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ABSTRACT
Acanthamoeba is the most common free-living environmental amoeba, it may serve as an important 
vehicle for various microorganisms living in the same environment, such as viruses, being pathogenic to 
humans. This study aimed to detect and quantify human adenoviruses (HAdV) in Acanthamoebas isolated 
from water samples collected from swimming pools in the city of Porto Alegre, Southern Brazil. Free-
living amoebae of the genus Acanthamoeba were isolated from water samples, and isolates (n=16) were 
used to investigate the occurrence of HAdVs. HAdV detection was performed by quantitative real-time 
polymerase chain reaction (qPCR). HAdVs were detected in 62.5% (10/16) of Acanthamoeba isolates, 
ranging from 3.24x103 to 5.14x105 DNA copies per milliliter of isolate. HAdV viral loads found in this 
study are not negligible, especially because HAdV infections are associated with several human diseases, 
including gastroenteritis, respiratory distress, and ocular diseases. These fi ndings reinforce the concept that 
Acanthamoeba may act as a reservoir and promote HAdV transmission through water.
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INTRODUCTION

Contamination of water sources by viruses, bacte-
ria, and protozoa may cause outbreaks of severe 
disease, and the burden of gastroenteritis is a ma-
jor public health problem worldwide (Scheid and 
Schwarzenberger 2012). Human adenoviruses 
(HAdVs) have been associated with outbreaks 
of waterborne diseases, inducing gastroenteritis, 
respiratory infections, conjunctivitis, meningitis, 

and encephalitis, among other diseases (Kocwa-
Haluch 2001, Carter 2005). Most HAdV infections 
are clinically unapparent or associated with mild 
symptoms. However, serious and sometimes fatal 
infections may occur, especially among the young, 
elderly, and immunocompromised (Lorenzo-
Morales et al. 2007). HAdVs belong to the family 
Adenoviridae, genus Mastadenovirus, which 
includes more than 60 serotypes, divided into seven 
species (A to G) (Matsushima et al. 2013). The 
virus particles are nonenveloped, ranging from 70 
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to 100 nm in diameter. The viral genome is a linear, 
double-stranded non-segmented DNA (Shenk 
1996). HAdVs are excreted in large amounts in 
human feces and can be found in sewage, raw 
water, and treated water (Carter 2005).

Acanthamoeba, a free-living protozoan, is 
ubiquitous in water bodies, being characterized 
by high resistance to adverse environmental 
conditions, being able to survive in water even 
after conventional physical-chemical treatment 
for human consumption and recreational use, 
as well as after sewage treatment (Schuster and 
Visvesvara 2004). Acanthamoeba is the most 
common free-living environmental amoebae 
and has a cosmopolitan distribution. It has 
been isolated from a wide variety of habitats, 
such as freshwater lakes and rivers (Ettinger 
et al. 2003, Lorenzo-Morales et al. 2006), 
swimming pools (Gianinazzi et al. 2009), 
drinking water systems (Bernander and Kalling 
1998), hospital hot water systems (Rohr et al. 
1998), groundwater, bottled mineral water, 
and seawater (Lorenzo-Morales et al. 2005a). 
Furthermore, it can be found in soil (Lorenzo-
Morales et al. 2005b), contact lens cleaning 
solutions (Gianinazzi et al. 2009), and surgical 
material (Foronda 1996). In humans, this 
protozoan occurs in the gastrointestinal tract, 
respiratory tract, and central nervous system 
(Kodet et al. 1998). Amoebae are unicellular 
phagocytes that feed on microorganisms in 
their environment, especially inert particles 
larger than 0.5μm (Raoult and Boyer 2010). 
Phagocytic amoebae may harbor different 
bacteria, fungi, and viruses within the same 
cell. Free-living amoebae can be pathogenic 
to humans and have been associated with 
subclinical infections, skin ulcerations, corneal 
infections, sinusitis, pneumonitis, and me-
ningoencephalitis (Schuster and Visvesvara 
2004).

