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Abstract: One of the big concerns when planning the expansion of power distribution systems (PDS)
is reliability. This is defined as the ability to continuously meet the load demand of consumers in
terms of quantity and quality. In a scenario in which consumers increasingly demand high supply
quality, including few interruptions and continuity, it becomes essential to consider reliability indices
in models used to plan PDS. The inclusion of reliability in optimization models is a challenge, given
the need to estimate failure rates for the network and devices. Such failure rates depend on the
specific characteristics of a feeder. In this context, this paper discusses the main reliability indices,
followed by a comprehensive survey of the methods and models used to solve the optimal expansion
planning of PDS considering reliability criteria. Emphasis is also placed on comparing the main
features and contributions of each article, aiming to provide a handy resource for researchers. The
comparison includes the decision variables and reliability indices considered in each reviewed article,
which can be used as a guide to applying the most suitable method according to the requisites of
the system. In addition, each paper is classified according to the optimization method, objective
type (single or multiobjective), and the number of stages. Finally, we discuss future research trends
concerning the inclusion of reliability in PDS expansion planning.

Keywords: distribution system; expansion planning; reliability; optimization models

1. Introduction

A power distribution system (PDS) can be defined as the connection existing be-
tween power substations and consumers, including primary feeders, power transformers,
and secondary circuits [1]. A typical distribution system is constantly growing to meet
the increasing load demand of consumers and reliability requirements. Hence, expansion
planning studies are constantly under analysis to economically and efficiently meet the
load demand growth, within a planning horizon and respecting technical criteria and
constraints imposed on the system [2].

Concerning the horizon of expansion planning, three categories can be defined: short-
term expansion planning (1–5 years), long-term expansion planning (5–20 years), and oper-
ation planning [3]. Short-term expansion planning excludes major changes to the network,
prioritizing the installation of devices such as capacitor banks, voltage regulators, or switch-
ing elements. Network changes are proposed in long-term planning, since constructing
new feeders and distribution substations demands a longer execution time, generally
available in this planning horizon. The objective of operation planning is to meet the load
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demand within the physical and operational limits of equipment and network through
optimal control strategies. Therefore, the operation planning problem can be defined as a
sub-problem of the expansion planning problem, as it performs a network diagnosis for
each investment alternative, allowing one to properly define the new system components
to be installed [4].

The use of distributed energy resources (DER) in PDS, including distributed generation
(DG), requires the inclusion of additional technical aspects into PDS planning. Firstly,
the connection of DER transforms passive networks into active networks, which has
technical and financial impacts, depending on the specific characteristics of DG, such as
DG installation node and type of DG—firm or variable. Secondly, from a technical point of
view, DG impacts the energy losses and voltage profile, as it changes the flow of energy
within the network, in addition to altering system maintenance and restoration practices.

Microgrids can feed loads in areas far from the power supply grid efficiently and
economically. Additionally, the planning of PDS generally considers energy supplied by
distributed renewable energy sources, conventional generators, electrical energy storage
systems, heat energy storage systems, and natural gas heaters, among others [5,6]. However,
predicting the operation of microgrids is complex due to uncertainties related to the
randomness of renewable energy and to the declining cost of investing in energy storage [5].

Furthermore, through the use of smart grid (SG) devices, it becomes possible to obtain
large amounts of data, which can, in turn, be used to better plan the PDS. SG concepts are
related to networks with the considerable integration of information technology, telecom-
munication, sensing techniques, measurement devices, and automation. The use of SG
concepts makes it possible to improve the system operation and the capacity to operate
with DG, thus increasing the system reliability as a whole. Therefore, although competing
with traditional methods, paradigms, and traditional planning techniques, the concepts of
SG can lead to lower operating and investment costs.

Utilities currently face a scenario in which consumers increasingly demand high sup-
ply quality, including few interruptions and continuity. Interruptions in energy supply can
result in significant financial and social losses, both for utility and consumers. Therefore, it
becomes important to consider reliability indices when planning the PDS expansion. How-
ever, even when complex network models are used, the quality of the service, as expressed
by reliability indices and failure rates, remains a great challenge for planning engineers.

The models applied to solve the PDS expansion planning problem usually do not
include reliability criteria. Although the execution of expansion plans can positively
influence the quality of service, estimating the gains in terms of reliability indices is not
trivial. Under the gains to be estimated as the result of a given expansion plan, we
can include the reduction in supply interruptions. Further, the decision-making process
concerning a given expansion plan can be supported by a comparison between the reliability
indices and the penalties applied to utilities before and after the effective implementation
of the plan, thus weighing the potential benefits from the utility side and customer side in
terms of reliability.

One of the difficulties to including reliability indices into models used to plan the
expansion of PDS is the need to estimate performance indices, which requires knowledge
of the failure rates not only of the network but also of different devices [7]. However,
generalizing these rates is challenging due to the specific characteristics and different
performance targets of rural and urban feeders, overhead and underground feeders, feeders
with different rated voltages, and feeders of different lengths. Furthermore, the extent
of automation and protection schemes of these feeders also impose difficulties to the
determination of their failure rates.

Several papers addressing reliability in PDS can be found in the literature. A search
on the Scopus database results in approximately 2100 papers from 1990 to 2022, retrieved
using the keywords reliability, power distribution system and planning. Figure 1 presents
the number of papers over this period, where it is possible to observe that the research
topic has been receiving more attention in recent years. Note that Figure 1 includes not only
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expansion planning but also operation and other related problems addressing reliability
in PDS.
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Figure 1. Number of published papers found on Scopus database.

Aiming to provide a handy resource guide to engineers and researchers, we selected
and reviewed the most relevant papers on the PDS expansion planning models that include
reliability. These papers have been published from 1996 to 2022 in international journals
and conferences, all of them indexed in the Scopus database. However, to highlight the
newest research findings, papers published in the last 3 years account for more than 32% of
the total. On the other hand, the papers have been retrieved using the keywords reliability,
power distribution system, expansion and planning. Further, we analyzed the papers with
attention to the expansion alternatives considered in each model. At the same time, we also
compared and analyzed 63 papers, which were categorized from different perspectives
including (i) the optimization method used to solve the problem; (ii) the number of stages
(single stage or multistage); (iii) the type of objective in which the problem is formulated
(single objective or multiobjective); (iv) the reliability indices used to insert reliability criteria
into the models; and (v) the larger-scale test system used. Furthermore, this review paper
also provides a discussion on research prospects which can guide future research trends.

Regarding review papers, a literature search revealed that several authors reviewed
the PDS planning problem and the associated solution. In [8–10], for example, the authors
address the optimal planning of DG in distribution systems, yet do not address other
expansion alternatives commonly considered in the planning of PDS. Other review papers
analyze and compare the optimization models and methods applied to the problem of
PDS expansion planning, but without attention to the reliability [4,11–13]. In addition,
Ref. [14] focuses only on multiobjective approaches. Other review papers studied the
inclusion of energy storage systems (ESS) into distribution networks [15–19], focusing
on the technologies and impacts of ESS rather than on the expansion planning of PDS.
An overview of works that propose the allocation of protection and control devices in
distribution systems is presented in [20]. In [21], a review of advances in SGs is presented,
where pricing policy is discussed, as well as components of SGs and data management
schemes. Therefore, to our knowledge, up to now, no review paper has addressed the
assessment of reliability within optimization models for PDS expansion planning as in the
present paper.

Within the context outlined above, the main contributions of this paper are:

• A comprehensive survey of works that address the expansion planning problem
considering reliability in PDS;

• A comparison including the main features and contributions of each work;
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• A comparison of methods including decision variables, reliability indices, and the
larger-scale test system used of each article; this comparison can be used as a guide to
applying the most suitable method according to the requisites of the system;

• An analysis on the computational complexity of optimization models applied to solve
the PDS expansion problem considering reliability;

• A discussion about future research trends in optimization models applied to the
problem of PDS expansion planning considering reliability.

2. Expansion Planning and Reliability in Power Distribution Systems

In general, PDS expansion planning includes many investment options, the most
common being the reconductoring of existing circuits, the construction of new circuits
or substations, and the determination of the capacity, location and installation of new
devices [22]. Investment in the reconductoring of existing circuits can reduce excessive
energy losses, occurring when the maximum current capacity of conductors is exceeded,
when the voltages are lower than the minimum [23], or even when the reliability of the
energy supply must be improved [24].

Investing in new circuits may occur when it is necessary to expand the PDS to meet
load demands in areas not yet supplied. Even so, depending on the alternative routes,
investments in new circuits may require ideal routes for the feeders, this being an important
aspect in the PDS expansion planning [25]. On the other hand, defining ideal routes can
also result in lower energy losses, improved voltage levels, and higher reliability.

Energy losses and violations of nodal voltage limits are among the technical criteria
often considered in optimization models for planning the expansion of PDS. Utilities must
supply voltages within specific limits, which implies that the voltage profile must always be
close to a reference value [22]. An adequate voltage profile benefits not only consumers but
also utilities, given that the operation within voltage limits avoids financial compensations
to be paid to consumers in case of inadequate voltages [24]. In addition, utilities are
constantly concerned with energy losses, as they may imply additional costs [24]. Recently,
optimization models have also considered aspects related to the reliability of the electricity
supply [22,26,27].

