
 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

INSTITUTO DE INFORMÁTICA 

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO 

 

 

 

JOÃO CLAUDIO RODRIGUES AMÉRICO 

 

 

 

A study of the impact of real-time constraints in Java/OSGi applications 

 

 

 

 

Trabalho de Graduação. 

 

 

 

 

Prof. Dr. Cláudio Fernando Resin Geyer 

Orientador 

 

 

 

 

 

  

Porto Alegre, junho de 2010. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

Reitor: Prof. Carlos Alexandre Netto 

Vice-Reitor: Prof. Rui Vicente Oppermann 

Pró-Reitora de Graduação: Profa. Valquiria Link Bassani 

Diretor do Instituto de Informática: Prof. Flávio Rech Wagner 

Coordenador do CIC: Prof. João César Netto 

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro 



 



 

AGRADECIMENTOS 

Primeiramente, gostaria de agradecer a minha familia, pelo carinho, atenção e apoio 

desmedidos ao longo não só dos anos de estudo, mas de toda a minha vida. 

Agradeço à Universidade Federal do Rio Grande do Sul e ao Instituto de Informática 

pelo ensino de alta qualidade que me foi conferido durante a minha graduação e pela 

oportunidade que me foi dada de complementar a minha formação através de um intercâmbio 

e de um duplo diploma na França. 

Agradeço ao professor Claudio Fernando Resin Geyer pela orientação durante a 

realização deste trabalho e durante os meus estudos de duplo diploma. 

Agradeço a Walter Rudametkin pelo seu apoio, conselhos, orientação e amizade 

durante a minha estadia na França. Agradeço também ao professor Diogo Onofre Gomes de 

Souza, que me acompanha desde o ensino médio e que muito me apoiou ao longo desses 

anos. 

Gostaria de agradecer aos colegas e amigos que fiz durante os meus anos de estudos 

na UFRGS pelos momentos de descontração, pelas risadas e pelas partidas de truco. Não 

obstante, agradeço também aos meus amigos fora da UFRGS, que souberam compreender 

todas as vezes em que foram trocados por noites de trabalho. 

Por fim, agradeço a todos que tenham contribuído de alguma forma para o meu 

trabalho. 

 

 



 

SUMÁRIO 

LISTA DE FIGURAS ............................................................................................................................... 7 

LISTA DE TABELAS .............................................................................................................................. 8 

NOTA EXPLICATIVA ............................................................................................................................ 9 

ABSTRACT ............................................................................................................................................ 10 

RESUMO ................................................................................................................................................ 11 

1 INTRODUCTION ........................................................................................................................ 12 

1.1 CONTEXT .................................................................................................................................12 

1.2 OBJECTIVES ............................................................................................................................13 

1.3 DOCUMENT OUTLINE ............................................................................................................13 

2 STATE OF THE ART .................................................................................................................. 14 

2.1 INTRODUCTION ......................................................................................................................14 

2.2 REAL-TIME JAVA....................................................................................................................15 

2.2.1 Real-time Computing .........................................................................................................15 

2.2.1.1 Definitions and Concepts ...............................................................................................15 

2.2.1.2 Predictability in Real-Time Systems ...............................................................................17 

2.2.1.3 Determinism in Real-time Systems .................................................................................17 

2.2.1.4 Real-time Operating Systems .........................................................................................18 

2.2.1.5 Real-Time Scheduling ....................................................................................................19 

2.2.1.6 Real-time Programming Languages ...............................................................................20 

2.2.2 Java versus Real-Time Systems ..........................................................................................21 

2.2.2.1 An Overview of Java ......................................................................................................21 

2.2.2.2 Java Issues in Real-Time Applications ...........................................................................23 

2.2.3 Real-time Solutions for Java ...............................................................................................24 

2.2.3.1 Early Work in Real-Time Java .......................................................................................24 

2.2.3.2 The Real-Time Specification for Java .............................................................................25 

2.2.3.3 Implementations of the RTSJ ..........................................................................................26 

2.2.3.4 Other Real-Time Solutions for Java ...............................................................................27 

2.3 DYNAMIC SOFTWARE ADAPTATION ..................................................................................29 

2.3.1 Dynamic Software Architectures ........................................................................................29 

2.3.2 Definitions and Concepts ....................................................................................................31 

2.3.3 Approaches for Dynamic Software Adaptation....................................................................31 



 

2.3.3.1 Separation of Concerns..................................................................................................32 

2.3.3.2 Computational Reflection...............................................................................................32 

2.3.3.3 Dynamic Service-Oriented Architectures ........................................................................33 

2.3.3.4 Component-Based Design ..............................................................................................34 

2.3.3.5 Other Factors ................................................................................................................35 

2.3.4 Dynamic Adaptive Frameworks..........................................................................................35 

2.3.5 Real-time Dynamic Adaptive Systems ................................................................................38 

2.4 OSGI SERVICE PLATFORM ....................................................................................................41 

2.4.1 Definitions and Concepts ....................................................................................................42 

2.4.2 Module Layer .....................................................................................................................43 

2.4.3 Lifecycle Layer ..................................................................................................................44 

2.4.4 Service Layer .....................................................................................................................45 

2.4.5 OSGi Applications .............................................................................................................46 

2.4.6 Real-Time OSGi ................................................................................................................47 

2.5 SUMMARY ...............................................................................................................................49 

3 REAL-TIME CONSTRAINTS IN THE OSGI DYNAMIC PLATFORM .................................. 51 

3.1 REAL-TIME ISSUES IN DYNAMIC SERVICE-ORIENTED COMPONENT MODELS ...........52 

3.2 REAL-TIME ISSUES IN THE OSGI PLATFORM ....................................................................53 

3.3 SCENARIO: VIDEO MONITORING APPLICATION ...............................................................55 

4 PROPOSITION ............................................................................................................................ 57 

4.1 ARCHITECTURAL FREEZING ................................................................................................57 

4.2 REAL-TIME DYNAMIC SERVICE LEVEL AGREEMENT .....................................................60 

4.2.1 RTD-SLA Content .............................................................................................................61 

4.2.2 Service Level Management.................................................................................................62 

4.3 REAL-TIME AWARE OSGI PLATFORM ................................................................................63 

4.3.1 OSGi Real-time Core and Code Instrumentation .................................................................64 

4.3.2 Real-time SLA in OSGi ......................................................................................................64 

4.3.3 Architectural Lock in OSGi ................................................................................................65 

5 IMPLEMENTATION................................................................................................................... 67 

5.1 CHOICE OF THE APPROACH .................................................................................................67 

5.2 CHOICE OF THE PLATFORM .................................................................................................68 

5.3 PROTOTYPE IMPLEMENTATION ..........................................................................................68 

5.4 VALIDATION ...........................................................................................................................69 

6 CONCLUSIONS AND PERSPECTIVES .................................................................................... 71 

6.1 CONTRIBUTION ......................................................................................................................72 

6.2 FUTURE WORK .......................................................................................................................73 

7 REFERENCES ............................................................................................................................. 75 

ANEXOS ................................................................................................................................................. 80 

ANEXO I: RESUMO ESTENDIDO EM PORTUGUÊS .......................................................................81 

ANEXO II: ARTIGO SUBMETIDO PARA RTNS 2010 ......................................................................87 



7 

 

LISTA DE FIGURAS 

Figure 1. Periodic (a), aperiodic (b) and sporadic (c) tasks. ................................................................. 16 

Figure 2. Platform independence in Java ............................................................................................ 22 

Figure 3. Dynamic software evolution................................................................................................ 30 

Figure 4. Aspect Weaving.................................................................................................................. 32 

Figure 5. Meta-object protocol for computational reflection ............................................................... 33 

Figure 6. a) Publish-find-bind service interaction pattern b) Service update and service publish in DSOA 

c) Service removal in DSOA ........................................................................................................................... 34 

Figure 7. Common representation of a component .............................................................................. 35 

Figure 8. OSGi bundles and dependency resolution. ........................................................................... 43 

Figure 9. State diagram representation of OSGi bundle lifecycle [OSG05].......................................... 44 

Figure 10. OSGi and RTSJ memory areas .......................................................................................... 53 

Figure 11. Dynamic availability in the motion detection system ......................................................... 55 

Figure 12. Machine state representation of system architectures ......................................................... 58 

Figure 13. Machine state representation of a system architecture with architectural freezing ............... 59 

Figure 14. a) Pseudocode for freezing a system architecture b) Pseudocode responsible for freezing the 

system architecture in a platform ..................................................................................................................... 60 

Figure 15. UML diagram of RTD-SLA .............................................................................................. 62 

Figure 16. Real-time SLA and SLM................................................................................................... 63 

Figure 17. Component vs. Bundle metadata ....................................................................................... 65 

Figure 18. Real-Time State Manager and Solution Architecture .......................................................... 69 

Figure 19. Architecture of the validation test ...................................................................................... 70 

 



8 

 

LISTA DE TABELAS 

Table 1. RTSJ implementations ......................................................................................................... 27 

Table 2. Implementations of the OSGi R4 Specification ..................................................................... 46 

 



9 

 

NOTA EXPLICATIVA 

Esta monografia é fruto de um trabalho de um ano (fev/2009 - ago/2009 e  jan/2010 - 

jun/2010) desenvolvido durante meu duplo diploma. Ela é constituída de duas partes. A 

primeira mostra a instrumentação de bytecode para transformação de aplicações escritas com 

a API standard de Java em aplicações que utilizam a API de tempo-real de Java e o seu 

impacto no determinismo das aplicações. Este trabalho constituiu o meu projeto de fim de 

estudos na ENSIMAG e validou o meu primeiro ano de duplo diploma. Entretanto, visto que 

ele foi desenvolvido durante o meu estágio na Bull, seu conteúdo foi classificado pela 

empresa como sendo confidencial à escola e à empresa. Mesmo assim, um artigo 

apresentando a ferramenta que foi construída durante o estágio foi escrito e submetido à 18ª 

Conferência Internacional em Sistemas de Rede e Tempo-Real (RTNS 2010). O artigo 

submetido pode ser encontrado nos anexos deste trabalho. 

A segunda parte do trabalho, descrita nessa monografia, é uma continuação da 

primeira. Em suma, a abordagem de instrumentação foi utilizada para transformar um 

servidor de aplicação Java Enterprise Edition cujo núcleo é constituído de uma plataforma 

OSGi em tempo-real. Tendo em mente que isto não foi suficiente, a segunda parte do trabalho 

investiga a questão do dinamismo da plataforma OSGi e o impacto do mesmo sobre restrições 

temporais. Para resolver esta questão, foi utilizada uma abordagem baseada no congelamento 

da arquitetura das aplicações hospedadas na plataforma e a utilização de acordo de níveis de 

serviço para a aceitação das reconfigurações. Este trabalho foi desenvolvido durante o meu 

estágio em um laboratório de pesquisa especializado em OSGi, validando o meu segundo ano 

de duplo diploma.  
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ABSTRACT 

Real-time requirements and software runtime adaptation are two needs of today‟s 

software. On the one hand, the most important characteristics in real-time applications are 

their predictable behavior and deterministic execution time. On the other hand, runtime (also 

called dynamic) adaptive software have as main characteristic the capability of being 

modified and updated at execution time, what makes it more flexible and robust.  

In the context of Java platform, many solutions for dealing with both aspects 

separately have been developed. Among the real-time solutions, the most popular is the Real-

Time Specification for Java (RTSJ) and its implementations, which offers a complete API for 

the development of real-time applications in Java. Likewise, the OSGi Service Platform is one 

of the most popular solutions for developing and deploying dynamic adaptive software. One 

of the reasons of its popularity is the fact that it combines both service-oriented computing 

and component-based design concepts in a simple service-oriented component model. The 

OSGi Service Platform has become the de facto platform for developing flexible and modular 

software, and many Java applications are being migrated and developed by means of its 

component model. However, due to the popularization of real-time solutions, some of these 

applications may have timing constraints which cannot be respected because of the platform 

dynamic behavior and the fact that service-oriented component-based applications 

architectures may change at execution time. The goal of this project is to suggest and evaluate 

solutions for this issue.  

 

Keywords: Service-oriented architecture, component-based development, service-

oriented component models, dynamic adaptive software, real-time, RTSJ, Java, OSGi.  
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RESUMO 

Restrições de tempo-real e adaptação de software em tempo de execução são duas 

necessidades frequentes nos sistemas modernos. De um lado, as características mais 

importante dos sistemas de tempo-real são a sua preditibilidade e o seu tempo de execução 

determinista. De outro lado, aplicações adaptáveis em tempo de execução tem como principal 

característica a capacidade de serem modificáveis e atualizáveis em tempo de execução, o que 

as torna flexíveis e robustas. 

No contexto da plataforma Java, muitas soluções lidando separadamente com estes 

dois aspectos foram desenvolvidas. Entre as soluções de tempo-real,  a mais popular é a 

Especificação de Tempo-Real para Java (RTSJ) e suas implementações, que oferecem uma 

API completa para o desenvolvimento de aplicações de tempo-real em Java. Da mesma 

forma, a plataforma de serviços OSGi é uma das soluções mais populares para o 

desenvolvimento e implementação de software dinamicamente adaptável. Um dos motivos 

para sua popularidade é o fato de que ela combina conceitos de ambas abordagens orientada a 

serviços e baseada em componentes. A plataforma de serviços OSGi tornou-se o padrão de 

facto para o desenvolvimento de sistemas flexíveis e modulares, e muitas aplicações tem sido 

migradas e desenvolvidas utilizando o seu modelo de componentes. Entretando, com a 

popularização das soluções de tempo-real, algumas destas aplicações podem apresentar 

restrições temporais que não poderão ser respeitadas devido ao comportamento dinâmico da 

plataforma e ao fato de que a arquitetura das aplicações abrigadas na plataforma OSGi podem 

mudar ao longo de sua execução. O objetivo deste trabalho é de avaliar este problema e 

sugerir soluções para o mesmo. 

Palavras-chave: Arquiteturas orientadas a serviços, desenvolvimento baseado em 

componentes, modelos de componentes orientados a serviços, tempo-real, RTSJ, Java, OSGi, 

software dinâmicamente adaptável. 
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1 INTRODUCTION 

1.1 Context 

Dynamic adaptive behavior and real-time requirements are common needs of today‟s 

software. While the former primes for flexibility and unforeseen modifications in the 

environment at runtime, the latter concerns predictability and determinism of application‟s 

response times. Many solutions for dealing with both aspects separately have been fairly 

recently developed for the Java platform. One of the most adopted real-time solutions for Java 

is the Real-Time Specification for Java (RTSJ) and its implementations, which offers a 

complete API for the development of real-time applications in Java. At the same, the 

popularization of component-based design and service-oriented computing concepts for the 

development of flexible and modular applications in Java are responsible for the creation of 

service-oriented component models and the specification of service platforms.  

One of the most popular service platforms is the OSGi Service Platform. Its original 

intention was to become an open specification to develop and deploy services in home 

gateways, but it has become the de facto standard for developing general-purpose Java 

applications in a modular and flexible way. Its popularization in several domains is due to, 

among many other things, its adoption by the Eclipse Foundation for developing plug-ins for 

their IDE. In the OSGi framework, we can create service-oriented and component-oriented 

applications. Nowadays, the OSGi Specification is in its 4th release. This specification, that in 

former days addressed embedded systems, was extended to cover many other domains, such 

as mobile phones, industrial supervision, automobiles and more recently a whole set of Java 

Enterprise Edition application servers. 

However, some of the Java applications which are being migrated or developed with 

service-oriented component models present among their requirements the need for predictable 

response times. Although we can assure real-time behavior by means of real-time Java 
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solutions, predictability is a hard-to-guarantee property due to the fact that service-oriented 

component-based application architectures are dynamic and can evolve during application 

execution.  

1.2 Objectives 

This work aims to analyze the effects and impacts of the dynamicity provided by 

service-oriented component models over the predictability needed by Java applications with 

real-time requirements. The OSGi Service Platform is used as a concrete example for these 

issues. Solutions to these issues are proposed and a prototype is presented to give them a 

tangible form and to demonstrate their feasibility. 

1.3 Document outline  

This document is structured as follows. In this first chapter, the context in which this 

work is inserted was presented, along with our general objectives. The second chapter of this 

document shows the state of the art of the principal related domains: Real-time Java 

applications, runtime software adaptability and the OSGi Service Platform, the platform 

chosen to exemplify the studies. In the third chapter, we identify the issues in dynamic real-

time adaptive applications and instantiate the problem in the OSGi Service Platform. In the 

fourth chapter, a proposition for such problems is presented. The fifth chapter presents an 

implementation to experiment and validate our proposition. Finally, the sixth chapter presents 

the conclusions and perspectives for future research created by this study. 



14 

 

2 STATE OF THE ART 

2.1 Introduction 

The increasing software complexity and the need for dynamism in its execution led 

developers to look for new ways of designing, constructing and maintaining applications. In 

order to address this problem, new domains in software engineering have emerged such as 

dynamic software architectures. Software architecture is a structural representation of a 

system, in terms of components and interactions. Dynamic architectures are software 

architectures which can evolve and adapt at run time, thus increasing flexibility and 

availability. Most of the approaches used to implement runtime evolutions are based on 

modularity and the use of proxies to intercept execution flow. 

The OSGi Service Platform is a service platform which addresses the lack of support 

for modularity in Java applications [HAL10]. OSGi components interact through the publish, 

find and bind service interaction pattern: service providers publish their services into a 

registry, while service clients query the registry to find available services to use. Since 

modules can be installed, updated and uninstalled at any time, services can appear and 

disappear dynamically. The lack of modularity is not the only problem we find in the Java 

platform. The unpredictability introduced by its weak mechanisms for handling priority-based 

scheduling and automatic garbage collection makes Java unsafe for designing real-time 

applications [NILSS02]. For this purpose, the Real-Time Expert Group created the Real-time 

Specification for Java (RTSJ) [BOL00], whose implementations provide additional 

mechanisms for building deterministic Java applications. 

Gradually, more and more Java applications have been migrating to the OSGi 

framework, due to its flexibility and dynamism. However, due to the popularization of RTSJ 

in the world of real-time programming, some of these applications have real-time 

requirements and the dynamism offered by the OSGi platform is a factor that may 
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compromise the deterministic behavior in the applications‟ response times. The aim of this 

chapter is to present an overview of Real-time Java, runtime software evolution and OSGi 

Service platform in order to elucidate the challenges we can meet once we deal with 

dynamically adaptive real-time applications.  

2.2 Real-Time Java 

Java [ARN00] has become one of the most popular general purpose languages. This 

popularity is in part due to its portability, reusability, security features, ease of use, 

robustness, rich API set and automatic memory management. Java has many advantages over 

traditional languages for programming, such as C and C++ [TYM98]. In addition, nowadays 

it is arguably easier to find programmers with Java skills than those experienced with Ada or 

C. However, the same Garbage Collector that eases development is one of the main reasons 

why Java was not used to design critical, embedded and real-time applications. Indeed, 

garbage collection introduces unpredictable execution times [BACO03]. As a result, many 

different solutions were designed to improve the determinism of conventional Java. 

In the next sections, we introduce Java and its real-time solutions. In section 2.2.1, we 

give the basic concepts of real-time computing. Section 2.2.2 contextualizes real-time 

concepts in the Java platform, explaining the principal shortcomings found for using Java to 

design real-time systems. In section 2.2.3, we present solutions developed to overcome the 

difficulties discussed in the last section and implement real-time systems in Java.  

2.2.1 Real-time Computing 

Before presenting Java and its real-time extension, we present in this section a brief 

overview of some important aspects in real-time computing. In the first subsection, we 

introduce some basic concepts and definitions. The second and third subsections detail two 

requirements for real-time systems: predictability and determinism. The concept of real-time 

operating system is presented in the fourth subsection, while the fifth and sixth subsections 

discuss important concerns in real-time scheduling and real-time programming languages.  

2.2.1.1 Definitions and Concepts 

Real-time systems
1
 differ from other information systems in the fact that their 

correctness depends on both functional and temporal aspects [STA92]. Timing correctness 

requirements proceeds from the impact of a real-time system upon the real world. These 

                                                

1 Also known as “reactive systems” 
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requirements, in turn, may be expressed in the form of timing constraints for the set of 

cooperating tasks which compose the system. Depending on the tasks arrival pattern, timing 

constrains may be periodic, sporadic or aperiodic, as shown in Figure 1. Periodic tasks are 

invocated within regular time intervals, while arrival times in sporadic and aperiodic tasks are 

unknown; however, the time interval between two releases of an aperiodic task is only known 

to be greater or equal to zero, while sporadic tasks have a time interval between two releases 

always greater than or equal to a constant [ISO00, BRUNO09]. Ideally, temporal constraints 

are explicitly specified for each task by the system designer. In order to satisfy different 

timing constraints, services and algorithms used by real-time systems must be executed in 

bounded time. 

 

Figure 1. Periodic (a), aperiodic (b) and sporadic (c) tasks. 

Those timing constrains, also known as deadlines, can be relative to an event or 

absolute, precising a point in time for a task to complete its execution. Depending on the 

enforcement of deadlines, real-time systems may be divided into hard, firm and soft real-

time systems [SHI94]. In hard real-time systems, all deadlines must be strictly enforced to 

avoid safety issues (e.g., weapon systems, nuclear power plants, automated transport systems) 

and to ensure system correctness [BRUNO09]. Firm real-time systems are those in which 

results produced as soon as the deadline expires become useless for the application, but 

consequences are not very severe. In soft real-time systems, the need for strict deadlines is 

more or less replaced by the need for homogeneous response times in order to ensure 

acceptable levels of service, i.e., minimize response-time deviations. Missed deadlines are 

interpreted as degraded service quality, and should be avoided; nevertheless the system 

continues to operate. Besides temporal constraints, real-time processes may have other types 

of constraints, such as resource, performance and availability constraints, which can also be 

found in non real-time applications. 

The concepts described above highlight the most important characteristics in real-time 

applications: they do not necessarily have to be fast, but they must be predictable and 

deterministic.  
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2.2.1.2 Predictability in Real-Time Systems 

In fact, the notion of predictability may vary from one application to another. For 

some applications, a predictable system is one where it is possible to mathematically 

demonstrate, at design time, that all timing constraints will be met. This requires one to know 

all the tasks and their characteristics. Another possible definition is that in predictable 

systems, timing constraints are guaranteed for critical tasks; other tasks may offer 

probabilistic or run-time guarantees, thus one cannot predict at design time if a task will meet 

its deadlines. Most of the cases, worst case values are assumed in order to provide deadline 

guarantees [STA90]. Two different types of techniques are used to ensure predictability 

[RICHT03]:  

Schedulability analysis: Given a set of tasks, their priorities, temporal constraints and 

worst case execution time (WCET), the aim of this technique is to identify a schedule which 

satisfies all the constraints for all the tasks. Many scheduling analysis techniques are popular 

in the real-time systems domain. Some examples are rate-monotonic scheduling, earliest 

deadline first, Round-Robin and static order scheduling [LIU73, RASM08, SRI02]. 

