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Abstract: Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive
plant diseases. While chemical control has an environmental impact, biological control strategies
can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with
biocontrol capacity in environmental water and plants were isolated from river water in Europe but
not fully analysed, their genomic characterization being fundamental to understand their biology.
In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The
morphology was also observed by electron microscopy. Phylogenetic analyses were performed with
a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species
R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and
vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2
and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional
homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase,
this type of depolymerase being identified in R. solanacearum phages for the first time. These three
European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae
family (formerly Podoviridae). These genomic data will contribute to a better understanding of the
abilities of these phages to damage host cells and, consequently, to an improvement in the biological
control of R. solanacearum.

Keywords: bacterial wilt; biological control; phage; microscopy; sequencing; molecular characteriza-
tion; genomic characterization; depolymerase

1. Introduction

Ralstonia solanacearum is a primary plant pathogen responsible for bacterial wilt, one
of the most destructive and widespread plant diseases [1,2]. This soil and water-borne
Gram-negative bacterium affects economically important solanaceous crops as well as
many ornamental plants, thus being a major threat to agriculture worldwide [1,3–6]. Since
the first detection in Europe in 1972 [7], bacterial wilt outbreaks have been reported in
Northern, Western and Mediterranean European countries, this pathogen being included in
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the Priority Pest List of Pests of Economic and Environmental Importance in the European
Union (EU) [6].

The bacterium has long been part of the “R. solanacearum species complex” (RSSC)
composed of strains with high variability. In 2005, RSSC strains were classified in four
phylotypes (I–IV), correlated with different geographic origins [8], although these phylo-
types are likely to be disseminated worldwide through infected plant material [9]. After
outbreaks in the EU, RSSC strains isolated from potato, tomato, soil, waterways and weeds
were classified as phylotype II [3,9–15]. In 2014, the RSSC experienced a major taxonomic
revision [16] with only phylotype II strains being classified as the current R. solanacearum
species, present in the EU [6,17] and many countries of America [17], the continent where
the pathogen was first described [18].

Currently, there are no effective R. solanacearum control methods [19]. In the search for
new treatments, while agrochemicals have an impact in the ecological balance and human
health, most biocontrol strategies are environmentally friendly and easy to integrate in
a sustainable agricultural system. Among them, those based on bacteriophages (phages)
have great potential [20,21]. Phage-based biocontrol of plant diseases has been focused on
the action of lytic phages because of their numerous advantages [20,22,23]. Phages active
against bacterial species close to R. solanacearum such as R. pseudosolanacearum and/or
R. syzygii subsp. indonesiensis have been reported [4] but, until very recently, no phage
was described to have successful biocontrol potential against R. solanacearum in planta
and in environmental water. An innovative biocontrol methodology for bacterial wilt
prevention and/or control based on the activity of new three lytic phages specific against
the present R. solanacearum species, named vRsoP-WF2, vRsoP-WM2, and vRsoP-WR2, was
reported [5] and patented [24–26]. These R. solanacearum phages are effective in reducing
both high populations of the pathogen in environmental water and bacterial wilt incidence
in planta [5,24–26]. They were initially characterized [5,24–26] but a deeper genetic analysis
of their genomes was needed to understand the biology of these waterborne phages and
increase the knowledge on their biocontrol activity.

In this study, the morphological and genomic characteristics and taxonomic classifi-
cation of the first European phages with biocontrol efficiency against the present species
R. solanacearum are described. The results have revealed that they are closely related and
members of the same novel species within the genus Gyeongsanvirus and the Autographiviri-
dae family. Their genomic analysis further confirmed their lytic lifestyle and identified two
lysins and a new type of exopolysaccharide (EPS) depolymerase in R. solanacearum phages,
proteins that are essential components to damage their host cells. This new information
has confirmed their suitability as safe biological control agents and has shed light on their
biocontrol abilities on R. solanacearum.

2. Materials and Methods
2.1. Bacterium, Phages, and Growth Conditions

The strain CFBP 4944 (or DSMZ 100387) of R. solanacearum isolated from potatoes
with brown rot symptoms in Spain [5,11] was the bacterial host in all phage assays. It was
routinely cultured on the general media casamino acids peptone glucose (CPG) [27] or
Luria Bertani (LB) [28] with 1.5% bacteriological agar (CPGA or LBA), for 48 h at 28 ◦C. LB
broth (LBB) was used for overnight cultures of the bacterial strain at 28 ◦C with aeration by
shaking at 120 rpm.

Phages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 were isolated from different rivers
geographically far distant in Spain in 2001, 2003 and 2004, respectively, and showed lytic
activity and biocontrol efficacy against R. solanacearum [5,24–26], were further characterized
in this work. They were propagated on R. solanacearum cultures similarly to Álvarez et al. [5]
with minor modifications. Briefly, the host strain was grown in LBB overnight at 28 ◦C and
120 rpm. Thereafter, bacterial cell concentration was adjusted to an OD600 nm = 0.5, equiv-
alent to about 108 colony forming units (CFU)/mL using a spectrophotometer (Thermo
Scientific Genesys 20, Waltham, MA, USA). Afterwards, 0.1 mL of 0.22-µm-filtered lysates
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were added to 5 mL of adjusted bacterial suspensions and the mixture was incubated
overnight at 28 ◦C and 120 rpm. Phage titers were determined by performing serial 10-
fold dilutions of each phage lysate (0.22 µm-filtered lysates) in SM buffer [29] and the
double-layer agar method. Thus, 0.2 mL aliquots of the bacterial culture (adjusted to an
OD600 nm = 0.5) were mixed with 0.1 mL of each phage dilution and 5 mL of soft agar (0.6%)
medium, poured onto CPGA plates, and incubated at 28 ◦C for 48 h. After incubation, the
plaque forming units were observed. Phage suspensions were maintained for short periods
at 4 ◦C.

