE3,vy. Explicitly,

w :()‘El - 1)Ef2 - Q§1C2(1 - C)E1E122E2 - qgl(cll - 1)E112E12E2
+¢5,C3(1 = ¢)E11212E».

By Remark 5.4.15, Uw € M(X). Let L'(A) = M(\)/Uw: we claim that it is
irreducible. Note that kE? *E? Bl B2 Ea"n(a,b,c,d,e) = kn(1,2,1,2,2),
En(1,2,1,2,2) = 0, i = 1,2, and then {n(a,b,c,d,e)|b # 3} is a basis of L'(\).
From the hypothesis on Ay, Ay and

F12m(0,0,0,0,2) = 0, 1 920755m(0,0,0,0,2) = ¢Aym(0,0,0,0,2),
F11212m =0, gfgﬁaf’agm = C8)\1m7
F1om(0,0,1,2,2) =0, 91920109m(0,0,1,2,2) = —m(0,0, 1,2, 2),

Fym(0,2,1,2,2) = 0, 9200m(0,2,1,2,2) = (\am(0,2,1,2,2),

we deduce successively that m(0,0,0,2,2) # 0, m(0,0,1,2,2) # 0, m(0,2,1,2,2) #
0, and finally m(1,2,1,2,2) # 0, using Corollary 5.3.2.

Notice that km(1,2,1,2,2) = kn(1,2,1,2,2), so n(1,2,1,2,2) # 0 and there
exists F' € U such that F'n(1,2,1,2,2) = vy. Then we argue as in previous Lemmas
and the claim follows. O

Lemma 5.4.17. If A\ € Ty, then dim L(\) = 72. A basis of L()\) is given by
Bio = {n(0,b,¢c,d,e)}.

Proof. Note that W(\) = U*n(1,0,0,0,0) is a proper submodule of M(\) by
Lemma 5.1.1(b). Define L'(A) = M(X)/W(XA). Then {n(0,b,¢c,d,e)} is a ba-
sis for L'(A). We claim that L'(\) is simple, so L(A) = L'(\) and we finish the
proof. Let W be a non-zero submodule of L'()\); we may assume it is Z>-graded.
Then set w € W — 0, which is a linear combination of {n(0,b,c,d,e)}’s. Fix a
minimal element n(0,b, ¢, d, e) with non-zero coefficient. Here we take the lexico-
graphical order: n(0,b,¢,d,e) < n(0,V,c,d',e') iff e < €, or e = €, d < d, etc.
Then E B, B E?“w is equal to n(0,3,1,2,2), up to a non-zero scalar, so
n(0,3,1,2,2) € W. From the hypothesis on A, Ay and

F112n(0,0,0,0,2) =0,  gig20702n(0,0,0,0,2) = —A(g101)°n(0,0,0,0,2),
F11912n(0,0,0,2,2) =0,  gig50705n(0,0,0,2,2) = —A(g101)"n(0,0,0,2,2),
Fi9n(0,0,1,2,2) =0,  ¢19201091(0,0,1,2,2) = A(g101)¢M'n(0,0,1,2,2),

we deduce successively that m(0,0,0,2,2) # 0, m(0,0,1,2,2) # 0, m(0,3,1,2,2) #
0 by Corollary 5.3.2, and there exists F' € U such that F'n(1,2,1,2,2) = v). Then
we argue as in previous Lemmas and the claim follows. O]

In some of next Lemmas we will describe explicitly the action of U on a fixed
basis. Elements v; ; are homogeneous of degree i + jo.
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Lemma 5.4.18. If A € Jy1, then dim L(\) = 11. A basis of L()\) is given by
By = {m(a,b,0,d,0)|b <1} — {m(1,1,0,0,0)}.
The action of E;, F;, i = 1,2 is described in Table A.1.

Proof. Um(0,0,0,0,1) = Wy()\) is a U-submodule by Lemma 5.1.1(a) '. We claim
that L'(A\) = M(\)/(Um(1,1,0,0,0) + W;(X)) is simple. Note that

Fym(1,1,0,0,0) =0, Fym(1,1,0,0,0) = (¢*' — 1)A(g2)m(1,0,0,0,1) € Wi(\).
From here we have that 4m(1,1,0,0,0) + W1i(A) C 35, M(A)g by Remark 5.2.1,
and therefore YUm(1,1,0,0,0) + Wi(A) € N(A). The canonical projection M(\) —»

L(\) induces a surjective map L'(\) — L(A) of U-modules, but if L'()\) is simple,
then this projection has a trivial kernel. Set the following elements of L'(\):

vo,0 = m(0,0,0,0,0), voq =m(1,0,0,0,0), v11 =m(0,1,0,0,0),

ve1 =m(0,0,0,1,0), v99 =m(1,0,0,1,0), v =m(0,1,0,1,0),

vg2 =m(0,0,0,2,0), vg3 =m(1,1,0,1,0), vg3 =m(1,0,0,2,0),
=m(0,1,0,2,0),  ws4=m(1,1,0,2,0).

Notice that v;; € L'(A)ias+jas- Those vectors satisfy the relations in Table A.1 by
direct computation. The formulae prove that the quotient is spanned by these 11
vectors since they are obtained by applying repeatedly E;, Ey over vy = vy and
E1U54 = E2U54 =0.

From Table A.1 there exist elements E; ; € L{+ —Don+(1—j)az’ F54 € U5, 44, Such
that E; jv;; = vs4, F54054 = 0). Assume now that V is non-zero submodule of
L'(X\). Then take v € V, v # 0. As L'()) is spanned by the vectors v; ; (in fact, this
set of vectors is a basis), there exists £ € U™ such that Fv = v5 4. But Uvs 4 = L'(N)
since vy € Uvs 4. Then V = L'(A) and L'()) is irreducible. O

Lemma 5.4.19. If A\ € Jy5, then dim L(\) = 11. A basis of L()\) is given by

Bz = {m(a,b,0,d,0) : b,d <1} U{m(0,1,1,0,0),m(1,0,1,1,0),m(0,0,1,1,0)}.
The action of F;, F;, 1 = 1,2 is described in Table A.2.

Proof. Again Um(0,0,0,0,1) = Wy(A) is a U-submodule by Lemma 5.1.1(a). By
Remark 5.4.13 w = FyE,E?%v), satisfies the equations Flw = Fow = 0, so Uw +
Wi(A) is a proper submodule of M (A) by Remark 5.2.1. We claim that L'(\) =
M(N) /Uw+W1(N); it is enough to prove that L'()) is simple. We label the elements
of By as follows:

vo,0 = m(0,0,0,0,0), =m(1,0,0,0,0), v1p =m(0,1,0,0,0),
ve1 =m(0,0,0,1,0), v22—m(1 0,0,1,0), v12 =m(1,1,0,0,0),
v32 =m(0,1,0,1,0), v33 =m(1,1,0,1,0), vg3 =m(0,1,1,0,0),
vs3 =m(0,0,1,1,0), vs4 =m(1,0,1,1,0).

'Here A1 A2 = ¢, but the relation in Remark 5.4.11 becomes trivial.
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Those vectors satisfy the relations in the Table A.2 by direct computation. We claim
that Bis is a basis of L'(\). Applying repeatedly Ej, Es over w we obtain

m(07 27 07 07 0) = q12<4(1 - ()m(l, 07 07 17 0)7 TTL(O, 17 OJ 17 0) = Cloqum(Ov 07 17 07 0)7
m(0,2,1,0,0) = (Mgiy(1+ ¢*)m(1,0,1,1,0), m(0,0,0,2,0) =m(1,1,1,0,0) = 0.

= 0foralla,b,c, since m(0,1,1,0,0) =
= ,0,0), we

m(1,2,0,1,0) = m(0, 3,

Notice that m(a, b, c,2,0) = m(a,b+1,1,1,0)
m(0,0,0,2,0) = 0. As also 0 =m(1,2,1,0,0)
conclude that L'()\) is spanned by Bys.

By Corollary 5.3.2 we have that m(1,0, 1, 1,0), m(0,0,1,1,0), m(0,0,0,1,0) # 0,
since

F115m(0,0,0,0,0) =0,  g7ga0io2m(0,0,0,0,0) = ¢*'m(0,0,0,0,0),
F11212m<07 07 07 17 0) = 07 giliggo.ifo.gm«)’ 07 07 17 O) - Cm(oa 07 07 17 0)
F>ym(0,0,1,1,0) = 0, g20om(0,0,1,1,0) = ¢"*m(0,0,1,1,0).

Moreover there exists F' € U~ such that Fm(1,0,1,1,0) = v,.

Also, E;m(1,0,1,1,0) = 0, i« = 1,2. Indeed, the case ¢ = 1 follows from the
previous relations, and the case ¢ = 2 is direct.

Now suppose that B is not linearly independent. Fix a non-trivial linear combi-
nation S which is zero. Between the elements of minimal Ny-degree with non-trivial
coefficient, take the element m = m(a, b, c,d,0) minimal for the lexicographical or-
der. If b = 0, then Ei*FEl5, Elo%m gives m(1,0,1,1,0) up to a non-zero scalar.
If b= 1, then By “E| 55, Eim is also m(1,0,1,1,0) up to a non-zero scalar. By the
minimality of 772, we have that £S = m(1,0,1,1,0) up to a non-zero scalar, where E
is either B} *Fi,Eit or else B *Ei55,Fy, which is a contradiction. Therefore
B is a basis of L'(\).

Let W be a non-zero submodule of L'(\), w € W — 0. By a similar argument
there exists F € U™ such that Fw = m(1,0,1,1,0), so m(1,0,1,1,0) € W, but then
vy € W, so W = L/'(\) and L'()\) is irreducible. O

Lemma 5.4.20. If A\ € Jy3, then dim L(\) = 23. A basis of L()\) is given by

B3 = {m(a,b,0,d,0)|b < 2} U {m(a,0,1,0,0),m(0,3,0,d,0),m(1,3,0,1,0)|d > 1}.

Proof. Wi()\) is a is a U-submodule by Lemma 5.1.1(a). Also w = FyEyE}v)
satisfies Fiw = Fyw = 0 by Remark 4.22, so w generates a proper submodule of
M (X) by Remark 5.2.1. We have that N(\) = Yw+W; () and L'(A) = M(N\)/(Uw+
Wi(A)) is simple and By is a basis of L'(\).

Consider W = M(X\)/Wi(\) and v = m(1,3,1,2,0) then Ev = 0, i = 1,2,
g1o01v = v and goo9v = (v, so, using Lemma 5.2.4, (Uv)? projects over a sim-
ple module L(u) with p corresponding to Case 14; in particular there exists F' €
U 70,50, such that Fv # 0. Also gioyw = CPw, geosw = (*w, so, using Lemma
5.2.4, Uw projects over a simple module L(r) with v as in case 28. In particular
there exists £ € Ura, 154, such that Fw # 0, so we may assume that EFw = v since
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Wi, +8a; = kv. Thus Uv C Uw, and then Fv € (UV)30,430, C (UW)30,130, = K.
As Fv # 0, we conclude that Uv = Uw. For any v/ € W, v # 0, there ex-
ists £/ € U such that E'v' = v. Thus we conclude that Uw is simple, and then
dim I/(\) = 48 — 25 = 23,

From w and applying repeatedly E;, F)5 over w we obtain

m(0.3.0.0.0) = LW g 1) + 20 OB na 5 1a ),
m(0,1,1,0,0) = gi2(1 + ¢*)m(0,2,0,1,0) + ¢%m(L,0,0,2,0),
m(0,0,1,1,0) = gi2¢" (1 + ¢*)m(0, 1,0,2,0),

m(0,2,1,0,0) = ¢i,¢'°(1 — O)m(1,1,0,2,0),

m(0,3,1,0,0) = C*qi,(1 — ¢)m(1,2,0,2,0),

m(0,2,1,1,0) = ¢12¢7(1 + ¢2)m(0,3,0,2,0).

Now we apply Corollary 5.3.2 to prove that m(0,3,0,2,0), m(0,0,0,2,0) # 0,
since

F115m(0,0,0,0,0) = 0, G2 g2025,m(0,0,0,0,0) = ¢"m(0,0,0,0,0),
Fiom(0,0,0,2,0) =0, 9192010om(0,0,0,2,0) = Cgm(O, 0,0,2,0).

Moreover there exists F' € U~ such that Fm(0,3,0,2,0) = vy. Note that

E>m(0,3,0,2,0) = m(L,3,0,2,0) = 0

since 0 = E1om(0,3,1,0,0) and km(1,2,1,1,0) = km(1,3,0,2,0).

Also E1m(0,3,0,2,0) is a non-zero scalar multiple of m(0,1,1,2,0) = 0 since
0 =m(0,0,1,2,0). Using this fact and the previous relations, By3 spans L'()\), but
as Bqs has 23 elements, it is a basis.

Let W be a non-zero submodule of L'(\), w € W — 0. Arguing as in previous
cases, there exists F € U' such that Ew = m(0,3,0,2,0), so m(0,3,0,2,0) € W,
but then vy, € W, so W = L'(\); and L'(\) is irreducible. O

Lemma 5.4.21. If A\ € Jy4, then dim L(\) = 25. A basis of L()\) is given by

Bis = {m(a,b,0,d,0)} U{m(0,0,1,0,0),m(0,0,1,2,0)} — {m(1,3,0,2,0)}.
Proof. W1()) is a submodule of M(\) by Lemma 5.1.1(a) 2. Notice that
w=(1+¢*)m(1,0,1,0,0) + qi2¢*(1 + {)m(1,1,0,1,0)

satisfies the equations Fiw = Fow = 0 by direct computation, so w generates a
proper submodule of M(\) by Remark 5.2.1. We claim that L'(\) = M(\)/Uw +
Wi(A) is simple.