Formal verification: In this technique, the system and its properties are formalized 

into logic statements or timed automata and the timing constraints are formally verified 

through model checking or theorem proving techniques [BER81, LAR95]. 

However, both solutions are not enough for designing predictable real-time systems 

[HUA05]. 

2.2.1.3 Determinism in Real-time Systems 

Determinism and predictability are closely related, because one results in the other. A 

deterministic system has the ability of ensuring the execution of an application despite 

external factors that can unpredictably cause a perturbation (and thus alter the functionality, 

performance and response time) [Bruno09]. Application behavior is then more or less fixed, 

in such a way that all deadlines can be met and predictability is achieved.  

Real-time systems are not all about deadlines. Two additional metrics are related to 

determinism: 

 Latency: Latency is the time between an event and a system response to that event. 

Usually, developers focus on minimizing system latency. However, in real-time 

applications the aim is to normalize it, that is, to make the latency of a system a known 
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and predictable quantity. Measuring latency includes finding and measuring all the 

sources of latency in a system, which is often far from being an easy task. Assuming 

that we know the time it takes to process an event, another way to measure latency is 

by measuring response time
2
. 

 Jitter: In the context of real-time systems, detects unsteadiness in system latency. 

Simply averaging latency or measuring it for one event does not guarantee that a 

system is deterministic. The distribution and standard deviation of latency responses 

are common ways of measuring jitter. 

Depending on the application, having a normalized latency and a small jitter may be 

more important than deadline enforcement. 

2.2.1.4 Real-time Operating Systems 

All aspects of a system must be taken into account in order to design a real-time 

system. Initially, real-time systems were implemented for specific use with dedicated 

hardware. Nowadays, hardware support is still required, but due to the advances in modern 

computer hardware, even general-purpose systems can be used to solve real-time problems. 

Today, real-time concerns are concentrated in the software layer, more specifically in the 

operating system software. Some of the features that the underlying operating system must 

provide in order to support real-time applications are real-time task scheduling, priorities, 

resource management, high-resolution clocks and low-latency interrupts [STA04]. 

Real-time operating systems (RTOS) are operating systems that support applications 

with timing constraints, providing a deterministic environment while maintaining logical 

correctness in its results [CED07]. Some basic paradigms found in traditional operating 

systems cannot be applied to RTOS‟s. For instance, it is not important for a RTOS to have 

support for security or file systems. However, predictable interrupt handling and scheduling 

with timing and dependability constraints is required. Real-time behavior for firm and soft 

real-time applications can be achieved by enhanced conventional operating systems with 

some real-time features, but for hard real-time applications a RTOS is necessary.  

The IEEE Portable Operating System Interface for Computer Environments (POSIX 

1003.1b) [IEE96] defines a list of basic services required by a RTOS. Some of these are 

asynchronous and synchronous input/output (I/O), memory locking, semaphores, shared 

                                                

2 That is, latency plus the event processing time. 
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memory, execution scheduling, timers, interprocess communication (IPC), real-time files and 

real-time threads. Other basic requirements [BAS05] are preemptability, multi-task support, 

deterministic synchronization mechanisms, real-time priority levels, dynamic deadline 

identification and predefined latencies for task switching and interrupt mechanisms.  

2.2.1.5 Real-Time Scheduling 

Scheduling problems are present in many computer science domains (e.g., parallel 

processing), but constraints in real-time systems make the problem considerably different. 

Instead of minimizing the total time required to execute all tasks, real-time schedulers must 

focus on respecting all deadlines. Besides timing constraints, resource (to provide to the tasks 

what is needed to a successful execution) and precedence (to ensure proper system behavior) 

constraints must also be considered when scheduling real-time tasks [SHI94]. 

A scheduling algorithm is a set of rules which determines the task to be executed at a 

particular moment and the duration of its execution [LIU73]. Real-time scheduling algorithms 

have as finality guaranteeing that heedless of system charge critical tasks will meet their 

deadlines. They can be classified along several dimensions depending on tasks characteristics 

[STA92, BRUNO09]. The most important distinctions made are: 

 Preemptive/Non-preemptive Scheduling: Most operating systems allow assigning a 

priority to a task. Thus, higher-priority tasks have precedence over lower-priority 

tasks. Preemptive algorithms allow interrupting the execution of a lower-priority task 

to execute a higher-priority one, while in non-preemptive algorithms a thread executes 

until it completes its tasks. Non-preemptive algorithms have the advantage of avoiding 

dispatch latency and thrashing, but they may not respect precedence constraints 

[MUN70]. 

 Static/Dynamic Scheduling: In static scheduled systems, tasks assignment is 

determined a priori to processors [PEN89]. Thus, priority and other scheduling 

parameters are determined when tasks first enter the system. Dynamic scheduling 

allows tasks to be dispatched as the system is running, based on the system state and 

on scheduling parameters that may change over time. 

 Periodic tasks-oriented/Aperiodic tasks-oriented Scheduling: Some algorithms 

may only deal with periodic tasks, while others handle only aperiodic tasks. Dealing 

with periodic tasks is obviously easier than dealing with aperiodic tasks, once the 
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latter may produce unforeseen events. There are some schedulers which can support 

both types of tasks. 

 Guarantee-Based/Best-Effort Based Scheduling: As the name suggests, guarantee-

based algorithms are pessimist algorithms which ensure that all tasks will meet their 

timing constraints. Tasks which can disrupt the system are not allowed to execute. On 

the contrary, best-effort based algorithms are optimistic and, once a new task arrives 

into the system, they do their best to ensure that all threads will respect their deadlines 

or will be completed close to them. The former is best-suited for time-critical systems, 

and the latter is preferred for soft real-time systems. 

 Optimal/Feasible (Heuristic) Scheduling: A feasible schedule is a schedule where 

all the tasks reach the end of their execution on or before their deadlines. Feasible 

scheduling algorithms search for feasible schedules to guarantee the system‟s real-

time behavior, while optimal scheduling algorithms always find a feasible scheduling 

(if one exists). 

A scheduling algorithm may fall into many of these categories. Some examples are 

First-In-First-Out (FIFO, dynamic-priority), Earliest-Deadline-First (EDF, dynamic 

preemptive), Shortest-Execution-Time-First (SETF, dynamic non-preemptive), Least-Slack-

Time (LST, dynamic-priority), Latest-Release time-First (LRT, static  time-driven), Rate-

Monotonic (RM, static fixed-priority preemptive) and Deadline Monotonic (DM, static fixed-

priority preemptive) [BRUC98, BRUNO09]. 

2.2.1.6 Real-time Programming Languages 

Using traditional technologies and methodologies in real-time development is costly 

and difficult [NILSE96]. Thus, since the early days of computer programming field, many 

programming languages have been used to develop real-time applications. These languages 

support the expression of timing constraints and deterministic behavior in at least one of three 

different ways: 

 Eliminating constructs with indeterminate execution times, 

 Extending existing languages, or 

 Being constructed jointly with an operating system. 

The most important requirement for real-time programming languages is the guarantee 

of predictable, reliable and timely operation. For this purpose, every software activity must be 
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expressible in the language through time-bounded constructs; hence, its execution timing 

constraints can be analyzable. In addition, a real-time language should be reliable and robust, 

what implies in strong typing mechanisms and modularity. Modularity also eases a 

“programming-in-the-large” approach, in view of the fact that many real-time systems are 

large systems used in military and finance domains. Process definition and synchronization, 

interfaces to access hardware, interrupt handling mechanisms and error handling facility are 

also desirable features for real-time languages [STO92]. 

Assembly, procedural and object-oriented languages are the most common general-

purposed languages used for developing real-time systems. Despite of the lacking of most the 

high-level language features (such as portability, modularity and high-level abstractions), 

assembly language provides direct access to hardware and an economic execution. Procedural 

languages, such as C and FORTRAN, BASIC, Ada and Modula extensions, offer desirable 

properties of real-time software, like versatile parameter passing mechanisms, dynamic 

memory allocation, strong typing, abstract data typing, exception handling and modularity. 

C++ and real-time extensions for Java are examples of object-oriented languages used in real-

time development, which benefits from some procedural languages advantages and adds 

higher level programming abstractions. Even though these abstractions increase developers‟ 

efficiency and code reuse, mechanisms underlying them may introduce unpredictability and 

inefficiency into real-time systems [LAP06]. Besides real-time extensions for general-

purposed languages, many highly-specialized or research-only languages for real-time 

applications were also created along the last 40 years. These include Eiffel, Pearl, LUSTRE, 

MACH, MARUTI and ESTEREEL, among others [SCHW95, LAP06].  

2.2.2 Java versus Real-Time Systems 

This section presents a brief overview of the Java technology. In the first subsection, 

we introduce Java and its main features. Then, in a second subsection, we show why it is 

standard form is not suitable for real-time applications. 

2.2.2.1 An Overview of Java 

Java technology was designed by Sun Microsystems in 1995 and consists of the Java 

language definition, a definition of the standard library and the definition of an intermediate 

instruction set, along with an accompanying execution environment. Originally, Java was 

created to facilitate the development of networked devices small embedded systems, but due 

to its portable and flexible capabilities, Sun released it to the general public for Internet and 
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high-level interface applications development. Though the syntax of the Java‟s programming 

language is based on C/C++, Java was designed to eliminate some error-prone features of 

these languages, such as pointer arithmetic, unions, goto statements and multiple inheritance, 

improving developers productivity. 

Java introduced a different execution model. First, Java programs are translated into a 

machine-independent byte-code representation. Then, this byte-code can run in any device 

which implements the Java Virtual Machine (JVM), a software system which understands and 

executes byte-code instructions (See figure 2). In the first implementations of the Java virtual 

machine, those instructions were interpreted, but for performance issues other translation 

techniques, including ahead-of-time and just-in-time (JIT) compilation, were included into 

later implementations. 

 

Figure 2. Platform independence in Java 

Besides platform independence, other remarkable features in Java are: 

 It is simple and easy to learn and to use; 

 Robustness due to automatic garbage collection, type safety, byte-code analysis and 

run-time checks; 

 Built-in multithread and multitask support; 

 Easy access to remote sources; 

 And lazy class loading (classes are loaded dynamically are they are needed). 
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2.2.2.2 Java Issues in Real-Time Applications 

Java has several features which would be desirable for developing real-time 

applications; however, in its standard form, Java is not well-suited for it [NILSS02]. Some of 

the reasons why Java is inadequate for the development of real-time software are: 

 Memory footprint: Standard JVMs needs at least tens of megabytes in memory, what 

is not adequate for embedded systems. Solutions addressing this issue are, for 

example, the Java 2 Micro Edition [J2ME], IVM [IVE02] and JVM hardware 

implementations [IAB00, HAR01]. The formers are significantly limited compared to 

the standard API, while the latter is a platform-specific solution. 

 Performance and execution model: Byte-code interpretation reduces the overall 

performance of Java applications [KAZ00]. In order to solve this issue, JIT compilers 

were designed to compile Java byte-code into native code at run-time. However, 

running a compiler at runtime, besides requiring a considerable amount of memory, 

raises scheduling issues, what implies in latency and lack of determinism.  

 Scheduling: Java defines a very loose behavior of threads and scheduling. Threads 

with higher priority are executed in preference to threads with lower priority. 

However, low priority threads can preempt high priority threads. Although this 

protects from starvation in general purpose applications, it violates the precedence 

property required for real-time applications, and may introduce indeterminism in 

execution time.  In addition, the wakeup of a single thread (through the method 

notify()) is not precisely defined. 

 Synchronization: Synchronized code uses monitors to protect critical code sections 

from multiple simultaneous accesses. Even though Java implements mutual exclusion, 

it does not prevent unbounded priority inversions, an unacceptable condition for real-

time systems. 

 Garbage Collection: Automatic memory management simplifies programming and 

avoids programming errors. At the same time, traditional garbage collection implies in 

pauses at indeterminate times impose delays of unbounded duration. 

 Worst Case Execution Time: Key concepts for object-oriented programming support 

in Java are method overriding and the use of interfaces for multiple inheritance. 
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However it usually requires a search on the class hierarchy or dynamic selection of 

functions at runtime, what complicates WCET analysis. 

 Dynamic Class Loading: In order to dynamically load classes, they must be resolved 

and verified. This is a complex and memory-consuming task, which may introduce an 

unforeseen delay in execution time depending on factors as the speed of the medium 

and the classes‟ size. 

As we may see, standard Java implementations do not provide mechanisms for the 

reliable and deterministic execution of real-time applications. However, most of these issues 

do not come from the language, but from the Java execution environment. 

2.2.3 Real-time Solutions for Java 

The advantages of Java over languages traditionally used to design real-time systems 

resulted in several efforts in late 1990s in extending the language. We present in the next 

sections the main solutions developed to make Java more appropriate for real-time 

applications. 

2.2.3.1 Early Work in Real-Time Java 

The simplest extension proposed for supporting real-time applications in Java was 

Real-Time Java Threads [MIY97], in 1997. However, this support was very rudimentary. A 

more sophisticated and complete solution was proposed by Nilsen [NILSE98] providing both 

high-level abstractions for real-time systems and low-level abstractions for hardware access, 

the Portable Executive for Reliable Control (PERC). Another approach, based on CSP 

Algebra, Occam2 and the Transputer microprocessor, was proposed by Hilderink [HIL98]. 

Other attempts include hardware implementations of the JVM [BACK98] or integrating it to 

the operating system [MCGH98]. 

Unfortunately, much of this work was fragmented and did not have a clear direction. 

Thus, the US National Institute of Standards and Technology (NIST) reunited several 

companies to general guidelines and requirements for real-time extensions to Java. The NIST 

requirements resulted in two initiatives: The Real-Time Specification for Java (RTSJ) 

[BOL00], backed by Sun and IBM; and the Real-Time Core Extension for the Java Platform 

(RT Core) [JCO00], backed by the J Consortium
3
, based on the PERC system. However, 

                                                

3 Supported by groups such as Microsoft, HP, Siemens and Newmonics. 
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contrarily to the RTSJ, the RT Core proposed modifications to the Java language syntax, 

which was not well-accepted by the Java community.  

2.2.3.2 The Real-Time Specification for Java 

The Real-Time Specification for Java (RTSJ) defines real-time behavior in the Java 

Platform by means of a collection of classes, constraints to the behavior of the virtual 

machine, an API and additional semantics. Seven areas were identified as requiring 

enhancements to enable the creation, analysis, execution and management of real-time tasks: 

 Thread Scheduling and Dispatching: RTSJ introduces the concept of schedulable 

objects (real-time threads, asynchronous event handlers and their subclasses), objects 

which the base scheduler manages. The RTSJ‟s base scheduler is priority-based, 

preemptive, with at least 28 unique priorities
4
, run-to-block

5
 and can perform 

feasibility analysis for a schedule. Schedulable objects have parameters classes bound 

to it, representing resource-demand (scheduling, memory or release) characteristics.  

 Memory Management: RTSJ provides extensions to the garbage collected model 

memory, supporting memory management without interfering with real-time code 

deterministic behavior. It allows the allocation of short and long-lived objects in 

memory areas that are not garbage collected. Besides the traditional heap memory, 

where objects lifetime is defined by their visibility, and the JVM stack, which 

allocates a private stack for each created thread, three memory areas were included to 

the Java programming model: scoped memory, which manages objects short-lived 

objects whose lifetime is defined by a scope; physical memory, allowing objects to be 

allocated in a specific physical memory region; and immortal memory, an area 

containing objects which may be referenced by any schedulable object. Scoped and 

Immortal memories are not garbage-collected. 

 Synchronization and Resource Sharing: RTSJ requires priority inversion avoidance 

algorithms for implementing the Java keyword synchronized
6
.  In addition, it 

                                                

4 In addition to the values 1 to 10 defined by conventional Java Threads, but with higher execution 

eligibility. 
5 It means that a schedulable object in execution will continue running until it either blocks or is preempted 

by a higher-priority schedulable object 
6 Commonly used to share serialized resources 
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introduces wait-free queues to allow the communication between schedulable objects 

and objects subject to garbage-collection. 

 Asynchronous Event Handling: To allow a closer interaction with the real-world and 

its inherent asynchrony, RTSJ allows the creation of asynchronous events as well as 

handlers for these events. These handlers are scheduled and dispatched, just like 

threads. Timer class represents events whose occurrence is time-driven and is a 

specific form of asynchronous events. These timers are based on Clock objects, which 

represent the system clocks, as uniformly and accurately as allowed by the underlying 

hardware.  

 Asynchronous Transfer of Control (ATC): RTSJ allows the asynchronous transfer 

of the current point of logic execution. This mechanism also allows the execution of 

iterative algorithms, which refines gradually the result precision, transmitting the 

results at the expiration of a precise time bound. 

 Asynchronous Real-time Thread Termination: RTSJ provides a safe mechanism 

for abnormally stopping threads and transferring control, contrarily to the deprecated 

stop and destroy methods in class Thread, which could leave shared objects in 

inconsistent states or lead to deadlocks. 

 Physical Memory Access: RTSJ defines classes allowing to directly byte-level access 

the physical memory and create objects in physical memory. In addition, it provides 

manager classes to appropriately access and create objects with specific 

characteristics. 

New exceptions were also included, along with new treatments surrounding ATC and 

memory allocation. The RTSJ implementations are based on its version 1.0.2. Besides the 

requirements defined by the RTSJ itself, additional requirements for implementations were 

defined by the Mackinac team [BOL05]. Nowadays, a new JSR
7
 was created addressing the 

RTSJ version 1.1, the JSR 282. 

2.2.3.3 Implementations of the RTSJ 

Since the official release of the RTSJ in 2002, several implementations of the 

specification were already developed. We list some them in Table 1.  

                                                

7 Java Specification Request, documents proposing technologies for additions to the Java platform. 



27 

 

Implementation Developer Certification 
TCK JSR-0018 

Implementation 
type 

Platform compatibility Java 
Compatibility 

RTSJ-RI9 Timesys Yes Reference RTLinux10/x86 JRE 6.0 

Java Real-Time 
System11 

Sun 
Microsystems/ 

Oracle 

Yes Commercial Solaris, RTLinux/x86; 
Solaris/SPARC 

JRE 5.0 

Websphere  Real-
Time12 

IBM Yes Commercial RTLinux/x86 JRE 6.0 

Real-Time JRE13 Apogee Yes Commercial RTLinux /x86 JRE 5.0/J2ME 

Jamaïca Virtual 
Machine14 

Aicas No Commercial RTLinux, SunOS, 
Solaris/x86 

JRE 5.0 

J-Rate (Java Real-
Time Extension)15 

University of 
California 

No Open Source 
(GPL) 

RTLinux/x86, PowerPC JRE 1.4-5.0 

OVM (Open Virtual 
Machine)16 

Purdue 
University 

No Open Source 
(BSD) 

RTLinux/x86, PowerPC; 
OS X/PowerPC 

JRE 1.4-5.0 

Table 1. RTSJ implementations 

2.2.3.4 Other Real-Time Solutions for Java 

Not all real-time solutions for Java are RTSJ-based. Indeed, some solutions claim that 

RTSJ‟s region-based allocation mechanism takes away the simplicity of the base Java, being 

error-prone and incurring non-trivial runtime overheads due to dynamic memory access 

checks [PIZ08]. In addition, it is not well suitable for hard real-time applications due to 

performance issues [PIZ10]. In order to overcome those issues, many independent solutions 

were already proposed. We list some of them in the next paragraphs. 

 Oracle JRockit Real Time
17

 provides a Java-based soft real-time computing 

infrastructure. It contains a deterministic garbage collector, which ensures short pause 

times. JRockit Real Time supports Java applications running on Java SE 6 and J2SE 

5.0 runtime environments. Oracle WebLogic Real-Time is a version of Oracle JRockit 

Real-Time offered with Oracle WebLogic Suite. Supported platforms include 

commercial distributions of Linux (Oracle Enterprise, Novell SUSE, Red Hat 

                                                

8 RTSJ was registered at JCP as JSR-000001. TCK stands for Technology Compatibility Kit, a suit of tests 

to verify if an implementation is compliant to a given JSR. 
9 http://www.timesys.com/java/. Although classes can be compiled by a JDK 6.0 compiler, they must 

remain 1.3-compatibles. This implementation is based on J2ME, thus some J2SE classes are not present.  
10 RTLinux is a set of adaptations made in Linux kernels for supporting real-time. Numerous commercial 

and free versions are available. 
11 http://java.sun.com/javase/technologies/realtime/index.jsp 
12 http://www-01.ibm.com/software/webservers/realtime/ 
13 http://www.apogee.com/products/rtjre. This solution is based on IBM‟s J9 Virtual Machine. 
14 http://www.aicas.com/jamaica.html. Generated classes must be 1.4-compatibles. 
15 http://jrate.sourceforge.net/. This is a GCJ-based solution, so there is not an exact correspondence with 

a J2SE version. 
16 http://www.cs.purdue.edu/homes/jv/soft/ovm/index.html. Actually, OVM is a framework for generating 

customizable virtual machines. This framework is also based on GCJ Compiler. 
17 http://www.oracle.com/technology/products/jrockit/jrrt/index.html 

http://www.timesys.com/java/
http://java.sun.com/javase/technologies/realtime/index.jsp
http://www-01.ibm.com/software/webservers/realtime/
http://www.apogee.com/products/rtjre
http://www.aicas.com/jamaica.html
http://jrate.sourceforge.net/
http://www.cs.purdue.edu/homes/jv/soft/ovm/index.html
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Enterprise and Red Flag AS) and Microsoft Windows over x86 architectures, and Sun 

Solaris over SPARC architectures. 

 SimpleRTJ
18

 is an implementation of the Java virtual machine optimized to run on 

devices with limited amount of memory and without RTOS support. It requires only 

18-24 KB of memory to run. Despite of its small size, it includes core features like 

multithreading, interfaces, garbage collection and exception handling. SimpleRTJ uses 

pre-linked applications and classes, which reduces start-up times and delays to resolve 

symbolic references. It was designed to run on 8, 16 and 32 bit microcontrollers. 

 Fiji VM
19

 [PIZ10] is a virtual machine implementation which compiles Java 1.6 byte-

code ahead-of-time directly to ANSI C. This virtual machine consists of a compiler, a 

runtime library and open-source class libraries. The runtime system contains an on-

the-fly concurrent real-time garbage collector. As well as in RTSJ-based 

implementations, region-based memory allocation is also supported. 

 Despite the fact that Aonix PERC
20

 is based on RTSJ libraries, it defines its own class 

hierarchy. PERC integrates a static analysis system to verify scope safety and resource 

requirements for hard real-time systems. 

 JOP [SCHO07] is a hardware implementation for the Java virtual machine. In 

introduces a processor architecture which simplifies WCET analysis. Java byte-code is 

translated to a stack-based instruction set (called microcode) which can be executed in 

a 3-stage pipeline. Byte-code translation and interrupt handling are also pipelined, 

increasing time predictability. 

