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RESUMO 

O monitoramento preciso da evapotranspiração (ET) é crucial para gerenciar os recursos 

hídricos, garantir a segurança alimentar e avaliar os impactos das mudanças climáticas. 

Modelos de Balanço de Energia da Superfície (SEB) que usam dados de sensoriamento remoto 

são os mais confiáveis para estimar a ET, mas muitas vezes são difíceis de aplicar em grande 

escala devido ao longo tempo de processamento, necessidade de calibração local, entre outros 

obstáculos. Esta tese tem como foco a melhoria do geeSEBAL, uma implementação do modelo 

Surface Energy Balance Algorithm for Land (SEBAL) na plataforma Google Earth Engine 

(GEE), adaptando-o para modelagem em escala continental, usando imagens do Moderate 

Resolution Imaging Spectroradiometer (MODIS). O novo modelo, chamado geeSEBAL-

MODIS, foi usado para gerar uma série temporal de ET a cada 8 dias para a América do Sul 

com pixels de 500 m. Estudos de validação mostram que o geeSEBAL-MODIS é mais preciso 

do que outros produtos globais de ET, com uma redução do erro de 13% na escala de campo e 

30% na escala de bacia hidrográfica. O conjunto de dados está disponível para o público e pode 

ser usado para monitorar tanto mudanças climáticas em grande escala quanto as variações locais 

de ET relacionadas às atividades humanas. A análise de tendências mostra um aumento de 8,4% 

na ET sobre a América do Sul, associado ao aumento da demanda atmosférica, e à redução da 

precipitação e disponibilidade de água. Esses resultados destacam a importância de informações 

precisas sobre os processos do ciclo hidrológico para auxiliar no planejamento e gerenciamento 

dos recursos hídricos em um cenário de maior escassez. Nesse contexto, projetos como o 

OpenET, que fornece dados confiáveis e de alta resolução espacial de ET nos Estados Unidos, 

são cruciais para monitorar o consumo de água e auxiliar no desenvolvimento sustentável. Este 

trabalho também apresenta uma reprodução parcial do processo do OpenET para a 

intercomparação de modelos de sensoriamento remoto com dados de torres de fluxo, usando 

torres micrometeorológicas na América do Sul. Os resultados são promissores e abrem caminho 

para a expansão do OpenET além dos Estados Unidos e em direção a uma aplicação global. 

Palavras-chave: Balanço de energia da superfície. Mudança climática. Desmatamento. 

MODIS. Landsat. SEBAL. OpenET. 

  



 

 

ABSTRACT 

Accurately monitoring evapotranspiration (ET) is crucial for managing water resources, 

ensuring food security, and assessing the impacts of climate change. Surface Energy Balance 

(SEB) models that use remote sensing data are the most reliable for estimating ET, but they are 

often challenging to apply on a large scale due to long processing times, and local calibration 

requirements, among other obstacles. This dissertation focuses on improving geeSEBAL, an 

implementation of the Surface Energy Balance Algorithm for Land (SEBAL) model on the 

Google Earth Engine (GEE) platform, by adapting it for continental-scale modeling using 

Moderate Resolution Imaging Spectroradiometer (MODIS) images. The new model, called 

geeSEBAL-MODIS, was used to generate a temporal series of ET every 8 days for South 

America with pixels of 500 m. Validation studies show that geeSEBAL-MODIS is more 

accurate than other global ET products, with a reduction in error of 13% at the field scale and 

30% at the basin scale. The dataset is publicly available and can be used to monitor both large-

scale climate change and local ET variations related to human activities. Trend analysis shows 

an 8.4% increase in ET over South America, associated with increased atmospheric demand, 

and reductions in precipitation and water availability. These findings underscore the importance 

of accurate information on hydrological cycle processes to assist in planning and managing 

water resources in a scenario of greater scarcity. In this context, projects like OpenET, which 

provides reliable and high spatial-resolution ET data in the United States, are crucial for 

monitoring water consumption and aiding in sustainable development. This work also presents 

a partial reproduction of the OpenET process for intercomparing remote sensing models with 

flux tower data, using micrometeorological towers in South America. The results are promising 

and pave the way for expanding OpenET beyond the United States and toward global 

application. 

Keywords: Surface energy balance. Climate change. Deforestation. MODIS. Landsat. SEBAL. 

OpenET.
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Chapter 1: General Introduction 

1.1 Motivation for this study 

Actual evapotranspiration (ET) is the combination of two separate processes of water 

transference from land to the atmosphere: evaporation from wet surfaces; and transpiration from 

vegetation. ET links the water, energy, and carbon cycles (ZHANG; KIMBALL; RUNNING, 

2016), deeming it essential for water availability, agricultural productivity, and climate change 

assessments. Despite the inherent difficulty to measure ET, especially at large spatial scales, it 

is an essential climate variable, and accurate estimates of the spatiotemporal trends and 

variability in ET are necessary from local to continental scales. 

ET represents the major water withdrawal from land, making it a major driver of a 

region’s hydrological and climatological conditions. ET monitoring is used for climatological 

classification, as well as water availability drought monitoring, which allows for the 

implementation of strategic adaptation strategies in face of a changing environment, with more 

frequent and severe water scarcity conditions. ET is also key for the determination of 

agricultural water use, leading to a more conscient and sustainable food production in a world 

with increasing demand (FISHER et al., 2017).  

Over the past three decades, the focus of ET determination went from local measurements 

to estimations assisted by satellite remote sensing, due to the need to better assess the spatial 

variability of ET rather than accurately measure it in a controlled environment. As consequence, 

various spatially distributed ET datasets are available at global coverage. However, most 

models rely on empirical and simplified relationships, with coarse spatial resolution, leading to 

high uncertainties and lack of representativeness over spatially heterogeneous landscapes 

(JIANG; LIU, 2021; LAIPELT et al., 2021; SINGH et al., 2013). Meanwhile, more physically 

sound models have been limited to field and regional scales due to computational costs and 

time constraints, providing incomplete understanding over the land-atmosphere water-energy-

carbon exchange over larger ecosystems. 

Advancements in cloud computing over the past years have changed this scenario, 

allowing faster computation and utilization of more complex mathematical models over larger 

regions, with finer spatial resolution. As a result, regional projects have been launched, 

providing more reliable ET estimations to the public. Among them, the OpenET project 

(MELTON et al., 2021) provides high resolution ET estimates over the western United States 

of America (USA), based on various widely tested models. Initiatives like the OpenET benefit 

from the connection of researchers from different countries, strengthening scientific research 
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based on the exchange of experience, of measured data for model validation, and of the best 

coding practices.  

The Surface Energy Balance Algorithm for Land, developed into the Google Earth Engine 

(geeSEBAL) (LAIPELT et al., 2021) is one of the models used in OpenET project. Because of 

its physically based formulation, geeSEBAL shows potential for ET representation at 

heterogenous landscapes, with high accuracy. Given its ingestion into the Google Earth Engine 

(GEE) platform (GORELICK et al., 2017), it is now possible to use it to generate ET data over 

wide areas and long time series. In this context, the geeSEBAL is a great candidate for 

continental and global ET monitoring at moderate resolution and high accuracy. However, 

geeSEBAL has some limitations, such as sensitivity to the scene context (LONG; SINGH; LI, 

2011) and errors in the soil heat flux (G) estimation (LAIPELT et al., 2020), which is a critical 

component of the surface energy balance equation. Therefore, this study aims to explore the 

implementation of geeSEBAL at the continental level, with both moderate and high spatial 

resolutions, and to propose improvements to some of the model’s limitations. The results of this 

study will contribute to the development of a more robust and accurate ET monitoring tool, 

with potential applications in agriculture, water resources management, and climate modeling. 

1.2 Objectives 

The objective of this research is to provide ET data at both moderate (500 m pixels) and 

high (30 m pixels) spatial resolutions for South America, helping understand how this process 

relates to land cover and climate changes. The scientific papers presented in chapter 3 and 4 

and the investigations in chapters 5 and 6 present the following specific objectives: 

• Assessment of soil heat flux estimation accuracy using artificial neural networks, focusing 

on improvements of surface energy balance models; 

• Adapt the geeSEBAL model to the large scale, with continental coverage for South America 

(SA), and assess its accuracy compared to existing datasets. Using this new model version, 

named geeSEBAL-MODIS, provide an ET time series at moderate spatial resolution for the 

entire SA; 

• Use geeSEBAL-MODIS ET dataset to investigate anomalies and long-term trends of ET in 

South America, as well as other 10 meteorological and remote sensing variables relevant to 

the hydrological cycle; 

• Adapt the OpenET intercomparison approach for global applications, and apply it to South 

America, using the geeSEBAL and SSEBop models, as well as data from 36 flux towers. 
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1.3 Dissertation Structure 

This dissertation is comprised of seven chapters. The introductory chapter provides an 

overview of the topic, while the second one deepens into it, with a review of literature on ET 

description and its relevance, the history of ET monitoring, and a description of South America, 

which is the selected study area. Chapter 3 presents the findings of a study published in Remote 

Sensing in 2021 (https://doi.org/10.3390/rs13122337), which proposes the replacement of 

empirical soil heat flux equations by models based on artificial neural networks. Chapter 4 

focuses on the adaptation of the geeSEBAL model to continental scale estimation and the 

development of publicly available moderate resolution ET dataset covering SA. The results 

presented in this chapter composed a second paper that is undergoing peer review at ISPRS 

Journal of Photogrammetry and Remote Sensing. Chapter 5 covers an investigation of ET and 

other variables trends in South America. In chapter 6, the focus shifts to the reproduction of the 

OpenET project approach for the intercomparison of remote sensing and flux tower ET data, in 

South America. Finally, chapter 7 presents the dissertation's concluding remarks. 
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Chapter 2: Background 

2.1 What is evapotranspiration? 

2.1.1 The process of evapotranspiration and its participation in the water, energy 

and carbon cycles 

Actual evapotranspiration (ET) (also known as evapotranspiration), is process of water 

withdrawal from the land to the atmosphere. It combines the vaporization of water in wet soil, 

water intercepted by plants and water bodies, with the transpiration from vegetation (Figure 

2.1). ET is one of the most important components of the water cycle and, given the large water 

and energy fluxes is accounts for, it is a driver of regional hydrological and climatological 

conditions, as well as meteorological conditions at multiple spatial scales (RUHOFF et al., 

2012). 

 
Figure 2.1 – Representation of evapotranspiration as a sum of the evaporation and the transpiration. 

Source: the author. 

ET is a complex process, that connects numerous biogeochemical and biogeophysical 

processes, such as the water, energy, carbon and nutrients cycles (ALFIERI; KUSTAS; 

ANDERSON, 2018). 

Energy and water availability are the main forcing drivers that affect ET. Direct and 

diffuse radiation heat the Earth’s surface, providing the energy for water in the soil and canopy 

to vaporize. Given its primary driver position, the surface energy balance (SEB) equation, 

Equation (1), is the primary boundary condition to consider when calculating ET rates 

(KUSTAS; NORMAN, 1996): 
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λ × ET =  LE = Rn − G − H (1) 

where λ is the specific latent heat of vaporization; LE is the latent heat flux; Rn is the net 

radiation; G is the soil heat flux; and H is the sensible heat flux. Figure 2.2 shows a schematic 

representation of the Earth’s energy cycle, in which absorbed shortwave radiation, such as ultra-

violet (UV) and visible, is emitted as longwave radiation, both near-infrared (NIR) and thermal-

infrared (TIR). LE represents the energy used by water on the surface of the Earth to vaporize 

into the atmosphere. In the absence of water, all energy taken by the surface is transformed into 

G and H, with LE = 0. On the other hand, the abundance of water leads to LE = Rn – G, with 

H = 0 (ALLEN et al., 1998). Since H is the energy used for heating the near surface atmosphere, 

evapotranspiration plays an important role in regulating the air temperature, so that high ET 

promotes an “evaporative cooling” effect. 