2Here A3\3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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Applying repeatedly Ei, F5 over w we obtain

2=y gy,
m(0,1,1,0,0) = Mm(l,o,o,fz,m n %(km(O,Q,O, 1,0),

( )
m = Q12Cma
( ) = 112€" (3)¢m (0, 2,0, 2,0),
m(1,0,1,2,0) = (g21m(0,3,0,2,0),

m(1,3,1,0,0) = m(0,1,1,2,0) = m(0,3,1, 1,0) = 0.

m(1,2,1,0,0

These relations imply that L'(\) is spanned by Bi4. Now we apply Corollary 5.3.2
to prove that m(1,0,1,2,0) # 0, since

FllZm(Oa 07 07 07 0) - 07 9%920%027”’(07 07 07 07 0) = Cgm(07 07 07 07 0)7
F11212m(0,0,0,2,0) = 0, gigaoiaam(0,0,0,2,0) = ¢*m(0,0,0,2,0),
Fym(0,0,1,2,0) =0, g20om(0,0,1,2,0) = ¢®*m(0,0,1,2,0).

Moreover there exists F' € U~ such that Fm(1,0,1,2,0) = v,.

Now Eym(1,0,1,2,0) = 0, and Eym(1,0,1,2,0) is a non-zero scalar multiple of
m(0,1,1,2,0) = 0.

Suppose that By, is not linearly independent. Fix a non-trivial linear combi-
nation S which is zero. Between the elements of minimal Ny-degree with non-
trivial coefficient, take the element m = m(a, b, ¢, d,0) minimal for the lexicograph-
ical order; we may assume that m has coefficient 1. If @ = 1, then b # 3 and
ELPEXREm gives m(0,3,0,2,0) up to a non-zero scalar. If @ = ¢ = 0, then
E3PER M gives m(0,3,0,2,0) up to a non-zero scalar. If a = 0, ¢ = 1, B, B2 'm
gives m(1,0,1,2,0) up to a non-zero scalar. In any case we obtain m(1,0,1,2,0) up
to a non-zero scalar, using the relation above. In any case there exists £ € U such
that 0 = ES = m(1,0,1,2,0), which is a contradiction. Therefore By, is a basis of
L'(\).

Let W # 0 be a submodule of L'()\). Given w € W —0, there exists £ € YT such
that Ew =m(1,0,1,2,0), so m(1,0,1,2,0) € W. Then vy € W,so W = L'(\). O

Lemma 5.4.22. If A € Jy5, then dim L(\) = 37. A basis of L(\) is given by
Bis = {m(a,b,c,d,0)} — {m(a,b,1,d,0)|b > 2, (a,b,d) # (0,2,2)}.

Proof. W1()) is a submodule of M()\) by Lemma 5.1.1(a) ®. Let W = M (\)/UE;v)
then w' = m(1,3,1,2,0) satisfies B;w’ = 0, i = 1,2, gioyw’ = w' goopw’ = (M,
so, using Lemma 5.2.4, (Uw')? projects over an irreducible module L(v) as in case
11. Thus w = Fy o F3,w' # 0 in W, by Lemma 5.2.5. Now Fow = 0 and by direct
computation

Fiw = F122F1212w, = /\(9392)64(1 + C)F122F112m(17 3,1, 1, 0)
= Mg192)¢M (1 + (¢ = 1) Fym(1,3,1,0,0) = 0.

3Here A3\3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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Thus w satisfies
Flw = Fgw = O, gi1o1w = 1, go0W = C4,

so Uw projects over an irreducible module L(u), for p as in case 12.

Asw = Fw' for some F' e U, Uw C Uw'. For any 0 # v € W, there exist E, € U
such that E,v = w’, so in particular F,w = w’. In other words, Uw = Uw'. If
W' c W is a non-trivial submodule of w, then w' € Uw and W' = Uw. Thus
Uw = L(p).

Let L'(A) = M(N\)/Wi(A) + Uw ~ W/Uw. Then dim L'(\) = 37, By; is a basis
of L'(\) since it is the image of a basis of a complement of Yw in W. Notice that

F115m(0,0,0,,0) =0, g2 g201om(0,0,0,0,0) = ¢?m(0,0,0,0,0),
Fi121m(0,0,0,2,0) = 0, @ g203a2m(0,0,0,2,0) = ¢*m(0,0,0,2,0),
Fiym(0,0,1,2,0) =0, G1920109m(0,0,1,2,0) = ¢*m(0,0,1,2,0),

so by Corollary 5.3.2, m(0,2,1,2,0) # 0 and there exist F' such that Fm(0,2,1,2,0)
vx. Now for any b € Bys there exist Ej, € U such that E,b = m(0,2,1,2,0); as in
the previous cases, L'(\) is irreducible. O

Lemma 5.4.23. If A € Jy4, then dim L(\) = 37. A basis of L(\) is given by

By = {m(a,b,c,d,0)} — ({m(a,?), c.d,0)]d > 1}

U {m(1,2,1,2,0),m(0,2,1,2,0),m(1, 2,0, 2,0)}).

Proof. Wi()) is a submodule of M()\) by Lemma 5.1.1(a)?. Set W = M()\)/UE vy,
then w' = m(1,3,1,2,0) satisfies B;w’ = 0, i = 1,2, giow’ = w', gooow’ = (S’
By Lemma 5.2.4, (Uw')¥ projects over a simple module L(u), p as in case 12. Thus
w = FyF11212F 112w # 0 by Lemma 5.2.5. By direct computation

Fow =0, Fiw = FiaFi1212F11om(1,3,1,2,0) = 0,

so Uw projects over an irreducible module L), p as in case 11.

Notice that Uw C Uw'. For any v € W, v # 0, there exists E, such that
E,v = w'; in particular F,w = w’, and then Uw = Uw'. If W’ C W is a nontrivial
submodule of Uw, then w’ € Uw implies that W' = Uw. Thus Uw is simple, so Uw ~
L(p). Let L'(A\) = M(\)/(UE vy + Uw) = W/Uw. Then dim L'(\) = dim W —
dimUw = 37, and Byg is a basis of L'()), since Byg spans a linear complement of
Uw in W. From case 11, Uw has nontrivial components of dimension 1 in degrees
(5,4), (5,5), (6,5), (7,5), (7,6), (8,6), (9,6), (8,7), (9,7), (10,7) and (10,8). Thus
m(1,1,1,2,0) # 0 and E;m(1,1,1,2,0) =0, i = 1,2. For each b € By there exists
E, such that Eyb = m(1,1,1,2,0) by direct computation. Arguing as in the previous
cases, we conclude that L'()) is irreducible. O

4Here A2)\y = —1, but the relation in Remark 5.4.5 becomes trivial.
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Lemma 5.4.24. If A\ € Jy7, then dim L(\) = 47. A basis of L(\) is given by
Bi7 = {m(a,b,c,d,0)|(a,b,c,d) # (1,3,1,2)}.

Proof. W1()) is a submodule of M(\) by Lemma 5.1.1(a)®.
Let w = EyE}, Er1219E% 50y as Fiw € M(N)ga, +8a, We have Fiw = 0. Now we
compute

Fow =(05" — g2)m(0,3,1,2,0) — By B}y (E112E192) B2 yua+
EzEnglmz(3)§7C4E112E1292UA + Ez((CH - 1)(3)49E%2E192
+ q2(¢" = D ERE2g: + 31 (¢ — 1) Eniziags) Enziz Efpva € Wi(A).

Therefore Wi(\) + Uw = N’(X) is a proper submodule. We claim that L'(\) =
M (X)/N'()) is irreducible. Notice that By7 is a basis of L'(\). As

F11om(0,0,0,0,0) =0, g2 9201om(0,0,0,0,0) = ¢'"m(0,0,0,0,0),
Fi1219m(0,0,0,2,0) = 0, gigaoiosm(0,0,0,2,0) = ¢'"m(0,0,0,2,0),
Fiom(0,0,1,2,0) =0, g1920109m(0,0,1,2,0) = ¢"*m(0,0,1,2,0),

we have that m(0, 3,1, 2,0) # 0 and there exists F' € Y~ such that F'm(0,3,1,2,0) =
vy, by Corollary 5.3.2. Moreover,

Bt Bl By 'm(0,b, ¢, d, 0),

B Bl Bl "Eym(1,b, ¢, d, 0), for b < 3,
Bl E?m(1,3,1,d,0), for d < 2,
gives m(0,3,1,2,0) up to non-zero scalar. From here, every w € L'(\), w # 0
generates L'(\), so L'(A) is irreducible. O
Lemma 5.4.25. If A € Jyg, then dim L(\) = 11. A basis of L()) is given by given
by

Bz = {m(a,¥,1,0,1),m(0,b,0,0,¢)|e, b’ <1} U {m(1,0,0,0,0)}
— {m(1,1,1,0,1),m(0,3,0,0, 1)}.
The action of E;, F;, i = 1,2 is described in Table A.S5.

Proof. Wy(A) is a submodule of M(\) by Lemma 5.1.1(a). Set w = FyFEyE5 then
it satisfies the equations Fiw = Fow = 0 by Remark 5.4.11, and Uw + W5()) is a
proper submodule. We claim that L'(A) = M(X)/Uw + Ws(A) is irreducible. We fix
the following notation for the elements of Bys:

vo,0 = m(0,0,0,0,0), v10 =m(0,0,0,0,1), vop =m(1,0,0,0,0),
v1p =m(0,1,0,0,0), veq =m(0,1,0,0,1), ve0 =m(0,2,0,0,0),
v =m(0,2,0,0,1), vy =m(0,0,1,0,1), vs3 =m(0,3,0,0,0),
vg3 =m(1,0,1,0,1), vs3 =m(0,1,1,0,1).

SHere A2y = (!9, but the relation in Remark 5.4.7 becomes trivial.
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Notice that v;; € L'(Niaytjas- From w = Eyw = EyEyw = Epw = Efw = 0 we
have

_ g+ )1+ )

m(170707071> = _Q21(4)4U1,17 m<070707170) - 3 U2,17
- 8(1 3 1 2 -
m(1,0,0,1,0) = 4120 +§ Ja+¢ >v2,2, m(1,1,0,0,1) = ¢5,¢*(4)cva2,

m(0,0,0,1,1) = 0.
From Usy, +0,w = 0 we obtain

81 3 1 2
m(1,0,0,1,1) = m(0,0,1,0,0) =0, m(0,1,0,1,0):q”<< +§)( +()v372.

And the following relations also hold:

m<07 37 07 07 1) = Q12(C11 - 1)<7U4,37 m<17 27 07 07 1) - QI2(4)<C10U3,3
11 1 2
0,2,0.1,0) = 4126 ;C B,

By Corollary 5.3.2 there exists F' € U~ such that F/m(0,1,1,0,1) = vy, since

Fi121m(0,0,0,0,1) = 0, gig30303m(0,0,0,0,1) = ¢*m(0,0,0,0,1),
F1om(0,0,1,0,1) =0, G1920109m(0,0,1,0,1) = ¢*m(0,0,1,0, 1).

Notice that m(0,0,0,1,1) =0, so £ym(0,1,1,0,1) = 0. As EjFE 1910w = 0, we
also have Fom(0,1,1,0,1) =m(1,1,1,0,1) = 0.

We claim that Byg is a basis of L'(A). Using the relations above we prove that
L'()) is spanned by Bis. From Table A.3 there exist E;; € u(—g—i)oc1+(3—j)a27 F53 €
U 54, 34, Such that E; jv; ; = vs3, F53v053 = v). Assume that there exists a non-
trivial linear combination S which is zero. If v; ; is of minimal degree with non-trivial
coeflicient, then E; ;S = v5 3, a contradiction. Finally L'()) is irreducible by a similar

argument. OJ

Lemma 5.4.26. If A\ € Jy9, then dim L(\) = 35. A basis of L()\) is given by

Big ={m(0,,0,d,e)le < 1} U{m(1,b,0,0,€)| b,e < 1} U {m(0,b,1,0,0)| b > 1}
U {m(1,6,0,0,1) | b>2,3}U{m(1,0,0,1,1),m(0,0,1,1,0)}.

Proof. W5(A) is a submodule of M (\) by Lemma 5.1.1(a). Set W = M (X)/Wa(N).
By Remark 5.4.13 w = FyE; E3v, satisfies the equations Flw = Fhw = 0. As also
gio1w = (Pw, gooyw = —w, so Uw projects over L(p) for p as in case 32. Thus
EyE3, B, E?w # 0 by Lemma 5.2.5, but this vector is m(1,3,1,2, 1) up to a non-zero
scalar since Wiia, 180, = km(1,3,1,2,1), and then Uw = Um(1,3,1,2,1). More-
over, there exists F' € U such that F'm(1,3,1,2,1) = w, so Uw C Um(1,3,1,2,1).
Moreover, for any v € W, v # 0, there exists E, € U such that E,o =m(1,3,1,2,1),
so if V' C Uw is a submodule, V' # 0, then m(1,3,1,2,1) € V and this implies that
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V = Uw. That is, Uw is irreducible, so Uw ~ L(u). Set L'(\) = W/Uw =
M) /Uw + Wa(A), so dim L'(\) = 96 — 61 = 35 and Byg is a basis of L'(\), since
it spans a complement of Uw in W.

