

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

JOÃO CLAUDIO RODRIGUES AMÉRICO

A study of the impact of real-time constraints in Java/OSGi applications

Trabalho de Graduação.

Prof. Dr. Cláudio Fernando Resin Geyer

Orientador

Porto Alegre, junho de 2010.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitora de Graduação: Profa. Valquiria Link Bassani

Diretor do Instituto de Informática: Prof. Flávio Rech Wagner

Coordenador do CIC: Prof. João César Netto

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

AGRADECIMENTOS

Primeiramente, gostaria de agradecer a minha familia, pelo carinho, atenção e apoio

desmedidos ao longo não só dos anos de estudo, mas de toda a minha vida.

Agradeço à Universidade Federal do Rio Grande do Sul e ao Instituto de Informática

pelo ensino de alta qualidade que me foi conferido durante a minha graduação e pela

oportunidade que me foi dada de complementar a minha formação através de um intercâmbio

e de um duplo diploma na França.

Agradeço ao professor Claudio Fernando Resin Geyer pela orientação durante a

realização deste trabalho e durante os meus estudos de duplo diploma.

Agradeço a Walter Rudametkin pelo seu apoio, conselhos, orientação e amizade

durante a minha estadia na França. Agradeço também ao professor Diogo Onofre Gomes de

Souza, que me acompanha desde o ensino médio e que muito me apoiou ao longo desses

anos.

Gostaria de agradecer aos colegas e amigos que fiz durante os meus anos de estudos

na UFRGS pelos momentos de descontração, pelas risadas e pelas partidas de truco. Não

obstante, agradeço também aos meus amigos fora da UFRGS, que souberam compreender

todas as vezes em que foram trocados por noites de trabalho.

Por fim, agradeço a todos que tenham contribuído de alguma forma para o meu

trabalho.

SUMÁRIO

LISTA DE FIGURAS ... 7

LISTA DE TABELAS .. 8

NOTA EXPLICATIVA .. 9

ABSTRACT .. 10

RESUMO .. 11

1 INTRODUCTION .. 12

1.1 CONTEXT ...12

1.2 OBJECTIVES ..13

1.3 DOCUMENT OUTLINE ..13

2 STATE OF THE ART .. 14

2.1 INTRODUCTION ..14

2.2 REAL-TIME JAVA..15

2.2.1 Real-time Computing ...15

2.2.1.1 Definitions and Concepts ...15

2.2.1.2 Predictability in Real-Time Systems ...17

2.2.1.3 Determinism in Real-time Systems ...17

2.2.1.4 Real-time Operating Systems ...18

2.2.1.5 Real-Time Scheduling ..19

2.2.1.6 Real-time Programming Languages ...20

2.2.2 Java versus Real-Time Systems ..21

2.2.2.1 An Overview of Java ..21

2.2.2.2 Java Issues in Real-Time Applications ...23

2.2.3 Real-time Solutions for Java ...24

2.2.3.1 Early Work in Real-Time Java ...24

2.2.3.2 The Real-Time Specification for Java ...25

2.2.3.3 Implementations of the RTSJ ..26

2.2.3.4 Other Real-Time Solutions for Java ...27

2.3 DYNAMIC SOFTWARE ADAPTATION ..29

2.3.1 Dynamic Software Architectures ..29

2.3.2 Definitions and Concepts ..31

2.3.3 Approaches for Dynamic Software Adaptation..31

2.3.3.1 Separation of Concerns..32

2.3.3.2 Computational Reflection...32

2.3.3.3 Dynamic Service-Oriented Architectures ..33

2.3.3.4 Component-Based Design ..34

2.3.3.5 Other Factors ..35

2.3.4 Dynamic Adaptive Frameworks..35

2.3.5 Real-time Dynamic Adaptive Systems ..38

2.4 OSGI SERVICE PLATFORM ..41

2.4.1 Definitions and Concepts ..42

2.4.2 Module Layer ...43

2.4.3 Lifecycle Layer ..44

2.4.4 Service Layer ...45

2.4.5 OSGi Applications ...46

2.4.6 Real-Time OSGi ..47

2.5 SUMMARY ...49

3 REAL-TIME CONSTRAINTS IN THE OSGI DYNAMIC PLATFORM 51

3.1 REAL-TIME ISSUES IN DYNAMIC SERVICE-ORIENTED COMPONENT MODELS52

3.2 REAL-TIME ISSUES IN THE OSGI PLATFORM ..53

3.3 SCENARIO: VIDEO MONITORING APPLICATION ...55

4 PROPOSITION .. 57

4.1 ARCHITECTURAL FREEZING ..57

4.2 REAL-TIME DYNAMIC SERVICE LEVEL AGREEMENT ...60

4.2.1 RTD-SLA Content ...61

4.2.2 Service Level Management...62

4.3 REAL-TIME AWARE OSGI PLATFORM ..63

4.3.1 OSGi Real-time Core and Code Instrumentation ...64

4.3.2 Real-time SLA in OSGi ..64

4.3.3 Architectural Lock in OSGi ..65

5 IMPLEMENTATION... 67

5.1 CHOICE OF THE APPROACH ...67

5.2 CHOICE OF THE PLATFORM ...68

5.3 PROTOTYPE IMPLEMENTATION ..68

5.4 VALIDATION ...69

6 CONCLUSIONS AND PERSPECTIVES .. 71

6.1 CONTRIBUTION ..72

6.2 FUTURE WORK ...73

7 REFERENCES ... 75

ANEXOS ... 80

ANEXO I: RESUMO ESTENDIDO EM PORTUGUÊS ...81

ANEXO II: ARTIGO SUBMETIDO PARA RTNS 2010 ..87

7

LISTA DE FIGURAS

Figure 1. Periodic (a), aperiodic (b) and sporadic (c) tasks. ... 16

Figure 2. Platform independence in Java .. 22

Figure 3. Dynamic software evolution.. 30

Figure 4. Aspect Weaving.. 32

Figure 5. Meta-object protocol for computational reflection ... 33

Figure 6. a) Publish-find-bind service interaction pattern b) Service update and service publish in DSOA

c) Service removal in DSOA ... 34

Figure 7. Common representation of a component .. 35

Figure 8. OSGi bundles and dependency resolution. ... 43

Figure 9. State diagram representation of OSGi bundle lifecycle [OSG05].. 44

Figure 10. OSGi and RTSJ memory areas .. 53

Figure 11. Dynamic availability in the motion detection system ... 55

Figure 12. Machine state representation of system architectures ... 58

Figure 13. Machine state representation of a system architecture with architectural freezing 59

Figure 14. a) Pseudocode for freezing a system architecture b) Pseudocode responsible for freezing the

system architecture in a platform ... 60

Figure 15. UML diagram of RTD-SLA .. 62

Figure 16. Real-time SLA and SLM... 63

Figure 17. Component vs. Bundle metadata ... 65

Figure 18. Real-Time State Manager and Solution Architecture .. 69

Figure 19. Architecture of the validation test .. 70

8

LISTA DE TABELAS

Table 1. RTSJ implementations ... 27

Table 2. Implementations of the OSGi R4 Specification ... 46

9

NOTA EXPLICATIVA

Esta monografia é fruto de um trabalho de um ano (fev/2009 - ago/2009 e jan/2010 -

jun/2010) desenvolvido durante meu duplo diploma. Ela é constituída de duas partes. A

primeira mostra a instrumentação de bytecode para transformação de aplicações escritas com

a API standard de Java em aplicações que utilizam a API de tempo-real de Java e o seu

impacto no determinismo das aplicações. Este trabalho constituiu o meu projeto de fim de

estudos na ENSIMAG e validou o meu primeiro ano de duplo diploma. Entretanto, visto que

ele foi desenvolvido durante o meu estágio na Bull, seu conteúdo foi classificado pela

empresa como sendo confidencial à escola e à empresa. Mesmo assim, um artigo

apresentando a ferramenta que foi construída durante o estágio foi escrito e submetido à 18ª

Conferência Internacional em Sistemas de Rede e Tempo-Real (RTNS 2010). O artigo

submetido pode ser encontrado nos anexos deste trabalho.

A segunda parte do trabalho, descrita nessa monografia, é uma continuação da

primeira. Em suma, a abordagem de instrumentação foi utilizada para transformar um

servidor de aplicação Java Enterprise Edition cujo núcleo é constituído de uma plataforma

OSGi em tempo-real. Tendo em mente que isto não foi suficiente, a segunda parte do trabalho

investiga a questão do dinamismo da plataforma OSGi e o impacto do mesmo sobre restrições

temporais. Para resolver esta questão, foi utilizada uma abordagem baseada no congelamento

da arquitetura das aplicações hospedadas na plataforma e a utilização de acordo de níveis de

serviço para a aceitação das reconfigurações. Este trabalho foi desenvolvido durante o meu

estágio em um laboratório de pesquisa especializado em OSGi, validando o meu segundo ano

de duplo diploma.

10

ABSTRACT

Real-time requirements and software runtime adaptation are two needs of today‟s

software. On the one hand, the most important characteristics in real-time applications are

their predictable behavior and deterministic execution time. On the other hand, runtime (also

called dynamic) adaptive software have as main characteristic the capability of being

modified and updated at execution time, what makes it more flexible and robust.

In the context of Java platform, many solutions for dealing with both aspects

separately have been developed. Among the real-time solutions, the most popular is the Real-

Time Specification for Java (RTSJ) and its implementations, which offers a complete API for

the development of real-time applications in Java. Likewise, the OSGi Service Platform is one

of the most popular solutions for developing and deploying dynamic adaptive software. One

of the reasons of its popularity is the fact that it combines both service-oriented computing

and component-based design concepts in a simple service-oriented component model. The

OSGi Service Platform has become the de facto platform for developing flexible and modular

software, and many Java applications are being migrated and developed by means of its

component model. However, due to the popularization of real-time solutions, some of these

applications may have timing constraints which cannot be respected because of the platform

dynamic behavior and the fact that service-oriented component-based applications

architectures may change at execution time. The goal of this project is to suggest and evaluate

solutions for this issue.

Keywords: Service-oriented architecture, component-based development, service-

oriented component models, dynamic adaptive software, real-time, RTSJ, Java, OSGi.

11

RESUMO

Restrições de tempo-real e adaptação de software em tempo de execução são duas

necessidades frequentes nos sistemas modernos. De um lado, as características mais

importante dos sistemas de tempo-real são a sua preditibilidade e o seu tempo de execução

determinista. De outro lado, aplicações adaptáveis em tempo de execução tem como principal

característica a capacidade de serem modificáveis e atualizáveis em tempo de execução, o que

as torna flexíveis e robustas.

No contexto da plataforma Java, muitas soluções lidando separadamente com estes

dois aspectos foram desenvolvidas. Entre as soluções de tempo-real, a mais popular é a

Especificação de Tempo-Real para Java (RTSJ) e suas implementações, que oferecem uma

API completa para o desenvolvimento de aplicações de tempo-real em Java. Da mesma

forma, a plataforma de serviços OSGi é uma das soluções mais populares para o

desenvolvimento e implementação de software dinamicamente adaptável. Um dos motivos

para sua popularidade é o fato de que ela combina conceitos de ambas abordagens orientada a

serviços e baseada em componentes. A plataforma de serviços OSGi tornou-se o padrão de

facto para o desenvolvimento de sistemas flexíveis e modulares, e muitas aplicações tem sido

migradas e desenvolvidas utilizando o seu modelo de componentes. Entretando, com a

popularização das soluções de tempo-real, algumas destas aplicações podem apresentar

restrições temporais que não poderão ser respeitadas devido ao comportamento dinâmico da

plataforma e ao fato de que a arquitetura das aplicações abrigadas na plataforma OSGi podem

mudar ao longo de sua execução. O objetivo deste trabalho é de avaliar este problema e

sugerir soluções para o mesmo.

Palavras-chave: Arquiteturas orientadas a serviços, desenvolvimento baseado em

componentes, modelos de componentes orientados a serviços, tempo-real, RTSJ, Java, OSGi,

software dinâmicamente adaptável.

12

1 INTRODUCTION

1.1 Context

Dynamic adaptive behavior and real-time requirements are common needs of today‟s

software. While the former primes for flexibility and unforeseen modifications in the

environment at runtime, the latter concerns predictability and determinism of application‟s

response times. Many solutions for dealing with both aspects separately have been fairly

recently developed for the Java platform. One of the most adopted real-time solutions for Java

is the Real-Time Specification for Java (RTSJ) and its implementations, which offers a

complete API for the development of real-time applications in Java. At the same, the

popularization of component-based design and service-oriented computing concepts for the

development of flexible and modular applications in Java are responsible for the creation of

service-oriented component models and the specification of service platforms.

One of the most popular service platforms is the OSGi Service Platform. Its original

intention was to become an open specification to develop and deploy services in home

gateways, but it has become the de facto standard for developing general-purpose Java

applications in a modular and flexible way. Its popularization in several domains is due to,

among many other things, its adoption by the Eclipse Foundation for developing plug-ins for

their IDE. In the OSGi framework, we can create service-oriented and component-oriented

applications. Nowadays, the OSGi Specification is in its 4th release. This specification, that in

former days addressed embedded systems, was extended to cover many other domains, such

as mobile phones, industrial supervision, automobiles and more recently a whole set of Java

Enterprise Edition application servers.

However, some of the Java applications which are being migrated or developed with

service-oriented component models present among their requirements the need for predictable

response times. Although we can assure real-time behavior by means of real-time Java

13

solutions, predictability is a hard-to-guarantee property due to the fact that service-oriented

component-based application architectures are dynamic and can evolve during application

execution.

1.2 Objectives

This work aims to analyze the effects and impacts of the dynamicity provided by

service-oriented component models over the predictability needed by Java applications with

real-time requirements. The OSGi Service Platform is used as a concrete example for these

issues. Solutions to these issues are proposed and a prototype is presented to give them a

tangible form and to demonstrate their feasibility.

1.3 Document outline

This document is structured as follows. In this first chapter, the context in which this

work is inserted was presented, along with our general objectives. The second chapter of this

document shows the state of the art of the principal related domains: Real-time Java

applications, runtime software adaptability and the OSGi Service Platform, the platform

chosen to exemplify the studies. In the third chapter, we identify the issues in dynamic real-

time adaptive applications and instantiate the problem in the OSGi Service Platform. In the

fourth chapter, a proposition for such problems is presented. The fifth chapter presents an

implementation to experiment and validate our proposition. Finally, the sixth chapter presents

the conclusions and perspectives for future research created by this study.

14

2 STATE OF THE ART

2.1 Introduction

The increasing software complexity and the need for dynamism in its execution led

developers to look for new ways of designing, constructing and maintaining applications. In

order to address this problem, new domains in software engineering have emerged such as

dynamic software architectures. Software architecture is a structural representation of a

system, in terms of components and interactions. Dynamic architectures are software

architectures which can evolve and adapt at run time, thus increasing flexibility and

availability. Most of the approaches used to implement runtime evolutions are based on

modularity and the use of proxies to intercept execution flow.

The OSGi Service Platform is a service platform which addresses the lack of support

for modularity in Java applications [HAL10]. OSGi components interact through the publish,

find and bind service interaction pattern: service providers publish their services into a

registry, while service clients query the registry to find available services to use. Since

modules can be installed, updated and uninstalled at any time, services can appear and

disappear dynamically. The lack of modularity is not the only problem we find in the Java

platform. The unpredictability introduced by its weak mechanisms for handling priority-based

scheduling and automatic garbage collection makes Java unsafe for designing real-time

applications [NILSS02]. For this purpose, the Real-Time Expert Group created the Real-time

Specification for Java (RTSJ) [BOL00], whose implementations provide additional

mechanisms for building deterministic Java applications.

Gradually, more and more Java applications have been migrating to the OSGi

framework, due to its flexibility and dynamism. However, due to the popularization of RTSJ

in the world of real-time programming, some of these applications have real-time

requirements and the dynamism offered by the OSGi platform is a factor that may

15

compromise the deterministic behavior in the applications‟ response times. The aim of this

chapter is to present an overview of Real-time Java, runtime software evolution and OSGi

Service platform in order to elucidate the challenges we can meet once we deal with

dynamically adaptive real-time applications.

2.2 Real-Time Java

Java [ARN00] has become one of the most popular general purpose languages. This

popularity is in part due to its portability, reusability, security features, ease of use,

robustness, rich API set and automatic memory management. Java has many advantages over

traditional languages for programming, such as C and C++ [TYM98]. In addition, nowadays

it is arguably easier to find programmers with Java skills than those experienced with Ada or

C. However, the same Garbage Collector that eases development is one of the main reasons

why Java was not used to design critical, embedded and real-time applications. Indeed,

garbage collection introduces unpredictable execution times [BACO03]. As a result, many

different solutions were designed to improve the determinism of conventional Java.

In the next sections, we introduce Java and its real-time solutions. In section 2.2.1, we

give the basic concepts of real-time computing. Section 2.2.2 contextualizes real-time

concepts in the Java platform, explaining the principal shortcomings found for using Java to

design real-time systems. In section 2.2.3, we present solutions developed to overcome the

difficulties discussed in the last section and implement real-time systems in Java.

2.2.1 Real-time Computing

Before presenting Java and its real-time extension, we present in this section a brief

overview of some important aspects in real-time computing. In the first subsection, we

introduce some basic concepts and definitions. The second and third subsections detail two

requirements for real-time systems: predictability and determinism. The concept of real-time

operating system is presented in the fourth subsection, while the fifth and sixth subsections

discuss important concerns in real-time scheduling and real-time programming languages.

2.2.1.1 Definitions and Concepts

Real-time systems
1
 differ from other information systems in the fact that their

correctness depends on both functional and temporal aspects [STA92]. Timing correctness

requirements proceeds from the impact of a real-time system upon the real world. These

1 Also known as “reactive systems”

16

requirements, in turn, may be expressed in the form of timing constraints for the set of

cooperating tasks which compose the system. Depending on the tasks arrival pattern, timing

constrains may be periodic, sporadic or aperiodic, as shown in Figure 1. Periodic tasks are

invocated within regular time intervals, while arrival times in sporadic and aperiodic tasks are

unknown; however, the time interval between two releases of an aperiodic task is only known

to be greater or equal to zero, while sporadic tasks have a time interval between two releases

always greater than or equal to a constant [ISO00, BRUNO09]. Ideally, temporal constraints

are explicitly specified for each task by the system designer. In order to satisfy different

timing constraints, services and algorithms used by real-time systems must be executed in

bounded time.

Figure 1. Periodic (a), aperiodic (b) and sporadic (c) tasks.

Those timing constrains, also known as deadlines, can be relative to an event or

absolute, precising a point in time for a task to complete its execution. Depending on the

enforcement of deadlines, real-time systems may be divided into hard, firm and soft real-

time systems [SHI94]. In hard real-time systems, all deadlines must be strictly enforced to

avoid safety issues (e.g., weapon systems, nuclear power plants, automated transport systems)

and to ensure system correctness [BRUNO09]. Firm real-time systems are those in which

results produced as soon as the deadline expires become useless for the application, but

consequences are not very severe. In soft real-time systems, the need for strict deadlines is

more or less replaced by the need for homogeneous response times in order to ensure

acceptable levels of service, i.e., minimize response-time deviations. Missed deadlines are

interpreted as degraded service quality, and should be avoided; nevertheless the system

continues to operate. Besides temporal constraints, real-time processes may have other types

of constraints, such as resource, performance and availability constraints, which can also be

found in non real-time applications.

The concepts described above highlight the most important characteristics in real-time

applications: they do not necessarily have to be fast, but they must be predictable and

deterministic.

17

2.2.1.2 Predictability in Real-Time Systems

In fact, the notion of predictability may vary from one application to another. For

some applications, a predictable system is one where it is possible to mathematically

demonstrate, at design time, that all timing constraints will be met. This requires one to know

all the tasks and their characteristics. Another possible definition is that in predictable

systems, timing constraints are guaranteed for critical tasks; other tasks may offer

probabilistic or run-time guarantees, thus one cannot predict at design time if a task will meet

its deadlines. Most of the cases, worst case values are assumed in order to provide deadline

guarantees [STA90]. Two different types of techniques are used to ensure predictability

[RICHT03]:

Schedulability analysis: Given a set of tasks, their priorities, temporal constraints and

worst case execution time (WCET), the aim of this technique is to identify a schedule which

satisfies all the constraints for all the tasks. Many scheduling analysis techniques are popular

in the real-time systems domain. Some examples are rate-monotonic scheduling, earliest

deadline first, Round-Robin and static order scheduling [LIU73, RASM08, SRI02].

Formal verification: In this technique, the system and its properties are formalized

into logic statements or timed automata and the timing constraints are formally verified

through model checking or theorem proving techniques [BER81, LAR95].

However, both solutions are not enough for designing predictable real-time systems

[HUA05].

2.2.1.3 Determinism in Real-time Systems

Determinism and predictability are closely related, because one results in the other. A

deterministic system has the ability of ensuring the execution of an application despite

external factors that can unpredictably cause a perturbation (and thus alter the functionality,

performance and response time) [Bruno09]. Application behavior is then more or less fixed,

in such a way that all deadlines can be met and predictability is achieved.

Real-time systems are not all about deadlines. Two additional metrics are related to

determinism:

 Latency: Latency is the time between an event and a system response to that event.

Usually, developers focus on minimizing system latency. However, in real-time

applications the aim is to normalize it, that is, to make the latency of a system a known

18

and predictable quantity. Measuring latency includes finding and measuring all the

sources of latency in a system, which is often far from being an easy task. Assuming

that we know the time it takes to process an event, another way to measure latency is

by measuring response time
2
.

 Jitter: In the context of real-time systems, detects unsteadiness in system latency.

Simply averaging latency or measuring it for one event does not guarantee that a

system is deterministic. The distribution and standard deviation of latency responses

are common ways of measuring jitter.

Depending on the application, having a normalized latency and a small jitter may be

more important than deadline enforcement.

2.2.1.4 Real-time Operating Systems

All aspects of a system must be taken into account in order to design a real-time

system. Initially, real-time systems were implemented for specific use with dedicated

hardware. Nowadays, hardware support is still required, but due to the advances in modern

computer hardware, even general-purpose systems can be used to solve real-time problems.

Today, real-time concerns are concentrated in the software layer, more specifically in the

operating system software. Some of the features that the underlying operating system must

provide in order to support real-time applications are real-time task scheduling, priorities,

resource management, high-resolution clocks and low-latency interrupts [STA04].

Real-time operating systems (RTOS) are operating systems that support applications

with timing constraints, providing a deterministic environment while maintaining logical

correctness in its results [CED07]. Some basic paradigms found in traditional operating

systems cannot be applied to RTOS‟s. For instance, it is not important for a RTOS to have

support for security or file systems. However, predictable interrupt handling and scheduling

with timing and dependability constraints is required. Real-time behavior for firm and soft

real-time applications can be achieved by enhanced conventional operating systems with

some real-time features, but for hard real-time applications a RTOS is necessary.

The IEEE Portable Operating System Interface for Computer Environments (POSIX

1003.1b) [IEE96] defines a list of basic services required by a RTOS. Some of these are

asynchronous and synchronous input/output (I/O), memory locking, semaphores, shared

2 That is, latency plus the event processing time.

19

memory, execution scheduling, timers, interprocess communication (IPC), real-time files and

real-time threads. Other basic requirements [BAS05] are preemptability, multi-task support,

deterministic synchronization mechanisms, real-time priority levels, dynamic deadline

identification and predefined latencies for task switching and interrupt mechanisms.

2.2.1.5 Real-Time Scheduling

Scheduling problems are present in many computer science domains (e.g., parallel

processing), but constraints in real-time systems make the problem considerably different.

Instead of minimizing the total time required to execute all tasks, real-time schedulers must

focus on respecting all deadlines. Besides timing constraints, resource (to provide to the tasks

what is needed to a successful execution) and precedence (to ensure proper system behavior)

constraints must also be considered when scheduling real-time tasks [SHI94].

A scheduling algorithm is a set of rules which determines the task to be executed at a

particular moment and the duration of its execution [LIU73]. Real-time scheduling algorithms

have as finality guaranteeing that heedless of system charge critical tasks will meet their

deadlines. They can be classified along several dimensions depending on tasks characteristics

[STA92, BRUNO09]. The most important distinctions made are:

 Preemptive/Non-preemptive Scheduling: Most operating systems allow assigning a

priority to a task. Thus, higher-priority tasks have precedence over lower-priority

tasks. Preemptive algorithms allow interrupting the execution of a lower-priority task

to execute a higher-priority one, while in non-preemptive algorithms a thread executes

until it completes its tasks. Non-preemptive algorithms have the advantage of avoiding

dispatch latency and thrashing, but they may not respect precedence constraints

[MUN70].

 Static/Dynamic Scheduling: In static scheduled systems, tasks assignment is

determined a priori to processors [PEN89]. Thus, priority and other scheduling

parameters are determined when tasks first enter the system. Dynamic scheduling

allows tasks to be dispatched as the system is running, based on the system state and

on scheduling parameters that may change over time.

 Periodic tasks-oriented/Aperiodic tasks-oriented Scheduling: Some algorithms

may only deal with periodic tasks, while others handle only aperiodic tasks. Dealing

with periodic tasks is obviously easier than dealing with aperiodic tasks, once the

20

latter may produce unforeseen events. There are some schedulers which can support

both types of tasks.

 Guarantee-Based/Best-Effort Based Scheduling: As the name suggests, guarantee-

based algorithms are pessimist algorithms which ensure that all tasks will meet their

timing constraints. Tasks which can disrupt the system are not allowed to execute. On

the contrary, best-effort based algorithms are optimistic and, once a new task arrives

into the system, they do their best to ensure that all threads will respect their deadlines

or will be completed close to them. The former is best-suited for time-critical systems,

and the latter is preferred for soft real-time systems.

 Optimal/Feasible (Heuristic) Scheduling: A feasible schedule is a schedule where

all the tasks reach the end of their execution on or before their deadlines. Feasible

scheduling algorithms search for feasible schedules to guarantee the system‟s real-

time behavior, while optimal scheduling algorithms always find a feasible scheduling

(if one exists).

