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Simple Summary: Various new technologies have been used to learn more about tick physiology
and biology in hopes of developing vaccines to protect people and animals from tick infestations.
However, creating these vaccines has been harder than expected. Even though early tests showed
promise, the development of new commercial anti-tick vaccines has not been successful. Since various
tick molecules have redundant or complementary functions, it is necessary to select more than one
molecule to include in the vaccine. Additionally, ticks are spreading to new areas and affecting
new animal and human populations, impelling urgency to find new control methods. This review
focuses on the challenges and progress made in recent years in developing vaccines against different
tick species.

Abstract: Recent advancements in molecular biology, particularly regarding massively parallel
sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks.
While there has been progress in identifying tick proteins and the pathways they are involved in,
the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed,
the development of effective commercial tick vaccines has been slower than expected. While omics
studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-
antigenic vaccine is very complex due to the participation of redundant molecules in biological
pathways. The expansion of ticks and their pathogens into new territories and exposure to new
hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This
situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally,
demanding an urgent availability of vaccines against multiple tick species and their pathogens. This
review discusses the challenges and advancements in the search for universal tick vaccines, including
promising new antigen candidates, and indicates future directions in this crucial research field.

Keywords: cross-protection; parasite; tick; tick-control; vaccine

1. Introduction

Veterinary ectoparasites, such as ticks, cause enormous economic losses, both directly
through bloodsucking and irritation that affect animal welfare, and indirectly through the
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transmission of often debilitating diseases such as babesiosis, theileriosis, and anaplas-
mosis [1]. Besides the high cost of currently available control methods, the increasing
resistance to the drugs used to control vector infestation and treatment for tick-borne
diseases is a major concern worldwide [2]. To enhance the introduction of new animal
health products into specific markets, such as sub-Saharan Africa or South America, it is
crucial to implement innovative strategies in product development that target the diseases
endemic in these regions [3].

Vaccination is usually proposed as a safe and sustainable strategy to overcome prob-
lems related to tick infestation and disease transmission. However, progress in anti-vector
vaccine development has been slow and patchy, and currently, only a handful of vaccines
targeting ectoparasites have been developed and tested successfully [4,5]. Moreover, the
commercialization of promising vaccine candidates for livestock disease is still a com-
plicated process despite lower regulatory thresholds compared to human vaccines [6,7].
Regarding vector-borne diseases endemic in low-income countries, it is difficult to recoup
investments in vaccine development in the absence of government support [8].

The evolutionary complexity of parasites and their intimate relationships with their
vertebrate hosts pose a daunting challenge to rationally design vaccines against these
organisms [9]. All of them can trigger host innate and adaptive immunity that is often
stage-specific [10]. However, parasites (including ticks) possess potent defense mechanisms
to overcome or circumvent host immune responses, thus re-establishing the balance in
favor of the parasite [11–17]. Tick-host interactions over the past 100 million years resulted
in the coevolution of an enormous range of proteins and non-protein factors secreted
in tick saliva. These factors are used initially to locate their hosts and feeding sites and
subsequently to inhibit or modulate the host defense [18], including the hemostatic and
immune system [19–21].

On the other hand, some host species promptly develop protective immune responses
that reject ticks. Therefore, understanding the mechanisms that trigger this protection is
crucial in order to gain a better understanding of tick-host interaction and to find molecular
targets for a vaccine [22]. In some cases, hosts are able to develop a boosting protection
after a second tick infestation [23]. However, due to economic and health reasons, it is not
feasible to rely on the development of natural immunity in order to achieve a reasonable
level of protection for humans and animals against ticks. Moreover, since ticks are vectors
of many important pathogens [24], it is critical to develop a preventive protection method
before the onset of parasitism [25].

Universal vaccines against ticks, i.e., vaccines able to protect against different tick
species, could reduce the costs of control programs. This is because hosts infested by
two or more tick species in one area could be protected using a single vaccine [26]. This
advantage encouraged many research groups worldwide to analyze tick proteins that were
originally used as antigens for homologous vaccination [27] in trials against several tick
species. Previously, several tick proteins were suggested as candidates for a universal
vaccine [28,29]. This review provides updated information on antigen candidates on cross-
vaccination trials that showed protection against tick infestation performed since then,
shedding light on methodological advances in the search for protective antigens. Moreover,
we have addressed remaining challenges in developing universal anti-tick vaccines, rational
strategies for improving tick vaccines, and the impact of tick expansion into new territories
on vaccine development.