Notice that E;m(0,3,0,2,1) = 0,7 = 1,2, and for any b € Byg there exists £y, € U
such that E,b = m(0,3,0,2,1) up to a non-zero scalar., so arguing as in the previous
cases, L'()) is irreducible. O

Lemma 5.4.27. If A\ € Ty, then dim L(\) = 71. A basis of L()\) is given by

Boo ={m(a, b, c,d,e)le < 1} — <{m(1, b 1d,e)e <1,(bde)#(221)}

U {m(1,0,0,2,1),m(1,3,0,0, 0)}).

Proof. Wy(\) is a submodule of M (\) by Lemma 5.1.1(a). Set w = FyE?, Eyvy, so
Fiw = Fow = 0 by Remark 5.4.15 and N'(\) = W3(\) +Uw is a proper submodule.
Set L'(A\) = M(X\)/N'(X\). We claim that L'(\) is irreducible. First we prove that
By generates the module. From Efw = 0, e = 0, 1, 2, respectively, we obtain

m(1,0,1,0,0) =q,¢°m(1,2,0,0,1) + ¢12¢""m(1,1,0,1,0) + g2:¢”(4)m (0, 3, 0,0, 0)
m(1,0,1,0,1) =q12¢°m(1,1,0,1,1) 4+ g2 ¢3(1 + O)m(0,3,0,0, 1) + g21¢*m(1,0,0,2,0)
+ 2,21+ ¢)m(0,2,0,1,0) + ¢3,¢(1 +2¢*)m(0,1,1,0,0)
m(1,0,0,2,1) =g21¢"m(0,2,0,1,1) + ¢2,(¢* + ¢* +2)m(0,1,1,0, 1)
+¢3,¢(¢% +2¢" +2)m(0,1,0,2,0) 4 ¢a,¢°(¢C + ¢* +2)m(0,0,1,1,0).
We apply EV,Ed,E¢, with (b, d,e) # (2,2,1) to w and obtain m(1,b,1,d, €) as a lin-
ear combination of elements of Byg; and applying Fs to w we see that m(1,3,0,0,0) =

0.
By Corollary 5.3.2 there exists F' € U~ such that F'm(0,3,1,2,1) = v,, since

F112m<0, O, 0, 0, 1)
F11212m(0,0, 0,2, 1)
Fiom(0,0,1,2,1)

0, 9192010om(0,0,0,0,1) = —m(0,0,0,0, 1),
07 g:fg%O':fU%m(O, 070727 1) - _m(07070727 1)>
0, g1G2010o9m(0,0,1,2,1) = ¢*m(0,0,1,2,1).

Note that E1m(0,3,1,2,1) = 0, and m(1,3,1,2,1) = 0 by computing E%,F%,Fw,
so Eem(0,3,1,2,1) =m(1,3,1,2,1) = 0. Suppose that By is not linearly indepen-
dent. Fix S = 0 a non-trivial linear combination, and consider the minimal element
m(a,b,c,d,e) among those with non trivial coefficient and minimal Ny-degree. If it
is m(1,2,1,2,1), applying E; to S we obtain m(0,3,1,2,1). If a = 1, ¢ = 0, then
ELPEX AR E Ey15S gives m(0,3,1,2,1) up to a non-zero scalar; for the other
cases we use 3 ES ., ,Ei, E1°S to obtain the same conclusion. In any case we
have m(0,3,1,2,1) = 0, which is a contradiction. Therefore By is a basis of L'(\).
Let W # 0 be a submodule of L'(\), w € W —0. By a similar argument there exists
E € U7 such that Ew =m(0,3,1,2,1), so m(0,3,1,2,1) € W. Then vy € W and
W = L'(\) and L'()) is irreducible. O
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Lemma 5.4.28. If A\ € Jo1, then dim L(\) = 61. A basis of L()\) is given by

B21 :{m(a’b’ ¢ d’ 6) | b7€ S 1} U {m<a7270707€)a| € S 1}
U{m(1,3,0,0,e) | e <1} U{m(a,3,1,0,1),m(0,2,0,1,0)}.

Proof. If 11 is in case 19, then v = m/(0, 3,0, 2, 1) satisfies E;o =0, i = 1,2, go10 =
(v, gaoav = 1 so L(p)? =~ L(A\) by Lemma 5.2.5. In particular dim L()\) = 61.

W5()) is a submodule of M(\) by Lemma 5.1.1(a) ®. Set W = M(X\)/Wa(\),
w' =m(1,3,1,2,1). Notice that E;uw’ = 0,1 = 1,2, gioyw’ = (', gaoow’ = (M,
so (Uw')? projects over an irreducible L(v) for v as in Case 19 by Lemma 5.2.4.
We claim that Uw’ is a proper submodule. Assume on the contrary that Uw' = W.
For any v € W, v # 0, there exists E, € U such that E,o = v, soif V C W is
a non-zero submodule, then w’ € V and thus V = W. Then W is irreducible and
W — L(v), so W% ~ L(v), but they have different dimension, a contradiction. Let
L'(\) = W/Uw'. Then

dim L(A) < dim I/(\) = dim W — dimUw’ < dim W — dim L(v) = 96 — 35 = 61,

so L'(\) = L(\) and Uw'" ~ L(v). Moreover Uw' = Uw for w = Fy Fi1912Fow'.
By Corollary 5.3.2 there exists F' € U~ such that F'm(1,1,1,2,1) = v,, since

F112m =0, g%gzanzm = 10W7
Fi1215m(0,0,0,2,1) = 0, @ g2o352m(0,0,0,2,1) = *m(0,0,0,2,1),
F1om(0,0,1,2,1) =0, G2g20%0om(0,0,1,2,1) = ¢>m(0,0,1,2,1),
Fym(0,1,1,2,1) =0, g200m(0,1,1,2,1) = —m(0,1,1,2,1).

Note that Fom(1,1,1,2,1) = 0. From Ejy912FE112Fiw = 0 we get m(0,2,1,2,1) = 0,
so Eym(1,1,1,2,1) =m(0,2,1,2,1) = 0. Suppose that By, is not linearly indepen-
dent. Take a non-trivial linear combination S which is zero, and take the minimal
element m(a, b, ¢, d, ¢) among those with non trivial coefficient, between the elements
of minimal Ny-degree. If b = 3, then d = 0 and E| “E|5,F; “E?m(a, 3, ¢c,0, ) gives
m(1,1,1,2,1) up to a non-zero scalar, since

EIE}, = Cqia B EY + ¢y Brisin By — By + ¢1,¢(1 + () BBy By

If b = 2, then either d = 0 and Ey19E; “El 550y “m(a,2,¢,0,¢) gives m(1,1,1,2,1)
up to a non-zero scalar, or else FyE7FE11912E1m(0,2,0,1,0) also gives m(1,1,1,2,1)
up to a non-zero scalar. Otherwise Ey Bl Bl Ein Ei*m(a, b, c,d,e) gives
m(1,1,1,2,1) up to a non-zero scalar. In any case we conclude that m(1,1,1,2,1) =

0 up to multiply S by an appropriate element of U™, a contradiction. Therefore By,
is a basis of L'(\). O

Lemma 5.4.29. If A\ € Jgy, then dim L(\) = 49. A basis of L()\) is given by

Bos ={m(a,b,c,d,e)| d,e # 2} — {m(a,v,1,0,0),m(1,3,1,1,1), m(a,b,1,1,0) | b # 0}.

SHere A3A\3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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Proof. Wy()) is a submodule of M (\) by Lemma 5.1.1(a) 7. Set W = M(X\)/W)(\),
then {m(a,b,c,d,e) | e # 2} is a basis of W. Let w = FZE?,E vy, now Fiw =0,

Fyw =q17 15 FiinEf s Erol = (065, (1 + ) Ena(Clorh — gi12) Eroy
+ ¢3¢ ONo1y) (Carlan — ANAegiigo1) Era Bro = 0,

so Uw is a proper submodule. Consider L'(\) = W/Uw.

From E$ESES ., E¢w with e # 0, E¢Ebyw, ESESw, with b # 3 and E3y Ey1910w,
we write m(a,b,c,2,e — 1), m(a,b,1,0,0), m(a,b+1,1,1,0) and m(1,3,1,1,1) as a
linear combination of elements of By,.

Now there exists F' € U~ such that F'm(0,3,1,1,1) = vy by Corollary 5.3.2, since

F115m(0,0,0,0,1) =0, G2 g2025,m(0,0,0,0,1) = ¢*m(0,0,0,0,1),
Fi1215m(0,0,0,1,1) = 0, @ g2a302m(0,0,0,1,1) = ¢"m(0,0,0,1,1),
Fiym(0,0,1,1,1) = 0, G2 g202,m(0,0,1,1,1) = ®m(0,0,1,1,1).

As m(O, 2, ]_, 27 1) = m(l, 37 1, ]_, ].) =0 by applylng E%Ellglg and E122E11212E12 to w,
respectively, we have that

Eim(0,3,1,1,1) = ¢3,¢*m(0,2,1,2,1) =0, Eom(0,3,1,1,1) =m(1,3,1,1,1) = 0.

Suppose that Bgs is not linearly independent. Let S be a non-trivial linear com-
bination which is zero, and take the minimal element m(a,b,c,d,e) among those
with non-zero coefficient and minimal Ny-degree. If it is m(1,b,¢,d,e), b < 2, then
BB B Bl P EiSism(0,3,1,1,1). Tfitism(1,3,0,0,e), then B} “E,E115ES
gives m(0,3,1,1,1) up to a non-zero scalar, since

Elm(L 37 07 Oa 6) = q%2€10m(17 17 1a 07 6) + Q?2C5m(]—a 27 07 17 6) + Qil2m(1a 37 07 07 e+ 1)

Otherwise Ey EioFis E1 ¢S gives again m(0,3,1,1,1) up to a non-zero scalar
In any case we have that m(0,3,1,1,1) = 0, which is a contradiction. Therefore Boy
is a basis of L'(\). Moreover L'()) is irreducible by an argument as in the previous
cases. [l

Lemma 5.4.30. If A\ € Jo3, then dim L(\) = 47. A basis of L()\) is given by

B%:<&MmaOJ¢Me§1}U@n®ﬁJJLm]bﬁl}

U {m(0,2,1,0,0), m(L, 3, 1,0,0)})
- ({m(l,b,O, Le)b<2e<1}U{m(0, 2,0,2,0)}).
Proof. Wy()) is a submodule of M (\) by Lemma 5.1.1(a). Set w = FyFEyFE#,v,, then

Fiw = Fow = 0, by Remark 5.4.13, so N'(\) = W3(\) +Uw is a proper submodule.
Let L'(A) = M(X)/N'(X). We claim that L'(\) is irreducible and Bag is a basis of

THere A?\y = —1, but the relation in Remark 5.4.5 becomes trivial.
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L'(X). First we prove that L'()) is spanned by Bos. From Efw = 0, e = 0,1,2,
EisEiw = 0 and Uy, 424, = 0 we obtain the relations

q2¢°(L+ )¢ = 1)
3
m(1,0,0,1,1) = ¢2,(4)¢m(0,1,0,1,0) + ¢21¢*(3)¢m (0, 2,0,0, 1),

q12(¢° = 1) g1 (¢° — D)(1 +¢*)¢°
2 2
m(1,1,0,1,1) = ¢3,¢"(4)¢m(0,1,0,1,0) + ¢3,¢°(3)¢m(0,2,0,0, 1),

m(0,2,0,2,0) = 2¢%,¢**m(0,3,0,1,1).

m(1,0,0,1,0 m(1,1,0,0,1),

( ) =

( )
m(0,0,1,0,1) = m(0,1,0,1,1) + m(0,0,0,2,0),

( )

( )

We write m(a,b,1,d,1), m(a,b,1,1,0), m(a,b,1,2,0) and m(1,0,0,1,¢), b > 2,
as a linear combination of elements of Bas by applying ESEY%FE{, to the third
relation, EgEi’QEm to the fourth relation, EgEf;lEHglgEngEl to the first relation
and E% E115F¢ to w, respectively.

By Corollary 5.3.2 there exists F' € U~ such that F'm(1,3,0,2,1) = v, since

F115m(0,0,0,0,1) =0, 91920705m(0,0,0,0,1) = ¢?m(0,0,0,0, 1),
F1om(0,0,0,2,1) =0, G1920109m(0,0,0,2,1) = ("m(0,0,0,2, 1),
Fym(0,3,0,2,1) =0, g20om(0,3,0,2,1) = —m(0,3,0,2,1)

Note that Eym(1,3,0,2,1) = ¢1om(1,3,0,2,2) = 0 and Esm(1,3,0,2,1) = 0.
Suppose that Basz is not linearly independent. Fix S = 0 a non-trivial linear com-
bination, and consider the minimal element m(a,b,c,d,e) among those with non
trivial coefficient and minimal Ny-degree. If ¢ = 1, then E; “E%E{~*m(a, b, 1,d, ¢)
gives m(1,3,0,2,1) up to a non-zero scalar by using the third relation. For the other
cases ESE3 P B2 El~°m(a, b, 0, d, €) gives the same conclusion. In any case we have
m(1,3,0,2,1) = 0, which is a contradiction, so Bag is a basis of L'(\). Let W be
a non-zero submodule of L'(\), w € W — 0. By a similar argument there exists
E € Ut such that Fw = m(1,3,0,2,1), so m(1,3,0,2,1) € W, but then vy € W
and W = L'(\) and L'()) is irreducible. O

Lemma 5.4.31. If A € Jyy, then dim L(\) = 85. A basis of L(\) is given by

B24 :{m(a7 b7 C’ d’ €>|e S ]'} - {m<a7 37 C? 27 6)7 m(17 37 C? ]'7 1>7m<07 37 17 17 ]')}'

Proof. If u € T35, then w' = n(1,2,1,2, 1) satisfies E;w’ = 0,1 = 1,2, gyo1w’ = (M,
geoow’ = —w', so L(p)¥ is isomorphic to L(A) by Lemma 5.2.4. In particular
dim L()) = 85.