 
Figure 2.2 – Schematic drawing of the major components of the Earth’s energy cycle, which is open due 

to the exterior energy source and losses to space. Yellow arrows represent shortwave radiation, while 

orange arrows represent longwave radiation. Source: adapted from Atkinson (2017). 

Figure 2.3 presents the Earth’s water cycle. Over the Earth’s land, ET accounts for 

between 50% and 80% of precipitation, making the second largest flux of the water cycle 

(VARGAS GODOY et al., 2021). On land, the water balance can be expressed as the sum of 

the fluxes into (positive) and from (negative) the land: 
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∆S = P − Q − ET (2) 

where ΔS is the land’s water storage variation; P in the precipitation over land; and Q is the 

discharge.  

 
Figure 2.3 – Schematic drawing of the major components of the water cycle. Source: the author. 

Another important factor that controls ET is the atmospheric capacity for water uptake, 

also known as atmospheric demand, or potential evapotranspiration (ETp). Air temperature, 

wind speed and air moisture influence the atmosphere power to take up water from the surface. 

Penman (1948) developed a mathematical model to estimate evaporation rates of water bodies, 

considering the SEB equation, in association with the mass transport method, that takes into 

account the aforementioned atmospheric drivers of ET.  

For surfaces other than water bodies, vegetation type, age, health and distribution 

influence the ET rates. On one hand, plant shading limits evaporation, since less energy is 

available at the soil level (ALLEN et al., 1998). On the other, plant transpiration, controlled by 

stomatal aperture, can increase ET losses. Monteith (1965) extended Penman’s equation by 

adding surface and aerodynamic resistances, making it adequate for ET estimation over 

vegetated surfaces (MONTEITH; UNSWORTH, 2013). 

Figure 2.4 shows the components of the terrestrial carbon cycle. In plants, carbon is taken 

in by the leaves and, along with water taken up by the roots, is used in the photosynthetic 

process to produce energy and promote plant growth. Excess carbon is released by plants via 

the respiration process. Water availability plays a critical role on the carbon cycle, since soil 
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moisture controls plant photosynthesis and respiration (MU; ZHAO; RUNNING, 2011a). 

Plants transpiration accounts for almost all water they consume, with very little remaining in 

their bodies (ALLEN et al., 1998; HUNSAKER et al., 2003; LAZZARA; RANA, 2010; 

TASUMI et al., 2005). Therefore, ET monitoring is key for assessing vegetation biomass 

production and the surface carbon budget, which, in turn, support the study of climate variations 

and trends. 

 
Figure 2.4 – Simplified schematic drawing of the fast carbon cycle’s land components. Source: the 

author. 

2.2 Evolution of evapotranspiration monitoring 

2.2.1 From local measurements to regional estimations 

Historically, ET monitoring has been performed at local scale. The two most used 

instruments to measure ET are the weighing lysimeter and the micrometeorological tower (also 

known as flux towers). In the lysimeter, ET is obtained as a residual of the water balance in the 

soil block. Lysimeters utilization usually limited to short crops, as plant size influences the size 

of the structure. This way, the weighing lysimeter is not indicated for ET monitoring in forest 

formations (TEIXEIRA et al., 2009). It is not appropriate for natural vegetation as well, since 

its area tends to be small and does not represent plant diversity (RANA; KATERJI; DE 

LORENZI, 2005). 

Micrometeorological approaches to ET measuring take two forms, the Bowen Ratio (BR) 

(BOWEN, 1926) and the Eddy Covariance (EC) (BURBA, 2013; MONTEITH; UNSWORTH, 

2013). These methods do not suffer from the same limitations as weighing lysimeters, and flux 
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towers are used over a variety of land covers and biomes to measures energy, water and carbon 

fluxes. BR stations uses simultaneous measurements of air temperature and humidity at 

different heights to calculate vertical gradients, and from those, the BR, which is a relationship 

between H and LE. Together with Rn and G measurements, ET is calculated at the station. EC 

stations, on the other hand, makes vector (wind direction and speed) and scalar (pressure, 

temperature, concentration of water, carbon dioxide and other gases) measurements to 

determine H and LE separately. Although EC data has been extensively used to validate remote 

ET estimates over the last decades (FISHER et al., 2017; LAIPELT et al., 2020; MELTON et 

al., 2021; MORTON et al., 2013; RUHOFF et al., 2013; SENAY et al., 2022a), it often lacks 

surface energy balance closure. Therefore, an additional verification step should be taken to 

assess data quality and correct it for SEB closure (TWINE et al., 2000). 

Despite the accuracy of such methods, they provide values for specific sites and fail to 

represent the regional heterogeneity of ET. Other methods try to simplify ET estimation, based 

on land surface and atmospheric conditions. The FAO Penman-Monteith (PM) method 

(ALLEN et al., 1998; ASCE-EWRI, 2005) employs the surface energy balance and mass 

transport approaches to estimate ET for a reference crop surface (ETr) and combines it with 

crop (kc) and soil (ks) coefficients to estimate actual evapotranspiration. Equations (3) and (4) 

describe daily ET estimation via the FAO PM method: 

ET = ks × kc × ETr (3) 

ETr =
0.408 Δ(Rn 24h − G24h) +

1600
Tair 24h + 273.15

∙ γ ∙ u2 24h(es 24h − ea 24h)

Δ + γ(1 + 0.38 u2 24h)
 (4) 

where ks and kc are water stress and crop coefficients; Rn 24h is the daily net radiation (MJ day-

1 m-2); G24h is the daily soil heat flux (MJ day-1 m-2); Tair 24h is the daily mean air temperature 

(°C); γ is the psychrometric constant (kPa °C-1); u2 24h is the daily mean wind speed (m/s) at 2 

m height; es 24h and ea 24h are the saturation and actual vapor pressure for the daily time step 

(kPa); and Δ is the slope of the saturation vapor pressure-temperature curve (kPa °C-1). 

ETr values are generally obtained from atmospheric conditions gathered at meteorological 

stations. the ks and kc coefficients are obtained from information about soil moisture, crop type, 

and crop age. Given the lower spatial variability of atmospheric variables when compared to 

ET, estimated ETr has larger footprint and, with information on crop and soil conditions, it is 

possible to map ET over cropland areas. However, this method is highly sensitive to ks and kc 
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accuracy and upscaling it to regional can raise uncertainties, due to heterogeneity of climate, 

terrain, land cover, soil and soil moisture (TUCCI, 2004; DE ANDRADE, 2018). 

River basin (or catchment) water balance is another method for ET estimation, that is 

appropriate for regional applications. Eq. (5) shows a rewritten and simplified form of Eq. (2), 

in which ET is computed from the water balance of a river basin: 

ET = P − Q − ∆S (5) 

where P in the precipitation over the catchment area; Q is the discharge; and ΔS is the water 

storage variation in the basin.  

At daily and monthly time-scales, multi-parameter hydrological models are used for water 

fluxes prediction, with a need for previous calibration (MISHRA; SINGH, 2004; 

COLLISCHONN et al., 2007; SIQUEIRA et al., 2018). At annual and multi-annual time 

intervals, ΔS is usually assumed as equal to zero, if no trends or significant anomalies in annual 

Q are observed (CAVALCANTE et al., 2019), and ET can simply be obtained as the difference 

between measured values of P and Q. Optionally, ΔS can be retrieved from the Gravity 

Recovery and Climate Experiment (GRACE) (SWENSON, 2012; SWENSON; WAHR, 2002, 

2006a; WEISE, 2015) mission’s total water storage (TWS) data (REAGER; FAMIGLIETTI, 

2013), with restrictions to the river basin’s area (LANDERER; SWENSON, 2012; RODELL 

et al., 2011). Catchment water balance is a widely used method for ET estimation, but it 

provides average values for the catchment, or sub-catchments in the case of distributed 

approaches, and still does not represent the true spatial variability of ET (ZHANG; KIMBALL; 

RUNNING, 2016). In addition, global improvements in ET measurements are not sufficient for 

capturing the ET patterns in regions with limited ground data, which are, unfortunately, the 

ones that suffer the most with climate change and drought (GOSWAMI et al., 2006; IM; PAL; 

ELTAHIR, 2017; XU; ZHOU; SHIMIZU, 2010). 

Despite the limitations of the aforementioned methods for ET monitoring, they are well-

established and are still useful, especially for calibration and validation of the new methods 

being developed (SENAY et al., 2013; SENAY; KAGONE; VELPURI, 2020; BHATTARAI 

et al., 2019; DE ANDRADE et al., 2021). Over the past decades, growing access to satellite 

imagery initiated a new phase in ET estimation. As a result, several approaches based on remote 

sensing emerged, addressing the issue of spatial representativeness, but not without their own 

problems. 
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2.2.2 Remote sensing of evapotranspiration 

Although satellite remote sensing data has been available for over four decades, it took a 

while before it started being widely used in hydrology, because of limitations like the 

unavailability of capable hardware and software for big data processing, lack of knowledge and 

trust in the application of remote sensing techniques, and reluctance to move away from 

conventional and well-established methods (SCHULTZ; ENGMAN, 2000). However, constant 

computational advancements and the multiplication of spaceborne remote sensors have made 

remote sensing a more attractive approach to modeling hydrological variables, with the 

advantage of the spatial representativeness of land features at multiple spatial scales, in a 

globally consistent and cost-effective manner (KUSTAS; NORMAN, 1996; SCHMUGGE et 

al., 2002). 

2.2.2.1 ET models based on remote sensing data 

 The most commonly used remote sensing (RS) based ET models can be divided into two 

main approaches: one with the land surface temperature (LST) as the main driver, and another 

based on vegetation indexes (VI). Table 2.1 lists some of the most used models in each 

approach. The first group uses LST retrieved from satellite images to estimate SEB fluxes, so 

they are also known as SEB models. Most of them rely on the selection of boundary conditions, 

or pixels, on which ET is either null or potential (the same as atmospheric demand), and a 

fraction of evapotranspiration is computed for each image pixel, based on its LST value in 

relation to the extremes. These models tend to be limited in regard to large scale application 

and operationalization, since the selection methods for the boundary conditions can be 

subjective, making extrapolations for larger areas uncertain (LIOU; KAR, 2014a; SENAY et 

al., 2013).  

VI based models generally use vegetation indexes, such as the leaf area index (LAI) or 

the normalized difference vegetation index (NDVI), and other surface characteristics, like 

albedo and land cover classification, to compute the resistance terms of the Penman-Monteith 

(PM) (MONTEITH, 1965) or of the Priestley-Taylor (PT) (PRIESTLEY; TAYLOR, 1972) 

equations. The PM equation presents a robust solution to both the SEB and of the mass transport 

models, while the PT equation represents a simplification of PM, in which the mass transport 

parcel is replaced by an empirical value, that is a function of the area of interest climate. 
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Table 2.1 – Brief description of the most commonly used ET models, separated between SEB and 

physical approaches. 

Model Source Characteristics 

LST approach 

Surface Energy Balance Index 

(SEBI) 

(MENENTI, M; 

CHOUDHURY, 

1993) 

FE is based on the difference between LST and the 

temperature of the atmospheric boundary layer, and two 

boundary conditions for extreme surface moisture 

conditions, derived from the SEB equation. 

Atmosphere–Land Exchange 

Inverse (ALEXI) 

(ANDERSON et 

al., 1996) 

Utilizes geostationary data to correlate LST sub-daily 

changes to the evaporative cooling effect. Estimates both 

plant transpiration and soil evaporation, at a coarse spatial 

resolution. 

