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ABSTRACT

Data is increasingly added to computer systems every day. Much information the user
inputs in programs or websites, are sensitive for the user, and protection of that data, giv-
ing access just to whom may concern, is a important security topic. Information flow
analysis is a way to track the flow of variables in a system, and find points where infor-
mation might be exposed somehow. Information can flow explicitly or implicitly in a pro-
gram. (WILLENBROCK, 2009) proposes a implicit information flow analyzer, without
regards to exception flow. In this thesis, a static analysis,i. e. , before runtime, is proposed
to find out al points where information can be unvealed because of the ocasion(or not) of
a checked exception in a Java program.

Keywords: Information flow, java byte code, exception flow, static analysis, usage con-
trol.



RESUMO

Detecção do fluxo de informações no contexto de exceções através da engenharia de
byte code Java

Segurança de dados é um tópico muito importante em ciência da computação. Sis-
temas e sites da Internet retém cada dia mais informações pessoais sobre seus usuários.
Muitos dos dados inseridos pelos usuários são confidenciais, e, ao inserí-los em um de-
terminado sistema, eles esperam que estas informações estejam seguras, ou seja, algum
mecanismo de controle de acesso deve ser aplicado nos dados. Para ilustrar a situação,
considere o cenário do sistema de um hospital: o segurança não deve poder acessar nen-
huma informação sobre os pacientes no sistema; o recepcionista, por outro lado, poderia
ter acesso a informações básicas do paciente, como nome, endereço, data da última con-
sulta. Enfim, dados sobre o histórico médico do paciente, só podem ser acessados por um
médico.

Esse tipo de controle é muito importante para a segurança de informações, e uma
maneira de recuperar dados confidenciais sem permissão, é através da análise do fluxo
de informações no programa. Uma vez inserido ou carregado em um sistema, um valor
sensível fica armazenado em uma variável, e essa variável deve ser protegida para que
somente usuários com permissão de acesso à mesma, consigam obter seu valor. Entre-
tanto, um valor não fica retido apenas na variável a qual foi atribuído, mas é repassado
integralmente ou parcialmente para outras variáveis durante o ciclo de vida do programa.
Um indivíduo com intenções de acessar informações confidenciais, pode então analisar
o fluxo de informações do sistema, e descobrir o conteúdo de uma variável protegida,
através da análise do conteúdo de uma variável não protegida.

Para evitar esse tipo de ataque, uma solução é analisar o fluxo de informações em um
programa, e marcar todas as instruções e variáveis que de alguma forma são influenci-
adas por um dado confidencial, para que sejam também protegidas de maneira que não
haja vazamentos de dados. Informações podem fluir explicita ou implicitamente em um
programa.

O fluxo explícito de informações é definido por instruções de atribuição no código.
Por exemplo, na instrução a=b, o valor de b é explicitamente atribuído na variável a.

No caso do fluxo implícito de informações, valores vazam não por serem diretamente
atribuídos a outras variáveis, mas são inferidos após a análise de qual caminho o programa
seguiu após um determinado ponto de ramificação. Ilustrando o exemplo, após testar se
o valor de uma variável sensível é maior ou menor que 1000, o programa irá tomar um
dos dois caminhamentos possíveis. Se em um dos caminhamentos uma flag(não sensível)
é setada como verdadeira, e no outro caminhamento ela é definida como falsa, pode-
se descobrir se o valor confidencial é maior ou menor que 1000, apenas checando se
a flag terminou a execução como verdadeira ou falsa. Da mesma forma, informações
podem ser adquiridas analizando se exceções ocorreram ou não em determinados pontos
do programa.



O objetivo deste trabalho então é fazer uma análise estática do byte code de programas
Java, definindo pontos onde informações podem vazar devido à ocorrência ou não de ex-
ceções. Análises estáticas são caracterizadas por ocorrerem antes da execução do código,
e a análise proposta insere código instrumentado no programa analisado, de forma que
uma futura análise em tempo de execução tenha informações sobre os trechos de código
onde exceções podem ocorrer, e possa então fazer a propagação das marcas de variáveis
sensíveis.

Stefan Willenbrock, em seu trabalho de graduação(WILLENBROCK, 2009), reali-
zou um framework capaz de detectar fluxo implícito(e explícito) de informações estati-
camente, e propagar marcas em tempo de execução, a partir das informações coletadas
antes. Porém ele não considerou a ocorrência de exceções nos programas analisados, o
que é muito importante, pois a grande maioria dos programas Java tem ibfluência no seu
fluxo devido à ocorrência(ou não) de exceções durante sua execução. Este trabalho difere-
se do trabalho de Stefan, pois considera o contexto de exceções, e não faz a propagação
de marcas a partir das influências definidas na análise estática, e sim sinaliza os pontos
onde a propagação de marcas deve iniciar e terminar, devido à possibilidade de um fluxo
excepcional de informações.

Exceções em Java podem ser checadas ou não-checadas. As exceções não-checadas
são aquelas que podem ocorrer em qualquer ponto do programa, e não precisam ser ex-
plicitamente lançadas ou capturadas. Exceções checadas, por outro lado, precisam ser
explicitamente lançadas com o uso da instrução throw, e têm que ser capturadas por um
block catch em algum ponto do programa. Este último tipo citado, é o tipo de exceções
tratado neste trabalho.

Considerando então o escopo de exceções checadas, elas podem ocorrer dentro de
um bloco try, ou dentro de um método capaz de propagar exceções para o método que o
chamou. Neste contexto então, diz-se que o fluxo de informações a partir de instruções
dentro de um bloco try ou dentro de um método capaz de propagar exceções pode ter dois
possívei destinos: o fluxo excepcional, que é o bloco catch ou a propagação pro método
chamador; e o fluxo normal, que é a execução da próxima instrução do programa.

Trechos de código onde exceções podem ocorrer, podem ser considerados trechos com
fluxo de informações implícitas, pois são instruções que lançam ou não exceções, ou seja,
são pontos de ramificação no código, podendo ter 2 destinos: excepcional ou não. Devido
a este motivo, a análise feita neste trabalho lembra a análise feita para detectar fluxo
implícito de informações, porém difere no fato que o ponto de ramificação e o ponto de
junção de uma ramificação têm que ser descobertos, e então sinalizados de alguma forma.

À primeira vista, para sinalizar trechos de código onde existe fluxo de informações
devido a ocorrência de exceções, poderiamos marcar como ponto de início a entrada de
um bloco try ou o começo de um método com propagação de exceções; e como ponto
final o fim do último block catch correspondente ao try, ou o final do método. Entretanto,
este método não funciona, pois instruções que ocorrem antes de um bloco try, podem
ser afetadas pelo mesmo. Por exemplo, se um bloco try está dentro de um bloco if, infor-
mações do bloco else podem ser descobertas devido à ocorrência de uma exceção no outro
ramo do fluxo(bloco if ). Outro fator importante a ser levado em conta, é que nem todas
instruções dentro de um bloco try são influenciadas pelo lançamento de uma exceção, e
deseja-se então fazer uma análise de forma a delimitar somente os trechos de código real-
mente afetados pelo fluxo excepcional, ou seja, somente as instruções que podem vazar
alguma informação sensível devido à uma exceção lançada.