Note that W()\) is a submodule of M()\) by Lemma 5.1.1(a) 8. Set W =
M(N)/Wy(A) and w' = m(1,3,1,2,1). Then Eaw' = 0, i = 1,2, gioyw’ = '/,
ga09w’ = ("w', so by Lemma 5.2.4 (Uw')? projects over an irreducible module L(v),
v E 318-

8Here A7)y = (19, but the relation in Remark 5.4.7 becomes trivial.
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Uw' is a proper submodule; otherwise UYw' = W is irreducible, so L(v)
(Uw")? = W, a contradiction since they have different dimension. Set L'())
M(X)/Wa(X) + Uw. Then

1

85 = dim L(A\) < dim L(\) < dim W — dim L(v) = 96 — 11 = 85,

so L'(A) = L(\) and L(v) ~ (Uw')?. In particular w = FioFj1210F1m(1,3,1,2,1)
satisfies that Fiw = Fhw = 0.

We claim that By is a basis of L'(\). From w = Fyw = 0, EjpFiw = 0 and
Ui, +20,w = 0 we obtain the relations

g5 (14 )1+ %)

m(1,3,0,1,1) =g1¢*m(1,2,1,0,1) + 5 m(1,2,0,2,0),
— (4 1
m(0,3,0,2,0) _ 4 >§(<+ )m(1,2,0,2,1) — q1am(1,0,1,2,0)
4 2
_ QIQ(l +< )(3><m<1’171’1’1)

3

Then we can use E$ES ., B¢t w = 0, By Eyw and Eyj910w = 0 to write m(a, 3, ¢, 2, €),
m(0,3,1,1,1) and m(1,3,1,1,1) as a linear combination of elements of Byy. Thus
L'()) is spanned by Boy, and then By is a basis of L'(\) since it has 85 elements. [

Lemma 5.4.32. If A € Jo5, then dim L(\) = 37. A basis of L(\) is given by

Bas = {m<a? b, C>Ove>} - <{m(073a07 076) ‘ e< 1} U {m<1a37 07076)77”(1727 17076)}>-

Proof. Let wy, = F?E15E?v,. By Remark 5.4.5, Fiw; = 0, 1 = 1,2, Set W =
M(N\)/Uwy, so B = {m(a,b,c,0,e)} is a basis of W. In particular, Waa,1pay, = 0
if either a > 9 or else b > 7, and Wsa, 160, = k{m(1,3,1,0,2)}. By Lemma 5.2.4
wy = By E3vy satisfies Fywy = 0, 4,7 = 1,2. As groywy = (Bws, gaoows = (Swy, Uw,
projects over L(v), where v is as in case 38. By Lemma 5.2.5 Ej5F11019Fjws # 0,
and this vector is {m(1,3,1,0,2)} up to non-zero scalar. Moreover, there exists
F such that Fm(1,3,1,0,2) = wsy, and then Uwy = Um(1,3,1,0,2). For each
v e W, v #0, there exists £, € U such that F,v = m(1,3,1,0,2). From here we
conclude that Uwy is simple, so Uws = L(v). Thus L'(A) = W/Uw, has dimension
48 — 11 = 37 and Bos is a basis of L'()) since it spans a linear complement of Uw,
in W.
By Corollary 5.3.2 there exists F' € U~ such that F'm(0,3,1,0,2) = v,, since

Fi121m(0,0,0,0,2) = 0, @ gia3a2m(0,0,0,0,2) = ¢"m(0,0,0,0,2),
Fiym(0,0,1,0,2) = 0, G1920109m(0,0,1,0,2) = ¢*m(0,0,1,0,2).
Notice that E;m(0,3,1,0,2) =0, for i = 1,2 since L'(N)sa,+5a9+a; = O
For each v = m(a, b, c,0,e) € Bys there exists F, € U such that E,v = m(0,3,1,0,2).
Indeed, if @ = 1, then b < 2 and E¥ “Ei5,E% "Eiv gives m(0,3,1,0,2) up to a

non-zero scalar. Otherwise F2 ¢ FEl 5, Eiy v gives the same conclusion. Arguing as
above, L'()\) is irreducible. O
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Lemma 5.4.33. If A\ € Jq6, then dim L(\) = 25. A basis of L()\) is given by

Bog = {m(0,b,¢,0,e)} U{m(1,0,0,0,0),m(1,0,0,0,2)} —{m(0,3,1,0,0)}.

Proof. Set wy, = FyFEyE19vy, wy = F?E19FE?vy. By Remarks 5.4.11 and 5.4.5,
Fow; =0,14,7 =1,2, so Uwy +Uw, is a proper submodule. We claim that L'(\) =
M(\)/Uw; + Uws is irreducible. First we prove that L'()) is spanned by Bog. As
W, = Wy = O,

m(1,0,0,0,1) = g (1 + ¢)*¢®*m(0,1,0,0,0),
m(0,0,0,1,0) = ¢12(3)¢7m(0,1,0,0,1).

AS E122E11212w1 = E2E12E11212E1w1 = 0, we have m(O, 3, 1, 0, O) = m(l, 2, 17 0, ].) =
0. We write m(a,b,c,d,e), d > 1, and m(1,b,c,d,e), e > 1, as a linear combi-
nation of elements of Byg by applying E¢EY, ES ., ,EIL'ES to the second relation
and E%E$,,,E,E¢! to the first relation, respectively. We express m(1,b,c,0,0),
b > 1, and m(1,b,¢,0,0), ¢ > 1, as a linear combination of the elements of B by
applying o B, E$ .1, Fy and EyEY Ey 9 to wy, respectively. Then L/()) is spanned
by Bgg. By Corollary 5.3.2 there exists F' € U~ such that Fm(0,3,1,0,2) = vy,
since

Fi1219m(0,0,0,0,2) =0, gigaoiosm(0,0,0,0,2) = (m(0,0,0,0,2),
Fiym(0,0,1,0,2) =0, g1920109m(0,0,1,0,2) = ¢*m(0,0,1,0,2).

As Z/{7a1+4a2’UJ2 = O, we have that Elm((), 3, 1, 0, 2) = 0, and from E§2E11212E1w1 = 0,
Eym(0,3,1,0,2) =m(1,3,1,0,2) = 0.

Suppose that Bog is not linearly independent. Fix S = 0 a non-trivial linear
combination, and consider the minimal element m(a,b,c,0,e) among those with
non trivial coefficient and minimal Ny-degree. If a = 0, then E} “El,E5"S is
equal to m(0,3, 1,0,2) up to a non-zero scalar. Otherwise E? *El 5, ELPE\S gives
the same conclusion. This is a contradiction, since m(0,3,1,0,2) # 0. Thus By is
a basis of L'(\). By a similar argument L'()) is irreducible. O

Lemma 5.4.34. If A € Jo7, then dim L(\) = 35. A basis of L(\) is given by
Bor = {n(a,0,¢,d,e) | (a,c,d,e) # (0,1,2,2)}.

Proof. Set wy = FyE15Fyvy, wy = n(0,0,1,2,2) °. By Remark 5.4.11, F;u = 0,
i = 1,2. Then Uw; is a proper submodule and {n(a,0,c,d,e)} is a basis of W =
e 3 e
M(\)/Uwy, since w; = n(0,1,0,0,0) — ¢ (3)4771(1,0,0, 0,1). Now Fhws = 0 since

u9a1+3a2 = 07 and

Fiws =E7 (—qu2¢*(1 4 () EnaEr207 ) Erisiavs + ELE7 15 (¢° — 1) Efyo1 oy
S u7a1+3a2n(17 07 07 O) 1) g u8041+30¢2n(]—) 07 07 07 O>7

9Here A3\3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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so Fiws = 0, since Usa, 130, = 0. Also, Ejws = 0 and

Eyw, = (q;CZElQEQ - qglElEu)EflgEanzUA
= Q§1C2E%(Q§1C7E112E%2 + Q§1C4E%12E2)E11212U>\ - Q§1E1(Q§1E1212E12)E112120,\
= qglcgn(oa 27 1a 17 2) - qglcgn(]w 07 1a 27 2) + qglcg(c + 1)”(07 37 07 2a 2)
3(3) 7
= ¢ (2)4 (qg1C3E12E112E11212E12E1E2 + Q§1C9E1E1212511212E1E2
+ qglég(l + C)E%E%12E52E1E2>UA + 931C9n<1> 0,1,2, 2)
9 <§3(3)C7

=dn 9

(€04 M)+ C9>n(1, 0,1,2,2) = 0.

Set L'(A\) = W/Uwy = M(X) /Uw, +Uws, so Byy is a basis of L'(A) and dim L'(\) =
27. By Corollary 5.3.2 there exists ' € U such that F'n(1,0,1,2,2) = v, since

Fl1212n(1,0,0,0,0) = 0, g g30ain(1,0,0,0,0) = —n(1,0,0,0,0),
Fi15n(1,0,1,0,0) =0, gig20102n(1,0,1,0,0) = (*n(1,0,1,0,0),
Fin(1,0,1,2,0) =0, g1o1n(1,0,1,2,0) = ¢"n(1,0,1,2,0).

For each b = n(a,0,c,d,e) € By, Ea *El 5, E*LPE?D gives n(1,0,1,2,2) up to a
non-zero scalar. Arguing as in the previous cases, L’()) is irreducible. ]

Lemma 5.4.35. If A\ € Jog, then dim L(\) = 25. A basis of L()\) is given by

Bos = {n(a,0,c,d,e)} — ({n((), 0,1,1,e),n(0,0,¢,2,e)} U{n(1,0,1,2,¢e) | e # O})

Proof. If u € T4, then w' = m(1,0,1,2,0) satisfies F;w' = 0, 1 = 1,2, gioqw’ =
Cw', gaoow’ = (Bw’, so L(p)¥ is isomorphic to L(\) by Lemma 5.2.4. In particular
dim L()\) = 25.

Set wy = FyEyEr9vy, wy = FEE?E? vy, By Remark 5.4.11, Fw; = 0,4 = 1,2, 80
Uw is a proper submodule. By a direct computation, B = {n(a,0,¢,d, e)} is a basis
of W = M(\)/Uw,. By Remark 5.4.7, Fw, = 0, i = 1,2 and as gioywy = (wo,
g202wy = wa, Uws projects over L(v), v asin Case 38. If L'(A) = M(\) /Uw,+Uwq =~
W /Uw,, then

25 = dim L(A\) < dim L'(\) = 36 — dimUwy < 36 — dim L(v) = 25,
so L'(A) = L(\), Uwe = L(v). Now Bag is a basis of L'(\) since Bog spans a linear

complement of Uwsy in W. Here we use the basis Bsg of L(v) in Lemma 5.4.45 to
compute a basis of Uws. O

Lemma 5.4.36. If A € Jy9, then dim L(\) = 47. A basis of L(\) is given by

Bog ={m(a,b,c,0,¢)|(a,b,c,e) # (1,3,1,0)}.
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Proof. Set wy = F2Ei12FE?vy, we = m(1,3,1,0,0) '°. By Remark 5.4.5 Fiw =
Fow = 0, so Uw; is a proper submodule. Notice that {m(a,b,c,0,e)} is basis of
W = M(/\)/Z/le Now F1w2 = ( since M()‘)5a1+6a2 =0 and

Fowy = Ez((l - C)CSE%QEIQQ + Q21(C11 - 1)C3E12E112g2> Er12120) — E2E52E112E192UA

= >\(92)E2E12<<C - 1)q21m(07 17 17 07 1)) + qglm(oa 17 07 27 0)
+ g5, ¢ (1 = ¢)m(0,0,1,1,0) —m(0,2,0,1,1) = 0,

by direct computation. Also Eywy = 0 since M (A)pa,+70, = 0 and
Eiwy = Q12E2E1E32E112121),\
= 912E2(Q%2C5E122E112 + q:ngszﬂEnszA
= ¢1, B2 B (¢*m(0,0,1,1,0) + ¢5,m(0,1,1,0,1) — g12¢(1 + ¢)m(0,1,0,2,0)) = 0,

again by direct computation. Set L'(A\) = M(\)/Uw; +Uws, so Bog is basis of L'(\).
By Corollary 5.3.2 there exists ' € U~ such that F'm(1,3,1,0,2) = v, since

Fi121m(0,0,0,0,2) = 0, grgaaioim(0,0,0,0,2) = ¢*m(0,0,0,0,2),
Fiom(0,0,1,0,2) = 0, g1920109m(0,0,1,0,2) = ¢?m(0,0,1,0,2),
F>ym(0,3,1,0,2) =0, g20om(0,3,1,0,2) = ¢""m(0,3,1,0,2).