Surface Energy Balance 

Algorithm for Land (SEBAL) 

(BASTIAANSSEN 

et al., 1998a) 

Estimates a temperature gradient to estimates SEB fluxes, 

via an internal calibration method, and with selection of 

pixels under extreme surface moisture conditions. 

Simplified Surface Energy 

Balance Index (S-SEBI) 

(ROERINK; SU; 

MENENTI, 2000) 

Graphical approach to the SEBI model, with FE 

computation based on the relationship between LST and 

albedo. 

Surface Energy Balance System 

(SEBS) 
(SU, 2002) 

FE is based on the solution of the SEB equation at extreme 

surface moisture conditions for sensible heat flux retrieval, 

and comparison to local H value. 

Atmosphere–Land Exchange 

Inverse flux disaggregation 

approach (DisALEXI) 

(NORMAN et al., 

2003) 

Vegetation index and LST data from fine remote sensing 

data are used to upscale ALEXI's ET estimations. 

Mapping Evapotranspiration 

with Internalized Calibration 

(METRIC) 

(ALLEN; 

TASUMI; 

TREZZA, 2007) 

Employs the SEBAL methodology for SEB fluxes 

computation, with correction of FE based on instant ETr 

values, and additional correction related to surface 

topography. 

Operational Simplified Surface 

Energy Balance (SSEBop) 

(SENAY et al., 

2013) 

FE is based on LST and the LST of extreme moisture 

boundary conditions, derived from vegetation index and 

the SEB equation. 

VI approach 

MOD16 

(MU; ZHAO; 

RUNNING, 

2011a) 

Uses vegetation index and surface properties, associated to 

meteorological conditions to estimate ET, based on the 

Penman-Monteith equation. 

Priestley–Taylor Jet Propulsion 

Laboratory (PT-JPL) 

(FISHER; TU; 

BALDOCCHI, 

2008) 

Uses vegetation indexes to estimate transpiration and soil 

evaporation, based on the Priestley-Taylor equation. 

Penman-Monteith-Leuning 

(PML) 

(LEUNING et al., 

2008) 

Uses leaf area index to derive surface conductance, and the 

Penman-Monteith equation to estimate ET. 

Global Land Evaporation 

Amsterdam Model (GLEAM) 

(MIRALLES et al., 

2011) 

Employs the Priestley-Taylor equation to estimate ET, 

based on meteorological reanalysis and remote sensing 

surface data. 

Breathing Earth System 

Simulator (BESS) 
(RYU et al., 2011) 

Uses the Penman-Monteith equation to estimate soil and 

canopy ET, as well as gross primary productivity. 

 

Although VI based methods are widely used for regional and global applications, not 

using LST information makes them inaccurate over areas with high soil evaporation, which is 

quite common over agricultural areas and natural wetlands (BIGGS; MARSHALL; MESSINA, 

2016). Over such areas, SEB models are indicated, for LST is highly sensitive to effects of 
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evaporative cooling and surface moisture (ANDERSON et al., 2011; MELTON et al., 2021), 

making them ideal for the assessment of ET variations and anomalies related to water stress 

(BHATTARAI et al., 2019). 

Table 2.2 lists some of the most relevant remote sensing instruments for ET estimation 

by SEB models. Visible and infrared numeric data provide information about the surface at 

multiple spatiotemporal scales. Usually, due to energy output differences, the data from a single 

instrument are distributed with a finer spatial resolution for visible and near infrared bands, and 

a coarser one for thermal infrared. Among the different instruments, spatial and temporal 

resolution have opposing patterns, where finer spatial resolution leads to longer revisit times. 

Conversely, satellites at a higher orbit, and coarser spatial resolution, take less time to reimage 

the same area. 

Table 2.2 – Spaceborne remote sensing instruments commonly used in ET estimation by LST-driven 

models (SEB models). 

Satellite / Sensor Spatial Resolution 
Temporal 

resolution 
Activity 

GOES (Geostationary Operational 

Environmental Satellite) 
1, 4 and 8 km 8 times per hour 1978 - now 

Landsat 5 TM 30 and 120 m 16 days 1984 - 2013 

AVHRR/3 (Advanced Very High Resolution 

Radiometer) 
1090 m twice a day 1998 - now 

Landsat 7 ETM+ 15, 30 and 100 m 16 days 1999 - now 

MODIS (Moderate Resolution Imaging 

Spectroradiometer) Terra 
250, 500 and 1000 m Twice a day 1999 - now 

ASTER (Advanced Spaceborne Thermal 

Emission and Reflectance Radiometer) 
15, 30 and 90 m daily 1999 - now 

MODIS Aqua 250, 500 and 1000 m Twice a day 2002 - now 

VIIRS (Visible Infrared Imaging Radiometer 

Suite) 
375 and 750 m daily 2012 - now 

Landsat 8 15, 30 and 100 m 16 days 2013 - now 

Sentinel-3A 1000 m daily 2016 - now 

ECOSTRESS (ECOsystem Spaceborne 

Thermal Radiometer Experiment on Space 

Station) 

70 m 1 to 5 days 2018 - now 

Landsat 9 15, 30 and 100 m 16 days 2022 - now 

 

2.2.2.2 The SEBAL model 

The SEBAL model was developed by Bastiaanssen et al. (1998) and has been applied 

over a wide range of surfaces and climates. The original model uses physical (Rn, H) and 

empirical (G) relationships to estimate the components of the SEB equation, driven exclusively 



 

 

13 

 

by remote sensing data. One of the model’s innovations is the calculation of a near surface 

temperature gradient (dT), that relies on LST data alone. This removes the need for LST 

calibration and the dependance on spatially accurate air temperature data (ALLEN; TASUMI; 

TREZZA, 2007). Overall, the model’s sound theoretical foundation and relative simplicity 

inspired researchers to apply and adapt SEBAL to their needs over the past two decades. It is 

also the selected model for this research, and a detailed description of its formulation is 

presented in Chapter 3. 

At the time of its creation, SEBAL’s independence from meteorological data was ideal 

for areas with poor monitoring of atmospheric variables, since the satellite images have global 

coverage. However, the base model does not solve the mass transport and other atmospheric 

factors that affect ET, which could lead to errors in some scenarios. Allen et al. (2007) and 

Allen, Tasumi, Trezza (2007) proposed an improvement to SEBAL by including ETr data into 

the formulation, thus creating the METRIC model. Like SEBAL, the METRIC model did not 

propose a solution for the subjectivity of endmembers (hot and cold pixels) selection, that 

hinders large scale operationalization for both models. (SENAY et al., 2013) proposed a new 

method for operational ET estimation inspired by SEBAL, the SSEBop model. In SSEBop, the 

hot and cold pixels selection is replaced by boundary conditions, diminishing the contextual 

nature of the model and facilitating continental application. Despite the creation of new models 

after it, SEBAL is still used worldwide, and ranks among the best performing ET models 

(LAIPELT et al., 2020; LIOU; KAR, 2014a; MELTON et al., 2021; WAGLE et al., 2017). 

The development of the GEE platform provided access to satellite data and powerful 

cloud computing, enabling the incorporation of SEBAL framework within the GEE, renamed 

to geeSEBAL. The geeSEBAL model is able to provide long ET time series for Landsat 

imagery, spanning over 30 years. It has been applied to areas in Brazil (LAIPELT et al., 2021) 

and the USA (MELTON et al., 2021), and has shown its potential as tool for monitoring 

agricultural water use and effects of other human activities on ET. 

The main issue that inhibits SEBAL, and METRIC, large scale application is the 

contextual nature of the endmember selection process, which is dependent on the area of interest 

(AOI) size and location, and the imagery spatial resolution (LONG; SINGH; LI, 2011). 

Bhattarai, Mallick and Jain (2019) describe that this issue leads to uncertainties when scaling 

the application to larger areas, such as a country or continent. Figure 2.5 illustrates this effect 

over the India’s territory. While the “all India” AOI yields a seamless map of ET, it computes 

overestimations on colder areas. On the other hand, AOI splitting led to contrasting LE values 
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over the borders of the agro-ecological regions or grid cells. Additionally, finer grids resulted 

in errors in the model’s computation due to insufficient valid endmembers. Therefore, the large-

scale implementation of SEBAL still remains a challenge. 

 
Figure 2.5 – Instantaneous LE maps (March 12, 2005) from the SEBAL model using the four spatial 

domains. Source: adapted from Bhattarai, Mallick and Jain (2019). 

A more in-depth description of the SEBAL model formulation is presented in Chapter 3, 

along with the solution proposed in this work for large scale implementation. 

2.2.2.3 Multi model and multi scale approaches to ET monitoring 

Despite the advancements in data availability and computational processing power, 

mapping ET at high spatiotemporal resolution is still challenging for large areas, mainly for 

three reasons: the incompatibility between spatial resolution and satellite revisit time; the 

processing time for SEB models to compute ET, which makes on demand ET mapping 

unfeasible; and the computer memory consumption of ET maps at continental scales. Therefore, 

coupling multi-scale ET mapping is a fitting alternative (ANDERSON et al., 2011). In this 

context, the FAO’s (Food and Agriculture Organization) Water Productivity through Open 

access of Remotely sensed derived data (WaPOR) project (FAO, 2020) provides ET data in 

Africa at three spatial resolutions, with a coarser one (250 m pixels) covering the whole 

continent, and a finer one (30 m pixels) covering irrigation areas. The WaPOR data helps 

monitoring ET at different levels and contexts, from small field irrigation to large river basins 

storage assessment. 

Another challenge to ET monitoring is the large range of ET models, that often yield 

diverging results, without a consensus on which is better or more suitable for specific locations. 

One solution to this problem has been the merging of the results from multiple models, 

generating an ensemble (ANDAM-AKORFUL et al., 2015; BHATTARAI et al., 2019; 
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RUHOFF et al., 2022; VINUKOLLU et al., 2011). The ensemble approach tends to mitigate 

potential inaccuracies from individual models, yielding better performance in validation 

studies. One of the largest efforts to provide an ensemble from different models is the OpenET 

project (MELTON et al., 2021), that uses six models to provide an ensemble ET time series at 

high spatial resolution, covering the western USA. The project includes many stakeholders and 

collaborators from the USA, led by the Desert Research Institute (DRI), the Environmental 

Defense Fund (EDF), the National Aeronautics and Space Administration (NASA), and 

Google. In Brazil, the Federal University of Rio Grande do Sul (UFRGS) is also involved in 

the project, implementing the geeSEBAL model. The easily accessible ET data from the 

OpenET project helps monitor water use and, as a consequence develop better water 

management practices. 

Projects like the WaPOR and OpenET indicate a new phase in ET modeling, a phase that 

benefits from big geodata availability, increasing computational power and expanding 

collaboration between research teams around the globe. 

2.2.3 Insights on the future of ET monitoring 

The incorporation of remote sensing data into ET modeling has improved our 

understanding of this and other hydrological process from field to continental scale, at multiple 

temporal resolutions. SEB-based models have the advantage of representing the surface 

characteristics more accurately, because of the close relationship between LST and surface 

moisture. However, their dependence on cloud free images restricts their usage in some areas 

and time periods, which is a major drawback, and can lead to inconsistences in ET seasonality 

of larger areas, when compared to ET estimated from river basin water balance (FASSONI-

ANDRADE et al., 2021; RUHOFF et al., 2012). SEB-based models also present divergent 

results, making the selection of a single one a difficult task. Finally, the contextual nature and 

expensive computational demand of some models hinder their application at an operational 

level (BHATTARAI et al., 2017; BHATTARAI; MALLICK; JAIN, 2019; LONG; SINGH; LI, 

2011; WAGLE et al., 2017). Nonetheless, SEB-based models have been used extensively over 

the past years and show the potential to solve several of the main outstanding knowledge gaps 

for the ET-based science. To do so, improvements in ET estimation must aim for higher 

accuracy, higher spatiotemporal resolution, larger spatial coverage, lower latency, and long-

term monitoring (FISHER et al., 2017). 