Reliability is defined as the ability to continuously meet the load demand of consumers
in terms of both quantity and quality [28,29]. Failures in PDS are responsible for more than
80% of the interruptions of the energy supply to consumers, showing that investments
in reliability at the distribution level can improve the reliability of the entire power sys-
tem [29]. Moreover, reliability is usually expressed through indices, the most common at
the distribution level being Energy Not Supplied (ENS), the System Average Interruption
Duration Index (SAIDI), and the System Average Interruption Frequency Index (SAIFI).
Thus, to simultaneously meet economic and reliability requirements, when formulating
the problem of planning the expansion of distribution systems, it is necessary to consider
reliability indices in optimization models.

An alternative solution to improve the reliability of PDS is the use of selectivity
schemes between reclosing and protection devices placed across the feeders. In addition,
the intelligent allocation and coordination of switching and protection devices improves
fault detection and reduces the repair time, given that such procedures divide the network
into protection zones. As a result, those consumers affected by the fault are isolated, while
energy is supplied to the remaining users for the time required to restore the interruptions.

Each of the works discussed in this paper proposes decision variables that depend
on the optimization model used by the author. Figure 2 illustrates the decision variables,
categorized into seven groups: the addition of lines (AL), reconductoring (RE), switching
or protection devices (SW), substation construction or increasing the capacity of existing
substations (SS), distributed generation (DG), energy storage systems (ESS), and parking
lots (PL) with charging stations (CS) for electric vehicles (EV). Further, among the alterna-
tives found in optimization models regarding decision variables related to SW are reclosers,
fuses, sectionalizing switches, tie-lines, and circuit breakers (CB).



Energies 2022, 15, 2275 5 of 29

Circuit Breakers (CB)

Reclosers

Fuses

Sectionalizing Switches

Tie-lines

Substation construction or
increase in the capacity of 

existing substations (SS)

Addition of Lines (AL)

Reconductoring (RE)

Distributed Generation (DG)

Energy Storage Systems (ESS)

Parking Lots (PL)

Switching and 
Protection Devices (SW)

Distributed Energy Resources (DER)

Figure 2. Decision variables of PDS expansion planning models considering reliability.

2.1. Reliability Indices

Utilities are responsible for supplying electricity to consumers while meeting reliability
requirements established by regulatory agencies. Towards this end, utilities must invest in
expansions of the network and also follow maintenance practices in their concession areas
that help reduce their costs [30]. To quantify the PDS reliability and assess the performance
of utilities, both on the regulator side and on the utility side, reliability indices are used.
These indices can be related to momentary interruptions (less than 5 min) or sustained
interruptions (5 min or more); further, they can also be based on the loads of PDS. IEEE
Standard 1366-2012—Guide for Electric Power Distribution Reliability Indices defines the
fundamental terms to be used in studies of the reliability of distribution systems as well as
several reliability indices [31].

The main reliability indices used to express sustained interruption in PDS are the
SAIDI, SAIFI, and Average Service Availability Index (ASAI). The following indices are
customer-oriented indices: SAIFI indicates how many sustained interruptions an average
customer expects to occur and SAIDI the expected number of hours of interruption of an
average customer, both calculated for a given period of time; ASAI indicates the percentage
of time an average customer is supplied without interruption [31]. Furthermore, the indices
Customer Interruption Frequency (CIF) and Customer Interruption Duration (CID) can
also be used; they express the frequency and duration of interruptions for each load
node, respectively.

In contrast, the indices ENS and Average Energy Not Supplied (AENS) are load-
oriented, both being equivalent to the energy not consumed due to interruptions; note that
AENS is normalized by the number of consumers of the electrical set, defined as a group of
utilities/consumers according to [30]. To estimate the Customer Interruption Cost (CIC)
due to interruptions related to the distribution system, the Expected Interruption Cost
Index (ECOST) can be used, which, in turn, is is based on the ENS index. ECOST uses the
Customer Damage Function (CDF), which estimates the cost of outages normalized by the
load and the duration of the outage of each customer [32]. Note that each customer class
has a CDF, given that consumers can be divided into classes, such as residential, commer-
cial, industrial, agriculture, government/institutional, large consumers, and offices [33].
Among the most relevant reliability indices related to momentary interruptions are the
Momentary Average Interruption Frequency Index (MAIFI) and the Momentary Average
Interruption Event Frequency Index (MAIFIe) [34].
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Utilities must follow the standards established by regulatory agencies. For this pur-
pose, they use tools that allow them to assess the network history and to support the
decision making in PDS expansion planning. In this context, the historical assessment of
reliability helps compare the performance of the system concerning the limit values of
indices prescribed by standards. On the one hand, this type of assessment helps identify
those parts of the network that most need improvements. On the other hand, predictive
evaluation aims to estimate future performance, as well as the impact of expansion actions
on the PDS reliability; further, predictive evaluation can also support the decision-making
process on expansion investments in short- and long-term planning horizons [35].

2.2. Reliability Evaluation in Expansion Planning Studies

A review of PDS reliability is presented in [36,37], where the authors focus on studies
related to SGs and propose the introduction of microgrids in models aimed to assess
reliability. The review [37] describes the techniques used in each type of method (analytical,
sequential Monte Carlo simulation, and others), the characteristics and influence of the
main subsystems, such as DG, ESS, and EV, on reliability. Furthermore, the authors of [37]
detail the estimated indices and focus on the random characteristics of DER and on the
application of the methods described to real systems.

Heidari and Fotuhi-Firuzabad [38] proposed a method for inserting reliability as-
sessments into studies of planning the expansion of PDS, where the indices SAIDI, ENS,
and AENS are considered, as well as an index for the cost per interruption for a whole
year. In addition, the authors applied the proposed method to a solution found in the
multistage optimization model described in Heidari et al. [39] to estimate the reliability for
each year in a five-year plan. Jooshaki et al. [40] proposed a linearized model to calculate
SAIFI, SAIDI, and ENS that allows one to include reliability costs into mixed-integer linear
programming (MILP) optimization models.

In [41], a recursive hybrid algorithm was applied to evaluate the reliability of PDS,
aiming to reduce the computational cost. The authors evaluate the effects of considering
the misoperation of fuses, CB, and relays and the connection of DG. The indices SAIFI,
SAIDI, ASAI, ENS, and CAIDI (Customer Average Interruption Duration Index) were
obtained for the test systems. The method for the assessment of reliability proposed by
Escalera et al. [42] estimates the reduction in the ENS for critical consumers coming from
the use of an optimal coordination schema that considers DG, ESS, and dispatchable loads
during contingencies. In addition, in this study, the analytical approach followed by the
authors considered the uncertainties of the generation, demand, and state-of-charge of ESS
to estimate the SAIDI, SAIFI, and ENS indices.

Munoz-Delgado et al. [43] proposed a method based on linear programming for the
calculation of reliability indices, in which the network topology is explicitly represented
by decision variables of the optimization process. This work also presented a new math-
ematical formulation for ASAI, SAIDI, SAIFI, CID, CIF, and ENS. On the other hand,
Tabares et al. [44] proposed evaluating the PDS reliability in an algebraic way, in which the
indices SAIFI, SAIDI, ASAI, and ENS are considered. In this work, the analytical method
used to assess the reliability of the network is based on the mathematical formulations for
estimating reliability indices and ENS developed by Munoz-Delgado et al. [43]. However,
Tabares et al. [44] claim important advantages, such as less computational effort given that
only a system of linear equations is solved, instead of an optimization problem.

Wang et al. [45] developed an analytical method to evaluate reliability based on the
fault incidence matrix (FIM), which can be applied to complex PDS. This method makes it
possible not only to determine reliability indices but also to assess the impact of each fault
on these indices under different load conditions. The proposed approach can be seen as a
tool to identify critical points and for sensitivity analysis when planning the PDS expansion.
In fact, FIM can be applied to distribution systems with radial structures, with one or more
tie-lines, and with or without capacity restrictions. In contrast, in Zhang et al. [46], the
focus of the study is the sensitivity analysis of the reliability indices of PDS considering the
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impact of factors that influence reliability, such as failure rate, switching and repair times,
the automation of manual switches, the location of CB, sectionalizing switches, and tie-lines.
The method developed in this work is derived from FIM, proposed by Wang et al. [45].
Thus, it serves as a tool o PDS expansion planning to identify the factors that contribute
most to the reliability indices, while reducing computation time by avoiding repetitive
evaluations of the reliability.

Reliability can be included into optimization models both (i) as changes to the objective
function or (ii) integrated as constraints, with both alternatives requiring the evaluation of
reliability during the optimization process [38]. Thus, many authors have dedicated their
efforts to improving the way reliability is integrated into optimization models.

In the context discussed so far, we can now identify the major trends in the approaches
used to estimate the reliability of complex PDS, which have the characteristics of real
systems, such as a large number of load nodes and protection and/or sectionalizing devices.
We recognize that the majority of this works focuses on the reduction in computation
time required to estimate the reliability and to overcome the difficulties related to the
complexity of the mathematical modeling of PDS, both aspects being fundamental for the
implementation of planning tools.

Moreover, the determination of failure rates and repair times of the primary network
based on real data remains a challenge due to the difficulties faced by utilities with data
acquisition concerning failures, which makes the problem even more complex.