Ilustrando como foi feita a implementação do programa, pode-se ver abaixo um algo-



1 E n c o n t r a r a i n s t r u ç ã o throw
2 D e t e c t a r o escopo ( b l o c o try , ou método capaz de p r o p a g a r

e x c e ç õ e s )
3 E n c o n t r a r i n s t r u ç ã o de i n í c i o das i n f l u ê n c i a s por e x c e ç õ e s

a t r a v é s de uma a n á l i s e das i n s t r u ç õ e s a n t e r i o r e s
4 E n c o n t r a r i n s t r u ç ã o de f im das i n f l u ê n c i a s por e x c e ç õ e s
5 I n s t r u m e n t a r código , d e l i m i t a n d o os p o n t o s de i n í c i o e f im

de p r o p a g a ç ã o das i n f l u ê n c i a s

Listing 1: Algoritmo super simplificado

ritmo super simplificado da solução.
Para definir os pontos de início e fim de influências, foi utilizado o conceito de pós

dominante imediato de uma instrução. Uma instrução x pós dominante imediata de y, é
aquela instrução que sempre ocorre após x, ou seja, se x é um ponto de ramificação, a
instrução que se pode ter certeza que sempre ocorrerá após x é o ponto de junção da ram-
ificação. Dessa forma, foram encontrados os pontos de junção de caminhos excepcionais
e não excepcionais, portanto, o ponto onde influências devem parar a propagação.

Para concluir, alguns resultados de código instrumentado após a análise são apresenta-
dos no caítulo de resultados, e sugere-se ainda que este trabalho seja extendido para uma
análise considerando também a ocorrência de exceções não checadas. O grande problema
dessas exceções é que elas podem ocorrer em grande parte do programa, e a primeira
vista, a grande maioria das instruções seriam afetadas por essas exceções, espalhando as
influências de exceções por toda a análise. Portanto uma idéia inicial seria considerar
primeiramente apenas algumas exceções não checadas, e analisar os resultados.

Palavras-chave: Fluxo de informações, java byte code, fluxo de exceções, análise es-
tática, controle de uso.
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1 INTRODUCTION

Data security is a very important topic in Computer Science. People is increasingly
putting personal data on websites, companies have confidential data of their employees,
hospitals have medical records of their patients, and so on. These information can be
used to somehow harm someone, as these data are supposed to be confidential. To protect
sensitive data, a control of who can access which information should be done, and this
is used with access control. For instance, in a hospital, a security man should have no
access to a patient’s record, a receptionist could get information about dates of patient’s
last medical consultations, and finally the doctor would have access to the medical history
of the person.

Whenever someone not supposed to acquire information about someone ends with
that data in hands, it is said that there was a leak of information. An attacker is trying
to obtain information of a system would study the system to identify leak points. First
thing to do to protect confidential data that enters in a system, is specify which data is
sensitive, which are not, and put some protection mechanism in every points using that
values in the system. An attacker would then analyze the program and try to get the data
from sensitive variable, but will not succeed, right? No. During the runtime of a program,
classified values flow to many destinations. Consequently, to really protect given data, it
is essential to analyze the flow of information in a program, and taint all variables that
could have some information from a sensitive input.

The purpose of this thesis is to observe the information flow in Java byte code, and
point out code sections where information could leak as a consequence of an exception
being raised or not.

The rest of the thesis structure is divided as follows:

• Chapter 2, Background, gives some general specifications of Java exceptions, in-
formation flow, and types of analysis that can be done.

• Chapter 3, Solution and Implementation, describes what is done to implement a
framework capable of detecting exception information flow.

• Chapter 4, Results, shows how code looks like after running the analysis.

• Chapter 5, Conclusion and Future Work, presents the final conclusions and possi-
bilities extensions with future work.
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2 BACKGROUND

This chapter gives brief descriptions of some concepts used along this thesis, so the
user gets some background about the thema. It gives an overview of how Java deals with
exceptions, how information can flow during execution of programs, and ways to analyze
the flow of information.

2.1 Java exceptions

Exceptions are a way to indicate that something not normal happened during the pro-
gram execution, or, ”when a program violates the semantic constraints of the Java pro-
gramming language, the Java virtual machine signals this error to the program as an ex-
ception” (GOSLING, 2005,p.297).

When an exception condition is achieved during a method execution, an exception
object (exceptions are represented as objects in Java) is thrown, and a handler should
catch this object, in order to treat the problem. The handler can be on the method body
itself, or inside one of the method callers. After the exception is thrown, each method will
check if a handler exists, and if not, it throws the exception object to the next method in
the method invocation stack, looking for someone that could deal with the exception. If
no handler is found, the object is caught by the Java runtime environment.

Exceptions are subclasses of Throwable, and are divided in two groups: checked and
unchecked.

2.1.1 Checked exceptions

Checked exceptions are all exceptions that are explicitly thrown and need to have a
handler declared somewhere. For these exceptions, the Java compiler checks for handlers
in the program during compile time.

2.1.2 Unchecked exceptions

The exceptions that are not necessarily thrown in the code, and can have no handler,
are runtime exceptions, and are called unchecked exceptions.

2.1.3 Exception handling

Whenever a checked exception is thrown during runtime, it has to be caught and
treated.

To define handlers for an exception, it is necessary to enclose in a try block, all in-
structions that can throw an object, or specify a throws statement with the exception type
in the method definition, so this object will try to find a handler inside the caller method.
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1 p u b l i c vo id methodWi thExcep t ions ( i n t v a l ) throws E x c e p t i o n {
2 t r y {
3 i f ( v a l > 10 ) {
4 throw new MyException ( ) ;
5 } e l s e i f ( v a l > 0 ) {
6 throw new MyOtherExcept ion ( ) ;
7 } e l s e {
8 throw new E x c e p t i o n ( ) ;
9 }

10 } ca tch ( MyException me ) {
11 doSomething ( ) ;
12 } ca tch ( MyOtherExcept ion moe ) {
13 doAnotherThing ( ) ;
14 } f i n a l l y {
15 / / a lways e x e c u t e d
16 d o N e c e s s a r y T h i n g s ( ) ;
17 }
18 System . o u t . p r i n t l n ( ’ ’ End of method ’ ’ ) ;
19 }

Listing 2.1: Method throwing exceptions

A try block is followed by one or more catch blocks, a finally block, or both. Catch
blocks are handlers that deal with the exception object itself, so they are executed just
in cases where the program raises an exception. Each handler has a type, and gets all
exceptions that match its exception type or subtypes. When an exception is raised, all
subsequent instructions inside the try block are aborted,and the flow is redirected to the
first handler that matches the exception type(the other catch blocks will not be executed
then, even if there is one that handles the same exception type), so it is important to write
first the most specific handlers, and then the more comprehensive ones. Finally blocks are
pieces of code that are always executed, no matter if an exception is thrown or not. That
means, if a try block finishes normally, flow goes to finally block, and if the flow goes to
a handler, after the handler the flow goes also to finally.