Set wo = m(1,3,1,0,2). Note that Eswy = 0, and Eywg = 0 since L'(A)ga, +6a, = 0.
Thus there exist a map 7 : (Uwy)® — L(v) for v as in case 23, see Lemma 5.2.4.
Then dim L'()\), > dim(Uwp)? > dim L(V)ga; +6a,—a but we have an equality for

a € Py := {acy+6as]a = 7,8} U{ba;+5as|b = 5,6, 7, 8}U{cas+4as|c = 3,4,5,6, 7},

1, a=8aj + 6ag, Ta; + 6ag, 8y + Havg, Hary + dava,
since dim L'(\), = 2, a="Tay + dayg, 6y + bag, 6a + 4, 4oy + 4an,  Thus
3, a=Taj + dbas.
for each 0 # v € L'(N)a, a € Psg, there exist £ € U such that Fv = wy. For
each b € B of degree a ¢ Py there exist E; € U such that E;b # 0 and has a degree
aay + 4as, so finally there exist E, € U such that Eyb = wy. Arguing as in previous
cases, L'()) is irreducible. O

Lemma 5.4.37. If A\ € T30, then dim L(\) = 37. A basis of L()\) is given by

Bso = {m(a,b,c,0,e)} — {m(1,b,¢,0,¢e) | b >2,(b,c,e) # (3,1,2)}.

Proof. By Lemma 5.4.23, if v is as in Case 16, then w = m(1,1,1,2,0) in L(v)
satisfies £; = 0,1 = 1,2, gyoqw = (10w, gooow = ('°w. Thus L(p)¥ is an irreducible
module as in Case 30 by Lemma 5.2.4. In particular, dim L(\) = dim L(v) = 37.
Set wy; = F12E112E12U)\, Wy = E2E122v,\ U By Remark 5.4.5, Fyw, = 0, i =
1,2, so Uw, is a proper submodule. Let W = M(\)/Uw,, then {m(a,b,c,0,e)}

0Here A\jA3 = —1, but the relation in Remark 5.4.9 becomes trivial.
HHere A\ Ay = ¢4, but the relation in Remark 5.4.13 becomes trivial.
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is a basis of W. By direct computation, Fyw, = 0 , i = 1,2, giojwy = (3w,
g202Wwy = Wy, S0 Uwy projects over a simple module L(u), o as in Case 38. Let
L'(A) = M(\) /Uw;y +Uwe =~ W/Uws, so

37 = dim L(A\) < dim L'(A\) = dim W — dimUws < dim W — dim L(p) = 48 — 11 = 37,

so L'(A\) = L(\) and Uws ~ L(p). Then Bsg is a basis of L(\) since the subspace
spanned by Bsg is a complement of Uw, in W. Here we use the basis Bsg of L(u)
given in Lemma 5.4.45 to compute Uws. [

Lemma 5.4.38. If A € J31, then dim L(\) = 61. A basis of L(\) is given by

By ={n(a,b,c,d.e) | b < 1} — ({n(0,0,0,2,¢e) | e < 1}
U{n(0,0,1,1,e),n(0,0,1,2,e),n(0,1,1,2,¢)}).

Proof. Set wy = FyFEyE% vy 2. By Remark 5.4.13, Fyw; = 0, 4 = 1,2, so Uw, is a
proper submodule. Set W = M (\)/Uw, thus {n(a,b,c,d,e)|b < 1} is a basis of V.
Let

wa =n(0,0,0,2.1) + ¢(1+ )1+ ) (n0,0,1,0,2) + ¢n(0,1,0,1,2)).

By direct computation Fyws = 0, i = 1,2, gio1ws = CBw, gaoaws = CPws, so Uw
projects over L(v) for v as in case 18. In particular, F1sF112120F1ws # 0 by Lemma
5.2.5, so it is n(0, 1,1, 2,2) up to non-zero scalar since Wipn, 154, = kn(0,1,1,2,2).
By the same result there exists F' € U such that Fn(0,1,1,2,2) = wsq, so Uwy C
Un(0,1,1,2,2). Given v € W, v # 0, there exists £, € U such that F,v =
n(0,1,1,2,2); from here Uws = Un(0,1,1,2,2) and Uws, is irreducible, by the same
argument of the previous cases. Thus Uwy ~ L(v). Then L'(\) = W/UHw, =
M (M) /Uw; + Uw, has dimension 72 — 11 = 61 and Bg; is a basis of L'(\) since it
spans a complement of Yw, in W. Here we use the basis Byg of L(v) from Lemma
5.4.25 to compute Uws.
By Corollary 5.3.2 there exists F' € U~ such that F'n(1,1,1,2,2) = v,, since

F5n(1,0,0,0,0) =0, g1920109m(1,0,0,0,0) = ¢*n(1,0,0,0,0),
F11212m =0, Q%QSU%USML 1,0,0,0) = —n(1,1,0,0,0),
Fi15n(1,1,1,0,0) = 0, gig2070on(1,1,1,0,0) = (*n(1,1,1,0,0),
Fin(1,1,1,2,0) = 0, gron(1,1,1,2,0) = ¢*n(1,1,1,2,2).

Notice that En(1,1,1,2,2) = 0, ¢ = 1,2, and if v = n(a,b,c,d,e) € Bsj, then
E) By Bl B2 E? %y gives n(1,1,1,2,2) up to a non-zero scalar. Let W # 0
be a submodule of L'(\), w € W — 0. Then there exists F € UT such that Fw =
n(1,1,1,2,2), so n(1,1,1,2,2) € W, but then vy € W and W = L'()). Therefore
L'(A) is irreducible. O

2Here A2)\y = —1, but the relation in Remark 5.4.7 becomes trivial.
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Lemma 5.4.39. If A\ € J35, then dim L(\) = 61. A basis of L()\) is given by

Byo ={n(a,b, ¢, d, )b < 1} — ({n(a, b.1,d,2) | b>1,d+#0)

U {n(a,0,1,0,2)n(1,0,0,2, 2)}).

Proof. If p € Ty, then w' = m(1,1,1,2,1) satisfies F;w’ = 0, 1 = 1,2, gijow’ =
Cw', gaoow’ = —w', so L(p)? is isomorphic to L(A\) by Lemma 5.2.4. In particular
dim L()\) = 61.

Set wy, = FyFEyFE%vy 3. Then Fyw; = 0, i = 1,2 by Remark 5.4.13, and B =
{n(a,b,c,d,e)|b < 1} is a basis of W = M (X\)/Uw;. Moreover w = n(1,1,1,2,2) €
V90, +6a, Satisfies that Fyw = Fyw = 0, g101w = w, ga0w = (Sw. By Lemma 5.2.4
(Uw)? projects over L(v), v € Ji5. Arguing as in some previous cases we conclude
that Uw is a proper submodule. Then set L'(A\) = M(\)/Uw; + Uw. Notice that

61 = dim L(A\) < dim I'(\) = dim W — dimUw < dim W — dim L(v) = 61,

SO L()\) = L,<)\) and Uw ~ L(V)l’p. In particular Wy = F2F11212F112w 7£ O, Ewg =0
and Uwy = Uw. Moreover Bs, is a basis of L(A) since it spans a linear complement
of Uw in W. Here we use the basis By of L(v) in Lemma 5.4.19 to compute Yw. [

Lemma 5.4.40. If \ € J33, then dim L(\) = 71. A basis of L()\) is given by

Bss = {m(a,b,c,d,e),m(1,3,0,0,0) | b # 3,d # 2} — {m(0,0,1,0,0),m(1,2,0,1,2)}.

Proof. Let wy = F!E?,FE?vy. By Remark 5.4.7, Fiw; = Fhw, = 0. As also
growy, = Cwy, goosw; = Cwy, Uw; projects over L(u), for u as in Case 23.
We claim that B’ = {m(a,b,c,d,e) | d # 2} U {m(0,0,0,2,2)} is a basis of W' =
M(\) /Uw,. Indeed m(a, b, c, 2, e) appears with non-zero coefficient in E¢ E11915 E%, ESw,
if (a,b,c,e) # (0,0,0,2), but E?w; = 0 by direct computation, so B’ is linearly inde-
pendent in W’. Tt is a basis since dim W’ = 144 — dimUw; > 144 — dim L(p) = 97.

Now Fym(0,0,0,2,2) = E;m(0,0,0,2,2) = 0, since Usa,+30, = Uy +40, = 0 and
F1m(0,0,0,2,2), Eam(0,0,0,2,2) € Uw; by direct computation, soUm(0,0,0,2,2) =
km(0,0,0,2,2) in W’. Let W = W’'/km(0,0,0,2,2); B={m(a,b,c,d,e) | d+#2}is
a basis of W.

Set wy = F2F?,E119212E%,FE?vy. By Remark 5.4.9, Fywy = 0, 1 = 1,2, and as
G101Wy = Wa, GoTowy = 3wy, Uwy projects over L(v), for v as in Case 14. Set
L'(\) = M(\) /Uw, +Um(0,0,0,2,2) +Uwy =~ W/Uw,y. From ESE{E . ES 515 Faws
we write m(a, 3, ¢, d, e) as a linear combination of elements of Bss; from wy = 0 we
write m(0,0, 1,0, 0) as a linear combination of elements of B33, and the same happens
for m(1,2,0,1,2), since Usp, 120,W2 = Usay 120,01 = 0. Thus Bss spans L'(A). As
Uwy projects over L(u), we have that dim(Uws), > 1 if a € {9ay + 6az, 1005 +
6, 8y + Taw, 9oy + Tag, 100 + Tas }, so L'(N), = 0 for each o # 9ay 4 6y in this

13Here A\jA3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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set, and dim L'(A\)ga; 160, < 1. By Corollary 5.3.2 there exists F' € U~ such that
Fm(1,2,1,1,2) = v, since

Fll?W =0, 9%920302m = C4m,
Fi2112m(0,0,0,1,2) = 0, gig303o3m(0,0,0,1,2) = ¢"m(0,0,0,1,2),
F1om(0,0,1,1,2) =0, 91920105m(0,0,1,1,2) = —m(0,0,1,1,2),
Fym(0,2,1,1,2) =0, 9200m(0,2,1,1,2) = ¢’'m(0,2,1,1,2),

so m(1,2,1,1,2) # 0 and then dim L'(A)ga, 160, = 1. By an argument as in the
previous cases we prove that Bgj is linearly independent, and L'(\) is irreducible. [

Lemma 5.4.41. If A\ € T34, then dim L(\) = 71. A basis of L(\) is given by

B34 :{n(a7 b7 C? d7 6)7n(07 07 07 27 6) | b # 37 d # 2} - {n(07 07 ]'7 07 6)7 n(OJ ]‘7 17 17 O)}'

Proof. Let u € J33. By Lemma 5.4.40 E;m(1,2,1,1,2) =0,i = 1,2, gioym(1,2,1,1,2) =
"m(1,2,1,1,2), gooom(1,2,1,1,2) = —m(1,2,1,1,2) in L(p), so L(p)? is isomor-
phic to L(A) by Lemma 5.2.4. In particular, dim L(\) = 71.

Set w; = FZE]?_)QEQU)\. By Remark 5.4.15, F;w, = 0,7 = 1,2 and as g,0,w; = Cwy,
ga202w; = wy, Uw; projects over L(v), for v as in Case 36. Notice that

e n(0,3,¢,d,e) has non-zero coefficient in E¢E¢,Ef o 5w1;
e n(1,3,¢,d,e) has non-zero coefficient in Ey E{E{,, B¢ 55wy, if ¢ +d + e # 0;

e at least one vector n(a, 3, ¢, d, €) has non-zero coefficient in E$E{EY, 5,5 E%w;
for any (a,b,c,d,e) # (1,0,0,0,0), but Eyw; = 0;

o {ESESEY S 5,F%} is a basis of B(V) (Equation 2.14, in [HY]).

Thus B = {n(a,b,c,d,e) | b # 3} U{n(1,3,0,0,0)} is a basis of W' = M(\)/Uw;.
By direct computation, Fyn(1,3,0,0,0) =0 = Fyn(1,3,0,0,0), and Eyn(1,3,0,0,0) €
Uwy, so Uw; + kn(1,3,0,0,0) is a proper U-submodule, and B = {n(a,b,c,d,e) |
b # 3} is a basis of W = M(\)/Uw; +Un(1,3,0,0,0) ~ W’ /kn(1,3,0,0,0).

Set wy = FPF},F11910E%,E?vy. By Remark 5.4.9, Fiwy, = 0, ¢ = 1,2 and
as gio1we = C2ws, goorws = wa, Uw,y projects over L(v'), V' as in Case 37. Let
L'(\) = W/Uw,, then

71 = dim L(\) < dim L'(\) = 108 — dimUws, < 108 — dim L(/) = 71,

so Uws ~ L(V') and L'(N) is irreducible. Now Bay is a basis of L'(\) = L(\) since
it spans a linear complement of Uw, in W. Here we use the basis Bs; of L(/) in
Lemma 5.4.44 to compute Uws. n

Lemma 5.4.42. If A\ € J35, then dim L(\) = 85. A basis of L(\) is given by
B35 :{n(a’a b7 ¢ d7 6) | b 7é 3}
. ({n(o,b, ¢.2,¢) | b#3}U{n(1,2.1,2,2),n(1,0,0,2,2),n(L,0,1, 2,e)}>.
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Proof. Set wy = FyEyEduy, wy = FEE},E?vy. Then Fw; = 0, 4,5 = 1,2, by
Remarks 5.4.15 and 5.4.7. Let W = M(\)/Uw;. Then B = {n(a,b,c,d,e) | b # 3}
is a basis of W. As gio1ws = CPw1, g209ws = wy, Uw, projects over a simple module
L(u), i € J4q and then E?,E3ws # 0. Thus B2, E3w, is n(1,2,1,2,2) up to non-
zero scalar and there exists F' € U such that F'n(1,2,1,2,2) = wy. For each v € W,
v # 0, there exists £, € U such that F,v =n(1,2,1,2,2). As in the previous cases
we prove that Uwy, = Un(1,2,1,2,2), and this submodule is irreducible.