2.3. Test Systems Used in Power Distribution Studies

Test systems can be classified into actual or synthetic systems. Actual systems are
modeled through real distribution networks with the protection of personal data; synthetic
systems are generated through real distribution networks but modified through different
techniques, as detailed in [47]. Optimal expansion planning studies of PDS usually employ
test systems found in the literature, or systems modified according to the needs of the
study. A representative example of test systems is the IEEE 123-node system, which is
a radial distribution feeder used in several areas of studies involving PDS [48]. Further
examples of test systems used in PDS studies are the IEEE 13-node, 34-node, and 37-node,
described in [48], IEEE 33-node introduced in [49], and the 69-bus system used in [50].
On the other hand, a test system widely applied in reliability studies is the RBTS (Roy
Billinton Test System) [51], which is composed of six medium-voltage buses with different
types of consumers. In contrast, the 54-node test system described in [52] is suitable for
network expansion planning due to the existence of candidate branches and substations to
be constructed.

Finally, many studies concerning PDS expansion planning make no use of the test
systems found in the literature. On the other hand, the case studies reported are based on
actual feeders obtained from real distribution networks. These studies are usually funded
through joint research projects financed by energy companies.

3. Short- and Long-Term PDS Expansion Planning Considering Reliability

The horizon of PDS expansion planning can be divided into short term (1–5 years)
or long term (5–20 years) [3]. Within the context of reliability, short-term expansion plan-
ning usually encompasses the installation of protection and/or switching devices and the
reconductoring of existing circuits, while long-term expansion planning may include the
construction of substations and new feeders, as well as increasing the capacity of existing
substations. For the purposes of analysis and comparison of planning approaches includ-
ing reliability, we selected optimization models involving the integration of one or more
expansion alternatives; further, the number of alternatives and type of each one depends
on the particular approach chosen by the authors. In addition, in this Section we focus on
models that do not consider the placement of DER as an alternative for expansion planning,
although some consider pre-existing DG.
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3.1. Protection and Switching Devices in the Context of PDS Expansion Planning

The installation of protection and switching devices can be considered as an expansion
alternative in short-term planning, given that the installation requires less time compared to
other alternatives, such as the construction of substations. Some of the devices available are
(i) sectionalizing switches, (ii) normally open switches that are interconnected with adjacent
feeders (tie-lines), (iii) fuses, and (iv) reclosers. In addition, as a short-term alternative,
the automation of PDS can also be considered, in which manual protection and/or switch-
ing devices are replaced with automated devices. These alternatives are commonly used
to improve reliability indices so that they meet the requirements of regulatory agencies
concerning electricity distribution services.

Single-stage approaches to solve the problem of the optimal allocation of switches
are among the first attempts found in the literature. In [53], an optimization model for the
placement of switching devices was proposed and solved through simulated annealing (SA).
The objective function included minimizing costs related to failures in medium-voltage
distribution networks, using ECOST as a metric. The decision variables were the location
and number of switching devices. Later, the ant colony optimization (ACO) algorithm was
applied in [54] to solve the optimal relocation of switching devices in distribution feeders.
The objective function considered the CIC, whereas investment costs and the costs of
relocating switching devices were not considered. Sohn et al. [55] conceived a MILP model
for the optimal allocation of switching devices, including fuses and reclosers, to minimize
investment, maintenance, and interruption costs measured using the ECOST index.

Multiobjective approaches are also found in specialized research. In [56], a multiob-
jective approach using the ACO algorithm for the optimal placement of switching and
protection devices is proposed. The alternatives included the installation and relocation of
normally closed (NC) switching devices, reclosers, and fuses. Three objective functions are
defined to evaluate SAIFI, SAIDI, and the costs related to interruption and the placement of
devices. On the other hand, DG was included in the method presented by Falaghi et al. [57]
for the optimal placement of switching devices. The method proposed is solved through
an ACO algorithm and has a multiobjective characteristic similar to that described in [56];
however, the authors used a fuzzy approach. The objective function considers the ENS
index and the installation costs of switches.

The automation of PDS can be considered as an expansion alternative to improve
reliability indices related to the duration of interruptions. The immune algorithm (IA) was
proposed in [58] for the optimal allocation of switching devices in distribution feeders.
As alternatives, the method considered the installation of new devices, with manual or
automatic operation, and the replacement of manual switching devices. The objective
function included the costs of investment in devices and costs of reliability using CIC. Later,
the trinary particle swarm optimization (TPSO) algorithm was used in [59] to solve the
problem of the optimal placement of switching devices and circuit breakers, using the
ECOST index as a metric to evaluate reliability. On the other hand, exact optimization
methods were also used to solve the problem. In [60], an MILP model is presented to solve
problem of the optimal allocation of automated switching devices. The objective function
considers the ECOST index and the costs related to the acquisition, installation, operation,
and maintenance of devices.

The allocation of switching devices through a multiobjective optimization model was
proposed in [61], in which the authors solved the optimization problem using particle
swarm optimization (PSO). The objective function is defined to minimize the number of
customers not supplied (CNS) and investment costs of installing switches. In this study,
the reliability indices are determined without using the failure rates. To illustrate the
application of the proposed method, it was compared with the single objective approach
introduced by Moradi and Fotuhi-Firuzabad [59], from which the authors concluded that
better solutions can be obtained with the proposed model. Additionally, the authors
compared the solutions obtained with the globally optimal solutions reported in the MILP
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model of Abiri-Jahromi et al. [60], thus proving the efficiency of the proposed method to
find solutions close to the global optimum.

The SAIDI and SAIFI indices were also considered in works addressing the optimal
allocation of switches. A model for the optimal relocation and installation of switching
devices and tie-lines in medium-voltage networks was presented in [62] and solved through
the memetic algorithm (MA). Additionally, the costs of ENS were included in the objective
function, while the SAIDI index was integrated as a model constraint. In [63], an opti-
mization model for the automation of sectionalizing switches and manual tie-switches
using a greedy heuristic algorithm was proposed, in which the objective function considers
the minimization of the number of installed switches. Later, the optimization method
presented in [63] was used by Jiang et al. [64] to demonstrate the possibility of reliability
improvement within the context of expansion planning of smart distribution systems.
This study highlights the modernization of the network and the benefits obtained using
remote-controlled switches and smart meters.

Mixed-integer linear and nonlinear optimization models were also proposed to opti-
mally place switches, evaluating investment costs and the reliability for different installed
devices and different constraints, such as those imposed on the transfer capacity of tie-lines
and the tie-lines location. Heidari et al. [65] introduced a mixed-integer nonlinear program-
ming (MINLP) model that determines the type, quantity, and location of sectionalizing
switches, fuses, and CB. The objective function accounts for the minimization of total
costs, which is composed of the investment and maintenance costs related to the switches,
the costs of installing protection devices, and the index ECOST. Later, Zhang et al. [66]
formulated a 0-1 integer linear programming model to optimally allocate sectionalizing
switches and tie-lines. However, to this model, the objective function is given as the sum of
the costs of interruptions based on the ENS plus the costs of acquisition and maintenance of
the switches. Moreover, the authors determined the indices SAIDI, SAIFI, and ENS through
the FIM, as described in [45].

Different MILP models can be found in the literature, having as their main advantage
the guaranteed convergence to the global optimal solution. The allocation of fault indicator
devices and sectionalizing switches were considered in Wang et al. [67], where a MILP
optimization model was presented to improve reliability. In addition, the model includes
tie-lines and manual- and remote-controlled switches, with the latter being capable of
locating faults. Further, reliability was assessed through the indices SAIDI and ENS. Wang
and Tai [68] formulated a MILP model for the expansion planning problem of PDS where
the objective function seeks to minimize the investment costs to install interconnections
between distribution feeders (tie-lines). Reliability is treated as a constraint to the problem
and estimated through the indices CIF, CID, SAIFI, SAIDI, and ENS. The results concerning
six case studies with different requirements for the SAIDI indicated the importance of
building more tie-lines with stricter reliability constraints.

Some of the proposed models to optimally place switches also consider the presence of
DG. In [69], a multiobjective approach was proposed to solve the problem of optimal alloca-
tion of sectionalizing switches and reclosers through genetic algorithm (GA), excluding the
possibility of the islanded operation of DG. Among the objectives of the proposed model are
the minimization of costs of investment in switches, the reliability indices SAIDI and SAIFI,
and an index related to the unavailability of DG. The islanded operation of DG was consid-
ered by Velasquez et al. [70], who proposed the optimal installation of CB and reclosers.
The optimization problem was addressed in a single-objective approach solved using the
differential evolution (DE) algorithm, considering the maximization of profits related to the
reduction in the amount of ENS and the costs of investment and maintenance. Additionally,
a multiobjective approach is proposed and solved through the non-dominated sorting
differential evolution algorithm (NSDE), considering the minimization of investment costs
and SAIDI and SAIFI indices.

The automation of PDS in the presence of DG can have a significant impact, improving
reliability. Pereira et al. [71] proposed a multiobjective optimization model for the allocation
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of protection devices and the automation of switching devices, considering that DG can
operate islanded. The model considers the possibility of installing and/or relocating
fuses, reclosers, sectionalizing switches, and automatic directional reclosers that react
only to faults outside the DG island region. In the framework proposed by Chehardeh
and Hatziadoniu [72], a two-level optimization model defines the number and location
of manual NC and normally open (NO) switches to be replaced by automatic switches.
The first level considers the minimization of the ECOST index through restoration, while in
the second level automatic switches are allocated.

Uncertainties were recently addressed in optimization models applied to solve the
optimal allocation of switching devices. A method based on GA was presented in [73]
for the optimal allocation of reclosers, switches, and fuses in distribution systems with
DG. Uncertainties in the data related to loads were also considered, along with permanent
and temporary failure rates, and other parameters related to the failure duration. This
method considered the island operation of DG, while the objective function included the
maximization of gains due to the reduction in ENS costs and interruption costs to customers;
additionally, the objective function also seeks to minimize the costs required for device
installation and maintenance.