Listing 2.1 shows an example where once a value entered the function, flow can go
to different points. If val>10, control flow goes to the first handler(line 10), and later
executes the finally block(line 14). When 0 < val <= 10, the second catch block is
executed(line 12), and then the finally block. To finish, in case val <= 0, flow goes to
finally block, and later is redirected to the caller method, throwing an exception of type
java.lang.Exception.

Figure 2.1 exemplifies all possibilities of control flow(considering the possibility of
exceptions) inside and between methods.

Also, the JVM creates an exception table for every handler, i. e., catch block inside
the code, and it works as follows: for each catch clause of each try block, there is a line
in the exception table describing the line where try block starts(from), the line where it
finishes(to), then the line where catch block starts(target), and last, the type of exception
this handler deals with(Type). Table 2.1 shows the exception table for listing 2.1.
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Figure 2.1: Interprocedural control flow in Java exception-handling constructs.(SINHA,
2000)

Table 2.1: Java exception table for listing 2.1
From To Target Type

3 9 10 java.lang.MyException
3 9 12 java.lang.MyOtherException

2.2 Information flow

Information flow is related to what happens to information once they are entered in a
program. During runtime, values inputed in the program are reassigned to other variables.
When this happens, we say that information is flowing from one variable(e.g. input) to
another, and the latter variable now has information from the former one.

So, once some information is inputed in the program(from now on, program input
will be referred as source), it can go to many different destinations, i.e. several variables
can have its value, and during that, this data could pass through insecure channels, where
some third party one can monitor information. These insecure channels are called sinks.

In practice there are situations where sensitive data enter the program through sources,
and that data should not be unveiled anywhere, i.e. the data cannot pass through sinks,
or, if it does, it should be protected anyhow. A daily example of sensitive source is a
password, which the user enters in a website everyday, trusting that value is secure inside
the website and no one will retrieve it. A way to give this reliability to the user is to make
an information flow analysis, tracking all flows possible to sensitive data, and later ensure
confidentiality to all affected variables with criptografy, for instance.

In respect to information flow analysis, there are two different ways data can flow
from one variable to another, and they will be discussed next: explicit and implicit flow.
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1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
2 S t r i n g name = a r g s [ 0 ] ;
3 i n t s a l a r y = I n t e g e r . va lueOf ( a r g s [ 1 ] ) ;
4 i n t bonus = I n t e g e r . va lueOf ( a r g s [ 2 ] ) ;
5
6 i n t e a r n i n g s = s a l a r y + bonus ;
7 System . o u t . p r i n t l n ( name+" g o t "+ e a r n i n g s +" t h i s month . " ) ;
8 }

Listing 2.2: Code with explicit flow

Figure 2.2: Control-flow graph for explicit flow(listing 2.2)

2.2.1 Explicit flow

We say that there is an explicit flow of information from variable a to b when a appears
in the right hand side of an assignment to b. Listing 2.2 shows this clearly: there is a
method main that receives as parameter a list of arguments args; then, inside the method
body, at first 3 variables are declared: name, salary, and bonus; these variables receive
the values from args, in form of assignment. So, information is flowing from args to
these variables, e.g. the content of args[1] explicit flows to new variable salary, i.e salary
now has the value of args[1]. If we take a look in line 6, data from salary and bonus are
explicit flowing to earnings. The control flow happening in listing 2.2, is representerd as
a control flow graph(CFG) in figure 2.2.

2.2.2 Implicit flow

On the other hand is the implicit flow, where data is not explicit flowing from variable
a to b, but one can guess the content of a by looking at b. Checking out listing 2.3, let’s
say some attacker wants to discover the salary of someone, but variables salary and args
are somehow protected(e.g. encrypted). Taking closer atention to the code, if the attacker
checks for the value of payTaxes, he then finds out part of the data(sometimes the entire
data) that lies inside salary. In this case it is said information implicit flows from salary
to payTaxes.

Figure 2.3 shows the CFG of listing 2.3, and we can see more clearly how control



18

1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
2 S t r i n g name = a r g s [ 0 ] ;
3 i n t s a l a r y = I n t e g e r . va lueOf ( a r g s [ 1 ] ) ;
4 boolean payTaxes = f a l s e ;
5
6 i f ( s a l a r y > 2000 ) {
7 payTaxes = t rue ;
8 } e l s e {
9 payTaxes = f a l s e ;

10 }
11
12 }

Listing 2.3: Code with implicit flow

flow branches at if instruction and later joins back together at return. Everytime we
have branches like this, one is actually executed during runtime and is called executed
branch, whereas the other stays idle and is named non-executed branch. Someone trying
to obtain information from the program, would choose one of the branches to monitor and
check wheter its instructions were executed or not. We can conclude that no matter which
branch is taken, information can be acquired, and to prevent this, both branches should be
considered while running an information flow analysis.

2.2.3 Main and exception flow

During runtime, a program usually has some expected paths to follow, e.g. when a user
enters a username and password, the expected flows are: go to next page logged with the
user data, or go back to login page because username or password were incorrect. This
flow, which is the sequence of instructions that would normally be executed one after
another, is referred as the main flow. Sometimes though, different paths are triggered
after an unexpected behavior or error in runtime; these paths are called exception flow.

Exception flow is included in the context of implicit flow, since depending of the
occurrence of an exception or not, flow can take two different branches, and an attacker
can discover secret data just by analyzing which branch was taken.

Listing 2.4 shows an example of an exception flow. In this example, secret is sensitive
information, and to guess its value, it is only necessary to check which flow the program
took during runtime. If we take a look at, there is a method that throws an exception
whenever secret is false, so one could guess that if code in the catch block was executed,
that means an exception happened, and secret==false. Otherwise, if line 6 was executed,
exception was not raised, and secret==true.

CFG in figure 2.4 shows that after methodThatThrowsExceptionWhenSecretIsFalse
there are 2 possible branches, one taking the main flow, and one following the exceptional
edge; later flow is joined back at return instruction.

2.3 Static/Runtime analysis

The analysis of information flow can be done in two different phases: before, and dur-
ing program execution. The former approach is called static analysis, the latter, runtime



19

Figure 2.3: Control-flow graph for implicit flow(listing 2.3)

1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
2 boolean s e c r e t = f a l s e ;
3
4 t r y {
5 m e t h o d T h a t T h r o w s E x c e p t i o n W h e n S e c r e t I s F a l s e ( s e c r e t ) ;
6 System . o u t . p r i n t l n ( ’ ’ E v e r y t h i n g f i n e . ’ ’ ) ;
7 } ca tch ( E x c e p t i o n e ) {
8 System . o u t . p r i n t l n ( ’ ’ E x c e p t i o n c a t c h e d . ’ ’ ) ;
9 }

10 }

Listing 2.4: Code with exception flow
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Figure 2.4: Control-flow graph for exception flow(listing 2.4)

1 p u b l i c s t a t i c vo id Hel loWorld ( S t r i n g [ ] a r g s ) {
2 System . o u t . p r i n t l n ( " H e l l o World ! " ) ;
3 }

Listing 2.5: HelloWorld example in Java

analysis.