 Juice [COR03] is an interpreted J2ME virtual machine designed for real-time 

embedded systems running on the NUXI [SAN02] operating systems. In Juice, heap 

memory is divided into pre-fixed size blocks. Free memory blocks are organized into a 

linked list, while blocks allocated by Java objects are connected through a hierarchical 

structure. Thus, object allocation and deallocation depends only on the object size. 

Memory is garbage-collected only when new objects have to be allocated, and the 

collector‟s execution time is proportional to the size of the object to be allocated. 

                                                

18 http://www.rtjcom.com/  
19 http://www.fiji-systems.com/ 
20 http://www.aonix.com/perc.html 

http://www.rtjcom.com/home.html
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As we have seen in this section, real-time software requires reliability and 

predictability. However, many current and future real-time applications are dynamic, that is, 

external conditions may require modifications and adaptations at runtime. In the next section, 

we present an overview of dynamic software adaptation. 

2.3 Dynamic Software Adaptation  

Complexity issues have been present in computer science since its early days. The first 

programming complexity problems were solved through the use of data structures, the 

development of algorithms and scope separation. Most of what we know now as software 

engineering nowadays comes as result of this problem. The first works about the importance 

of structuring software systems were led by Dijkstra [DIJ68] and Parnas [PAR72], in the late 

1960s. These were the basis for a software engineering discipline called Software 

Architecture. Software architecture studies ways of structuring software systems, by 

representing its software components, their interconnections and the rules concerning their 

design and evolution over time [GAR93]. Many aspects of a system can be addressed in its 

architectural description, such as its properties, functional and non-functional requirements 

and different configurations. 

Dynamic software architectures are architectures in which the composition of 

interacting components changes during system‟s execution. This behavior is known as 

runtime evolution or adaptation [TAY09]. Advances in this field have been boosted by the 

emergence of ubiquitous computing [WEIZ93] and the growing demand for autonomic 

computing [KEP03]. The main motivations for runtime adaptive software are the risks, costs 

and inconveniences presented by the downtime of software-intensive systems of environment 

changes [ORE08]. 

In this section, we explore concepts and techniques used for dynamic software 

adaptation. The subsection 2.3.1 discusses dynamic software architectures. Subsection 2.3.2 

introduces definitions for software adaptation. In the subsection 2.3.3, we introduce dynamic 

adaptive systems and list some enabling technologies for designing them. Subsection 2.3.4 

lists some adaptive frameworks. Finally, we present solutions for real-time adaptive software 

in the subsection 2.3.5. 

2.3.1 Dynamic Software Architectures 

Structuring systems as interacting components is the result of years of research in 

software engineering and one of the solutions proposed in order to deal with scalability, 
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evolution and complexity issues in software. Jointly with compositional techniques, it eases 

the system‟s design, analysis and construction process, by providing a higher level of 

abstraction. 

Dynamic software modification is a useful capability which can be applied in many 

domain applications. An example is dynamic software update, in which the application is able 

to update itself to fix bugs and add new features without requiring a stop and a restart. 

Nonstop and critical systems, such as air-traffic control systems, enterprise and financial 

applications, which must provide continuous service, are examples of applications in which 

dynamic update is required [MAG96].  

However, this flexibility has a cost: safety. Although we can perform modifications 

which were not planned during the design phase, we cannot anticipate the effects of a 

dynamic modification. It can affect predictability, which is inadmissible for safety-critical 

systems; it can download modules and require more space on disk, unacceptable for 

constrained and embedded systems; it can add unsafe modules, which can make the whole 

platform crash; or it can bring the application to a wrong state after applying changes. Figure 

3 shows a dynamic software architecture in which a runtime modification was performed. 

Generally, even though a system architecture may look static at compile time, runtime 

updates may imply in modified and additional modules.  

 

Figure 3. Dynamic software evolution 

Transparency is an important property for software adaptation frameworks. It 

decreases the burden on the developers, which do not have to anticipate the whole set of 

possible evolutions of a software system. In order to do that, frameworks must perform every 
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necessary modification in the binary code, injecting code or intercepting calls. We present in 

the next subsections concepts and approaches used by these dynamic adaptive frameworks. 

2.3.2 Definitions and Concepts 

According to the standard glossary of software engineering systems [IEE90], 

adaptability is defined as “the ease with which a system or component can be modified for 

use in applications or environments other than those for which it was designed”. Adaptability 

differs from adaptiveness in that the first defines the ability of the software to be 

reconfigured, while the second designates the ability of the software to reconfigure itself 

[AKK07]. 

Two approaches are generally used to implement software adaptation: parametric 

adaptation, in which system variables are modified in order to change system behavior; and 

compositional adaptation, in which the system components are added or replaced to better 

adapt a program to its environment. Parametric adaptation allows tuning application 

parameters, but it offers a limited adaptation mechanism, since it is not possible to add 

behaviors in the software system. In addition, compositional adaption permits an application 

to be recomposed dynamically during execution. This dynamic recomposition is called 

dynamic (or runtime) adaptation, which is different from static (or build time) adaptation, 

where the modifications are made before the system is running (e.g., in the source code or in 

the requirements).  

Other possible classifications are manual/automatic adaptations, based on the way in 

which the adaptation is managed, and functional/technical adaptations, based on the 

properties that are going to be modified [CAN06].  

2.3.3 Approaches for Dynamic Software Adaptation 

We call dynamic compositional adaptive software the software which is able to adapt 

itself and its components at run time to handle resource variability and other operational 

environment changes. Most approaches implementing dynamic compositional adaptation are 

based on dynamically linking and unlinking components or indirectly intercepting and 

redirecting interactions among software entities [FOX09]. Various techniques may be used to 

achieve this, such as, manipulating function pointers, aspect weaving, proxies or middleware 

interception [MCK04]. In the next subsections we list some of the approaches which allow 

designing and constructing dynamic adaptive software. 



32 

 

2.3.3.1 Separation of Concerns 

Separation of concerns is a software engineering principle which emphasizes the 

separation of the application logic from crosscutting concerns (such as quality of service, 

synchronization, security and fault tolerance) at conceptual and implementation levels. It 

allows for simplifying development and maintenance, making software easier to be reused 

[HUR95]. 

Nowadays, one of the most used approaches for separating concerns is Aspect-

Oriented Programming (AOP). This programming paradigm is based on an entity called 

aspect. An aspect is a technical consideration from a crosscutting concern in an application. 

Even though AOP is language-independent, it requires a special compiler, called aspect 

weaver. Summarizing, the weaver can insert aspect code in specific code locations, known as 

join points. Aspects code may contain advices
21

 and intertype declarations
22

. In order to 

select join points to insert aspects code, we create point cuts. 

 

Figure 4. Aspect Weaving 

Aspect weaving can be performed at run time (dynamic) as well as at compile time 

(static), even though static strategy is more popular. 

2.3.3.2 Computational Reflection 

Computational reflection is a programming language technique which allows a system 

to keep information about itself (introspection) and use this information to adapt its behavior 

(intercession). Based on what can be modified, we can distinguish two types of reflection: 

structural and behavioral (or computational) reflection. In the former, the system structure can 

be dynamically modified, while in the latter only the system computational semantics can be 

modified [MAE87]. 

                                                

21 A piece of code that can be activated and inserted into system join points 
22 Used to add members in a module 
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Figure 5. Meta-object protocol for computational reflection 

Most runtime reflective systems are based on Meta-Object Protocols (MOP). These 

protocols specify the way a base-level application
23

 may access its meta-level
24

, in order to 

dynamically adapt its structure and behavior. 

Some programming languages, such as Common Lisp Object System (CLOS) and 

Python, have native reflection mechanisms. 

2.3.3.3 Dynamic Service-Oriented Architectures  

Service-oriented architecture (SOA) is an architectural style and a programming model 

based on the service concept. The main principles in SOA are loose coupling, abstraction, 

reusability and composition. A service is a software unit whose functionalities and properties 

are declaratively described in a service descriptor. Services can be composed and orchestrated 

to create more complex services. Lazy binding and encapsulation mechanisms allow services 

to have a loose coupling between the implementation and its interface [PAP03].  

SOAs provide a framework for guiding the design, development, integration and reuse 

of applications. Figure 7a shows the interaction among the different actors in SOAs. Service 

providers register the description of its services in a service register. Service consumers query 

the service register to discover and select services. Then, after negotiating and according 

service usage terms, the service consumer is bound to the service provider. Service certifiers 

can be used to monitor if both parts respect the accords. 

                                                

23 Application expressed by a programming language 
24 The computational object model implementation at the execution environment 
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Figure 6. a) Publish-find-bind service interaction pattern b) Service update and service publish in DSOA c) 

Service removal in DSOA 

Dynamic SOA (D-SOA) adds the dynamism to SOA. This dynamism can be depicted 

in two different concepts: dynamic availability [CER04a], which refers to the ability of the 

service to be available or unavailable at any moment; and dynamic properties modification, 

which designates the fact that service properties (thus, service description) can be modified at 

run time. Dynamic availability allows systems to evolve without downtime and dynamic 

properties modification may be useful in dynamic context adaptation or negotiation. Figures 

7b and 7c show respectively the dynamic service publish/update and removal. In both cases, 

the service consumer must be notified of the context changes [RED02]. 

2.3.3.4 Component-Based Design 

Component-based design uses components as the underlying software abstraction. 

Software components are software units, which are composed in order to build a complete 

system, with contractually specified interfaces and explicit context dependencies. These units 

can be independently developed and deployed. Composition can be static or dynamic, 

depending on when the developer is able to add, remove or reconfigure components (compile 

time or run time, respectively). Dynamic adaptation can be performed using late binding 

mechanisms, which allows coupling components at runtime through well-defined interfaces. 

This architectural style also promotes software reuse, reduces production cost (because 

software systems are built from existing code) and shortens time to market [CLE95]. 
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The foundation of a component-based methodology lies on its software component 

model, which defines what components are, how they can be constructed, assembled, 

deployed, etc. Examples of component models are Architecture Description Languages 

(ADL), Web services and JavaBeans [LAU07]. 

 

Figure 7. Common representation of a component 

Even though SOA and component-based are main focused in different actors (while 

the component-oriented approach focus on the provider‟s view, easing the deployment of new 

functionalities, SOA focuses on the consumer‟s view, to supply functions to consumers which 

do not care about service implementation), SOA is considered as an evolution of component-

based design, introducing abstract business model concepts such as contract, service provider 

and service consumer. In addition, SOA introduces dynamism and substitutability into static 

component-based design. Thus, both approaches are often combined in service-oriented 

component models [ROU08].  

2.3.3.5 Other Factors 

Many other approaches are also used to provide dynamic software adaptation. Many 

of them are based on middleware - layers of services separating applications from operating 

systems and network protocols. Most adaptive middleware works by intercepting and 

modifying messages. 

Other technologies used to adapt software architectures at run-time are P2P
25

, software 

design patterns, agent-oriented programming and generative programming [MCK04]. 

2.3.4 Dynamic Adaptive Frameworks 

In the following paragraphs, we list some frameworks with dynamic adaptive features 

[FOX09]. This is far from being an exhaustive list; there are many other frameworks that are 

not listed here. Our selection was based on choosing frameworks which present the 

characteristics outlined in the last sections. 

                                                

25 Peer-to-peer, a distributed network architecture where participants make a portion of their resources 

directly available to other participants, without central coordination. 
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Intense research has been developed along the last years in the component models 

domain. Among the works in dynamic adaptive frameworks are based in component models. 

One of the most important component models in the literature is the CORBA Component 

Model (CCM) [OMG], which an OMG extension to the specification CORBA 2.0, 

incorporating ideas from component-based development into CORBA
26

. CCM components 

are abstractions for dynamically loadable packages containing CORBA interfaces which can 

be easily linked together. Components can be created, assembled and deployed by means of 

an extension to CORBA‟s Interface Definition Language. At runtime, component instances 

are managed and created by containers. Components can include facets (provided interfaces 

for use by other components), receptacles (required interfaces from other components), event 

source (logical data channel on which components publish events) and event sinks (logical 

channel for event consuming). Other component models commonly referenced are Fractal 

[BRUNE02b], a hierarchically-structured component model, and Koala [OMM00], a 

component model developed by Philips Research mainly used to develop electronic products 

software. Both use ADLs in order to specify the software high-level structure. While Fractal 

supports dynamic architectural reconfiguration by means of computational reflection, Koala is 

restricted to switching between statically-defined components.  

Recent component models introduce new features in order to provide more flexibility. 

For instance, iPOJO [ESC07] is a runtime service-oriented component model which can be 

used to develop applications over the OSGi service platform. iPOJO injects POJOs
27

 at 

runtime, through the management of service providing and dependencies. iPOJO provides 

component containers with manage all service interaction and allows adding non-functional 

properties, such as persistency, security and autonomic management. Component 

dependencies and non-functional properties are handled by handlers, which are specified in 

the component type metadata and are plugged on the component instance at runtime. iPOJO 

also manages the lifecycle of the instances, which are considered as valid if all its plugged 

handlers are valid, or invalid otherwise. Similarly, Mobility and Adaption Enabling 

Middleware (MADAM) [GEI07] is a component model which has incorporated special 

features for adaptation. One important concept for this framework is the realization plan, a 

composition plan which contains combination of components specified by the designer. 

                                                

26 Common Object Request Broker Architecture, software architecture to develop components or ORBs. 
27 Plain Old Java Object, ordinary Java objects 
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MADAM provides an adaptation manager and a middleware framework for runtime 

adaptation.  

With regard to separation of concerns, AspectJ [KIC01] is the most popular 

implementation of AOP concepts for Java. It extends Java language by adding constructions 

to create and model aspects. AspectJ has features to influence the system behavior at runtime 

by means of its dynamic join point model. Code can be inserted at method calls, method call 

reception and method execution, field access, exception handler invocation and object or class 

initialization. In addition, AspectJ can statically add new members to the class. 

Without a doubt, Web Services [PAP03] were the responsible for popularizing the 

service-oriented approach. They allow the interoperable machine-to-machine communication 

over a network. A web service is a service, identified by a URI
28

 whose service description 

(which is made using WSDL
29

, a XML
30

-based language) and transport (services interact by 

means of SOAP
31

 calls carrying XML data) is performed using open Internet standards. 

Service discovery uses a UDDI
32

 protocol to locate candidate services and their properties. 

Due to the interoperability provided by Web services, the latter have been used to implement 

cross-enterprise transactions and message flows. Even though web services enable dynamic 

software architectures, it does not allow self management. Another adaptive framework which 

uses the service-oriented approach is Jini [ARN99], a service platform developed by Sun 

Microsystems which provides a federated infrastructure for deploying services dynamically in 

a network. Services are defined by Java interfaces or classes. They must be published in 

registries, which actually are search services. When entering a Jini architecture, service 

providers and consumers broadcast an announcement, which is received by these search 

services and answered, in order to make the new member to know the registries. Service 

consumers are notified about the availability of the services they are using. Once registries are 

not entities but services, there are no registry delegation mechanisms. 

DynamicTAO [SCHM02] presents an approach different from the ones which were 

cited in this chapter. It emerged of an object-oriented approach. It is an extension to TAO 

                                                

28 Uniform Resource Identifier 
29 Web Services Description Language 
30 Extensible Markup Language 
31 Simple Object Access Protocol 
32 Universal Description, Discovery and Integration 
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(“The ACE ORB
33

”), a standard CORBA Object Request Broker. ORB components can be 

remotely linked, reconfigured and replaced and code can be uploaded to substitute a 

component implementation. TAO was extended by means of reflective middleware 

techniques. 

2.3.5 Real-time Dynamic Adaptive Systems 

As said before, the correctness of real-time systems is related to real world timing 

constraints. That is because real-time systems usually interact with entities in the real world. 

However, the real world is extremely dynamic. Real world entities appear and disappear, 

combine and separate. Thus, real-time software entities must also be capable of adapting itself 

to these changes, which may not be possible to specify during the system design. At the same 

time, software must ensure predictable real-time behavior under both normal and abnormal 

operating conditions [BIH92]. Real-time adaptive systems may be used to implement real-

time systems which need flexibility, adaptive systems whose interactions with other software 

entities must meet real-time requirements, or systems which present both characteristics.  

One approach to real-time adaptive systems is the Real-time Service-Oriented 

Architecture (RT-SOA), an extension of SOA which aims to include timing constraints in 

many SOA aspects, such as modeling, composition, orchestration, deployment, policy, 

enforcement and management [TSA06]. The need for RT-SOA comes from enterprises, many 

of whom have already adopted SOA for many of their systems, but cannot do the same for 

their real-time applications due to the lack of strict predictability in current SOA solutions. 

Many research works are dedicated to this subject [TSA06, PAN09, CUC09], but IT 

companies such as IBM, Microsoft and HP are also interested in real-time solutions for 

enterprises. Another useful application for RT-SOA is the support of remote critical care 

[MCGR08]. It is also worth to mention the IRMOS European Project
34

, which investigates on 

the use of real-time technologies and SOAs for networking, computing and storage levels. 

Real-time services are particularly important in contexts where performance 

requirements demands are not only fast, but predictable operations. A RT-SOA framework 

must provide real-time communication infrastructure, consider real-time properties (like 

maximal response time, service capacity and maximal degree of concurrency) in service 

                                                

33 Object Request Broker, middleware software which allows programs to make calls in a program from a 

machine to another via a network 
34 More information at www.irmosproject.eu 
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specifications, provide dynamic service composition, real-time service deployment, real-time 

policy engine and dynamic real-time scheduling for application services and framework 

operations. RT-SOA applications may use Service Level Agreements
35

 to express their goals 

and Quality-of-Service (QoS) constraints. Moreover, the real-time middleware framework 

must be build at the top of a real-time operating system in order to benefit of a fully 

preemptive kernel. 

Another common approach to the development of real-time dynamically adaptive 

applications is the use of component-based design. The most important principle considered 

when building component-based real-time software is the principle of composability, in which 

validated properties (such as timeliness and testability) must not be affected by the system 

integration [KOP98]. So far, many different approaches were used in the component-based 

software engineering literature in order to introduce real-time requirements in component 

models. 

 The Quality Objects (QuO)
36

 framework is a QoS adaptive layer which runs on 

existing middleware such as Java RMI and CORBA and supports the specification and 

the implementation of QoS requirements, system elements to measure and provide 

QoS and the behavior for dynamic adaptation of QoS. QuO allows the developer to 

use aspect-oriented software development techniques to separate QoS concerns from 

application logic. Even though it is possible to specify runtime variations of QoS, we 

cannot compose and configure complex adaptive behaviors. In addition, this 

framework cannot be deployed using standard configuration tools and description 

languages. In order to bypass these limitations, Sharma et al [SHA04] proposed the 

use of components, called qoskets components, to encapsulate and re-use adaptive 

QoS systemic behaviors.  

 Kramer and Magee described in [KRA90] a process called freezing of application 

components, in which the whole component activity is stopped. Wermelinger in 

[WER97] improved the algorithm by blocking only involved components. This way, 

interruption time is minimized, because only affected connectors must be blocked. 

Rasche and Polze [RASC05], based on both works, presented a technique for dynamic 

                                                

35 A negotiated agreement between the service customer and the service provider, which defines the level of 

service being delivered [VER99]. SLAs are presented in the chapter 4. 
36 More information in http://quo.bbn.com 
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reconfiguration of component-based real-time software, in which the application is 

blocked during a bounded time and the loading of new components and removal of old 

components is performed before and after the interruption time. 

 Stewart described in [Stewart1997] a dynamically reconfigurable real-time software 

framework by means of port-based objects. However, in order to keep the framework 

simple, the approach assumes that each object correspond to an independent process
37

, 

a very limiting assumption. Processes obtain information through input ports and send 

information through output ports. Processes have no knowledge as to the origin or the 

destiny of the information obtained or sent through these ports. In addition, processes 

have resource ports, which connect to sensors and actuators, via I/O device drivers. 

Object communicate by means of state variables stored in global and local tables. The 

global table is stored in shared memory. 

 Many research works focus on component models for building RTSJ-compliant 

applications [ETI06, PLS08, DVO04, HU07]. Most of them provide higher-level 

abstractions for creating real-time threads and/or for real-time memory management, 

in order to alleviate the development process. However, dynamic adaptation issues are 

only treated by [Plšek2008]. 

 RTComposer, a framework described in [ALU08], is also built atop of RTSJ, but is 

based on formal specification of scheduling constraints with automata. Components 

are scheduled in a flexible way, which may vary according to dynamic conditions, 

such as varying load, platform capabilities and components configuration. Another 

programming environment in Java for creating real-time components is the Exotasks 

project [AUE07], which focus mainly on memory isolation and fast garbage 

collection. 

 MyCCM-HI [BOR09], SOFA-HI [PRO08] and Blue-ArX [WEIC04] are 

component-based frameworks which support dynamism via modes, i.e., applications 

can have many possible architectures that can be switched among each other at well-

defined points and primarily target embedded real-time applications [HOS10]. SOFA-

                                                

37 “An independent process does not need to communicate or synchronize with any other component in the 

system” [Stewart1997] 
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HI is still under development, while MyCCM-HI and BlueArX are ready for use. 

BlueArX is already used by Bosch in the automotive control domain. 

 The Component-Integrated ACE ORB (CIAO) [WAN03] and Cardamom
38

 are 

implementations of the Corba Component Model which supports real-time and other 

QoS aspects. CIAO applies aspect-oriented techniques to decouple QoS aspects from 

application components (separation of concerns) and allows the composition of real-

time behaviors. In its turn, Cardamom addresses safety-critical systems. 

Other techniques include the use of concurrent classloaders [PFE04], agents [ZHA00, 

BRE02a] and function blocks [BRE02b]. 

 

Another framework which is gradually becoming a de-facto standard for developing 

dynamic adaptive software and therefore was chosen to elucidate the concepts presented in 

this work is the OSGi Service Platform, which will be briefly presented in the next section. 

2.4 OSGi Service Platform 

Modularity is the main approach in order to deal with the increasing software 

complexity issues. Among the several benefits enabled by breaking the system under smaller 

and highly cohesive parts are reuse, abstraction, division of labour and ease of maintenance 

[BAR08]. 

Java is currently one of the most popular and used programming languages available. 

We have seen in the first sections of this document that it offers many flexible advantages. 

However, it does not support modularity natively. First of all, its access modifiers do not 

address logical system partitioning. In order to call for code in another package, the latter 

code must be declared as being public, which makes it visible to everyone else. It could be 

avoided by putting the class with the dependency in the same package as the one with the 

required code, but if those classes are logically unrelated, this would impair  the application‟s 

logical structure. Second, Java‟s class path ignores code versions and does not allow for 

explicit dependencies. Classloader manipulation could be used to address this issue, but this is 

error-prone and low level [HAL10].  

                                                

38 http://cardamom.ow2.org/ 
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The whole problem lies in the fact that Java uses Jar files as deployment units. 