A scheduling algorithm may fall into many of these categories. Some examples are

First-In-First-Out (FIFO, dynamic-priority), Earliest-Deadline-First (EDF, dynamic

preemptive), Shortest-Execution-Time-First (SETF, dynamic non-preemptive), Least-Slack-

Time (LST, dynamic-priority), Latest-Release time-First (LRT, static time-driven), Rate-

Monotonic (RM, static fixed-priority preemptive) and Deadline Monotonic (DM, static fixed-

priority preemptive) [BRUC98, BRUNO09].

2.2.1.6 Real-time Programming Languages

Using traditional technologies and methodologies in real-time development is costly

and difficult [NILSE96]. Thus, since the early days of computer programming field, many

programming languages have been used to develop real-time applications. These languages

support the expression of timing constraints and deterministic behavior in at least one of three

different ways:

 Eliminating constructs with indeterminate execution times,

 Extending existing languages, or

 Being constructed jointly with an operating system.

The most important requirement for real-time programming languages is the guarantee

of predictable, reliable and timely operation. For this purpose, every software activity must be

21

expressible in the language through time-bounded constructs; hence, its execution timing

constraints can be analyzable. In addition, a real-time language should be reliable and robust,

what implies in strong typing mechanisms and modularity. Modularity also eases a

“programming-in-the-large” approach, in view of the fact that many real-time systems are

large systems used in military and finance domains. Process definition and synchronization,

interfaces to access hardware, interrupt handling mechanisms and error handling facility are

also desirable features for real-time languages [STO92].

Assembly, procedural and object-oriented languages are the most common general-

purposed languages used for developing real-time systems. Despite of the lacking of most the

high-level language features (such as portability, modularity and high-level abstractions),

assembly language provides direct access to hardware and an economic execution. Procedural

languages, such as C and FORTRAN, BASIC, Ada and Modula extensions, offer desirable

properties of real-time software, like versatile parameter passing mechanisms, dynamic

memory allocation, strong typing, abstract data typing, exception handling and modularity.

C++ and real-time extensions for Java are examples of object-oriented languages used in real-

time development, which benefits from some procedural languages advantages and adds

higher level programming abstractions. Even though these abstractions increase developers‟

efficiency and code reuse, mechanisms underlying them may introduce unpredictability and

inefficiency into real-time systems [LAP06]. Besides real-time extensions for general-

purposed languages, many highly-specialized or research-only languages for real-time

applications were also created along the last 40 years. These include Eiffel, Pearl, LUSTRE,

MACH, MARUTI and ESTEREEL, among others [SCHW95, LAP06].

2.2.2 Java versus Real-Time Systems

This section presents a brief overview of the Java technology. In the first subsection,

we introduce Java and its main features. Then, in a second subsection, we show why it is

standard form is not suitable for real-time applications.

2.2.2.1 An Overview of Java

Java technology was designed by Sun Microsystems in 1995 and consists of the Java

language definition, a definition of the standard library and the definition of an intermediate

instruction set, along with an accompanying execution environment. Originally, Java was

created to facilitate the development of networked devices small embedded systems, but due

to its portable and flexible capabilities, Sun released it to the general public for Internet and

22

high-level interface applications development. Though the syntax of the Java‟s programming

language is based on C/C++, Java was designed to eliminate some error-prone features of

these languages, such as pointer arithmetic, unions, goto statements and multiple inheritance,

improving developers productivity.

Java introduced a different execution model. First, Java programs are translated into a

machine-independent byte-code representation. Then, this byte-code can run in any device

which implements the Java Virtual Machine (JVM), a software system which understands and

executes byte-code instructions (See figure 2). In the first implementations of the Java virtual

machine, those instructions were interpreted, but for performance issues other translation

techniques, including ahead-of-time and just-in-time (JIT) compilation, were included into

later implementations.

Figure 2. Platform independence in Java

Besides platform independence, other remarkable features in Java are:

 It is simple and easy to learn and to use;

 Robustness due to automatic garbage collection, type safety, byte-code analysis and

run-time checks;

 Built-in multithread and multitask support;

 Easy access to remote sources;

 And lazy class loading (classes are loaded dynamically are they are needed).

23

2.2.2.2 Java Issues in Real-Time Applications

Java has several features which would be desirable for developing real-time

applications; however, in its standard form, Java is not well-suited for it [NILSS02]. Some of

the reasons why Java is inadequate for the development of real-time software are:

 Memory footprint: Standard JVMs needs at least tens of megabytes in memory, what

is not adequate for embedded systems. Solutions addressing this issue are, for

example, the Java 2 Micro Edition [J2ME], IVM [IVE02] and JVM hardware

implementations [IAB00, HAR01]. The formers are significantly limited compared to

the standard API, while the latter is a platform-specific solution.

 Performance and execution model: Byte-code interpretation reduces the overall

performance of Java applications [KAZ00]. In order to solve this issue, JIT compilers

were designed to compile Java byte-code into native code at run-time. However,

running a compiler at runtime, besides requiring a considerable amount of memory,

raises scheduling issues, what implies in latency and lack of determinism.

 Scheduling: Java defines a very loose behavior of threads and scheduling. Threads

with higher priority are executed in preference to threads with lower priority.

However, low priority threads can preempt high priority threads. Although this

protects from starvation in general purpose applications, it violates the precedence

property required for real-time applications, and may introduce indeterminism in

execution time. In addition, the wakeup of a single thread (through the method

notify()) is not precisely defined.

 Synchronization: Synchronized code uses monitors to protect critical code sections

from multiple simultaneous accesses. Even though Java implements mutual exclusion,

it does not prevent unbounded priority inversions, an unacceptable condition for real-

time systems.

 Garbage Collection: Automatic memory management simplifies programming and

avoids programming errors. At the same time, traditional garbage collection implies in

pauses at indeterminate times impose delays of unbounded duration.

 Worst Case Execution Time: Key concepts for object-oriented programming support

in Java are method overriding and the use of interfaces for multiple inheritance.

24

However it usually requires a search on the class hierarchy or dynamic selection of

functions at runtime, what complicates WCET analysis.

 Dynamic Class Loading: In order to dynamically load classes, they must be resolved

and verified. This is a complex and memory-consuming task, which may introduce an

unforeseen delay in execution time depending on factors as the speed of the medium

and the classes‟ size.

As we may see, standard Java implementations do not provide mechanisms for the

reliable and deterministic execution of real-time applications. However, most of these issues

do not come from the language, but from the Java execution environment.

2.2.3 Real-time Solutions for Java

The advantages of Java over languages traditionally used to design real-time systems

resulted in several efforts in late 1990s in extending the language. We present in the next

sections the main solutions developed to make Java more appropriate for real-time

applications.

2.2.3.1 Early Work in Real-Time Java

The simplest extension proposed for supporting real-time applications in Java was

Real-Time Java Threads [MIY97], in 1997. However, this support was very rudimentary. A

more sophisticated and complete solution was proposed by Nilsen [NILSE98] providing both

high-level abstractions for real-time systems and low-level abstractions for hardware access,

the Portable Executive for Reliable Control (PERC). Another approach, based on CSP

Algebra, Occam2 and the Transputer microprocessor, was proposed by Hilderink [HIL98].

Other attempts include hardware implementations of the JVM [BACK98] or integrating it to

the operating system [MCGH98].

Unfortunately, much of this work was fragmented and did not have a clear direction.

Thus, the US National Institute of Standards and Technology (NIST) reunited several

companies to general guidelines and requirements for real-time extensions to Java. The NIST

requirements resulted in two initiatives: The Real-Time Specification for Java (RTSJ)

[BOL00], backed by Sun and IBM; and the Real-Time Core Extension for the Java Platform

(RT Core) [JCO00], backed by the J Consortium
3
, based on the PERC system. However,

3 Supported by groups such as Microsoft, HP, Siemens and Newmonics.

25

contrarily to the RTSJ, the RT Core proposed modifications to the Java language syntax,

which was not well-accepted by the Java community.

2.2.3.2 The Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) defines real-time behavior in the Java

Platform by means of a collection of classes, constraints to the behavior of the virtual

machine, an API and additional semantics. Seven areas were identified as requiring

enhancements to enable the creation, analysis, execution and management of real-time tasks:

 Thread Scheduling and Dispatching: RTSJ introduces the concept of schedulable

objects (real-time threads, asynchronous event handlers and their subclasses), objects

which the base scheduler manages. The RTSJ‟s base scheduler is priority-based,

preemptive, with at least 28 unique priorities
4
, run-to-block

5
 and can perform

feasibility analysis for a schedule. Schedulable objects have parameters classes bound

to it, representing resource-demand (scheduling, memory or release) characteristics.

 Memory Management: RTSJ provides extensions to the garbage collected model

memory, supporting memory management without interfering with real-time code

deterministic behavior. It allows the allocation of short and long-lived objects in

memory areas that are not garbage collected. Besides the traditional heap memory,

where objects lifetime is defined by their visibility, and the JVM stack, which

allocates a private stack for each created thread, three memory areas were included to

the Java programming model: scoped memory, which manages objects short-lived

objects whose lifetime is defined by a scope; physical memory, allowing objects to be

allocated in a specific physical memory region; and immortal memory, an area

containing objects which may be referenced by any schedulable object. Scoped and

Immortal memories are not garbage-collected.

 Synchronization and Resource Sharing: RTSJ requires priority inversion avoidance

algorithms for implementing the Java keyword synchronized
6
. In addition, it

4 In addition to the values 1 to 10 defined by conventional Java Threads, but with higher execution

eligibility.
5 It means that a schedulable object in execution will continue running until it either blocks or is preempted

by a higher-priority schedulable object
6 Commonly used to share serialized resources

26

introduces wait-free queues to allow the communication between schedulable objects

and objects subject to garbage-collection.

 Asynchronous Event Handling: To allow a closer interaction with the real-world and

its inherent asynchrony, RTSJ allows the creation of asynchronous events as well as

handlers for these events. These handlers are scheduled and dispatched, just like

threads. Timer class represents events whose occurrence is time-driven and is a

specific form of asynchronous events. These timers are based on Clock objects, which

represent the system clocks, as uniformly and accurately as allowed by the underlying

hardware.

 Asynchronous Transfer of Control (ATC): RTSJ allows the asynchronous transfer

of the current point of logic execution. This mechanism also allows the execution of

iterative algorithms, which refines gradually the result precision, transmitting the

results at the expiration of a precise time bound.

 Asynchronous Real-time Thread Termination: RTSJ provides a safe mechanism

for abnormally stopping threads and transferring control, contrarily to the deprecated

stop and destroy methods in class Thread, which could leave shared objects in

inconsistent states or lead to deadlocks.

 Physical Memory Access: RTSJ defines classes allowing to directly byte-level access

the physical memory and create objects in physical memory. In addition, it provides

manager classes to appropriately access and create objects with specific

characteristics.

New exceptions were also included, along with new treatments surrounding ATC and

memory allocation. The RTSJ implementations are based on its version 1.0.2. Besides the

requirements defined by the RTSJ itself, additional requirements for implementations were

defined by the Mackinac team [BOL05]. Nowadays, a new JSR
7
 was created addressing the

RTSJ version 1.1, the JSR 282.

2.2.3.3 Implementations of the RTSJ

Since the official release of the RTSJ in 2002, several implementations of the

specification were already developed. We list some them in Table 1.

7 Java Specification Request, documents proposing technologies for additions to the Java platform.

27

Implementation Developer Certification
TCK JSR-0018

Implementation
type

Platform compatibility Java
Compatibility

RTSJ-RI9 Timesys Yes Reference RTLinux10/x86 JRE 6.0

Java Real-Time
System11

Sun
Microsystems/

Oracle

Yes Commercial Solaris, RTLinux/x86;
Solaris/SPARC

JRE 5.0

Websphere Real-
Time12

IBM Yes Commercial RTLinux/x86 JRE 6.0

Real-Time JRE13 Apogee Yes Commercial RTLinux /x86 JRE 5.0/J2ME

Jamaïca Virtual
Machine14

Aicas No Commercial RTLinux, SunOS,
Solaris/x86

JRE 5.0

J-Rate (Java Real-
Time Extension)15

University of
California

No Open Source
(GPL)

RTLinux/x86, PowerPC JRE 1.4-5.0

OVM (Open Virtual
Machine)16

Purdue
University

No Open Source
(BSD)

RTLinux/x86, PowerPC;
OS X/PowerPC

JRE 1.4-5.0

Table 1. RTSJ implementations

2.2.3.4 Other Real-Time Solutions for Java

Not all real-time solutions for Java are RTSJ-based. Indeed, some solutions claim that

RTSJ‟s region-based allocation mechanism takes away the simplicity of the base Java, being

error-prone and incurring non-trivial runtime overheads due to dynamic memory access

checks [PIZ08]. In addition, it is not well suitable for hard real-time applications due to

performance issues [PIZ10]. In order to overcome those issues, many independent solutions

were already proposed. We list some of them in the next paragraphs.

 Oracle JRockit Real Time
17

 provides a Java-based soft real-time computing

infrastructure. It contains a deterministic garbage collector, which ensures short pause

times. JRockit Real Time supports Java applications running on Java SE 6 and J2SE

5.0 runtime environments. Oracle WebLogic Real-Time is a version of Oracle JRockit

Real-Time offered with Oracle WebLogic Suite. Supported platforms include

commercial distributions of Linux (Oracle Enterprise, Novell SUSE, Red Hat

8 RTSJ was registered at JCP as JSR-000001. TCK stands for Technology Compatibility Kit, a suit of tests

to verify if an implementation is compliant to a given JSR.
9 http://www.timesys.com/java/. Although classes can be compiled by a JDK 6.0 compiler, they must

remain 1.3-compatibles. This implementation is based on J2ME, thus some J2SE classes are not present.
10 RTLinux is a set of adaptations made in Linux kernels for supporting real-time. Numerous commercial

and free versions are available.
11 http://java.sun.com/javase/technologies/realtime/index.jsp
12 http://www-01.ibm.com/software/webservers/realtime/
13 http://www.apogee.com/products/rtjre. This solution is based on IBM‟s J9 Virtual Machine.
14 http://www.aicas.com/jamaica.html. Generated classes must be 1.4-compatibles.
15 http://jrate.sourceforge.net/. This is a GCJ-based solution, so there is not an exact correspondence with

a J2SE version.
16 http://www.cs.purdue.edu/homes/jv/soft/ovm/index.html. Actually, OVM is a framework for generating

customizable virtual machines. This framework is also based on GCJ Compiler.
17 http://www.oracle.com/technology/products/jrockit/jrrt/index.html

http://www.timesys.com/java/
http://java.sun.com/javase/technologies/realtime/index.jsp
http://www-01.ibm.com/software/webservers/realtime/
http://www.apogee.com/products/rtjre
http://www.aicas.com/jamaica.html
http://jrate.sourceforge.net/
http://www.cs.purdue.edu/homes/jv/soft/ovm/index.html

28

Enterprise and Red Flag AS) and Microsoft Windows over x86 architectures, and Sun

Solaris over SPARC architectures.

 SimpleRTJ
18

 is an implementation of the Java virtual machine optimized to run on

devices with limited amount of memory and without RTOS support. It requires only

18-24 KB of memory to run. Despite of its small size, it includes core features like

multithreading, interfaces, garbage collection and exception handling. SimpleRTJ uses

pre-linked applications and classes, which reduces start-up times and delays to resolve

symbolic references. It was designed to run on 8, 16 and 32 bit microcontrollers.

 Fiji VM
19

 [PIZ10] is a virtual machine implementation which compiles Java 1.6 byte-

code ahead-of-time directly to ANSI C. This virtual machine consists of a compiler, a

runtime library and open-source class libraries. The runtime system contains an on-

the-fly concurrent real-time garbage collector. As well as in RTSJ-based

implementations, region-based memory allocation is also supported.

 Despite the fact that Aonix PERC
20

 is based on RTSJ libraries, it defines its own class

hierarchy. PERC integrates a static analysis system to verify scope safety and resource

requirements for hard real-time systems.

 JOP [SCHO07] is a hardware implementation for the Java virtual machine. In

introduces a processor architecture which simplifies WCET analysis. Java byte-code is

translated to a stack-based instruction set (called microcode) which can be executed in

a 3-stage pipeline. Byte-code translation and interrupt handling are also pipelined,

increasing time predictability.

 Juice [COR03] is an interpreted J2ME virtual machine designed for real-time

embedded systems running on the NUXI [SAN02] operating systems. In Juice, heap

memory is divided into pre-fixed size blocks. Free memory blocks are organized into a

linked list, while blocks allocated by Java objects are connected through a hierarchical

structure. Thus, object allocation and deallocation depends only on the object size.

Memory is garbage-collected only when new objects have to be allocated, and the

collector‟s execution time is proportional to the size of the object to be allocated.

18 http://www.rtjcom.com/
19 http://www.fiji-systems.com/
20 http://www.aonix.com/perc.html

http://www.rtjcom.com/home.html

29

As we have seen in this section, real-time software requires reliability and

predictability. However, many current and future real-time applications are dynamic, that is,

external conditions may require modifications and adaptations at runtime. In the next section,

we present an overview of dynamic software adaptation.

2.3 Dynamic Software Adaptation

Complexity issues have been present in computer science since its early days. The first

programming complexity problems were solved through the use of data structures, the

development of algorithms and scope separation. Most of what we know now as software

engineering nowadays comes as result of this problem. The first works about the importance

of structuring software systems were led by Dijkstra [DIJ68] and Parnas [PAR72], in the late

1960s. These were the basis for a software engineering discipline called Software

Architecture. Software architecture studies ways of structuring software systems, by

representing its software components, their interconnections and the rules concerning their

design and evolution over time [GAR93]. Many aspects of a system can be addressed in its

architectural description, such as its properties, functional and non-functional requirements

and different configurations.

Dynamic software architectures are architectures in which the composition of

interacting components changes during system‟s execution. This behavior is known as

runtime evolution or adaptation [TAY09]. Advances in this field have been boosted by the

emergence of ubiquitous computing [WEIZ93] and the growing demand for autonomic

computing [KEP03]. The main motivations for runtime adaptive software are the risks, costs

and inconveniences presented by the downtime of software-intensive systems of environment

changes [ORE08].

In this section, we explore concepts and techniques used for dynamic software

adaptation. The subsection 2.3.1 discusses dynamic software architectures. Subsection 2.3.2

introduces definitions for software adaptation. In the subsection 2.3.3, we introduce dynamic

adaptive systems and list some enabling technologies for designing them. Subsection 2.3.4

lists some adaptive frameworks. Finally, we present solutions for real-time adaptive software

in the subsection 2.3.5.

2.3.1 Dynamic Software Architectures

Structuring systems as interacting components is the result of years of research in

software engineering and one of the solutions proposed in order to deal with scalability,

30

evolution and complexity issues in software. Jointly with compositional techniques, it eases

the system‟s design, analysis and construction process, by providing a higher level of

abstraction.

Dynamic software modification is a useful capability which can be applied in many

domain applications. An example is dynamic software update, in which the application is able

to update itself to fix bugs and add new features without requiring a stop and a restart.

Nonstop and critical systems, such as air-traffic control systems, enterprise and financial

applications, which must provide continuous service, are examples of applications in which

dynamic update is required [MAG96].

However, this flexibility has a cost: safety. Although we can perform modifications

which were not planned during the design phase, we cannot anticipate the effects of a

dynamic modification. It can affect predictability, which is inadmissible for safety-critical

systems; it can download modules and require more space on disk, unacceptable for

constrained and embedded systems; it can add unsafe modules, which can make the whole

platform crash; or it can bring the application to a wrong state after applying changes. Figure

3 shows a dynamic software architecture in which a runtime modification was performed.

Generally, even though a system architecture may look static at compile time, runtime

updates may imply in modified and additional modules.

Figure 3. Dynamic software evolution

Transparency is an important property for software adaptation frameworks. It

decreases the burden on the developers, which do not have to anticipate the whole set of

possible evolutions of a software system. In order to do that, frameworks must perform every

31

necessary modification in the binary code, injecting code or intercepting calls. We present in

the next subsections concepts and approaches used by these dynamic adaptive frameworks.

2.3.2 Definitions and Concepts

According to the standard glossary of software engineering systems [IEE90],

adaptability is defined as “the ease with which a system or component can be modified for

use in applications or environments other than those for which it was designed”. Adaptability

differs from adaptiveness in that the first defines the ability of the software to be

reconfigured, while the second designates the ability of the software to reconfigure itself

[AKK07].

Two approaches are generally used to implement software adaptation: parametric

adaptation, in which system variables are modified in order to change system behavior; and

compositional adaptation, in which the system components are added or replaced to better

adapt a program to its environment. Parametric adaptation allows tuning application

parameters, but it offers a limited adaptation mechanism, since it is not possible to add

behaviors in the software system. In addition, compositional adaption permits an application

to be recomposed dynamically during execution. This dynamic recomposition is called

dynamic (or runtime) adaptation, which is different from static (or build time) adaptation,

where the modifications are made before the system is running (e.g., in the source code or in

the requirements).

Other possible classifications are manual/automatic adaptations, based on the way in

which the adaptation is managed, and functional/technical adaptations, based on the

properties that are going to be modified [CAN06].

2.3.3 Approaches for Dynamic Software Adaptation

We call dynamic compositional adaptive software the software which is able to adapt

itself and its components at run time to handle resource variability and other operational

environment changes. Most approaches implementing dynamic compositional adaptation are

based on dynamically linking and unlinking components or indirectly intercepting and

redirecting interactions among software entities [FOX09]. Various techniques may be used to

achieve this, such as, manipulating function pointers, aspect weaving, proxies or middleware

interception [MCK04]. In the next subsections we list some of the approaches which allow

designing and constructing dynamic adaptive software.

32

2.3.3.1 Separation of Concerns

Separation of concerns is a software engineering principle which emphasizes the

separation of the application logic from crosscutting concerns (such as quality of service,

synchronization, security and fault tolerance) at conceptual and implementation levels. It

allows for simplifying development and maintenance, making software easier to be reused

[HUR95].

Nowadays, one of the most used approaches for separating concerns is Aspect-

Oriented Programming (AOP). This programming paradigm is based on an entity called

aspect. An aspect is a technical consideration from a crosscutting concern in an application.

Even though AOP is language-independent, it requires a special compiler, called aspect

weaver. Summarizing, the weaver can insert aspect code in specific code locations, known as

join points. Aspects code may contain advices
21

 and intertype declarations
22

. In order to

select join points to insert aspects code, we create point cuts.

Figure 4. Aspect Weaving

Aspect weaving can be performed at run time (dynamic) as well as at compile time

(static), even though static strategy is more popular.

2.3.3.2 Computational Reflection

Computational reflection is a programming language technique which allows a system

to keep information about itself (introspection) and use this information to adapt its behavior

(intercession). Based on what can be modified, we can distinguish two types of reflection:

structural and behavioral (or computational) reflection. In the former, the system structure can

be dynamically modified, while in the latter only the system computational semantics can be

modified [MAE87].

21 A piece of code that can be activated and inserted into system join points
22 Used to add members in a module

33

Figure 5. Meta-object protocol for computational reflection

Most runtime reflective systems are based on Meta-Object Protocols (MOP). These

protocols specify the way a base-level application
23

 may access its meta-level
24

, in order to

dynamically adapt its structure and behavior.

Some programming languages, such as Common Lisp Object System (CLOS) and

Python, have native reflection mechanisms.

2.3.3.3 Dynamic Service-Oriented Architectures

Service-oriented architecture (SOA) is an architectural style and a programming model

based on the service concept. The main principles in SOA are loose coupling, abstraction,

reusability and composition. A service is a software unit whose functionalities and properties

are declaratively described in a service descriptor. Services can be composed and orchestrated

to create more complex services. Lazy binding and encapsulation mechanisms allow services

to have a loose coupling between the implementation and its interface [PAP03].

SOAs provide a framework for guiding the design, development, integration and reuse

of applications. Figure 7a shows the interaction among the different actors in SOAs. Service

providers register the description of its services in a service register. Service consumers query

the service register to discover and select services. Then, after negotiating and according

service usage terms, the service consumer is bound to the service provider. Service certifiers

can be used to monitor if both parts respect the accords.

23 Application expressed by a programming language
24 The computational object model implementation at the execution environment

34

Figure 6. a) Publish-find-bind service interaction pattern b) Service update and service publish in DSOA c)

Service removal in DSOA

Dynamic SOA (D-SOA) adds the dynamism to SOA. This dynamism can be depicted

in two different concepts: dynamic availability [CER04a], which refers to the ability of the

service to be available or unavailable at any moment; and dynamic properties modification,

which designates the fact that service properties (thus, service description) can be modified at

run time. Dynamic availability allows systems to evolve without downtime and dynamic

properties modification may be useful in dynamic context adaptation or negotiation. Figures

7b and 7c show respectively the dynamic service publish/update and removal. In both cases,

the service consumer must be notified of the context changes [RED02].

2.3.3.4 Component-Based Design

Component-based design uses components as the underlying software abstraction.

Software components are software units, which are composed in order to build a complete

system, with contractually specified interfaces and explicit context dependencies. These units

can be independently developed and deployed. Composition can be static or dynamic,

depending on when the developer is able to add, remove or reconfigure components (compile

time or run time, respectively). Dynamic adaptation can be performed using late binding

mechanisms, which allows coupling components at runtime through well-defined interfaces.

This architectural style also promotes software reuse, reduces production cost (because

software systems are built from existing code) and shortens time to market [CLE95].

35

The foundation of a component-based methodology lies on its software component

model, which defines what components are, how they can be constructed, assembled,

deployed, etc. Examples of component models are Architecture Description Languages

(ADL), Web services and JavaBeans [LAU07].

Figure 7. Common representation of a component

Even though SOA and component-based are main focused in different actors (while

the component-oriented approach focus on the provider‟s view, easing the deployment of new

functionalities, SOA focuses on the consumer‟s view, to supply functions to consumers which

do not care about service implementation), SOA is considered as an evolution of component-

based design, introducing abstract business model concepts such as contract, service provider

and service consumer. In addition, SOA introduces dynamism and substitutability into static

component-based design. Thus, both approaches are often combined in service-oriented

component models [ROU08].