As static code analysis is done before program runtime, no inputs are given, and in-
structions are analyzed without being executed. Runtime code analysis, on the other hand,
runs during program execution, and analysis results may vary depending on the program
sources. It is good to use a static analysis to detect defects in the code(and sinks), and this
type of analysis is much faster than the runtime, because computations do not need to be
recalculated after each executed instruction in the program. But runtime analysis is good
to watch how flow is actually being executed and what happens after each statement, so it
gives more precise results, because it is based on actual inputs and also heap status.

2.4 Jimple code

Instead of using pure Java Byte Code, it was opted for using an intermediate represen-
tation of Java programs. This representation is part of SOOT framework (SOOT, 2010)
and is called Jimple.

Jimple is a representation between Java byte code and Java high level code. It con-
verts stack-based byte code into 3-address code, making it easier for the developer to
handle the code and write an analysis, since Jimple has only 15 possible operations(Java
byte code has over 200 operations). Below is an example of a Hello World program in
Java(Listing 2.5) and in correspondent Jimple code(Listing 2.6).
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1 p u b l i c s t a t i c vo id Hel loWorld ( j a v a . l a n g . S t r i n g [ ] ) {
2 j a v a . l a n g . S t r i n g [ ] r0 ;
3 j a v a . i o . P r i n t S t r e a m $r1 ;
4
5 r0 := @parameter0 : j a v a . l a n g . S t r i n g [ ] ;
6 $r1 = < j a v a . l a n g . System : j a v a . i o . P r i n t S t r e a m out > ;
7 v i r t u a l i n v o k e $r1 . < j a v a . i o . P r i n t S t r e a m :
8 void p r i n t l n ( j a v a . l a n g . S t r i n g ) >( " H e l l o World ! " ) ;
9 re turn ;

10 }

Listing 2.6: HelloWorld example in Jimple code

2.5 Code instrumentation

To instrument code is to insert instructions inside a system in order to monitor com-
ponents in the same system. Instrumenting code is useful, for instance , to insert during
static analysis, method calls that will be executed during runtime to perform the runtime
analysis.
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3 SOLUTION AND IMPLEMENTATION

To design a framework capable of detect exceptional flow in the Java byte code, it is
important to understand the concepts explained in the background chapter, and look after
an approach to achieve this goal. To create the framework proposed, Java byte code is
read with SOOT, translated to an intermediate representation (Jimple), then analyzed to
define important points, and finally new instrumented code is inserted in these points, in
order to signalize them during runtime.

SOOT is a Java optimization framework that provides four intermediate representa-
tions for analyzing and transforming Java byte code. These representations are: Baf,
Jimple, Shimple and Grimp. In this thesis only Jimple will be considered, so this is the
last time we hear about the others.

First, let’s talk about Willenbrock’s framework, described in his bachelor thesis (WIL-
LENBROCK, 2009). Willenbrock implemented a framework to detect implicit informa-
tion flow in Java byte code. His work uses static and runtime analysis to detect implicit
and explicit information flow in unexceptional contexts. He starts with a static analysis
that inspects the call graph created from the method body. With the call graph in hands,
every unit(unit is how SOOT represents each node in the CFG) is examined so influences
from one unit to another can be detected, i.e., detect information flowing from unit A to
unit B, and maybe later information flowing from B to unit C; in this case it is said that
there was information flow from unit A to unit C. This influence propagation is based
mainly on information from sources entered in the method body, as these values are the
ones which may possibly bring sensitive information to the method. Units with sensitive
information should be called tainted, and the objective of propagating influences is to
successfully taint all units that may contain some sensitive data.

All these influences are saved into serialized files–so they can be reloaded later– and
code is instrumented with the insertion of method calls to methods in the framework
responsible for runtime analysis. These code will be executed later during runtime, and
will exchange taint along the analyzed code, based on influences saved before and also
actual input, that have definitions of tainted sources entering the program.

The main objective of my work is to statically analyze code, and use instrumentation
to insert check points delimiting where flow can have normal and exceptional destination,
and where code can just flow unexceptionally. With this information, a later work can
be done to integrate with Willenbrock’s framework, and use taint propagation in both
exceptional and main flow.

In this framework, just Java checked exceptions are analyzed, because to handle
unchecked exceptions a much more detailed analysis should be done, considering all pos-
sible runtime exceptions that could be raised by each instruction, and taint propagation
would probably spread very fast all over the program. As said before, checked exceptions
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Figure 3.1: Post-dominator graph for explicit flow example

are explicit thrown in Java. They can occur inside a try block with handlers to catch the
exception object, and these exceptions can also propagate to caller method, until a handler
is found.

Thinking at a first glance, the task of an exceptional analysis may look very simple:
in methods that cannot propagate exceptions to caller, put a marker signalizing the entry
point of a try block to signalize possible exceptional flow, and another mark at the end
of last handler of same try block to signalize the end of possible exceptional flow; and
assume that all units inside methods with exception propagation could have an exceptional
edge in the CFG, consequently the hole method would be tainted. This approach is not
wrong, but has two big problems: first, it is very innacurate, since many instructions will
always execute inside a try block, no matter if an exception happens or not, so unnecessary
exceptional edges will be considered, and these instructions would later be marked as
tainted without really needing to. Second problem, that happens because of first one,
is taint spread: statements tainted without need would also propagate tainting to normal
nodes.

To solve these problems, a better approach was used, and to understand it, it is neces-
sary to explain a little about post-dominators in graph theory.

The definition of post-dominators, according to (CHEN, 1997) is: ”For any nodes
x and y, x 6= y, in a control flow graph, y post-dominates x if every path from x to
nx passes through y.”. Figure 3.1 shows the post-dominator graph for the explicit flow
example in figure 2.2. This example is very simple, there are no branches in the CFG,
thus the post-dominator graph is basically the same as CFG, but upside-down. Let’s use
another example to show better how it works: figure 3.2 has a more complex CFG, with
two branch points: ”if(salary>2000)” and ”if(’peter’.equals(name))”. To simplify this
CFG, the first three boxes can be seen as just one big block, because their flow is well-
defined, i.e., is always the same. And to make this graph even easier, we can forget about
the actual statements in the nodes, and just consider the CFG behavior. This new graph is
shown in figure 3.3.

Now each node is analyzed, and a post-dominator graph is generated according to the
definition given above. For instance, the post-dominators for node 4 are that nodes that
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Figure 3.2: Control-flow graph with two branch points

Figure 3.3: Simplified CFG for figure 3.2
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Figure 3.4: Post-dominator graph for figure 3.3

are always executed after node 4: these are 7 and 8. Another example, post-dominators of
node 1 are nodes 2 and 8. The complete post-dominator graph is illustrade in figure 3.4.

In the same paper, the following is defined as the immediate post-dominator: ”If a
node y is a post-dominator of x such that y is post-dominated by any post-dominator of
xm we say y immediately post-dominates x.”. The immediate post-dominator is basically
the first post-dominator of a node, and this is the key node to make implicit flow analysis.
These nodes are important because they are the join point of 2 or more branches. When-
ever a branch point is reached during an analysis, there is implicit flow going on in all
its branches, so influences are calculated and propagated. The immediate dominator of
these branches is the point where all flows go back to just one, and this point is set to stop
the influences propagation. This was the approach used by Willenbrock in his implicit
flow analysis, where he considered that branches could only start with an if statement.
But what does this have to do with exceptional analysis? Adding exceptional edges to the
CFG causes implicit flow to happen on every unit capable of throwing an exception: next
node can be one in exceptional or unexceptional flow.