Inasmuch as they do not have a corresponding runtime concept, their content is concatenated 

in the class path without the possibility of declaring explicit dependences and without a 

versioning mechanism. This forces developers to merge unrelated code, which implies low 

cohesion. In addition, the information hiding problem generates tightly coupled modules, due 

to the fact that the public modifier allows us to access internal implementation details. 

The OSGi service platform is a module system for Java which adds a middleware 

layer over the platform in an effort to fill this gap and provide additional capabilities. We will 

discuss the approach used by the OSGi service platform in the next subsections. Subsection 

2.4.1 introduces some concepts and definitions in OSGi. The three OSGi framework layers 

(module, lifecycle and service) are presented in subsections 2.4.2, 2.4.3 and 2.4.4 

respectively. In subsection 2.4.5 we list some OSGi implementations. To conclude this 

section, we present works which integrate real-time and OSGi in section 2.4.6. 

2.4.1 Definitions and Concepts 

The OSGi service platform is a Java-based specification defined by the OSGi 

Alliance, a consortium of around forty companies founded in 1999. The role of this group is 

to define new releases and certify the implementations of the specification. The first releases 

of the OSGi specification were oriented to residential gateways. However, nowadays the 

OSGi platform is used in many different domains, like mobile telecommunications, enterprise 

application servers and plug-in-oriented applications. 

The OSGi specification defines a way to create true modules (bundles, in OSGi 

terminology) and to make them interact at runtime. Bundles are actually Jar files with 

metadata specifying their symbolic name, version and dependencies.  

The central idea of OSGi modularization is that each bundle has its own classloader, 

and consequently, its own class path. In order to allow interactions among bundles, OSGi uses 

a mechanism of explicit package imports and exports. Class requests are delegated among 

classloaders based on the dependency relationship between bundles. The matching between 

imported and exported packages is implemented by the OSGi platform. The explicit 

import/export mechanism also allows for package versioning and information hiding (all 

classes are bundle-private by default). In addition, the OSGi platform allows bundles to be 

dynamically installed, updated and uninstalled, without requiring the platform to stop and 
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restart. Besides the deployment mechanisms, the specification defines a Java non-distributed 

service platform, which allows services to be dynamically published and consumed. 

 

Figure 8. OSGi bundles and dependency resolution. 

The OSGi Service Platform specification is divided into two parts: OSGi framework 

and OSGi Standard Services. While the first is the runtime which provides the functionality of 

the OSGi platform, the second defines APIs for common tasks. In turn, the framework is 

divided into three layers: Module Layer, concerned about code sharing and packaging; 

Lifecycle Layer, which focus on the runtime module management; and Service Layer, which 

deals with modules interaction and communication. We will discuss about these layers in the 

next subsections. 

2.4.2 Module Layer 

The module layer is the responsible for the bundle management. As said before, 

bundles are the unit of modularization unit of the OSGi platform, in the form of a JAR file 

with resources and additional metadata on its manifest file. This additional information 

includes human-readable information, bundle identification
39

 and code visibility
40

, which will 

be used to perform bundle dependency resolution (See figure 8). Nonetheless, unlike JAR 

files which are just physical containments for classes, bundles combine both the logical and 

the physical aspects of modularity. 

Each bundle has its own classloader, providing code isolation to the platform. This 

classloader is responsible to load bundle‟s resources and classes and resolving imported 

classes, performing runtime verifications according to visibility rules and ensuring class 

loading happens in a predictable and consistent way. Besides code isolation, the module layer 

                                                

39 Symbolic name, version and manifest version. 
40 Bundle class path, imported and exported packages. 
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provides logical boundary enforcement, version verification, reuse improvement, 

configuration flexibility and configuration verification.  

2.4.3 Lifecycle Layer 

On the top of the Module Layer there is the Lifecycle Layer. It deals with the 

execution time aspects of the modularity provided by the OSGi framework, providing a 

management API and a lifecycle for OSGi bundles. Lifecycle operations defined by this layer 

allow dynamic applications evolution and management by means of changing the 

composition of bundles and interacting with the OSGi platform through their execution 

context. Bundles can be dynamically installed, started, updated, stopped and uninstalled to 

flexibly customize applications. Figure 9 shows a state diagram containing all possible state 

during the lifetime of a bundle. 

 

Figure 9. State diagram representation of OSGi bundle lifecycle [OSG05] 

First of all, the bundle lifecycle starts with its installation, which is performed through 

the install operation. Installation is performed by passing to the platform the URL of the 

bundle JAR file. The bundle then is created in the Installed state. Next, the framework must 

ensure that all the bundle dependencies are satisfied before it can be used. This guarantee is 

represented by the transition from Installed to Resolved
41

. A bundle is in the Resolved state 

can be started when executing the start command, what leads it to the Starting state. The 

framework then looks for the Activator class of the bundle informed on its metadata and 

                                                

41 This transition is usually implicit and made automatically, but it is also possible to do it explicitly. 
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executes its start() method
42

. If the method executes successfully the bundles transitions to 

Active state, else it returns to Resolved. An Active bundle can be stopped by means of 

executing the stop command. It transitions then to the Stopping state, where the method 

stop() in the Activator class of the bundle is executed. To the extent that its dependencies 

were already resolved, the bundle returns to the Resolved state
43

. The framework can be 

forced to resolve bundle dependencies again by executing the refresh or update commands. 

Bundles in the Installed state can be uninstalled by the uninstall command, transitioning to the 

Uninstalled
44,45

. 

The Module and Lifecycle layers have a very close relationship, in that the Lifecycle 

layer controls which bundles are installed into the framework, what influences the bundles 

dependency resolution in the Module layer. 

2.4.4 Service Layer 

The Service layer builds on top of the Lifecycle and Module layers and defines a 

model for providing and consuming services as in SOA. Bundles can publish and discover 

services through the medium of a shared and centralized service catalogue, the OSGi Service 

Registry. This catalogue is accessible through a BundleContext object, which is used by 

OSGi bundles to access the OSGi framework facilities.  

In the OSGi specification, services are POJOs with associated Java interfaces 

(contracts) and meta-information which are published in the OSGi Service Registry. 

Whenever a bundle needs a service, it would use the BundleContext interface to access the 

service catalogue and ask for a given interface. Filtering parameters may also be provided by 

the service consumer under the form of LDAP queries to refine the results. In case that the 

register finds services which match with the interface and the filtering parameters, the registry 

returns a set of ServiceReferences, that is, the information and the indirect reference
46

 for 

                                                

42 This method can be used to provide a bootstrap behavior to a bundle, such as allocating resources and 

registering its services in the OSGi Service Registry. 
43 Stopped bundles have their services automatically removed from the Service Registry, but the stop 

method must contain the code to release all resources taken along the bundle‟s execution. 
44 Since the version 4.2 of the OSGi specification, bundles in the Active state will be automatically stopped, 

transition to the Resolved state and then to the Installed state, before uninstalling it. 
45 The lifecycle API generates as well synchronous and asynchronous notifications at runtime for bundle and 

framework events. 
46 Indirect references are used in order to allow service usage track, laziness support and removal 

notifications. 
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the corresponding services providers. After, consumers use this reference and the 

BundleContext to bind to the object, which represents the actual service implementation. 

On service registration, modification or unregistration, the OSGi framework can send 

events to notify special objects placed on the service requesters, namely service listeners and 

service trackers. Events can be filtered for these objects through LDAP filters. Listeners and 

trackers in a bundle are automatically removed when the latter stops. 

In addition, the OSGi Alliance has specified services which are offered by the 

platform for common performed tasks. They are divided into framework services, which are 

services that are part or direct the operation of the framework, such as Package Admin, 

Permission Admin and URL Handler; System services, which are necessary functions for 

every system, such as the Log Service, Event Admin and Component Runtime; Protocol 

services, which map external protocols to OSGi services, like the HTTP service and the UPnP 

Device Service; and other miscellaneous services, such as Wire Admin and XML Parser. 

2.4.5 OSGi Applications 

Since its first release, many implementations for the OSGi specification have been 

developed. In 2004, the first open sources projects implementing the OSGi specification 

arose. Apache Felix, Eclipse Equinox and Knoplerfish are well-known examples. Currently, 

the OSGi specification is in its fourth release (R4). We list some OSGi implementations in the 

Table 2. 

Implementation Developer Certification R4 License 

Felix 2.047 Apache No Apache License v2.0 

Equinox 3.248 Eclipse Yes Apache License v2.0 

Knoplerfish 2.049 Makewave Yes BSD/Commercial  

mBedded Server (mBS) 6.050 Prosyst Software Yes Eclipse Public License/ Commercial  

OSGi R4 Solution51 Samsung Yes Commercial 

SuperJ Engine Framework52 HitachiSoft Yes Commercial 

Table 2. Implementations of the OSGi R4 Specification 

                                                

47 http://felix.apache.org 
48 http://www.eclipse.org/equinox 
49 http://www.knopflerfish.org / http://www.makewave.com/site.en/products/knopflerfish_pro_osgi.shtml. 

Only the commercial version is R4-Certified  
50 http://www.prosyst.com/index.php/de/html/content/97/Products-OSGi-Implementation. Open source 

version is based on Eclipse Equinox, while commercial version uses Prosyst Framework. 
51 http://www.samsung.com/osgi_patent_pledge/index.htm 
52 http://hitachisoft.jp/products/superj/ 
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 In addition, many enterprises have started adopting OSGi technology in their 

solutions, principally for rich client platform applications. One of the first applications of the 

OSGi technology in the industry was in the Eclipse IDE
53

, under the form of Eclipse plug-ins. 

OSGi implementations were also incorporated to application servers such as JOnAS
54

, 

JBossAS
55

, Oracle/BEA WebLogic Application Servers
56

, Oracle/Sun Glassfish v3
57

 and 

IBM Websphere Application Server
58

 in order to provide a runtime environment for the 

application server‟s modules. IBM has also built Lotus Expeditor
59

, a client middleware that 

enables connection, delivery and management of applications and services, on the OSGi 

framework. Lotus Expeditor is the foundation for other IBM Lotus applications, such as 

Sametime and Notes.  

Ricoh Company Ltd., a Japanese company ranked among the top worldwide with a 

30% percent market share in the United States
60

, is another OSGi platform adopter and has 

included Knoplerfish onto its Embedded Software Architecture device platform
61

 for client 

customization on multi-functional printers. Cisco is another giant company which included 

ProSyst‟s mBS as optional add-on on its Application Extension Platform (AXP)
62

. Cisco AXP 

allows the integration of applications with Cisco‟s Integrated Services Router (ISR). Other 

OSGi applications in the industry include SIP communicators
63

 and the Service Creation 

Environment in Alcatel-Lucent‟s IP Multimedia Subsystem Application Server
64

. 

2.4.6 Real-Time OSGi 

The OSGi Service Platform has been a widely adopted technology for home 

automation, pervasive environments and even business contexts, due to its dynamic service 

component model, flexible remote management and its continuous deployment support. 

                                                

53 http://www.eclipse.org/osgi/ 
54 http://wiki.jonas.ow2.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf 
55 http://jbossosgi.blogspot.com/2009/06/jboss-osgi-runtime-as-integration.html 
56 http://download.oracle.com/docs/cd/E12524_01/doc.1013/e14481/products.htm 
57 http://docs.sun.com/app/docs/doc/820-7688/abppa?a=view 
58 http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/osgi/index.html 
59 http://www.ibm.com/developerworks/lotus/library/expeditor-osgi-services/ 
60 http://www.ricoh-usa.com/about/awards/industryawards.asp 
61 http://www.makewave.com/site.en/showroom/ricoh.shtml 
62 http://www.cisco.com/en/US/prod/collateral/routers/ps9701/data_sheet_c02_459075.html 
63 SIP stands for Session Initiation Protocol, a protocol which is likely to be employed by next generation 

mobile networks. SIP was originally designed for Voice over IP session management, but it became popular in 

other applications. A SIP communication may be found in http://www.sip-communicator.org 
64 http://www.alcatel-lucent.com/wps/DocumentStreamerServlet?LMSG_CABINET=Docs_and_Resource_ 

Ctr&LMSG_CONTENT_FILE=Brochures/5400_IMS_Application_Server_Bro.pdf 
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However, it lacks support for real-time applications, which restricts its application to 

environments where real-time requirements do not have to be guaranteed. Indeed, the 

continuous deployment support allows bundles to be installed, started, stopped and 

uninstalled at anytime, thus the static system configuration assumption is not valid, because 

the system will evolve during the whole application lifecycle. 

The dynamic reconfiguration feature in OSGi is useful in real-time systems for 

allowing the evolution of real-time systems at run-time and for facilitating the maintenance of 

software components. Furthermore, it is also useful for managing resources, ensuring that 

only necessary components are installed in the platform, and minimizing the number of 

components in order to save memory. Another helpful feature for real-time software deployed 

in dangerous environments and for mass production control systems is that OSGi allows 

bundles to be controlled remotely. 

Few works have been dedicated to provisioning real-time support in OSGi. [GUI08] 

presents a descriptive approach for real-time support in the OSGi framework, where the real-

time guarantee is implicitly provided by the container runtime environment. In this approach, 

a real-time contract is specified in the component‟s metadata. A service called Declarative 

Real-time Component Executive is responsible for solving the constraints between real-time 

components at execution time. A hybrid real-time component was used instead of a pure real-

time component model to separate the adaptation logic from the real-time component code: 

while the management parts run in a conventional non-real-time environment, implemented in 

line with the OSGi specification, an independent concurrent process containing the 

predictable code
65

 runs directly in the real-time operating system layer. 

Richardson et al. in [RICHA09] analyzed ways to provide temporal isolation (that is, 

preventing the timing misbehavior in one thread from affecting the timing constraints of other 

independent threads) in the OSGi platform at thread and component levels in order to enable 

the development of component-based RTSJ applications. 

Another proposal for real-time OSGi was presented in [COA07]. It suggests the 

addition of more metadata information to real-time bundles, the isolation of bundles by means 

of real-time partitioning and a layered architecture for the OSGi Service Platform, with three 

                                                

65 The real-time tasks in this approach are written using native code. 
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distinct profiles models which run atop of the OSGi core: OSGi Enterprise, OSGi Soft Real-

Time and OSGi Hard Real-time. 

OSGi is already being used in applications for real-time applications, such as in the 

core of Oracle‟s (formerly BEA) WebLogic Real-Time
66

. This is a low-latency Java-based 

middleware framework for event-driven applications which process event streams in real-

time. The OSGi framework is the base for BEA‟s microService Architecture (mSA), an 

infrastructure based on SOA principles of separation of concern and substitutability. The 

mSA is event-driven and notification services are used to publish and discover components 

and microServices [MAH07]. Aonix and ProSyst have been working in the integration of 

PERC and mBS to establish a reference implementation for prototyping activities in the 

automotive industry. However, due to the fact that their solutions are proprietary, very little 

information about is available. 

Issues raised by the consideration of real-time requirements in the OSGi Service 

Platform will be discussed in the next chapter. 

2.5 Summary 

Real-time systems are software systems whose correctness depends on both logical 

and temporal aspects. The most important properties of real-time systems are their 

predictability and the determinism of their execution time. In the beginning, dedicated 

hardware was created for real-time systems; however, with the advances in computer 

hardware, real-time concerns concentrated on the software layer. Real-time operating systems 

were designed to offer deterministic hardware access time; real-time scheduling algorithms 

were elaborated to avoid deadliness missal; and programming languages were designed or 

extended in order to allow programmers to develop real-time systems with high-level 

abstractions. Java is a programming technology which was extended in order to provide the 

timeliness required by real-time systems. In its standard form, Java presents several 

shortcomings which prevented its use in the design of real-time systems, such as garbage 

collection, dynamic lazy loading and loose scheduling mechanisms. The Real-Time 

Specification for Java is an extension to Java which adds real-time programming constructs 

and constraints to the Java environment. 

                                                

66 http://download-llnw.oracle.com/docs/cd/E13221_01/wlrt/docs20/index.html.  

http://download-llnw.oracle.com/docs/cd/E13221_01/wlrt/docs20/index.html
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Due to its interaction with the real-world, some real-time systems must be dynamically 

adaptive, that is, they must be capable of being modified and updated at runtime. Software 

runtime adaptations may be parametric or compositional; the former means modifications in 

the system variables, while the latter specify addition or removal of system components. 

Many techniques have been developed to support software runtime adaptation, such as aspect-

oriented programming and computational reflection. Service-Oriented Architectures (SOA) 

and Component-Based Software Engineering (CBSE) are another two paradigms for the 

development of dynamic adaptive systems which are becoming very popular. The need to 

separate SOA mechanisms from business or functional code originated the concept of service-

oriented component models, a programming model where components are used to implement 

services. Some works have been developed in the application of dynamic adaptive systems 

techniques in real-time software. Most of them are concentrated on Real-time SOA or in 

Real-time CBSE, but very few try to deal with service-oriented component models. 

In this study, we focus on the conflicts between real-time requirements and the 

dynamism provided by the service-oriented component models. These conflicts are discussed 

in the next chapter. The OSGi service platform, a platform for the dynamic deployment of 

services, is used as the main object of our study. The OSGi framework was chosen due to its 

simple component lifecycle and its growing popularity and adoption into large companies‟ 

solutions, such as Cisco, Ricoh and IBM.  
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3 REAL-TIME CONSTRAINTS IN THE OSGI DYNAMIC 

PLATFORM 

Component-based software engineering and service-oriented architectures are 

becoming widely-adopted effective ways of developing dynamic and flexible software. The 

emergence of these development paradigms lead to the introduction of SOA concepts into 

component models and execution environments. In service-oriented component models, 

applications are decomposed into a collection of interacting services, being capable of 

autonomous runtime adaptation accordingly to the availability of its required services. In 

addition, the component-oriented programming concepts are used to separate the code 

responsible for service management mechanisms from the logical implementation of the 

service functionality. However, it is generally accepted that this dynamicity limits the use of 

service-oriented component models in applications with real-time requirements, where 

predictable behavior is a fundamental issue. The fact that services may become available or 

unavailable at any time during the execution of an application may imply in unbounded 

execution times and unforeseen delays. 

In this chapter, we discuss the issues generated by the consideration of real-time 

requirements in service-oriented component models and instantiate those problems in the 

OSGi framework. Section 3.1 presents the conflicts between real-time requirements and the 

need for dynamic adaptation in service-oriented applications. In section 3.2, we discuss about 

the lack of real-time support in the OSGi framework. To conclude the chapter, a scenario is 

presented to exemplify the problem of dealing with dynamic architectures in real-time 

applications in section 3.3.  



52 

 

3.1 Real-Time Issues in Dynamic Service-Oriented Component 

Models 

Service-oriented component models were originated from the need of explicit support 

for dynamic availability into component models [CER04b]. This property, however, is on the 

basis of the main shortcomings for using service-oriented component models in real-time 

applications. These runtime changes may influence other real-time components and 

compromise the whole application determinism due to the architectural-level modifications. 

Furthermore, it requires component instances to monitor context changes and listen to 

component arrivals or departures, which imposes an extra burden for the real-time system 

developers and additional overhead for the overall system. Departing services may affect 

availability of hard and critical real-time applications. Dynamic availability also influences 

WCET analysis due to the fact that runtime updates of service implementations means a 

change in the WCET of all threads that require this service. On top of that, resource 

reservation, commonly performed in real-time systems to ensure timing requirements, may 

cause overload situations because we cannot predict the number of components present in the 

system
67

. 

Moreover, most of service-oriented component models do not provide temporal 

isolation of components. Dynamic availability may lead the service framework to states 

where there are more installed components than is possible to guarantee resources for. 

Consequently, threads can miss their deadlines and, without temporal isolation, they may 

affect timing requirements of other independent threads and components. In addition, this lack 

of temporal isolation may be a source to carry out a Denial-of-Service attack [NEE93] on 

OSGi, depleting system resources and preventing other components from obtaining their 

guarantees. 

Another important issue when considering real-time requirements in service-oriented 

component models is the lack of a global view of the real-time context. Actually, this problem 

originates from the fact that in the component-based software engineering approach, 

components are developed independently of the system and other components. Thus, without 

a global knowledge of the system, it is hard to guarantee timeliness requirements for each 

component. Global context knowledge is particularly important for priority assignment. By 

                                                

67 Consequently, resource usage cannot be predicted. 
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means of scheduling analysis we can correctly assign priorities within components, but not 

across components. This can cause problems like deadlocks, starvation and missed deadlines, 

aside from possibly incorrect results due to the violation of the precedence among 

computations. 

When considering specific service-oriented platforms, we may find many other issues 

for real-time systems. Next section discuss about the lack of real-time support in the OSGi 

Service Platform. 

3.2 Real-Time Issues in the OSGi Platform 

Besides the problems listed in the precedent section, the OSGi platform itself presents 

issues which may compromise the predictability required by real-time applications.  

First of all, the OSGi service platform was not conceived as a real-time application. So 

far, all of its implementations were written in standard Java and its classes will need to 

interact with real-time components, possibly written in the RTSJ or another real-time Java 

technology. Considering RTSJ specifically, this may lead to potential memory assignment 

issues, due to its rules which prevent dangling memory references, i.e. objects from one 

scoped memory area being referenced in another memory area. Furthermore, the fact that 

RTSJ class objects are stored automatically in the immortal memory and that the developer 

may also explicitly allocate objects into it may complicate class unloading and generate 

memory leaks. 

 

Figure 10. OSGi and RTSJ memory areas 
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Figure 10 shows the illegal memory assignment and memory leak problems. As said 

before, in RTSJ class objects are allocated in immortal memory, jointly with objects explicitly 

allocated by the programmer. In the OSGi specification, each component has its classloader. 

Class objects hold a reference to its class loader object, and class instances hold reference to 

its class object. The memory used by a classloader then is reclaimed when it is no longer 

referenced by a class object. However, even if “Provider A” component is removed, its class 

objects remain because immortal memory in RTSJ never is garbage-collected, leading to a 

memory leak in the OSGi framework. Moreover, “Provider B” has a method which executes 

inside a scoped memory and stores a new object in a static field called x. In RTSJ this leads to 

a memory assignment error, because static fields are also stored in immortal memory and 

immortal memory cannot hold references to scoped memory areas. 

The OSGi framework is based in standard Java. Consequently, it uses ordinary Java 

threads. RTSJ components have real-time priorities, which are higher than the ordinary ones. 

Thus, due to the fact that RTSJ‟s scheduler uses a run-to-block scheduling policy, real-time 

component threads may lockout system threads and keep the administrator from issuing 

commands to the framework. In addition, the framework must ensure the safe termination of 

threads from components which have been uninstalled, currently a developer‟s concern. 

In general, real-time applications have complex and application specific requirements. 

However, the OSGi specification mechanisms for the composition of modules are strongly 

based on the import and export of Java packages resolved by an LDAP filter
68,69

. This 

coupling with Java language prevents us from specifying more complex relationships among 

real-time components. With regard to resource management, there is no specific mechanism 

for global resource management. Thus, due to the fact that resources are globally shared, real-

time developers must find a way to provide global resource budget enforcement for 

components and ensure component real-time contracts. 