2.3.3.5 Other Factors

Many other approaches are also used to provide dynamic software adaptation. Many

of them are based on middleware - layers of services separating applications from operating

systems and network protocols. Most adaptive middleware works by intercepting and

modifying messages.

Other technologies used to adapt software architectures at run-time are P2P
25

, software

design patterns, agent-oriented programming and generative programming [MCK04].

2.3.4 Dynamic Adaptive Frameworks

In the following paragraphs, we list some frameworks with dynamic adaptive features

[FOX09]. This is far from being an exhaustive list; there are many other frameworks that are

not listed here. Our selection was based on choosing frameworks which present the

characteristics outlined in the last sections.

25 Peer-to-peer, a distributed network architecture where participants make a portion of their resources

directly available to other participants, without central coordination.

36

Intense research has been developed along the last years in the component models

domain. Among the works in dynamic adaptive frameworks are based in component models.

One of the most important component models in the literature is the CORBA Component

Model (CCM) [OMG], which an OMG extension to the specification CORBA 2.0,

incorporating ideas from component-based development into CORBA
26

. CCM components

are abstractions for dynamically loadable packages containing CORBA interfaces which can

be easily linked together. Components can be created, assembled and deployed by means of

an extension to CORBA‟s Interface Definition Language. At runtime, component instances

are managed and created by containers. Components can include facets (provided interfaces

for use by other components), receptacles (required interfaces from other components), event

source (logical data channel on which components publish events) and event sinks (logical

channel for event consuming). Other component models commonly referenced are Fractal

[BRUNE02b], a hierarchically-structured component model, and Koala [OMM00], a

component model developed by Philips Research mainly used to develop electronic products

software. Both use ADLs in order to specify the software high-level structure. While Fractal

supports dynamic architectural reconfiguration by means of computational reflection, Koala is

restricted to switching between statically-defined components.

Recent component models introduce new features in order to provide more flexibility.

For instance, iPOJO [ESC07] is a runtime service-oriented component model which can be

used to develop applications over the OSGi service platform. iPOJO injects POJOs
27

 at

runtime, through the management of service providing and dependencies. iPOJO provides

component containers with manage all service interaction and allows adding non-functional

properties, such as persistency, security and autonomic management. Component

dependencies and non-functional properties are handled by handlers, which are specified in

the component type metadata and are plugged on the component instance at runtime. iPOJO

also manages the lifecycle of the instances, which are considered as valid if all its plugged

handlers are valid, or invalid otherwise. Similarly, Mobility and Adaption Enabling

Middleware (MADAM) [GEI07] is a component model which has incorporated special

features for adaptation. One important concept for this framework is the realization plan, a

composition plan which contains combination of components specified by the designer.

26 Common Object Request Broker Architecture, software architecture to develop components or ORBs.
27 Plain Old Java Object, ordinary Java objects

37

MADAM provides an adaptation manager and a middleware framework for runtime

adaptation.

With regard to separation of concerns, AspectJ [KIC01] is the most popular

implementation of AOP concepts for Java. It extends Java language by adding constructions

to create and model aspects. AspectJ has features to influence the system behavior at runtime

by means of its dynamic join point model. Code can be inserted at method calls, method call

reception and method execution, field access, exception handler invocation and object or class

initialization. In addition, AspectJ can statically add new members to the class.

Without a doubt, Web Services [PAP03] were the responsible for popularizing the

service-oriented approach. They allow the interoperable machine-to-machine communication

over a network. A web service is a service, identified by a URI
28

 whose service description

(which is made using WSDL
29

, a XML
30

-based language) and transport (services interact by

means of SOAP
31

 calls carrying XML data) is performed using open Internet standards.

Service discovery uses a UDDI
32

 protocol to locate candidate services and their properties.

Due to the interoperability provided by Web services, the latter have been used to implement

cross-enterprise transactions and message flows. Even though web services enable dynamic

software architectures, it does not allow self management. Another adaptive framework which

uses the service-oriented approach is Jini [ARN99], a service platform developed by Sun

Microsystems which provides a federated infrastructure for deploying services dynamically in

a network. Services are defined by Java interfaces or classes. They must be published in

registries, which actually are search services. When entering a Jini architecture, service

providers and consumers broadcast an announcement, which is received by these search

services and answered, in order to make the new member to know the registries. Service

consumers are notified about the availability of the services they are using. Once registries are

not entities but services, there are no registry delegation mechanisms.

DynamicTAO [SCHM02] presents an approach different from the ones which were

cited in this chapter. It emerged of an object-oriented approach. It is an extension to TAO

28 Uniform Resource Identifier
29 Web Services Description Language
30 Extensible Markup Language
31 Simple Object Access Protocol
32 Universal Description, Discovery and Integration

38

(“The ACE ORB
33

”), a standard CORBA Object Request Broker. ORB components can be

remotely linked, reconfigured and replaced and code can be uploaded to substitute a

component implementation. TAO was extended by means of reflective middleware

techniques.

2.3.5 Real-time Dynamic Adaptive Systems

As said before, the correctness of real-time systems is related to real world timing

constraints. That is because real-time systems usually interact with entities in the real world.

However, the real world is extremely dynamic. Real world entities appear and disappear,

combine and separate. Thus, real-time software entities must also be capable of adapting itself

to these changes, which may not be possible to specify during the system design. At the same

time, software must ensure predictable real-time behavior under both normal and abnormal

operating conditions [BIH92]. Real-time adaptive systems may be used to implement real-

time systems which need flexibility, adaptive systems whose interactions with other software

entities must meet real-time requirements, or systems which present both characteristics.

One approach to real-time adaptive systems is the Real-time Service-Oriented

Architecture (RT-SOA), an extension of SOA which aims to include timing constraints in

many SOA aspects, such as modeling, composition, orchestration, deployment, policy,

enforcement and management [TSA06]. The need for RT-SOA comes from enterprises, many

of whom have already adopted SOA for many of their systems, but cannot do the same for

their real-time applications due to the lack of strict predictability in current SOA solutions.

Many research works are dedicated to this subject [TSA06, PAN09, CUC09], but IT

companies such as IBM, Microsoft and HP are also interested in real-time solutions for

enterprises. Another useful application for RT-SOA is the support of remote critical care

[MCGR08]. It is also worth to mention the IRMOS European Project
34

, which investigates on

the use of real-time technologies and SOAs for networking, computing and storage levels.

Real-time services are particularly important in contexts where performance

requirements demands are not only fast, but predictable operations. A RT-SOA framework

must provide real-time communication infrastructure, consider real-time properties (like

maximal response time, service capacity and maximal degree of concurrency) in service

33 Object Request Broker, middleware software which allows programs to make calls in a program from a

machine to another via a network
34 More information at www.irmosproject.eu

39

specifications, provide dynamic service composition, real-time service deployment, real-time

policy engine and dynamic real-time scheduling for application services and framework

operations. RT-SOA applications may use Service Level Agreements
35

 to express their goals

and Quality-of-Service (QoS) constraints. Moreover, the real-time middleware framework

must be build at the top of a real-time operating system in order to benefit of a fully

preemptive kernel.

Another common approach to the development of real-time dynamically adaptive

applications is the use of component-based design. The most important principle considered

when building component-based real-time software is the principle of composability, in which

validated properties (such as timeliness and testability) must not be affected by the system

integration [KOP98]. So far, many different approaches were used in the component-based

software engineering literature in order to introduce real-time requirements in component

models.

 The Quality Objects (QuO)
36

 framework is a QoS adaptive layer which runs on

existing middleware such as Java RMI and CORBA and supports the specification and

the implementation of QoS requirements, system elements to measure and provide

QoS and the behavior for dynamic adaptation of QoS. QuO allows the developer to

use aspect-oriented software development techniques to separate QoS concerns from

application logic. Even though it is possible to specify runtime variations of QoS, we

cannot compose and configure complex adaptive behaviors. In addition, this

framework cannot be deployed using standard configuration tools and description

languages. In order to bypass these limitations, Sharma et al [SHA04] proposed the

use of components, called qoskets components, to encapsulate and re-use adaptive

QoS systemic behaviors.

 Kramer and Magee described in [KRA90] a process called freezing of application

components, in which the whole component activity is stopped. Wermelinger in

[WER97] improved the algorithm by blocking only involved components. This way,

interruption time is minimized, because only affected connectors must be blocked.

Rasche and Polze [RASC05], based on both works, presented a technique for dynamic

35 A negotiated agreement between the service customer and the service provider, which defines the level of

service being delivered [VER99]. SLAs are presented in the chapter 4.
36 More information in http://quo.bbn.com

40

reconfiguration of component-based real-time software, in which the application is

blocked during a bounded time and the loading of new components and removal of old

components is performed before and after the interruption time.

 Stewart described in [Stewart1997] a dynamically reconfigurable real-time software

framework by means of port-based objects. However, in order to keep the framework

simple, the approach assumes that each object correspond to an independent process
37

,

a very limiting assumption. Processes obtain information through input ports and send

information through output ports. Processes have no knowledge as to the origin or the

destiny of the information obtained or sent through these ports. In addition, processes

have resource ports, which connect to sensors and actuators, via I/O device drivers.

Object communicate by means of state variables stored in global and local tables. The

global table is stored in shared memory.

 Many research works focus on component models for building RTSJ-compliant

applications [ETI06, PLS08, DVO04, HU07]. Most of them provide higher-level

abstractions for creating real-time threads and/or for real-time memory management,

in order to alleviate the development process. However, dynamic adaptation issues are

only treated by [Plšek2008].

 RTComposer, a framework described in [ALU08], is also built atop of RTSJ, but is

based on formal specification of scheduling constraints with automata. Components

are scheduled in a flexible way, which may vary according to dynamic conditions,

such as varying load, platform capabilities and components configuration. Another

programming environment in Java for creating real-time components is the Exotasks

project [AUE07], which focus mainly on memory isolation and fast garbage

collection.

 MyCCM-HI [BOR09], SOFA-HI [PRO08] and Blue-ArX [WEIC04] are

component-based frameworks which support dynamism via modes, i.e., applications

can have many possible architectures that can be switched among each other at well-

defined points and primarily target embedded real-time applications [HOS10]. SOFA-

37 “An independent process does not need to communicate or synchronize with any other component in the

system” [Stewart1997]

41

HI is still under development, while MyCCM-HI and BlueArX are ready for use.

BlueArX is already used by Bosch in the automotive control domain.

 The Component-Integrated ACE ORB (CIAO) [WAN03] and Cardamom
38

 are

implementations of the Corba Component Model which supports real-time and other

QoS aspects. CIAO applies aspect-oriented techniques to decouple QoS aspects from

application components (separation of concerns) and allows the composition of real-

time behaviors. In its turn, Cardamom addresses safety-critical systems.

Other techniques include the use of concurrent classloaders [PFE04], agents [ZHA00,

BRE02a] and function blocks [BRE02b].

Another framework which is gradually becoming a de-facto standard for developing

dynamic adaptive software and therefore was chosen to elucidate the concepts presented in

this work is the OSGi Service Platform, which will be briefly presented in the next section.

2.4 OSGi Service Platform

Modularity is the main approach in order to deal with the increasing software

complexity issues. Among the several benefits enabled by breaking the system under smaller

and highly cohesive parts are reuse, abstraction, division of labour and ease of maintenance

[BAR08].

Java is currently one of the most popular and used programming languages available.

We have seen in the first sections of this document that it offers many flexible advantages.

However, it does not support modularity natively. First of all, its access modifiers do not

address logical system partitioning. In order to call for code in another package, the latter

code must be declared as being public, which makes it visible to everyone else. It could be

avoided by putting the class with the dependency in the same package as the one with the

required code, but if those classes are logically unrelated, this would impair the application‟s

logical structure. Second, Java‟s class path ignores code versions and does not allow for

explicit dependencies. Classloader manipulation could be used to address this issue, but this is

error-prone and low level [HAL10].

38 http://cardamom.ow2.org/

42

The whole problem lies in the fact that Java uses Jar files as deployment units.

Inasmuch as they do not have a corresponding runtime concept, their content is concatenated

in the class path without the possibility of declaring explicit dependences and without a

versioning mechanism. This forces developers to merge unrelated code, which implies low

cohesion. In addition, the information hiding problem generates tightly coupled modules, due

to the fact that the public modifier allows us to access internal implementation details.

The OSGi service platform is a module system for Java which adds a middleware

layer over the platform in an effort to fill this gap and provide additional capabilities. We will

discuss the approach used by the OSGi service platform in the next subsections. Subsection

2.4.1 introduces some concepts and definitions in OSGi. The three OSGi framework layers

(module, lifecycle and service) are presented in subsections 2.4.2, 2.4.3 and 2.4.4

respectively. In subsection 2.4.5 we list some OSGi implementations. To conclude this

section, we present works which integrate real-time and OSGi in section 2.4.6.

2.4.1 Definitions and Concepts

The OSGi service platform is a Java-based specification defined by the OSGi

Alliance, a consortium of around forty companies founded in 1999. The role of this group is

to define new releases and certify the implementations of the specification. The first releases

of the OSGi specification were oriented to residential gateways. However, nowadays the

OSGi platform is used in many different domains, like mobile telecommunications, enterprise

application servers and plug-in-oriented applications.

The OSGi specification defines a way to create true modules (bundles, in OSGi

terminology) and to make them interact at runtime. Bundles are actually Jar files with

metadata specifying their symbolic name, version and dependencies.

The central idea of OSGi modularization is that each bundle has its own classloader,

and consequently, its own class path. In order to allow interactions among bundles, OSGi uses

a mechanism of explicit package imports and exports. Class requests are delegated among

classloaders based on the dependency relationship between bundles. The matching between

imported and exported packages is implemented by the OSGi platform. The explicit

import/export mechanism also allows for package versioning and information hiding (all

classes are bundle-private by default). In addition, the OSGi platform allows bundles to be

dynamically installed, updated and uninstalled, without requiring the platform to stop and

43

restart. Besides the deployment mechanisms, the specification defines a Java non-distributed

service platform, which allows services to be dynamically published and consumed.

Figure 8. OSGi bundles and dependency resolution.

The OSGi Service Platform specification is divided into two parts: OSGi framework

and OSGi Standard Services. While the first is the runtime which provides the functionality of

the OSGi platform, the second defines APIs for common tasks. In turn, the framework is

divided into three layers: Module Layer, concerned about code sharing and packaging;

Lifecycle Layer, which focus on the runtime module management; and Service Layer, which

deals with modules interaction and communication. We will discuss about these layers in the

next subsections.

2.4.2 Module Layer

The module layer is the responsible for the bundle management. As said before,

bundles are the unit of modularization unit of the OSGi platform, in the form of a JAR file

with resources and additional metadata on its manifest file. This additional information

includes human-readable information, bundle identification
39

 and code visibility
40

, which will

be used to perform bundle dependency resolution (See figure 8). Nonetheless, unlike JAR

files which are just physical containments for classes, bundles combine both the logical and

the physical aspects of modularity.

Each bundle has its own classloader, providing code isolation to the platform. This

classloader is responsible to load bundle‟s resources and classes and resolving imported

classes, performing runtime verifications according to visibility rules and ensuring class

loading happens in a predictable and consistent way. Besides code isolation, the module layer

39 Symbolic name, version and manifest version.
40 Bundle class path, imported and exported packages.

44

provides logical boundary enforcement, version verification, reuse improvement,

configuration flexibility and configuration verification.

2.4.3 Lifecycle Layer

On the top of the Module Layer there is the Lifecycle Layer. It deals with the

execution time aspects of the modularity provided by the OSGi framework, providing a

management API and a lifecycle for OSGi bundles. Lifecycle operations defined by this layer

allow dynamic applications evolution and management by means of changing the

composition of bundles and interacting with the OSGi platform through their execution

context. Bundles can be dynamically installed, started, updated, stopped and uninstalled to

flexibly customize applications. Figure 9 shows a state diagram containing all possible state

during the lifetime of a bundle.

Figure 9. State diagram representation of OSGi bundle lifecycle [OSG05]

First of all, the bundle lifecycle starts with its installation, which is performed through

the install operation. Installation is performed by passing to the platform the URL of the

bundle JAR file. The bundle then is created in the Installed state. Next, the framework must

ensure that all the bundle dependencies are satisfied before it can be used. This guarantee is

represented by the transition from Installed to Resolved
41

. A bundle is in the Resolved state

can be started when executing the start command, what leads it to the Starting state. The

framework then looks for the Activator class of the bundle informed on its metadata and

41 This transition is usually implicit and made automatically, but it is also possible to do it explicitly.

45

executes its start() method
42

. If the method executes successfully the bundles transitions to

Active state, else it returns to Resolved. An Active bundle can be stopped by means of

executing the stop command. It transitions then to the Stopping state, where the method

stop() in the Activator class of the bundle is executed. To the extent that its dependencies

were already resolved, the bundle returns to the Resolved state
43

. The framework can be

forced to resolve bundle dependencies again by executing the refresh or update commands.

Bundles in the Installed state can be uninstalled by the uninstall command, transitioning to the

Uninstalled
44,45

.

The Module and Lifecycle layers have a very close relationship, in that the Lifecycle

layer controls which bundles are installed into the framework, what influences the bundles

dependency resolution in the Module layer.

2.4.4 Service Layer

The Service layer builds on top of the Lifecycle and Module layers and defines a

model for providing and consuming services as in SOA. Bundles can publish and discover

services through the medium of a shared and centralized service catalogue, the OSGi Service

Registry. This catalogue is accessible through a BundleContext object, which is used by

OSGi bundles to access the OSGi framework facilities.

In the OSGi specification, services are POJOs with associated Java interfaces

(contracts) and meta-information which are published in the OSGi Service Registry.

Whenever a bundle needs a service, it would use the BundleContext interface to access the

service catalogue and ask for a given interface. Filtering parameters may also be provided by

the service consumer under the form of LDAP queries to refine the results. In case that the

register finds services which match with the interface and the filtering parameters, the registry

returns a set of ServiceReferences, that is, the information and the indirect reference
46

 for

42 This method can be used to provide a bootstrap behavior to a bundle, such as allocating resources and

registering its services in the OSGi Service Registry.
43 Stopped bundles have their services automatically removed from the Service Registry, but the stop

method must contain the code to release all resources taken along the bundle‟s execution.
44 Since the version 4.2 of the OSGi specification, bundles in the Active state will be automatically stopped,

transition to the Resolved state and then to the Installed state, before uninstalling it.
45 The lifecycle API generates as well synchronous and asynchronous notifications at runtime for bundle and

framework events.
46 Indirect references are used in order to allow service usage track, laziness support and removal

notifications.

46

the corresponding services providers. After, consumers use this reference and the

BundleContext to bind to the object, which represents the actual service implementation.

On service registration, modification or unregistration, the OSGi framework can send

events to notify special objects placed on the service requesters, namely service listeners and

service trackers. Events can be filtered for these objects through LDAP filters. Listeners and

trackers in a bundle are automatically removed when the latter stops.

In addition, the OSGi Alliance has specified services which are offered by the

platform for common performed tasks. They are divided into framework services, which are

services that are part or direct the operation of the framework, such as Package Admin,

Permission Admin and URL Handler; System services, which are necessary functions for

every system, such as the Log Service, Event Admin and Component Runtime; Protocol

services, which map external protocols to OSGi services, like the HTTP service and the UPnP

Device Service; and other miscellaneous services, such as Wire Admin and XML Parser.

2.4.5 OSGi Applications

Since its first release, many implementations for the OSGi specification have been

developed. In 2004, the first open sources projects implementing the OSGi specification

arose. Apache Felix, Eclipse Equinox and Knoplerfish are well-known examples. Currently,

the OSGi specification is in its fourth release (R4). We list some OSGi implementations in the

Table 2.

Implementation Developer Certification R4 License

Felix 2.047 Apache No Apache License v2.0

Equinox 3.248 Eclipse Yes Apache License v2.0

Knoplerfish 2.049 Makewave Yes BSD/Commercial

mBedded Server (mBS) 6.050 Prosyst Software Yes Eclipse Public License/ Commercial

OSGi R4 Solution51 Samsung Yes Commercial

SuperJ Engine Framework52 HitachiSoft Yes Commercial

Table 2. Implementations of the OSGi R4 Specification

47 http://felix.apache.org
48 http://www.eclipse.org/equinox
49 http://www.knopflerfish.org / http://www.makewave.com/site.en/products/knopflerfish_pro_osgi.shtml.

Only the commercial version is R4-Certified
50 http://www.prosyst.com/index.php/de/html/content/97/Products-OSGi-Implementation. Open source

version is based on Eclipse Equinox, while commercial version uses Prosyst Framework.
51 http://www.samsung.com/osgi_patent_pledge/index.htm
52 http://hitachisoft.jp/products/superj/

47

 In addition, many enterprises have started adopting OSGi technology in their

solutions, principally for rich client platform applications. One of the first applications of the

OSGi technology in the industry was in the Eclipse IDE
53

, under the form of Eclipse plug-ins.

OSGi implementations were also incorporated to application servers such as JOnAS
54

,

JBossAS
55

, Oracle/BEA WebLogic Application Servers
56

, Oracle/Sun Glassfish v3
57

 and

IBM Websphere Application Server
58

 in order to provide a runtime environment for the

application server‟s modules. IBM has also built Lotus Expeditor
59

, a client middleware that

enables connection, delivery and management of applications and services, on the OSGi

framework. Lotus Expeditor is the foundation for other IBM Lotus applications, such as

Sametime and Notes.

Ricoh Company Ltd., a Japanese company ranked among the top worldwide with a

30% percent market share in the United States
60

, is another OSGi platform adopter and has

included Knoplerfish onto its Embedded Software Architecture device platform
61

 for client

customization on multi-functional printers. Cisco is another giant company which included

ProSyst‟s mBS as optional add-on on its Application Extension Platform (AXP)
62

. Cisco AXP

allows the integration of applications with Cisco‟s Integrated Services Router (ISR). Other

OSGi applications in the industry include SIP communicators
63

 and the Service Creation

Environment in Alcatel-Lucent‟s IP Multimedia Subsystem Application Server
64

.

2.4.6 Real-Time OSGi

The OSGi Service Platform has been a widely adopted technology for home

automation, pervasive environments and even business contexts, due to its dynamic service

component model, flexible remote management and its continuous deployment support.

53 http://www.eclipse.org/osgi/
54 http://wiki.jonas.ow2.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf
55 http://jbossosgi.blogspot.com/2009/06/jboss-osgi-runtime-as-integration.html
56 http://download.oracle.com/docs/cd/E12524_01/doc.1013/e14481/products.htm
57 http://docs.sun.com/app/docs/doc/820-7688/abppa?a=view
58 http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/index.html
59 http://www.ibm.com/developerworks/lotus/library/expeditor-osgi-services/
60 http://www.ricoh-usa.com/about/awards/industryawards.asp
61 http://www.makewave.com/site.en/showroom/ricoh.shtml
62 http://www.cisco.com/en/US/prod/collateral/routers/ps9701/data_sheet_c02_459075.html
63 SIP stands for Session Initiation Protocol, a protocol which is likely to be employed by next generation

mobile networks. SIP was originally designed for Voice over IP session management, but it became popular in

other applications. A SIP communication may be found in http://www.sip-communicator.org
64 http://www.alcatel-lucent.com/wps/DocumentStreamerServlet?LMSG_CABINET=Docs_and_Resource_

Ctr&LMSG_CONTENT_FILE=Brochures/5400_IMS_Application_Server_Bro.pdf

48

However, it lacks support for real-time applications, which restricts its application to

environments where real-time requirements do not have to be guaranteed. Indeed, the

continuous deployment support allows bundles to be installed, started, stopped and

uninstalled at anytime, thus the static system configuration assumption is not valid, because

the system will evolve during the whole application lifecycle.

The dynamic reconfiguration feature in OSGi is useful in real-time systems for

allowing the evolution of real-time systems at run-time and for facilitating the maintenance of

software components. Furthermore, it is also useful for managing resources, ensuring that

only necessary components are installed in the platform, and minimizing the number of

components in order to save memory. Another helpful feature for real-time software deployed

in dangerous environments and for mass production control systems is that OSGi allows

bundles to be controlled remotely.

Few works have been dedicated to provisioning real-time support in OSGi. [GUI08]

presents a descriptive approach for real-time support in the OSGi framework, where the real-

time guarantee is implicitly provided by the container runtime environment. In this approach,

a real-time contract is specified in the component‟s metadata. A service called Declarative

Real-time Component Executive is responsible for solving the constraints between real-time

components at execution time. A hybrid real-time component was used instead of a pure real-

time component model to separate the adaptation logic from the real-time component code:

while the management parts run in a conventional non-real-time environment, implemented in

line with the OSGi specification, an independent concurrent process containing the

predictable code
65

 runs directly in the real-time operating system layer.

Richardson et al. in [RICHA09] analyzed ways to provide temporal isolation (that is,

preventing the timing misbehavior in one thread from affecting the timing constraints of other

independent threads) in the OSGi platform at thread and component levels in order to enable

the development of component-based RTSJ applications.

Another proposal for real-time OSGi was presented in [COA07]. It suggests the

addition of more metadata information to real-time bundles, the isolation of bundles by means

of real-time partitioning and a layered architecture for the OSGi Service Platform, with three

65 The real-time tasks in this approach are written using native code.

49

distinct profiles models which run atop of the OSGi core: OSGi Enterprise, OSGi Soft Real-

Time and OSGi Hard Real-time.

OSGi is already being used in applications for real-time applications, such as in the

core of Oracle‟s (formerly BEA) WebLogic Real-Time
66

. This is a low-latency Java-based

middleware framework for event-driven applications which process event streams in real-

time. The OSGi framework is the base for BEA‟s microService Architecture (mSA), an

infrastructure based on SOA principles of separation of concern and substitutability. The

mSA is event-driven and notification services are used to publish and discover components

and microServices [MAH07]. Aonix and ProSyst have been working in the integration of

PERC and mBS to establish a reference implementation for prototyping activities in the

automotive industry. However, due to the fact that their solutions are proprietary, very little

information about is available.