2.2. Phage Lytic and Depolymerase Activities

Lytic and depolymerase activities of the three phages were determined by the double-
layer agar plate method used for phage titration as mentioned above, and onto culture
media previously inoculated with R. solanacearum according to a standard surface plating
method [5]. After determining the PFU/mL by counting clear plaques (lytic zones), plates
were incubated and observed during several days to detect the depolymerase activity as the
appearance of a turbid halo surrounding the initial lytic zone. This activity was determined
using CPGA, LBA, Yeast Extract Peptone Glucose Agar (YPGA) [30] and King’s medium B
(KB) [31] plus 1.5% agar (KBA) culture media for 48–72 h at 28 ◦C and up to 7 days at 4 ◦C.

2.3. Phage Morphology

Phage virions were prepared from 0.22 µm-filtered lysates obtained as described
above. Thereafter, 5µL of these lysates were separately absorbed on fresh formvar and
carbon covered grids for 1 min. Excess of samples was removed and the grids were
stained with 1% of phosphotungstic acid (PTA) (pH 7.0) for 1 min and air-dried. Electron
microscopic visualizations of the phage virions were performed using the JEM-1010 (JEOL)
transmission electron microscope (TEM) operated at 80 kV and with 8 Mpx AMT digital
camera from the Central Service for Experimental Research (SCSIE) at Universitat de
València. Virion dimensions were determined on micrographs with TEM software, with at
least 15 different virions.

2.4. Phage DNA Isolation and Genome Sequencing

DNA was isolated from the virions of the three phages similarly to Álvarez et al. [5],
but using a commercial kit. Briefly, bacterial nucleic acids were degraded by treating
filtered phage lysates and precipitated samples with DNase and RNase for 1 h at 37 ◦C,
which were later heat inactivated. Thereafter, phage DNA was isolated by using the kit
for the isolation of low-copy plasmids of NucleoSpin®® Plasmid (Macherey-Nagel, Düren,
Germany). DNA concentration and quality were determined spectrophotometrically at
260 nm and 280 nm with a Nanodrop (ND-2000, Thermo Fisher, Wilmington, DE, USA).

DNA libraries were constructed with Nextera XT Library Preparation Kit (Illumina,
San Diego, CA, USA) for the three phage genomes and the sequencing process was carried
out using the Illumina MiSeq platform with 2 × 250 bp paired end sequencing (Illumina,
USA). The resulting reads were filtered and trimmed with Trimmomatic v0.36 [32].

2.5. Phage Genome Bioinformatic Analysis
2.5.1. De Novo Assembly

De novo assembly of the filtered sequences was performed using Unicycler v0.4.9b [33].
Briefly, this bioinformatics pipeline used SPAdes v3.14.1 [34] for read assembly, and Pilon
v1.23 [35] for correction of small errors in the assembly, if detected. Phage termini were
confirmed by Sanger sequencing and supported by phylogenetic inference of large DNA
terminase protein sequences. Prediction of lytic or lysogenic lifecycle was performed with
the tool PhageAI v0.11 (www.phage.ai accessed on 24 October 2021).

www.phage.ai
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2.5.2. Genome Annotation

The prediction of the open reading frames (ORFs) was carried out with RASTtk [36],
using Glimmer3 [37] and Prodigal [38] for gene annotation. The predicted ORFs were
reviewed and refined through database searches using the BLASTp [39] and HHpred [40]
online tools. Virfam was additionally used for the detection of the proteins of the head-
neck-tail modules [41]. The functional annotation results generated by RASTtk were
complemented with previous BLASTp and HHpred searches. In addition, a search for
conserved domains and important sites in proteins was performed with InterProScan [42],
and a prediction of transmembrane helices (TMH) was carried out with the software
TMHMM V.2.0 [43]. The absence of virulence factors and antibiotic resistance genes was
determined by performing a PathoFact analysis [44] and a Blast against the VFDB (virulence
factor database) [45], respectively.

2.5.3. Phylogenetic Analysis

Phylogenetic analysis was performed with the whole genomes of the three river
water European phages and a selection of their 26 closest viruses belonging to the Au-
tographiviridae family (formerly Podoviridae) able to infect either R. solanacearum (three
African phages [46,47], one American [48] and one Asian (accession number: MF979559) or
the closely related species R. pseudosolanacearum (21 phages from diseased plants, soil or
irrigation water isolated from Africa (14) [49] and Asia (7) [50–52]).