In this study we will focus mainly on ways to deal with real-time constraints in 

service-oriented component frameworks such as the OSGi service platform where dynamic 

availability is a present property.  

                                                

68 Lightweight Directory Access Protocol, an application layer protocol for querying and modifying data 

over TCP/IP by means of systems which store, organize and access information in a directory. 
69 The OSGi R4 specification introduced the concept of declarative services to support dynamic 

composition at service level; however it is still tightly coupled with the Java language [GUI08]. 



55 

 

3.3 Scenario: Video monitoring application 

An example of application with soft real-time requirements and which has dynamic 

adaptations on its architecture is a motion detection monitoring system. In this application, the 

motion detection system is connected to several cameras which provide an image frame 

service. The number of cameras to which the motion system is connected is unknown at 

design time; at runtime, once a camera component is installed to the system, it is 

automatically connected to the motion detection module, which will process its frames in 

order to detect human presence. Indeed, cameras in this system have the dynamic availability 

property, being able to appear and disappear at any time. 

An important concern in this system is image processing time. If we assume that 

frames are sent regularly to the motion detection module, image processing time must be 

bounded in order to allow the system to react as soon as possible to a human presence. For 

instance, if we assume that image processing takes 200 ms and cameras send an image frame 

each 1s, we are only able to process four other frames before receiving a new round of image 

frames to process. Excessive retard of their processing could create security issues, such as 

the delayed detection of a thief, hours after his attack. In addition, we must consider that the 

motion detection module thread is a task which is periodically scheduled to run, besides other 

threads which might be running in the system, such as framework system threads. 

Figure 11 illustrates the architecture of the system described above. Four points must 

be observed concerning the impact of dynamic availability in the architecture of the real-time 

system: 

 

Figure 11. Dynamic availability in the motion detection system 
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 Binding to a new camera component: The system underlying mechanisms which 

perform the binding between components may carry an unpredictable delay in the 

image processing time. Moreover, depending on the number of cameras to which the 

motion detection system is connected, processing time may become longer than the 

time attributed to the execution of the motion detection system; 

 Removal of a camera component: In the same way that binding mechanisms, 

unbinding mechanisms may introduce an unpredictable delay in image processing 

time. Furthermore, we must ensure that the removed camera component is not 

currently being used by the motion detection system. 

 Update/reconfiguration of a camera component: Updating a camera component in 

the OSGi platform makes the component stop and return to the Installed state. Then, 

component dependences are resolved and afterwards the component is restarted. The 

duration of this process cannot be predicted. In addition, the new camera component 

may have different properties. Thereby, feasibility analysis which may have been 

performed before are not valid anymore and therefore must be redone. 

 Binding a camera component to another component: Another factor that must be 

considered is the case where the camera component provides the image frame service 

to more than one consumer. Sending the frame to one of the components while the 

other waits may introduce an unpredictable wait time to the former component. 

 

To summarize, besides the real-time issues inherent to the Java Platform, the OSGi 

Service Platform present several other shortcomings which make it inappropriate for 

deploying and developing real-time applications. These shortcomings may have two different 

reasons. The first one is the fact that the OSGi platform was not conceived for being used in 

the context of real-time applications. The other one comes from the dynamism provided by its 

service-oriented component model. Indeed, component dynamic availability feature allows 

components to appear and disappear unexpectedly at runtime. In this study, we will focus on 

the dynamism aspect. 

In the next chapter, we present some propositions which take into account the issues 

listed in this chapter. Our scenario will be revisited in chapter five, for the validation of the 

propositions. 
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4 PROPOSITION 

In the last chapter, we presented the issues raised by the consideration of real-time 

requirements in service-oriented component models and in the OSGi framework. The aim of 

this chapter is to propose solutions to these problems. Some of the solutions proposed target 

service-oriented component models in general; others are more specific to the OSGi platform, 

but they can be generalized and adapted to other dynamic service platforms. This distinction 

comes from the fact that conflicts identified in chapter three come from different levels; while 

the architecture-related issues may be treated in a higher-level of abstraction, problems 

concerning component lifecycle, component model and the platform-specific questions are 

more likely to be treated in the OSGi framework level. 

We propose in this work an architecture freezing policy when the platform is in a real-

time processing state, holding all reconfigurations until the end of execution of the critical 

code. Then, modifications may be performed if they respect an agreement established 

between the service consumer and the service provider. Section 4.1 introduces the 

architectural freezing approach. Section 4.2 presents the extension of a Service Level 

Agreement (SLA) model in order to take account real-time requirements. Finally, the 

implementation of those approaches in the OSGi Service Platform and some other 

modifications in order to make it real-time aware are suggested in the section 4.3. 

4.1 Architectural Freezing 

Since one of the main problems that arises when considering real-time requirements in 

dynamic platforms is due to dynamic availability, that is, the capability of adding, updating 

and removing a component, a solution that comes naturally is to forbid those interactions at 

execution time. This is a radical solution which compromises the dynamicity of the 

applications and disables runtime software evolution, albeit the most frequently used option 
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currently. An ideal solution should be less strict, allowing applications to be modified at run-

time without interfering with its deterministic behavior. 

We consider that in a real-time application every component is able to perform its task 

within the real-time requirements of the application. Thus, the issues lie in the bindings 

between components and how they change across time. Suppose that an application is 

represented by a set of states. Each state corresponds to a given architecture of the application, 

and transitions between states correspond to the arrival, the departure or the update of a 

component in the application during runtime. In consequence, in order to respect the 

application timing constraints, we must define rules for the transitions between states. 

 

Figure 12. Machine state representation of system architectures 

Figure 12 shows a machine state representation of a system‟s architecture. A system in 

the state S1, in the presence of a component which satisfies the component‟s dependencies 

transits to the state S2. In the OSGi platform, for example, this transition is performed 

automatically. If this component is removed, the system returns to the state S1. We assume 

that the service registry in this service platform is unique and centralized, so one architecture 

modification is performed at a time. We present in figure 13 a modification to this machine 

state representation, adding real-time states. Once a system enters a real-time state, no 

modifications are performed until it returns to the corresponding non-real-time state, in order 

to ensure that real-time requirements will be met. We call this approach architecture freezing, 

due to the fact that the system holds all the architecture changes until the system quits the 

critical code area. This solution addresses mainly systems whose most part of the code is non-

real-time but with some critical pieces of code which are executed sporadically. 

In platforms where binding and unbinding management is executed by only one thread 

but several applications may run concurrently, blocking this manager may cause other real-

time applications to violate their timing constraints.  
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Figure 13. Machine state representation of a system architecture with architectural freezing 

In figure 14 we show two pseudocodes for implementing architectural freezing in a 

platform. Figure 14a shows the application side of the architectural freezing, where the 

developer specifies that the platform must enter a real-time state in order to ensure that 

components‟ dynamic behavior will not introduce unpredictability into the real-time code that 

will be executed. Variations of this code could include the duration of the real-time state 

instead of calling a method to quit the real-time state. In this case, when two components 

enter a real-time state at the same time, and component Ca wants to freeze the system 

architecture during ta units of time and component Cb needs to freeze the system architecture 

during tb units of time, the system must keep the architecture frozen during max(ta, tb) in order 

to ensure the real-time behavior of both components, where max(a, b) is a, if a  b, or b 

otherwise. This variation is possible due to the fact that in a real-time state, all the code 

executed is bounded in time. Real-time and non-real-time may designate respectively real-

time and non real-time bundles (deployment units) instead of simple methods or lines of code.  

Figure 14b shows the platform side, more specifically a method which is responsible 

for the architecture modification. Structure may differ among applications, so that the code 

responsible for effectuating modifications in the architecture may be distributed among 

different classes. But in all cases, the platform must verify whether it is in a real-time state or 

not before starting to perform modifications in the architecture of applications which are 

being executed.  
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a) public void toto() { 

   … // non-real-time code 

   Enter-real-time-state(); 

   // Platform in real-time state 

   … // real-time code 

   Leave-real-time-state(); 

  // Platform in normal state 

} 

b) public void method-to-modify-arch(){ 

  if (arrival || departure || update) { 

    while platform.isOnRTState() { 

      // wait until RTState is over 

    } 

  // modify architecture 

  } 

} 

Figure 14. a) Pseudocode for freezing a system architecture b) Pseudocode responsible for freezing the 

system architecture in a platform 

Architectural freezing can be extended to a system of scheduling and reservation of 

architectural modifications in the system. For instance, components may specify at which 

time the architecture must be frozen, being up to the system to make a schedule analysis and 

find an available time slot for performing architecture modifications. 

Next section details the extension of a Service Level Agreement model in order to take 

into account real-time requirements. This agreement will be used by a manager which will 

verify before each architecture reconfiguration if component addition, removal or update do 

not violate the timing constraints of the applications hosted by the OSGi platform. 

4.2 Real-time Dynamic Service Level Agreement  

Service Level Agreement (SLA) [VER99] is a negotiated part of the contract 

established between the service provider and the service consumer which formally defines the 

level of service and the penalties applied when commitments are not met by either party. 

These commitments are specified in order to reach a given quality of service. A SLA contains 

information such as the parts engaged in the agreement, the service provided, service 

utilization time, service availability, service reliability, service utilization price and dates for 

renegotiating the agreement. SLAs are monitored by Service Level Management (SLM) 

modules, which are also responsible for applying the penalty policies in case of non 

commitment of the agreement. In order to avoid equity issues, generally a third part (the 

service certifier) chosen by the service provider and consumer is present to take measures 

periodically in order to verify if the contract clauses are violated. 

 An extension to SLAs in order to handle dynamic availability and service disruption 

is proposed by [TOU08] and [TOU10], the D-SLA. Service disruptions are characterized by 

three additional metadata: maximum service disruption time, maximum accumulated service 

disruption on a sliding time-window and time between two service disruptions. By using past 

activities and recorded histories of service provider contracts, we can also consider service 

providers which are not present in the platform at selection time. We propose in the next 
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subsections an extension to D-SLA in order to take into account real-time requirements, RTD-

SLA.  

4.2.1 RTD-SLA Content 

Besides the content described by [TOU08] and [TOU10], a Real-time Dynamic 

Service Level Agreement contains the following data: 

 Task type: The task type specifies if a given module has periodic, aperiodic or 

sporadic behavior. This information is important for scheduling analysis performed by 

the Service Level Management module before selecting or not a service. For instance, 

depending on how critical the tasks which are being executed are, the manager may 

block the admission of aperiodic or sporadic tasks. 

 Period time: In the context of periodic tasks, service provider and service consumer 

period times are important information for scheduling analysis. For example, the 

manager may detect that it is not possible for a consumer to use a service because their 

periods do not match. 

 Worst Case Execution time: WCET is also important information for scheduling 

analysis. The manager is able to predict if a consumer can execute within its period 

time and if service invocations will not interfere on its timing constraints. If that is the 

case, the manager may act according to the policies specified in the RTD-SLA. 

 Resource Usage: Resource usage information may stop components from blocking 

due to resource waiting times. Thus, for common resources such as CPU and RAM, 

components must specify their usage. In addition the sum of the usage of the services 

which are being consumed should not exceed the budget allowed for the service 

consumer to execute. 

 Priority: In applications where task precedence is important to ensure proper system 

behavior, it might be interesting for the manager to consider the priority of each task 

when admitting new tasks in the system. This parameter may also be used to choose 

between the admission of two components, where only one is possible. 

 Policy: In case of violation of the contract, policies specify what the modules which 

perform the service level management must do. These policies may go from a simple 

substitution of the service to a decrease in the reliability rate in presence of trust 
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indicators. However, all possible actions must have their execution time bounded in 

time. 

Figure 15 presents a UML diagram representing the structure of our RTD-SLA. For 

the sake of simplicity, parameters related to D-SLA (maximum service disruption time, 

maximum accumulated service disruption on a sliding time-window and time between two 

service disruptions) are not represented in the class diagram. 

RTD-SLA
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Figure 15. UML diagram of RTD-SLA 

4.2.2 Service Level Management 

Every dynamic arrival and departure produces changes in the service registry state, the 

module responsible for the service level management must have listeners to these events. We 

may have one or several modules which listen to events corresponding to one specific service, 

all the services or a specific subset of services. With D-SLA, in case of service disruption, the 

service usage is suspended until the return of the service provider. If the disruption time 

exceeds the maximum service disruption time specified in the SLA or if the overall downtime 

goes beyond the maximum accumulated disruption time, actions are taken according to the 

policy specified in the agreement. 

 The SLM also must act in the service selection in order to allow the consumer to only 

bind to providers which will not interfere with its deterministic behavior. In addition, the 

SLM is responsible for maintaining a global context of the system and using this information 

to perform schedulability analysis and ensure predictability to all components in the system. 



63 

 

Actually, when the application is in a non-real-time state, the SLM will control all the 

platform reconfigurations. 

 

Figure 16. Real-time SLA and SLM 

 Figure 16 exemplifies the intervention of the SLM on the binding of a consumer to a 

provider. Even though the provider has the needed functional properties, its QoS properties do 

not match with the real-time requirements of the system. Thus, the SLM module blocks the 

interaction between the consumer and the provider. Depending on the policy adopted by the 

SLM, it may hold the binding until the system decreases its charge or simply reject it.  

The fact that we have a central manager may create a bottleneck in the application. In 

order to bypass this shortcoming, platforms may have multiple SLM modules and use known 

algorithms in the distributed systems domain in order to keep a coherent global state of the 

system. 

 

Solutions presented in the sections 4.1 and 4.2 are both platform-independent. 

However, in the real-time domain often solutions are optimized to a given platform in order to 

reach a more deterministic execution time. Next section discusses about modifications 

specifically for the OSGi Platform.  

4.3 Real-time Aware OSGi Platform 

Although the OSGi Service Platform was meant to be used primarily for embedded 

systems, it does not have support for real-time applications. Real-time requirements cannot be 

expressed in the platform and its classes are written in standard Java and interact with Java‟s 
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standard API. We list in this section some approaches which are possible in order to create a 

real-time aware OSGi Service Platform. 

4.3.1 OSGi Real-time Core and Code Instrumentation 

One of the problems cited in the last chapter was the fact that OSGi was not written 

with real-time code. Therefore, its underlying mechanisms may introduce unpredictable 

behavior to real-time applications, if not errors due to the interaction between real-time and 

non-real-time code. Ideally, the OSGi specification should be revisited in order to create a 

real-time version of its core, where all the operations executed automatically and implicitly by 

the framework are bounded in time. Performing changes in the specification level would 

allow groups to freely create compatible implementations.  

However, the core of the last OSGi specification has around 300 pages. Reviewing it 

could take a long time. For this reason, one possible approach is to create a real-time aware 

version of the OSGi framework by means of code instrumentation. Instrumentation refers to a 

computer science technique in which code is added to a program in order to gather data to be 

used by measurement and monitoring tools. Java 5 provides services to instrument Java code, 

adding byte-code to methods and classes. This addition is performed by an instrumentation 

library that may be written in Java, which is connected to an application and runs embedded 

in the virtual machine, intercepting the class loading process. Thus, in the context of OSGi, 

we may replace standard Java code by RTSJ-compliant code [AME09, AME10]. 

This approach has the advantage that it can be performed transparently to the OSGi 

framework for any of the implementations of the service platform. Furthermore, since bundles 

may be installed at runtime, a dynamic approach is necessary in order to ensure that all the 

bundles in the platform which may be used by the real-time application will also exhibit a 

real-time behavior. However, the instrumentation process is not real-time and may exhibit 

unpredictable behavior, besides the overhead incurred by the code interception and 

modification. Moreover, it requires a revision of the whole OSGi specification in order to 

define the precedence and priority of each task for the framework. 

4.3.2 Real-time SLA in OSGi  

A bundle‟s manifest contains metadata for the management of bundles in the OSGi 

framework. A way of inserting the RTD-SLA concepts in OSGi is through the extension of 

this metadata and the implementation of a module for the management of real-time contracts. 

However, the OSGi framework deals with bundles, which are deployment units, which do not 
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correspond precisely to components. For instance, many bundles may be used to compose a 

service oriented component or bundles may be shared among different components, as shown 

in figure 15. 

 

Figure 17. Component vs. Bundle metadata 

In the latest release of the OSGi specification, the Declarative Services specification is 

responsible for allowing developers to specify dependencies between components under the 

form of required and provided services in an XML-based metadata file. This XML schema is 

used by a container called Service Component Runtime (SCR), which resides inside bundles 

and uses OSGi‟s service requests and service listeners to automatically resolve dependencies 

and manage component binding, unbinding and service registration. By means of Declarative 

Services, we may specify the real-time metadata for a component. An alternative to 

Declarative Services is the use of component models over OSGi, such as iPOJO [ESC07], 

SCA [BIE07] and Spring
70

. Many developers use component models in order to ease the 

development and management of components. Generally, their usage requires specifying 

metadata for components. In iPOJO specifically, we may define handlers to interact with the 

OSGi platform and enable management of real-time SLAs. 

4.3.3 Architectural Lock in OSGi 

We can apply the concepts of architectural freezing to the OSGi platform by 

suspending the automatic binding of components. By means of Declarative Services, 

component‟s metadata can be used to specify methods to be implicitly called by the platform 

when it binds a new component or unbinds an old one. A possible approach is to intercept 

                                                

70 http://www.springsource.org/osgi 
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these method invocations and hold their execution while the application is in a real-time state. 

Several techniques may be used to perform these modifications: 

 Static byte-code instrumentation: Since we know which methods will be called for 

binding/unbinding components, we may use the Java 5‟s instrumentation package to 

perform offline instrumentation, loading the class-files from the disk, modifying their 

byte-codes and saving a new version of the corresponding byte-code by means of tools 

like ASM [BRUNE02a] and BCEL [DAH99], which use the Visitor design pattern to 

perform byte-code manipulation. We can put the thread responsible for executing the 

bind/unbind method to sleep until the end of execution of the critical code. We may 

ensure that the thread will wake up again because a real-time critical code will always 

have its execution bounded in time. 

 Aspect-oriented instrumentation: An alternative to static instrumentation is to use 

aspects for the byte-code injection. It offers the advantage that code does not have to 

be written at byte-code level. However, it is less flexible due to the fact that we must 

specify the correct pointcut to insert the code to suspend the thread before the 

bind/unbind is performed, while at byte-code level we can insert it anywhere. 

 Modification of component models: Components models often have access to the 

bind/unbind mechanisms. Thus, instead of modifying the application code, we may 

perform these modifications directly on the component model code, making the 

architectural freezing transparent to the application. 

 

Based on the ideas presented in this chapter, we created a prototype which implements 

architectural freezing for the OSGi platform. Next chapter presents our implementation with 

more details. 
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5 IMPLEMENTATION 

In the last chapter we presented approaches for considering real-time requirements in 

service-oriented component models and in the OSGi Service Platform.  

This chapter elucidates some of the solutions proposed by means of an architectural 

freezing iPOJO-based implementation. Section 5.1 presents the reasons that led us to choose 

an architectural freezing-based implementation instead of the others in order to validate our 

proposition. In section 5.2, we discuss the platform and the environment used as base to the 

implementation. Finally, details of the implementation are given in the section 5.3. 

5.1 Choice of the Approach 

As said in the last chapter, freezing the architecture during real-time states is an 

approach which may be adapted to any service-oriented platform and component model. This 

approach does not address platform-specific problems and will not solve all of the issues 

specified in chapter three. However, it addresses the unpredictability introduced by dynamic 

availability features, which is a recurrent problem in adaptive dynamic platforms. Thus, 

validating an implementation which uses this approach would produce a more generic result 

which may be valid for all dynamic platforms, instead of a specific one.  

At the same time, architectural freezing is an approach implementation that is quite 

simple: we must identify the methods which are responsible for binding, unbinding and 

modifying components and block them, by means of suspending the execution thread, when 

the application is in a real-time state. We might have problems if this thread is unique for all 

applications, as one real-time application may block other real-time applications. Although 

this is not the case in OSGi, which is inherently multi threaded. The implementation and 

representation of a real-time state is application-dependent. 
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Architectural freezing may be mixed with Real-time Dynamic SLAs in order to 

provide a more complete solution. Only using architectural freezing avoids interference with 

dynamism issues, but the platform may add components to an application which may degrade 

the real-time behavior of the latter. Since the main reason to use service-oriented component 

models is to add dynamism to an application, we chose to focus our implementation on this 

aspect and not on policy admission schemes. 

5.2 Choice of the platform 

Even though the OSGi Platform enhances the modularization of applications in Java, 

some functional and non-functional aspects are still mixed in the application logic. The use of 

service-oriented component models over the OSGi platform helps to separate non-functional 

aspects such as the dynamism management from the business code in the application. In 

addition, the OSGi specification has several implementations. Even though they all follow the 

same specification, it would require platform-specific modifications in order to test our 

solution. Once again, service-oriented component models add an abstraction layer, and may 

be executed without any modification in different OSGi framework implementations. 

Among the several service-oriented component models for the OSGi framework, we 

chose iPOJO as the base of our implementation. The iPOJO framework [ESC07] manages 

dynamic bindings automatically by means of dependency injection and injects code to deal 

with non-functional aspects. It also provides an extensible container which manages all 

service-oriented computing aspects, so that the developer may focus on the application logic 

and the configuration of the container. The possibility of using handlers (i.e., container 

extensions in iPOJO) to extend the service component model increases the flexibility of the 

chosen solution. Thus, due to these capabilities and simplicity of development, we decided to 

use iPOJO as base platform for implementing a prototype. 

5.3 Prototype Implementation 

The architecture freezing approach was implemented by means of an iPOJO 

Dependency Handler, a type of handler which provides data on service dependencies. These 

handlers may intercept modifications in the application‟s lifecycle. The handler is connected 

to a Real-time State Manager and verifies the platform state before executing a modification 

on its architecture. If the platform is in a real-time state, the thread responsible for changing 
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the application‟s architecture is blocked until the platform reaches a non real-time state. 

Figure 18 shows the architecture of our solution. 

 

Figure 18. Real-Time State Manager and Solution Architecture 

All the iPOJO components in the platform have Dependency Handlers connected to 

the Real-time Manager, even those which are not real-time. This way, we have a global 

context of the platform and no component may interfere with the architecture, since the 

handlers verify the platform with the Real-time Manager before adding, modifying or 

removing a service dependency. In addition, real-time components are directly connected to 

the Real-time Manager in order to switch the platform state between real-time and non real-

time.  

5.4 Validation    

In order to validate our implementation, we developed a test application based on the 

scenario described in the section 3.3. This application validates our approach in the context of 

soft real-time applications. In our scenario, a WebcamProducer module an image frame each 

time its getImageFrame() method is called. A MotionDetection module is bond to the 

WebcamProducer file and perform the getImageFrame()calls every 1 seconds, processing 

the video stream afterwards. The WebcamConsumer is also attached to the RTManager 

module, which plays the role of Real-time Manager and puts the platform in a real-time state 

during the getImageFrame() method call. This way, we may ensure that webcam snap 
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capture and image transfer are executed in a bounded time. Furthermore, we also ensure that 

the service will not be removed from the platform during its usage. 