Issues raised by the consideration of real-time requirements in the OSGi Service

Platform will be discussed in the next chapter.

2.5 Summary

Real-time systems are software systems whose correctness depends on both logical

and temporal aspects. The most important properties of real-time systems are their

predictability and the determinism of their execution time. In the beginning, dedicated

hardware was created for real-time systems; however, with the advances in computer

hardware, real-time concerns concentrated on the software layer. Real-time operating systems

were designed to offer deterministic hardware access time; real-time scheduling algorithms

were elaborated to avoid deadliness missal; and programming languages were designed or

extended in order to allow programmers to develop real-time systems with high-level

abstractions. Java is a programming technology which was extended in order to provide the

timeliness required by real-time systems. In its standard form, Java presents several

shortcomings which prevented its use in the design of real-time systems, such as garbage

collection, dynamic lazy loading and loose scheduling mechanisms. The Real-Time

Specification for Java is an extension to Java which adds real-time programming constructs

and constraints to the Java environment.

66 http://download-llnw.oracle.com/docs/cd/E13221_01/wlrt/docs20/index.html.

http://download-llnw.oracle.com/docs/cd/E13221_01/wlrt/docs20/index.html

50

Due to its interaction with the real-world, some real-time systems must be dynamically

adaptive, that is, they must be capable of being modified and updated at runtime. Software

runtime adaptations may be parametric or compositional; the former means modifications in

the system variables, while the latter specify addition or removal of system components.

Many techniques have been developed to support software runtime adaptation, such as aspect-

oriented programming and computational reflection. Service-Oriented Architectures (SOA)

and Component-Based Software Engineering (CBSE) are another two paradigms for the

development of dynamic adaptive systems which are becoming very popular. The need to

separate SOA mechanisms from business or functional code originated the concept of service-

oriented component models, a programming model where components are used to implement

services. Some works have been developed in the application of dynamic adaptive systems

techniques in real-time software. Most of them are concentrated on Real-time SOA or in

Real-time CBSE, but very few try to deal with service-oriented component models.

In this study, we focus on the conflicts between real-time requirements and the

dynamism provided by the service-oriented component models. These conflicts are discussed

in the next chapter. The OSGi service platform, a platform for the dynamic deployment of

services, is used as the main object of our study. The OSGi framework was chosen due to its

simple component lifecycle and its growing popularity and adoption into large companies‟

solutions, such as Cisco, Ricoh and IBM.

51

3 REAL-TIME CONSTRAINTS IN THE OSGI DYNAMIC

PLATFORM

Component-based software engineering and service-oriented architectures are

becoming widely-adopted effective ways of developing dynamic and flexible software. The

emergence of these development paradigms lead to the introduction of SOA concepts into

component models and execution environments. In service-oriented component models,

applications are decomposed into a collection of interacting services, being capable of

autonomous runtime adaptation accordingly to the availability of its required services. In

addition, the component-oriented programming concepts are used to separate the code

responsible for service management mechanisms from the logical implementation of the

service functionality. However, it is generally accepted that this dynamicity limits the use of

service-oriented component models in applications with real-time requirements, where

predictable behavior is a fundamental issue. The fact that services may become available or

unavailable at any time during the execution of an application may imply in unbounded

execution times and unforeseen delays.

In this chapter, we discuss the issues generated by the consideration of real-time

requirements in service-oriented component models and instantiate those problems in the

OSGi framework. Section 3.1 presents the conflicts between real-time requirements and the

need for dynamic adaptation in service-oriented applications. In section 3.2, we discuss about

the lack of real-time support in the OSGi framework. To conclude the chapter, a scenario is

presented to exemplify the problem of dealing with dynamic architectures in real-time

applications in section 3.3.

52

3.1 Real-Time Issues in Dynamic Service-Oriented Component

Models

Service-oriented component models were originated from the need of explicit support

for dynamic availability into component models [CER04b]. This property, however, is on the

basis of the main shortcomings for using service-oriented component models in real-time

applications. These runtime changes may influence other real-time components and

compromise the whole application determinism due to the architectural-level modifications.

Furthermore, it requires component instances to monitor context changes and listen to

component arrivals or departures, which imposes an extra burden for the real-time system

developers and additional overhead for the overall system. Departing services may affect

availability of hard and critical real-time applications. Dynamic availability also influences

WCET analysis due to the fact that runtime updates of service implementations means a

change in the WCET of all threads that require this service. On top of that, resource

reservation, commonly performed in real-time systems to ensure timing requirements, may

cause overload situations because we cannot predict the number of components present in the

system
67

.

Moreover, most of service-oriented component models do not provide temporal

isolation of components. Dynamic availability may lead the service framework to states

where there are more installed components than is possible to guarantee resources for.

Consequently, threads can miss their deadlines and, without temporal isolation, they may

affect timing requirements of other independent threads and components. In addition, this lack

of temporal isolation may be a source to carry out a Denial-of-Service attack [NEE93] on

OSGi, depleting system resources and preventing other components from obtaining their

guarantees.

Another important issue when considering real-time requirements in service-oriented

component models is the lack of a global view of the real-time context. Actually, this problem

originates from the fact that in the component-based software engineering approach,

components are developed independently of the system and other components. Thus, without

a global knowledge of the system, it is hard to guarantee timeliness requirements for each

component. Global context knowledge is particularly important for priority assignment. By

67 Consequently, resource usage cannot be predicted.

53

means of scheduling analysis we can correctly assign priorities within components, but not

across components. This can cause problems like deadlocks, starvation and missed deadlines,

aside from possibly incorrect results due to the violation of the precedence among

computations.

When considering specific service-oriented platforms, we may find many other issues

for real-time systems. Next section discuss about the lack of real-time support in the OSGi

Service Platform.

3.2 Real-Time Issues in the OSGi Platform

Besides the problems listed in the precedent section, the OSGi platform itself presents

issues which may compromise the predictability required by real-time applications.

First of all, the OSGi service platform was not conceived as a real-time application. So

far, all of its implementations were written in standard Java and its classes will need to

interact with real-time components, possibly written in the RTSJ or another real-time Java

technology. Considering RTSJ specifically, this may lead to potential memory assignment

issues, due to its rules which prevent dangling memory references, i.e. objects from one

scoped memory area being referenced in another memory area. Furthermore, the fact that

RTSJ class objects are stored automatically in the immortal memory and that the developer

may also explicitly allocate objects into it may complicate class unloading and generate

memory leaks.

Figure 10. OSGi and RTSJ memory areas

54

Figure 10 shows the illegal memory assignment and memory leak problems. As said

before, in RTSJ class objects are allocated in immortal memory, jointly with objects explicitly

allocated by the programmer. In the OSGi specification, each component has its classloader.

Class objects hold a reference to its class loader object, and class instances hold reference to

its class object. The memory used by a classloader then is reclaimed when it is no longer

referenced by a class object. However, even if “Provider A” component is removed, its class

objects remain because immortal memory in RTSJ never is garbage-collected, leading to a

memory leak in the OSGi framework. Moreover, “Provider B” has a method which executes

inside a scoped memory and stores a new object in a static field called x. In RTSJ this leads to

a memory assignment error, because static fields are also stored in immortal memory and

immortal memory cannot hold references to scoped memory areas.

The OSGi framework is based in standard Java. Consequently, it uses ordinary Java

threads. RTSJ components have real-time priorities, which are higher than the ordinary ones.

Thus, due to the fact that RTSJ‟s scheduler uses a run-to-block scheduling policy, real-time

component threads may lockout system threads and keep the administrator from issuing

commands to the framework. In addition, the framework must ensure the safe termination of

threads from components which have been uninstalled, currently a developer‟s concern.

In general, real-time applications have complex and application specific requirements.

However, the OSGi specification mechanisms for the composition of modules are strongly

based on the import and export of Java packages resolved by an LDAP filter
68,69

. This

coupling with Java language prevents us from specifying more complex relationships among

real-time components. With regard to resource management, there is no specific mechanism

for global resource management. Thus, due to the fact that resources are globally shared, real-

time developers must find a way to provide global resource budget enforcement for

components and ensure component real-time contracts.

In this study we will focus mainly on ways to deal with real-time constraints in

service-oriented component frameworks such as the OSGi service platform where dynamic

availability is a present property.

68 Lightweight Directory Access Protocol, an application layer protocol for querying and modifying data

over TCP/IP by means of systems which store, organize and access information in a directory.
69 The OSGi R4 specification introduced the concept of declarative services to support dynamic

composition at service level; however it is still tightly coupled with the Java language [GUI08].

55

3.3 Scenario: Video monitoring application

An example of application with soft real-time requirements and which has dynamic

adaptations on its architecture is a motion detection monitoring system. In this application, the

motion detection system is connected to several cameras which provide an image frame

service. The number of cameras to which the motion system is connected is unknown at

design time; at runtime, once a camera component is installed to the system, it is

automatically connected to the motion detection module, which will process its frames in

order to detect human presence. Indeed, cameras in this system have the dynamic availability

property, being able to appear and disappear at any time.

An important concern in this system is image processing time. If we assume that

frames are sent regularly to the motion detection module, image processing time must be

bounded in order to allow the system to react as soon as possible to a human presence. For

instance, if we assume that image processing takes 200 ms and cameras send an image frame

each 1s, we are only able to process four other frames before receiving a new round of image

frames to process. Excessive retard of their processing could create security issues, such as

the delayed detection of a thief, hours after his attack. In addition, we must consider that the

motion detection module thread is a task which is periodically scheduled to run, besides other

threads which might be running in the system, such as framework system threads.

Figure 11 illustrates the architecture of the system described above. Four points must

be observed concerning the impact of dynamic availability in the architecture of the real-time

system:

Figure 11. Dynamic availability in the motion detection system

56

 Binding to a new camera component: The system underlying mechanisms which

perform the binding between components may carry an unpredictable delay in the

image processing time. Moreover, depending on the number of cameras to which the

motion detection system is connected, processing time may become longer than the

time attributed to the execution of the motion detection system;

 Removal of a camera component: In the same way that binding mechanisms,

unbinding mechanisms may introduce an unpredictable delay in image processing

time. Furthermore, we must ensure that the removed camera component is not

currently being used by the motion detection system.

 Update/reconfiguration of a camera component: Updating a camera component in

the OSGi platform makes the component stop and return to the Installed state. Then,

component dependences are resolved and afterwards the component is restarted. The

duration of this process cannot be predicted. In addition, the new camera component

may have different properties. Thereby, feasibility analysis which may have been

performed before are not valid anymore and therefore must be redone.

 Binding a camera component to another component: Another factor that must be

considered is the case where the camera component provides the image frame service

to more than one consumer. Sending the frame to one of the components while the

other waits may introduce an unpredictable wait time to the former component.

To summarize, besides the real-time issues inherent to the Java Platform, the OSGi

Service Platform present several other shortcomings which make it inappropriate for

deploying and developing real-time applications. These shortcomings may have two different

reasons. The first one is the fact that the OSGi platform was not conceived for being used in

the context of real-time applications. The other one comes from the dynamism provided by its

service-oriented component model. Indeed, component dynamic availability feature allows

components to appear and disappear unexpectedly at runtime. In this study, we will focus on

the dynamism aspect.

In the next chapter, we present some propositions which take into account the issues

listed in this chapter. Our scenario will be revisited in chapter five, for the validation of the

propositions.

57

4 PROPOSITION

In the last chapter, we presented the issues raised by the consideration of real-time

requirements in service-oriented component models and in the OSGi framework. The aim of

this chapter is to propose solutions to these problems. Some of the solutions proposed target

service-oriented component models in general; others are more specific to the OSGi platform,

but they can be generalized and adapted to other dynamic service platforms. This distinction

comes from the fact that conflicts identified in chapter three come from different levels; while

the architecture-related issues may be treated in a higher-level of abstraction, problems

concerning component lifecycle, component model and the platform-specific questions are

more likely to be treated in the OSGi framework level.

We propose in this work an architecture freezing policy when the platform is in a real-

time processing state, holding all reconfigurations until the end of execution of the critical

code. Then, modifications may be performed if they respect an agreement established

between the service consumer and the service provider. Section 4.1 introduces the

architectural freezing approach. Section 4.2 presents the extension of a Service Level

Agreement (SLA) model in order to take account real-time requirements. Finally, the

implementation of those approaches in the OSGi Service Platform and some other

modifications in order to make it real-time aware are suggested in the section 4.3.

4.1 Architectural Freezing

Since one of the main problems that arises when considering real-time requirements in

dynamic platforms is due to dynamic availability, that is, the capability of adding, updating

and removing a component, a solution that comes naturally is to forbid those interactions at

execution time. This is a radical solution which compromises the dynamicity of the

applications and disables runtime software evolution, albeit the most frequently used option

58

currently. An ideal solution should be less strict, allowing applications to be modified at run-

time without interfering with its deterministic behavior.

We consider that in a real-time application every component is able to perform its task

within the real-time requirements of the application. Thus, the issues lie in the bindings

between components and how they change across time. Suppose that an application is

represented by a set of states. Each state corresponds to a given architecture of the application,

and transitions between states correspond to the arrival, the departure or the update of a

component in the application during runtime. In consequence, in order to respect the

application timing constraints, we must define rules for the transitions between states.

Figure 12. Machine state representation of system architectures

Figure 12 shows a machine state representation of a system‟s architecture. A system in

the state S1, in the presence of a component which satisfies the component‟s dependencies

transits to the state S2. In the OSGi platform, for example, this transition is performed

automatically. If this component is removed, the system returns to the state S1. We assume

that the service registry in this service platform is unique and centralized, so one architecture

modification is performed at a time. We present in figure 13 a modification to this machine

state representation, adding real-time states. Once a system enters a real-time state, no

modifications are performed until it returns to the corresponding non-real-time state, in order

to ensure that real-time requirements will be met. We call this approach architecture freezing,

due to the fact that the system holds all the architecture changes until the system quits the

critical code area. This solution addresses mainly systems whose most part of the code is non-

real-time but with some critical pieces of code which are executed sporadically.

In platforms where binding and unbinding management is executed by only one thread

but several applications may run concurrently, blocking this manager may cause other real-

time applications to violate their timing constraints.

59

Figure 13. Machine state representation of a system architecture with architectural freezing

In figure 14 we show two pseudocodes for implementing architectural freezing in a

platform. Figure 14a shows the application side of the architectural freezing, where the

developer specifies that the platform must enter a real-time state in order to ensure that

components‟ dynamic behavior will not introduce unpredictability into the real-time code that

will be executed. Variations of this code could include the duration of the real-time state

instead of calling a method to quit the real-time state. In this case, when two components

enter a real-time state at the same time, and component Ca wants to freeze the system

architecture during ta units of time and component Cb needs to freeze the system architecture

during tb units of time, the system must keep the architecture frozen during max(ta, tb) in order

to ensure the real-time behavior of both components, where max(a, b) is a, if a  b, or b

otherwise. This variation is possible due to the fact that in a real-time state, all the code

executed is bounded in time. Real-time and non-real-time may designate respectively real-

time and non real-time bundles (deployment units) instead of simple methods or lines of code.

Figure 14b shows the platform side, more specifically a method which is responsible

for the architecture modification. Structure may differ among applications, so that the code

responsible for effectuating modifications in the architecture may be distributed among

different classes. But in all cases, the platform must verify whether it is in a real-time state or

not before starting to perform modifications in the architecture of applications which are

being executed.

60

a) public void toto() {

 … // non-real-time code

 Enter-real-time-state();

 // Platform in real-time state

 … // real-time code

 Leave-real-time-state();

 // Platform in normal state

}

b) public void method-to-modify-arch(){

 if (arrival || departure || update) {

 while platform.isOnRTState() {

 // wait until RTState is over

 }

 // modify architecture

 }

}

Figure 14. a) Pseudocode for freezing a system architecture b) Pseudocode responsible for freezing the

system architecture in a platform

Architectural freezing can be extended to a system of scheduling and reservation of

architectural modifications in the system. For instance, components may specify at which

time the architecture must be frozen, being up to the system to make a schedule analysis and

find an available time slot for performing architecture modifications.

Next section details the extension of a Service Level Agreement model in order to take

into account real-time requirements. This agreement will be used by a manager which will

verify before each architecture reconfiguration if component addition, removal or update do

not violate the timing constraints of the applications hosted by the OSGi platform.

4.2 Real-time Dynamic Service Level Agreement

Service Level Agreement (SLA) [VER99] is a negotiated part of the contract

established between the service provider and the service consumer which formally defines the

level of service and the penalties applied when commitments are not met by either party.

These commitments are specified in order to reach a given quality of service. A SLA contains

information such as the parts engaged in the agreement, the service provided, service

utilization time, service availability, service reliability, service utilization price and dates for

renegotiating the agreement. SLAs are monitored by Service Level Management (SLM)

modules, which are also responsible for applying the penalty policies in case of non

commitment of the agreement. In order to avoid equity issues, generally a third part (the

service certifier) chosen by the service provider and consumer is present to take measures

periodically in order to verify if the contract clauses are violated.

 An extension to SLAs in order to handle dynamic availability and service disruption

is proposed by [TOU08] and [TOU10], the D-SLA. Service disruptions are characterized by

three additional metadata: maximum service disruption time, maximum accumulated service

disruption on a sliding time-window and time between two service disruptions. By using past

activities and recorded histories of service provider contracts, we can also consider service

providers which are not present in the platform at selection time. We propose in the next

61

subsections an extension to D-SLA in order to take into account real-time requirements, RTD-

SLA.

4.2.1 RTD-SLA Content

Besides the content described by [TOU08] and [TOU10], a Real-time Dynamic

Service Level Agreement contains the following data:

 Task type: The task type specifies if a given module has periodic, aperiodic or

sporadic behavior. This information is important for scheduling analysis performed by

the Service Level Management module before selecting or not a service. For instance,

depending on how critical the tasks which are being executed are, the manager may

block the admission of aperiodic or sporadic tasks.

 Period time: In the context of periodic tasks, service provider and service consumer

period times are important information for scheduling analysis. For example, the

manager may detect that it is not possible for a consumer to use a service because their

periods do not match.

 Worst Case Execution time: WCET is also important information for scheduling

analysis. The manager is able to predict if a consumer can execute within its period

time and if service invocations will not interfere on its timing constraints. If that is the

case, the manager may act according to the policies specified in the RTD-SLA.

 Resource Usage: Resource usage information may stop components from blocking

due to resource waiting times. Thus, for common resources such as CPU and RAM,

components must specify their usage. In addition the sum of the usage of the services

which are being consumed should not exceed the budget allowed for the service

consumer to execute.

 Priority: In applications where task precedence is important to ensure proper system

behavior, it might be interesting for the manager to consider the priority of each task

when admitting new tasks in the system. This parameter may also be used to choose

between the admission of two components, where only one is possible.

 Policy: In case of violation of the contract, policies specify what the modules which

perform the service level management must do. These policies may go from a simple

substitution of the service to a decrease in the reliability rate in presence of trust

62

indicators. However, all possible actions must have their execution time bounded in

time.

Figure 15 presents a UML diagram representing the structure of our RTD-SLA. For

the sake of simplicity, parameters related to D-SLA (maximum service disruption time,

maximum accumulated service disruption on a sliding time-window and time between two

service disruptions) are not represented in the class diagram.

RTD-SLA

Parts Parameters
1

1

Service Provider

Service Consumer

Signer

+Id

Service Certifier

0..*
1 1 Parameter

D-Parameter RT-Parameter

Expiration date
Policy

Rule

Condition Action

+MaxExecTime

0..*
1

1

1..*

1..*

1..*

Priority

ResourceUsage

WCET

Task

PeriodicTaskAperiodicTask

SporadicTask
PeriodTime

Figure 15. UML diagram of RTD-SLA

4.2.2 Service Level Management

Every dynamic arrival and departure produces changes in the service registry state, the

module responsible for the service level management must have listeners to these events. We

may have one or several modules which listen to events corresponding to one specific service,

all the services or a specific subset of services. With D-SLA, in case of service disruption, the

service usage is suspended until the return of the service provider. If the disruption time

exceeds the maximum service disruption time specified in the SLA or if the overall downtime

goes beyond the maximum accumulated disruption time, actions are taken according to the

policy specified in the agreement.

 The SLM also must act in the service selection in order to allow the consumer to only

bind to providers which will not interfere with its deterministic behavior. In addition, the

SLM is responsible for maintaining a global context of the system and using this information

to perform schedulability analysis and ensure predictability to all components in the system.

63

Actually, when the application is in a non-real-time state, the SLM will control all the

platform reconfigurations.

Figure 16. Real-time SLA and SLM

 Figure 16 exemplifies the intervention of the SLM on the binding of a consumer to a

provider. Even though the provider has the needed functional properties, its QoS properties do

not match with the real-time requirements of the system. Thus, the SLM module blocks the

interaction between the consumer and the provider. Depending on the policy adopted by the

SLM, it may hold the binding until the system decreases its charge or simply reject it.

The fact that we have a central manager may create a bottleneck in the application. In

order to bypass this shortcoming, platforms may have multiple SLM modules and use known

algorithms in the distributed systems domain in order to keep a coherent global state of the

system.

Solutions presented in the sections 4.1 and 4.2 are both platform-independent.

However, in the real-time domain often solutions are optimized to a given platform in order to

reach a more deterministic execution time. Next section discusses about modifications

specifically for the OSGi Platform.

4.3 Real-time Aware OSGi Platform

Although the OSGi Service Platform was meant to be used primarily for embedded

systems, it does not have support for real-time applications. Real-time requirements cannot be

expressed in the platform and its classes are written in standard Java and interact with Java‟s

64

standard API. We list in this section some approaches which are possible in order to create a

real-time aware OSGi Service Platform.

4.3.1 OSGi Real-time Core and Code Instrumentation

One of the problems cited in the last chapter was the fact that OSGi was not written

with real-time code. Therefore, its underlying mechanisms may introduce unpredictable

behavior to real-time applications, if not errors due to the interaction between real-time and

non-real-time code. Ideally, the OSGi specification should be revisited in order to create a

real-time version of its core, where all the operations executed automatically and implicitly by

the framework are bounded in time. Performing changes in the specification level would

allow groups to freely create compatible implementations.

However, the core of the last OSGi specification has around 300 pages. Reviewing it

could take a long time. For this reason, one possible approach is to create a real-time aware

version of the OSGi framework by means of code instrumentation. Instrumentation refers to a

computer science technique in which code is added to a program in order to gather data to be

used by measurement and monitoring tools. Java 5 provides services to instrument Java code,

adding byte-code to methods and classes. This addition is performed by an instrumentation

library that may be written in Java, which is connected to an application and runs embedded

in the virtual machine, intercepting the class loading process. Thus, in the context of OSGi,

we may replace standard Java code by RTSJ-compliant code [AME09, AME10].

This approach has the advantage that it can be performed transparently to the OSGi

framework for any of the implementations of the service platform. Furthermore, since bundles

may be installed at runtime, a dynamic approach is necessary in order to ensure that all the

bundles in the platform which may be used by the real-time application will also exhibit a

real-time behavior. However, the instrumentation process is not real-time and may exhibit

unpredictable behavior, besides the overhead incurred by the code interception and

modification. Moreover, it requires a revision of the whole OSGi specification in order to

define the precedence and priority of each task for the framework.

4.3.2 Real-time SLA in OSGi

A bundle‟s manifest contains metadata for the management of bundles in the OSGi

framework. A way of inserting the RTD-SLA concepts in OSGi is through the extension of

this metadata and the implementation of a module for the management of real-time contracts.

However, the OSGi framework deals with bundles, which are deployment units, which do not

65

correspond precisely to components. For instance, many bundles may be used to compose a

service oriented component or bundles may be shared among different components, as shown

in figure 15.

Figure 17. Component vs. Bundle metadata

In the latest release of the OSGi specification, the Declarative Services specification is

responsible for allowing developers to specify dependencies between components under the

form of required and provided services in an XML-based metadata file. This XML schema is

used by a container called Service Component Runtime (SCR), which resides inside bundles

and uses OSGi‟s service requests and service listeners to automatically resolve dependencies

and manage component binding, unbinding and service registration. By means of Declarative

Services, we may specify the real-time metadata for a component. An alternative to

Declarative Services is the use of component models over OSGi, such as iPOJO [ESC07],

SCA [BIE07] and Spring
70

. Many developers use component models in order to ease the

development and management of components. Generally, their usage requires specifying

metadata for components. In iPOJO specifically, we may define handlers to interact with the

OSGi platform and enable management of real-time SLAs.

4.3.3 Architectural Lock in OSGi

We can apply the concepts of architectural freezing to the OSGi platform by

suspending the automatic binding of components. By means of Declarative Services,

component‟s metadata can be used to specify methods to be implicitly called by the platform

when it binds a new component or unbinds an old one. A possible approach is to intercept

70 http://www.springsource.org/osgi

66

these method invocations and hold their execution while the application is in a real-time state.

Several techniques may be used to perform these modifications:

 Static byte-code instrumentation: Since we know which methods will be called for

binding/unbinding components, we may use the Java 5‟s instrumentation package to

perform offline instrumentation, loading the class-files from the disk, modifying their

byte-codes and saving a new version of the corresponding byte-code by means of tools

like ASM [BRUNE02a] and BCEL [DAH99], which use the Visitor design pattern to

perform byte-code manipulation. We can put the thread responsible for executing the

bind/unbind method to sleep until the end of execution of the critical code. We may

ensure that the thread will wake up again because a real-time critical code will always

have its execution bounded in time.

 Aspect-oriented instrumentation: An alternative to static instrumentation is to use

aspects for the byte-code injection. It offers the advantage that code does not have to

be written at byte-code level. However, it is less flexible due to the fact that we must

specify the correct pointcut to insert the code to suspend the thread before the

bind/unbind is performed, while at byte-code level we can insert it anywhere.

 Modification of component models: Components models often have access to the

bind/unbind mechanisms. Thus, instead of modifying the application code, we may

perform these modifications directly on the component model code, making the

architectural freezing transparent to the application.

Based on the ideas presented in this chapter, we created a prototype which implements

architectural freezing for the OSGi platform. Next chapter presents our implementation with

more details.