2. Previously Described Universal Vaccine Antigen Candidates
2.1. Bm86

Bm86 protein is a Rhipicephalus (Boophilus) microplus (Canestrini, 1888) structural gut
glycoprotein that was identified after a series of sequential fractionations of tick proteins,
which were used to protect bovines against tick infestations [30,31]. This research was
seminal because it introduced the concept of concealed antigen, defined as an antigen
that is not encountered by the host immune system under natural conditions but can
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be reached by host antibodies in the case the host was previously immunized with this
molecule. Recombinant proteins based on R. (B.) microplus Bm86 are the only antigens used
in commercially developed anti-tick vaccines ever developed, named TickGard [32] and
Gavac [33]. Nowadays, however, only Gavac is commercially available in some regions [34].
It has a 55–100% efficacy against R. (B.) microplus populations in Latin America [35]. Since
Bm86 discovery in the 1980s, huge efforts were undertaken to find protective antigens to be
included in universal vaccines [29]. Preliminary results showed that Bm86 and other tick
proteins induce partial cross-protection levels, leading many research groups to perform
vaccination trials testing putative universal antigens. Table 1 summarizes such trials in
recent years.

Table 1. Vaccination trials showing cross-protective vaccine efficacies using tick antigen candidates.

Name Target Tick Species Cross-Protected Tick
Species/Host

Vaccine Efficacy/Infestation
Stage References

Bm86 and orthologs R. (B.) microplus Hyalomma anatolicum anatolicum
(Koch, 1844)/cattle 36.5% (L) [36]

H. a. anatolicum R. (B.) microplus/cattle 26.8% (L); 25.1% (AF) [36]

R. (B.) microplus Hyalomma dromedarii (Koch,
1844)/cattle

89% a, 98% a (L); 29% a, 36% a

(AF) [26]

R. (B.) microplus H. dromedarii/camel 26.7% a, 31.3% a 38.6% a (AF) [26]

Subolesin and orthologs Ornithodoros erraticus (Lucas,
1849) d

Ornithodoros moubata (Murray,
1877)/rabbit ~40.0% (L, N, AF) [37]

O. moubatad O. erraticus/rabbit 50.3% (L, N, AF) [37]
H. a. anatolicum R. (B.) microplus/cattle 54% (L) [38]
Rhipicephalus appendiculatus
(Neumann, 1901)

Amblyomma variegatum
(Fabricius, 1794)/cattle b 50% and 89% (L) [39]

R. appendiculatus Rhipicephalus (Boophilus)
decoloratus (Koch, 1844)/cattle c 51% (L) [39]

A. variegatum R. appendiculatus/cattle b 86% and 83% (L) [39]
A. variegatum R. (B.) decoloratus/cattle c 72% (L) [39]
R. (B.) decoloratus R. appendiculatus/cattle b 66% and 89% (L) [39]
R. (B.) decoloratus A. variegatum/cattle b 58% and 94% (L) [39]
Rhipicephalus haemaphysaloides
(Supino, 1897)

Haemaphysalis longicornis
(Neumann, 1901) 79.3% and 86.6% (AF) [40]

R. (B.) decoloratus R. appendiculatus/cattle 99% (L, N, AF) [41]
Calreticulin H. a. anatolicum R. (B.) microplus/cattle 37.56% (L) [38]
CathL H. a. anatolicum R. (B.) microplus/cattle 22.21% (L) [38]
GST H. longicornis R. appendiculatus/rabbit 67% (AF) [42]

R. (B.) decoloratus/A.
variegatum e

Rhipicephalus sanguineus s.l.
(Latreille, 1806)/rabbit 35% (AF) [43]

P0 R. sanguineus s.l./R. (B.)
microplus d R. (B.) microplus/cattle 96% (L) [44]

R. sanguineus s.l./R. (B.)
microplus d

Amblyomma mixtum (Koch,
1844)/rabbit 54% (L) [45]

Aquaporin R. (B.) microplus R. sanguineus s.l./dog 7.2% (L); 4.5% (N) [46]
O. erraticus O. moubata/rabbit 9.3% (AF) [47]

ABC transporter O. erraticus O. moubata/rabbit 26.7% (AF); 15.4% (AM) [47]
Selenoprotein T O. erraticus O. moubata/rabbit 18.6% (AM) [47]

Ferritin Ixodes persulcatus (Schulze,
1930)

Ixodes ovatus (Neumann,
1899)/guinea pig ~40% (AF) [48]