Recreational water is clearly an important 
source of exposure to Acanthamoeba (Lorenzo-
Morales et al. 2005b). The presence of Acantha-
moeba strains in swimming pools has been docu-
mented in several studies (Rivera et al. 1993, 
Tsvetkova et al. 2004, Gianinazzi et al. 2009). 
In Poland (Górnik and Kuzna-Grygiel 2004) and 
Finland (Vesaluoma et al. 1995), acanthamoebae 
were detected in swimming pool water, and in 
Chile, several genera of amoebae were detected, 
including Acanthamoeba (Muñoz et al. 2003). In 
Brazil, Chaves et al. (1985) found acanthamoebae 
in swimming pools located in the city of Campo 
Grande, state of Mato Grosso do Sul, Central-
Western Brazil. In the Lagoa dos Patos estuary, 
Southern Brazil, Sassi et al. (2010) detected the 
presence of Acanthamoeba in 91.7% (11/12) of the 
isolates obtained. Some authors report that these 
amoebae reach the pools through the water supply, 
by air or even by swimmers themselves (Muñoz et 
al. 2003). In the state of Paraná, Southern Brazil, 
Ruthes et al. (2004) diagnosed conjunctivitis caused 
by Acanthamoeba in four patients; one of them did 
not wear contact lenses but used to swim at the club 
weekly, which the authors suggested might have 
led to ocular infection with Acanthamoeba.

It is known that amoebae act as predators in 
the control of microbial communities, serving as an 
environmental reservoir of pathogens and a vehicle 
for phylogenetically diverse microorganisms while 
some of them replicate intracellularly (Barker 
and Brown 1994, Scheid 2014). Acanthamoebae 
have demonstrated the ability to serve as hosts 
for pathogenic bacteria, such as Legionella spp., 
Mycobacterium avium, Listeria monocytogenes, 
and Escherichia coli serotype O157, among others 
(Greub and Raoult 2004). Studies on the relationship 
between viruses and free-living amoebae emerged 
in the early 1980s, when Danes and Cerva (1981) 
demonstrated an association between echoviruses 
and amoebae. Mattana et al. (2006) reported the 
capacity of coxsackie B3 viruses to survive within 
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amoebae for a 6-month cycle; thus, human viral 
pathogens may be phagocytized by these protozoa. 
More recently, a number of giant viruses, such 
as Mimivirus, Marsseillevirus (Raoult and Boyer 
2010), and Pandoravirus (Philippe et al. 2013, 
Scheid et al. 2008, 2014), have been discovered 
in acanthamoebae. Such findings suggest that 
these amoebae have the ability to serve both as a 
reservoir of and as a replication niche for selected 
viruses (Raoult and Boyer 2010). Some studies 
have reported on patients coinfected with human 
pathogenic viruses and amoebae, including HAdV 
and Acanthamoeba (Gajdatsy et al. 2000). The 
fi rst description of the relationship between HAdV 
and amoebae in nature was published by Lorenzo-
Morales et al. (2007), in which HAdV were detected 
in 14.4% (34/236) of environmental isolates from 
amoebae, suggesting that amoebae may play a role 
as a reservoir of HAdVs. However, this study was 
conducted with conventional polymerase chain 
reaction (PCR), and no viral genome quantifi cation 
was performed. The aim of the current study was 
to detect and quantify HAdVs in Acanthamoeba 
isolated from water samples collected from swim-
ming pools in Southern Brazil.

MATERIALS AND METHODS

Acanthamoeba ISOLATES

Environmental Acanthamoeba isolates (n=16) were 
collected from swimming pools located in the city 
of Porto Alegre, Southern Brazil. Acanthamoeba 
isolation was performed according to Caumo et al. 
(2009).

VIRAL NUCLEIC ACID EXTRACTION

Viral nucleic acids (DNA, HAdV) were extrac-
ted using the RTP® DNA/RNA Virus Mini Kit 
(Invitek™, Berlin, Germany), according to the 
manufacturer’s instructions. An initial volume 
of 400 μL of each concentrated water sample 
was used for extraction through a silica fi lter. 

The resulting viral DNA was stored at −80°C 
until processing.

QUANTITATIVE REAL-TIME POLYMERASE CHAIN 
REACTION (qPCR)