67

5 IMPLEMENTATION

In the last chapter we presented approaches for considering real-time requirements in

service-oriented component models and in the OSGi Service Platform.

This chapter elucidates some of the solutions proposed by means of an architectural

freezing iPOJO-based implementation. Section 5.1 presents the reasons that led us to choose

an architectural freezing-based implementation instead of the others in order to validate our

proposition. In section 5.2, we discuss the platform and the environment used as base to the

implementation. Finally, details of the implementation are given in the section 5.3.

5.1 Choice of the Approach

As said in the last chapter, freezing the architecture during real-time states is an

approach which may be adapted to any service-oriented platform and component model. This

approach does not address platform-specific problems and will not solve all of the issues

specified in chapter three. However, it addresses the unpredictability introduced by dynamic

availability features, which is a recurrent problem in adaptive dynamic platforms. Thus,

validating an implementation which uses this approach would produce a more generic result

which may be valid for all dynamic platforms, instead of a specific one.

At the same time, architectural freezing is an approach implementation that is quite

simple: we must identify the methods which are responsible for binding, unbinding and

modifying components and block them, by means of suspending the execution thread, when

the application is in a real-time state. We might have problems if this thread is unique for all

applications, as one real-time application may block other real-time applications. Although

this is not the case in OSGi, which is inherently multi threaded. The implementation and

representation of a real-time state is application-dependent.

68

Architectural freezing may be mixed with Real-time Dynamic SLAs in order to

provide a more complete solution. Only using architectural freezing avoids interference with

dynamism issues, but the platform may add components to an application which may degrade

the real-time behavior of the latter. Since the main reason to use service-oriented component

models is to add dynamism to an application, we chose to focus our implementation on this

aspect and not on policy admission schemes.

5.2 Choice of the platform

Even though the OSGi Platform enhances the modularization of applications in Java,

some functional and non-functional aspects are still mixed in the application logic. The use of

service-oriented component models over the OSGi platform helps to separate non-functional

aspects such as the dynamism management from the business code in the application. In

addition, the OSGi specification has several implementations. Even though they all follow the

same specification, it would require platform-specific modifications in order to test our

solution. Once again, service-oriented component models add an abstraction layer, and may

be executed without any modification in different OSGi framework implementations.

Among the several service-oriented component models for the OSGi framework, we

chose iPOJO as the base of our implementation. The iPOJO framework [ESC07] manages

dynamic bindings automatically by means of dependency injection and injects code to deal

with non-functional aspects. It also provides an extensible container which manages all

service-oriented computing aspects, so that the developer may focus on the application logic

and the configuration of the container. The possibility of using handlers (i.e., container

extensions in iPOJO) to extend the service component model increases the flexibility of the

chosen solution. Thus, due to these capabilities and simplicity of development, we decided to

use iPOJO as base platform for implementing a prototype.

5.3 Prototype Implementation

The architecture freezing approach was implemented by means of an iPOJO

Dependency Handler, a type of handler which provides data on service dependencies. These

handlers may intercept modifications in the application‟s lifecycle. The handler is connected

to a Real-time State Manager and verifies the platform state before executing a modification

on its architecture. If the platform is in a real-time state, the thread responsible for changing

69

the application‟s architecture is blocked until the platform reaches a non real-time state.

Figure 18 shows the architecture of our solution.

Figure 18. Real-Time State Manager and Solution Architecture

All the iPOJO components in the platform have Dependency Handlers connected to

the Real-time Manager, even those which are not real-time. This way, we have a global

context of the platform and no component may interfere with the architecture, since the

handlers verify the platform with the Real-time Manager before adding, modifying or

removing a service dependency. In addition, real-time components are directly connected to

the Real-time Manager in order to switch the platform state between real-time and non real-

time.

5.4 Validation

In order to validate our implementation, we developed a test application based on the

scenario described in the section 3.3. This application validates our approach in the context of

soft real-time applications. In our scenario, a WebcamProducer module an image frame each

time its getImageFrame() method is called. A MotionDetection module is bond to the

WebcamProducer file and perform the getImageFrame()calls every 1 seconds, processing

the video stream afterwards. The WebcamConsumer is also attached to the RTManager

module, which plays the role of Real-time Manager and puts the platform in a real-time state

during the getImageFrame() method call. This way, we may ensure that webcam snap

70

capture and image transfer are executed in a bounded time. Furthermore, we also ensure that

the service will not be removed from the platform during its usage.

In order to perform the validation tests, we installed the Real-time Manager in an

Apache Felix 2.0.5 environment. Then, we installed the iPOJO 1.6.0 core with the real-time

aware Dependency handler that we implemented. The binding between the iPOJO core and

our handler was performed by a small modification in iPOJO‟s metadata. Next, we installed a

bundle containing the Java Media Framework API 2.2.1, which was used to get access to

hardware media devices in Java. A WebcamProducer bundle was then launched, followed

by the installation of the MotionDetection bundle. At the validation of the

MotionDetection instance, it starts calling WebcamProducer‟s getImageFrame()

method. The first time this method is called, it configures the device for capturing video

snaps. When we stop the MotionDetection instance, iPOJO calls the WebcamProducer‟s

stopData() method, which is responsible for deallocating all the taken resources (notably

the media devices).

Figure 19. Architecture of the validation test

As we expected, our prototype retains system architecture while the platform is in a

real-time state, avoiding component bind, unbind and update. Thus, although we have not

taken any metrics yet, we feel that we have validated our approach.

71

6 CONCLUSIONS AND PERSPECTIVES

Real-time applications must present a predictable behavior, with deterministic

response times. This predictability is generally ensured at compile time, by means of

schedulability analysis, formal verification and statistics based on the behavior of the several

modules which may compose the application. Consequently, most real-time applications are

not able to adapt their architecture to unforeseen environment modifications at run-time,

hence they are static applications. Conversely, dynamic adaptive software requires flexibility

capabilities in order to take into account possible changes on its environment, sometimes

without powering off the whole system. Although the approaches for providing runtime

adaptation compensate the inconveniences of software systems downtime, including, updating

or removing software components at runtime, this may occasionally compromise application

safety due to unanticipated effects. Indeed, in general, runtime adaptive software and real-

time software are disjoint sets due to the conflict between predictability and flexibility.

However, two factors motivate us to find solutions to the growing number of systems

which may be in the intersection of both application classes: first, the fact that even critical

real-time software, which cannot have its execution interrupted, must be updated due to

environment changes or maintenance; and secondly, the increasing popularity of service-

oriented and component-based approaches, which leads industries and developers to migrate

their applications to service and component frameworks. An example is the inclusion of the

OSGi framework in the core of several application servers, such as JOnAS and BEA‟s

WebLogic Real-Time.

This study concentrated on:

 Identifying the issues raised by software architecture dynamic modifications in real-

time applications in Java;

72

 Suggesting approaches for avoiding the introduction of unpredictability in real-time

software hosted on the OSGi Platform.

A prototype implementing an architectural freezing approach for the OSGi platform

was provided by means of an iPOJO Dependency Handler, which blocked the addition,

update and removal of components when the platform was in a real-time state. This chapter

concludes our study by drawing the conclusions obtained, and presenting the perspectives for

future work.

6.1 Contribution

In this work, we proposed solutions at different levels for dealing with dynamic

availability and adaptation of software components. First, we have proposed the introduction

of real-time states and the concept of architectural freezing, which locks the system

architecture in these states. In this approach, before executing real-time code, the platform

enters a real-time state by explicit calls to a real-time manager, which holds every component

addition, update or removal until the platform returns to a non real-time state. This way, no

modifications are performed in the system architecture and the deterministic behavior of real-

time code is ensured. One natural limitation of this approach is that when dealing with

physical devices or over the network services, keeping their references when they have

already left or are unavailable, may lead to application errors and inconsistent states. This

could be solved by extending our model to consider these un-suspendable components and

require their declaration beforehand. In this report we have also suggested modifications to

the OSGi platform in order to support real-time application requirements.

We also proposed that when the application is not in a real-time state, reconfigurations

may be performed if they respect an agreement between the service consumer and the service

provider, in which the deterministic behavior of the applications hosted in the platform is

maintained. This agreement is an extension of a service level agreement model which takes

into account dynamic service-oriented architecture concepts in order to integrate real-time

requirements. This SLA model, called RTD-SLA, jointly with service level management

modules, provides a solution to avoid the introduction of components which may interfere in

the deterministic behavior of real-time applications. However, although this solution limits

the admission of unsafe components, it does not avoid the misbehavior of already admitted

components, only applying the penalty policies after the constraints have been violated.

73

An implementation of the architectural freezing approach was developed by means of

iPOJO handlers. We chose iPOJO handlers as the base of our implementation in order to

increase the portability of our solution and avoid modifications to the standardized OSGi

platform and iPOJO core‟s corresponding source code. The prototype worked as expected:

when components entered the real-time state, the real-time manager component held all the

dynamic component modifications, performing them once the execution of real-time code had

terminated. We see our proposed solutions and our prototype as a first step towards the

development of real-time extensions for OSGi‟s component model and other real-time

service-oriented component models.

6.2 Future Work

In future works, we intend to clarify some aspects which were not treated in this study,

notably:

 Integration of RTD-SLA in the prototype: In order to provide a more complete

solution, we plan to integrate the RTD-SLA model to our prototype and extend the

Real-time Manager module to execute the Service Level Management functions. It is

important to test the impact of both solutions in the application‟s execution time, since

monitoring all the components binding may introduce an overhead to the platform.

 Proposition of a real-time aware core for the OSGi Service Platform: It would be

important to correctly adapt the OSGi platform in order to support real-time

requirements. Real-time applications demand a well thought application design,

modularization and priority assignment, especially when dealing with RTSJ, where a

wrong priority assignment may block the whole platform. Each component of the

OSGi core must be taken into account and refactored.

 Validation of the approaches with different component models and

environments: The first prototype was developed by means of iPOJO Handlers. Thus,

though all components bond to the real-time manager may put the application in a

real-time state, only iPOJO components arrival, departure and update are considered

and only their threads can be blocked by the manager. In order to better evaluate our

approach, we plan to test it with other component models and their impact in real-time

environments.

74

 APIs for measuring resource usage in Java: Resource usage monitoring is a central

factor in real-time applications, since one of the most used techniques for ensuring

predictable behavior of real-time applications is the anticipated resource reservation.

Our proposed RTD-SLA also uses resource usage as one of the criteria for the

admission of real-time tasks. Thus, resource consumption monitoring is a task to be

performed by the SLM modules. However, standard Java API does not provide

functions for obtaining resource usage at runtime [GUID02, JSR284]. We intend in

future works to provide solutions which take into account this issue.

75

7 REFERENCES

[AKK07] Faisal Akkawi, Atef Bader, Daryl Fletcher, Kayed Akkawi, Moussa Ayyash, and Khaled Alzoubi.

“Software adaptation: A conscious design for oblivious programmers”. Aerospace Conference,

2007, p. 1–12.

[ALU08] R. Alur and G. Weiss. “RTComposer: A Framework for Real-Time Components with Scheduling

Interfaces”. Proceedings of the 7th ACM international conference on Embedded software, 2008,

p. 159-168.

[AME09] J. C. Américo. “Prototypage d‟un serveur d‟application Java EE Jonas 5 temps-réel”. Engineer

degree final project report, ENSIMAG, 2009.

[AME10] J. C. Américo, W. Rudametkin, and D. Donsez. “RealtimeizeMe: A tool for automatic

transformation from Java legacy to Java Real-time code”. Submitted to the 18th Intl Conference
on Real-Time Networks and Systems, 2010.

[ARN00] K. Arnold, J. Gosling and D. Holmes. “The Java Programming Language”. Addison-Wesley,

2000.

[ARN99] K. Arnold, B. O'Sullivan, R. W. Scheifler, J. Waldo and A. Wollrath. “The Jini Specification”.

Addison-Wesley, 1999.

[AUE07] J. Auerbach, D. F. Bacon, D. T. Iercan, C. M. Kirsch, V. T. Rajan, H. Roeck and R. Trummer.

“Java takes flight: time-portable real-time programming with exotasks”. Proceedings of the

conferences on languages, compilers, and tools for embedded systems, 2007, p. 51-62.

[BACK98] G. Back, P. Tullmann, L. Stoller, W.C. Hsieh, and J. Lepreau. “Java operating systems: Design

and implementation”. Technical report, Department of Computer Science, University of Utah,

1998.
[BACO03] D. F. Bacon, P. Cheng and V. T. Rajan. “A real-time garbage collector with low overhead and

consistent utilization”. Proceedings of the Thirtieth Annual ACM Symposium on the Principles

of Programming Languages, 2003, p. 285–294.

[BAR08] N. Bartlett. “OSGi in practice”. CC-E-books, 2008.

[BAS05] S. Baskiyar, “A survey of contemporary real-time operating systems”. Informatica 2005, 29, p.

233-240.

[BER81] Bernstein, A. and Harter, P. K. “Proving real-time properties of programs with temporal logic”.

Proceedings of the 8th ACM Symposium on Operating Systems Principles (SOSP '81), 1981, p.

1-11.

[BIE07] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller, A. Karmarkar,

A. Malhotra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple, M. Rowley,
K. Tam, S. Vorthmann, P. Walker, and L. Waterman. “SCA Service Component Architecture -

Assembly Model Specification”, version 1.0. Technical report, Open Service Oriented

Architecture collaboration (OSOA), 2007.

[BIH92] T. Bihari, P. Gopinath, A. Technol, and O. Columbus. “Object-oriented real-time systems:

concepts and examples”. Computer, vol. 25, 1992, p. 25–32.

[BOL00] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Fun; M. Turnbull. “The Real-Time Specification

for Java”, Addison-Wesley, 2000.

[BOL05] G. Bollella, B. Delsart, R. Guider, C. Lizzi, F. Parain. “Mackinac: Making HotSpotTM Real-

Time”. ISORC’2005, 2005, p. 45-54.

[BOR09] E. Borde, F. Gilliers, G. Haïk, J. Hugue, and L. Pautet. “MyCCM-HI: un framework à composants

mettant en œuvre une approche d'ingénierie dirigée par les modèles”. Génie logiciel, 2009, p. 6-

12.
[BRE02a] R. Brennan, M. Fletcher, D. Norrie. “An agent-based approach to reconfiguration of real-time

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Delsart:Bertrand.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Guider:Romain.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lizzi:Christophe.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Parain:Fr=eacute=d=eacute=ric.html
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/isorc2005.html#BollellaDGLP05

76

distributed control systems”. IEEE Transactions in Robotics and Automation, vol. 18, issue 4,

2002, p. 444–451.

[BRE02b] R. Brennan, X. Zhang, Y. Xu, and D. Norrie. “A reconfigurable concurrent function block model

and its implementation in real-time Java”. Integrated Computer-Aided Engineering, vol. 9,

2002, p. 263–279.

[BRUC98] P. Brucker, “Scheduling Algorithms”, 2nd edn, Springer-Verlag, Berlin.

[BRUNE02a] E. Bruneton, R. Lenglet and T. Coupaye. “ASM: A Code Manipulation Tool to Implement

Adaptable Systems”. Proceedings of adaptable and extensible component systems, 2002.

[BRUNE02b] E. Bruneton, T. Coupaye, J-B. Stefani. “Recursive and Dynamic Software Composition with

Sharing”. 7th International Workshop on Component-Oriented Programming (WCOP02), 2002.

[BRUNO09] E. Bruno and G. Bollella. “Real-Time Java Programming with Java RTS”. Addison-Wesley,
2009.

[CAN06] C. Canal, J.M. Murillo, and P. Poizat. “Software Adaptation”. L'objet, vol. 12, 2006, p. 9-31.

[CED07] W. Cedeño and P. Laplante. “An Overview of Real-time Operating Systems”. Journal of the

Association for Laboratory Automation, vol. 12, 2007, p. 40-45.

[CER04a] H. Cervantes and R.S. Hall. “A Framework for Constructing Adaptive Component- Based

Applications: Concepts and Experiences”. Proceedings of the 7th International Symposium on

Component-Based Software Engineering (CBSE7), 2004, p. 130-137.

[CER04b] H. Cervantes and R. Hall. “Autonomous adaptation to dynamic availability using a service-

oriented component model”. Proceedings of the 26th International Conference on Software

Engineering, 2004, p. 623-632.

[CLE95] P. Clements. “From subroutines to subsystems: Component-based software development”.
American Programmer, vol. 8, 1995, p. 31–31.

[COA07] G. Coates, “Real-Time OSGi”, http://www.osgi.org/wiki/uploads/VEG/Aonix-RT-OSGi.ppt,

2007.

[COR03] A. Corsaro, C. Santoro. “A C++ Native Interface for Interpreted JVMs”. 1st Intl. JTRES Workshop

(JTRES’03). LNCS 2889, Springer, 2003.

[CUC09] T. Cucinotta, A. Mancina, G.F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, and F. Rusina.

“A Real-Time Service-Oriented Architecture for Industrial Automation”. IEEE Transactions on

Industrial Informatics, vol. 5, 2009, p. 267-277.

[DAH99] M. Dahm. “Byte Code Engineering”. Proceedings JIT’99, Springer, 1999.

[DIJ68] E. W. Dijkstra. “The structure of the „T.H.E.‟ multiprogramming system”. CACM, vol. 11, no. 5,

1968, p. 453-457.

[DVO04] D. Dvorak, G. Bollella, T. Canham, V. Carson, V. Champlin, B. Giovannoni, M. Indictor, K.
Meyer, A. Murray, and K. Reinholtz. “Project Golden Gate: towards real-time Java in space

missions”. 7th IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing, 2004, p. 15–22.

[ESC07] C. Escoffier, R. Hall, and P. Lalanda. “iPOJO: An extensible service-oriented component

framework”. IEEE International Conference on Services Computing, 2007, p. 474–481.

[ETI06] J. Etienne, J. Cordry, and S. Bouzefrane. “Applying the CBSE paradigm in the real time

specification for Java”. Proceedings of the 4th international workshop on Java technologies for

real-time and embedded systems, 2006, p. 218-226.

[FOX09] J. Fox and S. Clarke. “Exploring approaches to dynamic adaptation”. Proceedings of the 3rd

International DiscCoTec Workshop on Middleware-Application Interaction, 2009, p.19-24.

[GAR93] D. Garlan, and M. Shaw. “An Introduction to Software Architecture”. Advances in Software
Engineering and Knowledge Engineering, Volume I, World Scientific, 1993.

[GEI07] K. Geihs. “Selbst-adaptive software”. Informatik-Spektrum, vol. 31, issue 2, 2008, p. 133–145.

[GUI08] N. Gui, V. de Flori, H. Sun, and C. Blondia. “A framework for adaptive real-time applications: the

declarative real-time OSGi component model”. Proceedings of the 7th workshop on Reflective

and adaptive middleware, 2008, p. 35–40.

[GUID02] F. Guidec, and N. Le Sommer. “Towards Resource Consumption Accounting and Control in

Java: a Practical Experience". Workshop on Resource Management for Safe Language, ECOOP

2002, 2002.

[HAL10] R. Hall, K. Pauls, S. Mc Culloch, and D. Savage. “OSGi In Action: Creating Modular

Applications in Java” (1st ed.), Manning Publications, 2010.

[HAR01] D. Hardin. “Real-Time Objects on the Bare Metal: An Efficient Hardware Realization of the Java

Virtual Machine”. 4th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’01), 2001, p. 53–59.

[HIL98] G. Hilderink. “A new Java thread model for concurrent programming of real-time systems”. Real-

77

Time Magazine, 1, 1998.

[HOS10] P. Hošek, T. Pop, T. Bureš, P. Hnetynka, and M. Malohlava. “Comparison of Component

Frameworks for Real-time Embedded Systems”. Federated Events on Component-Based

Software Engineering and Software Architecture, 2010.

[HU07] J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad. “Compadres: A lightweight component

middleware framework for composing distributed, real-time, embedded systems with real-time

Java”. Proc. ACM/IFIP/USENIX 8th Int’l Middleware Conference, 2007, vol. 4834, p. 41-59.

[HUA05] Jinfeng Huang. “Predictability in Real-Time System Design”. PhD thesis, Technische Universiteit

Eindhoven, The Netherlands, September 2005.

[HUR95] W. Hürsch and C. Lopes. “Separation of concerns”. Northeastern University, Technical report

NU-CCS-95-03, 1995.
[IAB00] Imsys AB. “The Cjip java microprocessor”. http://www.imsys.se, May 2000.

[IEE90] Institute of Electrical and Electronics Engineers. “IEEE standard computer dictionary: A

compilation of IEEE standard computer glossaries”, 1990.

[IEE96] Institute of Electrical and Electronics Engineers. “Information Technology - Portable Operating

System Interface (POSIX) - Part 1: System Application: Program Interface (API) [C

Language]”, 1996.

[ISO00] D. Isovic and G. Fohler. “Efficient scheduling of sporadic, aperiodic, and periodic tasks with

complex constraints”. Proceedings 21st IEEE Real-Time Systems Symposium, 2000, p. 207-

216.

[IVE02] A. Ive. “Implementation of an embedded real-time java virtual machine prototype”. Licentiate

thesis, Department of Computer Science, Lund Institute of Technology, 2002.
[J2ME] Java 2 platform micro edition (j2me) technology for creating mobile devices.

http://www.java.sun.com, May 2000. Sun Microsystems Inc. White Paper.

[JCO00] J Consortium. “Real-time core extensions for the Java platform”. Revision 1.0.10, J Consortium,

2000.

[JSR284] JSR 284. “Resource Consumption Management API”. http://jcp.org/en/jsr/detail?id=284

[KAZ00] I. H. Kazi, H. H. Chen, B. Stanley and D. J. Lilja. “Techniques for obtaining high performance in

Java programs”. ACM Comput. Surveys, vol. 32, 2000, p. 213–240.

[KEP03] J. O. Kephart and D.M. Chess. “The Vision of Autonomic Computing”. Computer, 2003, p. 41-50.

[KIC01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. “An overview of

AspectJ”. ECOOP 2001, 2001.

[KOP98] H. Kopetz. “Component-based design of large distributed real-time systems”. Control

Engineering Practice, vol. 6, 1998, p. 53-60.
[KRA90] J. Kramer and J. Magee. “The evolving philosophers problem: Dynamic change management”.

IEEE Transactions on Software Engineering, vol. 16, issue 11, 1990, p. 1293-1306.

[LAP06] P. Laplante. “Real-Time Systems Design & Analysis”. 3rd Edition, Wiley India Pvt. Ltd., 2006.

[LAR95] K. G. Larsen, P. Pettersson, and Wang Yi. “Model-checking for realtime systems”. Proceedings

of 10th International Fundamentals of Computation Theory, vol. 965 LNCS, 1995, p. 62– 88.

[LAU07] K. Lau and Z. Wang. “Software component models”. IEEE Transactions on Software

Engineering, vol. 33, 2007, p. 709–724.

[LIU73] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-real-time

environment”. Journal of the ACM (JACM), vol. 20, 1973, p. 46–61.

[MAE87] P. Maes. “Concepts and experiments in computational reflection”. Conference proceedings on

Object-oriented programming systems, languages and applications, 1987, p. 147–155.
[MAG96] J. Magee, and J. Kramer. “Dynamic Structure in Software Architectures”. Proceedings of the 4th

ACM SIGSOFT Symposium on Foundations of Software Engineering, 1996, p. 3-14.

[MAH07] Z. Mahmood, “Service-Oriented Architecture: Tools and Technologies”, Proceedings of the 11th

WSEAS International Conference on Computers, 2007, pp. 485-490.

[MCGH98] H. McGhan and M. O‟Connor. “picoJava: a direct execution engine for Java bytecode”. IEEE

Computer, vol. 31, issue 10, 1998, p. 22-30.

[MCGR08] C. McGregor and J.M. Eklund, “Real-Time Service-Oriented Architectures to Support Remote

Critical Care: Trends and Challenges”. 32nd Annual IEEE International Computer Software and

Applications Conference, 2008, p. 1199-1204.

[MCK04] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng. “Composing adaptive software". Computer,

vol. 37, 2004, p. 56-64.

[MIY97] A. Miyoshi, H. Tokuda, and Kitayama T. “Implementation and evaluation of real-time Java
threads”. Proceedings of the IEEE Real-Time Systems Symposium, 1997, p. 166–175.

[MUN70] R. Muntz and E. Coffman Jr. “Preemptive scheduling of real-time tasks on multiprocessor

http://jcp.org/en/jsr/detail?id=284

78

systems”. Journal of the ACM (JACM), vol. 17, 1970, p. 324-338.

[NEE93] R. M. Needham. “Denial of Service”. ACM Conf. on Computer and Communications Security,

1993, pp. 151-153.

[NILSE96] K. Nilsen. “Issues in the design and implementation of real-time Java” Java Developer’s

Journal, vol. 1, 1996, p. 44.

[NILSE98] K. Nilsen. “Adding real-time capabilities to the Java programming language”. Communications

of the ACM, 1998, p. 44–57.

[NILSS02] A. Nilsson, T. Ekman, and K. Nilsson. “Real Java for real time - gain and pain”. Proceedings of

the International conference on compilers, architecture and synthesis for embedded systems,

2002, p. 304-311.

[OMG] Object Management Group. “CORBA Component Model”, V3.0 formal specification,
http://www.omg.org/technology/documents/formal/components.htm

[OMM00] R. Ommering, F. Linden, J. Kramer and J. Magee. “The Koala Component Model for Consumer

Electronics Software”. IEEE Computer, volume 33, issue 3, 2000, p. 78-85.

[ORE08] P. Oreizy, N. Medvidovic, and R. Taylor. “Runtime software adaptation: framework, approaches,

and styles”. 30th International Conference on Software Engineering, 2008, p. 899–910.

[OSG05] OSGi Alliance. “OSGi Service Platform Core Specification Release 4”. http://www.osgi.org,

2005.

[PAN09] M. Panahi, W. Nie, and K. Lin. “A Framework for Real-Time Service-Oriented Architecture”.