Since LST plays a major role in ET prediction, acting as a surrogate for surface moisture 

(ANDERSON et al., 2012), recent missions have consistently incorporated thermal infrared 
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sensors aboard their satellites. That is the case for the Visible Infrared Imaging Radiometer 

Suite (VIIRS), Landsat 9, and ECOsystem Spaceborne Thermal Radiometer Experiment on 

Space Station (ECOSTRESS) missions, which provide thermal infrared images with 

spatiotemporal resolutions of 1,000 m/1 day, 100 m/16 days, and 70 m/1-5 days, respectively 

(CAO et al., 2013; FISHER et al., 2020a; MASEK et al., 2020). These missions enable the 

improvement and continuity of LST (and, as consequence, also ET) monitoring for the years to 

come. 

The ever-growing range of satellite imagery for ET modeling creates a new challenge, 

which is accessing and using petabytes of data. Cloud storage and computing has been 

presented as a solution for managing “big data”. Platforms such as the GEE democratize 

powerful processing worldwide, making both large amounts of data and powerful computer 

processing accessible to anyone. In this context, the use and innovation of ET models is 

booming. Novel techniques are also starting to be widely used, such as machine-learning 

models (CHEN; ADAMS, 2006; DE ANDRADE et al., 2021a; KÄFER et al., 2020; SARI; 

DOS REIS CASTRO; PEDROLLO, 2017), that require little to no prior knowledge of the 

physical processes underlying the observed variables, enabling the discovery of unforeseen 

relationships as new observations are made (LARY et al., 2016; MCCABE et al., 2017). 

2.3 South America 

South America (SA) represents 12% of the Earth’s land area, and contributes with around 

30% of total runoff into the oceans (CLARK et al., 2015), earning the nickname of “Continent 

of Water” (STEVAUX et al., 2009). Distributed across a wide latitudinal range (55o S to 12o 

N), SA presents a variety of climates, seasonally influenced by the Inter Tropical Convergence 

Zone (ITCZ), near the Equator Line; and the South Atlantic Convergence Zone (SACZ), formed 

from the Amazon towards the South of Brazil and the Atlantic Ocean (MARENGO et al., 2012; 

VERA et al., 2006). While the ITCZ is a worldwide phenom derived from the Earth’s rotation 

and incident solar radiation difference, the SACZ is a particular effect to SA, emanating from 

both the ITCZ during the southern hemisphere summer and the presence of the Andes Mountain 

Range, that acts as an obstacle to clouds and moisture formed over the Atlantic Ocean and the 

Amazon Forest, which get redirected towards the center of SA (GARREAUD et al., 2009). At 

the annual time scale, climate in SA is recurrently influenced by the El Niño Southern 

Oscillation (ENSO), in which the variations in the Pacific and Atlantic oceans’ surface 
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temperature propagate to changes in atmospheric conditions, often leading to diverging extreme 

events across SA (CAI et al., 2020; MARENGO et al., 2016).  

These factors are strong drivers of the SA climates and biomes, presented in Figure 2.6. 

In the northern land portion of the continent, humid winds of the ITCZ are responsible for 

intense rainfall with gauges reaching up to 13,000 mm year-1, in western Colombia (POVEDA; 

MESA, 2000). In this region is located the Amazon Forest, the largest biome in SA and the 

largest tropical forest in the world. Rainfall in the Amazon decreases gradually from Northwest 

to the South range on average from 3,000 to 1,500 mm year-1 (ESPINOZA VILLAR et al., 

2009). Southeast of the Amazon Forest, is the Brazilian Savanna, formed by the Cerrado and 

Caatinga biomes. This region receives rainfall between 600 and 2,000 mm year-1, presenting a 

well-defined seasonality with dry winters and wet summers, typically influenced by the SAMS 

and the SACZ (MARENGO et al., 2012, 2022). Southwest of the Cerrado, the Pantanal and 

Chaco regions are home to seasonally flooded and dry forests, respectively, despite the 

relatively lower annual precipitation (GARCÍA et al., 2017; REBOITA et al., 2010). In the 

southern portion of the continent, the semi-arid climate of Patagonia contrasts with the wetter 

regions like the Pampa. The Andes Mountain Range acts as a barrier for moisture from the 

Pacific Ocean to reach the eastern portions of the continent (GARREAUD; ACEITUNO, 2001), 

presenting a gradient of over 4,000 mm year-1 in parts of the west coast, to under 200 mm year-

1, in northern Chile and western Argentina (PARUELO; JOBBÁGY, 2007). 

Over the past decades, great efforts have been employed on monitoring water cycle 

processes throughout the South American continent. For ET, stations based on BR and EC 

methods have been installed on several landcover types and climates, as a result of cooperation 

of several institutions from Brazil and other countries. Figure 2.7 (A) shows some of the 

micrometeorological towers installed in South America over the past two decades. Flux towers 

were installed over croplands (CABRAL et al., 2003; CARNEIRO et al., 2013; DIAZ et al., 

2019; MOREIRA et al., 2013; SAKAI et al., 2004; SOUZA et al., 2019; UCKER TIMM et al., 

2009; ZIMMER et al., 2016), grasslands (BIUDES et al., 2015; HASLER; AVISSAR, 2007; 

OLIVEIRA et al., 2006; RUBERT et al., 2016; VON RANDOW et al., 2012), forests 

(ARAÚJO, 2002; BIUDES et al., 2015; BORMA et al., 2009; DALMAGRO et al., 2019; 

GOULDEN et al., 2004; SALESKA et al., 2003; ULKE; GATTINONI; POSSE, 2015; 

VIHERMAA et al., 2016; VON RANDOW et al., 2012), wetlands (GRIFFIS et al., 2020; 

HOLL et al., 2019), and savanna formations (BIUDES et al., 2015; BORGES et al., 2020; DA 

ROCHA et al., 2009; SANTOS et al., 2003). However, given the cost and technical difficulties 
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of sustaining a flux tower, most sites present a series of under four years, with several gaps and 

measurement errors, that must go through a treatment phase before being used for ET 

monitoring. 

 
Figure 2.6 – (A) Climates distribution in South America (PEEL; FINLAYSON; MCMAHON, 2007), 

denoted as follows: tropical rainforest (Af), tropical monsoon (Am), tropical wet savanna (Aw), arid 

hot (BWh), arid cold (BWk), semi-arid hot (BSh), semi-arid cold (BSk), temperate dry hot summer 

(Csa), temperate dry and warm summer (Csb), temperate dry and hot summer (Cwa), temperate dry 

winter and warm summer (Cwb), temperate dry winter and cold summer (Cwc), temperate without dry 

season and hot summer (Cfa), temperate without dry season and warm summer (Cfb), temperate 

without dry season and cold summer (Cfc), cold climate with dry and warm summer (Dsb), cold dry 

summer (Dsc), cold without dry season and warm summer (Dfb), cold without dry season and cold 

summer (Dfc), polar tundra (ET), and polar frost (EF). (B) South American biomes from the 

Terrestrial Ecoregions of the World (OLSON et al., 2001; TURCHETTO-ZOLET et al., 2013). 

At a larger scale, ET has been consistently estimated from river basin water balance for 

several decades, based on rainfall and river discharge data, connected through a wide array of 
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mathematical models that predict intermediary processes, such as ET and water storage 

variations. One of the most laborious steps of applying rainfall-discharge models is to collect 

the input data, particularly the discharge one, that may have several sources and inconsistencies. 

To overcome this obstacle, Ruhoff et al., (2022) prepared and distributed streamflow 

measurements for approximately fifty points in SA, corresponding to several of the largest river 

basins in the continent, at a monthly time scale. The data is available at 

https://metadados.snirh.gov.br/geonetwork/srv/eng/catalog.search#/metadata/ebcdf49c-706e-

421f-aa70-bf866a0ab94e . Figure 2.7(B) displays the stations location and the respective 

drainage area of each one, corresponding to seven major river basins in SA. Despite the efforts 

on collecting and sharing measured data for ET monitoring in South America, strategic regions 

are still lacking attention, such as the Andes Mountains, the Argentinian Patagonia, and the 

Orinoco region, Northwest of the Amazon Forest.  

 
Figure 2.7 – (A) Flux towers distribution in South America. (B) river discharge stations and their 

respective drainage areas on seven major river basins in South America. Source: the author. 

 

https://metadados.snirh.gov.br/geonetwork/srv/eng/catalog.search#/metadata/ebcdf49c-706e-421f-aa70-bf866a0ab94e
https://metadados.snirh.gov.br/geonetwork/srv/eng/catalog.search#/metadata/ebcdf49c-706e-421f-aa70-bf866a0ab94e
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Abstract 

Soil heat flux (G) is an important component for the closure of the surface energy balance 

(SEB) and the estimation of evapotranspiration (ET) by remote sensing algorithms. Over the 
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last decades, efforts have been focused on parameterizing empirical models for G prediction, 

based on biophysical parameters estimated by remote sensing. However, due to the existing 

models’ empirical nature and the restricted conditions in which they were developed, using 

these models in large-scale applications may lead to significant errors. Thus, the objective of 

this study was to assess the ability of the artificial neural network (ANN) to predict mid-

morning G using extensive remote sensing and meteorological reanalysis data over a broad 

range of climates and land covers in South America. Surface temperature (Ts), albedo (α), and 

enhanced vegetation index (EVI), obtained from a moderate resolution imaging 

spectroradiometer (MODIS), and net radiation (Rn) from the global land data assimilation 

system 2.1 (GLDAS 2.1) product, were used as inputs. The ANN’s predictions were validated 

against measurements obtained by 23 flux towers over multiple land cover types in South 

America, and their performance was compared to that of existing and commonly used models. 

The Jackson et al. (1987) and Bastiaanssen (1995) G prediction models were calibrated using 

the flux tower data for quadratic errors minimization. The ANN outperformed existing models, 

with mean absolute error (MAE) reductions of 43% and 36%, respectively. Additionally, the 

inclusion of land cover information as an input in the ANN reduced MAE by 22%. This study 

indicates that the ANN’s structure is more suited for large-scale G prediction than existing 

models, which can potentially refine SEB fluxes and ET estimates in South America. 

Keywords: remote sensing; surface energy balance; deep learning; MODIS; GLDAS 2.1; flux 

towers 

3.1 Introduction 

Soil heat flux (G) is one of the main components of the surface energy balance (SEB) and 

accounts for the energy transferred to and from the land surface and deeper layers of the ground 

(KUSTAS; NORMAN, 1999). The SEB determines the energy and mass exchanges of the soil-

plant-atmosphere continuum, surface temperature (Ts), the amount of energy available for 

evaporation and, ultimately, SEB defines local climate conditions and water availability 

(TRENBERTH; FASULLO; KIEHL, 2009). Most energy that is transferred into the soil during 

sunlight hours is transferred back at night. Thus, G in vegetated surfaces is generally the 

smallest of the SEB fluxes and has been neglected in daily considerations of the SEB with some 

success (SENAY et al., 2013, 2017). However, significant energy transfers occur both during 

the day and night, and G’s exclusion from instantaneous SEB estimations can lead to substantial 
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errors, e.g., mid-morning G (usually between 9 am and 12 pm) can be as large as sensible heat 

flux (H) for some land covers (HEUSINKVELD et al., 2004; SAUER; HORTON, 2015). 