Set L'(\) = M(X)/N'(X). We claim that L'(\) is irreducible. Notice that Bss is
a basis of L'(\). Here we use the basis By, of L(x) in Lemma 5.4.51 to compute a
basis of Uws.

By Corollary 5.3.2 there exists F' € U~ such that F'n(1,2,1,2,1) = v,, since

F15n(1,0,0,0,0) = 0, g1920109n(1,0,0,0,0) = —n(1,0,0,0,0),
Fi1212n(1,2,0,0,0) = 0, glgzotoin(1,2,0,0,0) = ¢*n(1,2,0,0,0),
F115n(1,2,1,0,0) =0, gig20105n(1,2,1,0,0) = (*n(1,2,1,0,0),
Fin(1,2,1,2,0) = 0, gro1n(1,2,1,2,0) = ¢*n(1,2,1,2,0).

Suppose that Bss is not linearly independent. Fix S = 0 a non-trivial linear combi-
nation, and consider the minimal element n(a, b, ¢, d, €) among those with non trivial
coefficient and minimal No-degree. Then if e = 2, then E) “El; "El 0 By By gives
n(1,2,1,2,1) up to a non-zero scalar.

Otherwise, By “E% " Eiyo By Bl *n(a, b, ¢, d, e), gives the same conclusion. But
this is a contradiction, so Bss is a basis of L'(\). Arguing as in the other cases, L'())
is irreducible. O

Lemma 5.4.43. If A\ € J36, then dim L(\) = 35. A basis of L()\) is given by

B36 :{n(O, b> 07 da 6)7 n(O, O, 17 27 6), 71(0, 07 17 07 6)}
—{n(0,1,0,1,¢),n(0,2,0,2,¢),n(0,1,0,0,2)}.

Proof. W () is a submodule of M()\) by Lemma 5.1.1(b) *. Let W = M(X\)/W(\),
w = n(0,1,0,0,2). Notice that Fjw = 0, i = 1,2, gijoyw = w, g209 = °w, so Uw
projects over an irreducible module L(u), i € J15. Thus E% Ey1012E?,w # 0, so it
is n(0,3,1,2,2) up to non-zero scalar, and moreover there exist F' € U such that
Fn(0,3,1,2,2) = w. It implies that Uw = Un(0,3,1,2,2). For any v # 0 there
exist F, such that E,v =n(0,3,1,2,2), so Uw is irreducible, and then Uw ~ L(u).

Let L'(A\) = M(X)/UEyv\ +Uw ~ W/Uw, so dim(L'(X)) = 35 and Bgg is a basis
of L'()\), since it spans a complement of Uw in W. Here we use the basis Bys of
L(p) in Lemma 5.4.22 to compute Uw.

By Corollary 5.3.2 there exist F' € U such that F'n(0,3,0,2,2) = v, since

F151(0,0,0,0,0) = 0, g1920105n(0,0,0,0,0) = (n(0,0,0,0,0),
F11on(0,3,0,0,0) = 0, g2 g20109n(0,3,0,0,0) = ¢"n(0,3,0,0,0),
Fin(0,3,0,2,0) = 0, g1011(0,3,0,2,0) = ¢*'n(0,3,0,2,0).

MHere A\ Ay = ¢, but the relation in Remark 5.4.11 becomes trivial.
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As Ein(0,3,0,2,2) = 0 fori = 1,2, we prove that for each v # 0, there exists F, such
that F,v = n(0,3,0,2,2). Arguing as in the previous cases, L'(\) is irreducible. [

Lemma 5.4.44. If A\ € J3;, then dim L(\) = 37. A basis of L()\) is given by

Bs7; = {n(0,b,0,d,¢e),n(0,0,1,0,0),n(0,3,1,0,e)} — {n(0,3,0,2,¢)}.
Proof. W () is a submodule of M()\) by Lemma 5.1.1(b) 5. Set
w=n(0,1,0,1,1) — ¢(n(0,2,0,0,2) — ¢'°(1 — ¢)*n(0,0,1,0,1).

Then Fyw = 0in M(X)/W(A), so Uw+ W () is a proper submodule. We claim that
L'(A) = M(X)/W(A) +Uw is simple. First we prove that L'(\) is spanned by Bgs.
This follows from the following relations, obtained from Fyw = Ejow = ElEf’Qw =0:

n(0,1,1,0,0) = (1 +¢)¢°n(0,3,0,0,1) + (1 + ¢)n(0,2,0,1,0),
n(0,0,1,1,0) = (1 +¢)? <q21C2n(0, 2,0,1,1) —n(0,1,0,2,0) — g21(1 4+ ¢)n(0,3,0,0, 2)) :
n(0,3,0,2,0) = ¢*(1 — {)n(0,3,1,0,1).

By Corollary 5.3.2 there exists F' € U~ such that F'm(0,3,1,0,2) = v,, since

FlZn(Oa Oa 07 07 O) = 07 9192010277/(0’ 07 07 07 0) = CQR(O, Oa 07 07 0)7
Fi1211(0,3,0,0,0) = 0, g gioioin(0,3,0,0,0) = ¢*n(0,3,0,0,0),
Fin(0,3,1,0,0) = 0, g101n(0,3,1,0,0) = ¢°n(0,3,1,0,0).

Using the previous relations and Lemma 4.0.1,
E2n(0> 3,1,0, 2) = q§1C4E112E11212E§’2v>\ = Q§1C10E112E122n(0, 1,1,0, O) =0,

and also E1n(0,3,1,0,2) = 0. Suppose that Bs; is not linearly independent. Fix
S = 0 a non-trivial linear combination, let n(0, b, ¢, d, €) be the element with not zero
coefficient minimal for the lexicographical order between the elements of minimal
No-degree. By multiplying S either by EI *E?,2E3 " if ¢ = 0, or else by E? °E3°
if ¢ = 1, we obtain n(0,3,1,0,2) up to a non-zero scalar, a contradiction. Therefore
Bj7 is a basis of L'()\).

Let W be a non-zero submodule of L'(\), w € W — 0. By a similar argument
there exists £ € U™ such that Ew = n(0,3,1,0,2), so n(0,3,1,0,2) € W, but then
vy € W, so W = L'(\) and L'(A) is irreducible. O

Lemma 5.4.45. If A\ € T35, then dim L(\) = 11. A basis of L()\) is given by
Bas ={n(0,b,¢,0,d)|b < 1} — {n(0,1,1,0,2)}.

The action of F;, F;, i = 1,2 is described in Table A.4.

'5Here A\jA3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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Proof. W () is a submodule of M(\) by Lemma 5.1.1(b). Set w = FE 15 E?vy, so
Fiw = Fow = 0 by Remark 5.4.5. Then Uw + W () is a proper submodule. We
claim that L'(A) = M(\)/(Uw + W(N)) is simple. We label the elements of Bsg as
follows:

’UO,O = TL(O, 07 07 Oa O)7 vl,O = TL(O, 07 07 07 1)a UQ,O = TL(O, Oa 07 07 2)7 Ul,l - TL(O, 1a Oa 07 0)7
'U2,1 - TL(O, 17 07 Oa 1)7 ?}3’2 - TL(Oa 07 17 07 O)a U3,1 = TL(O, ]-a 07 07 2)7 U4,2 - TL(O, Oa ]-a 07 1)7
U473 = TL(O, 17 1, 0, O), 05’2 = TL(O, O, 17 0, 2), 1)573 = n(O, ]_, ]_, 07 1)

Notice that v; j € L'(A)iay+ja,- The following relations hold in L’(\):

n(0,0,0,1,0) = (1 — ¢*vyy, n(0,1,0,1,0) = CPvs
n(0,0,0,2,0) = ¥g2 (1 — *)vyz, n(0,2,0,0,0) = n(0,1,1,0,2) = 0.

Then we prove that the v; ; satisfy equations in Table A.4 and L’()) is spanned by
Bsg. By Corollary 5.3.2 there exists ' € U~ such that F'vs3 = v), since

Fl2n(07 Oa 07 07 0) = 07 91920'10'277,(0, Oa 07 07 0) = Csn(ov Oa Oa 07 0)7
Fi1219n(0,1,0,0,0) = 0, @ g30302n(0,1,0,0,0) = ¢*n(0,1,0,0,0),
Fin(0,1,1,0,0) = 0, q1o1n(0,1,1,0,0) = ¢®n(0,1,1,0,0).

Notice that Fjvs3 = 0, ¢ = 1,2, and for (i, j) # (5, 3) there exists E; ; € Us_i)as+(3—j)as
such that £ jv; ; = vs3. Now suppose that Bsg is not linearly independent. Fix a
non-trivial linear combination 8 = 0. If (7, j) is a minimal element with non-trivial
coefficient, then we may assume that this coefficient is 1, so F; ;S = v5 3, which is a
contradiction. Then Bsg is a basis of L'(\).

Let W # 0 be a submodule of L’'(\), w € W — 0. By a similar argument there
exists £ € U™ such that Ew = vs3. Then vs3 € W, so W = L'(\) and L'(}) is
irreducible. [l

Lemma 5.4.46. If A\ € J39, then dim L(\) = 61. A basis of L(\) is given by

Byo ={n(0,0,¢,d,¢)} — ({n(0,3,c,2,e),n(0,2, 1,2,0)} U {n(0,2,0,2,¢) | e > 1}).

Proof. W () is a submodule of M()\) by Lemma 5.1.1(b) '®. Set W = M(\)/W(\)
and w' = n(0,3,1,2,2). Notice that B;w’ =0, i = 1,2, gioyw’ = (Ow', gaow’ = w/',
so (Uw')? projects over an irreducible L(v), v € J35. We claim that Uw’ is a proper
submodule. Otherwise Uw’ = W is irreducible since for any v € W, v # 0, there
exists F, € U such that F,o = w'. If V. C W is non-zero submodule, then w’ € V
and Uv = W. But then W¥ ~ L(v), a contradiction since they have different
dimension.

6Here A1\ = (%, but the relation in Remark 5.4.13 becomes trivial.
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If p1 € J31, then v = n(1,1,1,2,2) satisfies Bjv = 0,1 = 1,2, gjo10v = (v, gooqv =
1 so L(u)? ~ L(\) by Lemma 5.2.5, and then dim L(\) = 61. Let L'(\) = W/Uw'.
Then
61 = dim L(\) < dim L'(\) < dim W — dim L(v) = 61,

so L'(A) = L(A) and Uw' ~ L(v)¥. Thus Uw' = Uw for w = F1 F11910F 12w’ and Bgg
is a basis of L'(\) since it spans a complement of Uw in W. Here we use the basis
Bss of L(v) in Lemma 5.4.45 to compute (Uw')?. O

Lemma 5.4.47. If X\ € Jy, then dim L(\) = 35. A basis of L()\) is given by

Bio ={n(0,b,¢,0,e)} U{n(0,b,¢c,1,e) | b <1} U{n(0,3,0,2,e) | e < 1}
—{n(0,3,1,0,¢e)}.

Proof. W(A) is a submodule of M(\) by Lemma 5.1.1(b). Set W = M(X)/W ().
By Remark 5.4.7, w = FZE?,E?v, satisfies F;w = 0, i = 1,2. As gioqyw = (Mw,
Gaoow = CBw, Uw projects over L(u), pu € Jos. Thus EyEi1912E?w # 0, but this vec-
tor is n(0,3,1,2,2) up to a non-zero scalar since Wisn, 174, = kn(0,3,1,2,2). More-
over, there exists F' € U such that F'n(0,3,1,2,2) = w, so Uw C Un(0,3,1,2,2).
As also EyE} By Ew = (3qiyn(0,3,1,2,2), we have that Uw = Un(0,3,1,2,2).
For any v € W, v # 0, there exists F, € U such that E,o = n(0,3,1,2,2), so if
V C Uw is a submodule, V' # 0, then n(0,3,1,2,2) € V and then V = Yw. Thus
Uw ~ L().

Set L'(\) = W/Uw = M(X\)/Uw + W (), so dim L'(\) = 72 — 37 = 35. Notice
By is a basis of L'()), since it spans a complement of Yw in W. Here we use the
basis Bgs of L(r) in Lemma 5.4.32 to compute Hw.

By Corollary 5.3.2 there exists F' € U~ such that F'n(0,3,0,2,1) = v,, since

F151(0,0,0,0,0) = 0, g19201091(0,0,0,0,0) = ¢°n(0,0,0,0,0),
F11on(0,3,0,0,0) = 0, gi92030on(0,3,0,0,0) = (n(0,3,0,0,0),
Fin(0,3,0,2,0) = 0, q101n(0,3,0,2,0) = ¢%n(0,3,0,2,0).