3.2. Substation and Feeders within PDS Expansion Planning

The growth in consumer load demands expansion work by electric utilities, with some
of the alternatives being to increase the capacities of existing substations or the construction
of new substations. These alternatives fit within expansion plans considering medium-
or long-term horizons, due to the longer execution time required and the need for more
significant changes to be made to the network. Furthermore, the construction of new
substations usually requires new feeders to supply the load, for instance, when the net-
work is expanded to areas not yet covered by electricity supply (greenfield planning [74]).
In addition, given that switching and protection devices need to be installed along the
new feeders, they not only change the network topology but also have an impact on the
reliability of the system. Therefore, it becomes essential to include reliability criteria in
optimization models applied to solve the problem of long-term expansion planning.

Single-stage approaches are among the first proposed models that included reliability
criteria in PDS expansion planning models. A greenfield planning approach was presented
in [74], assuming no pre-existing branches and thus defining the routes of new feeders.
Also in [74], costs related to energy losses were minimized, along with those related to
reliability and investment in substations and feeders. Reliability costs were addressed
through the number of interruptions, considering only a circuit breaker in the substation.
A model formulated as an MINLP problem was presented in [75], in which the objective
function accounted for the costs of investment in substations and feeders, costs of active
power losses, and costs related to reliability. Reliability costs were addressed as a function
of interruption duration. In addition, the model was solved through an evolutionary
algorithm (EA) and the results showed that the routing of the feeders changes when
reliability is considered in the model. The expansion planning of medium- and low-voltage
networks was addressed in [76] using a discrete particle swarm optimization (DPSO)
algorithm. Further, the objective function aimed to minimize the costs of acquiring new
devices, in addition to costs of operation, losses, and reliability (SAIDI and SAIFI).

Given the inherent conflicting nature of objectives such as minimizing investment and
maximizing reliability, researchers have proposed several multiobjective approaches to
include reliability models for the expansion planning of PDS. An MINLP multiobjective
model, solved through EA, was proposed in [77], whose objective functions consider expan-
sion costs and reliability costs through the ENS index. Later, a multiobjective model based
on a fuzzy possibilistic optimization model was presented in [78], in which the authors
determined non-dominant solutions corresponding to the minimization of expansion costs,
reliability level, and exposure to faults. Expansion costs took into account the installation
of new feeders and substations, while the reliability level was assessed through the ENS
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during interruptions. In addition, the exposure to faults is weighted by the probability of
the network, together with the associated devices, to operate overloaded.

Carrano et al. [79] proposed an MINLP model for the problem of planning the expan-
sion of PDS, solved through a multiobjective GA. The multiobjective approach proposed
considered a monetary index (including the cost of energy losses and investment costs in
substations and feeders), in addition to customer interruption costs. In [80], a multiobjective
approach using two algorithms was proposed: a non-dominated sorting genetic algorithm
(NSGA) and strength pareto evolutionary algorithm (SPEA). The multiobjective function
of the optimization model minimizes the total expansion costs (investment in substation
and feeders) and maximizes the reliability of the system. In contrast, reliability is assessed
using ENS during system faults. The PSO algorithm was used in [81] in both single- and
multiobjective approaches. Two objective functions were considered: one that considers
the investment cost and energy losses of feeders and another that considers the ENS due to
system faults.

Later, the optimal placement of switching devices was included in multiobjective
models [82,83], aiming to minimize the total investment and operation costs and maximize
the network reliability. For instance, in [82], an optimization model was proposed that
considers the optimal location of sectionalizing switches and tie-lines. Reliability is eval-
uated through an index defined as the ratio between the average ENS, due to the failure
of all branches, considered one at a time, and the total energy. On the other hand, in [83],
reliability is measured through the cost of interruption, which is calculated as a function of
the costs of ENS, the repair of the fault, and the damage caused to consumers. On the other
hand, this damage is usually difficult to estimate, since it requires detailed knowledge of
consumer activities.

Multistage models give the advantage of making it possible to invest at different times
along the planning horizon. MILP models accounting for reliability in PDS expansion were
presented in [84,85]. In [84], the original nonlinear objective function was linearized using a
piecewise linear function. The objective function includes the costs of maintenance, losses,
and operation, whereas the expansion alternatives are represented by the reinforcement of
feeders and new substations. In addition, the model allows obtaining solutions that are
subsequently used to evaluate the ENS, SAIDI, SAIFI, CID, and CIF, thus providing infor-
mation on the impact of each solution on the reliability. On the other hand, Munoz-Delgado
et al. [85] proposed an objective function considering the minimization of costs related to
(i) investment in assets; (ii) the maintenance of feeders and transformers; (iii) purchase of
electricity; (iv) load shedding; (v) power losses; and (vi) reliability. The expansion plan
considered the investment in the addition and reconductoring of branches, as well as in
the reinforcement of substations. Additionally, the authors used the ENS to evaluate the
system reliability.

Switching and restoration times required to estimate reliability indices were later
addressed in a MILP formulation proposed by Jooshaki et al. [86], in which the costs of
reliability refer to the costs of ENS, SAIDI, and SAIFI. The objective function considered
the cost of investment, operation, and reliability. The investment costs comprise the
variables associated with the addition and reconductoring of feeder sections, as well as the
construction or expansion of substations. In contrast, Li et al. [27] presented a MILP model
where the reliability indices CIF, CID, SAIFI, SAIDI, and ENS are included as constraints.

Recently, as in [86], Tabares et al. [87] proposed a MILP that considers switching and
restoration times for the calculation of ENS employing constraints. The objective function
consists of minimizing the investment and operating costs. The investment cost includes the
cost for installing new circuits, substations, and transformers, as well as for reconductoring
existing feeders. The operating cost is the sum of the costs of the power supplied by
the substation, load shedding, ENS, and maintenance of the substations, transformers,
and feeders. For the case study examined, the authors found a reduction in total costs when
reliability was included in the expansion planning model for distribution systems.
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4. PDS Expansion Planning Considering Reliability and DER

The integration of DER in the electrical grid can collaborate with the expansion of
smart electrical grids, bringing benefits through network operation and reconfiguration
strategies [69]. The use of renewable DG in distribution systems is increasing, with DG
being predominantly associated with wind and solar sources, while in some countries,
grid-connected ESS technologies are being implemented. Furthermore, the use of EV is
already a reality in many countries. Currently, studies on the expansion of distribution
systems considering reliability also allow the inclusion of DER as alternatives, among which
are (i) DG, (ii) ESS, and (iii) parking lots with CS for EV.

4.1. Distributed Generation

The connection of DER, such as DG, transforms the distribution network from passive
to active, thus posing additional challenges to the operation and planning of PDS. In con-
trast, DG also offers several relevant benefits, for instance, the reduction in energy losses
and better voltage control [88]. Yet, concerning reliability, the use of DG to supply energy
to isolated areas during contingencies (islanded operation) can help improve reliability
indices and reduce post-fault unsupplied energy [89].

Celli et al. [88] outlined a multiobjective method for the optimal allocation of DG
using GA and the ε−constrained method. This approach allows the planner to choose
the best compromise between the cost of upgrading the system, the cost of purchasing
energy, the cost of energy losses, and the cost of ENS. The results show that allowing DG to
operate as an island can improve the reliability of PDS. On the other hand, Khalesi et al. [90]
presented a mathematical model based on dynamic programming (DP). This model aims to
maximize system reliability and minimize energy losses through the optimal allocation of
DG. The authors considered the possibility of the islanded operation of DG and evaluated
the reliability through the ENS.

Some of the works we discuss here propose MINLP optimization models including
DG integrated with other expansion alternatives, in which the islanded operation of DG is
allowed [2,91]. For example, Shaaban et al. [91] proposed a model in which the objective is
to determine the optimal location of DG, to reduce the cost of energy losses and system
interruptions. In addition to the installation of DG, the reconductoring of feeders and
replacement of substation measurement and protection devices are considered as possible
investments. In [2], the objective is to minimize investment and operating costs, in addition
to maximizing reliability. In this context, the decision variables of this model are related
to the installation of DG, the addition and reconductoring of feeders, and the addition
and reinforcement of substations. Reliability is evaluated through the ENS during system
outages. Further, the proposed model is solved using a hybrid algorithm combining PSO
and SFL (Shuffled Frog Leaping) algorithms.

The DG allocation problem considering reliability is usually addressed in single-
objective optimization models. The method proposed by Borges and Falcão [92] uses
GA to solve the problems of optimal allocation and sizing of DG, imposing constraints
on the SAIDI index. Dispatchable DG was considered as always available; therefore,
the method cannot handle intermittent DG, such as solar and wind generation sources.
Other works, however, address the allocation of DG in addition to protection and/or
switching devices [89,93]. Pregelj et al. [89] used GA and evaluated reliability through the
indices SAIDI, SAIFI, and MAIFIe. Later, the allocation of reclosers and DG was considered
in [93], aiming to minimize a single reliability index, which is a combination of SAIFI and
SAIDI, and simultaneously to meet prescribed values for these indices. The results showed
that the installation of DG and reclosers helps to obtain an expansion plan, leading to a
more reliable distribution system.