With that in mind, knowing the immediate post-dominator of a instruction inside a
try-block leads to knowing when the handler block ends, and flow joins back to just one
main flow. That is essential to stop propagation in exceptional analysis.

3.1 Solution

Now that some considerations have been made, the approach used in this framework
to get a more precise analysis is explained.

First of all, two CFGs are loaded with SOOT: CompleteUnitGraph and BriefUnit-
Graph. These structures are defined in (JORGENSEN, 2003):

CompleteUnitGraph is a CFG including a node for each unit, and in-
corporating edges representing exceptional control flow. Soot represents
exception table entries by ”traps”, which comprises a pair of unit refer-
ences delimiting the protected area, a reference to the initial unit in the
exception handler, and the type of the catch parameter. A CompleteU-
nitGraph contains edges to each trap handler from every unit protected
by the trap, as well as from the predecessors of the first trapped unit.

BriefUnitGraph is a CFG including a node for each unit, but containing
no edges for exeptional control flow.
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Figure 3.5: Control flow with exceptional and unexceptional edges

The former structure considers exceptional edges, so it is useful to calculate immedi-
ate post-dominators for try blocks, i.e., the first statement after the handler blocks. The
latter structure is also used in the analysis because it does not consider exceptional edges,
so it can get for instance a join point of a branch statement inside a try block. Both cases
are explained next with the help of figure 3.5. The figure has a try block, which every
instruction can have two destinations at least: its normal edge, and the exceptional edge
going out of try block towards the handler. If no exception is thrown inside the try block,
flow goes through Unexceptional Edge to unit number 8. On the other hand, if an ex-
ception is raised anywhere inside try block, flow goes through Exceptional Edge to the
handler block. If a CompleteUnitGraph is used to represent the try block, the immediate
post-dominator for every unit will be unit 8, as it is the statement that will always execute
after the handler. If a BriefUnitGraph is used instead, it is possible to point out that unit 5
is the immediate post-dominator for unit 2.

3.1.1 Try blocks

In methods without possibility of exception propagation to callers, the target of the
analysis are especially the try blocks, and some instructions before the try block, when it
is already inside a branch in the flow. The instructions inside these blocks(and also infor-
mation about handler blocks and exception types) are get with help of the Java exception
table, and these instructions are the only capable of throwing checked exceptions in this
method. But the goal of our analysis is to identify only units that can really influence
somehow the flow of information in the presence of exceptions, so some criteria must be
applied to differ units that may influence or not a future taint propagation.
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1 p r i v a t e void t r yExample ( boolean f l a g ) {
2 t r y {
3 someMethod ( ) ;
4 i f ( f l a g )
5 System . o u t . p r i n t l n ( ’ ’ F l ag i s t rue . ’ ’ ) ;
6 e l s e {
7 throw new E x c e p t i o n ( ) ;
8 }
9 } ca tch ( E x c e p t i o n e ) {

10 System . o u t . p r i n t l n ( ’ ’ E x c e p t i o n c a u g h t . ’ ’ ) ;
11 }
12 }

Listing 3.1: Simple try block example

These criteria are based on the algorithm in listing 3.4. The idea behind the algorithm,
as said before, is that not all units influence the information flow when an exception is
raised. Consider listing 3.1: in this method, line 3 will always execute, and let’s say
the method someMethod will always return without any exception propagation. As this
instruction always executes, and there is no exceptional edge, we can infer there is no
implicit flow here. Going on to line 4, a branch point is introduced: flow can go to
line 5 or line 7; if the condition is true, normal flow is actived, else, flow goes to it’s
exceptional edge, as a new exception is throw. With this example it is clear that the
only units influenced by the presence of an exception are the units after the branch point,
because one of the branches raises an exception. Everything that comes before this branch
point is considered irrelevant to the exceptional analysis, and is not important anymore.

Back to explaining the algorithm, it’s main idea is: find the throw instruction, and
propagate influences towards until the join point for normal and exceptional flow, which
is usualy the end of a handler block, and also backwards until a key point. These key
points can be a branch point of an if statement, a join point after an if statement, or a
method call with possibility of exception propagation. The three situations are shown in
listings 3.1, 3.2, and 3.3.

3.1.2 Methods propagating exceptions to caller

When analyzing methods that have a ”throws” declaration in it’s signature, this method
can propagate an exception to it’s caller, so the algorithm has to be changed. The new al-
gorithm(listing 3.5) is slightly different from the previous one. When there is no try block,
it acts just as the other algorithm, but the end point is the end of the method. In cases where
there are try blocks inside the method, the try algorithm above is used, but for each unit
capable of throwing an exception, i.e., a throw statement or a method call, the type of the
exception is observed, in order to guarantee that the exception object will be caught by
the handler block. If the object is caught by the handler, influence propagation for flow
inside this try block will end at the handler block. On the other hand, when there is no
handler for exception type, the propagation of influences will be done until the end of the
method, starting at the starting point. Type polymorphism cases might be a problem here,
because the exception object can be of an unexpected type. Some extra checking should
be done at runtime to guarantee correct taint propagation in these context(polymorphism),
and this is an extension sugestion to current work, since this framework just works with
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1 p r i v a t e void t r yExample ( boolean f l a g ) {
2 t r y {
3 someMethod ( ) ;
4 i f ( f l a g )
5 System . o u t . p r i n t l n ( ’ ’ F l ag i s t rue . ’ ’ ) ;
6 e l s e {
7 System . o u t . p r i n t l n ( ’ ’ F l ag i s f a l s e . ’ ’ ) ;
8 }
9 / / j o i n p o i n t , u n i t s from here on

10 / / a re i n f l u e n c e d by e x c e p t i o n s
11 someMethod ( ) ;
12 throw new E x c e p t i o n ( ) ;
13 } ca tch ( E x c e p t i o n e ) {
14 System . o u t . p r i n t l n ( ’ ’ E x c e p t i o n c a u g h t . ’ ’ ) ;
15 }
16 }

Listing 3.2: Key point is IF join point

1 p r i v a t e void t r yExample ( boolean f l a g ) {
2 t r y {
3 System . o u t . p r i n t l n ( ’ ’ Hi . ’ ’ ) ;
4 i n t a = 5 ;
5 / / t h i s method can throw an e x c e p t i o n , so
6 / / a l l u n i t s from here on are i n f l u e n c e d
7 m e t h o d W i t h E x c e p t i o n P r o p a g a t i o n ( f l a g ) ;
8 a =10;
9 ano the rMethod ( a ) ;

10 } ca tch ( E x c e p t i o n e ) {
11 System . o u t . p r i n t l n ( ’ ’ E x c e p t i o n c a u g h t . ’ ’ ) ;
12 }
13 }

Listing 3.3: Key point is method call
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1 p r o p a g a t e = f a l s e
2
3 f o r Uni t u i n Un i tCha in
4 i f s t a r t U n i t i s n u l l
5 s t a r t U n i t = u
6 i f endUni t i s n u l l
7 endUni t = ge tT ry Immed ia t eDomina to r ( )
8
9 i f ( ! p r o p a g a t e )

10 i f u i s me thodCa l l
11 i f i n s i d e I f
12 i f methodThrowsExcept ion
13 p r o p a g a t e = t rue
14 e l s e
15 s t a r t P o i n t = u
16
17 i f u i s i f S t a t e m e n t
18 i f ! i n s i d e I f
19 i n s i d e I f = t rue
20 s t a r t P o i n t = u
21
22 i f u i s i f J o i n P o i n t
23 i n s i d e I f = f a l s e
24 s t a r t P o i n t = u
25
26 i f u i s t h r o w S t a t e m e n t
27 p r o p a g a t e = t rue
28
29 / / p r o p a g a t i o n s t a r t and end p o i n t s
30 s e t I n f l u e n c e s ( s t a r t U n i t , endUni t )

Listing 3.4: Algorithm for units inside try block
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static analysis so far.