HAdV molecular detection was performed by 
qPCR using the commercial kit Platinum® 
SYBR® Green qPCR SuperMix-UDG (Life Tech-
nologies™ Corporation, Carlsbad, California, 
USA), according to the manufacturer’s instructions. 
The qPCR reactions were optimized and carried 
out under the same conditions, and then used as 
controls for absolute quantifi cation of viral DNA 
from prototype samples of HAdV-5. The qPCR 
was carried out in a thermal cycler equipped with 
the iQ5™ Real-Time PCR Detection System (Bio-
Rad™Laboratories, Hercules, California, USA). 
The following primers were used: VTB2-HAdVCf 
(5’-GAGACGTACTTCAGCCTGAAT-3’) and VTB2-
HAdVCr (5’-GATGAACCGCAGCGTCAA-3’) (Wolf 
et al. 2010). In a 25 μL reaction volume, we used 
12.5 μL of the mixture, 1 μL of each primer (20 
pM), 5.5 μL of DNAse-/RNAse-free sterile water, 
and 5.0 μL of the nucleic acid extracted from each 
sample. All reactions included a denaturation cycle 
at 95°C for 10 min, followed by 40 cycles at 95°C 
for 20s and combined annealing/extension at 55°C 
for 1 min. Fluorescence data were collected during 
the annealing/extension step. Then, a denaturation 
curve was obtained to confi rm the specifi city of 
amplifi cation products (a melting step between 55 
and 95°C). To generate standard curves, 10-fold 
serial dilutions of standard controls from 10-1 to 
10-5 were prepared, starting at 6.01x107 genome 
copies (gc) per reaction (HAdV-5). All standard 
controls and samples were run in duplicate. A no 
template control (NTC) and a negative control 
were used in each run to confi rm that there was no 
contamination in the assay PCR product specifi city 
was confi rmed by high-resolution melting (HRM) 
analysis and electrophoresis.
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RESULTS

HAdVs genomes were detected in 62.5% (10/16) 
of Acanthamoeba isolates, ranging from 3.24x103 
to 5.14x105 DNA copies per milliliter of isolate. 
The results are summarized in Table I.

been reported to host a number of different viruses, 
such as giant viruses (Suhre 2005, La Scola et 
al. 2003), adenoviruses (Lorenzo-Morales et al. 
2007), rotaviruses (Sepp et al. 1992, Benyahya 
et al. 1997), and coxsackieviruses (Mattana et al. 
2006). In the present study, HAdVs were detected 
in 62.5% of Acanthamoeba isolates recovered 
from environmental samples (62.5%), a detection 
rate higher than that previously reported in Spain 
(14.4% of isolates). This may be an effect of the 
detection technique used in the present study, since 
qPCR is usually more sensitive than conventional 
PCR (Donaldson et al. 2002).

In this study, HAdV viral loads in acan-
thamoebae ranged from 104 to 105 gc/mL in 90% 
(9/10) of positive samples, while a single isolate 
had 3.24x103 gc/mL. To the best of our knowledge, 
no previous study has quantified HAdVs 
genomes in protozoa, thereby hindering a proper 
comparison. Quantifi cation of HAdV in this study 
was expressed as the number of genome copies/
mL of Acanthamoeba isolate (approximately 
106-107trophozoites per mL). Studies around the 
world show variations in the measurement of 
HAdVs in water, and this amount may be infl uenced 
by the presence of amoebae in water. In river water, 
HAdV concentrations of 102-104 gc/L (Choi and 
Jiang 2005), 101-104 gc/L (Albinana-Gimenez et 
al. 2009), and 103-105 gc/L (Haramoto et al. 2010) 
have been detected, reaching mean values as low 
as <1 gc/L (van Heerden et al. 2005), 5x102gc/L 
(Wyn-Jones et al. 2011), and 101-102 gc/L (Hundesa 
et al. 2006).

According to Scheid and Schwarzenberger 
(2012), free-living amoebae appear to be able to 
act as carriers or vectors of adenoviruses, since the 
internalized viruses are protected to a high degree 
against the adverse actions of various disinfection 
treatments by their host amoebae, thereby playing 
a certain role in the dispersal of adenoviruses. Nev-
ertheless, those authors concluded that, although 
there was no proliferation of adenoviruses in 

TABLE I
Detection of HAdV in Isolates of Acanthamoeba 

(Genomecopies/mL).
Identifi cation Genome Copies /mL
Amoeba 81 4,89E+04
Amoeba PI4 1,28E+04
Amoeba PI8 Neg
Amoeba PI3 2,13E+04
Amoeba PA1 Neg
Amoeba 84 2,09E+05
Amoeba P7 6,70E+04
Amoeba PT5 Neg
Amoeba 95 2,46E+05
Amoeba PI2 Neg
Amoeba P05 3,24E+03
Amoeba 121 2,23E+05
Amoeba P7 Neg
Amoeba 123 8,53E+04
Amoeba PM6 Neg
Amoeba 78 5,14E+05
Neg: Negative 