Several remote sensing products provide valuable knowledge at different spatiotemporal 

scales to assess land surface and meteorological conditions. Motivated by this availability, 

many models were developed to calculate SEB fluxes from the integration of remote sensing 

data, mainly focused on actual evapotranspiration (ET) estimation (ALLEN; TASUMI; 

TREZZA, 2007; ANDERSON et al., 1996, 2011; BASTIAANSSEN et al., 1998a, 1998b; 

KALMA; JUPP, 1990; MENENTI, M.; CHOUDHURY, 1993; NORMAN; KUSTAS; 

HUMES, 1995; ROERINK; SU; MENENTI, 2000; SENAY et al., 2007; SENAY; KAGONE; 

VELPURI, 2020; SU, 2002). Among them, the SEBAL (surface energy balance algorithm for 

land) is one of the most used models around the world (BASTIAANSSEN et al., 2010, 1998a, 

1998b, 2005; RUHOFF et al., 2012; SINGH et al., 2008; ZHANG et al., 2010), with relatively 

accurate predictions of ET (BHATTARAI et al., 2016; LIOU; KAR, 2014b; WAGLE et al., 

2017). 

However, the empirical nature of the developed G prediction models usually implicates 

that their application to conditions other than the ones for which they were developed (e.g., land 

cover, climate) may result in large uncertainties (PURDY et al., 2016), suggesting a need for 

local calibration for accurate estimations (A. IRMAK et al., 2011; CAMMALLERI; LA 

LOGGIA; MALTESE, 2009). Moreover, errors in G can profoundly decrease the accuracy of 

SEB models (A. IRMAK et al., 2011; DHUNGEL; BARBER, 2018; KUSTAS; NORMAN, 

1999; LAIPELT et al., 2020; RUHOFF et al., 2012; RUSSELL et al., 2015). To address this 

limitation, a local calibration can be applied (DANELICHEN et al., 2014; SINGH et al., 2008), 

but this may be impractical for operational purposes, such as SEB mapping over large areas. 

Comparative studies revealed a wide range in models’ performance, especially across different 

land covers (DANELICHEN et al., 2015; PURDY et al., 2016), and seasonal and regional 

biases have been identified, indicating potential issues with model comparisons at the local 

scale (PURDY et al., 2016). 

To overcome the issue of regional biases when performing a local scale model 

calibration/validation, we built a network of flux towers from regional initiatives to represent 

the wide-ranging climate and ecosystem diversity of South America (VILLARREAL; 

VARGAS, 2021). In addition to the most used flux tower network data compilation (SALESKA 

et al., 2013) from the large-scale biosphere-atmosphere experiment in the Amazon (LBA-ECO) 

(DAVIDSON; ARTAXO, 2004), we also included data from the SULFLUX (South Brazilian 
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network of surface fluxes and climate change), ONDACBC (National Observatory of Water 

and Carbon Dynamics in the Caatinga Biome) (BORGES et al., 2020), and the PELD Pantanal 

(long-term ecological research in Pantanal) (TABARELLI et al., 2013), in conjunction with 

flux measurements supported by Brazilian universities, including the UFMT (Federal 

University of Mato Grosso) (BIUDES et al., 2015) and the USP (University of Sao Paulo) (DA 

ROCHA et al., 2009), funded by national and regional research agencies. This network 

encompasses most land covers in South America, corresponding to over 80% of its area (except 

for urban, barren, and high altitude forest land covers) (EVA et al., 2004), and has been used 

as validation data for SEB flux estimations via remote sensing (DANELICHEN et al., 2014; 

LAIPELT et al., 2020; RUHOFF et al., 2012). 

An alternative to the existing methods of modeling G is the use of artificial neural 

networks (ANNs), which are universal approximators (HORNIK; STINCHCOMBE; WHITE, 

1989) and have been successfully tested (used or applied) in several hydrological processes and 

modeling attempts and have shown better performance than existing conceptual and empirical 

models (CANELÓN; CHÁVEZ, 2011; HORNIK; STINCHCOMBE; WHITE, 1989; JIMENO-

SÁEZ et al., 2018; KÄFER et al., 2020; SILVERMAN; DRACUP, 2000; TABARI; 

SABZIPARVAR; AHMADI, 2011; ZANETTI et al., 2007). ANNs are computational models 

analogous to the brain’s biological behavior, simulating its capabilities of learning and 

memorizing. The ANN relates input data to specified outputs through a series of intertwined 

layers of neurons. The neurons connect and transform input variables via activation functions. 

An ANN can be trained by pairing historical data and calibrating the connections’ synaptic 

weights to obtain the best relationship between inputs and outputs (HORNIK; 

STINCHCOMBE; WHITE, 1989). 

One of the main disadvantages of ANNs is that their structure does not describe the 

underlying processes that explain the target variable, thus being labeled as black-box models 

(ADADI; BERRADA, 2018). On the other hand, the empirical origin of the existing models 

for instantaneous G prediction also presents the same limitation. With this in mind, ANNs 

become an attractive methodology for G prediction. In fact, previous applications of ANNs for 

G prediction at the local scale (CANELÓN; CHÁVEZ, 2011; JIMENO-SÁEZ et al., 2018) 

have yielded promising results. Considering the availability of the long time series of measured 

G, representative of the South American landscape (EVA et al., 2004; VILLARREAL; 

VARGAS, 2021), and the readily available remote sensing data, the usage of the ANN approach 

for large-scale applications is encouraged as a next step to assess its efficiency in predicting G. 
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Therefore, given the diversity of G estimation methods and their limited application 

conditions, this paper focuses on assessing the ability of ANNs to predict G over a wide range 

of ecosystems in South America, using long-term remote sensing and meteorological time 

series, and comparing the ANN’s performance to that of commonly used G models. With this 

study, we hope to assist future SEB closure studies and ET estimates with more accurate 

estimates of G and consequently H and LE. 

3.2 Materials and Methods 

3.2.1 Study Sites 

In this study, data from 23 flux towers were used to calibrate and validate the ANNs, 

located in South America. The area surrounding each flux tower was considered one study site. 

Table 3.1 lists the flux towers surrounding land covers and the data acquisition periods, while 

Figure 3.1 displays the location and land cover of the study sites. For simplification and 

repeatability, the land covers were grouped into one of five types: forest, irrigated cropland, 

cropland, grassland, and savanna. 

 
Figure 3.1 – Flux tower locations and main land cover types used in this research. 
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Table 3.1 – Description of the flux towers used in this study. 

Name Land Cover 
Main Land 

Cover 
Available Data Period Source 

AFL Rainforest Forest February 2003 – March 2004 (BIUDES et al., 2015) 

BAN 
Seasonally 

flooded forest 
Forest October 2003 – December 2006 (BORMA et al., 2009) 

BDP 
Seasonally 

flooded forest 
Forest June 2011 – August 2015 (BIUDES et al., 2015) 

BRA Cerrado Savanna January 2011 – December 2011 (SANTOS et al., 2003) 

CAL Cropland (soy) Cropland January 2009 – September 2014 
(AGUIAR, 2011; MOREIRA, 

2012) 

CAM 
Seasonally 

flooded forest 
Forest January 2007 – January 2009 (TABARELLI et al., 2013) 

CDS 
Cropland 

(flooded rice) 

Irrigated 

cropland 
January 2011 – December 2014 

(CARNEIRO, 2012; SOUZA et 

al., 2016) 

CMT 
Irrigated 

cropland 

Irrigated 

cropland 
September 2015 – February 2017 (LATHUILLIÈRE et al., 2018) 

CSJ Caatinga Savanna April 2019 – December 2019 (BRITO et al., 2020) 

CST Caatinga Savanna February 2014 – March 2020 
(SILVA et al., 2017; SOUZA et 

al., 2016) 

FEX Pasture Grassland September 2006 – March 2010 (BIUDES et al., 2015) 

FMI Cerrado Savanna April 2009 – May2013 (BIUDES et al., 2015) 

FSN Pasture Grassland March 2002 – July 2003 (HASLER; AVISSAR, 2007) 

M34 Tropical forest Forest January 2000 – September 2006 (ARAÚJO, 2002) 

NPW 
Seasonally 

flooded forest 
Forest January 2015 – July 2017 (DALMAGRO et al., 2019) 

PAL Grassland Grassland September 2013 – September 2016 (RUBERT et al., 2016) 

PAN Cerrado Savanna January 2001 – December 2006 (OLIVEIRA et al., 2006) 

PDG Cerrado Savanna January 2001 – December 2006 (ROCHA et al., 2002) 

PDS 
Cropland 

(flooded rice) 

Irrigated 

cropland 
October 2003 – March 2004 

(TIMM et al., 2014; ZIMMER et 

al., 2016) 

SIN 

Transitional 

forest 

(Cerradão) 

Forest May2005 – October 2008 (BIUDES et al., 2015) 

S77 
Pasture / 

agriculture 
Grassland August 2000 – November 2005 (SAKAI et al., 2004) 

S83 Tropical forest Forest June 2000 – March 2004 (GOULDEN et al., 2004) 

SMA Grassland Grassland January 2013 – December 2016 (RUBERT et al., 2016) 

USE 
Cropland 

(sugarcane) 
Cropland January 2001 – December 2002 (CABRAL et al., 2003) 

3.2.2 Input Data 

Table 3.2 shows the input data used in the development of the ANN. Surface temperature 

(Ts), surface albedo (α), and enhanced vegetation index (EVI) data were obtained from a 

moderate resolution imaging spectroradiometer (MODIS) product at daily time intervals. Given 

that the training process of ANN requires a large amount of data, the MODIS products were 

selected due to their high temporal resolution. MODIS’s image acquisition (on-board of the 
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Terra satellite) occurs at around 10:30 AM (local time). The net radiation (Rn) dataset was 

acquired from the global land data assimilation system version 2 (GLDAS 2.1) reanalysis 

product at a 3 hour time intervals, averaged for the 9 AM to 12 PM window. Both satellite and 

reanalysis products were available from the Google Earth Engine platform 

(https://earthengine.google.com/ [Accessed date: June 30, 2020]). 

Table 3.2 – Input data description. 

Data Product Spatiotemporal Resolution Source 

Net radiation (Rn) GLDAS 2.1 0.25°/3 h (RODELL et al., 2004b) 

Land surface temperature (Ts) MOD11A2.V6 1000 m/1 day (WAN, 2014) 

Albedo (α) MCD43A3.V6 500 m/1 day (SCHAAF; WANG, 2015) 

Enhanced vegetation index (EVI) MOD13Q1.V6 250 m/16 days (DIDAN, 2015a) 

Flux tower data were obtained at hourly and sub-hourly time intervals and were also 

resampled and averaged to the 9 AM to 12 PM local time window. A search was executed on 

each flux tower dataset to remove incomplete (gap-filling) data. Rn values 10% lower than the 

five days moving average were discarded to remove cloudy sky data. Finally, G values beyond 

the range of -50% to 50% of Rn were also removed from the analysis (IDSO; AASE; 

JACKSON, 1975; KUSTAS; DAUGHTRY, 1990; KUSTAS; DAUGHTRY; VAN 

OEVELEN, 1993). After this filtering procedure, a total of 3,778 samples remained available. 

Figure 3.2 displays the correlation plot between the observed G from the flux towers and 

the Rn, Ts, EVI, and α datasets. The correlation plots and r values are distinguished by land 

cover. Correlation among the input datasets is generally weak, with |r| < 0.50 for most land 

covers, where |r| is the absolute value of r. Exceptions (|r| > 0.50) are mainly found for Ts and 

Rn on most land covers. The correlation of observed G to input datasets is also low in general. 

The correlation plots are useful to identify potentially redundant inputs of the ANN. Due the 

low correlation among the variables, it can be assumed that they may contribute independently 

to the ANN predictions. 

https://earthengine.google.com/
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Figure 3.2 – Correlation plot and r values of the observed G and the input datasets for all flux towers, 

distinguished by land cover. 