3.2 Problem with post-dominators

While using SOOT to get the immediate post-dominators of the statements, there were
some cases where it would get unexpected results, like in listing 4.1, the immediate post-
dominator for line 5 should be line 9, but as the last unit before the handler is a throw
instruction, SOOT considers that the next statement would be always the handler, which
is not true, since when the condition is false, no exception is thrown. To make everything
work as expected, a little modification is done before actual analysis: the throw instruc-
tions that could lead to this problem are transformed into a method call to throwException,
a method that simply receives an exception object and rethrows it, so no semantics change
is done in the program analyzed(listing 3.6).
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1 p r o p a g a t e = f a l s e
2
3 f o r Uni t u i n Un i tCha in
4 i f s t a r t U n i t i s n u l l
5 s t a r t U n i t = u
6 i f endUni t i s n u l l
7 endUni t = l a s t I n s t r u c t i o n I n M e t h o d
8
9 i f ( ! p r o p a g a t e )

10 i f u i s i n s i d e T r y B l o c k
11 /∗ use Try a l g o r i t h m , BUT check e x c e p t i o n
12 t y p e s , t o s e e i f e x c e p t i o n i s r e a l l y hand led
13 by t r y b lock , o t h e r w i s e p r o p a g a t i o n goes
14 o u t s i d e t r y b l o c k ∗ /
15
16 e l s e
17 i f u i s me thodCa l l
18 i f i n s i d e I f
19 i f methodThrowsExcept ion
20 p r o p a g a t e = t rue
21 e l s e
22 s t a r t P o i n t = u
23
24 i f u i s i f S t a t e m e n t
25 i f ! i n s i d e I f
26 i n s i d e I f = t rue
27 s t a r t P o i n t = u
28
29 i f u i s i f J o i n P o i n t
30 i n s i d e I f = f a l s e
31 s t a r t P o i n t = u
32
33 i f u i s t h r o w S t a t e m e n t
34 p r o p a g a t e = t rue
35
36 / / p r o p a g a t i o n s t a r t and end p o i n t s
37 s e t I n f l u e n c e s ( s t a r t U n i t , endUni t )

Listing 3.5: Algorithm for units inside method with ”throws” in it’s signature

1 p u b l i c vo id t h r o w E x c e p t i o n ( E x c e p t i o n e ) throws E x c e p t i o n {
2 throw e ;
3 }

Listing 3.6: Method that receives an exception and rethrows it
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4 RESULTS

This chapter shows the resulting code after using the framework on some methods.
The resulting codes were read from the class file generated, using a Java decompiler, JD-
GUI (JDGUI, 2010). To help finding inserted code, some comments were added, pointing
these instrumented instructions.

First example, listing 4.1, is the simplest case, where the hole try block should prop-
agate influences. A throw statement is found in line 5, the start point is defined as line 4
(throug backwards propagation), and the end propagation marker is inserted after handler,
in line 9. The result code is in listing 4.2.

1 p u b l i c s t a t i c vo id s i m p l e T r y 2 ( ) {
2 i n t a = 1 ;
3 t r y {
4 i f ( a ==2)
5 throw new E x c e p t i o n ( ) ;
6 } ca tch ( E x c e p t i o n e ) {
7 System . o u t . p r i n t l n ( " E x c e p t i o n c a u g h t . " ) ;
8 }
9 a =3;

10 System . o u t . p r i n t l n ( " a="+a ) ;
11 }

Listing 4.1: Simple example

Listing 4.4 shows a case where a try block is entered, flow branches in line 5, joins

1 p u b l i c s t a t i c vo id s i m p l e T r y 2 ( )
2 {
3 i n t i = 1 ;
4 t r y
5 {
6 / / ins trumented code −> s t a r t propagat ion here
7 E x c e p t i o n H a n d l e r . s t a r t P r o p a g a t i o n ( ) ;
8 i f ( i == 2)
9 {

10 E x c e p t i o n l o c a l E x c e p t i o n 1 = new j a v a / l a n g / E x c e p t i o n ;
11 l o c a l E x c e p t i o n 1 . < i n i t > ( ) ;
12 / / method c a l l to throwException

Listing 4.2: Instrumented simple example
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1 t h r o w E x c e p t i o n ( l o c a l E x c e p t i o n 1 ) ;
2 }
3 }
4 catch ( E x c e p t i o n l o c a l O b j e c t 1 )
5 {
6 O b j e c t l o c a l O b j e c t 1 = l o c a l E x c e p t i o n 2 ;
7 l o c a l O b j e c t 1 = System . o u t ;
8 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 1 ) . p r i n t l n ( " E x c e p t i o n c a u g h t . " ) ;
9 }

10 / / ins trumented code −> end propagat ion here
11 E x c e p t i o n H a n d l e r . e n d P r o p a g a t i o n ( ) ;
12 i n t j = 3 ;
13 P r i n t S t r e a m l o c a l P r i n t S t r e a m = System . o u t ;
14 O b j e c t l o c a l O b j e c t 2 = new j a v a / l a n g / S t r i n g B u i l d e r ;
15 ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 2 ) . < i n i t > ( ) ;
16 l o c a l O b j e c t 2 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 2 ) . append ( " a=" ) ;
17 l o c a l O b j e c t 2 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 2 ) . append ( j ) ;
18 l o c a l O b j e c t 2 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 2 ) . t o S t r i n g ( ) ;
19 l o c a l P r i n t S t r e a m . p r i n t l n ( ( S t r i n g ) l o c a l O b j e c t 2 ) ;
20 }

Listing 4.3: Instrumented simple example(Continued)

back in line 10, and branches again in line 11. Analyzing this code, a intruction throwing
an exception can just be seen in line 14. This istruction is inside the branch starting in line
11, so, everything coming before this branch point is not sensitive to our purpose. In the
instrumented result(listing 4.5), we can see that propagation begins just from the second
branch point, as first one could throw no exception, and ends after the catch block.