A genome-based phylogeny was generated using VICTOR [53], intergenomic dis-
tances were calculated with the Genome BLAST Distance Phylogeny (GBDP) d0 formula
for nucleotidic sequences. Intergenomic distances/similarities were also calculated with
VIRIDIC [54], which implements the algorithm used by the International Committee on
Taxonomy of Viruses (ICTV). Both VICTOR and VIRIDIC are able to group the analysed
sequences within genus and species according to the calculated distances. A proteomic tree
was constructed from the viral genomes with the ViPTree web server [55] based on nor-
malised tBLASTx scores. The packaging strategy of the R. solanacearum European phages
was predicted according to Casjens and Gilcrease [56]. Briefly, the terminase large subunit
genes from the three European phages of R. solanacearum, their four closest phages and
50 reference phages [57] (Table S2) were aligned at the amino acid level using ClustalW in
accurate mode (www.genome.jp/tools-bin/clustalw accessed on 25 October 2021). PhyML
with Smart model Selection [58,59] was used with the Akaike information criterion (AIC)
together with the fast likelihood-based method aLRT SH-like to generate a ML tree. The
tree was generated using the iTol online tool [60].

3. Results
3.1. Phage Plaque Morphology, Lytic and Depolymerase Activities

The plaque morphology of each phage after incubation with R. solanacearum strain
CFBP 4944 at 28 ◦C 24–48 h was a transparent halo due to lytic activity, which was observed
on LBA, CPGA, YPGA and KBA plates, inoculated both by the double-layer agar plate
method and by the standard surface plating method. However, prolonged incubation
for 2–3 days allowed the observation of translucent halos surrounding the plaques of the
phages on the different culture media assayed. These halos that expand over time suggest
the production of enzymes able to degrade the EPS of the host bacteria and therefore
depolymerase activity (Figure 1). The detection of the depolymerase activity was possible
in all conditions assayed but, it was better observed on YPGA, followed by CPGA and
using the double layer method. Besides, R. solanacearum produced a brownish pigment
on KBA and LBA media, turning the culture medium into a brownish dark colour, which
made the depolymerase activity detection more difficult than on YPGA and CPGA, both of
them containing glucose (Figure 1).

www.genome.jp/tools-bin/clustalw
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Figure 1. Morphology of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 plaques. The phages produced 
clear plaques surrounded by translucent halos after prolonged incubation with strain CFBP 4944 of 
R. solanacearum in CPGA, YPGA, LBA and KBA culture media. Clear plaques due to lytic activity 
were observed after 24 h at 28 °C and the translucent halos around the lytic plaques were increasing 
in size within time after 2–3 days at 28 °C, and 7 days at 4 °C in double layer (DL) and surface 
inoculation (SI) methods. 

3.2. Phage Virion Morphology 
Virion visualization by transmission electron microscopy indicated that phages 

vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 may belong to the Autographiviridae family 
(formerly Podoviridae), since they showed icosahedral heads of about 50 nm in diameter 
and short non-contractile tails from about 19–26 nm in length (Figure 2). For the vRsoP-
WF2, heads showed an average size of 49.75 ± 2.45 nm and tail size was estimated at about 
25.57 ± 4.3 nm. In the case of vRsoP-WM2, heads were of 48.87 ± 4.87 nm and tails around 
19.68 ± 5.47 nm. vRsoP-WR2 showed an average head size of 50.22 ± 2.91 nm and tail size 
was estimated around 19.36 ± 5.28 nm. 

 
Figure 2. Virion morphology of vRsoP-WF2 (left), vRsoP-WM2 (center), and vRsoP-WR2 (right). 
Transmission electron micrographs of negatively stained R. solanacearum virions magnified at 
×30,000 (vRsoP-WF2), and ×20,000 (vRsoP-WM2 and vRsoP-WR2). Scale bars represent 100 nm in 
vRsoP-WF2, and 200 nm in vRsoP-WM2 and vRsoP-WR2 micrographs, respectively. 

  

Figure 1. Morphology of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 plaques. The phages produced
clear plaques surrounded by translucent halos after prolonged incubation with strain CFBP 4944 of R.
solanacearum in CPGA, YPGA, LBA and KBA culture media. Clear plaques due to lytic activity were
observed after 24 h at 28 ◦C and the translucent halos around the lytic plaques were increasing in size
within time after 2–3 days at 28 ◦C, and 7 days at 4 ◦C in double layer (DL) and surface inoculation
(SI) methods.

3.2. Phage Virion Morphology

Virion visualization by transmission electron microscopy indicated that phages vRsoP-
WF2, vRsoP-WM2 and vRsoP-WR2 may belong to the Autographiviridae family (formerly
Podoviridae), since they showed icosahedral heads of about 50 nm in diameter and short
non-contractile tails from about 19–26 nm in length (Figure 2). For the vRsoP-WF2,
heads showed an average size of 49.75 ± 2.45 nm and tail size was estimated at about
25.57 ± 4.3 nm. In the case of vRsoP-WM2, heads were of 48.87 ± 4.87 nm and tails around
19.68 ± 5.47 nm. vRsoP-WR2 showed an average head size of 50.22 ± 2.91 nm and tail size
was estimated around 19.36 ± 5.28 nm.
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Figure 2. Virion morphology of vRsoP-WF2 (left), vRsoP-WM2 (center), and vRsoP-WR2 (right).
Transmission electron micrographs of negatively stained R. solanacearum virions magnified at ×30,000
(vRsoP-WF2), and ×20,000 (vRsoP-WM2 and vRsoP-WR2). Scale bars represent 100 nm in vRsoP-
WF2, and 200 nm in vRsoP-WM2 and vRsoP-WR2 micrographs, respectively.