Cystatin R. (B.) microplus R. appendiculatus/rabbit 11.5% (AF) [49]
Chitinase O. erraticus O. moubata/rabbit 19.6% (AF) [50]
Secreted protein PK-4 O. erraticus O. moubata/rabbit 8.1% (N, AM) [50]
OM03, OM85 and OM99
peptides O. moubata O. erraticus/rabbit 20.7% to 66.1% (N, AF, AM) [51]

CathL, cathepsin L-like cysteine proteinase; GST, glutathione S-transferase; P0, 60S acidic ribosomal protein.
L, larva; N, nymph; AF, adult female; AM, adult male. a protection for specific parameters. b For Bos indicus
(Linnaeus, 1758) and B. indicus × Bos taurus (Linnaeus, 1758) breeds, respectively. c B. indicus × B. taurus breed.
d peptide conjugates. e cocktail vaccine.

Previously, an overall 50% reduction in the engorgement weight of H. a. anatolicum
nymphs fed on Bm86-vaccinated calves was obtained [52]. Furthermore, Bm86 and its
orthologue Haa86 from H. a. anatolicum were used in a vaccination trial against R. (B.)
microplus and H. a. anatolicum infestations [53]. Although both Bm86 and Haa86 pre-
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sented cross-protection, these antigens showed a higher species-specific efficacy, similar
to other H. a. anatolicum subolesin, calreticulin, and cathepsin L-like cysteine proteinase
antigens [38]. Additionally, Bm86 was effective against H. dromedarii infestations in cattle
and camels. On the other hand, the same antigen failed to protect cattle against Amblyomma
sculptum (Berlese, 1888) [26]. In another cross-vaccination trial against Hyalomma spp.,
Hd86 (Hyalomma scupense (Schulze, 1919) Bm86 orthologue), immunized calves presented
a decrease in the number of H. scupense larva, an effect not observed in calves that were
immunized with Bm86 [54]. Intriguingly, Hd86 and Bm86 immunization increased H. scu-
pense and Hyalomma excavatum (Koch, 1844) adult female weight, respectively, showing that
Hd86 and Bm86 efficacy varies according to the tick life stage. It was suggested that Hd86
and Bm86 protection rates variation could result from differences in amino acid sequences
of these antigens among tick species [55] and tick populations [56], as well as different
levels of protein expression in immature and adult life stages [57].

Distinct Bm86 vaccine efficacies against Rhipicephalus (Boophilus) annulatus (Say, 1821)
and R. (B.) microplus could also be related to the activity of tick endogenous protein degra-
dation machinery (proteases) [58]. Since Bm86 protein expression levels in both tick species
are similar, distinct physiologic factors could have caused an increased R. (B.) annulatus
susceptibility to Bm86 vaccine. Proteomic analysis showed R. (B.) annulatus has reduced
protein degradation machinery compared to R. (B.) microplus, which leads to a higher
susceptibility to host immune response factors such as antibodies and the complement
system [58]. It was proposed that Bm86 could be useful in controlling R. (B.) annulatus and
R. (B.) microplus in endemic regions, e.g., North America, using vaccination and standard
eradication practices simultaneously [59,60].

2.2. Subolesin

Subolesin and their orthologs (akirins) are transcription factors that regulate the ex-
pression of signal transduction and innate immune response genes in ticks and other
parasites [61–64]. Cross-protection experiments showed high vaccine efficacies using sub-
olesin and akirins against different parasite species, making these antigens very promising
for a broad universal vaccine [29]. These trials supported further investigations analyzing
the efficacy of subolesin antigens against different parasite and host species using alterna-
tive vaccination protocols. Mono- and multi-antigenic formulations of R. appendiculatus,
R. (B.) decoloratus and A. variegatum subolesins were used in B. indicus and B. indicus ×
B. taurus crossbred cattle, with an efficacy range of 47–94% [39]. However, the protection
developed by bovines immunized with this multi-antigenic formulation was not improved
when compared to mono-antigenic formulations. A different vaccine strategy, using an
oral vaccine combining R. (B.) decoloratus subolesin and heat-inactivated Mycobacterium
bovis, induced protection against an R. (B.) decoloratus and R. appendiculatus infestation in
B. indicus × B. taurus crossbred cattle [41].