1 p u b l i c s t a t i c vo id t r y A n d 2 I f ( ) {
2 i n t a = 1 ;
3 t r y {
4 a =3;
5 i f ( a ==2)
6 System . o u t . p r i n t l n ( " a i s 2 ! " ) ;
7 e l s e
8 System . o u t . p r i n t l n ( "No e x c e p t i o n " ) ;
9 a =4;

10 i f ( a ==4)
11 System . o u t . p r i n t l n ( " a i s 4 ! " ) ;
12 e l s e
13 throw new E x c e p t i o n ( ) ;
14 a =5;
15 } ca tch ( E x c e p t i o n e ) {
16 System . o u t . p r i n t l n ( " E x c e p t i o n c a u g h t . " ) ;
17 }
18 a =6;
19 }

Listing 4.4: Try block with two branch points
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1 p u b l i c s t a t i c vo id t r y A n d 2 I f ( ) {
2 i n t i = 1 ;
3 t r y {
4 i = 3 ;
5 P r i n t S t r e a m l o c a l P r i n t S t r e a m 1 ;
6 i f ( i == 2)
7 {
8 l o c a l P r i n t S t r e a m 1 = System . o u t ;
9 l o c a l P r i n t S t r e a m 1 . p r i n t l n ( " a i s 2 ! " ) ;

10 } e l s e {
11 l o c a l P r i n t S t r e a m 1 = System . o u t ;
12 l o c a l P r i n t S t r e a m 1 . p r i n t l n ( "No e x c e p t i o n " ) ;
13 }
14 i n t j = 4 ;
15 / / ins trumented code −> s t a r t propagat ion here
16 E x c e p t i o n H a n d l e r . s t a r t P r o p a g a t i o n ( ) ;
17 O b j e c t l o c a l O b j e c t 1 ;
18 i f ( j == 4)
19 {
20 l o c a l O b j e c t 1 = System . o u t ;
21 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 1 ) . p r i n t l n ( " a i s 4 ! " ) ;
22 }
23 e l s e
24 {
25 l o c a l O b j e c t 1 = new j a v a / l a n g / E x c e p t i o n ;
26 ( ( E x c e p t i o n ) l o c a l O b j e c t 1 ) . < i n i t > ( ) ;
27 / / method c a l l to throwException
28 t h r o w E x c e p t i o n ( ( E x c e p t i o n ) l o c a l O b j e c t 1 ) ;
29 }
30 i n t k = 5 ;
31 }
32 catch ( E x c e p t i o n l o c a l O b j e c t 2 )
33 {
34 O b j e c t l o c a l O b j e c t 2 = l o c a l E x c e p t i o n ;
35 l o c a l O b j e c t 2 = System . o u t ;
36 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 2 ) . p r i n t l n ( " E x c e p t i o n c a u g h t . " ) ;
37 }
38 / / ins trumented code −> end propagat ion here
39 E x c e p t i o n H a n d l e r . e n d P r o p a g a t i o n ( ) ;
40 i n t l = 6 ;
41 P r i n t S t r e a m l o c a l P r i n t S t r e a m 2 = System . o u t ;
42 O b j e c t l o c a l O b j e c t 3 = new j a v a / l a n g / S t r i n g B u i l d e r ;
43 ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 3 ) . < i n i t > ( ) ;
44 l o c a l O b j e c t 3 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 3 ) . append ( " a=" ) ;
45 l o c a l O b j e c t 3 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 3 ) . append ( l ) ;
46 l o c a l O b j e c t 3 = ( ( S t r i n g B u i l d e r ) l o c a l O b j e c t 3 ) . t o S t r i n g ( ) ;
47 l o c a l P r i n t S t r e a m 2 . p r i n t l n ( ( S t r i n g ) l o c a l O b j e c t 3 ) ;
48 }

Listing 4.5: Instrumented try block with two branch points
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1 p u b l i c s t a t i c vo id i f B e f o r e T r y 2 ( ) {
2 i n t a = 1 ;
3 i f ( a ==1){
4 a =2;
5 System . o u t . p r i n t l n ( a ) ;
6 } e l s e {
7 System . o u t . p r i n t l n ( " e l s e " ) ;
8 t r y {
9 i f ( a ==4){

10 System . o u t . p r i n t l n ( " a i s 4 ! " ) ;
11 } e l s e {
12 throw new E x c e p t i o n ( ) ;
13 }
14 a =3;
15
16 } ca tch ( E x c e p t i o n e ) {
17 System . e r r . p r i n t l n ( "EXCEPTION" ) ;
18 }
19 a =4;
20 }
21 System . o u t . p r i n t l n ( "END" ) ;
22 }

Listing 4.6: Branch point before try block

Next test case, listing 4.6, is a very interesting one, because the try block(starting at line
8) is already inside a branch, so, during the static analysis, when the throw instruction
is found, backward propagation starts, and it finds out that this unit is inside a branch
outside the try block. In line 3, a branch started and has not yet been closed. This makes
the statement in line 3 to be the startin point to our propagation. Considering that this
propagation starts before the try block, the end point will not necessarily be located after
the exception handlers, but after the join point of the mentioned branch(line 20).

The earlies methods were all methods that could not propagate exceptions to their
caller, so analysis was just for their try blocks. Next two examples are based on methods
capable of throw an exception to their caller in the stack.

As explained earlier, methods propagating exception to callers have to be analyzed
differentily, because the handler may not be inside method body, but in a caller method
of the call stack. In these cases, the end marker for propagation in this method will be
the method’s end point, thus, once the start propagation point started, propagation will
usually happen until the end of the method.

In listing 4.8, there is a method with ”throws ArrayIndexOutOfBoundsException”
declaration in its signature. First statement, System.out.println cannot throw an exception
in this example, and at line 5, there is a call to a method potentially raising an exception
of type ArrayIndexOutOfBoundsException. Knowing this, the call to m1 is considered as
a branch point, and it could possible leak some information, so influence propagation is
set to start before line 5, until the end of the method.

A last case to show, listing 4.10, is a method also capable of throwing an exception
to its caller. But taking a closer look, the only unit raising an exception is inside a try
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1 p u b l i c s t a t i c vo id i f B e f o r e T r y 2 ( ) {
2 P r i n t S t r e a m l o c a l P r i n t S t r e a m 1 = 1 ;
3 / / ins trumentedcode −> s t a r t propagat ion here
4 E x c e p t i o n H a n d l e r . s t a r t P r o p a g a t i o n ( ) ;
5 P r i n t S t r e a m l o c a l P r i n t S t r e a m 2 ;
6 i f ( l o c a l P r i n t S t r e a m 1 == 1)
7 {
8 l o c a l P r i n t S t r e a m 1 = 2 ;
9 l o c a l P r i n t S t r e a m 2 = System . o u t ;