2009 IEEE Conference on Commerce and Enterprise Computing, 2009, p. 460-467.

[PAP03] M. Papazoglou and D. Georgakopoulos. “Service-oriented computing”. Communications of the

ACM, vol. 46, 2003, p. 25–28.
[PAR72] D. Parnas. “On the criteria for decomposing systems into modules”. CACM, vol. 15, no. 12, 1972,

p. 1053-1058.

[PEN89] D. Peng and K. Shin. “Static allocation of periodic tasks with precedence constraints in distributed

real-time systems”. Proc 9th Int. Conf. on Distributed Computer Systems, 1989, p. 190-198.

[PFE04] M. Pfeffer and T. Ungerer. “Dynamic real-time reconfiguration on a multithreaded Java-

microcontroller”. 7th IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing, 2004, p. 86-92.

[PIZ08] F. Pizlo and J. Vitek. “Memory management for real-time Java: State of the art”. Proceedings of

the 11th IEEE International Symposium on Object-oriented Real-Time Distributed Computing

(ISORC‟08), 2008, p. 248-254.

[PIZ10] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. “High-Level Programming of Embedded Hard

Real-Time Devices”. EuroSys Conference, 2010, p. 69-82.
[PLS08] A. Plšek, F. Loiret, P. Merle, and L. Seinturier. “A component framework for java-based real-time

embedded systems”. Middleware, 2008, p. 124–143.

[PRO08] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, and J. Adamek. “A Component-Oriented

Framework for Spacecraft On-Board Software”. Proceedings of DAta Systems In Aerospace

(DASIA 2008), European Space Agency Report Nr. SP-665, 2008.

[RASC05] A. Rasche and A. Polze. “Dynamic Reconfiguration of Component-based Real-time Software”.

10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems, 2005,

p. 347-354.

[RASM08] R. Rasmussen and M. Trick. “Round robin scheduling – a survey”. European Journal of

Operational Research, vol. 188, 2008, p. 617–636.

[RED02] B. Redmond and V. Cahill. “Supporting Unanticipated Dynamic Adaptation of Application
Behaviour”. 16th European Conference on Object-Oriented Programming, 2002, p. 205-230.

[RICHA09] T. Richardson, A.J. Wellings, J.A. Dianes, and M. Díaz. “Providing temporal isolation in the

OSGi framework”. Proceedings of the 7th International Workshop on Java Technologies for

Real-Time and Embedded Systems (JTRES'09), 2009, pp. 1-10.

[RICHT03] K. Richter, M. Jersak, and R. Ernst. “A formal approach to MpSoC performance verification”.

IEEE Computer, vol. 36, 2003, p. 60–67.

[ROU08] R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen and E. Stav. “Composing components and

services using a planning-based adaptation middleware”. Software Composition, 2008, p. 52–

67.

[SAN02] C. Santoro. “An Operating System in a Nutshell”. Internal Report, Dept. of Computer Engineering

and Telecommunication, UniCT, Italy, 2002.

[SCHM02] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill. “Tao: A pattern-oriented object
request broker for distributed real-time and embedded systems”. IEEE Distributed Systems

Online, vol. 3, issue 2, 2002.

79

[SCHO07] M. Schoeberl, H. Sondergaard, B. Thomsen and A. P. Ravn. “A profile for safety critical Java”.

10th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC’07), 2007, p. 94–101.

[SCHW95] E. Schweitz and N. Raleigh. “Real-Time Languages”. Term. Paper, 1995, p. 1-7.

[SHA04] P.K. Sharma, J.P. Loyall, G.T. Heineman, R.E. Schantz, R. Shapiro, and G. Duzan. “Component-

based dynamic QoS adaptations in distributed real-time and embedded systems”. Proc. of the

Intl. Symp. on Dist. Objects and Applications (DOA’04), 2004, p. 1208-1224.

[SHI94] K. Shin and P. Ramanathan. “Real-time computing: A new discipline of computer science and

engineering”. Proceedings of the IEEE, vol. 82, 1994, p. 6–24.

[SRI02] S. Sriram, S. and S. S. Bhattacharyya. “Embedded Multiprocessors: Scheduling and

Synchronization”. Marcel Dekker Inc., 2002.
[STA04] J. Stankovic and R. Rajkumar. “Real-Time Operating Systems”. Real-Time Systems, vol. 28, 2004,

p. 237-253.

[STA90] J. Stankovic and K. Ramamritham. “What is predictability for real-time systems?”. Real-Time

Systems, vol. 2, 1990, p. 247–254.

[STA92] J. Stankovic. “Real-time computing”. BYTE (Invited paper), 1992, p. 1-19.

[STO92] A. D. Stoyenko. “The evolution and state-of-the-art of real-time languages”. Journal of Systems

and Software, vol. 18, Issue 1, April 1992, p. 61-83.

[TAY09] R. Taylor, N. Medvidovic, and P. Oreizy. “Architectural Styles for Runtime Software

Adaptation”. WICSA/ECSA, 2009, p. 171-180.

[TOU08] L. Touseau, D. Donsez, and W. Rudametkin. “Towards a SLA-based Approach to Handle Service

Disruptions”. IEEE International Conference on Services Computing, 2008, p. 415-422.
[TOU10] L. Touseau. “Politique de liaison aux services intermittents dirigée par les accords de niveau de

service”. PhD thesis, Université Joseph Fourier - Grenoble I, France, June 2010.

[TSA06] W. Tsai, Y. Lee, Z. Cao, Y. Chen and B. Xiao. “RTSOA: Real-time service-oriented architecture”.

2nd IEEE International Workshop Service-Oriented System Engineering (SOSE'06), 2006,

p. 49–56.

[TYM98] P. Tyma. “Why are we using Java again”. Communications of the ACM, vol. 41, n. 6, 1998, p. 38-

42.

[VER99] D. Verma. “Supporting Service Level Agreements on IP Networks”. Macmillan Technical

Publishing, USA, 1999.

[WAN03] N. Wang and C. Gill. “Improving real-time system configuration via a QOS-aware CORBA

component model”. International Conference on System Sciences, Software Technology Track,

Distributed Object and Component-based Software Systems Minitrack, 2003, p. 273-282.
[WEIC04] B. Weichel, M. Herrmann. “A Backbone in Automotive Software Development Based on XML

and ASAM/MSR”. SAE World Congress 2004, Nr. 2004-01-295.

[WEIZ93] M. Weiser. “Hot Topics: Ubiquitous Computing”. Computer, 1993, p. 71-72.

[WER97] M. Wermelinger. “A hierarchic architecture model for dynamic reconfiguration”. Proceedings of

2nd International Workshop on Software Engineering for Parallel and Distributed Systems,

1997, p. 243-254.

[ZHA00] X. Zhang, S. Balasubramanian, R. W. Brennan and D. H. Norrie. “Design and implementation of

a real-time holonic control system”. Information Science Special Issue on Computational

Intelligence for Manufacturing, vol 27, issues 1–2, 2000, p. 23–44.

80

ANEXOS

81

Um Estudo do Impacto de Restrições de Tempo-Real em Aplicações
Java/OSGi

João Claudio Rodrigues Américo

Universidade Federal do Rio Grande do Sul, Instituto de Informática - Porto Alegre, Brasil

RESUMO

No contexto das aplicações Java, a popularização da abordagem
orientada a serviços e da engenharia de software baseada em
componentes fez com que muitas aplicações migrassem para
plataformas dinâmicas, como OSGi [OSG05]. Entretanto, com a
popularização de soluções como a RTSJ [BOL00] para o
desenvolvimento de aplicações de tempo-real em Java, vemo-nos
em uma situação em que essas aplicações podem possuir
restrições temporais que não serão respeitadas devido ao
dinamismo fornecido por estas plataformas. Neste trabalho,
propomos uma estratégia de congelamento da arquitetura das
aplicações abrigadas na plataforma durante tratamentos de tempo-
real. As reconfigurações são executadas depois, contanto que as
mesmas não desrespeitem acordos de nível de serviço entre o
usuário e o prestador do serviço. Nossa abordagem foi
implementada sob a forma de uma extensão do modelo de
componentes iPOJO [ESC07]. Esta estratégia, apesar de suas
limitações, impede que a plataforma introduza impreditibilidade
na execução de aplicações de tempo-real.

PALAVRAS-CHAVE: Tempo-real, arquiteturas orientadas a
serviços, modelos de componentes orientados a serviços, Java,
RTSJ, OSGi, evolução dinâmica de software

1 INTRODUÇÃO

Adaptação dinâmica e restrições de tempo-real são duas
características e necessidades comuns em software atualmente.
Enquanto o primeiro prioriza flexibilidade e o tratamento em
tempo de execução de mudanças imprevistas no meio, o segundo
prima por preditibilidade e determinismo no tempos de resposta
de uma aplicação. Muitas soluções para lidar separadamente estes
aspectos foram desenvolvidas para a plataforma Java. Uma das
soluções de tempo real mais adotada para Java é a Especificação
de Tempo-Real para Java (em inglês “Real-Time Specification for
Java” - RTSJ) [BOL00] e suas implementações que oferecem uma
interface de programação completa para o desenvolvimento de
aplicações de tempo-real em Java. Da mesma forma, a
popularização dos princípios da Engenharia de Software Baseada
em Componentes (en inglês “Component-Based Software
Engineering” - CBSE) [CLE95] e das Arquiteturas Orientadas a
Serviços (em inglês “Service-Oriented Architectures” - SOA)
[PAP03] para o desenvolvimento de aplicações flexíveis e
modulares em Java são responsáveis pela criação de modelos de
components orientados a serviços e de plataformas de serviço.

Uma das plataformas de serviço mais populares é a plataforma
de serviços OSGi. Ela foi projetada para ser uma especificação
aberta de plataformas para o desenvolvimento e a implantação de
serviços em passarelas residenciais, mas acabou tornando-se um
padrão de facto para o desenvolvimento de aplicações modulares
e flexíveis em Java. Sua popularização foi possível graças à sua
adoção pela Fundação Eclipse para desenvolver plugins para seu
ambiente de desenvolvimento integrado (em inglês “Integrated
Development Environment” - IDE). A plataforma OSGi pode ser
utilizada para criar aplicações orientadas a serviços e baseadas em

componentes. Atualmente a plataforma OSGi encontra-se na sua
quarta versão, passando a cobrir diversos domínios de aplicação,
como telefonia móvel, supervisão industrial, automóveis e a nova
geração de servidores de aplicações Java Enterprise Edition.

É inquestionável o fato de que geralmente esses dois domínios
de aplicação (tempo-real e dinâmicamente adaptável) possuem
conjuntos disjuntos de aplicações, dado o conflito entre
preditibilidade e flexibilidade. Entretanto, dois fatores nos
motivam a procurar soluções para o potencial número crescente
de aplicações que se encontram na interseção desses dois
domínios:

1) O fato de que mesmo aplicações críticas, que não
podem ter sua execução interrompida, precisam ser
atualizadas e passar por manutenção;

2) E o fato de que o sucesso do SOA e do CBSE estão
levando inúmeras empresas a migrarem suas
aplicações para plataformas de serviços e de
componentes (como os servidor de aplicação JOnAS
e BEA WebLogic Real-Time).

Este estudo concentra-se na identificação dos problemas
gerados pelas modificações dinâmicas na arquitetura de
aplicações de tempo-real em Java e na sugestão de estratégias para
evitar a introdução de impreditibilidade da parte da plataforma
OSGi nas aplicações abrigadas pela mesma. Duas abordagens
complementares são propostas: Uma política de congelamento da
arquitetura das aplicações executadas pela plataforma durante
tratamentos de tempo-real; e o monitoramento baseado em
acordos de nível de serviço das reconfigurações estruturais
efetuadas em fases não-criticas. Nossa política de congelamento
de arquitetura foi implementada através de uma extensão ao
modelo de componentes iPOJO, demonstrando a viabilidade da
mesma.

O resto deste artigo é organizado da seguinte forma. A seção
dois apresenta os trabalhos relacionados nos domínios relevantes
ao nosso estudo. A contribuição deste trabalho é apresentada na
seção três. A seção quatro apresenta a implementação realizada
para dar uma forma tangível à nossa proposição e como ela foi
validada. Finalmente, a seção cinco apresenta as nossas
conclusões e as perspectivas de trabalhos futuros relacionados a
este.

2 ESTADO DA ARTE E TRABALHOS RELACIONADOS

Este trabalho situa-se na interseção entre três domínios:
Interessamo-nos em um primeiro momento às aplicações de
tempo-real e às extensões sugeridas para a plataforma Java para o
suporte de aplicações de tempo-real. Após, discutimos
brevemente sobre evolução dinâmica de software, as motivações
para fazê-lo, as principais abordagens utilizadas e como estas
tecnicas vem sido utilizada no contexto de aplicações de tempo-
real. Em um terceiro momento introduzimos a plataforma de
serviços OSGi e apresentamos os principais trabalhos descritos na
literatura sobre OSGi e tempo-real.

82

2.1 Java para Tempo-real

Sistemas de tempo-real diferem de outros sistemas informáticos
devido ao fato de que sua corretude depende não somente de
aspectos funcionais, mas também de aspectos temporais [STA92].

Esses aspectos temporais são normalmente expressos sob a forma
de prazos determinados para a execução de tarefas. Estas tarefas
podem ser periódicas, aperiódicas ou esporádicas, dependendo de
seu padrão de chegada [ISO00]. De acordo com a criticidade
dessas tarefas e da importância de respeito dos prazos, as
aplicações de tempo-real podem classificadas em brando, firme e
duro [BRUNO00]. Duas propriedades são fundamentais em
sistemas de tempo-real:

1) Eles devem ser preditíveis, ou seja, as restrições
temporais e prazos de uma aplicação devem ser
respeitados. Técnicas de análise de escalonamento e
verificação formal são frequentemente utilizadas para
verificar a preditibilidade de um sistema;

2) E eles devem ser determinísticos, ou seja, a execução
da aplicação deve ser assegurada, mesmo com a
presença de fatores externos que podem perturbá-la (e
neste caso, alterar sua funcionalidade, performance e

tempo de resposta). O determinismo de uma aplicação
pode ser medido através de sua latência (tempo entre a
geração de um evento e a resposta do sistema para o
mesmo) e de seu jitter (variação estatística da latência).

Para desenvolver aplicações de tempo-real, toda a infrastrura
sobre a qual a aplicação é executada deve ser tempo-real. Isto
gerou a criação de algoritmos para o escalonamento de tarefas de
tempo-real, de sistemas operacionais de tempo-real e de

linguagens de programação para o desenvolvimento de sistemas
de tempo-real. Em se tratando das linguagens de programação de
tempo-real, estas podem apresentar o suporte para a expressão de
restrições de tempo real através de três formas diferentes:

1) Eliminando comandos cujo tempo de execução é
indeterminado;

2) Baseando-se em chamadas de sistema específicas a um
sistema operacional de tempo-real; ou

3) Extendendo linguagens existentes.
No caso da plataforma Java, a terceira opção foi utilizada como

estratégia para permitir a criação de sistemas de tempo-real com
sua popular linguagem de programação.

Java [ARN00] é uma tecnologia desenvolvida pela Sun
Microsystems em 1995, consistindo na definição da linguagem de
programação Java, na definição de uma biblioteca padrão e na
definição de um conjunto de instruções intermediário chamados
byte-codes, juntamente com um ambiente de execução. Java
tornou-se uma linguagem extremamente popular entre
desenvolvedores de aplicação, devido a fatores como a sua
portabilidade, flexibilidade, robustez e facilidade de aprendizado
[TYM98]. Entretanto, apesar das várias vantagens introduzidas
por esta tecnologia, a mesma é inapropriada para o
desenvolvimento de sistemas de tempo-real [NILSS02],
especialmente pelos seguintes fatores:

 Gerenciamento automático de memória: A
plataforma Java define um coletor de lixo (em inglês,
“Garbage Collector” - GC) como processo de
gerenciamento automático de memória. Coletores de
lixo facilitam a programação e servem como meio de
evitar vazamentos de memória. Entretanto, para tal eles
devem varrer a memória e encontrar os objetos de um
programação que não são mais referenciados, um
processo cuja duração não pode ser determinada.

 Carregamento dinâmico de classes: O carregamento
dinâmico de classes em Java permite que apenas o

carregamento de uma classe seja feito apenas quando
ela é utilizada por uma aplicação. Isto faz com que a
todo instante apenas as classes necessárias estejam
presentes na memória. Porém, o processo de
carregamento de classes inclui a resolução dessas
classes (carregamento das classes que ela necessita), a
verificação da corretude de seu byte-code e o
carregamento do arquivo diretamente do disco, um
processo que pode depender do tamanho da classe e da
velocidade do meio.

 Política de escalonamento de threads: O
comportamento de threads e de escalonadores em Java é
definido de uma forma muito relaxada, onde threads
com prioridades mais baixas podem preemptar threads
com prioridades mais altas. Embora este
comportamento impeça que threads de entrarem em
estado de inanição (em inglês, “starvation”), ele viola os
princípios de precedência de tarefas em sistemas de
tempo-real, podendo introduzir impredibilidade no
sistema.

Como podemos ver, os problemas que impedem Java em sua
forma convencional de ser utilizado na concepção de aplicações
de tempo-real não vem da linguagem, e sim do ambiente de
execução. Por isso, durante os anos 90, inúmeras tentativas de
extender a linguagem foram feitas, culminando em 2000 na RTSJ,
desenvolvida por equipes como Sun e IBM. A RTSJ define novas
regras para o ambiente de execução Java, assim como fornece
uma interface de programação completa para a criação de
aplicações de tempo-real em Java. Duas modificações merecem
especial atenção:

 Escalonamento e despacho de threads: O escalonador
da RTSJ é baseado em prioridades, possuindo ao menos
28 prioridades de tempo-real (mais elevadas que as
prioridades anteriormente definidas por Java), sendo
que as threads de tempo-real só podem ser preemptadas
por outras threads de prioridade superior (política “run-
to-block”). Além disso, o escalonador pode fazer
análises de viabilidade para um escalonamento. Threads
de tempo-real e outros objetos escalonáveis, como
tratadores de eventos assíncronos, são ligados a objetos
que representam a sua demanda de recursos.

 Gerenciamento de memória: A RTSJ extende o
modelo de gerenciamento de memória da plataforma
Java, adicionando zonas de memória onde o coletor de
lixo não percorre.

Além dessas modificações, a RTSJ também propõe alterações
nos mecanismos de sincronização e partilha, tratamento
assíncrono de eventos, transferência assíncrona do fluxo de
execução, terminação assíncrona de threads e acesso à memória
física. Atualmente encontramos diversas implementações da
RTSJ, sendo as implementações comerciais as mais populares.

Como dito anteriormente, aplicações de tempo-real devem ser
preditiveis e confiáveis. Entretanto, muitas das aplicações de
tempo-real que encontramos atualmente são dinâmicas, ou seja,
fatores externos podem exigir modificações e adaptações em
tempo de execução. Discutiremos na próxima sessão sobre
adaptação dinâmica de software e como isto é aplicado no
contexto de sistemas de tempo-real.

2.2 Adaptação dinâmica de software tempo-real

Os primeiros trabalhos sobre a importância da estruturação de
uma aplicação datam do fim dos anos 60 [DIJ68, PAR72]. Estes
trabalhos foram a base de uma disciplina da Engenharia de
Software chamada Arquitetura de Software. Arquitetura de
Software estuda formas de estruturar sistemas, representando os
seus componentes, suas interconexões e as regras que regem sua

83

evolução ao longo do tempo [GAR93]. Arquiteturas de software
são soluções importantes para lidar com a escalabilidade,
evolução e complexidade de sistemas de software. Arquiteturas
dinâmicas de software são arquiteturas na qual a composição dos
componentes muda durante a execução do sistemas. Avanços
nesse domínio foram motivados pelo surgimento d a computação
obíqua [WEIZ93] e do crescimento da computação autônoma
[KEP03]. As principais motivações para a adaptação dinâmica de
software são o custo, risco e inconveniência de ter de parar um
sistema por causa de modificações no meio. Um exemplo é a
atualização dinâmica de software, na qual uma aplicação é capaz
de se atualizar para reparar bugs e adicionar novas
funcionalidades sem ter de interromper sua execução, como no
caso de sistemas críticos e nonstop [MAG96]. O custo de toda
essa flexibilidade reflete-se na segurança do sistema, uma vez que
os efeitos de uma modificação feita em tempo de execução não
podem ser previstos.

Diversas técnicas foram desenvolvidas para prover um
comportamento dinâmicamente adaptável a aplicações, entre elas:

 CBSE: Componentes são unidades de software que são
compostas para construir um sistema. Cada componente
possui interfaces especificadas contratualmente e
dependencias explícitas. Estes componentes podem ser
compostos dinamicamente através de ligações
retardadas (em inglês, “late binding”). CBSE fornece
um mecanismo de base para evoluir a arquitetura de um
sistema dinâmicamente;

 Linguagens de Descrição de Arquitetura: As
linguagens de descrição de arquitetura (em inglês,
“Architecture Description Language” - ADL) são
linguages utilizadas para descrever arquiteturas de
software. Elementos comuns de ADLs são
componentes, conexões e configurações. ADLs podem
ser utilizadas para especificar pontos de variabilidade
nas arquiteturas de software.

 SOA Dinâmico: Arquiteturas orientadas a serviços são
um estilo arquitetural e modelo de programação baseado
no conceito de “serviços”. Serviços são unidades de
software cujas funcionalidades e propriedades são
declaradas em um descritor de serviços. Além disso,
serviços podem ser orquestrados e compostos para
formar serviços mais complexos. Prestadores de
serviços registram seus serviços em um Registro de
Serviços. Usuários de serviços buscam serviços junto ao
mesmo Registro de Serviços. Após negociação e acordo
dos termos de uso de serviço, o usuário de serviços é
conectado ao prestador de serviços. SOA Dinâmico
[CER04] é uma extensão ao modelo SOA que considera
que serviços podem aparecer, desaparecer ou modificar
suas propriedades em tempo de execução.

Sistemas dinamicamente adaptáveis de tempo-real podem ser
utilizados para implementar sistemas que necessitam de
flexibilidade, sistemas adaptáveis cujas interações necessitam
respeitar restrições de tempo-real ou ambos. Vários trabalhos na
literatura visam a reconfiguração dinâmica de aplicações de
tempo-real. Entre as principais estratégias para a criação de
frameworks para a adaptação dinâmica de aplicações de tempo-
real estão o uso de “modos” (arquiteturas pré-estabelecidas em
tempo de compilação que podem ser trocadas em determinados
momentos da execução) [BOR09, PRO08, WEIC04], de
extensões de ORBs (em inglês, “Object Request Broker”, um
módulo que intermedia as requisições de clientes em uma rede e
as envia aos objetos correspondentes) para tempo-real [WAN03,
CARD] e a componentização de objetos representando atributos
de qualidade de serviço [QUO, SHA04].

2.3 OSGi para Tempo-Real

A plataforma de serviços OSGi é uma especificação que
adiciona mecanismos de modularização à tecnologia Java
[HAL10]. As unidades de software são chamadas “bundles”. Um
bundle é constituído de um arquivo .jar e de metadados
especificando seu nome simbólico, sua versão e suas
dependências. Cada bundle em OSGi possui seu próprio
carregador de classe e as interações entre eles são possíveis graças
a um sistema explicito de importação e exportação de packages.
Bundles podem instalados, desinstalados e atualizados
dinamicamente, sem necessidade de parar e reiniciar a plataforma.
Além disso, eles também publicar e consumir serviços
dinamicamente. Embora grande parte do dinamismo da
plataforma seja gerado automaticamente, desenvolvedores devem
levar em conta o fato de que bundles e serviços podem aparecer e
desaparecer inesperadamente.

A plataforma OSGi tem sido uma tecnologia adotada
principalmente nos contextos de automação residencial e
ambientes pervasivos, devido ao seu modelo de componentes
orientado a serviços dinamico e aos mecanismos de
gerenciamento remoto e de implantação contínua. Entretanto, a
plataforma de serviços OSGi não possui suporte para aplicações
de tempo-real, e a instalação e desinstalação dinâmica de bundles
pode introduzir impreditibilidade em aplicações deste tipo. Poucos
trabalhos dedicam-se ao suporte de aplicações de tempo-real na
plataforma OSGi e os que o fazem dedicam-se principalmente a
questão da isolação de componentes na plataforma, não aos
problemas gerados pelo dinamismo da mesma [GUI08,
RICHA09, COA07].

3 PROBLEMÁTICA

Quando pensamos na execução de aplicações de tempo-real na
plataforma OSGi, diversos potenciais problemas devem ser
considerados. O mais evidente deles é o fato de que a plataforma
OSGi não foi concebida como uma plataforma para aplicações de
tempo-real. Ela é baseada em classes da API padrão de Java e a
interação das classes da mesma com classes de APIs de tempo-
real pode introduzir impreditibilidade na execução de

componentes de tempo-real. No caso específico da RTSJ, ainda
podemos nos deparar a problemas como:

 Vazamento de memória: Na RTSJ, definições de

classe e objetos estáticos são mantidos em uma zona de
memória chamada memória imortal. Essa zona de
memória é única à cada máquina virtual e não possui
interferência do coletor de lixo, sendo alocada no
momento em que está é executada e desalocada no
momento em que a mesma é terminada.
Consequentemente, mesmo que desinstalemos
componentes na plataforma, suas correspondentes

definições de classe e objetos estáticos permanecerão
alocados na memória imortal enquanto a máquina
virtual permanecer executando.

 Inanição: As threads do framework OSGi, responsáveis

pela gerência do sistema, são threads convencionais
Java. Uma vez que utilizamos RTSJ e componentes com
threads de tempo-real, temos que considerar que a
política de escalonamento é run-to-block, ou seja,
threads com prioridades maiores não são preemptadas
por threads com prioridades menores, e assim, as
threads de gerência da plataforma serão bloqueadas por

threads das aplicações que nela são executadas. Além
disso, o fato de não existir um contexto global (bundles
não sabem da existência de outros bundles) torna difícil
a atribuição de prioridades entre threads.