In light of evidence showing that subolesin and akirin induce partial protection against
Hyalomma spp. and Rhipicephalus spp. infestations in red and white-tailed deer [65], field
vaccination trials were performed using roe deer, another cervid that is highly important
as a host for ticks and tick-borne pathogens in Europe [66]. For this trial, a chimera of
Ixodes scapularis (Say, 1821) subolesin and Aedes albopictus (Skuse, 1894) mosquito akirin
(Q38) was used, since its protective epitopes are conserved among distinct parasites [67],
which is a necessary feature for a universal vaccine. Although the tick species collected
in the field were not definitely identified, the roe deer showed a smaller number of ticks
(likely Hyalomma marginatum (Koch, 1844), Hyalomma lusitanicum (Koch, 1844), Rhipicephalus
bursa (Canestrini and Fanzago, 1878), and Ixodes ricinus (Linnaeus, 1758) compared with
non-vaccinated animals. Noteworthy, Q38 was able to induce immune protection in rabbits
against larvae of I. ricinus and Dermacentor reticulatus (Fabricius, 1794) [68], showing Q38’s
potential to protect against different tick life stages.

Vaccinations trials using subolesin against the soft ticks O. erraticus and O. moubata
showed a low degree of protection [69], probably due to the induction of non-protective
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antibodies for immunodominant subolesin epitopes in highly structured regions [37].
Subsequently, the prediction of subolesin linear B-cell epitopes, using peptide arrays,
epitope mapping (pepscan), and modelling, was used to design synthetic peptides that
increased the protection rates against these ticks [37]. Besides the use of the complete
protein as an antigen, immunization with synthetic subolesin peptides stimulated the host
immune system to develop antibodies against subolesin unstructured regions. Therefore,
the prediction of B-cell and T-cell epitopes represents a promising tool to improve the
immunogenicity of other tick antigen candidates that show low degree of protection [70], as
well as to design chimeras containing subolesin or other protective antigenic epitopes [71].
Recently, an antigenic B-cell epitope peptide from subolesin was tested as a potential
vaccine candidate using artificial capillary feeding experiments [72] and vaccination under
stable [73] and field [74] conditions, showing partial protection against tick infestation.

Moreover, an alternative approach using a priming immunization with a DNA vaccine
expressing R. haemaphysaloides subolesin, followed by boosters of R. haemaphysaloides recom-
binant subolesin or R. haemaphysaloides subolesin and H. longicornis P0 chimeric polypeptide
provided cross-protection against H. longicornis of 79% and 86%, respectively [40]. The
combination of a DNA vaccine with mono- or multi-protein immunizations is a promising
strategy to increase the efficacy of anti-tick vaccines.

2.3. Glutathione S-Transferases

Glutathione S-transferases (GSTs) are enzymes involved in the detoxification of xeno-
biotics and endogenous compounds [75]. The potential of H. longicornis GST (GST-Hl) to
protect bovines against R. (B.) microplus parasitism has been analyzed [76]. A vaccination
trial showed that GST-Hl combined with R. (B.) microplus Vitellin-Degrading Cysteine
Endopeptidase and Boophilus Yolk pro-Cathepsin decreased R. (B.) microplus infestation in
cattle, conferring an overall protection ranging from 35% to 61% for 3 months [76]. More-
over, R. appendiculatus adult females fed on rabbits immunized with GST-Hl are negatively
affected, leading to an overall vaccine efficacy of 67% [42]. However, the same antigen was
ineffective in protecting rabbits against R. sanguineus s.l. [42]. Furthermore, immunogenicity
and cross-recognition of GSTs from R. appendiculatus, R. (B.) decoloratus, R. (B.) microplus,
A. variegatum, and H. longicornis were analyzed [43]. Rhipicephalus (B.) decoloratus and
A. variegatum GST presented high cross-protection potential and were selected to compose
an experimental cocktail vaccine, which was able to reduce 35% of R. sanguineus s.l. adult
female numbers in immunized rabbit. All together, these data demonstrate that GSTs are
potentially useful antigens to compose vaccines against Rhipicephalus spp.

3. New Cross-Protection Antigen Candidates

Protein P0, one of the eukaryotic 60S ribosomal proteins, has a high identity among
ticks of different genera but a low sequence similarity with their hosts’ P0 [77], which is an
important feature for candidate antigens. Rhipicephalus sanguineus s.l. and R. (B.) microplus
P0 have identical sequences, from which a peptide composed of 20 amino acids within a
highly immunogenic region was synthetized and used in vaccination trials [77]. The overall
efficacy of this peptide as a protective antigen was 90% for R. sanguineus s.l. [77] and 54%
for A. mixtum [45] in rabbits, and 96% against R. (B.) microplus in cattle [44]. Surprisingly,
when the same peptide was tested as a conjugate with Bm86 to immunize dogs and cattle,
the efficacies were 95% (peptide alone) and 85% (conjugated) against R. sanguineus s.l.,
and 89% (peptide alone) and 84% (conjugated) against R. (B.) microplus [78], indicating
that the effect is not additive. However, O. erraticus P0 showed no cross-protection against
O. moubata infestation [50]. Thus, the antigen P0 may be useful to compose a broad-
spectrum vaccine against hard ticks, as well as against pathogens transmitted during tick
feeding, as demonstrated for Babesia spp. [79].