Optimization models considering DG and the increase in substation capacity and the
reconductoring of feeder branches were also proposed [94,95]. An optimization model
solved through the modified DPSO algorithm to improve the reliability of PDS was pre-
sented in [94], in which the decision variables refer to the installation of DG, capacitors,
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network branches, and transformers. System reliability is evaluated through fault location,
repair time, failure rate, and customer impact. In this sense, the model considers the
system to be capable of isolating all consumers downstream of the fault and that the DG,
if available, can operate in such a way as to restore energy to the part of the consumers
located downstream the fault. Later, Bagheri et al. [95] proposed a model which considers
uncertainties in load demand, the output power of renewable DG, and the cost of energy
purchased from the transmission system. The model is solved through GA and allows
investment in renewable and non-renewable DG, reinforcement of feeders, and substations,
while the reliability is modeled using ENS. In addition, islanding and load transfer through
reserve feeders is allowed to improve system reliability.

MILP models for the multistage expansion planning problem of PDS were later pro-
posed in [26,96]. Munoz-Delgado et al. [26] combined stochastic programming and MILP
to account for uncertainties related to demand and DG sources. The expansion alternatives
consisted of installing and increasing the capacity of feeders and substations, in addition to
installing DG. The proposed model allows obtaining a set of solutions so that, subsequently,
ENS, SAIFI, SAIDI, CIF, and CID, as well ENS cost, can be evaluated. On the other hand,
Jooshaki et al. [96] included reliability costs (ENS, SAIFI, and SAIDI) in the objective func-
tion. Additionally, the installation of substations, feeders, and DG were considered; further,
the model also considers the possibility of increasing the capacity of existing substations
and feeders.

4.2. Energy Storage Systems

ESS can be used to reduce the peak demand of electricity by controlling the charging
and discharging cycles. The improvement of the voltage profile, the reduction in energy
losses, and the increase in power quality are additional benefits that can be achieved
through the use of ESS [97]. In addition, ESS can be used to improve reliability indices
through islanded operation, supporting the restoration of energy supply during contin-
gency situations [98]. Moreover, the integration of ESS helps mitigate the uncertainties
related to the generation of electricity from renewable energy sources [99,100]. Therefore,
the simultaneous allocation of DG and ESS becomes an advantageous expansion option for
smart grids.

One of the first optimization models applied to the expansion of distribution systems
considering reliability and including ESS as an alternative was presented by Sedghi et al. [98].
In addition to ESS, the authors considered investment in DG, substation, feeders, and re-
serve feeders. Reliability was evaluated through the cost of the ENS during system interrup-
tions, with the cost of ENS being calculated differently for each customer class connected
to the nodes (residential, commercial, or industrial) and weighted by the duration of the
interruptions. As one of the possible operation strategies, it was assumed that nodes are re-
stored through interconnections, DG, and ESS. The single-objective function defined served
to minimize the costs of investment, operation, and reliability. In addition, a modified PSO
algorithm was used to solve the proposed model.

The allocation of photovoltaic DG and ESS was recently addressed by El-Ela et al. [101],
in which the equilibrium optimization (EO) algorithm was used to solve the optimization
problem. The objective function considers the minimization of costs of (i) ENS; (ii) mainte-
nance and installation of DG and ESS; (iii) power losses; and (iv) CO2 emissions. Hamidan
and Borousan [102], on the other hand, proposed a model to size and place DG and
ESS, solved through an Evolutionary Algorithm. The objective function accounts for the
minimization of investment costs and operation costs related to DG and ESS and costs asso-
ciated with the ENS index. Moreover, recently, Pinto et al. [103] proposed an optimization
model that approaches not only the allocation of DG and ESS, but also the reconnection of
branches and the allocation of switches and capacitors. This model considers uncertainties
and determines the ENS by means of a Monte Carlo simulation.

Single-objective models for the optimal allocation and sizing of ESS to improve the
reliability of PDS are presented in [99,100,104]. In [99,100], the objective function is defined
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as the total costs of installation and maintenance of ESS and the ECOST, while [104] also
considers power losses. The GA [99], PSO [100], and teacher learning-based optimization
(TLBO) algorithms were used to solve the models. In addition, Saboori et al. [100] also
carried out a sensitivity analysis regarding the number of ESS, investment costs, and the
capacity of installed ESS.

Alobaidi et al. [105] presented a multistage approach for the allocation of ESS in
PDS with photovoltaic generation and data centers. The main optimization problem was
formulated as a MILP problem and the objective function aims to minimize the costs of
investment and battery operation, having as decision variables the capacity, location, and
the date of installation of ESS. In this work, the guarantee of energy supply to the data
centers and the level of reliability, which is measured by the ENS index, are considered.

Multiobjective approaches were also used to solve the problem of the optimal allo-
cation and sizing of ESS and switching devices, aiming to improve the reliability of PDS.
In [106], temporary interruptions are considered in the optimization model by minimiz-
ing the MAIFI in one of the objective functions of the problem. Further, the objective
functions also consider the costs of installing devices and the index SAIDI, which is re-
lated to sustained interruptions. Later, Delgado-Antillón and Domínguez-Navarro [97]
developed a multiobjective optimization model to minimize ENS, power losses, and the
costs of investments, which are represented by the capacity of the storage units. Further,
the island operation of DG is made possible by forming microgrids with ESS to support
DG. The Pareto front was obtained through the results of the multiobjective optimization,
allowing the PDS expansion planner to choose the best solutions.

4.3. Parking Lots with Charging Stations for Electric Vehicles

EV connected to the distribution grid can function as ESS through the vehicle-to-grid
(V2G) capabilities, with the batteries of EV charging and discharging while connected to
the power grid [107]. Therefore, EV can be considered as distributed generation sources,
with the possibility of operating under energy management, storing energy during off-peak
hours, and supplying energy during peak hours [108]. Furthermore, other benefits of
this are the improvement of the voltage profile, the reduction in energy losses, and the
improvement of reliability through islanded operation during failures [109]. In the context
thus far outlined, optimization models have been proposed to improve the reliability of
PDS through parking lots with CS for EV.

Moradijoz et al. [109] proposed one of the first optimization models that considers
reliability criteria for the allocation and sizing of PL containing CS for EV. The objective of
this is to maximize financial gains from energy supply through EV, while reducing the costs
of ENS and power losses. In addition, the model considers the minimization of investment
costs in EV parking and energy purchase costs for EV charging. The PL are modeled as
ESS so that the utility can control the charging and discharging of the batteries. Using a
multiobjective approach and an heuristic method, Xiang et al. [110] handled the expansion
planning of PDS including the location and sizing of CS. The objective functions consider
the minimization of (i) investment and operation costs; (ii) the CS utilization index; and
(iii) ENS index.

A multistage optimization model for the expansion planning of PDS is presented
in [108], in which the expansion alternatives were the installation or reinforcement of
feeders and substations, fault location devices, and installation of CS for EV. Reliability
was addressed through the ENS index in a multiobjective approach. On the other hand,
a single-objective optimization model was developed in [111] for the allocation of auto-
matic switching devices and PL with CS for EV connected to the grid to improve reliability.
The objective function included the minimization of the SAIDI, the total costs of interrup-
tions and investment costs. In addition, the authors solved the problem through the PSO
algorithm and found that when the model considered the load uncertainties, together with
the uncertainties of the energy supply to the network by CS, both the index SAIDI and the
reliability costs increased.
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Recently, Khan et al. [112] developed a multiobjective optimization model for sizing
and placing PL connected to the grid, solved through the PSO algorithm. One of the
objective functions aims to minimize the ENS index and the other aims to minimize losses.
Reductions in the SAIFI, SAIDI, and ENS indices are found when EV are considered as
the sources of energy during contingency situations. Further, when the model is based on
centralized PL, a more significant reduction in the indices could be achieved, in comparison
with the case in which CS and EV are distributed across the electric grid.

5. Comparative Analysis

In this section, we present a comparative analysis of the technical and scientific
literature discussed in this paper. The works have been categorized based on (i) the
optimization method used to solve each model, (ii) the type of objective function adopted,
(iii) the number of planning stages, (iv) the type of decision variables, (v) the reliability
indices considered in each optimization model, and (vi) the larger-scale test system used.
Table 1 summarizes the comparison discussed in what follows.

According to Table 1, we classified the optimization methods used to solve the models
reviewed in this paper into two categories: (i) exact methods and (ii) approximate methods.
Approximate methods can be applied to nonlinear and linear optimization models and
lead to acceptable practical solutions yet with no guarantee of optimality. On the other
hand, exact methods can be applied to linear optimization models and result in solutions
with optimality guarantee.

The classification of the optimization methods appearing in Table 1 are illustrated in
Figure 3, from which it can be seen that the approximate models are predominant compared
to the exact models. This predominance can be explained by the non-linear nature of the
relationship between the quantities involved to consider the reliability within the optimiza-
tion problem; further, the estimation of reliability indices requires the evaluation of the
changes in the network associated with each optimal solution, which makes approximate
methods more appropriate.

Figure 3. Classification of optimization models according to the optimization methods.
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Table 1. Summary of the bibliographic survey.