84

Entretanto, neste trabalho consideraremos as questões relativas
ao dinamismo e não à especificação OSGi ou à plataforma Java.
Para tal, usaremos um cenário de aplicação de monitoramento por
detecção de movimento, ilustrado na figura 1. Um componente
responsável pela detecção de movimento conecta-se à uma ou

diversas câmeras, recuperando periodicamente imagens e
analisando-as. Estas câmeras podem ser conectadas,
desconectadas e reconfiguradas em tempo de execução.

Figura 1. Cenário de Aplicação de Detecção de Movimento

Suponhamos nesse exemplo que o módulo de detecção de
movimento possui restrições temporais e que o processo de busca
dos frames nas diferentes câmeras não deve passar 10 ms. Neste
cenário, podemos observer quatro aspectos diferentes do impacto
do dinamismo de OSGi sobre aplicações de tempo-real:

 A plataforma OSGi verifica que o módulo de detecção

tem dependências do tipo Camera e vai conectá-lo
automaticamente às câmeras que entrarem no sistema.
Suponhamos que a operação de captura e envio de
imagem de uma câmera do sistema leva 4 ms e que em
outra a mesma operação leva 5 ms. No momento em

que uma terceira câmera aparece ela também é
conectada ao módulo detector, mas se o tempo de
captura e envio de imagens desta câmera for maior que
1ms, estaremos violando as restrições impostas pelo
detector. Além disso, não sabemos quanto tempo vai
levar a adição do módulo ao sistema e se a plataforma
executar essa operação durante um tratamento de
tempo-real, mais atraso pode ser introduzido.

 As câmeras também podem se desconectar durante o
tempo de execução. O tempo que a plataforma leva para
tirá-la do sistema e limpar todas as suas referências

pode implicar em atrasos de tarefas de tempo-real. Além
disso, se a câmera for retirada enquanto ela estiver
sendo usada, a aplicação pode acabar chegando a um
estado de erro ou inconsistência.

 Na plataforma OSGi, os componentes podem também

ser atualizados em tempo de execução. O tempo dessa
reconfiguração pode influir na preditibilidade de
aplicações de tempo-real. Além disso, a versão
atualizada do componente pode ter propriedades
diferentes do antigo componente (tempo de captura e

envio de imagens maior, por exemplo), violando as
restrições temporais de módulos de tempo-real.

 Além dos componentes de tempo-real, outros módulos

podem utilizar o serviço fornecido pelas câmeras: o fato
que a câmera deve fornecer serviço para mais de um

consumidor pode fazer com que um usuário não tempo-
real bloqueie um usuário de serviço de tempo-real.

4 CONTRIBUIÇÃO

Propomos neste trabalho a distinção dos estados com
processamentos de tempo-real, aplicando nestes uma política de
congelamento da arquitetura das aplicações e impedindo que
componentes sejam adicionados, removidos e atualizados.
Reconfigurações podem ser feitas em fases de não-tempo-real,
contanto que tais modificações não violem contratos de nivel de
serviço estabelecidos entre usuários e prestadores de serviços.

4.1 Política de Congelamento de Arquiteturas de
Software

Podemos ver as aplicações executadas por uma plataforma de
serviços OSGi como um conjunto de estados e transições, onde
cada estado representa uma possível arquitetura do sistema e as
transições representam reconfigurações que levam de uma
arquitetura do sistema à outra (ou seja, remoção e adição de
componentes, que levam o sistema a trocar de estado, ou
atualização, onde o sistema fica no mesmo estado, mas com
diferentes propriedades). Tal representação é exemplificada na
parte azul da máquina de estados da figura 2.

Figura 2. Diagrama de estados da arquitetura

Incluímos então estados onde a arquitetura não pode ser
modificada (em vermelho, na figura 2). Estes estados
correspondem à execução de seções críticas de código, onde a
interferência da plataforma poderia fazer com que restrições
temporais não fossem respeitadas. As reconfigurações são
deixadas para estados não-críticos, monitoradas para que
respeitem acordos de nível de serviço estabelecidos entre usuário
e prestador de serviço.

4.2 Extensão de Acordos de Nível de Serviço para
Aplicações Dinâmicas de Tempo-Real

Acordos de nivel de serviço (em inglês “Service Level
Agreement” - SLA) são partes negociadas de um contrato
estabelecido entre o prestador e o usuário de serviço, definindo
formalmente o nível de serviço e as penalidades a aplicar quando
as cláusulas não são respeitadas [VER99]. SLAs servem para
atingir uma determinada qualidade de serviço. Para isso, eles
contém informações como identificação das partes que assinam o
contrato, o serviço prestado, o tempo de utilização do serviço, sua
disponbilidade, custo e datas para renegociação do acordo. SLAs
são controlados por um monitor responsável pela Gerência de
Niveis de Serviço (em inglês “Service Level Management” -
SLM). Este monitor é também responsável por aplicar as
penalidades em caso de violação das cláusulas. A figura 3 ilustra o
uso de SLAs e de SLMs na abordagem orientada a serviços.

85

Figura 3. Acordos de nível de serviço

Neste trabalho, estendemos o modelo de SLAs dinâmicos para

serviços intermitentes descrito em [TOU08], adicionando
metadados que serão utilizados pelo monitor para admissão de
novos componentes no sistema e gerenciamento das restrições de
tempo real. No nosso acordo levamos em conta:

 Tipo de tarefa: Periódica, aperiódica ou esporádica;
 Tempo de período: No caso de tarefas periódicas;
 Tempo máximo de execução (em inglês “Worst case

execution time” - WCET): Tempo máximo que a
execução da tarefa pode levar

 Utilização de Recursos: Quantidade de recursos
(memória RAM, CPU) necessária para a execução da
tarefa.

 Prioridade: Prioridade de execução da tarefa, para fins
de precedência e admissão (em casos onde apenas uma
tarefa será admitida no sistema, a tarefa de maior
prioridade será escolhida).

 Política: Ação a tomar no caso de desrespeito das
cláusulas. Estas ações devem possuir um tempo máximo
de execução conhecido.

O monitor intercepta toda reconfiguração do sistema,
verificando a cada vez se o sistema está em um estado de tempo-
real (e neste caso, guardando a reconfiguração para ser feita
quando sair deste estado) e se as modificações respeitam as

cláusulas dos SLAs.

5 IMPLEMENTAÇÃO E VALIDAÇÃO

Para implementar a estratégia proposta, um protótipo foi criado

baseado na extensão do modelo de componentes iPOJO [ESC07]
sobre OSGi. Usar um modelo de componentes permite que
possamos interferir no comportamento dos componentes sobre a
plataforma OSGi sem ter que modificar o núcleo e o código da
mesma. A arquitetura da solução é mostrada na figura 3.

Figura 4. Extensão da Plataforma iPOJO para tempo-real

Os componentes são conectados a um monitor que verifica as
necessidades do usuário e o contrato dos prestadores antes de
estabelecer um SLA entre ambas as partes. Quando um
componente vai executar uma reconfiguração, ele contata o
serviço de gerencia de reconfigurações do monitor que vai

verificar se a plataforma encontra-se em uma estado de
processamento de tempo-real. Caso a plataforma não encontre-se
neste estado, o monitor verifica se o nível de serviço negociado
entre o prestador e o usuário não vai afetar nas restrições de
tempo-real de outros componentes. Se a plataforma está em um
estado de processamento de tempo-real, a reconfiguração e sua
verificação são mantidas em uma lista de espera. A plataforma
entra em estados de processamento de tempo-real explicitamente

através do uso do serviço de congelamento da arquitetura. Antes
de executar um código que necessite de preditibilidade, o
componente utiliza este serviço para congelar toda a plataforma,
reutilizando o serviço após o processamento para tirar a
plataforma do estado de tempo-real. Devido a questões de tempo,
a parte do monitor responsável pela gerência dos SLAs não foi
implementada.

Nosso protótipo foi testado em uma aplicação de detecção de

movimento, como descrito na seção 3. A arquitetura do sistema é
mostrada na figura 4.

Figura 5. Arquitetura da aplicação de detecção de movimento

Como esperado, ele congelou a arquitetura da aplicação durante
os períodos de tratamento de tempo-real, impedindo que
componentes fossem atualizados, adicionados ou removidos da
plataforma OSGi.

6 CONCLUSÃO

Este trabalho focou-se no conflito entre a preditibilidade requerida
pelas aplicações de tempo-real e o dinamismo provido por
plataformas de adaptação dinâmica de software, como o
plataforma de serviços OSGi. Nossa motivação para interessar-se
nesse conflito vem do uso crescente da plataforma OSGi para
desenvolvimento de aplicações e da popularização do tempo-real
para Java. Para lidar com as questões de dinamismo em aplicações
de tempo-real abrigadas na plataforma OSGi, sugerimos a
distinção entre a fase de processamentos de tempo-real, onde
nenhuma modificação na arquitetura é permitida; e a fase de
outros processamentos, onde reconfigurações podem ser feitas,
sob condição de respeitar os acordos de nivel de serviço
estabelecidos pelos componentes da plataforma. Nossa abordagem
foi validada através de uma implementação baseada no modelo de

86

componentes iPOJO. Muito trabalho ainda deve ser feito, como a
integração do gerenciamento de SLAs. Como todo trabalho em
ciência, este trabalho também mostra perspectivas para futuros
trabalhos na área, como a concepção de um nucleo de tempo-real
para OSGi e esforços para a caracterização dos componentes e da
mensuração de recursos utilizados. De toda forma, vemos nossa
abordagem e protótipo como um primeiro passo na direção de
uma extensão de tempo-real para modelos de componentes para a
plataforma OSGi.

7 REFERÊNCIAS

[ARN00] K. Arnold, J. Gosling and D. Holmes. “The Java
Programming Language”. Addison-Wesley, 2000.

[BOL00] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Fun;
M. Turnbull. “The Real-Time Specification for Java”,
Addison-Wesley, 2000.

[BOR09] E. Borde, F. Gilliers, G. Haïk, J. Hugue, and L. Pautet.

“MyCCM-HI: un framework à composants mettant en
œuvre une approche d'ingénierie dirigée par les
modèles”. Génie logiciel, 2009, p. 6-12.

[BRUNO09] E. Bruno and G. Bollella. “Real-Time Java
Programming with Java RTS”. Addison-Wesley, 2009.

[CARD] OW2 Consortium. “CARDAMOM Project”.
http://cardamom.ow2.org/, 2006.

[CER04] H. Cervantes and R. Hall. “Autonomous adaptation to

dynamic availability using a service-oriented
component model”. Proceedings of the 26th
International Conference on Software Engineering,
2004, p. 623-632.

[CLE95] P. Clements. “From subroutines to subsystems:
Component-based software development”. American
Programmer, vol. 8, 1995, p. 31–31.

[COA07] G. Coates, “Real-Time OSGi”,

http://www.osgi.org/wiki/uploads/VEG/Aonix-RT-
OSGi.ppt, 2007.

[DIJ68] E. W. Dijkstra. “The structure of the „T.H.E.‟
multiprogramming system”. CACM, vol. 11, no. 5,
1968, p. 453-457.

[ESC07] C. Escoffier, R. Hall, and P. Lalanda. “iPOJO: An
extensible service-oriented component framework”.
IEEE International Conference on Services
Computing, 2007, p. 474–481.

[GAR93] D. Garlan, and M. Shaw. “An Introduction to Software
Architecture”. Advances in Software Engineering and
Knowledge Engineering, Volume I, World Scientific,
1993.

[GUI08] N. Gui, V. de Flori, H. Sun, and C. Blondia. “A
framework for adaptive real-time applications: the
declarative real-time OSGi component model”.
Proceedings of the 7th workshop on Reflective and

adaptive middleware, 2008, p. 35–40.
[ISO00] D. Isovic and G. Fohler. “Efficient scheduling of

sporadic, aperiodic, and periodic tasks with complex
constraints”. Proceedings 21st IEEE Real-Time
Systems Symposium, 2000, p. 207-216.

[KEP03] J. O. Kephart and D.M. Chess. “The Vision of
Autonomic Computing”. Computer, 2003, p. 41-50.

[MAG96] J. Magee, and J. Kramer. “Dynamic Structure in

Software Architectures”. Proceedings of the 4th ACM
SIGSOFT Symposium on Foundations of Software
Engineering, 1996, p. 3-14.

[NILSS02] A. Nilsson, T. Ekman, and K. Nilsson. “Real Java for
real time - gain and pain”. Proceedings of the
International conference on compilers, architecture

and synthesis for embedded systems, 2002, p. 304-311.
[OSG05] OSGi Alliance. “OSGi Service Platform Core

Specification Release 4”. http://www.osgi.org, 2005.
[PAP03] M. Papazoglou and D. Georgakopoulos. “Service-

oriented computing”. Communications of the ACM,

vol. 46, 2003, p. 25–28.
[PAR72] D. Parnas. “On the criteria for decomposing systems

into modules”. CACM, vol. 15, no. 12, 1972, p. 1053-
1058.

[PRO08] M. Prochazka, R. Ward, P. Tuma, P. Hnetynka, and J.
Adamek. “A Component-Oriented Framework for
Spacecraft On-Board Software”. Proceedings of DAta
Systems In Aerospace (DASIA 2008), European Space

Agency Report Nr. SP-665, 2008.
[QUO] BBN Technologies. “Quality Objects Project”.

http://quo.bbn.com, 2006.
[RICHA09] T. Richardson, A.J. Wellings, J.A. Dianes, and M.

Díaz. “Providing temporal isolation in the OSGi
framework”. Proceedings of the 7th International
Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES'09), 2009, pp. 1-10.

[SHA04] P.K. Sharma, J.P. Loyall, G.T. Heineman, R.E.
Schantz, R. Shapiro, and G. Duzan. “Component-based
dynamic QoS adaptations in distributed real-time and
embedded systems”. Proc. of the Intl. Symp. on Dist.
Objects and Applications (DOA’04), 2004, p. 1208-
1224.

 [STA92] J. Stankovic. “Real-time computing”. BYTE (Invited
paper), 1992, p. 1-19.

[TOU08] L. Touseau, D. Donsez, and W. Rudametkin. “Towards
a SLA-based Approach to Handle Service
Disruptions”. IEEE International Conference on
Services Computing, 2008, p. 415-422.

[TYM98] P. Tyma. “Why are we using Java again”.
Communications of the ACM, vol. 41, n. 6, 1998, p. 38-
42.

[VER99] D. Verma. “Supporting Service Level Agreements on
IP Networks”. Macmillan Technical Publishing, USA,

1999.
[WAN03] N. Wang and C. Gill. “Improving real-time system

configuration via a QOS-aware CORBA component
model”. International Conference on System Sciences,
Software Technology Track, Distributed Object and
Component-based Software Systems Minitrack, 2003,
p. 273-282.

[WEIC04] B. Weichel, M. Herrmann. “A Backbone in

Automotive Software Development Based on XML
and ASAM/MSR”. SAE World Congress 2004, Nr.
2004-01-295.

[WEIZ93] M. Weiser. “Hot Topics: Ubiquitous Computing”.
Computer, 1993, p. 71-72.

1

RealTimeizeMe: A tool for automatic transformation from Java legacy to Java

Realtime code

João Claudio AMÉRICO
1, 2

, Walter RUDAMETKIN
1, 3

 and

Didier DONSEZ

1

1 Grenoble University 1, LIG/Adele, 38041 Grenoble, Cedex 9, France
2 Informatics Institute, Federal University of Rio Grande do Sul, Caixa Postal 15064, 91501-970 Porto Alegre, Brazil

3 Bull S.A.S., 1 Rue de Provence, BP208, 38432 Echirolles Cedex, France

{Joao.Americo, Walter.Rudametkin, Didier.Donsez}@imag.fr

Abstract

The Real-time specification for Java (RTSJ) extends the
standard Java API to provide mechanisms to increase

predictability in applications’ response times. Determinism is
crucial for Real-Time applications, and desirable for most
Java applications. For new projects, the inclusion of real-time
features can be done at the conception or design phases,
requiring few modifications; however, when considering
legacy applications, it is impractical to manually modify large
software to be RTSJ compliant. In this paper, we propose a
means of automatically transforming java legacy code to java

real-time code, thus benefiting from advances in the JVM and
third party libraries regarding execution determinism. Our
proposed tool, called Realtimeizeme, dynamically instruments
Java classes at load-time using bytecode manipulation for
adapting legacy applications to real-time applications. The
tool runs as a JVM agent and has been tested instrumenting
various java legacy applications. Benchmarks were performed
on two different application servers and a database engine.

The tool introduces a small overhead once per instrumented
class. Default configuration provides conflicting results, but,
in general, proper configuration improves speed and most
importantly determinism.

Keywords: Real-time Java, Java agent, Dynamic bytecode
manipulation, Legacy software

I. INTRODUCTION

Real-time systems differ from other information

systems in the fact that their correctness depends on

both functional and temporal aspects [25]. In order to

satisfy these timing constraints, services and algorithms

used by real-time systems must be executed in bounded

time. Real-time applications do not necessarily have to

be fast, but they must be predictable. Depending on the

enforcement of deadlines, real-time systems may be
divided into hard and soft real-time systems [25]. In

hard real-time systems deadlines must be strictly

enforced to avoid safety issues (e.g., weapon systems,

nuclear power plants, automated transport systems). In

soft real-time systems, the need for strict deadlines is

more or less replaced by the need for homogeneous

response times in order to ensure acceptable levels of

service, thus the goal is to minimize response-time

deviations. Missed deadlines are interpreted as degraded

service quality, and should be avoided, but nevertheless

the system continues to operate.

Java [13] has become one of the most popular general
purpose languages. This popularity is in part due to its

portability, reusability, security features, ease of use,
robustness, rich API set and automatic memory

management. Java has many advantages over traditional

languages for programming, such as C and C++ [21]. In

addition, nowadays it is arguably easier to find

programmers with Java skills than those experienced

with Ada or C. However, the same Garbage Collector

that eases development is one of the main reasons why

Java was not used to design critical, embedded and real-

time applications. Indeed, garbage collection introduces

unpredictable execution times [27]. As a result, the

Real-Time Specification for Java (RTSJ) [1] was

introduced, adding new features to improve the
determinism of conventional Java. RTS, when

compared to other solutions, alleviates developer effort

in designing real-time applications by providing high-

level abstractions for real-time mechanisms. Real-time

Java is already being used in numerous defense and

commercial applications [28].

The development of real-time systems is hindered by

a fundamental issue; their design is much more

complicated than that of conventional systems [4]. To

truly benefit from the RTSJ, many choices must be

made at design time. To start, tasks must be ordered by
their importance and their priorities should be well

understood and set accordingly. Thus, important tasks

are handled first and without interruption, ensuring their

timely completion. Communication and variable sharing

must also be well designed to avoid unpleasant surprises

at run-time. Specific design patterns for RTSJ

applications have already been created to provide

solutions for common real-time design problems [4, 20].

Even so, these design constraints limit current usage of

RTSJ. Migrating legacy Java software to Real-time Java

is far from being an easy task and is progressively worse

when considering large and complex software [4].
We consider this an important issue to solve for two

reasons:

1) Legacy applications, being the deterministic

weak-link, neither benefit from real-time code,

nor are usable by real-time applications. The

majority of existing libraries are legacy java,

imposing their re-implementation for RTSJ.

2) Current legacy applications would benefit from

RTSJ features to increase determinism, but

migration costs are generally prohibitive.

87

2

In this paper, we provide a tool that automatically

transforms legacy Java applications into RTSJ

compliant applications using configurable pre-defined

transformations. In order to be applicable to most

software, transformations need to be applied at the
bytecode level and as late as possible. This goes against

some of the goals in hard real-time systems, being able

to statically guarantee timely execution, because late

bytecode modification may introduce indeterminism,

but it does make our approach a broader one and

applicable to a larger array of software. Our tool, called

Realtimeizeme, is a Java agent that instruments classes

at load-time. We have tested it on popular open-source

software that uses the Java technology and could benefit

from increased determinism in execution times. We

give an analysis of different aspects of our tool,
including if an application successfully runs after our

transformations, if the transformations provide

increased determinism in execution times, and the

overhead induced by our tool. Our goal is to provide a

general solution to easily migrating existing code bases

to RTSJ and deterministic libraries and to evaluate the

resulting software by analyzing execution times. Our

results conclude that RTSJ provides benefits in regards

to real-time behavior, but automatic transformations

must be performed carefully and are not always

beneficial. Also, certain features of RTSJ virtual

machine implementations limit taking these solutions
further.

This rest of this paper is organized as follows.
Section 2 presents technologies introduced in Real-time
Java. In section 3 we present different approaches to
code transformation. In section 4, we present
Realtimeizeme, an implementation of our approach.
Section 5 evaluates and validates the proposed tool.
Section 6 discusses related works. Finally, Section 7
concludes the paper and presents our perspectives.

II. REAL-TIME JAVA

Real-time Java is a combination of different
techniques allowing developers to create applications
with real-time characteristics using the Java Platform.
Despite the advantages provided by Java, some
requirements needed for real-time systems are not met
using conventional Java technology. In order to
overcome these limitations, a group was created in 1998
to define real-time extensions for Java. This group
included technical people from Sun, IBM and from all
across the real-time industry. Their work culminated
with the Real-Time Specification for Java (RTSJ),
which defines real-time behavior in the Java Platform,
through a collection of classes, constraints to the
behavior of the virtual machine, an API and additional
semantics. Among the concepts introduced by RTSJ,
two additional programming constructs are
fundamental: Real-time Threads and special types of
Memory Areas.

Figure 1 shows how the RTSJ altered the thread

hierarchy in Java with the inclusion of Real-Time

Threads. Real-time Threads are threads whose priorities
are higher than normal Java threads (java.lang.Thread

instances). These priorities are set at the moment a

thread is created. The virtual machine scheduler must

always schedule the thread that has the highest priority

to be executed. This thread will be executed in a run-to-

block scheduling policy, which means that the thread

will run until the end of its execution, only being

interrupted in the case of a blocking operation or to
allow the execution of a higher-priority thread. Two

different types of real-time threads are provided: Real-

Time Threads (RTT) and No Heap Real-Time

Threads (NHRTT). NHRTT are addressed to hard-real

time applications, are not allowed to access the heap

memory and have a priority higher than the Garbage

Collector (thus they cannot be preempted by it).

Figure 1. RTSJ thread hierarchy

Besides the traditional heap memory, two new

memory areas were included. In these special memory
regions, memory is not garbage-collected. Therefore,
garbage collection operations do not introduce
unpredictability into execution times. These areas are
called scoped and immortal memory. As the name
suggests, scoped memory is a memory region that is
active inside a scope. When there are no more threads
executing inside this memory area, it is automatically
erased. In contrast, immortal memory is a region
allocated during the virtual machine startup. Objects
allocated in this area live throughout the application‟s
lifetime.

However, the Garbage Collector and thread
scheduling are not the only sources of indeterminism in
java applications: most of the standard java libraries
themselves are not real-time aware nor deterministic.
Other libraries have been developed to substitute
standard Java classes without introducing
indeterminism. The first and most known fully RTSJ-
compliant library is Javolution [16], an open source
library that provides alternate implementations of
standard library classes. Javolution claims to provide
classes that are deterministic and sometimes faster than
Java standard library classes. When possible, Javolution

88

3

classes implement the same interfaces as their
counterparts in the Java standard library, easing
substitution and retaining semantic compatibility.

III. TRANSFORMATION TECHNIQUES

Manually modifying applications‟ source code to

benefit from RTSJ features is practical with small

applications (up to the tens of thousands of lines of

code). However, many existing applications that have

real-time requirements are large, containing hundreds of

thousands of lines of code, or even millions of lines of

code. It would require a lot of time to locate all the

classes and files to be changed and all the references to

these classes in other files. In addition, in applications

of this magnitude, manual modification can become an
error-prone task. Creating real-time extensions for each

application would increase its time-to-market, implying

delays for each release. Moreover, large projects

normally use third-party libraries, whose source code

might not be available to be modified. In general, the

longer projects go on, the more complex they become

making the transformations required even more difficult

to be implemented. Application servers, database

engines and IDEs are examples of application types in

which manual code manipulation, to insert real-time

structures, is impractical. In addition, some application

servers and IDE‟s dynamically generate even more
code, so those generation processes would also need to

be adapted. In table 1, we give statistics on popular

open-source legacy software. As can be seen, their size

and complexity make it time consuming to re-code these

projects in order to benefit from the Real Time

Specification for Java.

Name Java LoC *
#

% of

Java* Age
+

Application

Type

Apache

Derby 574,441 87% 6 years DBMS

Apache Felix 311,442 81% 5 years OSGi platform

Apache

Geronimo 242,385 68% 6 years

Application

Server

Apache

JMeter 2,897,114 52%

12

years Load injector

Apache Sling 119,401 85% 3 years Web Framework

Eclipse 5,292,154 68% 9 years IDE

Glassfish 2,190,019 36% 5 years

Application

Server

HSQL

Database 336,620 55%

12

years DBMS

JonAS 3,082,718 44%

12

years

Application

Server

Netbeans 38,938,621 70%

14

years IDE

* According to Ohloh.net, metrics taken on February 22
nd

Blank and commented lines are not included

+
Generally, these projects already existed before their open source

release. For example, Apache Felix is the evolution of Oscar project,

started in 2001.

Table 1. Java legacy software

An approach to overcome the expense incurred in

manually modifying large software is to use automatic

manipulation and transformation techniques. Tools like

Spoon [23] provide source code level manipulations,

while ASM [19] and BCEL [30] can directly manipulate

bytecode. Working at the source code level is generally

more intuitive for the majority of developers. Source

code level tools are based on the applications abstract
semantic tree, and give higher level abstractions.

However source code is not always available, as in the

case of large projects with long lists of dependencies.

Bytecode manipulation provides advantages such as not

requiring source code and not requiring recompilation

(i.e., the classes are already compiled) making it very

fast. A bytecode level approach also resolves the

problem of transforming third-party libraries, since the

dependencies are always available in a compiled form at

some point. Despite these advantages, this can be

complex to implement.

Figure 2. Mapping between standard and RTSJ-

compliant classes.