Note that F;n(0,3,0,2,1) = 0, ¢« = 1,2. For any b € By there exists £, € U
such that Eyb = n(0,3,0,2,1). Indeed we choose E, = Ei ¢ if b = n(0,3,0,2,¢);
Ey = B3 Bl E2¢ if b =n(0,b,¢,0,e) and use that n(0,3,1,0,2) is n(0,3,0,2,1)
up to a non-zero scalar; Ey = Eiy Eii0FEaE? ¢ if b = n(0,b,c,1,e) and use that
n(0,1,1,2,0) is n(0,3,0,2,1) up to a non-zero scalar. Arguing as in previous cases,
L'(A) is irreducible. O

Lemma 5.4.48. If A\ € Jy1, then dim L(\) = 37. A basis of L()\) is given by

By = {n(0,b,¢,d,0)|b <2} U{n(0,b,¢c,d,e)| b<1,e#0}
— [n(0,1,¢.d,2),n(0,0,1,2,2)|d # 0}.

Proof. W(A) is a submodule of M (A) by Lemma 5.1.1(b).
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Set w = FEF?,E1012E%,E?vy, so it satisfies the equations Fijw = Fyw = 0 by
Remark 5.4.9. Then UYw + W(A) is a proper submodule. We claim that L'(\) =
M(X\)/Uw + W () is irreducible. From w = Eyw = E?w = E19F) 1910 E2w = 0:

n(0,2,0,0,1) = n(0,0,1,0,0) + ¢*n(0,1,0, 1,0), n(0,3,0,0,0) = 0,
n(0,1,0,1,0) = ¢°n(0,0,1,0,2), n(0,0,1,2,2) = 0.

From the first relation we write n(0,b,¢,d,e), b > 2, e # 0, as a linear combina-

tion of elements of By;. From the second and the fourth relations we know that

n(0,3,¢,d,e) = n(0,0,1,2,2) = 0. From the third relation we write n(0, 1, ¢, d, 2),

d # 0, as a linear combination of elements of By;. Then L’()) is spanned by By;.
By Corollary 5.3.2 there exists F' € U~ such that F'n(0,2,1,2,0) = vy, since

F15n(0,0,0,0,0) = 0, 919201051(0,0,0,0,0) = —n(0,0,0,0,0),
F112191(0,2,0,0,0) = 0, gig30503n(0,2,0,0,0) = ¢*n(0,2,0,0,0),
F1191(0,2,1,0,0) = 0, G2 g20209n(0,2,1,0,0) = ¢("n(0,2,1,0,0).

Notice that

Ein(0,2,1,2,0) =n(0,2,1,2,1) = ¢{,¢* F12n(0,1,1,2,1) = 0,
Eon(0,2,1,2,0) = ¢5,¢"n(1,2,1,2,0) = 0.

so £;n(0,2,1,2,0) =0, i = 1,2. Now suppose that By is not linearly independent.
Fix a non-trivial linear combination S which is zero. Between the elements of min-
imal Ny-degree with non-trivial coefficient, take the element n(0, b, ¢, d, ¢) minimal
for the lexicographical order. If e = 2 and ¢ = 1, then d < 1 and El,’E%FE,8
gives n(0,2,1,2,0) up to a non-zero scalar. If e = 2 and ¢ = 0, then Ei'E% E,S
gives n(0,2,1,2,0) up to a non-zero scalar. If ¢ = 1, then E?,El S, Bl EsS
gives 1(0,2,1,2,0) up to a non-zero scalar. If e = 0, then Ei B, E%5"S gives
n(0,2,1,2,0) up to a non-zero scalar. In any case we obtain a contradiction. There-
fore By is a basis of L'(\).

Let W # 0 be a submodule of L'(\), w € W — 0. By a similar argument there
exists £ € U such that Ew = n(0,2,1,2,0). Then n(0,2,1,2,0) € W, so vy € W
and W = L'(\). Therefore L'(\) is irreducible. O

Lemma 5-4.49- [f)\ € 3427 then d]m L()\) — 71 A ba’sis Of L(A) Z'S given by
Bao ={n(0,b,¢,d,e)|(b,c,d,e) # (3,1,2,2)}.

Proof. W () is a submodule of M()\) by Lemma 5.1.1(b)'". Let w = n(0,3,1,2,2),
then Eyw =0, Eyw € W(A), Fow =0 and

Fuw = (1+¢YE(Cort = g1)n(0,3,1,2,0)
= Mo gy (Can™ — a1afaa5A)n(0,3,1,2,1) = 0,

THere A\ Ay = (7, but the relation in Remark 5.4.15 becomes trivial.
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so Uw = kw. Thus W(A) + Uw is a proper submodule. We claim that L'(\) =
M(N)/W(A) + Uw is irreducible. Note that By is a basis of L'(\). By Corollary
5.3.2 there exists F' € U~ such that Fn(0,3,1,2,1) = vy, since

F15n(0,0,0,0,0) = 0, 919201051(0,0,0,0,0) = ¢"n(0,0,0,0,0),

Fi1212n(0,3,0,0,0) =0, g/g30}03n(0,3,0,0,0) = —n(0,3,0,0,0),
Fnzm 0, 91920102m = Cl m7
Fin(0,3,1,2,0) = 0, g1011(0,3,1,2,0) = ¢n(0,3,1,2,0),

Also, for any n(0,b, c,d, e) € By, if e # 2, we have that B B2 Bl B3 n(0,b, ¢, d, e)
gives n(0,3,1,2,1) up to non-zero scalar. And if e = 2 we have that:

E%12dE11212E122 bE2n(0 b, ¢, d, 2)Zfb #3
E B3RS E112n(0, b, c, d, 2)ifc# 1

gives n(0,3,1,2,1) up to non-zero scalar. From here, every w € L'(\), w # 0
generates L'(\), so L'(\) is irreducible. O

Lemma 5.4.50. If A\ € J,3, then dim L(\) = 25. A basis of L()\) is given by

By = {(n(0,b,c.d, e)le # 2)} — ({n(o, 2,1,2,0)}
U {n(0,b,¢,d, 1)[b > 1} U {n(0,3,c,d,0)|d > 1}).

Proof. W () is a submodule of M (\) by Lemma 5.1.1(b). Note that w = n(0,0,0,0, 2)
satisfies Fyw = 0, i = 1,2, gioqw = w, goow = (%w, so Yw projects over a mod-
ule L(v), where v corresponds to the case 17. Then w' := E},E11919FE3,w # 0 by
Lemma 5.2.5, so w’ is n(0,3,1,2,2) up to a non-zero scalar and there exists F' € U
such that Fuw’ = w. For any 0 # v € W there exists F, € U such that E,v = w'.
Therefore, if 0 # V' C Uw is a submodule then w’ € Uw. This implies V = Uw, and
Uw ~ L(v).

Let L'(A) = M(X\)/W(X\)+Ws(A). Thus Bys is a basis of L'(\) since it spans a lin-
ear complement of Uw in W; here we use the basis B;7 from Lemma 5.4.24 to describe
a basis of Yw. By Corollary 5.3.2 there exists F' € U such that F'n(0,3,1,0,2) = vy
since

FlZn(Oa Oa 07 07 O) = 07 9192010277/(0’ 07 07 07 0) = CSR(O, Oa 07 07 0)7
F11212n(07 37 07 07 O) = 07 gi))ggo—?agn(()a 37 07 07 0) = an(oa 3a 07 07 0)7
Fin(0,3,1,0,0) =0, g1011(0,3,1,0,0) = C3n(0, 3,1,0,0).

Notice that n(0, 3, 1,0, 2) is n(0,1,1,2,0) up to a non-zero scalar, and for each b € B
there exists Ej, € U such that Eyb = n(0,1,1,2,0). Arguing as in the previous cases,
L'(\) is irreducible. O
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Lemma 5.4.51. If A\ € Jy4, then dim L(\) = 23. A basis of L(\) is given by

By ={n(0,b,0,d,¢),n(0,0,0,0,2)]e < 1} — {n(0,3,0,1,1),n(0,3,0,2,1)}.

Proof. W () is a submodule of M (\) by Lemma 5.1.1(b) '8, Set w = (*n(0,0,0,1,1)+
n(0,1,0,0,2). Then Fow = 0 and Flw € W () by direct computation, so Uw+W (\)
is a proper submodule. We claim that L'(\) = M (X\)/W(\) +Uw is simple and Byy
is a basis of L'(\). Applying repeatedly E, Ey over w we obtain

n(0,0,1,0,0) = (1 + ¢*)n(0,1,0,1,0) 4 ¢°n(0,2,0,0, 1)),
n(0,0,0,1,2) =n(0,2,1,0,2) = n(0,3,0,1,2) = 0,
n(0,2,0,0,2) = —n(0,1,0,1,1),
n(0,1,1,0,0) = (1 = ()¢*n(0,3,0,0,1) — (*n(0,2,0,1,0)
1(0,0,1,1,0) = ¢21¢"n(0,2,0,1,1) + (1 + ¢")n(0,1,0,2,0),
( )
( ) =
( ) =

n(0,3,0,0,2) = q12(¢ — 1)n(0,1,0,2,0) + g12¢"*(3)¢7n(0, 2,0, 1, 1),
¢n(0,3,0,1,0),
¢**n(0,2,0,2,1).

n(0,2,1,0,0
n(0,1,1,1,1

Using these relations we prove that L'()) is spanned by Byy. By Corollary 5.3.2 and

FlZn(07 07 07 07 O) = O: 91920102n<07 07 07 07 O) = an(oa 07 07 07 0)7
F112n(07 37 07 07 O) = 07 9%920%0277/(()7 37 07 07 O) = an(oa 37 07 07 0)7

there exists F' € U~ such that F'n(0,3,0,2,0) = vy. From Usa,+40,w = 0 we have
that F1n(0,3,0,2,0) = n(0,3,0,2,1) = 0, and by Lemma 4.0.1 Fyn(0,3,0,2,0) =
0. Now suppose that By is not linearly independent. Take a non-trivial linear
combination S which is zero, and take the minimal element n(0,b,0,d,e) among
those with non trivial coefficient, between the elements of minimal Ny-degree. If
this element is 1(0, 0,0, 0, 2), then compute Bl E3 F,S. If it is n(0,b,0,d, 1), then
compute B B3 EyErS. Finally if it is n(0, b, 0, d, 0), then compute E,E3bS. In
any case we obtain n(0, 3,0,2,0) up to a non-zero scalar, so we have a contradiction.
Therefore By is a basis of L'(\).

Let W # 0 be a submodule of L'(\), w € W — 0. By a similar argument,
Fw =n(0,3,0,2,0) for some E € U, so n(0,3,0,2,0) € W, but then vy € W, so
W = L'(\); then L(\) is irreducible. O

Lemma 5.4.52. If A\ € Jy5, then dim L(\) = 49. A basis of L()\) is given by

Bys ={n(0,b,¢,d,e)} — {n(0,b,¢,2,¢e),n(0,0,1,2,¢),n(0,0,1,0,2),n(0,3,1,1,2) | b # 0}.

Proof. Let v € Jgy. By Lemma 5.4.29, w = m(0,3,1,1,1) € L(v) satisfies F;w = 0,
i=1,2, gijoyw = C*W, gooyw = w; by Lemma 5.2.4, L(v)¥ = L(\). In particular,
dim L()) = 49.

8Here A2y = —1, but the relation in Remark 5.4.5 becomes trivial.
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W(A) is a submodule of M()\) by Lemma 5.1.1(b) . Set W = M(\)/W()),
so dimW = 72 since {n(0,b,¢,d,e)} is a basis of W. Set w = n(0,1,0,1,2) —
¢*(3)¢rn(0,0,1,0,2). As Fiw =0, i = 1,2, gioqw = w, g20ow = ('w, Uw projects
over L(u), u € Ji3. Set L'(A\) = W/U. Note that 49 = dim L(\) < dim L'(\) =
dim W — dimUw < dimW — dim L(u) = 49, so L(A) = L()\) is irreducible, and
Uw ~ L(p). Now Bys is a basis of L'()) since it spans a linear complement of Uw
in . Here we use the basis Byz of L(x) in Lemma 5.4.20 to compute Uw. O

Lemma 5.4.53. If A\ € Jy4, then dim L(\) = 47. A basis of L()\) is

By = {n(0,b,¢,d,e),n(0,1,0,2,0),n(0,3,1,2,0)|d < 1}
— {n(0,1,1,0,2),7(0,3,0,0,1),n(0, 1, 1,0, 1)}.

Proof. W(X) is a submodule of M(\) by Lemma 5.1.1(b). By Remark 5.4.7, w =
F}FE?,F}v, satisfies that Fyw = Fyw = 0. Then Yw+ W (A) is a proper submodule.
We claim that L'(A\) = M(\)/Uw + W () is irreducible.