Reference Published Optimization
Method

Obj. Type a Stages b Decision Variables c Reliability Indices d

Test System
SO/MO S/M AL * RE SW SS DG ESS PL ENS SAIFI SAIDI CIF CID RIC Others

[53] 1996 Approximate SO S X X X X RBTS bus-4/6
[75] 2000 Approximate SO S X X X real 22-node
[77] 2001 Approximate SO/MO S/M X X X X real 182-node
[74] 2002 Approximate SO S X X X real 396-node
[54] 2003 Approximate SO S X X 178 buses
[78,113] 2004, 2006 Approximate MO S X X X real 182-node
[88] 2005 Approximate MO S X X X X X 142-node
[79] 2006 Approximate MO S X X X X 100-node
[55] 2006 Exact SO S X X RBTS bus-5
[92] 2006 Approximate SO S X X X X real 43-node
[58] 2006 Approximate SO S X X X X real 92-node
[89] 2006 Approximate SO S X X X X X 69-bus
[80] 2006 Approximate MO S X X X 43-node
[59] 2008 Approximate SO S X X IEEE 123-node
[93] 2008 Approximate SO S X X X X 394-bus
[57] 2009 Approximate MO S X X real 53-bus
[56] 2009 Approximate MO S X X X X real 51-bus
[90] 2011 Approximate SO S X X X 9-node
[81] 2011 Approximate SO/MO S X X X X real 182-node
[84] 2011 Exact SO M X X X X X X X X X X 27-node
[76] 2011 Approximate SO S X X X X X 72-node
[60] 2012 Exact SO S X X RBTS bus-4
[82] 2012 Approximate MO S X X X X X 100-node
[91] 2013 Approximate SO S X X X X real 38-node
[94] 2013 Approximate SO M X X X X X 205-bus
[2] 2013 Approximate MO M X X X X X 18-node
[83] 2013 Exact SO S X X X X X 100-node
[109] 2013 Approximate MO S X X X 9-bus
[98] 2013 Approximate SO M X X X X X X X 67-node
[99] 2014 Approximate SO S X X X 33-bus
[108] 2015 Approximate MO M X X X X X 24-node
[62] 2015 Approximate SO S X X X X real 472-node
[61] 2015 Approximate MO S X X X IEEE 123-node
[95] 2015 Approximate SO S X X X X X X X real 104-node
[100] 2015 Approximate SO S X X X X real 30-bus
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Table 1. Cont.

Reference Published Optimization
Method

Obj. Type a Stages b Decision Variables c Reliability Indices d

Test System
SO/MO S/M AL * RE SW SS DG ESS PL ENS SAIFI SAIDI CIF CID RIC Others

[69] 2016 Approximate MO S X X X X real 94-bus
[63,64] 2016, 2016 Approximate SO S X X X 1069-node
[26] 2016 Exact SO M X X X X X X X X X X 138-node
[110] 2016 Approximate MO S X X X X 54-node
[70] 2016 Approximate SO/MO S X X X X real 70-node
[106] 2017 Approximate MO S X X X X real 94-node
[97] 2018 Approximate MO S X X IEEE 123-node
[85] 2018 Exact SO M X X X X X 54-node
[65] 2018 Exact SO S X X RBTS bus-4
[71] 2018 Approximate MO S X X X real 135-bus
[72] 2019 Approximate SO S X X X 1069-node
[96] 2019 Exact SO M X X X X X X X X 54-node
[66] 2019 Approximate SO S X X X X X real 94-bus
[67] 2020 Exact SO S X X X X real 144-node
[104] 2020 Approximate SO S X X X 69-bus
[111] 2020 Approximate SO S X X X X RBTS bus-4
[68] 2020 Exact SO S X X X X X X 54-node
[73] 2020 Approximate SO S X X X 69-bus
[86] 2021 Exact SO M X X X X X X X 138-node
[27] 2021 Exact SO M X X X X X X X X X X 54-node
[101] 2021 Approximate SO S X X X X 69-bus
[105] 2021 Exact SO M X X IEEE 34-bus
[112] 2021 Approximate MO S X X X X IEEE 37-node
[102] 2022 Approximate SO S X X X X 69-bus
[103] 2022 Approximate SO S X X X X X IEEE 123-bus
[87] 2022 Exact SO M X X X X X 54-node

a Single Objective (SO); Multiobjective (MO); b Single stage (S); Multistage (M); c Addition of Lines (AL); Reconductoring (RE); Switching or protection devices (SW); Substation
construction, or increase in the capacity of existing substations (SS); Distributed Generation (DG); Energy Storage Systems (ESS); Parking Lots (PL); d Energy Not Supplied (ENS); System
Average Interruption Frequency Index (SAIFI); System Average Interruption Duration Index (SAIDI); Customer Interruption Frequency (CIF); Customer Interruption Duration (CID);
Reliability indices associated with interruption cost (RIC); * The decision variable AL can include the installation of switches.
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However, in more recent works, authors have dedicated efforts to propose linear mod-
els to be solved by exact optimization methods [27,85,86]. Nevertheless, many challenges
still remain related to the determination of reliability indices using analytical formulations.
These indices depend on the topology of the network, which is in part unknown at the
beginning of the optimization process, thus requiring disjunctive formulations. Further,
one of the major difficulties of models based on exact optimization methods is the low
computational efficiency in complex problems and the linearization applied to model
the network.

Figure 3 also gives details about the optimization methods classified as approximate
and exact in Table 1. The optimization models solved by genetic algorithm (GA), particle
swarm optimization (PSO), non-dominated sorting genetic algorithm II (NSGA-II), ant
colony optimization (ACO), greedy algorithm (GAL), discrete particle swarm optimiza-
tion (DPSO), evolutionary algorithm (EA), tabu search (TS), simulated annealing (SA),
memetic algorithm (MA), non-dominated sorting genetic algorithm (NSGA) and others
form the set of approximate methods. On the other hand, the optimization models solved
through branch and bound (BB) and/or branch and cut (BC), dynamic programming (DP),
and benders decomposition (BD) form the set of exact methods.

Additionally, Figure 3 highlights the predominance of the optimization models solved
by GA, PSO, NSGA-II, and ACO within the set of the approximate methods. In general,
GA, PSO, NSGA-II, and ACO optimization methods are frequently used because they are
classical approximate methods. Furthermore, among the exact methods, the optimization
models solved by BB and/or BC are predominant. This predominance comes from the fact
that most optimization models solved by exact methods use commercial solvers, in which
BB and/or BC methods are implemented.

In general, the objective function of optimization models adopts either a single-
objective or a multiobjective approach. When the single-objective approach is chosen,
the objective function is composed of one or more objectives, which are combined using
weights. In contrast, the objective function in the multiobjective approach consists of
more than one optimization objective, usually conflicting and to be solved simultaneously.
Therefore, multiobjective optimization models result in optimal solutions that form the
Pareto front. Table 1 shows that, concerning the estimation of reliability, single-objective
as well as multiobjective approaches can be adopted. To make this point clearer, it can
be observed in Table 1 that 67% of the reviewed papers use a single-objective approach,
whereas 33% use a multiobjective approach. This confirms that conflicting objectives can,
in principle, be used, such as reducing asset investment costs while improving reliability
indices, but in practice, most optimization models use a single-objective function.

In general, the single-objective functions of the optimization models consist of the
costs of investment, operation, and reliability. The investment cost relates to the installation
of new assets or an increase in the capacity of existing assets, whereas the operating cost
refers to the operation and maintenance of system assets. In contrast, reliability cost is
the cost to consumers related to interruptions at the distribution network level. Moreover,
in multiobjective optimization models, the Pareto front is usually formed by the sum of
the investment and operating costs of assets, as well as by the index chosen to assess the
reliability of the distribution system. In this context, some optimization models try to
determine the best compromise between (i) ENS and total expansion costs [2,77,80] and
(ii) SAIDI, SAIFI and total expansion costs [70,106], among other possibilities [61,82,97].

Regarding the planning stages, two approaches are possible: single-stage and mul-
tistage methods. In the single-stage approach, the investments occur at the beginning,
whereas in the multistage approach they occur along the planning horizon. In general, in-
vestments in multistage optimization models occur annually, given that the load is assumed
to grow yearly, too. Table 1 shows that 79% of the models are single stage, while only 21%
are multistage models. The predominance of single-stage models can be explained by the
fact that this type of model is simpler and requires fewer variables, thus demanding lower
computational effort to be solved.



Energies 2022, 15, 2275 19 of 29

Figure 4 is based on Table 1 and illustrates the percentages of single-stage/multistage
and single-objective/multiobjetive optimization models. The selected optimization models
present the following approaches: SO & S, SO & M, MO & S, or MO & M. Optimization
models that address SO & S are more common and represent 51% of the works selected in
the comparative analysis, while MO & M characterize only 5% of the models.

51% 16%

28%

5%

SO & S

SO & M

MO & S

MO & M

Figure 4. Percentage of optimization models according to the type of objective function and stages.

5.1. Decision Variables

In the works thus far described, different types of decision variables are defined;
further, the choice of decision variable depends on the optimization model chosen, as shown
in the sixth column of Table 1. Moreover, the decision variables can be categorized into
seven groups, according to the specific change they indicate in the solution: addition of lines
(AL), reconductoring (RE), switching or protection devices (SW), substation construction,
or increase in the capacity of existing substations (SS), distributed generation (DG), energy
storage systems (ESS) and parking lots (PL). In addition, SW-related decision variables
can include the following devices as alternatives: (i) reclosers, (ii) fuses, (iii) sectionalizing
switches, (iv) tie-lines, and (v) circuit breakers (CB). The optimization models selected for
comparison use decision variables related to one or more groups, as can be seen in Figure 5.
The most common approaches consider decision variables related to: (i) SW, (ii) AL and SS,
and (iii) AL, RE and SS. These decision variables are considered in approximately 56% of
the papers, as shown in Figure 5. Note also that several types of variables can be included
in the optimization model to describe a given device, such as (i) number, (ii) location,
(iii) capacity, (iv) type, or even (v) the installation date.