3.2.3 ANN’s Structure 

Figure 3.3 displays a generic scheme of the ANNs that were built. The input data are 

combined into a series of processing units in the hidden layer, called neurons. These “hidden” 

neurons are then connected to an output neuron that converts the hidden layer’s information 

into the desired output. In order to transform the data, each neuron passes the received 

information through an activation function, such as the bipolar and unipolar sigmoid functions. 

The connections between neurons are established by synaptic weights (or simply weights), and 

these, together with the activation functions, determine the relationship between the input data 

and the corresponding outputs. The weight values are defined during the training process. The 
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number of neurons in the hidden layer (m) determines the ANN complexity and is assessed 

based on a search process for a network with the least complexity that still obtains the same 

performance, with a validation sample, as an initial network, that is purposefully over-sized 

(LUCCHESE; DE OLIVEIRA; PEDROLLO, 2020). The ANNs were developed with the most 

common inputs used in models for G computation (CANELÓN; CHÁVEZ, 2011; JIMENO-

SÁEZ et al., 2018; SILVERMAN; DRACUP, 2000; TABARI; SABZIPARVAR; AHMADI, 

2011; ZANETTI et al., 2007). This allows for the assessment of the benefits of using ANNs 

compared to preexisting models. 

The study sites were grouped into different land cover types to consider characteristics 

that are difficult to capture from remote sensing data, such as subcanopy vegetation density, 

vegetation height, and soil skin temperature. Land cover data were inputted as numerical data 

in the ANNs, as follows: 1 for cropland; 2 for irrigated cropland; 3 for forest; 4 for grassland; 

and 5 for savanna. The impact of the inclusion of land cover data as an input was assessed using 

a comparison of the ANNs with and without the land cover information. Thus, two networks 

were generated. From this point on, the two networks will be referred to as: (i) Gc: an ANN 

that considers land cover as an input; and (ii) Gnc: an ANN that does not consider land cover 

as an input. 

 
Figure 3.3 – Structure of the two ANNs used for this study. One includes the site’s land cover as an 

input (Gc) and another is without land cover information (Gnc). 

In order to avoid preferential treatment of inputs with different magnitudes, input and 

output data were scaled using a normalization procedure, shown by Equation (1): 

X′ =
(X − Xbottom)

Xtop − Xbottom
 

(1) 
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where X’ is the scaled variable; X is the raw variable; and Xbottom and Xtop are the data bottom 

and top limits, respectively. The top and bottom limits were chosen based on observations of 

the 23 study sites’ available series and are shown in Table 3.3. These values also represent the 

valid range for applications of the trained ANNs. 

Table 3.3 – Data limits used for the scaling procedures presented in Equation (1). 

Data Bottom Limit Top Limit 

Soil heat flux (G) -20.0 W/m2 200.0 W/m2 

Net radiation (Rn) 150.0 W/m2 1000.0 W/m2 

Land surface temperature (Ts) 275.0 K 325.0 K 

Albedo (α) 0.1 0.5 

Enhanced vegetation index (EVI) -0.1 1.0 

Land cover 0.0 6.0 

The developed ANNs are generically represented by Equation (2): 

O′ = fo {∑ wo,ifh [∑(wh,i,jX′j) +

n

j=1

bh,i] + bo

m

i=1

} 
(2) 

where O’ is the ANN’s output, equivalent to G in its scaled form; n is the number of input 

datasets; m is the number of neurons in the hidden layer; wh, bh, fh, wo, bo, and fo are the 

synaptic weights (w), biases (b), and activation functions (f) of the hidden (h) and output (o) 

layers, respectively. 

The unipolar sigmoid function was used as the activation function for both the hidden and 

output layers. 

3.2.4 ANN’s Training Process 

The ANN’s training consisted of adjusting of the synaptic weights and biases by 

minimization of the output error using the backpropagation algorithm (RUMELHART; 

HINTON; WILLIAMS, 1986). w and b values were updated using the method presented by 

WIDROW and HOFF (1989) and the learning rate was calculated according to the training 

acceleration techniques proposed by Vogl et al. (1988). 

The cross-validation method was used to control overfitting. This method consists of 

dividing the datasets into three series of similar sizes: a training series, a validation series, and 

a verification series. Weight and bias updates occur to reduce the total quadratic error in the 

training dataset (St) with each iteration, but the quadratic error in the validation series (Sv) is 
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also observed. The final values of w and b are the ones that provide the minimal Sv value. The 

ANN performance is then assessed for the verification series. 

The number of iterations (or cycles) must be sufficient to identify the best iteration 

(minimal error). If the best cycle is too close to the end of the network training, it is possible, 

and probable, that a better solution could be found if there were more iterations. Thus, a method 

for increasing the total number of cycles was applied to the ANN training, as follows: 

• A starting minimum of 200,000 cycles was defined; 

• If the best iteration occurred before the 100,000th cycle, the training was considered 

complete. If it happened after, the total number of cycles was doubled, up to 400,000 

cycles. 

This second step was repeated either until the best cycle was found in the first half of the 

training process or until a limit of five duplications was reached, reaching up to 6.4 million 

iterations. This limit was applied to reduce computational running time and to avoid infinite 

loops. 

In order to assess the ANN’s complexity, the training process was repeated with the 

progressive reduction in the number of neurons in the hidden layer, from a maximum of 12 

neurons, until a decrease in its generalization capacity was observed, measured by the quadratic 

error in the validation series. The smallest number of neurons that did not yield a decrease in 

the network’s generalization capacity was then chosen. 

After assessing the ANN’s complexity, the data series division was evaluated, as 

recommended by (CROWTHER; COX, 2005). One-third of the total data was reserved for the 

verification series. The remaining data were split into calibration and validation series. The 

tested split ratio range was larger than that recommended by (CROWTHER; COX, 2005), 

because it was noticed that better predictions of G happened for smaller training datasets. 

Therefore, a broader range of split ratios needed to be tested. A sequence of tests between 10/90 

and 90/10 was executed to determine the optimal calibration/validation split ratio. The quadratic 

error present in the validation series was used to determine the optimal data division. 

Due to the ANN’s empirical nature and the randomness of the initial conditions, training 

runs could prematurely stop at a local minimum on the objective function surface. To avoid 

this, after each randomization and partitioning of the data series, the cross-validation process 

was repeated ten times. Since data randomization was performed 40 times, ANN training was 

repeated in parallel 400 times for each of the two networks created. The trained ANNs with the 
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best performance in the validation series were then used to predict G in the verification data 

series. 

3.2.5 Performance Assessment and Input Data Contribution Analysis 

The ANN’s predictions were assessed against data measured in the flux towers via a set 

of statistical indexes, calculated for the validation data series of each of the 40 data 

randomizations. The Nash–Sutcliffe coefficient (NS) (NASH; SUTCLIFFE, 1970) value in the 

validation dataset was used as the criterion for selecting the optimal ANN. 

For comparison purposes, G was also estimated by the original and adjusted Jackson et 

al. (1987) (JACKSON et al., 1987) and Bastiaanssen (1995) (BASTIAANSSEN, 1995) 

equations. Reparameterization was performed using the minimum quadratic error as the goal 

function. Table 3.4 presents the originals and adjusted equations (for results, see Section 3.2., 

Models’ performance evaluation), where Ts is the surface temperature (°C); α is the surface 

albedo; and NDVI is the normalized difference vegetation index. 

Table 3.4 – Original Jackson et al. (1987) and Bastiaanssen (1995) equations and adjusted equations 

calibrated for minimum quadratic error. 

Original Equations Adjusted Equations 

Jackson et al. (1987): Jackson et al. (1987): 

G = 0.583Rnexp(−2.13 ∙ NDVI) G = 0.150Rnexp(−0.89 ∙ NDVI) − 34.3 

 

Bastiaanssen (1995): 

 

Bastiaanssen (1995): 

G = TsRn(0.0038 + 0.0074α)(1 − 0.98NDVI4) G = TsRn(−0.0019 + 0.0106α)(1 − 1.10NDVI4) + 10.4 

The performances of the Gc and Gnc ANNs, and of the Jackson et al. (1987) and 

Bastiaanssen (1995) models, were evaluated via the comparison of NS, mean absolute error 

(MAE), root-mean-square error (RMSE) (WILLMOTT; MATSUURA, 2005), bias 

(BOYLAN; RUSSELL, 2006), the slope coefficient (A0) (SEN, 1968), and the linear 

correlation coefficient (r) (STATISTICAL METHODS IN THE ATMOSPHERIC SCIENCES, 

2019), calculated for the verification series. The MAE, RMSE, and bias metrics were calculated 

as absolute values and as a percentage of the mean of the observed verification data series. 

The input data sets contribution to the ANNs was calculated by the connection weights 

method proposed by (GARSON, 1991) and modified by (GOH, 1995). In this method the 

relative importance of the input variable is entirely derived from the synaptic weights of the 

ANN post-training. 
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3.3 Results 

3.3.1 ANN Training Process 

The complexity analysis of the ANNs indicated that its performance improves initially 

with higher complexity but is stable for complexities greater than four neurons. Therefore, for 

prudency, seven neurons for Gc and five neurons for Gnc were chosen. 

After assessing the ANN’s complexity, the optimal dataset training/validation split ratio 

was verified, resulting in 748 samples for the training series, 1745 samples for the validation 

series, and 1285 samples for the verification series, for both the Gc and the Gnc ANNs. The 

synaptic weights of the trained ANNs, as well as the relative importance of each input variable 

to each ANN, are available as Supplementary Information (Tables SI.1-SI.3). 

3.3.2 Model Performance Evaluation 

Performance metrics of the Gc and Gnc ANNs, and the Jackson et al. (1987) and 

Bastiaanssen (1995) original and adjusted models, are displayed in Table 3.5. The adjusted 

versions of the Jackson et al. (1987) and Bastiaanssen (1995) models yielded significantly better 

performance metrics in relation to the original versions. Given this difference in performance, 

the original versions were not further assessed. The ANNs performed better than the adjusted 

models, with lower values of MAE and RMSE, and higher NS, A0, and r values. The Gc ANN 

yielded the best NS, MAE, RMSE, A0, and r values. 

Table 3.5 – Performance metrics of the Gc and Gnc ANNs, and of the Jackson et al. (1987) and 

Bastiaanssen (1995) original and adjusted models. 

Metric Gc Gnc 
Jackson et al. (1987) Bastiaanssen (1995) 

Original Adjusted Original Adjusted 

NS 0.53 0.27 −23.11 −0.17 −7.16 0.02 

MAE (W/m2) 14.04 18.06 145.66 24.43 84.69 21.78 

MAE (%) 56% 70% 603% 101% 351% 90% 

RMSE (W/m2) 23.95 28.90 159.15 35.00 92.61 32.00 

RMSE (%) 95% 113% 659% 145% 384% 133% 

Bias (W/m2) −1.87 −0.82 145.36 1.07 81.73 0.99 

Bias (%) −7% −3% 602% 4% 339% 4% 

A0 0.52 0.30 0.08 0.01 0.12 0.08 

r 0.73 0.53 0.04 0.02 0.12 0.21 

3.3.3 Model Performance by Land Cover 

Figure 3.4 compares the seasonal G in each land cover, given by the flux tower 

observations and by the Gc and Gnc ANNs, and the Jackson et al. (1987) and Bastiaanssen 
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(1995) adjusted models. While forest land cover displays a relatively constant observed G 

throughout the year, other land covers present a broader seasonal range and larger monthly 

standard deviations (given by shaded areas). Overall, the Gc ANN yielded the best adherence 

to the observed G series, showing similar seasonal patterns and standard deviations, especially 

in the savanna land cover. On the other hand, the Gnc ANN and the adjusted models yielded a 

smaller seasonal range and standard deviation, not adhering to the observed G series as well as 

the Gc ANN. 