Using a vaccinomic approach, new tick proteins with high efficacy in controlling
I. ricinus and D. reticulatus in rabbits and dogs [80] were successfully identified. These trials
showed efficacies up to 80% in animals individually inoculated with the following proteins:
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(1) heme lipoprotein from I. ricinus, (2) glypican-like protein, (3) secreted protein involved
in homophilic cell adhesion, (4) sulfate/anion exchanger, or (5) signal peptidase complex
subunit 3 from D. reticulatus. Similarly, through omics and in silico prediction algorithms,
peptides from O. moubata midgut membrane antigens were selected for rabbit vaccination
against O. moubata and O. erraticus [51]. Interestingly, the levels of protection were higher
against O. erraticus than O. moubata. Other proteins in the Ixodidae and Argasidae families,
such as R. (B.) microplus [46] and O. erraticus [47] aquaporins, O. erraticus ABC transporter,
selenoproteins T, chitinase, secreted protein PK-4 [47,50], Ixodes persulcatus ferritin 2 [48]
and R. (B.) microplus cystatins [49], showed limited cross-protection rates. Further studies
are necessary to improve the protection levels achieved with these antigens.

4. Vaccines Blocking Pathogen Transmission

An alternative strategy to control tick-borne pathogens is through a vaccine that can
block the transmission of these organisms to the host [81]. Some pathogens take advantage
of tick saliva molecules for their transmission at an early stage of tick attachment, which
increases their dissemination to the host [82]. If a vaccine is able to interfere in key tick
physiology processes, pathogen transmission could be blocked. Examples of such processes
and potential antigens include: (1) disruption of tick defense mechanisms targeting the
microbiota biofilm modulator PIXR [83], (2) reduction in tick attachment time on the host by
targeting the cement cone protein 64TRP [84,85], and (3) impairment of tick molecules that
favor pathogen development and invasion into the tick, such as the antimicrobial protein
IAFGP [86]. In this sense, a proposal for a universal anti-tick vaccine with a transmission-
blocking potential is a promising tool to control ticks and pathogens, as suggested for Bm86
homologues to control Borrelia burgdorferi (Burgdorfer, 1982) host infection [87].

Another example of a candidate antigen to control pathogens includes a R. (B.) mi-
croplus subolesin fused with Anaplasma marginale (Theiler, 1910) Major Surface Protein 1a
(SUB-MSP1a), which showed cross-protection potential against R. (B.) annulatus [88]. SUB-
MSP1a was further used in bovine and sheep vaccination trials against R. (B.) microplus [89].
In this trial, the prevalence of Babesia bigemina (Wenyon, 1926) was reduced, showing the
potential of SUB-MSP1a to control tick infestations and pathogen infection/transmission.
Indeed, subolesin was also shown to be important for tick transmission of Anaplasma
phagocytophilum (Foggie 1949), A. marginale, and B. burgdorferi [90]. Nevertheless, the
multi-antigenic vaccine containing R. (B.) microplus subolesin, R. appendiculatus TRP64, and
3 histamine binding proteins, as well as Theileria parva (Theiler, 1904) sporozoite antigen
p67C, did not affect R. appendiculatus survival and transmission of T. parva to cattle [91].
Using a different methodology, I. ricinus fed by artificial membranes with blood containing
antibodies against an I. scapularis lipocalin or against an I. scapularis lectin, impaired tick
engorgement, as well as A. phagocytophilum infection [92]. These two antigens identified
using a vaccinomic approach are good examples of how this methodology can be useful for
antigen discovery.

In addition to that, a live anti-tick vaccine was developed using attenuated Babesia
bovis as a carrier to express tick proteins in calves [93]. The calves immunized with B. bovis
carrying the H. longicornis GST gene generated anti-HlGST antibodies and developed mild
babesiosis. Rhipicephalus (B.) microplus reared in these calves were smaller, and their fecun-
dity was affected. This dual vaccine approach opens the perspective to develop universal
vaccines not only against several tick species but also against tick-borne pathogens.