33% 13% 10% 8% 5% 5% 3% 3% 3% 3% 14%
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100%
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35%
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AL, RE,

SW, SS

SW, DG DG, ESS PL Others

Figure 5. Possible approaches regarding decision variables.

In many works, the decision variable AL is considered in the optimization models,
such as in [27,85,86], among others. In addition to handling the decision variable AL, some
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optimization models include the decision variable RE; see, for example, [27,85,86]. Note also
that including reconductoring as a decision variable makes the optimization model more
attractive from the point of view of reliability, as installing conductors with a lower failure
rate increases the reliability of the distribution network. For instance, replacing existing
conductors for insulated conductors and replacing overhead lines with underground lines
are options with usually lower failure rates. It should be noted that the load growth may
also require reconductoring. Finally, some authors also propose models that use the RE
decision variable, without incorporating the AL variable [91,94].

In general, most optimization models that include the decision variables AL or RE also
include a decision variable concerning substation construction, or increasing the capacity
of existing substations (SS), as is the case in [27,85,86] and many others. This joint use of
decision variables comes from the fact that each solution of the expansion planning assumes
a load increase which, in turn, may require a corresponding increase in the capacity of
substations. Note that reconductoring, as well as building sections of feeders, can improve
the conditions for switching between feeders during failure contingencies. In this case, it is
necessary to analyze additional loads when defining the capacity of substations, allowing
the load transfer between different feeders.

The decision variable SW has different approaches in the optimization models we
analyzed so far. Further, this variable in general refers to:

• Allocation of NC switches [53,61,111];
• Allocation of switches or tie-lines [27,68,95];
• Allocation of NC switches and tie-switches or tie-lines [62,66,72];
• Replacement of protection devices [91];
• Allocation of NC switches and fault indicator devices [67];
• Allocation of NC switches, fuses and reclosers [55,56,73];
• Allocation of single-phase or three-phase fuses and reclosers [89];
• Allocation of NC switches and CB [59];
• Allocation of reclosers and CB [70];
• Allocation of reclosers [93];
• Allocation of sectionalizing switches, fuses and CB [65].

Our literature review indicates that the use of DG in PDS, as long as island operation
of DG is possible after the occurrence of failures, can help improve the system reliabil-
ity. For this reason, some optimization models consider decision variables related to the
placement and sizing of DG integrated with protection and/or switching devices such as
(i) fuses and reclosers [89], (ii) reclosers [93], and (iii) replacement of protection devices [91].
The installation of protection and/or sectionalizing switches enables DG to operate in situ-
ations of contingencies, in which the faulty part of the network is isolated and DG supplies
energy. However, to reconfigure the network to operate in island mode, it must define
the number and location of the switching devices to be installed at strategic points across
the network .

Some works that address expansion planning with the allocation of protection devices
and/or sectionalizing switches (decision variables related to SW) consider the presence of
existing DG with the possibility of islanded operation. The allocation of (i) circuit breakers
and reclosers [70]; (ii) fuses, reclosers and sectionalizing switches [71,73]; and (iii) NC and
NO automatic switches [72] are considered. However, in [69], the allocation of sectionalizing
switches and reclosers with existing DG is studied, but without considering the possibility
of islanded operation with DG. This work also discusses the lack of regulation in certain
countries and the practical difficulties to reconfigure the network to enable the island
operation of DG. Yet other approaches consider the expansion planning with the installation
of DG integrated with (i) installation of capacitors, network branches, and transformers [94];
(ii) installation of and increase in the capacity of feeders and substations [2,26,96]; and
(iii) installation of and increase in the capacity of feeders and substations, and installation
of reserve feeders [95].
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Some other works discuss the allocation of ESS and DG of the types: (i) renewable with
photovoltaic sources [101]; (ii) dispatchable [102]; (iii) dispatchable DG with substations,
feeders and reserve feeders [98]; and (iv) renewable with photovoltaic and wind sources,
reconnection of branches and the allocation of switches and capacitors [103]. In the multi-
stage planning approach proposed by [98], in addition to the decision variable related to the
location and capacity of DG and ESS, the stages of installation of expansion alternatives are
considered. ESS help during the islanded operation of DG with renewable sources, given
their intermittent nature [97]. Other works, however, propose the allocation of ESS only in
distribution systems with existing DG of the types: (i) dispatchable and intermittent with
existing wind energy [99]; (ii) intermittent with solar and wind sources [97]; and (iii) dis-
patchable and intermittent with a solar source [105]. The integration of ESS in the electricity
grid favors a higher penetration of renewable DG [99]. Additionally, some authors also
address systems without the presence of DG, the allocation of only ESS [100,104] and the
allocation of ESS with sectionalizing switches [106].

Parking lots with CS for electric vehicles connected to the distribution network can
also contribute to improving reliability when V2G is considered. The consideration of
the impact of V2G becomes an alternative to the PDS expansion and operation planning,
although complexities are introduced in the modeling of DER, given the uncertainties
related to EV load and location [109]. Some works propose the allocation of just PL [109,112].
On the other hand, the allocation of PL can also be integrated with (i) the installation or
reinforcement of feeders and substations and allocation of fault location devices [108],
(ii) AL and substation construction or increasing the capacity of existing substations [110],
and (iii) the installation of automatic switching devices [111].

5.2. Reliability Indices

The reliability indices commonly used by power distribution utilities and used in
optimization models are ENS, SAIFI, SAIDI, CIF, and CID. In the works we analyzed here,
the assessment of the reliability included other indices too, which appear as others in Table 1
and represent the following indices: MAIFIe [89], ASAI [84], CNS [61], AENS [67,100],
MAIFI [106], CLLI (Contingency-Load-Loss Index) [82] and DGUI (Distributed Generation
Unavailability Index) [69]. Several works also included reliability indices related to interrup-
tion costs (RIC). The ECOST and CIC indices, as well as ENS costs, are some of the indices
associated with reliability costs, which are usually incorporated in the objective function
of optimization models along with the costs of installation, operation, and maintenance
of devices.

Figure 6 presents a summary of the reliability indices used in the works mentioned
in Table 1; the percentage of each index refers to the total number of works appearing in
Table 1.
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Figure 6. Percentage distribution of the reliability indices of the works mentioned in Table 1.

According to Figure 6, most of the works that we analyzed use reliability indices that
refer to the whole distribution system, given that 66.6%, 65.1%, and 36.5% of the works
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mentioned in Table 1 use, respectively, RIC, ENS, and SAIDI. In contrast, only about 6.35%
of the works mentioned in Table 1 uses indices that evaluate the nodes with load, given that
effectively only 6.35% of the works uses the indices CIF and CID. Furthermore, Figure 6
shows that a small percentage of the works mentioned in Table 1 uses indices named
as others.

5.3. Computational Complexity

Our literature search reveals that, up to now, authors usually did not address the
computational complexity analysis of optimization algorithms used to solve PDS expansion
planning problems. In general, optimization methods aimed to select investment plans
used some type of combinatorial approach [56], in which the most appropriate options is
selected to minimize a given objective function respecting some constraints. The number
of options depends on the specific problem and the number of alternatives allowed as
solutions for each choice. Additionally, the number of alternatives related to each choice can
range from a decision to install or not a device, often represented by a binary variable, to the
selection of the best device among several possible, represented by an integer variable or by
binary, mutually exclusive variables [114]. Note that the number of options is not directly
related to the size of the electrical system under analysis, but the type of decision variables
represented in the optimization model. In contrast, the number of choices to be made is
generally associated with the size of the electrical system, since the number of devices
to be defined depends directly on the size of the network (larger systems require more
devices to be selected than smaller systems). Thus, the solution space of these optimization
models depends (i) on the number of choices (generally associated with the dimension of
the system) and (ii) on the number of alternatives associated with each choice; both define
the number and type of decision variables in the model.

In addition, some optimization models consider several stages to represent the evo-
lution of the system along the planning horizon. In these cases, besides the location and
type of investment, it becomes necessary to define the time at which each investment is
made [84]. Hence, the number of variables is multiplied by the number of stages, thus
increasing the dimension of multistage models. Although using a larger number of stages
increases the number of variables (and so the dimension of the problem), the number of
constraints also increases proportionally, which makes the problem more restricted, since
all constraints must be respected in all stages.

Furthermore, the number of variables can increase due to (i) the need to represent
changes in the network to operate under contingency, especially when the model includes
active components such as DG and the possibility of reconfiguration of PDS [96] and
(ii) consideration of the stochastic nature of the problem concerning load behavior and
DG [95]. To assess the network considering reliability criteria, it is necessary to determine
reconfiguration plans to minimize the impact of possible contingencies. Such contingencies
can be defined by an enumeration process [85] or through Monte Carlo Simulations [42].
On the other hand, the stochastic nature of the problem can be considered through typical
loads and generation scenarios, along with their probabilities of occurrence [95], which
can also be obtained by Monte Carlo Simulations. Nevertheless, whichever approach is
selected to address the aspects commented, a significant increase in the computational
effort is expected.

A superficial analysis of optimization models may indicate that the difficulties to solve
them are mainly due to the dimension of the search space (number and type of decision
variables). In fact, to understand such difficulties two additional aspects must be considered:
(i) the method used to solve the model (exact or approximate) and (ii) the number of choices
effectively needed to solve the problem. When exact methods are used, the constraints of
the optimization model are always considered so that the search is restricted to the feasible
region of the problem [85]. In addition, investment constraints are often included thus
limiting the possible extensions to the system and significantly reducing the size of the
feasible region of the problem. On the other hand, when approximate methods are used,
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the form chosen to represent the solutions and constraints directly impacts the efficiency
of the algorithm. For instance, handling constraints through penalties tends to be very
inefficient; therefore, embedding at least part of the constraints into the representation of
solutions makes the problem easier to solve.