3.3. Phage Genomic Analysis

The assembly of the phage sequences resulted in three complete double-stranded
DNA genomes with sizes of 40,690 bp for vRsoP-WF2, 40,688 bp for vRsoP-WM2 and
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41,158 bp for vRsoP-WR2 (Table 1). The different genome size between the last phage and
the other two was due to a large insertion of 468 bp in vRsoP-WR2. The GC-contents in
the three phages ranged from 59.04% to 59.10% (Table 1). PhageAI classified vRsoP-WF2,
vRsoP-WM2 and vRsoP-WR2 as virulent or lytic phages, with percentages of 85.98, 84.15
and 86.12, respectively. Protein annotation with RASTtk and its subsequent refinement
resulted in the detection of 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2
(Table 1).

Table 1. Characteristics of the genomes of the three European R. solanacearum phages.

Phage Length GC-Contents Annotated
Proteins

GenBank Accession
Number

vRsoP-WF2 40,690 bp 59.07% 52 MN685189
vRsoP-WM2 40,688 bp 59.10% 52 MN685190
vRsoP-WR2 41,158 bp 59.04% 53 MN685191

The additional protein in vRsoP-WR2 was found in the large insertion, as shown in
Figure 3. The accession number of the genome sequences of the three phages deposited
in the GenBank database and a summary of their characteristics are shown in Table 1.
Using RASTtk and InterProScan tools, only 22 or 23 out of 52 or 53 ORFs were identified
to share similarities with previously reported genes in the database, showing homology
to functionally characterized genes. These ORFs and their putative functions are shown
in Table 2, and the ORF positions and their protein translations in Table S1. No ORFs
associated with virulence or antibiotic resistance were identified by using PhatoFact and
VFDB, respectively. The European R. solanacearum phage genomes were arranged in several
functional modules, characteristics of the Autographiviridae family: A first one for early
transcribed genes encoding for many hypothetical proteins with unknown function, a
second one including genes for DNA metabolism, and a third one with genes encoding
for structural proteins. No lysis cassette was identified as such, although genes for host
lysis were annotated (Figure 3). Direct terminal repeats (DTR) were found at the ends of
the genomes, as described below. The size of these DTRs was 281 bp for vRsoP-WF2 and
vRsoP-WR2, and 280 bp for vRsoP-WM2.
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closest phages RsoP1EGY and DU_RP_I. Open reading frames (ORFs) are shown using arrow symbol,
which indicates the direction of transcription. Genes grouped in different functional categories are
shown in different colours according to the legend below the map. The categories of the phage
proteins of RsoP1EGY and DU_RP_I were extracted from the PHROG database [61]. The genomic
map was generated with the genome comparison visualiser EasyFig 2.2.5 [62].

Table 2. Characteristics of the genomes of the European R. solanacearum phages.

ORF Number
Predicted Function

vRsoP-WF2 vRsoP-WM2 vRsoP-WR2

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14 Phage integrase, tyrosine recombinase

15 15 15 Phage HNH homing endonuclease

16 16 16 Phage DNA-directed RNA polymerase

- - 17 Phage restriction endonuclease

17 17 18

18 18 19 Phage single-stranded DNA-binding
protein

19 19 20 Phage endonuclease I

20 20 21 Phage endolysin

21 21 22

22 22 23 Phage restriction endonuclease

23 23 24 Phage primase/helicase protein

24 24 25

25 25 26

26 26 27 Phage DNA-directed DNA polymerase

27 27 28

28 28 29

29 29 30

30 30 31 Phage exonuclease

31 31 32

32 32 33

33 33 34
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Table 2. Cont.

ORF Number
Predicted Function

vRsoP-WF2 vRsoP-WM2 vRsoP-WR2

34 34 35

35 35 36 Phage collar, head-to-tail connector
protein

36 36 37 Phage capsid assembly protein

37 37 38

38 38 39 Phage capsid and scaffold protein

39 39 40 Phage endonuclease VII

40 40 41 Phage major capsid protein

41 41 42

42 42 43 Phage tail tubular protein

43 43 44 Phage non-contractile tail tubular
protein

44 44 45 Phage protein, probable scaffold protein

45 45 46

46 46 47

47 47 48 Phage DNA ejectosome component,
peptidoglycan lytic exotransglycosylase

48 48 49 Phage tail fiber protein, pectin-lyase fold

49 49 50

50 50 51 Phage terminase small subunit

51 51 52

52 52 53 Phage terminase large subunit

The module for early transcribed genes encoded for many hypothetical proteins with
no known functional or structural domain except for ORF 14, which was predicted to be a
putative integrase/tyr recombinase in the three phages (Figure 3, Table 2). ORF 14 shared
homology to other integrases found in close related lytic R. solanacearum or Ralstonia sp.
phages like RsoP1EGY, PSG-11, PSG-11-1, and unrelated lytic phages such as Bordetella
bronchiseptica phage vB_BbrP_BB8 [63]. However, no lysogeny modules were detected
either in the genomes of the three phages, nor in the genomes of the other lytic phages
mentioned above.