Applying repeteadly E;, Fy over w we obtain:

n(0,0,0,2,0) = g21¢°n(0,0,1,0,1) + ¢21¢°n(0,1,0,1,1) + g21(1 + ¢*)n(0,2,0,0,2),

( ) =
n(0,3,0,0,1) = ¢"°(¢* + 1)n(0,1,1,0,0) + ¢(¢* + 1)n(0,2,0,1,0),
n(0,1,1,0,1) = ¢°n(0,2,0,1,1) + ("n(0,3,0,0,2),
n(0,2,0,2,0) = wn(o,&o, 1,1) — ¢n(0,1,1,1,0),
n(0,1,0,2,2) = ¢*n(0,0,1,1,2),
H0.0.1.2.0) = 43¢ — 0.2 1.0.2) - o, P n@ s 1)
n(0,3,0,2,0) = ¢*'(4)¢n(0,2, 1, 1,0) — g1 ¢*(1 = ¢)n(0,3,1,0, 1),
RO LL2.0) = (¢ - 00,211 - AT,

Thus L'(\) is spanned by Byg, and then dim L'(\) < 47.
By Corollary 5.3.2 there exists F' € U~ such that F'n(0,3,1,2,0) = v,, since

F12n<0707 07070) - 07 91920'10'271(0, 07070 O) (0 0 O O 0)
F11212n<0737 07070) - 07 gi}ggai’ag (07 37070 O) _n<0 3 0 0 0)
F1127L<0, 37 17 07 0) = 07 91920102n(07 37 17 0 O) (0 37 17 0 0)

Notice that w' = n(0,3,1,2,0) satisfies Eyw’ = Eyw' = 0, gyoqyw’ = W', geosw
Cw', so (Uw')? projects over a simple module L(v), v € Jy7. Then dim L'(u)
dimUw’ > dim L(v) = 47. Thus dim L(\) = 47 and By is a basis of L'(\). Let

AVANI

9Here A\jA3 = —1, but the relation in Remark 5.4.9 becomes trivial.
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W # 0 be a submodule of L'(\), v € W — 0. Arguing as in previous cases, there
exists £ € U™ such that Ev =m(0,3,1,2,0), so m(0,3,1,2,0) € W. Then vy, € W
and W = L'(\), so L'(\) is irreducible. O

Lemma 5.4.54. If A € Jy7, then dim L(\) = 1 and E,vy = 0, Fuy = 0, govy =
A(go)v,.

Proof. Let N'(A\) = W(XA) + Wi(\). By Corollary 5.1.1 N'(\) is a proper U-
submodule. By direct computation, N'(A) = > ;.5 M(A)g. Therefore L'(N) =
M(X)/N'()) is one-dimensional and irreducible. O

We recall that \; = A(g;0;), i =1,2.
This way we enunciate the main result of this work:

Theorem 5.4.55. 1. The map A — L(A) gives a bijective correspondence be-
tween I' and the irreducible representations of U.

2. The structure of L(\) depends on the values of \;, i = 1,2. The dimension
and the mazimal degree of L(\) appear in Table 5.1 and a basis description is
given in Lemmas 5.4.2-5.4.54.
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Table 5.1: Dimensions and highest degrees of irreducible modules

Case Conditions on \; dim L()A) | max. degree | L(\)?
T [ MZLC N £ 1,00 V2 £ 1, | 144 (12,8) | Case 1
M # (LT A # 1
2 | N =1\ £LC (T (5 0, 1, (10 48 (10,8) | Case 2
3 [ A =C5h £1,00.05 0. 3.0 1] 96 (11,8) | Case 3
4 Mg = —1,\; # £1,¢5,¢10, ¢4, ¢ 48 (8,6) Case 4
5 Ny = (0 A\ £ 1, (5, (10, (1, (2 9% (10,7) | Case 5
6 N3 = —1, )\ # £1,¢8,¢10, ¢4, ¢? 72 (9,6) Case 6
7 Mg =G £1.C5.C, 08 (0 36 9,5) Case 7
8 | Ada=ClA £1,0501 2 —1,(0 P (10,6) | Case 8
9 VS L v e e eE 108 (11,7) | Case 9
10 M E G hg =1 P (12,7) | Case 10
11 M=1 h=C 11 (5.4) | Case 12
12 M=1 = ( 11 (5.4) | Case 11
13 A =1, =" 23 (7,5) Case 44
14 )\1 = 1 )\2 Cg 25 (7, 5) Case 28
15 M=1, A= gg 37 (9,6) | Case 41
16 A =1 A= 37 (8,6) Case 30
17 )\1 =1, Ay = Cw 47 (10,7) Case 46
18 CB, Ay =P 11 (5,3) Case 38
19 =8 N =(8 35 (8,5) Case 40
20 = (% Ny =(CH 71 (11,7) Case 42
21 = = 61 (9,6) Case 32
2 — 5 = 49 (9,6) | Case 45
23 = (% N\ = (2 47 (8,6) Case 29
24 A =C =1 85 (10,7) Case 35
25 A= N =8 37 (8,5) Case 37
26 = = 25 (8,5) Case 43
27 = = 35 (9,5) Case 36
78 M= Ay = CF 2% (7,5) | Case 14
29 P P — 17 (8,6) | Case 23
30 M=C = 37 (8,6) Case 16
31 M= 1, A= (0 61 (10,6) | Case 39
32 )\1 SySLNS V- 61 (9,6) | Case 21
33 =(% Ny = 71 (9,6) Case 34
34 = = (3 71 (9,6) Case 33
35 R W— 85 (10,7) | Case 24
36 — =1 35 ©,5) | Case 27
37 — 2 =1 37 (8,5) | Case 25
38 =G =1 11 (5,3) Case 18
39 =L =1 61 (10,6) Case 31
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Case | Conditions on A; | dim L(\) | max. degree | L(A\)%
40 | M=, =1 35 (8,5) Case 19
41 | =1, =1 37 (9,6) Case 15
42 | M= =1 71 (11,7) Case 20
43 | M= =1 25 (8,5) Case 26
4 | M= =1 23 (7,5) Case 13
45 | M =¢"% N =1 49 (9,6) Case 22
6 | M=CTl =1 47 (10,7) | Case 17
47 AM=1 =1 1 (0,0) Case 47

Proof. The algebra U satisfies the conditions on [RS, Section 2|, so [RS, Corollary

2.6] applies and (1) follows since all the modules L()), A € T, are finite-dimensional.
For (2) we use Lemmas 5.4.2-5.4.54.

Example 5.4.56. Applying Theorem 5.4.55 to the Example 4.1.4 we get that:

e There are 67 simple modules of dimension 144.

There are 7 simple modules of dimension 108.
There are 10 simple modules of dimension 96.
There are 2 simple modules of dimension 85.
There are 6 simple modules of dimension 72.
There are 4 simple modules of dimension 71.
There are 4 simple modules of dimension 61.
There are 2 simple modules of dimension 49.
There are 10 simple modules of dimension 48.
There are 4 simple modules of dimension 47.
There are 6 simple modules of dimension 37.
There are 7 simple modules of dimension 36.
There are 4 simple modules of dimension 35.
There are 4 simple modules of dimension 25.
There are 2 simple modules of dimension 23.

There are 4 simple modules of dimension 11.

There is one simple module of dimension 1.

Note that Jg and Jy¢ are empty.
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Appendix A

Explicit formulas for some

irreducible (/-modules

Table A.1: Irreducible modules for A € J1;

w Eiw  [Bw| MgHh-w | M) -w
Vo0 0 Vo,1 0 0

Vo1 V11 0 0 (¢ = 1)
V1,1 V2,1 0 %2(( - 1)?)0,1 0

Vg1 0 V22 G12¢°(1 + v 0

V22 V32 0 0 Q§1<1 — ()2
V3.2 V4,2 V3,3 qia(¢° — D)vge 0

U472 0 1)473 QQ%Q(CQ — 1)1)372 0

V33 Chzww, 0 0 q31(<2 — 1)vs
V4,3 Us.3 0 26]%2@2 — 1)7)3,3 Q§1(C3 — 1)7}4,2
V5.3 0 Usa | g1 (1 — M ugs 0

Us.4 0 0 0 3, (¢ + Dvs 3
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Table A.2: Irreducible modules for A € Jq5

w Ey - w Ey-w| Agi)F-w Mgy ) - w
UO,O 0 ’U071 0 O
Vo,1 U1,1 0 0 (¢" 4+ Dwoy
V1,1 V21 V1,2 Q12(C - 1)Uo,l 0
V2,1 0 Voo | 12C®(1 4 vy 0
v | (1 + ) qrava 0 0 g1 (1 + %)My
Voo U39 0 q12(¢% + 1)Poy 2 —Q§71U2,1
V32 0 V33 415C 020 0
V33 0 0 0 CJ§’163(1 — (v
Va3 P qravs 3 0 415C(3) 11033 0
V5.3 0 Usa | —qio(1+CP)uags 0
Us,4 0 0 0 qgl(l — C)C4U5’3
Table A.3: Irreducible modules for \ € J5
w E,-w Ey-w Aoy)Fy - w Ago) 1 Ey - w
V0,0 V1,0 V0,1 0 0
V1,0 0 q21¢°(4)cv1,1 (1 +¢*)voo 0
V0.1 C8£4)§v1,1 0 0 (C"—1)vgg
U1 q12<3(4)<7 Vg1 0 q12(¢ — Do (¢ = Dviyg
V2,1 0 451¢10(4) cva0 (1— Yoy i 0
V2,2 (1 - C4)03,2 0 0 wvm
V32 V4,2 C]12C10(4)<U373 C10(4)<U272 0
Vg2 0 Vg3 4126 (¢ + Duso 0
V33 —qﬁiwg V4,3 0 0 Ci));lUS,Q
Va3 Us,3 0 @ (¢ + 1) (4)Zvss | g (M — 1)vag
Us3 0 0 415C a3 0
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Table A.4: Irreducible modules for A € Jsg

w | By -w Es-w Mg DHF - w Mg DFy - w
Vo,0 V1,0 0 0 0

V1,0 V2.0 C7CI21111,1 (1 - Cs)vo,o 0

V2,0 0 Gz (1+Chvay | (14 Quig 0

V1,1 Va1 0 0 (CH — Dvig
V2,1 V3,1 0 QI2C8U1,1 (CH - 1)U2,0
3,1 0 451CV3.2 (12(% V2,1 0

V32 V4,3 0 0 Q21C11(1 - C3>UB,1
V4,2 Us2 QSlClom,g Q%z@n — 1)?)3,2 0

vsa | 0 1 (3)¢cvs 3 412G (1 + Qvay 0

Vg3 | Us3 0 0 45,6"°(3) 1104
Us 3 0 0 03¢ (1 + CPuas | 5:C7°(3) 1152
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Appendix B

Diagrams for some irreducible
UU-modules

B.1

We give some diagrams that refer to the rank lattice of homogeneous elements
for some irreducible U-modules to explicit the relations between dual modules and
understand the action of ¢ on the homogeneous elements on each rank (a,b) =
aca + bas. The basic diagram of possible rank distribution is given in B.1
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X . L] L]
8
2 3 2
x . L] D ] ]
7
5 3
x L] o’ o® L] ) ]
6
2 7 4
X L] o° of . ] .
9
3 7 8 7 3
2 . . . L] L] . (]
4
4 8 2

X L] . o’ . o ]
3

® = dimension1
X L] o’ o’ . .3 N ¢" = dimensionn
2

2 3 2
. . . * .
1
L[] [ ] L] 4 X X X X X X X X X
0 1 2 3 4 5 6 i 8 9 10 11 12
Figure B.1:

By Lemma 5.2.5, the modules U and U¥ have the same maximal element and
their rank lattice are a 180° rotation of each other, as we can see in next example.

Example B.1.1. If A € 3y, then dim L(\) = 11 and L(\)? is as in Case 12. The
rank diagram of Cases 11 and 12 are given below.
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Case 11, M1 =1, Ay =(

X )
4

X ) [ )
3

X ) ) )

2

) ) )

1

) X X X X X
0 1 2 3 4 5

Case 12, \; =1, o = (*

X ®
4

X ) [ °
3

X [ ° )

2

) ) )

1

) X X X X X
0 1 2 3 4 5

There is another relation we can identify on lattices, given by next example.

Example B.1.2. If A € 75, we have that M (\)/UEvy, = W, because A\; = 1.
Besides that, we can see in 5.4.22, using Lemma 5.2.4, that ({w')¥ projects over an
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irreducible module L(v) as in case 11, with w’ = m(1,3,1,2,0). Therefore we can
have the rank lattice of this Case in the following way: B.2 shows the basic rank
lattice for W = M(\)/UE v, and using the diagram from Case 11 it annihilates
elements from the top, using a 180° rotation of Case 11’s rank lattice as we can see
in B.3.

X [ ]
8
X L] ] [ ]
T
5} 2
X L] [ ] . L]
G
2 3 3
X [ ] L] [ ] .
3
2 4 2
X L] L] [ ] ] [ ]
4
3 3 2
b4 . . 0 .
3
® = dimension1
2 2
>2< 2 o - . o' - dimensionn
. ° .
1
. X X X x X X > X X X X x
0 1 2 3 4 5 6 v 8 9 10 11 12
Figure B.2:
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T X

]

n
L]

dimension 1

dimension n

83X

x X
X2 X2
L L]
2
L L]
X X
6 7
Figure B.3:
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Verma Module, 22
Yetter-Drinfeld Module, 9
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Appendix C

Glossary

Description

Algebraically closed field of characteristic zero
Group of N-roots of unity in k

Subset of Gy of primitive roots of order N
Group of multiplicative characters of a group G
Center of G

Antipode for a Hopf Algebra

Set of grouplike elements of H

Tensor category of finite-dimensional representations of H
Category of Yetter-Drinfeld modules over GG
Nichols algebra of V

Drinfeld double of H

Drinfeld double of B(V')#kA

Verma module associated to A

75