DISCUSSION

HAdV and Acanthamoeba can be found in aquatic 
environments side by side (Lorenzo-Morales et 
al. 2007), and according to recent reports it seems 
very likely that both microorganisms may interact 
(Scheid and Schwarzenberger 2012). Because 
of the wide distribution and high resistance of 
HAdVs in aquatic environments, they have been 
recognized as potential indicators of human fecal 
contamination. Understanding their interaction with 
free-living microorganisms is, therefore, of great 
interest, especially because there are few studies 
on the interaction between viruses and protozoain 
the literature (Battistini et al. 2013, Scheid and 
Schwarzenberger 2012). Free-living amoebae have 
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Acanthamoeba, the virus was able to maintain its 
infectivity. Their study was the fi rst to prove the 
ability of free-living amoebae to phagocytize and 
ingest adenoviruses, and the use of fl uorescence 
microscopy allowed the detection of such viruses 
within the cytoplasm of the Acanthamoeba 
trophozoites. Lorenzo-Morales et al. (2007) 
considered Acanthamoeba a potential reservoir of 
HAdVs in the aquatic environment, and Battistini 
et al. (2013) demonstrated the resistance of HAdV 
for 105 days internalized in amoebae. These 
protozoa may also serve as a replication niche or 
training fi elds for resistance to the microbicidal 
effects of phagocytic cells, including human 
macrophages, which represent the first line of 
defense against invading pathogens (Thomas and 
Greub 2010, Colson et al. 2013, Scheid 2014). 
Phagocytosis and macropinocytosis are the main 
internalization processes in amoebae, being similar 
to the mechanisms involved in mammalian cells 
(Ghigo 2010), and free-living amoebae can be 
simultaneously infected with viruses and other 
microorganisms, such as bacteria (Yutin and 
Koonin 2009). More importantly, amoebae play 
a significant role as a melting pot for genetic 
exchanges between viruses and bacteria hosted by 
amoebae, and, as a result, viruses and intracellular 
bacteria living in amoebae have a sympatric lifestyle 
and large chimeric genome repertoires (Raoult 
and Boyer 2010, Thomas and Greub 2010). The 
HAdVs found in the present study are more likely 
being internalized and maintained inside amoeba 
cells, since all the experiments were performed on 
Acanthamoeba monolayers at the third passage.

Assuming that amoebae are able to carry 
these pathogens and protect them from external 
agents, in addition to their association with the 
diseases mentioned above, the possibility of ocular 
Acanthamoeba and HAdV coinfection should be 
consi dered in non-bacterial and non-fungal cases 
(Gajdatsy et al. 2000, Lorenzo-Morales et al. 2007). 
This association should also be considered in cases 

of pneumonia given the growing body of evidence 
showing that mimiviruses might cause pneumonia 
in humans and because respiratory HAdV can reach 
the respiratory system using the same vectors as 
those reported by giant viruses (Colson et al. 2013), 
being able to stand up to the micro bicidal effects 
of human macrophages as they have the ability 
to resist phagocytic cells (Thomas and Greub 
2010). The present fi ndings reinforce the idea that 
Acanthamoeba may act as a reservoir and promote 
HAdV transmission through contaminated water. 

RESUMO

Acanthamoeba é a mais comum ameba de vida livre no 
ambiente, pode atuar como um importante veículo para 
vários micro-organismos que vivem no mesmo ambiente, 
tais como vírus, e pode ser patogênica para humanos. 
Este estudo objetivou detectar e quantifi car adenovírus 
humano (HAdV) em Acanthamoebas isoladas de 
amostras de águas coletadas de piscinas na cidade de 
Porto Alegre, no sul do Brasil. Amebas de vida livre do 
gênero Acanthamoeba foram isolados de amostras de 
água, e os isolados (n = 16) foram usados para investigar 
a ocorrência de HAdVs. Detecção de HAdV foi realizada 
usando reação em cadeia de polimerase quantitativa 
(qPCR) em tempo real. HAdVs foram detectados em 
62.5% (10/16) dos isolados de Acanthamoeba, variando 
de 3.24 x 103 a 5.14 x 105 cópias de DNA por mililitro 
de isolado. As cargas virais de HAdV encontradas nesse 
estudo não são negligenciáveis, especialmente porque 
infecções por HAdV são associadas com diferentes 
doenças humanas, incluindo gastrenterites,  doenças 
respiratórias e oculares. Este estudo reforça o conceito 
que Acanthamoeba poderia atuar com um reservatório e 
promover a transmissão de HAdV através da água.

Palavras-chave: Acanthamoeba, ameba de vida livre, ade-
novírus humano, qPCR, piscinas.
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