5. Advances and Remaining Challenges to Universal Tick Vaccines

This essay reviews studies showing tick antigens being evaluated for vaccine protec-
tion levels, including different stages of method development: from in silico or in vitro
antigenicity, antibody cross-binding, and artificial feeding analysis, to vaccination trials
using target hosts such as cattle, deer, and dogs. However, it is difficult at this point to
compare them directly in order to find the best options to be included in a multi-antigenic
vaccine. Even when limiting the comparison to antigens that were already analyzed in natu-
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ral hosts, there are many biological variables to consider in differentiating vaccine efficacies,
including host and tick diversity [39,94,95]. Moreover, although Canales’ method [33] for
calculating the overall efficacy of the vaccine has become a standard and has been widely
used in vaccination trials, alternative considerations have also been employed to evaluate
levels of vaccine protection. These differences make it challenging to compare the level of
protection across different studies [96,97]. The use of standard protocols would be helpful
to allow the estimation of vaccine efficacy for ticks with similar biology and for similar
experimental approaches.

Another important point in cross-vaccination studies is to verify if a given tick species
is not actually two or more related but distinct species. Accurate species identification
is fundamental to analyze homologous or heterologous vaccine efficacies [98]. Some
examples of ticks that were the subject of vaccination trials and were under-speciated
groups at the time include: (1) the formerly Amblyomma cajenense (Fabricius, 1787), now
known as a complex of six valid species, including A. sculptum [99], (2) R. sanguineus s.l.,
which is contested to comprise multiple distinct species [100], and (3) R. (B.) microplus,
which was also split into two species, giving rise to the new species Rhipicephalus (Boophilus)
australis (Fuller, 1899) [101]. Thus, for example, vaccine antigen candidates such as protease
inhibitors used against A. sculptum [102] must be considered as heterologous protection
against other A. cajennense complex species. Importantly, the low protection rates obtained
in some vaccination trials performed on R. (B.) microplus using TickGard and R. australis
using Gavac could be the result of physiologic and/or Bm86 amino acid sequence variations
between these two species [36,103,104]. Nevertheless, the selection of vaccine antigens
from conserved proteins among tick species or isolates from different geographic areas will
contribute to avoid vaccine inefficacy due to tick species misidentification [105,106]. In this
context, the development of universal vaccines is highly desirable.

5.1. Rational Strategies for Improving Tick Vaccines

Different protocols for improving vaccines against multiple tick species were devel-
oped recently, thanks to advances in molecular biology, bioinformatics, and new material
for vaccine components, such as adjuvants. Furthermore, the use of multiple antigens in
a universal vaccine has been proposed, offering advantages such as protection against
different tick species and different stages of the tick life cycle, in addition to the pathogens
carried by them [107]. Multi-antigenic vaccines prove particularly advantageous for ticks
with a single host, such as R. (B.) microplus, as they remain on the same host throughout their
larval, nymphal, and adult stages. During this parasitic cycle, the tick produces distinct
molecules to evade the host’s immune response [108–111]. Moreover, for multi-antigenic
vaccines to be effective against ticks with three hosts, they must incorporate proteins spe-
cific to each life stage of the parasite that infests each host. Therefore, regardless of the
number of hosts affected by tick infestations, a multi-antigenic vaccine should encompass
protective antigens targeting various life stages of different tick species, as well as different
secreted molecules by the same tick species. The use of multiple antigens in single vaccines
or chimeric constructs has shown promising levels of protection in some cases, although
some antigen combinations did not increase vaccine efficacy [107]. An interesting strategy
proposed was the use of oral vaccines for the control of tick infestations, which, despite
being incipient, affected tick survival and fertility, justifying further experiments [41,112].

In addition to in vivo trials, the immunogenicity of a number of tick molecules was an-
alyzed in silico, revealing the potential of cross-protective tick antigens to be used for other
tick species, such as aquaporin [113] and GSTs [114]. Similarly, potential proteins to be used
for vaccines were discovered by reverse vaccinology analysis [97,115]. The use of systems
biology is also a promising technique for the development of vaccines against ticks and their
vectored pathogens [116]. Using this tool, it is possible to propose antigens for new genera-
tion vaccines that make use of transcriptomes, proteomes, and immunogenomics. Through
“omics” analyses, it is possible to find not only antigens but also adjuvants for use in tick
vaccines [107]. New generation adjuvants are under development to increase the immune
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response level, quality, and duration against infection and parasitic diseases [117,118]. For
ticks, the performance of adjuvant formulations is currently being analyzed to improve the
efficacy of known antigens such as Bm86, showing increased protections levels, although
adverse reactions such as cutaneous side effects remain an issue [119]. A self-adjuvancing
antigen carrier study indicated the immunogenicity, biodistribution, and safety of Bm86
carried by silica nanoparticles, demonstrating the potential of this delivery platform in
anti-tick vaccine applications [120].