In order to perform the validation tests, we installed the Real-time Manager in an 

Apache Felix 2.0.5 environment. Then, we installed the iPOJO 1.6.0 core with the real-time 

aware Dependency handler that we implemented. The binding between the iPOJO core and 

our handler was performed by a small modification in iPOJO‟s metadata. Next, we installed a 

bundle containing the Java Media Framework API 2.2.1, which was used to get access to 

hardware media devices in Java. A WebcamProducer bundle was then launched, followed 

by the installation of the MotionDetection bundle. At the validation of the 

MotionDetection instance, it starts calling WebcamProducer‟s getImageFrame() 

method. The first time this method is called, it configures the device for capturing video 

snaps. When we stop the MotionDetection instance, iPOJO calls the WebcamProducer‟s 

stopData() method, which is responsible for deallocating all the taken resources (notably 

the media devices). 

 

Figure 19. Architecture of the validation test 

As we expected, our prototype retains system architecture while the platform is in a 

real-time state, avoiding component bind, unbind and update. Thus, although we have not 

taken any metrics yet, we feel that we have validated our approach. 
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6 CONCLUSIONS AND PERSPECTIVES 

Real-time applications must present a predictable behavior, with deterministic 

response times. This predictability is generally ensured at compile time, by means of 

schedulability analysis, formal verification and statistics based on the behavior of the several 

modules which may compose the application. Consequently, most real-time applications are 

not able to adapt their architecture to unforeseen environment modifications at run-time, 

hence they are static applications. Conversely, dynamic adaptive software requires flexibility 

capabilities in order to take into account possible changes on its environment, sometimes 

without powering off the whole system. Although the approaches for providing runtime 

adaptation compensate the inconveniences of software systems downtime, including, updating 

or removing software components at runtime, this may occasionally compromise application 

safety due to unanticipated effects. Indeed, in general, runtime adaptive software and real-

time software are disjoint sets due to the conflict between predictability and flexibility. 

However, two factors motivate us to find solutions to the growing number of systems 

which may be in the intersection of both application classes: first, the fact that even critical 

real-time software, which cannot have its execution interrupted, must be updated due to 

environment changes or maintenance; and secondly, the increasing popularity of service-

oriented and component-based approaches, which leads industries and developers to migrate 

their applications to service and component frameworks. An example is the inclusion of the 

OSGi framework in the core of several application servers, such as JOnAS and BEA‟s 

WebLogic Real-Time. 

This study concentrated on: 

 Identifying the issues raised by software architecture dynamic modifications in real-

time applications in Java; 
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 Suggesting approaches for avoiding the introduction of unpredictability in real-time 

software hosted on the OSGi Platform. 

A prototype implementing an architectural freezing approach for the OSGi platform 

was provided by means of an iPOJO Dependency Handler, which blocked the addition, 

update and removal of components when the platform was in a real-time state. This chapter 

concludes our study by drawing the conclusions obtained, and presenting the perspectives for 

future work. 

6.1 Contribution 

In this work, we proposed solutions at different levels for dealing with dynamic 

availability and adaptation of software components. First, we have proposed the introduction 

of real-time states and the concept of architectural freezing, which locks the system 

architecture in these states. In this approach, before executing real-time code, the platform 

enters a real-time state by explicit calls to a real-time manager, which holds every component 

addition, update or removal until the platform returns to a non real-time state. This way, no 

modifications are performed in the system architecture and the deterministic behavior of real-

time code is ensured. One natural limitation of this approach is that when dealing with 

physical devices or over the network services, keeping their references when they have 

already left or are unavailable, may lead to application errors and inconsistent states. This 

could be solved by extending our model to consider these un-suspendable components and 

require their declaration beforehand. In this report we have also suggested modifications to 

the OSGi platform in order to support real-time application requirements.  

We also proposed that when the application is not in a real-time state, reconfigurations 

may be performed if they respect an agreement between the service consumer and the service 

provider, in which the deterministic behavior of the applications hosted in the platform is 

maintained. This agreement is an extension of a service level agreement model which takes 

into account dynamic service-oriented architecture concepts in order to integrate real-time 

requirements. This SLA model, called RTD-SLA, jointly with service level management 

modules, provides a solution to avoid the introduction of components which may interfere in 

the deterministic behavior of real-time applications. However, although this solution limits 

the admission of unsafe components, it does not avoid the misbehavior of already admitted 

components, only applying the penalty policies after the constraints have been violated. 
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An implementation of the architectural freezing approach was developed by means of 

iPOJO handlers. We chose iPOJO handlers as the base of our implementation in order to 

increase the portability of our solution and avoid modifications to the standardized OSGi 

platform and iPOJO core‟s corresponding source code. The prototype worked as expected: 

when components entered the real-time state, the real-time manager component held all the 

dynamic component modifications, performing them once the execution of real-time code had 

terminated. We see our proposed solutions and our prototype as a first step towards the 

development of real-time extensions for OSGi‟s component model and other real-time 

service-oriented component models. 

6.2  Future Work 

In future works, we intend to clarify some aspects which were not treated in this study, 

notably: 

 Integration of RTD-SLA in the prototype: In order to provide a more complete 

solution, we plan to integrate the RTD-SLA model to our prototype and extend the 

Real-time Manager module to execute the Service Level Management functions. It is 

important to test the impact of both solutions in the application‟s execution time, since 

monitoring all the components binding may introduce an overhead to the platform. 

 Proposition of a real-time aware core for the OSGi Service Platform: It would be 

important to correctly adapt the OSGi platform in order to support real-time 

requirements. Real-time applications demand a well thought application design, 

modularization and priority assignment, especially when dealing with RTSJ, where a 

wrong priority assignment may block the whole platform. Each component of the 

OSGi core must be taken into account and refactored. 

 Validation of the approaches with different component models and 

environments: The first prototype was developed by means of iPOJO Handlers. Thus, 

though all components bond to the real-time manager may put the application in a 

real-time state, only iPOJO components arrival, departure and update are considered 

and only their threads can be blocked by the manager. In order to better evaluate our 

approach, we plan to test it with other component models and their impact in real-time 

environments.   
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 APIs for measuring resource usage in Java: Resource usage monitoring is a central 

factor in real-time applications, since one of the most used techniques for ensuring 

predictable behavior of real-time applications is the anticipated resource reservation. 

Our proposed RTD-SLA also uses resource usage as one of the criteria for the 

admission of real-time tasks. Thus, resource consumption monitoring is a task to be 

performed by the SLM modules. However, standard Java API does not provide 

functions for obtaining resource usage at runtime [GUID02, JSR284]. We intend in 

future works to provide solutions which take into account this issue.  
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RESUMO 

No contexto das aplicações Java, a popularização da abordagem 
orientada a serviços e da engenharia de software baseada em 
componentes fez com que muitas aplicações migrassem para 
plataformas dinâmicas, como OSGi [OSG05]. Entretanto, com a 
popularização de soluções como a RTSJ [BOL00] para o 
desenvolvimento de aplicações de tempo-real em Java, vemo-nos 
em uma situação em que essas aplicações podem possuir 
restrições temporais que não serão respeitadas devido ao 
dinamismo fornecido por estas plataformas. Neste trabalho, 
propomos uma estratégia de congelamento da arquitetura das 
aplicações abrigadas na plataforma durante tratamentos de tempo-
real. As reconfigurações são executadas depois, contanto que as 
mesmas não desrespeitem acordos de nível de serviço entre o 
usuário e o prestador do serviço. Nossa abordagem foi 
implementada sob a forma de uma extensão do modelo de 
componentes iPOJO [ESC07]. Esta estratégia, apesar de suas 
limitações, impede que a plataforma introduza impreditibilidade 
na execução de aplicações de tempo-real. 
 
PALAVRAS-CHAVE: Tempo-real, arquiteturas orientadas a 
serviços, modelos de componentes orientados a serviços, Java, 
RTSJ, OSGi, evolução dinâmica de software 

1 INTRODUÇÃO 

Adaptação dinâmica e restrições de tempo-real são duas 
características e necessidades comuns em software atualmente. 
Enquanto o primeiro prioriza flexibilidade e o tratamento em 
tempo de execução de mudanças imprevistas no meio, o segundo 
prima por preditibilidade e determinismo no tempos de resposta 
de uma aplicação. Muitas soluções para lidar separadamente estes 
aspectos foram desenvolvidas para a plataforma Java. Uma das 
soluções de tempo real mais adotada para Java é a Especificação 
de Tempo-Real para Java (em inglês “Real-Time Specification for 
Java” - RTSJ) [BOL00] e suas implementações que oferecem uma 
interface de programação completa para o desenvolvimento de 
aplicações de tempo-real em Java. Da mesma forma, a 
popularização dos princípios da Engenharia de Software Baseada 
em Componentes (en inglês “Component-Based Software 
Engineering” - CBSE) [CLE95] e das Arquiteturas Orientadas a 
Serviços (em inglês “Service-Oriented Architectures” - SOA) 
[PAP03] para o desenvolvimento de aplicações flexíveis e 
modulares em Java são responsáveis pela criação de modelos de 
components orientados a serviços e de plataformas de serviço. 

Uma das plataformas de serviço mais populares é a plataforma 
de serviços OSGi. Ela foi projetada para ser uma especificação 
aberta de plataformas para o desenvolvimento e a implantação de 
serviços em passarelas residenciais, mas acabou tornando-se um 
padrão de facto para o desenvolvimento de aplicações modulares 
e flexíveis em Java. Sua popularização foi possível graças à sua 
adoção pela Fundação Eclipse para desenvolver plugins para seu 
ambiente de desenvolvimento integrado (em inglês “Integrated 
Development Environment” - IDE). A plataforma OSGi pode ser 
utilizada para criar aplicações orientadas a serviços e baseadas em 

componentes. Atualmente a plataforma OSGi encontra-se na sua 
quarta versão, passando a cobrir diversos domínios de aplicação, 
como telefonia móvel, supervisão industrial, automóveis e a nova 
geração de servidores de aplicações Java Enterprise Edition. 

É inquestionável o fato de que geralmente esses dois domínios 
de aplicação (tempo-real e dinâmicamente adaptável) possuem 
conjuntos disjuntos de aplicações, dado o conflito entre 
preditibilidade e flexibilidade. Entretanto, dois fatores nos 
motivam a procurar soluções para o potencial número crescente 
de aplicações que se encontram na interseção desses dois 
domínios: 

1) O fato de que mesmo aplicações críticas, que não 
podem ter sua execução interrompida, precisam ser 
atualizadas e passar por manutenção; 

2) E o fato de que o sucesso do SOA e do CBSE estão 
levando inúmeras empresas a migrarem suas 
aplicações para plataformas de serviços e de 
componentes (como os servidor de aplicação JOnAS 
e BEA WebLogic Real-Time).  

Este estudo concentra-se na identificação dos problemas 
gerados pelas modificações dinâmicas na arquitetura de 
aplicações de tempo-real em Java e na sugestão de estratégias para 
evitar a introdução de impreditibilidade da parte da plataforma 
OSGi nas aplicações abrigadas pela mesma. Duas abordagens 
complementares são propostas: Uma política de congelamento da 
arquitetura das aplicações executadas pela plataforma durante 
tratamentos de tempo-real; e o monitoramento baseado em 
acordos de nível de serviço das reconfigurações estruturais 
efetuadas em fases não-criticas. Nossa política de congelamento 
de arquitetura foi implementada através de uma extensão ao 
modelo de componentes iPOJO, demonstrando a viabilidade da 
mesma. 

O resto deste artigo é organizado da seguinte forma. A seção 
dois apresenta os trabalhos relacionados nos domínios relevantes 
ao nosso estudo. A contribuição deste trabalho é apresentada na 
seção três. A seção quatro apresenta a implementação realizada 
para dar uma forma tangível à nossa proposição e como ela foi 
validada. Finalmente, a seção cinco apresenta as nossas 
conclusões e as perspectivas de trabalhos futuros relacionados a 
este. 

2 ESTADO DA ARTE E TRABALHOS RELACIONADOS 

Este trabalho situa-se na interseção entre três domínios: 
Interessamo-nos em um primeiro momento às aplicações de 
tempo-real e às extensões sugeridas para a plataforma Java para o 
suporte de aplicações de tempo-real. Após, discutimos 
brevemente sobre evolução dinâmica de software, as motivações 
para fazê-lo, as principais abordagens utilizadas e como estas 
tecnicas vem sido utilizada no contexto de aplicações de tempo-
real. Em um terceiro momento introduzimos a plataforma de 
serviços OSGi e apresentamos os principais trabalhos descritos na 
literatura sobre OSGi e tempo-real. 
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2.1 Java para Tempo-real 

Sistemas de tempo-real diferem de outros sistemas informáticos 
devido ao fato de que sua corretude depende não somente de 
aspectos funcionais, mas também de aspectos temporais [STA92]. 

Esses aspectos temporais são normalmente expressos sob a forma 
de prazos determinados para a execução de tarefas. Estas tarefas 
podem ser periódicas, aperiódicas ou esporádicas, dependendo de 
seu padrão de chegada [ISO00]. De acordo com a criticidade 
dessas tarefas e da importância de respeito dos prazos, as 
aplicações de tempo-real podem classificadas em brando, firme e 
duro [BRUNO00]. Duas propriedades são fundamentais em 
sistemas de tempo-real:  

1) Eles devem ser preditíveis, ou seja, as restrições 
temporais e prazos de uma aplicação devem ser 
respeitados. Técnicas de análise de escalonamento e 
verificação formal são frequentemente utilizadas para 
verificar a preditibilidade de um sistema; 

2) E eles devem ser determinísticos, ou seja, a execução 
da aplicação deve ser assegurada, mesmo com a 
presença de fatores externos que podem perturbá-la (e 
neste caso, alterar sua funcionalidade, performance e 

tempo de resposta). O determinismo de uma aplicação 
pode ser medido através de sua latência (tempo entre a 
geração de um evento e a resposta do sistema para o 
mesmo) e de seu jitter (variação estatística da latência). 

Para desenvolver aplicações de tempo-real, toda a infrastrura 
sobre a qual a aplicação é executada deve ser tempo-real. Isto 
gerou a criação de algoritmos para o escalonamento de tarefas de 
tempo-real, de sistemas operacionais de tempo-real e de 

linguagens de programação para o desenvolvimento de sistemas 
de tempo-real. Em se tratando das linguagens de programação de 
tempo-real, estas podem apresentar o suporte para a expressão de 
restrições de tempo real através de três formas diferentes: 

1) Eliminando comandos cujo tempo de execução é 
indeterminado; 

2) Baseando-se em chamadas de sistema específicas a um 
sistema operacional de tempo-real; ou 

3) Extendendo linguagens existentes. 
No caso da plataforma Java, a terceira opção foi utilizada como 

estratégia para permitir a criação de sistemas de tempo-real com 
sua popular linguagem de programação. 

Java [ARN00] é uma tecnologia desenvolvida pela Sun 
Microsystems em 1995, consistindo na definição da linguagem de 
programação Java, na definição de uma biblioteca padrão e na 
definição de um conjunto de instruções intermediário chamados 
byte-codes, juntamente com um ambiente de execução. Java 
tornou-se uma linguagem extremamente popular entre 
desenvolvedores de aplicação, devido a fatores como a sua 
portabilidade, flexibilidade, robustez e facilidade de aprendizado 
[TYM98]. Entretanto, apesar das várias vantagens introduzidas 
por esta tecnologia, a mesma é inapropriada para o 
desenvolvimento de sistemas de tempo-real [NILSS02], 
especialmente pelos seguintes fatores: 

 Gerenciamento automático de memória: A 
plataforma Java define um coletor de lixo (em inglês, 
“Garbage Collector” - GC) como processo de 
gerenciamento automático de memória. Coletores de 
lixo facilitam a programação e servem como meio de 
evitar vazamentos de memória. Entretanto, para tal eles 
devem varrer a memória e encontrar os objetos de um 
programação que não são mais referenciados, um 
processo cuja duração não pode ser determinada. 

 Carregamento dinâmico de classes: O carregamento 
dinâmico de classes em Java permite que apenas o 

carregamento de uma classe seja feito apenas quando 
ela é utilizada por uma aplicação. Isto faz com que a 
todo instante apenas as classes necessárias estejam 
presentes na memória. Porém, o processo de 
carregamento de classes inclui a resolução dessas 
classes (carregamento das classes que ela necessita), a 
verificação da corretude de seu byte-code e o 
carregamento do arquivo diretamente do disco, um 
processo que pode depender do tamanho da classe e da 
velocidade do meio. 

 Política de escalonamento de threads: O 
comportamento de threads e de escalonadores em Java é 
definido de uma forma muito relaxada, onde threads 
com prioridades mais baixas podem preemptar threads 
com prioridades mais altas. Embora este 
comportamento impeça que threads de entrarem em 
estado de inanição (em inglês, “starvation”), ele viola os 
princípios de precedência de tarefas em sistemas de 
tempo-real, podendo introduzir impredibilidade no 
sistema. 

Como podemos ver, os problemas que impedem Java em sua 
forma convencional de ser utilizado na concepção de aplicações 
de tempo-real não vem da linguagem, e sim do ambiente de 
execução. Por isso, durante os anos 90, inúmeras tentativas de 
extender a linguagem foram feitas, culminando em 2000 na RTSJ, 
desenvolvida por equipes como Sun e IBM. A RTSJ define novas 
regras para o ambiente de execução Java, assim como fornece 
uma interface de programação completa para a criação de 
aplicações de tempo-real em Java. Duas modificações merecem 
especial atenção: 

 Escalonamento e despacho de threads: O escalonador 
da RTSJ é baseado em prioridades, possuindo ao menos 
28 prioridades de tempo-real (mais elevadas que as 
prioridades anteriormente definidas por Java), sendo 
que as threads de tempo-real só podem ser preemptadas 
por outras threads de prioridade superior (política “run-
to-block”). Além disso, o escalonador pode fazer 
análises de viabilidade para um escalonamento. Threads 
de tempo-real e outros objetos escalonáveis, como 
tratadores de eventos assíncronos, são ligados a objetos 
que representam a sua demanda de recursos. 

 Gerenciamento de memória: A RTSJ extende o 
modelo de gerenciamento de memória da plataforma 
Java, adicionando zonas de memória onde o coletor de 
lixo não percorre. 

Além dessas modificações, a RTSJ também propõe alterações 
nos mecanismos de sincronização e partilha, tratamento 
assíncrono de eventos, transferência assíncrona do fluxo de 
execução, terminação assíncrona de threads e acesso à memória 
física. Atualmente encontramos diversas implementações da 
RTSJ, sendo as implementações comerciais as mais populares.  

Como dito anteriormente, aplicações de tempo-real devem ser 
preditiveis e confiáveis. Entretanto, muitas das aplicações de 
tempo-real que encontramos atualmente são dinâmicas, ou seja, 
fatores externos podem exigir modificações e adaptações em 
tempo de execução. Discutiremos na próxima sessão sobre 
adaptação dinâmica de software e como isto é aplicado no 
contexto de sistemas de tempo-real. 

2.2 Adaptação dinâmica de software tempo-real 

Os primeiros trabalhos sobre a importância da estruturação de 
uma aplicação datam do fim dos anos 60 [DIJ68, PAR72]. Estes 
trabalhos foram a base de uma disciplina da Engenharia de 
Software chamada Arquitetura de Software. Arquitetura de 
Software estuda formas de estruturar sistemas, representando os 
seus componentes, suas interconexões e as regras que regem sua 
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evolução ao longo do tempo [GAR93]. Arquiteturas de software 
são soluções importantes para lidar com a escalabilidade, 
evolução e complexidade de sistemas de software. Arquiteturas 
dinâmicas de software são arquiteturas na qual a composição dos 
componentes muda durante a execução do sistemas. Avanços 
nesse domínio foram motivados pelo surgimento d a computação 
obíqua [WEIZ93] e do crescimento da computação autônoma 
[KEP03]. As principais motivações para a adaptação dinâmica de 
software são o custo, risco e inconveniência de ter de parar um 
sistema por causa de modificações no meio. Um exemplo é a 
atualização dinâmica de software, na qual uma aplicação é capaz 
de se atualizar para reparar bugs e adicionar novas 
funcionalidades sem ter de interromper sua execução, como no 
caso de sistemas críticos e nonstop [MAG96]. O custo de toda 
essa flexibilidade reflete-se na segurança do sistema, uma vez que 
os efeitos de uma modificação feita em tempo de execução não 
podem ser previstos.  

Diversas técnicas foram desenvolvidas para prover um 
comportamento dinâmicamente adaptável a aplicações, entre elas: 

 CBSE: Componentes são unidades de software que são 
compostas para construir um sistema. Cada componente 
possui interfaces especificadas contratualmente e 
dependencias explícitas. Estes componentes podem ser 
compostos dinamicamente através de ligações 
retardadas (em inglês, “late binding”). CBSE fornece 
um mecanismo de base para evoluir a arquitetura de um 
sistema dinâmicamente; 

 Linguagens de Descrição de Arquitetura: As 
linguagens de descrição de arquitetura (em inglês, 
“Architecture Description Language” - ADL) são 
linguages utilizadas para descrever arquiteturas de 
software. Elementos comuns de ADLs são 
componentes, conexões e configurações. ADLs podem 
ser utilizadas para especificar pontos de variabilidade 
nas arquiteturas de software. 

 SOA Dinâmico: Arquiteturas orientadas a serviços são 
um estilo arquitetural e modelo de programação baseado 
no conceito de “serviços”. Serviços são unidades de 
software cujas funcionalidades e propriedades são 
declaradas em um descritor de serviços. Além disso, 
serviços podem ser orquestrados e compostos para 
formar serviços mais complexos. Prestadores de 
serviços registram seus serviços em um Registro de 
Serviços. Usuários de serviços buscam serviços junto ao 
mesmo Registro de Serviços. Após negociação e acordo 
dos termos de uso de serviço, o usuário de serviços é 
conectado ao prestador de serviços. SOA Dinâmico 
[CER04] é uma extensão ao modelo SOA que considera 
que serviços podem aparecer, desaparecer ou modificar 
suas propriedades em tempo de execução. 

Sistemas dinamicamente adaptáveis de tempo-real podem ser 
utilizados para implementar sistemas que necessitam de 
flexibilidade, sistemas adaptáveis cujas interações necessitam 
respeitar restrições de tempo-real ou ambos. Vários trabalhos na 
literatura visam a reconfiguração dinâmica de aplicações de 
tempo-real. Entre as principais estratégias para a criação de 
frameworks para a adaptação dinâmica de aplicações de tempo-
real estão o uso de “modos” (arquiteturas pré-estabelecidas em 
tempo de compilação que podem ser trocadas em determinados 
momentos da execução) [BOR09, PRO08, WEIC04], de 
extensões de ORBs (em inglês, “Object Request Broker”, um 
módulo que intermedia as requisições de clientes em uma rede e 
as envia aos objetos correspondentes) para tempo-real [WAN03, 
CARD] e a componentização de objetos representando atributos 
de qualidade de serviço [QUO, SHA04]. 