Nine ORFs were predicted to be involved in DNA metabolism in two of the Euro-
pean R. solanacearum phages, with an additional ORF annotated in vRsoP-WR2 (Figure 3,
Table 2). Eight or nine of them were required for DNA replication and modification. Thus
ORF 15 encoded for a putative HNH endonuclease in the three phages, which play impor-
tant roles in the phage life cycle as a key component of phage DNA packaging [64]. An
extra ORF present only in the large insertion of vRsoP-WR2 (ORF 17) was predicted to
encode for a putative extra endonuclease also present in the most closely related Ralsto-
nia phages, RsoP1EGY and DU_RP_I. This insertion at the nucleotide level shows 100%
coverage with these two phages and high identity (99.8% for RsoP1EGY and 98.2% for
DU_RP_I). No proteins or domains were identified in the ORF 17 of the other two phages.
ORF 18 was predicted to be a single-stranded DNA-binding protein in vRsoP-WF2 and
vRsoP-WM2, while this putative protein was encoded by ORF 19 in vRsoP-WR2. ORFs 19
and 22 coded for two additional putative endonucleases and ORF 39 for an endonuclease
VII in vRsoP-WF2 and vRsoP-WM2; these putative proteins were identified in ORFs 20,
23 and 40 in vRsoP-WR2. ORFs 23 and 26 were predicted to be a DNA primase/helicase
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protein (sharing identity with Gp4A of phage T7) and a DNA-directed DNA polymerase,
respectively, in vRsoP-WF2 and vRsoP-WM2; these proteins were identified in ORFs 24
and 27, respectively, in vRsoP-WR2. ORF 30 was annotated as an exonuclease in vRsoP-
WF2 and vRsoP-WM2, while it was predicted by ORF 31 in vRsoP-WR2; this enzyme is
necessary for molecular recombination and production of concatemers in phage T7 [65].
One ORF (ORF 16) was annotated to play a role in the transcriptional regulation in the
three phages, a putative DNA-directed RNA polymerase.

Ten ORFs were annotated to encode for phage structural proteins including capsid
and tail-related putative proteins, as well as phage terminases (Figure 3, Table 2). Phage
capsid-related proteins comprised several ORFs that were annotated as a collar, head-to-tail
connector protein (ORF 35), a capsid assembly protein (ORF 36), a capsid and scaffold
protein (ORF 38), a major capsid protein (ORF 40), and a probable scaffold protein (sharing
identity with Gp13 of phage T7, IPR020335) (ORF 44) in vRsoP-WF2 and vRsoP-WM2;
these putative proteins were encoded by ORFs 36, 37, 39, 41 and 45 in vRsoP-WR2. ORFs
encoding phage tail-related proteins included ORF 42, annotated as a phage tail protein
(tail tubular protein, sharing homology with Gp11 of phage T7), ORF 43 as a phage non-
contractile tail tubular protein, and ORF 48, identified as a tail fiber protein (IPR005604,
sharing identity with tail fiber of phage T7), respectively in vRsoP-WF2 and vRsoP-WM2;
these proteins were encoded by ORFs 43, 44 and 49 in vRsoP-WR2. ORFs 50 and 52 were
annotated as a terminase small subunit (Gp18) and a terminase large subunit (Gp19) in
vRsoP-WF2 and vRsoP-WM2, and were predicted as ORFs 51 and 53 in vRsoP-WR2. These
terminase proteins are associated with DNA packaging in phages.

Three ORFs were annotated to be involved in cell lysis (Figure 3, Table 2). Two
putative lysins were annotated in the three phages. One corresponds to ORF 20 in vRsoP-
WF2 and vRsoP-WM2, and ORF 21 in vRsoP-WR2, encoding for a putative endolysin
with a conserved amidase domain, involved in host lysis at the end of the lytic cycle for
the release of phage progeny. This ORF exhibited high identity only with the nearest
Ralstonia phages RsoP1EGY (100%), DU_RP_I (96.7%) and P-PSG_11 (89%). The other
ORF (ORF 47 in vRsoP-WF2 and vRsoP-WM2, and ORF 48 in vRsoP-WR2) corresponds
to a phage DNA-ejectosome component (Gp16, similar to that of phage T7), essential for
phage morphogenesis and infection [66], a peptidoglycan lytic exotransglycosylase with a
lysozyme-like domain (IPRO23346) found in glycosyl hydrolases and transglycosylases.
No holin, to form pores in the inner membrane, or spanin, to disrupt the outer membrane in
Gram-negative bacteria, were identified in the European phages, nor in the closest Ralstonia
phages. However, by searching for domains of transmembrane helices in proteins by the
TMHMM software, five ORFs (2, 33, 37, 44 and 49 in vRsoP-WF2 and vRsoP-WM2, and 2,
34, 38, 45 and 50 in vRsoP-WR2) were found that contain these transmembrane domains,
whose presence has been described in holins and spanins [67,68].