 
Figure 3.4 – Observed (black, continuous) and predicted (red, dashed) seasonal monthly values of G, 

for each land cover. Shaded areas represent each series monthly standard deviations, while the lines 

represent the monthly averages. 

Figure 3.5 presents the correlation plots of observed G in the flux towers to the predicted 

G by the Gc and Gnc ANNs, and by the Jackson et al. (1987) and Bastiaanssen (1995) adjusted 

models, distinguished by land cover. The Gc ANN presents the closest adherence to the 1:1 

relationship line (black line in each plot), as the other methods underestimate higher values of 

G. H. A higher correlation was observed for the Gc ANN over savanna (r = 0.86), followed by 

grassland (r = 0.49). In contrast, the lowest correlation values were found over forest (r = 0.22) 

and irrigated cropland (r = 0.36). The Gnc model yielded a similar correlation for all land 

covers, ranging from r = 0.48 over savanna to r = 0.68 over irrigated cropland. The adjusted 
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Jackson et al. (1987) best and worst performances were observed for grassland (r = 0.30) and 

savanna (r = −0.28), respectively. The Bastiaanssen (1995) adjusted model performed better 

over savanna (r = 0.38) and cropland (r = 0.29), and worse over irrigated cropland (r = −0.38) 

and forest (r = −0.13). 

 
Figure 3.5 – Correlation plots and linear correlation coefficient (r) values of observed G (horizontal 

axis) to predictions (vertical axis) by Gc and Gnc ANNs, as well as adjusted Jackson et al. (1987) and 

adjusted Bastiaanssen (1995) models, distinguished by color for each land cover. The diagonal black 

line represents the perfect 1:1 correlation between observed and predicted G. 

Figure 3.6 displays other performance metrics of the neural networks and adjusted models 

for each land cover. G predictions over forest yielded generally low NS and A0 values, except 

for Gnc (NS = 0.70). On the other hand, errors (MAE, RMSE, and bias) were also lower for 

forest in comparison to other land covers. Except Gc bias (−0.19 W/m2), the positive bias 

yielded by Gnc and the adjusted models indicates an overestimation of G for forests by models 

that do not consider land cover as an input. The Gnc ANN yielded the lowest errors of all 

models. The models and ANNs performed similarly over irrigated cropland, cropland, and 

grassland, being slightly better for grassland and worse for irrigated cropland. NS and A0 values 

were low, ranging between −0.89 and 0.41 and between −0.23 and 0.35, respectively. The MAE 

ranged between 19.08 and 33.41 W/m2; RMSE ranged from 27.67 to 42.47 W/m2; and bias 

between −13.60 and 14.10 W/m2. Over savanna, the performance of the ANNs and adjusted 

models differ the most. Gc predictions yielded NS = 0.72, while the others ranged between 



 

 

35 

 

−0.33 and 0.01. Errors (MAE and RMSE) of the Gc and Gnc ANNs were nearly 50% lower 

than errors from the Jackson et al. (1987) and Bastiaanssen (1995) adjusted models. A0 values 

were better for the ANNs as well, being 0.66 for Gc and 0.41 for Gnc, while the adjusted models 

ranged between −0.10 and 0.06. 

Some contradictions can be identified between Figure 3.5 and Figures 3.4 and 3.6. 

Although higher correlation values are yielded by Gnc in comparison to the Gc ANN, Gc 

presents systematic biases of seasonal G values, as well as higher errors (MAE and RMSE) and 

lower values of NS and A0. This discrepancy indicates that the correlation coefficient alone can 

be misleading as an accuracy metric. 

 
Figure 3.6 – Other performance metrics (NS, MAE, RMSE, bias, and A0) of the Gc, Gnc, adjusted 

Jackson et al. (1987), and adjusted Bastiaanssen (1995), distinguished by land cover. 

3.4 Discussion 

Uncertainties in the estimation of SEB fluxes from remote sensing data have motivated 

the use of ANNs as an alternative to existing models (FENG et al., 2020; HAMED 

ALEMOHAMMAD et al., 2017; WALLS et al., 2020), but reference material regarding the 
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validation of G estimates is still scarce, compared to other SEB fluxes. Table 3.6 presents the 

performance metrics of the G predictions via remote sensing presented by some recent studies. 

These works used either airborne (ANDERSON et al., 2008; CANELÓN; CHÁVEZ, 2011; 

SU, 2002) or orbiting (CAMMALLERI; LA LOGGIA; MALTESE, 2009; DANELICHEN et 

al., 2014; KÄFER et al., 2020; LAIPELT et al., 2020; RUHOFF et al., 2012; TEIXEIRA et al., 

2009) platforms associated with meteorological data to estimate G. Validation occurred via 

comparison to flux tower data in one or more land covers. In most studies, the number of 

samples was low, ranging between 12 and 698. An exception is the work performed by Purdy 

et al. (2016), with over 100,000 samples. The lowest MAE and RMSE values were found by 

Su (2002) in cotton crops, while the highest values were obtained by Laipelt et al. (2020) over 

forest. Generally, the highest correlation and lowest error values were obtained with airborne 

remote sensing data, which have higher spatial resolutions and are used over more homogenous 

land surfaces. This indicates that using remote sensing data with a finer spatial resolution may 

better correlate to G measurements. 

Table 3.6 – Compilation of other validation studies of G estimation from remote sensing data. 

Source Land Cover 
Number of 

Samples 

MAE 

(W/m2) 

RMSE 

(W/m2) 
r 

(SU, 2002) 
Cropland, shrubland, and 

grassland 
620 4.5-41.5 5.4-46.3 0.96-0.97 

(RUHOFF et al., 2012) Savanna and cropland 56 35.0-41.0 - 0.66-0.75 

(PURDY et al., 2016) Various 100,234 - 26.9-42.1 0.32-0.46 

(LAIPELT et al., 2020) Forest 12 108.3-108.9 109.3-110.0 - 

(DANELICHEN et al., 2014) Croplands and forest 131 - 29.2-45.3 0.06-0.76 

(CANELÓN; CHÁVEZ, 

2011) 
Croplands 50 - - 0.73-0.96 

(KÄFER et al., 2020) Grasslands 67 40.6 43.0 0.70 

(ANDERSON et al., 2008) Grasslands 698 - 23.0-28.0 0.57-0.77 

(TEIXEIRA et al., 2009) Irrigated cropland and savanna 18 - 13.3 0.90 

Compared to the metrics presented in Table 3.6, the Gc and Gnc ANNs and the Jackson 

et al. (1987) and Bastiaanssen (1995) models performed within expectations. However, unlike 

other studies, the models’ adjustments and the ANN’s training were performed for various land 

covers and a larger data series. This way, correlation values may be lower, however the resulting 

models and ANNs provide a higher generalization potential. Overall, the MAE and RMSE 

values of the ANNs and adjusted models in Table 3.5 reside in the lower portion of the ranges 

presented in Table 3.6. 

As in our study, G predictions of the studies from Table 3.6 showed a lower correlation 

in densely forested areas. One possible reason for this is the low variance of observed G in 
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forests. Another possible reason is that G is dependent on the soil skin temperature, while 

remote sensing products provide canopy surface temperature, which can be uncorrelated in 

dense vegetation. In fact, Kim et al. (2016) verified that, despite the generally high correlation 

between soil and canopy temperatures, this relationship is weaker in cloud-free images, when 

radiative heating leads to fast changes in canopy temperature while soil temperature changes 

slowly. This limitation hinders the improvement of G prediction with orbiting remote sensors 

on forests. However, the Gc ANN yielded visibly lower errors (MAE, RMSE, and bias), 

indicating the superiority of this method. 

The Bastiaanssen (1995) equation provided better G predictions than the Jackson et al. 

(1987) model, following observations of Danelichen et al. (2014) and the assumption by Purdy 

et al. (2016) that models that consider Ts outperform those that do not. When compared to the 

existing models, both ANNs yielded better performance metrics, with Gc yielding the best 

predictions and closest seasonal patterns to those observed in the flux towers. Therefore, the 

introduction of land cover as a numerical input has also proved to be effective. 

In this study, the optimal training/validation split ratio contrasts with that recommended 

by Crowther and Cox (2005) (30/70 against 50/50 to 70/30). It is supposed that this difference 

is a result of the dataset size. As observed by Crowther and Cox (2005), ANN training with 

large data sets is less sensitive to partitioning, since there is enough data to support pattern 

recognition. Thus, a smaller part of the data can be reserved for the training set. 

The Gnc ANN yielded better performance than that of the Bastiaanssen (1995) model, 

despite both models using the same input data. This indicates that this ANN’s structure is more 

suited for large-scale G estimation. In addition, ANNs can incorporate many more inputs, 

potentially achieving better performance. However, including too many inputs requires 

expanding the complexity of the network, which causes longer computational times. The low 

correlation among the considered input variables (Rn, Ts, EVI, and α) provides a low 

redundancy level to the developed ANNs, and each one is essential to the accurate prediction 

of G, as also indicated by Canelón et al. (2011). The addition of land cover information 

complemented the input data series and improved performance without significantly impacting 

computational times. In Figure 3.4, systematic biases were identified for Gnc, Jackson et al. 

(1987), and Bastiaanssen (1995). This indicates that existing models’ datasets do not fully 

comprehend the dynamics of G, further demonstrating the importance of land cover as a key 

factor in G prediction. Thus, additional datasets should be considered in the future development 

of models for G prediction. Figure 3.4 shows that the average value and seasonality ranges of 



 

 

38 

 

G vary significantly between the different land covers. It also shows that, even though this flux 

is of small magnitude compared to others of the SEB, it is not negligible. To the best of our 

knowledge, this work is one of the first large-scale model developments for G prediction in 

South America, comprehending multiple land covers and climates representative of most South 

American ecosystems. This work can potentially improve ET estimates in South America and 

similar regions worldwide. 

3.5 Conclusions 

In this study, ANNs were developed to calculate G via the integration of satellite remote 

sensing and meteorological reanalysis data. Compared to that of existing models, the 

performance of the generated ANNs was better overall, yielding lower errors and higher 

correlation values. This indicates that the ANN’s structure can better approximate the behavior 

of G over various land covers and climate conditions. 

The inclusion of land cover information into the ANNs as an input improved the accuracy 

of the G predictions. The superior performance of the ANNs with land cover as an input 

indicates that the commonly used remote sensing data may be insufficient to fully capture the 

differences among the surfaces and appropriately predict G. However, it is recommended to 

include additional remote sensing datasets in such models, especially those used in image land 

cover classification, instead of land cover data. This would remedy possible issues with the lack 

of standardization of land cover classification systems. On the other hand, the addition of input 

data sets increases the complexity of the ANNs and may even reduce accuracy. Thus, parsimony 

is recommended when selecting predictor data sets. 

These findings demonstrate that the developed ANNs can predict G spatiotemporal 

variability more accurately than existing models. Despite the limitation of the distribution of 

the available flux towers, the wide variety of land covers considered, encompassing most of 

South America, and the length of the time series used in the ANN’s training mean that the 

developed ANNs also yielded a higher generalization ability than the existing models. 

However, the ANN’s accuracy over high altitude and meridional land covers should also be 

assessed for greater reliability. 

For future studies, we suggest mapping G over the whole South America using the ANNs 

and a comparison of this to existing global products. The investigation of the effects of ANN-

based G estimates on error reduction of surface energy balance fluxes and evapotranspiration 

modelling is also recommended. 



 

 

39 

 

3.6 Supplementary Information – ANN’s synaptic weights and input 

variable relative importance 

Tables SI.1 and SI.2 display the connection weights of the trained Gc and Gnc ANN’s, 

respectively, which were used in Eq. (2) to calculate G. The weights are discriminated by layer: 

first, the connection weights of the inputs and input layer bias (bh,i) to the hidden neurons (wh,i,j); 

then, the weights between the output neuron (wo,i), and the hidden neurons and hidden layer 

bias (bo). 