10 l o c a l P r i n t S t r e a m 2 . p r i n t l n ( l o c a l P r i n t S t r e a m 1 ) ;
11 } e l s e {
12 l o c a l P r i n t S t r e a m 2 = System . o u t ;
13 l o c a l P r i n t S t r e a m 2 . p r i n t l n ( " e l s e " ) ;
14 t r y
15 {
16 l o c a l P r i n t S t r e a m 2 = l o c a l P r i n t S t r e a m 1 ;
17 i n t i = ( byte ) l o c a l P r i n t S t r e a m 2 ;
18 O b j e c t l o c a l O b j e c t ;
19 i f ( i == 4)
20 {
21 l o c a l O b j e c t = System . o u t ;
22 ( ( P r i n t S t r e a m ) l o c a l O b j e c t ) . p r i n t l n ( " a i s 4 ! " ) ;
23 }
24 e l s e
25 {
26 l o c a l O b j e c t = new j a v a / l a n g / E x c e p t i o n ;
27 ( ( E x c e p t i o n ) l o c a l O b j e c t ) . < i n i t > ( ) ;
28 / / method c a l l to throwException
29 t h r o w E x c e p t i o n ( ( E x c e p t i o n ) l o c a l O b j e c t ) ;
30 }
31 i n t j = 3 ;
32 }
33 ca tch ( E x c e p t i o n l o c a l E x c e p t i o n 2 )
34 {
35 E x c e p t i o n l o c a l E x c e p t i o n 2 = l o c a l E x c e p t i o n 1 ;
36 P r i n t S t r e a m l o c a l P r i n t S t r e a m 3 = System . e r r ;
37 l o c a l P r i n t S t r e a m 3 . p r i n t l n ( "EXCEPTION" ) ;
38 }
39 i n t k = 4 ;
40 }
41 / / ins trumented code −> end propagat ion here
42 E x c e p t i o n H a n d l e r . e n d P r o p a g a t i o n ( ) ;
43 P r i n t S t r e a m l o c a l P r i n t S t r e a m 4 = System . o u t ;
44 l o c a l P r i n t S t r e a m 4 . p r i n t l n ( "END" ) ;
45 }

Listing 4.7: Intrumented branch point before try block
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1 p r i v a t e s t a t i c vo id m2 ( )
2 throws ArrayIndexOutOfBoundsExcep t ion {
3 System . o u t . p r i n t l n ( " E n t e r e d method m2" ) ;
4 / / t h i s method throws an ArrayIndexOutOufBoundsException
5 m1 ( ) ;
6 }

Listing 4.8: Method capable of propagate exception

1 p r i v a t e s t a t i c vo id m2 ( )
2 throws ArrayIndexOutOfBoundsExcep t ion
3 {
4 P r i n t S t r e a m l o c a l P r i n t S t r e a m = System . o u t ;
5 l o c a l P r i n t S t r e a m . p r i n t l n ( " E n t e r e d method m2" ) ;
6 / / ins trumented code −> s t a r t propagat ion here
7 E x c e p t i o n H a n d l e r . s t a r t P r o p a g a t i o n ( ) ;
8 / / t h i s method throws an ArrayIndexOutOufBoundsException
9 m1 ( ) ;

10 / / ins trumented code −> end propagat ion here
11 E x c e p t i o n H a n d l e r . e n d P r o p a g a t i o n ( ) ;
12 }

Listing 4.9: Intrumented method capable of propagate exception

block. With this in mind, the exception object is analyzed, and its type is compared to the
types handled by the catch blocks(in this case, there is just one handler block). We can
see that the exception thrown in line 6 will be always caught in line 8, as the handler gests
exception of the same type. As no more exception objects are thrown in this method, the
propagation stays just inside the try block, starting in line 5, and ending in line 10.
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1 p r i v a t e s t a t i c vo id m5( i n t a )
2 throws IndexOutOfBoundsExcep t ion {
3 System . o u t . p r i n t l n ( " E n t e r e d method m3" ) ;
4 t r y {
5 i f ( a ==1){
6 throw new ArrayIndexOutOfBoundsExcep t ion ( ) ;
7 }
8 } ca tch ( Ar ray IndexOutOfBoundsExcep t ion e ) {
9 System . o u t . p r i n t l n ( " Caught e x c e p t i o n i n m5" ) ;

10 }
11 System . o u t . p r i n t l n ( " Leav ing m3 . " ) ;
12 }

Listing 4.10: Try block inside method with ”throws”

1 p r i v a t e s t a t i c vo id m5( i n t p a r a m I n t )
2 throws IndexOutOfBoundsExcep t ion
3 {
4 O b j e c t l o c a l O b j e c t 1 = System . o u t ;
5 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 1 ) . p r i n t l n ( " E n t e r e d method m3" ) ;
6 t r y
7 {
8 / / ins trumented code −> s t a r t propagat ion here
9 E x c e p t i o n H a n d l e r . s t a r t P r o p a g a t i o n ( ) ;

10 i f ( p a r a m I n t == 1)
11 {
12 l o c a l O b j e c t 1 = new j a v a / l a n g / Ar ray IndexOutOfBoundsExcep t ion ;
13 ( ( Ar ray IndexOutOfBoundsExcep t ion ) l o c a l O b j e c t 1 ) . < i n i t > ( ) ;
14 / / method c a l l to throwException
15 t h r o w E x c e p t i o n ( ( E x c e p t i o n ) l o c a l O b j e c t 1 ) ;
16 }
17 }
18 catch ( Ar ray IndexOutOfBoundsExcep t ion l o c a l O b j e c t 2 )
19 {
20 l o c a l O b j e c t 2 = l o c a l A r r a y I n d e x O u t O f B o u n d s E x c e p t i o n ;
21 l o c a l O b j e c t 2 = System . o u t ;
22 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 2 ) . p r i n t l n ( " Caught e x c e p t i o n i n m5" ) ;
23 }
24 / / ins trumented code −> end propagat ion here
25 E x c e p t i o n H a n d l e r . e n d P r o p a g a t i o n ( ) ;
26 O b j e c t l o c a l O b j e c t 2 = System . o u t ;
27 ( ( P r i n t S t r e a m ) l o c a l O b j e c t 2 ) . p r i n t l n ( " Leav ing m3 . " ) ;
28 }

Listing 4.11: Instrumented try block inside method with ”throws”
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5 CONCLUSION AND FUTURE WORK

Working with Java Byte Code analysis and instrumentation is important to improve
security in Java programs. Willenbrock showed in his bachelor thesis an approach to im-
plicit information flow analysis, in order to taint pieces of code that might reveal some
sensitive information given by the user. But his thesis did not deal with exceptions hap-
pening along the code. The majority of Java programs use exception handling to deal
with unnexpected behaviour in runtime, so in this thesis was presented a way to analyze
information flow in the presence of checked exceptions.

The most important goal during this analysis was not to retrieve all instructions en-
closed in a situation where an exception could happen and mark these statements as influ-
ences to a taint propagation, but to minimize this group of instruction to just the ones that
really could leak some data to an attacker.

Along the thesis were present notions of exceptions, how information can flow in a
Java program, and ideas of how to get just influencing statements, with the least false
positives as possible. Later, algorithms to statically analyze the code, marking start and
end points to future taint propagation were explained, and some results of these algorithms
being applied in dummy methods were showed in previous chapter.

Some ideas of future work were also presented, for instance, an analysis of polymor-
phism cases can be done at runtime, because an exception could be at runtime, instantiated
with a different type than foreseen in static analysis, and influences would have to be up-
dated. Another work to be done is integrate the framework with Willenbrock’s, to use his
taint propagation.

Including unchecked exceptions to the analysis is also an important topic, but as al-
most everywhere in the program a runtime exception can happen, an idea would be to at
first use just a few runtime exception types, like supposing that all array accesses could
throw and ArrayIndexOutOfBoundsException for instance, to watch the impact this would
cause in taint propagation.
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