An exopolysaccharide depolymerase was also identified in the ORFs coding for a
tail fiber protein (ORF 48 in vRsoP-WF2 and vRsoP-WM2, and ORF 49 in vRsoP-WR2)
in the three European viruses. Bioinformatic analysis of these ORFs showed that they
encode for proteins with two conserved domains, a N-terminal T7-like tail fiber domain
(IPR005604) and a central domain with a pectin lyase fold structure (IPR011050) (Figure 4).
These two domains have a structure equivalent to that of the ORF 42 of the phage SH-
KP152226 of Klebsiella pneumoniae [69], which conserved the amino acid (aa) sequence of
the N-terminal domain (residues 2~142) and the central region with a domain (residues
396~613) identified with pectin lyase activity (IPR011050). No conserved domains were
found in the C-terminal region (Figure 4). These ORFs exhibited high identity with the
closest Ralstonia phages RsoP1EGY (99%), DU_RP_I (98%) and P-PSG-11 (97.77%), although
RsoP1EGY and DU_RP_I have 85 fewer residues in the N-terminal region than the three
European phages, while the size matches in the case of phage P-PSG-11.
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3.4. Phage Classification

The nucleotide and protein sequences of the three European water phages were used to
classify the phages. Phylogenetic analysis of the whole genomes of these three water phages
and a selection of their 26 closest Autographiviridae (formerly Podoviridae) viruses infecting
R. solanacearum and/or the closely related species R. pseudosolanacearum using VIRIDIC,
allowed the classification of the 29 analysed phages into 20 species and 11 genera (Figure 5).
The phylogenetic tree based on genomic distances of phages using VICTOR showed two
clusters (Figure 6). In the upper cluster, all the African phages of R. pseudosolanacearum
from plant, soil and water samples from Mauritius and Reunion islands [49] and the
Asian phage RpY1 from Korean soil [52] were grouped. In the lower cluster were most
of the Asian R. pseudosolanacearum phages and the only R. solanacearum American phage
from Brazilian soil; in a subcluster were the three European R. solanacearum water phages
(intergenomic similarity > 99%) together with the Egyptian R. solanacearum soil RsoP1EGY
phage (intergenomic similarity ranging from 99 to 98.5%, depending on the phage), and
more distant phages were located the Asian Ralstonia sp. DU_RP_I phage (intergenomic
similarity about 95%), the African PSG-11 phage (intergenomic similarity >80%), and its
heat adapted PSG-11-1 phage, isolated from water sources in Kenya [46]. Thus, VIRIDIC
and VICTOR grouped vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 into the same new species,
together with the phage RsoP1EGY (MG711516.1), isolated in Egypt more than a decade
after the three European phages, whose activity against R. solanacearum was patented in
2017 because of their novelty and biocontrol efficiency [24]. This novel species shared
the genus with phages DU_RP_I (MF979559.1), P-PSG-11 (MN270889.1) and P-PSG-11-1
(MN270890.1) (Figure 6). The phylogenetic analysis based on the viral proteomic tree
using ViPTree (Figure 7) yielded a similar tree to that obtained using VICTOR, hence
providing additional support to taxonomic results with VICTOR and VIRIDIC. Thus, the
three phages belong to the same novel species that was further classified within the genus
Gyeongsanvirus of the Autographiviridae family (Figures 5–7). In order to determine the
DNA packaging mechanism of the three European R. solanacearum phages, a phylogenetic
tree was generated for the terL gene encoding for the large terminase subunit. The results
revealed that the three phages clustered with each other and with the most closely related
phages, which also supports the results of the phylogenetic analysis with the complete
genomes (Figure 8). In addition, vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 clustered with
T7-like phages, which use a packaging mechanism belonging to short DTR (Figure 8).
Phage termini were sequenced by primer walking, allowing us to identify DTRs.
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Figure 7. Phylogenetic proteomic tree of European water phages vRsoP-WF2, vRsoP-WM2 and
vRsoP-WR2 with a selection of closely related R. solanacearum and R. pseudosolanacearum phages from
other sources and continents using the ViPTree. The geographical origin of the phages is indicated by
the following colours: Africa (orange), Asia (green), Europe (blue) and America (purple).
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Figure 8. Phylogenetic tree of phage terminase large subunit (terL) protein of European water phages
vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 (in bold and italics) with a selection of closely related R.
solanacearum (in italics) and 50 reference phages. The name of each phage or prophage is indicated at
each terminal node while the type of DNA packaging of each group, as in [57], is shown coloured.
The lower part of the figure, in red, shows that the European R. solanacearum phages and their closely
related phages cluster with the T7-like reference phages that use direct terminal repeats (DTR) as a
packaging mechanism.

4. Discussion

The first European specific lytic phages successfully used to control the Gram-negative
bacterium R. solanacearum are vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 [5,24–26]. Thus,
biocontrol based on the activity of these waterborne phages can be considered a new
strategy in bacterial wilt integrated management programs to be applied in host plants
and irrigation water [5,24–26]. However, more knowledge on their genome and biology is
required for a better understanding of their biocontrol abilities.

Virions of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 showed similar morphology
determined by transmission electron microscopy, icosahedral heads of about 50 nm with
short non-contractile tails, thus most likely belonging to the Autographiviridae family. These
results confirmed previous data [5,24–26] and, from a more detailed study performed in this
work, some variability among these phages was revealed, mainly in the tail length, which
ranged from 19 to 26 nm, being longer for vRsoP-WF2. When comparing the three phages
with the closely related R. solanacearum phage RsoP1EGY subsequently isolated from soil
in Egypt, whose capsid diameter is around 60 nm and tail length is about 15 nm [47], the
heads of the European phages were smaller and their tails longer.