New vaccine delivery systems are being developed to protect against ticks and tick-
borne diseases, including the use of lipid nanoparticle (LNP)-mRNA vaccines [121,122].
This technology offers an alternative to live attenuated or subunit-based vaccines [123]. An
Ixodes scapularis salivary gland protein encoded by mRNA using this system decreased
tick engorgement and B. burgdorferi transmission [122]. Interestingly, immunization with
mRNA encapsulated into lipid nanoparticles induced not only a humoral immune response
against Powassan virus, another pathogen transmitted by I. scapularis, but also against other
tick-borne flaviviruses [121]. Other promising delivery systems include viral vectors [124]
and live parasite vaccines [125].

5.2. Impact of Tick Expansion into New Territories for Vaccine Development

Tick geographic expansion is speeding up worldwide, including for species that affect
human wealth or economic activities, such as I. scapularis [126], H. longicornis [127] and
R. (B.) microplus [128,129]. The losses caused by tick parasitism worldwide are estimated
to be around USD 20 to USD 30 billion annually [130], a figure that will likely increase
as ticks move to new areas due to global climate change. The presence of compatible
hosts, climate, physical, and biotic factors is essential for tick establishment into new
territories [104,129,131,132], where tick-borne pathogens can eventually also be introduced.
For long-distance dispersion, human action as well as mammal and bird migration play a
main role in such expansions [133,134]. Otherwise, for shorter distances, factors such as
proximity to a tick-parasitized area, forest cover, and rivers are predicted to be favorable
for tick spread [126].

Appropriate climate is one major restriction for tick establishment into new areas [131].
Consequently, the ability to exploit new geographic areas relies on the tick ecological
plasticity. Species Distribution Modeling (SDM) is an in silico methodology used to analyze
climatic niche expansion of I. ricinus, the most important tick vector of pathogens in
Europe [131]. This work predicted that I. ricinus is expanding to about two times the
current area due to an increase in human demographics and CO2 production. Otherwise,
changes in temperature, rainfall, and moisture can shrink or increase tick geographic range,
as a model predicted for the eastern paralysis tick Ixodes holocyclus (Neumann, 1899) in
Australia [132] or for the bont tick Amblyomma hebraeum (Koch, 1884) in Zimbabwe [135].
Similarly, I. ricinus expansion would be affected by the balance between rising temperatures
that extends the questing season and favor survival, and droughts that promote tick
mortality [136]. Model predictions were used to forecast suitable habitat for R. (B.) microplus
distribution in West Africa [137] and South America [129], where temperature was a key
determinant for potential tick invasion.

The presence of ticks in new geographic areas imposes challenges to control strategies
since new hosts will be susceptible to ticks and tick-borne pathogens [138]. This is a
concern, especially for highly generalist ticks such as H. longicornis, already spread in North
America and with the potential for expansion to new areas in Russia, equatorial Papua
New Guinea, and Pacific Islands [129]. Another example includes the wild host reservoir
for pathogens, e.g., B. burgdorferi transmitted by I. scapularis, which could increase the
difficulty to eliminate Lyme disease in North America [126]. In these cases, the success
of vaccination programs could be hindered by the presence of wild animals living near
humans and livestock. Additionally, the invasion of R. (B.) microplus into new areas can
disturb not only hosts but also native tick species, as is the case of R. (B.) decoloratus in
Angola [128], Benin [138], and South Africa [139]. The recent expansion and establishment
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of R. (B.) microplus in these countries has already resulted in the partial displacement of R.
(B.) decoloratus, affecting the stability of native and non-native pathogens.

Monitoring new emergence, as well as predicting the invasion of ticks into specific
areas, is essential to guide strategies to develop a vaccine protecting against several tick
species. For instance, hosts such as bovines or white-tailed deer would be immunized,
respectively, against R. (B.) microplus and R. appendiculatus in Africa [128,139], and R. (B.)
annulatus and R. (B.) microplus in America [140]. Universal vaccines would be extremely
valuable for regions where the economy is heavily dependent on livestock activity.