2.3 OSGi para Tempo-Real 

A plataforma de serviços OSGi é uma especificação que 
adiciona mecanismos de modularização à tecnologia Java 
[HAL10]. As unidades de software são chamadas “bundles”. Um 
bundle é constituído de um arquivo .jar e de metadados 
especificando seu nome simbólico, sua versão e suas 
dependências. Cada bundle em OSGi possui seu próprio 
carregador de classe e as interações entre eles são possíveis graças 
a um sistema explicito de importação e exportação de packages. 
Bundles podem instalados, desinstalados e atualizados 
dinamicamente, sem necessidade de parar e reiniciar a plataforma. 
Além disso, eles também publicar e consumir serviços 
dinamicamente. Embora grande parte do dinamismo da 
plataforma seja gerado automaticamente, desenvolvedores devem 
levar em conta o fato de que bundles e serviços podem aparecer e 
desaparecer inesperadamente. 

A plataforma OSGi tem sido uma tecnologia adotada 
principalmente nos contextos de automação residencial e 
ambientes pervasivos, devido ao seu modelo de componentes 
orientado a serviços dinamico e aos mecanismos de 
gerenciamento remoto e de implantação contínua. Entretanto, a 
plataforma de serviços OSGi não possui suporte para aplicações 
de tempo-real, e a instalação e desinstalação dinâmica de bundles 
pode introduzir impreditibilidade em aplicações deste tipo. Poucos 
trabalhos dedicam-se ao suporte de aplicações de tempo-real na 
plataforma OSGi e os que o fazem dedicam-se principalmente a 
questão da isolação de componentes na plataforma, não aos 
problemas gerados pelo dinamismo da mesma [GUI08, 
RICHA09, COA07]. 

3 PROBLEMÁTICA 

Quando pensamos na execução de aplicações de tempo-real na 
plataforma OSGi, diversos potenciais problemas devem ser 
considerados. O mais evidente deles é o fato de que a plataforma 
OSGi não foi concebida como uma plataforma para aplicações de 
tempo-real. Ela é baseada em classes da API padrão de Java e a 
interação das classes da mesma com classes de APIs de tempo-
real pode introduzir impreditibilidade na execução de 

componentes de tempo-real. No caso específico da RTSJ, ainda 
podemos nos deparar a problemas como: 

 Vazamento de memória: Na RTSJ, definições de 

classe e objetos estáticos são mantidos em uma zona de 
memória chamada memória imortal. Essa zona de 
memória é única à cada máquina virtual e não possui 
interferência do coletor de lixo, sendo alocada no 
momento em que está é executada e desalocada no 
momento em que a mesma é terminada. 
Consequentemente, mesmo que desinstalemos 
componentes na plataforma, suas correspondentes 

definições de classe e objetos estáticos permanecerão 
alocados na memória imortal enquanto a máquina 
virtual permanecer executando. 

 Inanição: As threads do framework OSGi, responsáveis 

pela gerência do sistema, são threads convencionais 
Java. Uma vez que utilizamos RTSJ e componentes com 
threads de tempo-real, temos que considerar que a 
política de escalonamento é run-to-block, ou seja, 
threads com prioridades maiores não são preemptadas 
por threads com prioridades menores, e assim, as 
threads de gerência da plataforma serão bloqueadas por 

threads das aplicações que nela são executadas. Além 
disso, o fato de não existir um contexto global (bundles 
não sabem da existência de outros bundles) torna difícil 
a atribuição de prioridades entre threads. 



84 
 

Entretanto, neste trabalho consideraremos as questões relativas 
ao dinamismo e não à especificação OSGi ou à plataforma Java. 
Para tal, usaremos um cenário de aplicação de monitoramento por 
detecção de movimento, ilustrado na figura 1. Um componente 
responsável pela detecção de movimento conecta-se à uma ou 

diversas câmeras, recuperando periodicamente imagens e 
analisando-as. Estas câmeras podem ser conectadas, 
desconectadas e reconfiguradas em tempo de execução. 

 

Figura 1. Cenário de Aplicação de Detecção de Movimento 

Suponhamos nesse exemplo que o módulo de detecção de 
movimento possui restrições temporais e que o processo de busca 
dos frames nas diferentes câmeras não deve passar 10 ms. Neste  
cenário, podemos observer quatro aspectos diferentes do impacto 
do dinamismo de OSGi sobre aplicações de tempo-real: 

 A plataforma OSGi verifica que o módulo de detecção 

tem dependências do tipo Camera e vai conectá-lo 
automaticamente às câmeras que entrarem no sistema. 
Suponhamos que a operação de captura e envio de 
imagem de uma câmera do sistema leva 4 ms e que em 
outra a mesma operação leva 5 ms. No momento em 

que uma terceira câmera aparece ela também é 
conectada ao módulo detector, mas se o tempo de 
captura e envio de imagens desta câmera for maior que 
1ms, estaremos violando as restrições impostas pelo 
detector. Além disso, não sabemos quanto tempo vai 
levar a adição do módulo ao sistema e se a plataforma 
executar essa operação durante um tratamento de 
tempo-real, mais atraso pode ser introduzido. 

 As câmeras também podem se desconectar durante o 
tempo de execução. O tempo que a plataforma leva para 
tirá-la do sistema e limpar todas as suas referências 

pode implicar em atrasos de tarefas de tempo-real. Além 
disso, se a câmera for retirada enquanto ela estiver 
sendo usada, a aplicação pode acabar chegando a um 
estado de erro ou inconsistência. 

 Na plataforma OSGi, os componentes podem também 

ser atualizados em tempo de execução. O tempo dessa 
reconfiguração pode influir na preditibilidade de 
aplicações de tempo-real. Além disso, a versão 
atualizada do componente pode ter propriedades 
diferentes do antigo componente (tempo de captura e 

envio de imagens maior, por exemplo), violando as 
restrições temporais de  módulos de tempo-real. 

 Além dos componentes de tempo-real, outros módulos 

podem utilizar o serviço fornecido pelas câmeras: o fato 
que a câmera deve fornecer serviço para mais de um 

consumidor pode fazer com que um usuário não tempo-
real bloqueie um usuário de serviço de tempo-real. 

4 CONTRIBUIÇÃO 

Propomos neste trabalho a distinção dos estados com 
processamentos de tempo-real, aplicando nestes uma política de 
congelamento da arquitetura das aplicações e impedindo que 
componentes sejam adicionados, removidos e atualizados. 
Reconfigurações podem ser feitas em fases de não-tempo-real, 
contanto que tais modificações não violem contratos de nivel de 
serviço estabelecidos entre usuários e prestadores de serviços. 

4.1 Política de Congelamento de Arquiteturas de 
Software 

Podemos ver as aplicações executadas por uma plataforma de 
serviços OSGi como um conjunto de estados e transições, onde 
cada estado representa uma possível arquitetura do sistema e as 
transições representam reconfigurações que levam de uma 
arquitetura do sistema à outra (ou seja, remoção e adição de 
componentes, que levam o sistema a trocar de estado, ou 
atualização, onde o sistema fica no mesmo estado, mas com 
diferentes propriedades). Tal representação é exemplificada na 
parte azul da máquina de estados da figura 2. 
 

 

Figura 2. Diagrama de estados da arquitetura 

Incluímos então estados onde a arquitetura não pode ser 
modificada (em vermelho, na figura 2). Estes estados 
correspondem à execução de seções críticas de código, onde a 
interferência da plataforma poderia fazer com que restrições 
temporais não fossem respeitadas. As reconfigurações são 
deixadas para estados não-críticos, monitoradas para que 
respeitem acordos de nível de serviço estabelecidos entre usuário 
e prestador de serviço. 

4.2 Extensão de Acordos de Nível de Serviço para 
Aplicações Dinâmicas de Tempo-Real 

Acordos de nivel de serviço (em inglês “Service Level 
Agreement” - SLA) são partes negociadas de um contrato 
estabelecido entre o prestador e o usuário de serviço, definindo 
formalmente o nível de serviço e as penalidades a aplicar quando 
as cláusulas não são respeitadas [VER99]. SLAs servem para 
atingir uma determinada qualidade de serviço. Para isso, eles 
contém informações como identificação das partes que assinam o 
contrato, o serviço prestado, o tempo de utilização do serviço, sua 
disponbilidade, custo e datas para renegociação do acordo. SLAs 
são controlados por um monitor responsável pela Gerência de 
Niveis de Serviço (em inglês “Service Level Management” - 
SLM). Este monitor é também responsável por aplicar as 
penalidades em caso de violação das cláusulas. A figura 3 ilustra o 
uso de SLAs e de SLMs na abordagem orientada a serviços. 
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Figura 3. Acordos de nível de serviço 

Neste trabalho, estendemos o modelo de SLAs dinâmicos para 

serviços intermitentes descrito em [TOU08], adicionando 
metadados que serão utilizados pelo monitor para admissão de 
novos componentes no sistema e gerenciamento das restrições de 
tempo real. No nosso acordo levamos em conta: 

 Tipo de tarefa: Periódica, aperiódica ou esporádica; 
 Tempo de período: No caso de tarefas periódicas; 
 Tempo máximo de execução (em inglês “Worst case 

execution time” - WCET): Tempo máximo que a 
execução da tarefa pode levar 

 Utilização de Recursos: Quantidade de recursos 
(memória RAM, CPU) necessária para a execução da 
tarefa. 

 Prioridade: Prioridade de execução da tarefa, para fins 
de precedência e admissão (em casos onde apenas uma 
tarefa será admitida no sistema, a tarefa de maior 
prioridade será escolhida). 

 Política: Ação a tomar no caso de desrespeito das 
cláusulas. Estas ações devem possuir um tempo máximo 
de execução conhecido. 

O monitor intercepta toda reconfiguração do sistema, 
verificando a cada vez se o sistema está em um estado de tempo-
real (e neste caso, guardando a reconfiguração para ser feita 
quando sair deste estado) e se as modificações respeitam as 

cláusulas dos SLAs.  

5 IMPLEMENTAÇÃO E VALIDAÇÃO 

Para implementar a estratégia proposta, um protótipo foi criado 

baseado na extensão do modelo de componentes iPOJO [ESC07] 
sobre OSGi. Usar um modelo de componentes permite que 
possamos interferir no comportamento dos componentes sobre a 
plataforma OSGi sem ter que modificar o núcleo e o código da 
mesma. A arquitetura da solução é mostrada na figura 3. 

 

Figura 4. Extensão da Plataforma iPOJO para tempo-real 

Os componentes são conectados a um monitor que verifica as 
necessidades do usuário e o contrato dos prestadores antes de 
estabelecer um SLA entre ambas as partes. Quando um 
componente vai executar uma reconfiguração, ele contata o 
serviço de gerencia de reconfigurações do monitor que vai 

verificar se a plataforma encontra-se em uma estado de 
processamento de tempo-real. Caso a plataforma não encontre-se 
neste estado, o monitor verifica se o nível de serviço negociado 
entre o prestador e o usuário não vai afetar nas restrições de 
tempo-real de outros componentes. Se a plataforma está em um 
estado de processamento de tempo-real, a reconfiguração e sua 
verificação são mantidas em uma lista de espera. A plataforma 
entra em estados de processamento de tempo-real explicitamente 

através do uso do serviço de congelamento da arquitetura. Antes 
de executar um código que necessite de preditibilidade, o 
componente utiliza este serviço para congelar toda a plataforma, 
reutilizando o serviço após o processamento para tirar a 
plataforma do estado de tempo-real. Devido a questões de tempo, 
a parte do monitor responsável pela gerência dos SLAs não foi 
implementada. 

Nosso protótipo foi testado em uma aplicação de detecção de 

movimento, como descrito na seção 3. A arquitetura do sistema é 
mostrada na figura 4. 

 

Figura 5. Arquitetura da aplicação de detecção de movimento 

Como esperado, ele congelou a arquitetura da aplicação durante 
os períodos de tratamento de tempo-real, impedindo que 
componentes fossem atualizados, adicionados ou removidos da 
plataforma OSGi. 

6 CONCLUSÃO 

Este trabalho focou-se no conflito entre a preditibilidade requerida 
pelas aplicações de tempo-real e o dinamismo provido por 
plataformas de adaptação dinâmica de software, como o 
plataforma de serviços OSGi. Nossa motivação para interessar-se 
nesse conflito vem do uso crescente da plataforma OSGi para 
desenvolvimento de aplicações e da popularização do tempo-real 
para Java. Para lidar com as questões de dinamismo em aplicações 
de tempo-real abrigadas na plataforma OSGi, sugerimos a 
distinção entre a fase de processamentos de tempo-real, onde 
nenhuma modificação na arquitetura é permitida; e a fase de 
outros processamentos, onde reconfigurações podem ser feitas, 
sob condição de respeitar os acordos de nivel de serviço 
estabelecidos pelos componentes da plataforma. Nossa abordagem 
foi validada através de uma implementação baseada no modelo de 
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componentes iPOJO. Muito trabalho ainda deve ser feito, como a 
integração do gerenciamento de SLAs. Como todo trabalho em 
ciência, este trabalho também mostra perspectivas para futuros 
trabalhos na área, como a concepção de um nucleo de tempo-real 
para OSGi e esforços para a caracterização dos componentes e da 
mensuração de recursos utilizados. De toda forma, vemos nossa 
abordagem e protótipo como um primeiro passo na direção de 
uma extensão de tempo-real para modelos de componentes para a 
plataforma OSGi. 
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Abstract 

The Real-time specification for Java (RTSJ) extends the 
standard Java API to provide mechanisms to increase 

predictability in applications’ response times. Determinism is 
crucial for Real-Time applications, and desirable for most 
Java applications. For new projects, the inclusion of real-time 
features can be done at the conception or design phases, 
requiring few modifications; however, when considering 
legacy applications, it is impractical to manually modify large 
software to be RTSJ compliant. In this paper, we propose a 
means of automatically transforming java legacy code to java 

real-time code, thus benefiting from advances in the JVM and 
third party libraries regarding execution determinism. Our 
proposed tool, called Realtimeizeme,  dynamically instruments 
Java classes at load-time using bytecode manipulation for 
adapting legacy applications to real-time applications. The 
tool runs as a JVM agent and has been tested instrumenting 
various java legacy applications. Benchmarks were performed 
on two different application servers and a database engine. 

The tool introduces a small overhead once per instrumented 
class. Default configuration provides conflicting results, but, 
in general, proper configuration improves speed and most 
importantly determinism.  

Keywords: Real-time Java, Java agent, Dynamic bytecode 
manipulation,  Legacy software 

I. INTRODUCTION 

Real-time systems differ from other information 

systems in the fact that their correctness depends on 

both functional and temporal aspects [25]. In order to 

satisfy these timing constraints, services and algorithms 

used by real-time systems must be executed in bounded 

time. Real-time applications do not necessarily have to 

be fast, but they must be predictable. Depending on the 

enforcement of deadlines, real-time systems may be 
divided into hard and soft real-time systems [25]. In 

hard real-time systems deadlines must be strictly 

enforced to avoid safety issues (e.g., weapon systems, 

nuclear power plants, automated transport systems). In 

soft real-time systems, the need for strict deadlines is 

more or less replaced by the need for homogeneous 

response times in order to ensure acceptable levels of 

service, thus the goal is to minimize response-time 

deviations. Missed deadlines are interpreted as degraded 

service quality, and should be avoided, but nevertheless 

the system continues to operate. 

Java [13] has become one of the most popular general 
purpose languages. This popularity is in part due to its 

portability, reusability, security features, ease of use, 
robustness, rich API set and automatic memory 

management. Java has many advantages over traditional 

languages for programming, such as C and C++ [21]. In 

addition, nowadays it is arguably easier to find 

programmers with Java skills than those experienced 

with Ada or C. However, the same Garbage Collector 

that eases development is one of the main reasons why 

Java was not used to design critical, embedded and real-

time applications. Indeed, garbage collection introduces 

unpredictable execution times [27]. As a result, the 

Real-Time Specification for Java (RTSJ) [1] was 

introduced, adding new features to improve the 
determinism of conventional Java. RTS, when 

compared to other solutions, alleviates developer effort 

in designing real-time applications by providing high-

level abstractions for real-time mechanisms. Real-time 

Java is already being used in numerous defense and 

commercial applications [28].  

The development of real-time systems is hindered by 

a fundamental issue; their design is much more 

complicated than that of conventional systems [4]. To 

truly benefit from the RTSJ, many choices must be 

made at design time. To start, tasks must be ordered by 
their importance and their priorities should be well 

understood and set accordingly. Thus, important tasks 

are handled first and without interruption, ensuring their 

timely completion. Communication and variable sharing 

must also be well designed to avoid unpleasant surprises 

at run-time. Specific design patterns for RTSJ 

applications have already been created to provide 

solutions for common real-time design problems [4, 20]. 

Even so, these design constraints limit current usage of 

RTSJ. Migrating legacy Java software to Real-time Java 

is far from being an easy task and is progressively worse 

when considering large and complex software [4].  
We consider this an important issue to solve for two 

reasons: 

1) Legacy applications, being the deterministic 

weak-link, neither benefit from real-time code, 

nor are usable by real-time applications. The 

majority of existing libraries are legacy java, 

imposing their re-implementation for RTSJ. 

2) Current legacy applications would benefit from 

RTSJ features to increase determinism, but 

migration costs are generally prohibitive. 
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In this paper, we provide a tool that automatically 

transforms legacy Java applications into RTSJ 

compliant applications using configurable pre-defined 

transformations. In order to be applicable to most 

software, transformations need to be applied at the 
bytecode level and as late as possible. This goes against 

some of the goals in hard real-time systems, being able 

to statically guarantee timely execution, because late 

bytecode modification may introduce indeterminism, 

but it does make our approach a broader one and 

applicable to a larger array of software. Our tool, called 

Realtimeizeme, is a Java agent that instruments classes 

at load-time. We have tested it on popular open-source 

software that uses the Java technology and could benefit 

from increased determinism in execution times.  We 

give an analysis of different aspects of our tool, 
including if an application successfully runs after our 

transformations, if the transformations provide 

increased determinism in execution times, and the 

overhead induced by our tool. Our goal is to provide a 

general solution to easily migrating existing code bases 

to RTSJ and deterministic libraries and to evaluate the 

resulting software by analyzing execution times. Our 

results conclude that RTSJ provides benefits in regards 

to real-time behavior, but automatic transformations 

must be performed carefully and are not always 

beneficial. Also, certain features of RTSJ virtual 

machine implementations limit taking these solutions 
further. 

This rest of this paper is organized as follows. 
Section 2 presents technologies introduced in Real-time 
Java. In section 3 we present different approaches to 
code transformation. In section 4, we present 
Realtimeizeme, an implementation of our approach. 
Section 5 evaluates and validates the proposed tool. 
Section 6 discusses related works. Finally, Section 7 
concludes the paper and presents our perspectives. 

II. REAL-TIME JAVA 

Real-time Java is a combination of different 
techniques allowing developers to create applications 
with real-time characteristics using the Java Platform. 
Despite the advantages provided by Java, some 
requirements needed for real-time systems are not met 
using conventional Java technology. In order to 
overcome these limitations, a group was created in 1998 
to define real-time extensions for Java. This group 
included technical people from Sun, IBM and from all 
across the real-time industry. Their work culminated 
with the Real-Time Specification for Java (RTSJ), 
which defines real-time behavior in the Java Platform, 
through a collection of classes, constraints to the 
behavior of the virtual machine, an API and additional 
semantics. Among the concepts introduced by RTSJ, 
two additional programming constructs are 
fundamental: Real-time Threads and special types of 
Memory Areas.  

Figure 1 shows how the RTSJ altered the thread 

hierarchy in Java with the inclusion of Real-Time 

Threads. Real-time Threads are threads whose priorities 
are higher than normal Java threads (java.lang.Thread 

instances). These priorities are set at the moment a 

thread is created. The virtual machine scheduler must 

always schedule the thread that has the highest priority 

to be executed. This thread will be executed in a run-to-

block scheduling policy, which means that the thread 

will run until the end of its execution, only being 

interrupted in the case of a blocking operation or to 
allow the execution of a higher-priority thread. Two 

different types of real-time threads are provided: Real-

Time Threads (RTT) and No Heap Real-Time 

Threads (NHRTT). NHRTT are addressed to hard-real 

time applications, are not allowed to access the heap 

memory and have a priority higher than the Garbage 

Collector (thus they cannot be preempted by it).  

 

 
Figure 1. RTSJ thread hierarchy  

 
Besides the traditional heap memory, two new 

memory areas were included. In these special memory 
regions, memory is not garbage-collected. Therefore, 
garbage collection operations do not introduce 
unpredictability into execution times. These areas are 
called scoped and immortal memory. As the name 
suggests, scoped memory is a memory region that is 
active inside a scope. When there are no more threads 
executing inside this memory area, it is automatically 
erased. In contrast, immortal memory is a region 
allocated during the virtual machine startup. Objects 
allocated in this area live throughout the application‟s 
lifetime. 

However, the Garbage Collector and thread 
scheduling are not the only sources of indeterminism in 
java applications: most of the standard java libraries 
themselves are not real-time aware nor deterministic. 
Other libraries have been developed to substitute 
standard Java classes without introducing 
indeterminism. The first and most known fully RTSJ-
compliant library is Javolution [16], an open source 
library that provides alternate implementations of 
standard library classes.  Javolution claims to provide 
classes that are deterministic and sometimes faster than 
Java standard library classes. When possible, Javolution 
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classes implement the same interfaces as their 
counterparts in the Java standard library, easing 
substitution and retaining semantic compatibility. 

III. TRANSFORMATION TECHNIQUES 

Manually modifying applications‟ source code to 

benefit from RTSJ features is practical with small 

applications (up to the tens of thousands of lines of 

code). However, many existing applications that have 

real-time requirements are large, containing hundreds of 

thousands of lines of code, or even millions of lines of 

code. It would require a lot of time to locate all the 

classes and files to be changed and all the references to 

these classes in other files. In addition, in applications 

of this magnitude, manual modification can become an 
error-prone task. Creating real-time extensions for each 

application would increase its time-to-market, implying 

delays for each release. Moreover, large projects 

normally use third-party libraries, whose source code 

might not be available to be modified. In general, the 

longer projects go on, the more complex they become 

making the transformations required even more difficult 

to be implemented. Application servers, database 

engines and IDEs are examples of application types in 

which manual code manipulation, to insert real-time 

structures, is impractical. In addition, some application 

servers and IDE‟s dynamically generate even more 
code, so those generation processes would also need to 

be adapted. In table 1, we give statistics on popular 

open-source legacy software. As can be seen, their size 

and complexity make it time consuming to re-code these 

projects in order to benefit from the Real Time 

Specification for Java. 