The DNA of the three phages was sequenced and the genomic information obtained
was analysed in detail in this study. The average genome size of the European phages
was 40,564 bp, with an average GC% of 59%. This GC contents is lower than that of
R. solanacearum (66–67%) [16], as described for other phages in relation to their bacterial
hosts [70]. It has been suggested that these differences between the host and its intracellular
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pathogen could be due to the competition for metabolic resources [71]. Phage genomes were
very closely related among them (>99%), although with minor insertions and deletions,
except in vRsoP-WR2, which also possesses a large insertion (468–469 bp), absent in the
other two phages. Furthermore, they all share genomic organization except for an extra
ORF (ORF 17) in vRsoP-WR2 in the large insertion, that was predicted to encode for an extra
endonuclease. It is interesting to mention that vRsoP-WR2 seemed to have slightly higher
R. solanacearum biocontrol efficiency in planta when single phages were applied [5,24–26].

These European phages showed high homology and shared similar genomic organi-
zation with some closely related R. solanacearum or Ralstonia sp. phages, RsoP1EGY, DU
RP I, P-PSG-11 and P-PSG-11-1 [46,47]. In fact, vRsoP-WR2 shared with RsoP1EGY a large
insertion of similar size [47]. However, it should be noted that, despite the fact that at
sequence level the African RsoP1EGY phage exhibited greater homology with the European
phages, the genomic organization was more similar to that of the Asian phage DU_RP_I.

The genomes of the European R. solanacearum phages contain 52 or 53 ORFs with only
22 or 23 with hypothetical functions and five transmembrane domains. Thus, most of their
ORFs were hypothetical proteins lacking homology to known sequences. Among anno-
tated ORFs, some shared homology with those predicted in other close Ralstonia phages
mostly involved in conserved functions related with their lytic cycle (DNA replication
and regulation, virion structure and host lysis), while others exhibited low similarity to
known proteins. Genome analysis also revealed that they did not carry ORFs related with
virulence and antibiotic resistance, which is preferred for their use as safe biocontrol agents.

The prediction of DNA and RNA polymerases in the genomes of the three European
phages confirmed their classification within the Autographiviridae family [72] and hence,
their lytic lifestyle. Like other lytic phages, they have evolved strategies to enter and lyse
the host cell by the expression of enzymes which allow them to overcome the different
barriers of the host cell, such as lysins and EPS depolymerases, that have been extensively
studied in other phages for their potential applications in the control of bacterial pathogens,
even in agriculture [73].

Lytic phages can weaken the host cell wall by means of lysins. These enzymes are
expressed towards the end of the phage replication to degrade the host cell wall and allow
the release of the viral progeny. For most tailed phages, clear plaques are considered
an indicator of a phage being lytic. The plaque morphology of each of the three phages
on lawns of R. solanacearum was clear halos due to their lytic activity [5,24] and, in this
study, this activity was observed on four different bacterial culture media and with two
distinct inoculation methods. This lytic activity was also detected based on clearing of
R. solanacearum suspensions. Bioinformatic analysis of the phage genomes allowed the
prediction of two putative lysins: (i) a peptidoglycan recognition protein (ORF 20 in
vRsoP-WF2 and vRsoP-WM2, and ORF 21 in vRsoP-WR2) with a conserved amidase
domain and high identity (89–100%) only with the closest Ralstonia phages, and (ii) a
peptidoglycan lytic exotransglycosylase with a lysozyme-like domain found in glycosidases
and transglycosylases (ORF 47 in vRsoP-WF2 and vRsoP-WM2, and ORF 48 in vRsoP-
WR2). Most of the endolysins reported so far are lytic transglycosylases [74]. Two putative
virion-associated peptidoglycan hydrolases have been recently reported in the American
R. solanacearum phiAP1 phage, being proposed to act as exolysins, which locally pierce
peptidoglycan to eject the phage DNA into the host, in the first steps of the infection [48], as
already reported in other phages of the Autographiviridae family, and like one of the lysins
expressed by these European phages (ORF 47 and 48) but, with a poorly conserved region
when compared with the phiAP1 phage. The two identified lysins in the three European
phages will be further characterized to better determine their contribution to the biological
control of the bacterial wilt disease.

For most phages infecting Gram-negative bacteria, cell lysis involves the expression
of holins/endolysins/spanins for the disruption of the inner membrane, peptidoglycan
and outer membrane, respectively. Neither holins nor spanins were identified as such in
the European phages, nor in the closest Ralstonia phages. However, when searching for
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domains of transmembrane helices in proteins using TMHMM software, 5 ORFs were
found that are predicted to contain these transmembrane domains, and whose presence
has been described in holins and spanins [67,68].

EPS is one of the most important virulence determinants of R. solanacearum [75,76],
causing bacterial wilt by blocking water flow in the host xylem vessels and protecting the
pathogen from plant antimicrobial defenses [77,78]. Most short-tail phages able to infect
bacteria that produce EPS encode for depolymerases that can degrade bacterial EPS to gain
access to the host surface receptors [79,80] and also make the pathogen more susceptible
to plant defenses [81]. Given the key role of EPS in R. solanacearum pathogenesis and the
potential contribution and/or use of phage-depolymerases for biocontrol of bacterial wilt,
this potential activity that can be detected by visualization of phage plaques surrounded
by expanding translucent halos was further investigated [80]. In this study, it was found
that the three European phages produced turbid halos around clear plaques growing over
time, indicative of depolymerase-containing phages [82]. Furthermore, these growing
halos were more easily observed in the two bacterial culture media with glucose (YPGA
and CPGA), where R. solanacearum produces more fluidal colonies because of an increased
EPS production.