6. Future Directions

Although several antigens have shown promise to achieve anti-tick vaccines, there
are many factors that present challenges in commercializing these vaccines [4]. Among
these factors are the importance of the global market for acaricides and repellents, the
safety and cost effectiveness of vaccines, as well as the need to protect against multiple
ticks, pathogens, or other parasites in animals [4]. In this regard, cross-protection vac-
cines for specific ticks and tick-vector pathogens occupying the same geographic regions
are highly dependent on antigen selection (Table 2). Moreover, most data obtained until
now show enhancement of vaccine efficacy if the vaccine formulation includes proteins
that are present in multiple structures or physiological processes of ticks [141]. The ad-
vances in vaccinology using genomic, transcriptomic, proteomic, RNA interference, phage
display, DNA vaccine, epitope prediction, and other technologies have soared in recent
years, and their contributions to finding new antigen candidates against multiple tick
species is unquestionable [47,93,130,142–145]. Even for a well-known tick antigen such
as Bm86, improved omics analyses and systems biology applications have been useful in
expanding their use against different tick species [146]. For example, extensive functional
polymorphism analysis of Bm86 from R. (B.) microplus endemic to different geographical
regions indicates a cross-protection potential of this protein [147]. Effectively, methods to
predict new B-cell epitopes using tick proteomes are under development [148], ranking
antigenic peptides under different experimental conditions using structural information
and sequence similarity. With this approach, fifteen complete sequences of R. (B.) microplus
Bm86 were used to predict epitope immunogenic scores, and the most promising peptides
can be tested in trials in order to select an antigen capable of protecting against multiple
tick species [148].

Table 2. Cross-protection antigen candidates to control ticks and pathogens occupying the same
geographic regions.

Geographic Region Antigen Target Tick Species Target Tick Borne
Disease References

Africa and Asia Bm86 and orthologs R. (B.) microplus, H. a. anatolicum,
H. dromedarii B. burgdorferi [26,36,53,87]

Calreticulin and CathL R. (B.) microplus, H. a.anatolicum [38]

Africa Subolesin and orthologs
O. moubata, O. erraticus, R. (B.) microplus, H. a.
anatolicum, A. variegatum, R. (B.) decoloratus,
R. appendiculatus

[37,39,41]

ABC transporter O. moubata, O. erraticus [47]

GST R. appendiculatus, R. (B.) decoloratus,
A. variegatum, Rhipicephalus sanguineus s.l. B. bovis [42,43,93]

Aquaporin R. sanguineus s.l., O. moubata [46,47]
Selenoprotein T, Chitinase,
Secreted protein PK-4,
OM03, OM85 and OM99
peptides

O. moubata, O. erraticus [47,50,51]

Asia Subolesin and orthologs R. (B.) microplus, H. anatolicum, H. longicornis,
R. haemaphysaloides B. burgdorferi [38,40,87]

Ferritin I. ovatus, I. persulcatus [48]
Americas Subolesin and orthologs R. (B.) microplus, R. (B.) annulatus B. bigemina [89]

P0 R. (B.) microplus, A. mixtum [44,45]

CathL, cathepsin L-like cysteine proteinase; GST, glutathione S-transferase; P0, 60S acidic ribosomal protein.
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The Bm86 antigen and their orthologs have been investigated for more than 30 years,
and these studies support the idea of a universal vaccine, or at least a broad-spectrum
vaccine, especially to protect against R. (B.) annulatus and R. (B.) decoloratus that coexist
with R. (B.) microplus in America and Africa, respectively. However, despite developing
cross-protection in most cases, vaccination with Bm86 and its orthologues does not always
result in protection against different tick species [149]. Similarly, subolesin and its orthologs
are emerging as promising candidates, since these proteins have been extensively tested
against many tick species in laboratory and wild animals, including deer species endemic
to America and Eurasia, which are involved in the maintenance of tick and tick-borne
pathogen populations. A tick research consortium named CATVAC (Cattle Tick Vaccine
Consortium) is working to develop a vaccine against R. (B.) microplus using some of the
most promising antigens, including subolesin, to be commercialized in Africa [141]. Other
tick research consortia for the development of anti-tick vaccines include ANTIDotE (Anti-
tick Vaccines to Prevent Tick-borne Diseases in Europe), aiming to protect hosts against
I. ricinus in Europe [150], and INCOGARR (Immunogens compatible with integrated
management strategies in tick control), to protect ruminants against R. (B.) microplus using
the P0 antigen [151]. The financing of such consortia combined with methodological
advances, new vaccination protocols, and the use of multi-antigenic formulations, will
bring anti-tick vaccines forward as desirable alternatives to control ticks and tick-borne
pathogens in the near future.
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