To illustrate the difficulties related to the models solved in the papers thus far reviewed,
the last column of Table 1 contains the largest system used by each cited paper. Although the
information in this column is directly associated with the size of the distribution network
successfully solved, attention should be given to the fact that not only the models but also
the solution methods applied by each author can be significantly different.

6. Future Research Trends

The recent technical and scientific literature discussed throughout this paper made it
clear that the PDS expansion planning problem still has several aspects and characteristics
that deserve attention in future research work. For instance, it seems clear that only a
few optimization models address the problem of allocation of tie-lines, protection devices,
and/or switching devices simultaneously with the problem of routing the feeders of
distribution systems. In the works reviewed here, the models presented in [27,95,98] can
simultaneously handle the aforementioned problems to determine the best expansion plan.

Although the optimization models proposed in [27,95,98] can jointly handle the prob-
lem of allocation of tie-lines and protection and/or switching devices and the problem of
routing feeders of the distribution system, only the model introduced in [27] evaluates the
reliability of the distribution system through SAIFI, SAIDI, CIF, and CID indices. Therefore,
the introduction of usual reliability indices into optimization models can be seen as an
interesting option to extend optimization models used for planning the expansion of PDS.

The application of indices related to temporary interruptions seems to be of little
interest to researchers up to now, given that we found only a few works using this type
of indices [89,106]. Pregelj et al. [89] proposed the optimal allocation of fuses, reclosers,
and DG using the MAIFIe index, in addition to the indices related to sustained interruptions
SAIFI and SAIDI. On the other hand, Ref. [106] proposed the optimal allocation of switches
and ESS considering the MAIFI index. Further, both MAIFI and MAIFIe have been the
focus of recent works, due to the increasing number of loads sensitive to temporary failures,
such as those found at homes, businesses, and industries, and also due to the relevance
of avoiding temporary interruptions to keep consumers satisfied [89,106]. Therefore, it be-
comes essential to include indices associated with temporary interruptions in optimization
models for planning the PDS expansion as a means to mitigate the impacts of failures on
the quality of electricity supplied to consumers.

Recently, optimization models solved by exact methods have been proposed to obtain
the best expansion plan considering the reliability of distribution systems [27,86,87]. In this
context, even today, the inclusion into the optimization models of (i) temporary failures,
(ii) tie-lines, (iii) the connection of ESS, and (iv) DG represent challenges for researchers,
especially regarding the computational effort to solve the optimization models. Further-
more, to our knowledge, no optimization model solved by exact methods can handle the
conflicting characteristics of investment costs and the reliability of distribution systems
through a multiobjective approach.

7. Conclusions

This paper presents a bibliographic survey of the state of the art regarding models and
methods applied to the solution of the PDS expansion planning problem considering relia-
bility. Firstly, we presented a survey of the main methods to estimate the reliability indices
of distribution systems. Then, a survey of the main optimization models that address the
problem was presented. Finally, we compared the most usual optimization models and
discussed some trends and aspects that we believe can guide future research work.

As discussed throughout this paper, several strategies can be used to increase the
reliability of distribution systems, such as proper feeder routing, reconductoring, switch
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allocation, fuse allocation, recloser allocation, and DG connection. Each of the mentioned
strategies can result in favorable changes in the operating conditions that in turn can
increase the reliability of distribution systems. However, as more reliability-enhancing
strategies are envisioned, the complexity of the optimization model inevitably increases.
On the other hand, more computational resources are required to solve complex optimiza-
tion problems.

The importance of considering reliability in expansion planning models becomes
evident when the results shown in the reviewed papers are analyzed. These results indicate
that system reliability can be significantly improved when DER are included in the models.
Furthermore, including switching devices capable of locating faults can substantially
improve reliability indices. On the other hand, the lack of data regarding the failure rates
of the network and associated devices is still a big challenge.

The comparison presented in this paper indicates that exact methods to solve op-
timization problems power systems have only recently been receiving more attention.
However, the use of approximate methods to solve such problems still predominates. Fur-
ther, the advances in computational resources and availability of commercial solvers based
on classical optimization techniques, now more efficient and with solving techniques based
on modern branch-and-bound algorithms, made the development of mathematical models
for optimization problems a relevant research subject.

Finally, several models can be simplified considering only some of the strategies
leading to reliability improvements. In fact, the mathematical modeling concerning the
operating conditions, including all reliability-enhancing strategies, remains a challenge to
researchers interested in finding the best expansion plan at a minimum cost and simultane-
ously considering reliability.
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Abbreviations
The following abbreviations are used in this paper:

ACO Ant Colony Optimization
AENS Average Energy Not Supplied
AL Addition of Lines
ASAI Average Service Availability Index
BB Branch and Bound
BC Branch and Cut
CAIDI Customer Average Interruption Duration Index
CB Circuit Breakers
CDF Customer Damage Function
CIC Customer Interruption Cost
CID Customer Interruption Duration
CIF Customer Interruption Frequency
CNS Customers Not Supplied
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CS Charging Stations
DER Distributed Energy Resources
DP Dynamic Programming
DPSO Discrete Particle Swarm Optimization
DG Distributed Generation
EA Evolutionary Algorithm
EV Electric Vehicles
ECOST Expected Interruption Cost Index
ENS Energy Not Supplied
ESS Energy Storage Systems
FIM Fault Incidence Matrix
GA Genetic Algorithm
GAL Greedy Algorithm
IEEE Institute of Electrical and Electronics Engineers
M Multistage
MA Memetic Algorithm
MAIFI Momentary Average Interruption Frequency Index
MAIFIe Momentary Average Interruption Event Frequency Index
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
MO Multiobjective
NC Normally Closed
NO Normally Open
NSGA Non-dominated Sorting Genetic Algorithm
PDS Power Distribution Systems
PL Parking Lots
PSO Particle Swarm Optimization
RE Reconductoring
RBTS Roy Billinton Test System
RIC Reliability indices associated with interruption cost
S Single stage
SA Simulated Annealing
SAIDI System Average Interruption Duration Index
SAIFI System Average Interruption Frequency Index
SS Substation
SG Smart Grid
SO Single Objective
SW Switching and protection devices
TS Tabu Search
V2G Vehicle to Grid
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36. Escalera, A.; Hayes, B.; Prodanović, M. A survey of reliability assessment techniques for modern distribution networks. Renew.

Sustain. Energy Rev. 2018, 91, 344–357. [CrossRef]
37. López-Prado, J.; Vélez, J.; Garcia-Llinás, G. Reliability evaluation in distribution networks with microgrids: Review and

classification of the literature. Energies 2020, 13, 6189. [CrossRef]
38. Heidari, S.; Fotuhi-Firuzabad, M. Reliability evaluation in power distribution system planning studies. In Proceedings of the

2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, China, 16–20 October 2016.
[CrossRef]

39. Heidari, S.; Fotuhi-Firuzabad, M.; Kazemi, S. Power Distribution Network Expansion Planning Considering Distribution
Automation. IEEE Trans. Power Syst. 2015, 30, 1261–1269. [CrossRef]

http://dx.doi.org/10.1016/j.rser.2012.05.020
http://dx.doi.org/10.1109/TPWRS.2012.2237043
http://dx.doi.org/10.1016/j.rser.2015.12.099
http://dx.doi.org/10.1016/j.rser.2015.07.004
http://dx.doi.org/10.1016/j.rser.2016.08.027
http://dx.doi.org/10.3390/en10111715
http://dx.doi.org/10.3390/en10020208
http://dx.doi.org/10.1049/iet-gtd.2015.0447
http://dx.doi.org/10.1016/j.rser.2017.05.171
http://dx.doi.org/10.1016/j.rser.2018.03.068
http://dx.doi.org/10.1016/j.est.2018.12.015
http://dx.doi.org/10.1016/j.est.2020.101814
http://dx.doi.org/10.1049/stg2.12017
http://dx.doi.org/10.3390/en13236269
http://dx.doi.org/10.1109/ACCESS.2020.2973455
http://dx.doi.org/10.1109/TPWRS.2012.2201263
http://dx.doi.org/10.1016/j.epsr.2016.04.015
http://dx.doi.org/10.1109/61.974213
http://dx.doi.org/10.1109/TPWRS.2015.2503604
http://dx.doi.org/10.1109/TPWRS.2020.3015061
http://doi.org/10.1109/IEEESTD.2012.6209381
http://dx.doi.org/10.1109/5.29332
http://dx.doi.org/10.1016/j.rser.2018.02.031
http://dx.doi.org/10.3390/en13236189
http://dx.doi.org/10.1109/PMAPS.2016.7764220
http://dx.doi.org/10.1109/TPWRS.2014.2339301


Energies 2022, 15, 2275 27 of 29

40. Jooshaki, M.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Farzin, H.; Moeini-Aghtaie, M.; Lehtonen, M. A milp model for incorporating
reliability indices in distribution system expansion planning. IEEE Trans. Power Syst. 2019, 34, 2453–2456. [CrossRef]

41. Wang, H.; Zhang, X.; Li, Q.; Wang, G.; Jiang, H.; Peng, J. Recursive method for distribution system reliability evaluation. Energies
2018, 11, 2681. [CrossRef]
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