Most phage depolymerases are associated with phage structural components, such as
tail fibers [80]. In this study, ORF 48 in vRsoP-WF2 and vRsoP-WM2, and ORF 49 in vRsoP-
WR2 were identified, which encoded for a putative tail fiber with EPS depolymerase activity.
Phage tail fiber proteins contain three domains: the N-terminal, related to the binding of
phage tails, the central domain for host recognition and depolymerase activity, and the
C-terminal domain responsible for protein trimerization and/or host recognition [83]. The
N-terminal and C-terminal domains have been reported to be conserved among phages of
the same group, while the central domain, involved in host-specificity, has been described
as highly variable and can be changed to modulate the phage host range or to adapt to
novel environments [83]. These two conserved domains have been reported to be present
in other phage tail spike proteins involved in EPS degradation [69]. Bioinformatic analysis
of ORFs 48 and 49 coding for tail fiber proteins in the three European phages allowed
the identification of the domain IPR011050, associated with pectin lyase activity, which is
involved in the cleavage of glycoside bonds in capsular polysaccharides and essential for
initiation of phage infection. A short tail fiber was recently annotated in the ORF 43 of the
R. solanacearum phage phiAP1 with a RmLc-like cupin domain, present in sugar isomerases
with EPS depolymerase activity but, no experimental validation was performed [48]. No
significant similarity was found between this ORF and ORFs 48 and 49 of the European
R. solanacearum phages. However, these ORFs have two domains equivalent to those
in the N-terminal and the central regions of the ORF 42 of the K. pneumoniae phage SH-
KP152226 [69]. In the central region (residues 288~628) of ORF 42, a pectin lyase fold,
involved in bacterial EPS degradation, was identified. The protein encoded by ORF 42 of
phage SH-KP152226 was recently cloned, expressed and experimentally confirmed as a
depolymerase [69]. Therefore, in our work, this type of depolymerase in R. solanacearum
phages was identified for the first time. Since they could confer competitive advantages
to these phages by allowing them to penetrate R. solanacearum biofilms and favouring
host cell infection in some niches, they will be further explored to elucidate their role in
biocontrol, as well as their potential therapeutic use. Finally, the potential combined use of
these phages with their lytic and/or depolymerizing enzymes will be further explored to
optimize their biocontrol activity.

As previously described, terL protein sequence can be useful for determining phy-
logenetic relationships between phages, as well as for predicting phage DNA packaging
strategy [56,57,84]. The phylogenetic tree of terL with vRsoP-WF2, vRsoP-WM2 and
vRsoP-WR2 was consistent with the one obtained using the complete genomes. Moreover,
the three European phages clustered with T7-like phages, which use a sequence-specific
packaging mechanism, short DTR [84]. To confirm this prediction, we experimentally
identified and located the termini of the three phages by Sanger sequencing, showing
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that their DNA packaging mechanism is based on DTR. This was due to the fact that the
fragments generated during the preparation of the Nextera libraries used to sequence
the three phages made it difficult to determine the phage ends, which is consistent with
previous publications [85].

The three European R. solanacearum phages showed high similarity among their
genomes and were taxonomically classified within the same species. The latter could
be indicative of their common origin, R. solanacearum contaminated river water samples
in Spain, although from three different regions geographically distant from each other,
and different years of isolation. Their genomes exhibited low similarity to other phages
infecting Ralstonia spp., and mostly those from Asia were the first Ralstonia phages reported
as well as those from Africa, in both cases mainly isolated against R. pseudosolanacearum,
the species more prevalent under field conditions in these two continents [4,49,50], except
for one Asian Ralstonia sp. phage, DU_RP_I and three African phages recently reported,
RsoP1EGY, P-PSG-11 and P-PSG-11-1 [46,47]. Among them, the most closely related to the
three European phages was RsoP1EGY, up until now not fully classified but, in agreement
with the present phylogenetic analysis, belonging to the same and novel species as vRsoP-
WF2, vRsoP-WM2 and vRsoP-WR2. Since the three European R. solanacearum phages were
isolated from water sources in 2001, 2003 and 2004, RsoP1EGY was obtained from soil
in Egypt in 2017, and the closest Asian phage DU_RP_I was described in 2017 (sequence
published in 2017), the question arising is how can it be explained that phages from three
different continents share high similarities. As previously suggested for dsDNA tailed
phages [86], these closely related phages able to infect Ralstonia spp. probably share a
common ancestry.

5. Conclusions

In the present study, the morphological and genomic characterization of the first Euro-
pean phages with biocontrol efficacy against R. solanacearum in host plants and irrigation
water were described. The results have allowed their taxonomic classification as members
of a novel species of the genus Gyeongsanvirus within the Autographiviridae family. The
experimental and bioinformatic analysis of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 have
confirmed their suitability as safe biocontrol agents and provided new information on their
lytic and EPS depolymerase proteins, which better explain their capacity for the biocontrol
of R. solanacearum. The new data also will allow the improvement of the understanding of
the interactions among these phages and their pathogenic host.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13122539/s1, Table S1: ORFs detailed information of the European R. solanacearum phages
vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2. Table S2: Data from the phages or prophages terminase
large subunit proteins used for the DNA packaging method prediction (Figure 8).
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