We have chosen a bytecode manipulation approach,

given the fact that it is a broader solution. Once we had

selected the how, a second problem came to mind, the

when. We have identified two different periods of

interest for bytecode manipulation that give different

outcomes: build-time, a static manipulation approach,

and load-time, a dynamic approach. In the static

approach, the tool browses through the compiled class-
files, performing pertinent substitutions. This approach

is useful when we have previous access to all the

modules that will be deployed in the application and all

their dependencies, thus we can ensure that no external

code is left unanalyzed, which could potentially

introduce greater unpredictability in the application.

However, application servers load web applications at

runtime and other applications may have mechanisms to

generate new classes and new modules on-the-fly. In

such an approach, these classes would not be

transformed. Load-time class instrumentation can deal
with these kinds of applications, since all classes can be

intercepted and instrumented the first time they are

loaded by the Java virtual machine. Intercepting class

loading is an advantage and a disadvantage, as it works

for the whole Java classloader hierarchy (i.e., no classes

are missed), but it can generate significant overhead

89

4

depending on the number of classes loaded and their

frequency. In addition, this approach would also avoid
bootstrap-level modifications.

IV. IMPLEMENTATION: REALTIMEIZEME

In this paper we present our proof-of-concept

implementation for a dynamic bytecode manipulation

tool for introducing real-time code into Java classes: the

Realtimeizeme tool. Our tool is implemented as a Java

Instrumentation Agent [22], a program that runs

embedded in a Java virtual machine. Realtimeizeme has

the benefit of intercepting all classes loaded,

transparently from the application, at the cost of run-

time overhead introduced once for every loaded class. A
configuration file is passed as an argument to the agent,

to specify class substitutions and to configure the agent.

Independently of when and how the manipulation is

performed, the tool finds and replaces selected non-

deterministic Java classes with deterministic RTSJ-safe

classes for each Java class that might introduce

unpredictable response times and where a substitution is

possible.

In figure 2, we present a schema representing our

approach, a mapping between classes from the standard

Java API towards RT-aware classes from the RTSJ API

and from the third-party library, Javolution. In certain
cases we can map a standard Java class to several RT-

aware classes, such as standard Java threads, which may

be substituted by RTT or NHRTT threads. These

different mappings must be taken into account by the

tool, offering different instrumentation possibilities to

the developer.

RTSJ provides classes for real-time threads, their

scheduling and dispatching, memory management,

synchronization, resource sharing, asynchronous events,

high resolution time, clocks, timers, real-time

exceptions, POSIX signal handling, security policies

and options for tuning the behavior of the

implementation. However, RTSJ does not describe
classes that cover other aspects that can also introduce

unpredictability (like lazy initialization or array resizing

in Java standard collections API). Thereby, RTSJ-safe

libraries should be used to replace the unsafe classes.

Three sections may be distinguished in the

configuration file passed to our Java agent,

realtimeizeme.

Thread Replacement section: In this section

developers specify which classes should have their

threads substituted by real-time threads and the

respective priorities to use. Normal Java threads
(java.lang.Thread) can be replaced by either RTT or

NHRTT threads. The tool is responsible for injecting

the corresponding RTSJ code. Figure 3 shows a thread

transformation example.

General Replacement section: This section is used

for replacing classes with common interfaces or

methods. Developers specify the class to replace

(replacee), the class that will replace it (replacer), and

the target. There are two sub-types of replacement:

 “ReplaceByInterface” is used for replacing

classes that use common interfaces. It can be

used when all method calls to the replacee
object are method calls on the common

interface, implemented also by the replacer.

See figure 4.

 “ReplaceAllReferences” will have all

references changed regardless of interfaces. A

mapping from methods from the replacee class

to the replacer class can be provided if

required. See figure 5.

String Replacement section: Special attention has

been paid to the String, StringBuffer and StringBuilder

classes in the java.lang package given their popularity
and the lack of implemented interfaces. These classes

Original program Realtimeized program (RTT) Realtimeized program (NHRTT)

void doSomething(Runnable r) {

 Thread t1 = new Thread();

 Thread t2 = new Thread(r);

 t2.start();

}

//Thread.Type = RTT, Priority = p

void doSomething(Runnable r) {

 Thread t1 = new RealtimeThread(

 new PriorityParameters(p));

 Thread t2 = new RealtimeThread(

 new PriorityParameters(p),

 null,null,null,null,r));

 t2.start();

}

//Thread.Type = NHRTT, Priority = p

void doSomething(Runnable r) {

 Thread t1 = new

NoHeapRealtimeThread(

 new PriorityParameters(p),

 ImmortalMemory.getInstance()

);

 Thread t2 = new

NoHeapRealtimeThread(

 New

PriorityParameters(p),null,null,

 ImmortalMemory.getInstance(),null,r)
);

 t2.start();

}

Figure 3. Transformation example: Thread to Real-Time Threads

Original program Realtimeized program

void doSomething(Object o, int i) {

 List l = new ArrayList();

 l.add(o);

 l.get(i);

 Iterator it = l.iterator();

}

void doSomething(Object o, int i) {

 List l = new FastTable();

 l.add(o);

 l.get(i);

 Iterator it = l.iterator();

}

Figure 4. Transformation example: General transformations (ReplaceByInterface)

90

5

have methods with linear complexity (i.e., O(n)) while

Javolution provides classes that perform inclusion,

deletion and concatenation in O(log n). Although

Javolution classes should be preferred when possible,

automatic substitutions are complicated because method
signatures differ, so each method must be individually

considered. Wrapper objects may also be used in order

to limit the effect of these replacements to a method, at

the cost of additional overhead introduced by the

conversions. A wrapper is used to convert the replacee

into the replacer class, and at the end of the method,

reconvert the replacer into a replacee class. See figure 6

for an example.

For all replacements, each replacement type provides

a substitution target. Developers may specify class

names, packages and methods in order to select classes
that will undergo substitution. The ‟!‟ character before

the class name excludes the package/class/method from

substitution. The „*‟ is the globber character, which

returns true when compared. The declaration order is

important, early declarations take precedence (i.e., if we

have “*,!a.b.*” as the target, a class a.b.c will be

instrumented since ’*’ will be parsed before the

exclusion ”!a.b.*”). The same classes can be specified

in different sections of the configuration file, providing

different types of substitution in the same class.

Realtimeizeme is composed of two modules:

RTAgent and RTTransformer. The RTAgent module is
responsible for parsing the configuration file and

defining the ClassTransformer object that performs the

class instrumentation at load time. Its method

“premain” is called before executing the target

application [22]. The RTTransformer class extends

ClassTransformer and is defined by RTAgent as being

the object used for instrumentation. Its method

transform receives a class definition and returns the

instrumented bytecode which is loaded by the

classloader. Inside that method, the loaded class name is

compared to the class names specified in the

configuration file; bytecode manipulation is performed

by specified modules (thread, strings and general

transformation). Those modules perform calls to classes
that extend ASM classes [19], which use the Visitor

pattern design to visit classes without representing their

bytecode, and the Adapter pattern design to chain visits

and compose transformations.

V. VALIDATION AND RESULTS

We have performed two types of tests to validate our

tool: a verification to see if the application still works

after using our tool and after changing to a real-time

RTSJ compatible virtual machine, which we have tested

on several large software; and a benchmark test to see if

real-time requirements are met after the bytecode
substitutions, and to see the overhead introduced by our

tool at execution time. The first series of tests were

performed using a Sun Java Real-Time System v2.2

virtual machine, under a Solaris 10 Update 7

environment with an AMD Turion 64 X2 TL-62 2.1

GHz processor. It is important to note that some

applications, using a default configuration to replace

everything, did not continue to operate correctly after

using our tool, usually because of class cast exceptions.

When such occurrences happened we took a trial-and-

error approach, viewing the classes that were

problematic and excluding them from the automatic
transformation that appeared to be at cause. This could

be minimized if we use a static analysis tool to ensure

that substitutions are coherent and that they do not break

functionality. Of course, this would increase overhead

of the application and some complicated cases, like

those of sophisticated type casts or reflection, might not

be easily detected. In Table 2 we can see the results.

Original program Realtimeized program

void doSomething(Object o, int i) {

 ArrayList a;

 {...}

 a = new ArrayList();

 a.add(obj);

 a.get(i);

 // X's method signature has an ArrayList object
 x.method(a);

 a = method_that_returns_ArrayList();

}

void doSomething(Object o, int i) {

 FastTable a;

 {...}

 a = new FastTable();

 a.add(obj);

 a.get(i);

 // X's method signature now requires a FastTable object
 x.method(a);

 // return type of the method modified

 a = method_that_returns_FastTable();

}

Figure 5: Transformation example: General transformations (ReplaceAllReferences)

Original program Realtimeized program

void doSomething(String str, char[] ch,

 char c, int i, int j) {

 StringBuilder sb = new StringBuilder(str);

 {…}

 sb.append(str);

 sb.insert(i, c);

 sb.append(c, i, j);

 str.toLowerCase();

 str.substring(i);

}

void doSomething(String str, char[] ch,

 char c, int i, int j) {

 StringBuilder sb = new StringBuilder(str);

 Text t = new Text(sb.toString());

 {…}

 t.plus(string)

 t.insert(offset, Text.valueOf(c));

 t.concat(Text.valueOf(c,i,j));

 t.toLowerCase();

 t.subtext(i, t.length());

 sb = new StringBuilder(t);

}

Figure 6: Transformation example: String/StringBuffer/StringBuilder transformations

91

6

All tested applications that correctly executed using
the real-time virtual machine, continued to work after

binding the java agent for class instrumentation with

certain configuration corrections. This test demonstrates

the feasibility of the transformations on large code

bases.

Regarding our benchmarking tests, we performed

execution tests on the JOnAS 4.10.7 and Glassfish 2.1.1

application servers, and the HSQLDB 1.8.1.2 database.

These applications were selected for the benchmark

because they would clearly benefit from increased

determinism in response times. The tests were executed
on a Sun Real-Time System 2.2 virtual machine in

Solaris 10 Update 7, with a Pentium 4 HT processor

running at 3GHz. For the application server benchmark,

a non-instrumented J-Meter client was run on a separate

machine, an AMD Turion 64 X2 TL-62 2.1 GHz

processor, running Ubuntu 9.10. J-meter was used to

perform HTTP accesses on servlets installed on the

application servers. Client and server were connected by

a local network running at 100mbits. For HSQLDB, we

evaluated a sequence of executions of the test script

provided with the application. For both benchmarks,

three different cases were considered:

 Execution of the application without our

tool;

 Execution of the application with our tool

bound to the virtual-machine, intercepting

every class load, but not performing any

modifications (empty configuration file);

such a test provides data on the overhead

regarding the JVM calls to the agent at

every class load

 Executing the application with our tool

bound to the virtual-machine, intercepting

every class load and performing

modifications specified in the configuration

file (as many substitutions as possible were

performed).

Figure 7. JOnAS - Average response time chart

Figure 7 shows the average response times obtained

in our application server tests. JOnAS 4.10.7 average
execution times were significantly higher without the

Realtimeizeme instrumentation (from 79ms to 38ms

with 16 clients connected, configured in J-Meter),

specially when high concurrency takes place.

Figure 8. JOnAS – Standard deviation

Figure 8 shows the standard deviation values of the

same test results shown previously. The instrumented

application server presented a lower standard deviation

than its non-instrumented counterpart, and shows a large

improvement when many clients are accesing the servlet

concurrently. This means that response times in

application servers became more homogeneous after

Name

Java

RTS Realtimeizeme

Executed test

Apache Derby

10.5.3.0+ Passed Passed

Execution of SQL

commands by the

standalone application

Apache Felix

2.0.4 Passed Passed

Execution of a sample

iPOJO application

Apache

Geronimo

2.2 Failed Not tested -

Apache JMeter

2.3.4 Passed Passed

HTTP Charge

injection in servlets

Apache Sling

5# Passed Passed

Deployment of an

example web

application

Eclipse 3.5.0 Passed Passed

Creation and

execution of a Java

project

Glassfish

v2.1.1* Passed Passed

Deployment of a

sample web

application

Glassfish v3* Failed
1
 Not tested -

HSQL

Database

1.8.1.2 Passed Passed

Execution of SQL

commands by the

standalone application

JOnAS 4.10.7 Passed Passed

Deployment of a

sample web

application

JOnAS 5.1.1 Failed
2
 Not tested -

Netbeans 6.8 Passed Passed

Creation and

execution of a Java

project

* Open Source Edition

Standalone Application

+
Embedded driver

1
This application server requires a JVM 6.0-compatible and Java

RTS is based on JDK 5.
2
 Classes may be loaded out-of-order in real-time virtual machines

Table 2. Initial test results

92

7

using our tool, thus increasing the determinism and

predictability in the test applications.

Figure 8. JOnAS – Jitter

Regarding Jitter, which is arguably one of the more

important measures in real-time computing and is stated

as the difference in time between the longest execution
and the shortest, JOnAS has benefited from

instrumentation at almost all levels.

Figure 9. Glassfish - Average response time chart

Figure 10. Glassfish – Standard deviation

As seen in both Figure 9 and Figure 10, Glassfish

kept the same average execution times with or without

instrumentation, independently of the amount of clients

connected, and the standard deviation was the same.

Specifically, in average execution times, the Glassfish
tests show that our tool did not introduce significant

overhead or any visible benefits.

Figure 11. Glassfish – Jitter

Jitter on Glassfish, as seen in Figure 11, was less
symmetric compared to average execution times and

standard deviation. When 4 and 8 concurrent clients

were executing, jitter was actually increased, but

recovered at 16 clients.

Figure 12. HSQL Database Engine In-Memory - Test

Script

Figure 12 presents the average execution times and

the standard deviation of our tests on the HSQL

database, using the integrated in memory execution test.

Running our agent, with or without instrumentation

being performed, caused the application to run slower.

This most likely indicates that there is overhead when
activating the Java agent (even when not instrumenting

classes), and that in this application the benefits of the

substitutions performed were not significant enough to

overcome the overhead (as in the case for Glassfish), or

even worse, they were detrimental. It is also well known

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of clients/threads

JOnAS without instrumentation

JOnAS realtimized

JOnAS instrumented but not real-time

0

5

10

15

20

25

30

35

40

1 2 4 8 16

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (m

s)

Number of clients/threads

Glassfish without instrumentation

Glassfish realtimized

Glassfish instrumented but not real-time

0

5

10

15

20

25

30

35

40

1 2 4 8 16

A
ve

ra
ge

 r
e

sp
o

n
se

 t
im

e
 (m

s)

Number of clients/threads

Glassfish without instrumentation

Glassfish realtimized

Glassfish instrumented but not real-time

0

100

200

300

400

500

600

700

800

900

1000

1 2 4 8 16

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of clients/threads

Glassfish without instrumentation

Glassfish realtimized

Glassfish instrumented but not real-time

93

8

that database systems use specific concurrency control

algorithms to deal with real-time transactions [31].

Tested automatic transformations probably interfere

with these fine tuned non-real-time concurrency control

algorithms, especially considering that the thread
execution policy changes from a un-specified policy

(commonly implemented as round robin) to a run-to-

block policy, as specified in RTSJ.

VI. RELATED WORK

Interest in Real-time Java systems has been

increasing for both, classical uses of the technology and

new applications classes that would benefit, such as,

real-time database systems [31], IT telecommunications

frameworks, and even general-purpose web-containers.

Generative programming techniques [32] have already

been used to ease the development of real-time
software. Some component-based frameworks that

focus specifically on automatic RTSJ-compliant code

generation at build time. Soleil [7,8] is a framework for

creating real-time systems in Java. It provides an

abstraction for RTSJ concepts during the design of the

application, generating the correspondent code which

allows the developer to focus on the functional parts of

the system. Similarly, the framework proposed by

Etienne et al. [6] provides a programming model to

facilitate the design of real-time systems by means of

the Dependency Injection pattern [24]. Compadres [9] is

a project proposing a framework for distributed real-
time embedded systems, focusing on memory

management aspects. The memory management issue is

also the focus of the Golden Gate project [10].

However, all of these projects propose solutions for the

design layer, not applicable to legacy software, in which

such modifications to structure can become costly.

Extensions for memory area management are also an

intensive research domain. The difficulty of dealing

with memory areas and their restrictions have motivated

researchers to develop new abstractions for memory

area manipulation. Mechanisms for memory regions
inference [5, 2, 11] and programming models [4, 14]

have already been proposed to address this issue. Deters

et al. [12] proposed an aspect-oriented approach for

automatically transforming Java programs into Memory

Area-aware RTSJ code. However, scope computation

and join points discovery are run offline and the

modifications are done at source code level. A compile-

time analysis strategy is used by Cherem and Rugina [2]

and Garbervetsky et al. [11] for translating Java

applications into programs with region-based memory

management. Thus, these approaches present static

solutions, not considering applications with dynamic
class generation or late deployment.

A dynamic code instrumentation approach for

automatic scoped memory management is also

presented by Deters et al. [3]. According to this paper,

static analyses need restricted assumptions about the

behavior of the application. But as most of previous

works, they do not deal directly with threads, their

priorities nor the usage of RTSJ-unsafe libraries.

As a note, the syntax used in the configuration file to

specify classes and packages to be replaced was inspired

by the syntax used in BND [29] to export and import

packages.

VII. CONCLUSION AND PERSPECTIVES

In this paper we have presented an approach to

automatically transform Java legacy applications to
RTSJ compatible applications. Our approach uses a Java

agent to instrument all classes loaded into the virtual

machine. We have defined class mappings, from non-

deterministic classes, to deterministic classes that exist

in the RTSJ API and in RTSJ safe third party libraries,

such as Javolution. Our tool, Realtimeizeme, is

configurable, providing a means of specifying at the

class level, which substitutions should be performed.

Our results have been encouraging but also are

problematic. For one, in order to use our tool on large

software, we must provide custom configuration files,
because performing full substitutions can break the

application and at this moment we do not do further

analysis in order to determine the safeness of non

semantically equivalent substitutions, such as those

where no common interface exists. At the moment, we

go by creating configurations using a trial and error

approach. If a class causes a break (e.g., Class Cast

Exception), we remove it from the substitutions.

Depending on the application, this can take a little time,

but in our test applications, it was less than a couple of

hours, as in the case of the Eclipse framework. In

general, any application that runs on the real-time
virtual machine will run with our tool activated.

Regarding our benchmarks, the overhead produced

by our tool is only visible when a class is loaded. After

warming up (i.e., loading all classes), this overhead

disappears. However, in some cases, there may be many

classes created dynamically (e.g., serialization) which

causes this overhead to persist. Nevertheless, during

execution, we have seen that some applications improve

in both performance and determinism, while others may

become slower and less deterministic. For example,

replacing all threads in an application, and then giving
them the same real-time priority, may cause terrible

performance due to the run-to-block scheduling policy

for real-time threads. The run-to-block policy implies

that when many threads of the same priority are

scheduled, one thread can be executed for long periods

of time causing other threads to starve, increasing jitter

dramatically. The RTSJ specifies an optional

functionality, dynamic changing of thread priority,

which would make it possible to change a thread‟s

priority during execution. This would be an interesting

way of providing a custom real-time scheduler that

could adapt to system load, but in practice, no RTSJ
certified real-time virtual machine implements dynamic

priorities at this time. In general, a certain level of

knowledge of the application and of RTSJ is required to

correctly configure Realtimeizeme, and the same con be

said regarding the configuration of real-time JVMs.

In general, it is better to give high priorities to

threads that run for short periods and perform important

tasks. General worker threads do not require real-time

priorities, so one could avoid substituting them. A

94

9

proper mix of thread types and priorities can make an

application more responsive and faster.

Future work plans include the implementation of

more complex code transformations, such as new

mappings between standard Java classes and RTSJ-safe
classes. We also plan to focus more on memory and

context management mechanisms instead of only using

real-time thread priorities. Also necessary, static

analysis to determine the implications of a substitution

and to find conflict points is also of interest and

exhaustive execution tests to ensure that reachable code

is correct after substitutions. By adding these features to

our tool, and with more extensive knowledge on the

application to be transformed, our tool could be used as

a first attempt to migrate legacy applications to the

RTSJ framework and evaluate performance, or taken
further, could be used as part of a build system to

produce a separate real-time compatible solution using a

single centralized code base.

VIII. REFERENCES

[1] J. Gosling and G. Bollella. The Real-Time

Specification for Java. Addison-Wesley Longman

Publishing Co., Inc., 2000.

[2] S. Cherem and R. Rugina. Region Analysis and

transformation for Java Programs. ISMM‟04, 2004.

[3] M. Deters and R. K. Cytron. Automated discovery
of scoped memory regions for real-time java. In

ISMM 02, pages 25-35, 2002.

[4] F. Pizlo, J. Fox, D. Holmes and J. Vitek. Real-time

Java scoped memory: design patterns and

semantics. In 7th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing

(ISORC’04), pages 101-110, 2004.

[5] A. Ferrari, D. Garbervestky, V. Braberman,

P. Listingart and S. Yovine. JScoper: Eclipse
support for research on scoping and instrumentation

for real time java applications. In eTx’05, pages 50-

54.

[6] J. Etienne, J. Cordry and S. Bouzefrane. Applying

the CBSE paradigm in the real time specification
for Java. In Proceedings of the 4

th
 international

Workshop on Java Technologies For Real-Time

and Embedded Systems (JTRES '06), pages 218-

226, 2006.

[7] A. Plsek, F. Loiret, P. Merle, L. Seinturier: A
Component Framework for Java-Based Real-Time

Embedded Systems. In Proc. ACM/IFIP/USENIX

9th Int’l Middleware Conference (Middleware

2008), pages 124-143, 2008.

[8] A. Plsek, P. Merle, L. Seinturier: A Real-Time Java
Component Model. In ISORC’2008, pages 281-

288, 2008.

[9] J. Hu, S. Gorappa, J. A. Colmenares and R.

Klefstad. Compadres: A Lightweight Component
Middleware Framework for Composing

Distributed, Real-Time, Embedded Systems with

Real-Time Java. In Proc. ACM/IFIP/USENIX 8th

Int’l Middleware Conference (Middleware 2007),

Vol. 4834, pages 41-59, 2007.

[10] D. Dvorak, G. Bollella, T. Canham, V. Carson, V.

Champlin, B. Giovannoni, M. Indictor, K. Meyer,

A. Murray and K. Reinholtz. Project Golden Gate:

Towards Real-Time Java in Space Missions. In

ISORC’04, pages 15-22, 2004.

[11] D. Garbervestsky, S. Yovine, V. Braberman, M.

Rouaux, A. Taboada. On transforming Java-like

programs into memory-predictable code. In

Proceedings of the 7th international Workshop on

Java Technologies For Real-Time and Embedded

Systems (JTRES '09), pages 140-149, 2009.

[12] Morgan Deters, Nicholas Leidenfrost, and Ron K.

Cytron. Translation of Java to Real-Time Java

using aspects. In Proceedings of the International
Workshop on Aspect-Oriented Programming and

Separation of Concerns, pages 25-30, 2001.

[13] K. Arnold, J. Gosling and D. Holmes. The Java

Programming Language. Addison-Wesley, 2000.

[14] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J.

Vitek, T. Zhao. Scoped types and aspects for real-

time Java memory management. In Real-Time

Syst., Vol. 34, pages 1-44, 2007.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Videira Lopes, J.-M. Loingtier and J. Irwin.

Aspect-Oriented Programming. In Proceedings of

the 11th European Conference on Object-Oriented

Programming, 1997.

[16] J.-M. Dautelle. Fully time deterministic Java. In

AIAA Space 2007, 2007.

[17] A. Rudys and D. S. Wallach. Enforcing Java Run-

Time Properties Using Bytecode Rewriting. In

Proceedings of the International Symposium on

Software Security, 2002.

[18] U. W. Eisenecker and K. Czarnecki. Generative

Programming: Methods, Tools and Applications.

Addison-Wesley, 2000.

[19] E. Bruneton, R. Lenglet and T. Coupaye. ASM: A

Code Manipulation Tool to Implement Adaptable

Systems. In Proceedings of adaptable and

extensible component systems, 2002.

[20] E. G. Benowitz and A. F. Niessner. A Patterns
Catalog for RTSJ Software Designs. Lecture Notes

in Computer Science, 2003.

[21] P. Tyma. Why are we using Java again?,

Communications of the ACM, vol. 41, n. 6, pages

38-42, 1998.

[22] Sun Microsystems, Inc. Java 2 Platform Se 5.0 -

Package java.lang.instrument. Web pages at

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/in

strument/package-summary.html

[23] R. Pawlak. Spoon: Compile-time Annotation

Processing for Middleware. In IEEE Distributed

Systems Online, vol. 7, n. 11, 2006.

[24] M. Fowler. Module Assembly. In IEEE Software,

vol. 21, n. 2, pages 65-67, 2004.

[25] G. K. Manacher. Production and stabihzation of

real-time task schedules. J. ACM 14’3, pages 439-

465, 1967.

95

10

[26] J. Stankovic and K. Ramamritham. Tutorial on

Hard Real-time Systems. IEEE Computer Society

Press, 1988.

[27] D. F. Bacon, P. Cheng and V. T. Rajan. A real-

time garbage collector with low overhead and

consistent utilization. In Proceedings of the

Thirtieth Annual ACM Symposium on the

Principles of Programming Languages, pages

285–294, 2003.

[28] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M.

Schoeberl, and J. Vitek. Java for safety-critical

applications. 2nd International Workshop on the

Certification of Safety-Critical Software

Controlled Systems (SafeCert 2009), 2009.

[29] bnd - Bundle Tool.

http://www.aqute.biz/Code/Bnd

[30] M. Dahm, “Byte Code Engineering”, Proceedings

JIT‟99, Springer, 1999.

[31] John A. Stankovic, Sang Hyuk Son, Jörgen

Hansson: Misconceptions About Real-Time

Databases. IEEE Computer (COMPUTER)

32(6):29-36 (1999)

[32] Krysztof Czarnecki, Ulrich Eisenecker, Generative

Programming: Methods, Tools, and Applications,

Addison-Wesley Professional, 2000, ISBN

0201309777

96

	MonografiaAmerico-Draft2
	ShortPaperEstagio
	rtns2010_submission_44