 

Name Java LoC *
#
 

% of 

Java* Age
+
 

Application 

Type 

Apache 

Derby 574,441 87% 6 years DBMS 

Apache Felix 311,442 81% 5 years OSGi platform 

Apache 

Geronimo 242,385 68% 6 years 

Application 

Server 

Apache 

JMeter 2,897,114 52% 

12 

years Load injector 

Apache Sling 119,401 85% 3 years Web Framework 

Eclipse 5,292,154 68% 9 years IDE 

Glassfish 2,190,019 36% 5 years 

Application 

Server 

HSQL 

Database 336,620 55% 

12 

years DBMS 

JonAS 3,082,718 44% 

12 

years 

Application 

Server 

Netbeans 38,938,621 70% 

14 

years IDE 

 

* According to Ohloh.net, metrics taken on February 22
nd 

# 
Blank and commented lines are not included 

+ 
Generally, these projects already existed before their open source 

release. For example, Apache Felix is the evolution of Oscar project, 

started in 2001. 

Table 1. Java legacy software 

 

An approach to overcome the expense incurred in 

manually modifying large software is to use automatic 

manipulation and transformation techniques. Tools like 

Spoon [23] provide source code level manipulations, 

while ASM [19] and BCEL [30] can directly manipulate 

bytecode. Working at the source code level is generally 

more intuitive for the majority of developers. Source 

code level tools are based on the applications abstract 
semantic tree, and give higher level abstractions. 

However source code is not always available, as in the 

case of large projects with long lists of dependencies. 

Bytecode manipulation provides advantages such as not 

requiring source code and not requiring recompilation 

(i.e., the classes are already compiled) making it very 

fast. A bytecode level approach also resolves the 

problem of transforming third-party libraries, since the 

dependencies are always available in a compiled form at 

some point. Despite these advantages, this can be 

complex to implement. 

 
Figure 2. Mapping between standard and RTSJ-

compliant classes. 

 

We have chosen a bytecode manipulation approach, 

given the fact that it is a broader solution. Once we had 

selected the how, a second problem came to mind, the 

when. We have identified two different periods of 

interest for bytecode manipulation that give different 

outcomes: build-time, a static manipulation approach, 

and load-time, a dynamic approach. In the static 

approach, the tool browses through the compiled class-
files, performing pertinent substitutions. This approach 

is useful when we have previous access to all the 

modules that will be deployed in the application and all 

their dependencies, thus we can ensure that no external 

code is left unanalyzed, which could potentially 

introduce greater unpredictability in the application. 

However, application servers load web applications at 

runtime and other applications may have mechanisms to 

generate new classes and new modules on-the-fly. In 

such an approach, these classes would not be 

transformed. Load-time class instrumentation can deal 
with these kinds of applications, since all classes can be 

intercepted and instrumented the first time they are 

loaded by the Java virtual machine. Intercepting class 

loading is an advantage and a disadvantage, as it works 

for the whole Java classloader hierarchy (i.e., no classes 

are missed), but it can generate significant overhead 
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depending on the number of classes loaded and their 

frequency. In addition, this approach would also avoid 
bootstrap-level modifications. 

IV. IMPLEMENTATION: REALTIMEIZEME 

In this paper we present our proof-of-concept 

implementation for a dynamic bytecode manipulation 

tool for introducing real-time code into Java classes: the 

Realtimeizeme tool. Our tool is implemented as a Java 

Instrumentation Agent [22], a program that runs 

embedded in a Java virtual machine. Realtimeizeme has 

the benefit of intercepting all classes loaded, 

transparently from the application, at the cost of run-

time overhead introduced once for every loaded class. A 
configuration file is passed as an argument to the agent, 

to specify class substitutions and to configure the agent.  

Independently of when and how the manipulation is 

performed, the tool finds and replaces selected non-

deterministic Java classes with deterministic RTSJ-safe 

classes for each Java class that might introduce 

unpredictable response times and where a substitution is 

possible.  

In figure 2, we present a schema representing our 

approach, a mapping between classes from the standard 

Java API towards RT-aware classes from the RTSJ API 

and from the third-party library, Javolution. In certain 
cases we can map a standard Java class to several RT- 

aware classes, such as standard Java threads, which may 

be substituted by RTT or NHRTT threads. These 

different mappings must be taken into account by the 

tool, offering different instrumentation possibilities to 

the developer.   

RTSJ provides classes for real-time threads, their 

scheduling and dispatching, memory management, 

synchronization, resource sharing, asynchronous events, 

high resolution time, clocks, timers, real-time 

exceptions, POSIX signal handling, security policies 

and options for tuning the behavior of the 

implementation. However, RTSJ does not describe 
classes that cover other aspects that can also introduce 

unpredictability (like lazy initialization or array resizing 

in Java standard collections API). Thereby, RTSJ-safe 

libraries should be used to replace the unsafe classes. 

Three sections may be distinguished in the 

configuration file passed to our Java agent, 

realtimeizeme. 

Thread Replacement section: In this section 

developers specify which classes should have their 

threads substituted by real-time threads and the 

respective priorities to use. Normal Java threads 
(java.lang.Thread) can be replaced by either RTT or 

NHRTT threads. The tool is responsible for injecting 

the corresponding RTSJ code. Figure 3 shows a thread 

transformation example. 

General Replacement section: This section is used 

for replacing classes with common interfaces or 

methods. Developers specify the class to replace 

(replacee), the class that will replace it (replacer), and 

the target. There are two sub-types of replacement:  

  “ReplaceByInterface” is used for replacing 

classes that use common interfaces. It can be 

used when all method calls to the replacee 
object are method calls on the common 

interface, implemented also by the replacer. 

See figure 4. 

 “ReplaceAllReferences” will have all 

references changed regardless of interfaces. A 

mapping from methods from the replacee class 

to the replacer class can be provided if 

required. See figure 5. 

String Replacement section: Special attention has 

been paid to the String, StringBuffer and StringBuilder 

classes in the java.lang package given their popularity 
and the lack of implemented interfaces. These classes 

Original program Realtimeized program (RTT) Realtimeized program (NHRTT) 

void doSomething(Runnable r) { 

   Thread t1 = new Thread(); 

   Thread t2 = new Thread(r); 

   t2.start(); 

} 

//Thread.Type = RTT, Priority = p 
 

void doSomething(Runnable r) { 

   Thread t1 = new RealtimeThread( 

      new PriorityParameters(p)); 

   Thread t2 = new RealtimeThread( 

     new PriorityParameters(p), 

     null,null,null,null,r)); 

   t2.start(); 

} 

 

//Thread.Type = NHRTT, Priority = p 
 

void doSomething(Runnable r) { 

   Thread t1 = new 

NoHeapRealtimeThread( 

      new PriorityParameters(p), 

      ImmortalMemory.getInstance() 

   ); 

   Thread t2 = new 

NoHeapRealtimeThread( 

     New 

PriorityParameters(p),null,null, 

  ImmortalMemory.getInstance(),null,r) 
    ); 

 

   t2.start(); 

} 

Figure 3. Transformation example: Thread to Real-Time Threads 
 

Original program Realtimeized program 

void doSomething(Object o, int i) { 

   List l = new ArrayList(); 

   l.add(o); 

   l.get(i); 

   Iterator it = l.iterator(); 

} 

void doSomething(Object o, int i) { 

   List l = new FastTable(); 

   l.add(o); 

   l.get(i); 

   Iterator it = l.iterator(); 

} 

Figure 4. Transformation example: General transformations (ReplaceByInterface) 
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have methods with linear complexity (i.e., O(n)) while 

Javolution provides classes that perform inclusion, 

deletion and concatenation in O(log n). Although 

Javolution classes should be preferred when possible, 

automatic substitutions are complicated because method 
signatures differ, so each method must be individually 

considered. Wrapper objects may also be used in order 

to limit the effect of these replacements to a method, at 

the cost of additional overhead introduced by the 

conversions. A wrapper is used to convert the replacee 

into the replacer class, and at the end of the method, 

reconvert the replacer into a replacee class. See figure 6 

for an example. 

For all replacements, each replacement type provides 

a substitution target. Developers may specify class 

names, packages and methods in order to select classes 
that will undergo substitution. The ‟!‟ character before 

the class name excludes the package/class/method from 

substitution. The „*‟ is the globber character, which 

returns true when compared. The declaration order is 

important, early declarations take precedence (i.e., if we 

have “*,!a.b.*” as the target, a class a.b.c will be 

instrumented since ’*’ will be parsed before the 

exclusion ”!a.b.*”). The same classes can be specified 

in different sections of the configuration file, providing 

different types of substitution in the same class. 

Realtimeizeme is composed of two modules: 

RTAgent and RTTransformer. The RTAgent module is 
responsible for parsing the configuration file and 

defining the ClassTransformer object that performs the 

class instrumentation at load time. Its method 

“premain” is called before executing the target 

application [22]. The RTTransformer class extends 

ClassTransformer and is defined by RTAgent as being 

the object used for instrumentation. Its method 

transform receives a class definition and returns the 

instrumented bytecode which is loaded by the 

classloader. Inside that method, the loaded class name is 

compared to the class names specified in the 

configuration file; bytecode manipulation is performed 

by specified modules (thread, strings and general 

transformation). Those modules perform calls to classes 
that extend ASM classes [19], which use the Visitor 

pattern design to visit classes without representing their 

bytecode, and the Adapter pattern design to chain visits 

and compose transformations.  

V. VALIDATION AND RESULTS  

We have performed two types of tests to validate our 

tool: a verification to see if the application still works 

after using our tool and after changing to a real-time 

RTSJ compatible virtual machine, which we have tested 

on several large software; and a benchmark test to see if 

real-time requirements are met after the bytecode 
substitutions, and to see the overhead introduced by our 

tool at execution time. The first series of tests were 

performed using a Sun Java Real-Time System v2.2 

virtual machine, under a Solaris 10 Update 7 

environment with an AMD Turion 64 X2 TL-62 2.1 

GHz processor. It is important to note that some 

applications, using a default configuration to replace 

everything, did not continue to operate correctly after 

using our tool, usually because of class cast exceptions. 

When such occurrences happened we took a trial-and-

error approach, viewing the classes that were 

problematic and excluding them from the automatic 
transformation that appeared to be at cause. This could 

be minimized if we use a static analysis tool to ensure 

that substitutions are coherent and that they do not break 

functionality. Of course, this would increase overhead 

of the application and some complicated cases, like 

those of sophisticated type casts or reflection, might not 

be easily detected. In Table 2 we can see the results. 

Original program Realtimeized program  

void doSomething(Object o, int i) { 

   ArrayList a; 

   {...} 

   a = new ArrayList(); 

   a.add(obj); 

   a.get(i); 

 

   // X's method signature has an ArrayList object 
   x.method(a); 

   a = method_that_returns_ArrayList(); 

} 

void doSomething(Object o, int i) { 

   FastTable a; 

   {...} 

   a = new FastTable(); 

   a.add(obj); 

   a.get(i); 

 

  // X's method signature now requires a FastTable object 
   x.method(a); 

 

   // return type of the method modified 

   a = method_that_returns_FastTable(); 

} 

Figure 5: Transformation example: General transformations (ReplaceAllReferences) 

Original program Realtimeized program 

void doSomething(String str, char[] ch,  

                 char c, int i, int j) { 

   StringBuilder sb = new StringBuilder(str); 

   {…} 

   sb.append(str); 

   sb.insert(i, c); 

   sb.append(c, i, j); 

   str.toLowerCase(); 

   str.substring(i); 

} 

void doSomething(String str, char[] ch,  

                 char c, int i, int j) { 

   StringBuilder sb = new StringBuilder(str); 

   Text t = new Text(sb.toString()); 

   {…} 

   t.plus(string) 

   t.insert(offset, Text.valueOf(c)); 

   t.concat(Text.valueOf(c,i,j)); 

   t.toLowerCase(); 

   t.subtext(i, t.length()); 

   sb = new StringBuilder(t); 

} 

Figure 6: Transformation example: String/StringBuffer/StringBuilder transformations 
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All tested applications that correctly executed using 
the real-time virtual machine, continued to work after 

binding the java agent for class instrumentation with 

certain configuration corrections. This test demonstrates 

the feasibility of the transformations on large code 

bases. 

Regarding our benchmarking tests, we performed 

execution tests on the JOnAS 4.10.7 and Glassfish 2.1.1 

application servers, and the HSQLDB 1.8.1.2 database. 

These applications were selected for the benchmark 

because they would clearly benefit from increased 

determinism in response times. The tests were executed 
on a Sun Real-Time System 2.2 virtual machine in 

Solaris 10 Update 7, with a Pentium 4 HT processor 

running at 3GHz. For the application server benchmark, 

a non-instrumented J-Meter client was run on a separate 

machine, an AMD Turion 64 X2 TL-62 2.1 GHz 

processor, running Ubuntu 9.10. J-meter was used to 

perform HTTP accesses on servlets installed on the 

application servers. Client and server were connected by 

a local network running at 100mbits. For HSQLDB, we 

evaluated a sequence of executions of the test script 

provided with the application. For both benchmarks, 

three different cases were considered: 

 Execution of the application without our 

tool; 

 Execution of the application with our tool 

bound to the virtual-machine, intercepting 

every class load, but not performing any 

modifications (empty configuration file); 

such a test provides data on the overhead 

regarding the JVM calls to the agent at 

every class load 

 Executing the application with our tool 

bound to the virtual-machine, intercepting 

every class load and performing 

modifications specified in the configuration 

file (as many substitutions as possible were 

performed). 

 

 
Figure 7. JOnAS - Average response time chart 

 
Figure 7 shows the average response times obtained 

in our application server tests. JOnAS 4.10.7 average 
execution times were significantly higher without the 

Realtimeizeme instrumentation (from 79ms to 38ms 

with 16 clients connected, configured in J-Meter), 

specially when high concurrency takes place.  

 

 
Figure 8. JOnAS – Standard deviation 

 

Figure 8 shows the standard deviation values of the 

same test results shown previously. The instrumented 

application server presented a lower standard deviation 

than its non-instrumented counterpart, and shows a large 

improvement when many clients are accesing the servlet 

concurrently. This means that response times in 

application servers became more homogeneous after 

Name 

Java 

RTS Realtimeizeme 

Executed test 

Apache Derby 

10.5.3.0+ Passed Passed 

Execution of SQL 

commands by the 

standalone application 

Apache Felix 

2.0.4 Passed Passed 

Execution of a sample 

iPOJO application 

Apache 

Geronimo 

2.2 Failed Not tested - 

Apache JMeter 

2.3.4 Passed Passed 

HTTP Charge 

injection in servlets 

Apache Sling 

5# Passed Passed 

Deployment of an 

example web 

application 

Eclipse 3.5.0 Passed Passed 

Creation and 

execution of a Java 

project 

Glassfish 

v2.1.1* Passed Passed 

Deployment of a 

sample web 

application 

Glassfish v3* Failed
1
  Not tested - 

HSQL 

Database 

1.8.1.2 Passed Passed 

Execution of SQL 

commands by the 

standalone application 

JOnAS 4.10.7 Passed Passed 

Deployment of a 

sample web 

application 

JOnAS 5.1.1 Failed
2
 Not tested - 

Netbeans 6.8 Passed Passed 

Creation and 

execution of a Java 

project 

* Open Source Edition
 

# 
Standalone Application 

+ 
Embedded driver 

1 
This application server requires a JVM 6.0-compatible and Java 

RTS is based on JDK 5. 
2
 Classes may be loaded out-of-order in real-time virtual machines 

Table 2. Initial test results 
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using our tool, thus increasing the determinism and 

predictability in the test applications. 

 

 
Figure 8. JOnAS – Jitter 

 

Regarding Jitter, which is arguably one of the more 

important measures in real-time computing and is stated 

as the difference in time between the longest execution 
and the shortest, JOnAS has benefited from 

instrumentation at almost all levels. 

 

 
Figure 9. Glassfish - Average response time chart 

 

 
Figure 10. Glassfish – Standard deviation 

 

As seen in both Figure 9 and Figure 10, Glassfish 

kept the same average execution times with or without 

instrumentation, independently of the amount of clients 

connected, and the standard deviation was the same. 

Specifically, in average execution times, the Glassfish 
tests show that our tool did not introduce significant 

overhead or any visible benefits.  

 

 
Figure 11. Glassfish – Jitter 

 

Jitter on Glassfish, as seen in Figure 11, was less 
symmetric compared to average execution times and 

standard deviation. When 4 and 8 concurrent clients 

were executing, jitter was actually increased, but 

recovered at 16 clients. 

 

 
Figure 12. HSQL Database Engine In-Memory - Test 

Script 

 

Figure 12 presents the average execution times and 

the standard deviation of our tests on the HSQL 

database, using the integrated in memory execution test. 

Running our agent, with or without instrumentation 

being performed, caused the application to run slower. 

This most likely indicates that there is overhead when 
activating the Java agent (even when not instrumenting 

classes), and that in this application the benefits of the 

substitutions performed were not significant enough to 

overcome the overhead (as in the case for Glassfish), or 

even worse, they were detrimental. It is also well known 
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that database systems use specific concurrency control 

algorithms to deal with real-time transactions [31]. 

Tested automatic transformations probably interfere 

with these fine tuned non-real-time concurrency control 

algorithms, especially considering that the thread 
execution policy changes from a un-specified policy 

(commonly implemented as round robin) to a run-to-

block policy, as specified in RTSJ. 

VI.  RELATED WORK 

Interest in Real-time Java systems has been 

increasing for both, classical uses of the technology and 

new applications classes that would benefit, such as, 

real-time database systems [31], IT telecommunications 

frameworks, and even general-purpose web-containers. 

Generative programming techniques [32] have already 

been used to ease the development of real-time 
software. Some component-based frameworks that 

focus specifically on automatic RTSJ-compliant code 

generation at build time. Soleil [7,8] is a framework for 

creating real-time systems in Java. It provides an 

abstraction for RTSJ concepts during the design of the 

application, generating the correspondent code which 

allows the developer to focus on the functional parts of 

the system. Similarly, the framework proposed by 

Etienne et al. [6] provides a programming model to 

facilitate the design of real-time systems by means of 

the Dependency Injection pattern [24]. Compadres [9] is 

a project proposing a framework for distributed real-
time embedded systems, focusing on memory 

management aspects. The memory management issue is 

also the focus of the Golden Gate project [10]. 

However, all of these projects propose solutions for the 

design layer, not applicable to legacy software, in which 

such modifications to structure can become costly.  

Extensions for memory area management are also an 

intensive research domain. The difficulty of dealing 

with memory areas and their restrictions have motivated 

researchers to develop new abstractions for memory 

area manipulation. Mechanisms for memory regions 
inference [5, 2, 11] and programming models [4, 14] 

have already been proposed to address this issue. Deters 

et al. [12] proposed an aspect-oriented approach for 

automatically transforming Java programs into Memory 

Area-aware RTSJ code. However, scope computation 

and join points discovery are run offline and the 

modifications are done at source code level. A compile-

time analysis strategy is used by Cherem and Rugina [2] 

and Garbervetsky et al. [11] for translating Java 

applications into programs with region-based memory 

management. Thus, these approaches present static 

solutions, not considering applications with dynamic 
class generation or late deployment. 

A dynamic code instrumentation approach for 

automatic scoped memory management is also 

presented by Deters et al. [3]. According to this paper, 

static analyses need restricted assumptions about the 

behavior of the application. But as most of previous 

works, they do not deal directly with threads, their 

priorities nor the usage of RTSJ-unsafe libraries. 

As a note, the syntax used in the configuration file to 

specify classes and packages to be replaced was inspired 

by the syntax used in BND [29] to export and import 

packages. 

VII.  CONCLUSION AND PERSPECTIVES  

In this paper we have presented an approach to 

automatically transform Java legacy applications to 
RTSJ compatible applications. Our approach uses a Java 

agent to instrument all classes loaded into the virtual 

machine. We have defined class mappings, from non-

deterministic classes, to deterministic classes that exist 

in the RTSJ API and in RTSJ safe third party libraries, 

such as Javolution. Our tool, Realtimeizeme, is 

configurable, providing a means of specifying at the 

class level, which substitutions should be performed. 

Our results have been encouraging but also are 

problematic. For one, in order to use our tool on large 

software, we must provide custom configuration files, 
because performing full substitutions can break the 

application and at this moment we do not do further 

analysis in order to determine the safeness of non 

semantically equivalent substitutions, such as those 

where no common interface exists. At the moment, we 

go by creating configurations using a trial and error 

approach. If a class causes a break (e.g., Class Cast 

Exception), we remove it from the substitutions. 

Depending on the application, this can take a little time, 

but in our test applications, it was less than a couple of 

hours, as in the case of the Eclipse framework. In 

general, any application that runs on the real-time 
virtual machine will run with our tool activated. 

Regarding our benchmarks, the overhead produced 

by our tool is only visible when a class is loaded. After 

warming up (i.e., loading all classes), this overhead 

disappears. However, in some cases, there may be many 

classes created dynamically (e.g., serialization) which 

causes this overhead to persist. Nevertheless, during 

execution, we have seen that some applications improve 

in both performance and determinism, while others may 

become slower and less deterministic. For example, 

replacing all threads in an application, and then giving 
them the same real-time priority, may cause terrible 

performance due to the run-to-block scheduling policy 

for real-time threads. The run-to-block policy implies 

that when many threads of the same priority are 

scheduled, one thread can be executed for long periods 

of time causing other threads to starve, increasing jitter 

dramatically. The RTSJ specifies an optional 

functionality, dynamic changing of thread priority, 

which would make it possible to change a thread‟s 

priority during execution. This would be an interesting 

way of providing a custom real-time scheduler that 

could adapt to system load, but in practice, no RTSJ 
certified real-time virtual machine implements dynamic 

priorities at this time. In general, a certain level of 

knowledge of the application and of RTSJ is required to 

correctly configure Realtimeizeme, and the same con be 

said regarding the configuration of real-time JVMs.  

In general, it is better to give high priorities to 

threads that run for short periods and perform important 

tasks. General worker threads do not require real-time 

priorities, so one could avoid substituting them. A 
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proper mix of thread types and priorities can make an 

application more responsive and faster. 

Future work plans include the implementation of 

more complex code transformations, such as new 

mappings between standard Java classes and RTSJ-safe 
classes. We also plan to focus more on memory and 

context management mechanisms instead of only using 

real-time thread priorities. Also necessary, static 

analysis to determine the implications of a substitution 

and to find conflict points is also of interest and 

exhaustive execution tests to ensure that reachable code 

is correct after substitutions. By adding these features to 

our tool, and with more extensive knowledge on the 

application to be transformed, our tool could be used as 

a first attempt to migrate legacy applications to the 

RTSJ framework and evaluate performance, or taken 
further, could be used as part of a build system to 

produce a separate real-time compatible solution using a 

single centralized code base.  
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