Table SI.1 – Synaptic weights of the trained Gc ANN. 

Hidden Layer 

j 
Input 

Layer 
wh,1,j wh,2,j wh,3,j wh,4,j wh,5,j wh,6,j wh,7,j 

1 Rn -18.4696 12.7293 1.2707 -8.7263 -8.2317 -10.7398 -12.4299 

2 Ts -10.4746 -11.5024 -1.7972 -4.4871 7.5452 -0.0310 3.0522 

3 α 6.0675 3.6202 -1.5794 -5.8049 -2.9073 -2.6185 4.1044 

4 EVI 10.1455 -25.1095 -4.7671 5.7186 2.5864 23.4429 8.4487 

5 
Land 

Cover 
9.6609 3.7326 2.0444 21.5455 14.5421 -6.2494 6.4693 

6 bh,i -0.4436 -1.7756 1.0148 -10.9672 -6.8910 2.7639 -1.5949 

Output Layer 

Hidden Layer wh,1,j wh,2,j wh,3,j wh,4,j wh,5,j wh,6,j wh,7,j bo 

wo,i 7.4148 -9.1672 -6.2833 -6.2346 8.6429 -10.0445 -11.2160 12.8041 

Table SI.2 – Synaptic weights of the trained Gnc ANN. 

Hidden Layer 

j Input Layer wh,1,j wh,2,j wh,3,j wh,4,j wh,5,j 

1 Rn 8.4093 17.3811 -8.2284 -5.7787 0.0505 

2 Ts -2.0826 -0.3879 -9.8736 -1.2015 3.4544 

3 α 1.7308 -5.5842 -2.5098 2.7142 -14.6466 

4 EVI -29.1761 -14.6965 40.1691 -6.4490 7.5938 

5 bh,i 6.0127 -0.1840 -9.0590 -1.7264 -2.6003 

Output Layer 

Hidden Layer wh,1,j wh,2,j wh,3,j wh,4,j wh,5,j bo 

wo,i -10.8514 1.7316 -8.6113 -0.2803 -6.6283 7.4246 

Table SI.3 presents the input variables relative importance to the Gc and Gnc ANN’s 

based on the synaptic connections’ weights. Rn and Ts presented similar importance to both 

ANN’s. However, lower importance was yielded by α and EVI in the Gc ANN than in the Gnc 

one. Land cover yielded similar relative importance to that of Rn.  
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Table SI.3 – Input variables relative importance to the Gc and Gnc ANN’s. 

Input Variable Gc Gnc 

Rn 24.3% 23.1% 

Ts 13.5% 8.6% 

α 10.0% 19.3% 

EVI 29.0% 48.9% 

Land Cover 23.2% - 
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Highlights 

• The geeSEBAL algorithm was adapted to run with MODIS data, providing 8-day 

evapotranspiration data at 500 m, hereon named geeSEBAL-MODIS; 

• Development of a 20-yr (2002-2021) actual evapotranspiration dataset with complete 

spatial coverage for South America; 

• The dataset was compared to eddy covariance measurements and water balance data across 

the continent; 

• geeSEBAL-MODIS yielded higher accuracy and performance than existing global ET 

datasets at both field and basin scales. 

Abstract  

Monitoring actual evapotranspiration (ET) is critical for the accurate assessment of water 

availability and water resources management, especially in areas with dry climates and frequent 

droughts. The Surface Energy Balance Algorithm for Land (SEBAL) has been used over several 

land and climate conditions, and is able to estimate ET at field scale with high accuracy. 

However, model complexity and subjective parameterization have hindered its 

operationalization, until the recent development of the geeSEBAL model, which implements 

the SEBAL model on the Google Earth Engine platform. Here, we present a unique 

methodology for a continental-scale application of SEBAL, called geeSEBAL-MODIS, that 

employs novel land surface temperature normalization techniques, enabling the application of 

contextual ET models to very large scales. We introduce a dynamic ET dataset for the entire 

South American continent, between 2002 and 2021, at 500 m spatial and 8 days temporal 

resolution. The satellite-based data were compared against daily ET measured at 27 flux towers 

as well as water balance-based annual ET from 29 large river basins. geeSEBAL-MODIS data 

were also compared to eight state-of-the-art global ET datasets. At local scale, geeSEBAL-

MODIS demonstrated a satisfactory performance (r = 0.65, KGE = 0.64, MAE = 0.83 mm day-

1 (24.7%) and RMSE = 1.07 mm day-1 (31.8%)), with negligible bias. At basin scale, 

geeSEBAL-MODIS generally underestimated ET (bias = -85 mm year-1, r = 0.65, KGE = 0.47, 

MAE = 107 mm year-1 (10.1%) and RMSE = 137 mm year-1 (12.9%)). Compared to other 

global datasets, geeSEBAL-MODIS demonstrated better performance over multiple South 

American biomes, climates and land cover types. The developed dataset caused an error 

reduction of 13% at local scale, and 30% at the basin scale, when compared to the average 

performance of the global datasets. The analyses demonstrate that geeSEBAL-MODIS can be 
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used as a tool for monitoring climate change and human-related impacts on ET. The 

geeSEBAL-MODIS model opens the path for high accuracy global ET monitoring at moderate 

to high resolution, supporting advances in water resources management around the globe.  

Keywords: eddy covariance, SEBAL; MODIS; South America; water balance. 

 

4.1.1 Introduction 

Evapotranspiration (ET) is the sum of water evaporation from the Earth’s surface and 

transpiration from plants. ET is a driver of the terrestrial climate system, recycling precipitation 

and controlling temperature at local and regional scales (MARENGO et al., 2018). For 

example, ET from the Amazon rainforest is responsible for a considerable portion of rainfall in 

southeastern South America, through atmospheric low-level currents (VAN DER ENT et al., 

2010), which makes accurate calculation of ET at regional scales necessary to understand the 

hydrological cycle and to improve water resources management (BALDOCCHI et al., 2019; 

FENG et al., 2016).  

ET measuring instruments, such as weighing lysimeters and eddy covariance (EC) flux 

towers, provide accurate measures of ET at local scale (approximately 10 to 1,000 m). However, 

these sensors present high costs of installation and maintenance, being limited to representing 

ET rates only at the specific sites where they are installed. Thus, other methods have been 

developed to provide readily available data at field, regional (e.g., an entire river basin) and 

very large scales (continental and global) based on satellite-driven models. At the very large 

scale, ET information is essential for the understanding of the Earth’s water, energy and carbon 

cycles (MA; SZILAGYI; ZHANG, 2021). Therefore, ET modeling is key to the understanding 

of the spatiotemporal variations and dynamics of climate variables. Finally, knowing ET 

responses to limited water availability is necessary for the development of effective adaptation 

strategies (IPCC, 2022). 

Over the past decades, efforts to perform global scale mapping of ET led to the 

development of multiple global datasets (CLEUGH et al., 2007; FISHER; TU; BALDOCCHI, 

2008; MU; ZHAO; RUNNING, 2011b; RUNNING et al., 2017; ZHANG et al., 2009). 

However, these approaches are based on models that do not solve the surface energy balance 

(SEB) equation and yield significant biases as a result, particularly, the underestimation of ET 

over irrigated croplands and seasonally flooded areas (AGUILAR et al., 2018; BHATTARAI 

et al., 2019; SOUZA et al., 2019). Additionally, SEB-based models that are mainly driven by 
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land surface temperature (LST) have shown better performance at both local and regional scales 

(YIN et al., 2020; ZHANG; KIMBALL; RUNNING, 2016), especially over irrigated 

agricultural lands.  These models use satellite-derived land surface temperature (LST) to 

calculate latent heat flux (LE), either as a residual of the SEB equation or through partitioning 

of the available energy. This is possible due to the high sensitivity of LST to the evaporative 

cooling effect (ANDERSON et al., 2012), which makes SEB models ideal for assessing 

variations in ET related to limitations on water availability at the land surface. The most widely 

used SEB models include the Surface Energy Balance Algorithm for Land (SEBAL) 

(BASTIAANSSEN et al., 1998a, 1998b), Mapping ET with Internalized Calibration 

(METRIC) (ALLEN et al., 2007; ALLEN; TASUMI; TREZZA, 2007), Disaggregated 

Atmosphere-Land Exchange Inverse (DisALEXI) (ANDERSON; KUSTAS; NORMAN, 

2007), Simplified Surface Energy Balance Index (S-SEBI) (ROERINK; SU; MENENTI, 2000), 

Surface Energy Balance System (SEBS) (SU, 2002), Two-Source Energy Balance (TSEB) 

(KUSTAS; NORMAN, 1999), operational Simplified Surface Energy Balance (SSEBop) 

(SENAY et al., 2013), and Hybrid Single-source Energy Balance (HSEB) (JAAFAR; 

MOURAD; SCHULL, 2022). 

SEB models have been extensively validated and compared at field (BHATTARAI et al., 

2017; MELTON et al., 2021; SINGH; SENAY, 2016; WAGLE et al., 2017) and regional scales 

(MOREIRA et al., 2019; RUHOFF et al., 2022; VELPURI et al., 2013; WEERASINGHE et 

al., 2020) and, despite showing great potential for ET mapping, the inability to provide results 

under cloudy skies (BHATTARAI et al., 2019), the time consuming computational processing 

and the lack of automation have, until recently, presented challenges to their application at 

larger scales and at operational levels. Moreover, there is no established consensus on the 

models’ performance ranking due to the uncertainties related to input data, as well as 

assumptions made in the models’ parameterization. Nonetheless, SEB models are still the most 

reliable remote sensing-based method for monitoring ET, since LST serves as an effective 

quantitative indicator for soil moisture and surface water stress (ANDERSON et al., 2011). 

Recently, multi-model approaches have been implemented to improve the performance 

of SEB models over heterogeneous climatic conditions, with ensembles yielding more accurate 

ET estimates and more stable performance than individual models (BHATTARAI et al., 2019; 

ELNASHAR et al., 2021; MELTON et al., 2021; RUHOFF et al., 2022). Among others, the 

OpenET (MELTON et al., 2021) and the WaPOR (FAO, 2020) initiatives stand out by merging 

ET from multiple SEB models to aid water resources management, especially to achieve food 
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security via sustainable agricultural water use in the context of a changing climate and 

intensified droughts. OpenET combines several SEB models, providing an ensemble dataset at 

high spatial resolution for the western United States of America (USA), while WaPOR provides 

ET at multiple spatial resolutions over strategic areas of Africa.  

Due to the computationally intensive algorithms used in SEB models, their application at 

continental and global scales is still limited. Currently, only SSEBop presents a freely available 

global ET dataset (SENAY; KAGONE; VELPURI, 2020). The SEBAL model has been widely 

validated over different surface and climate conditions, yielding consistent and accurate 

calculations of ET (BANDARA, 2003; BASTIAANSSEN et al., 1998b; BASTIAANSSEN; 

ALI, 2003; BHATTARAI et al., 2017; KIPTALA et al., 2013; LAIPELT et al., 2020; RUHOFF 

et al., 2012). However, global applications of SEBAL are unknown, and country scale 

applications are scarce (BHATTARAI; MALLICK; JAIN, 2019; CHENG et al., 2021). 

Therefore, the SEBAL limitations related to the model’s parameterization over heterogeneous 

climates and complex terrains have hindered its operationalization. Automation attempts for 

the model’s parameter calibration, such as the internal Calibration using Inverse Modeling at 

Extreme Conditions (CIMEC) (ALLEN, R. et al., 2011; ALLEN et al., 2007, 2013; ALLEN; 

TASUMI; TREZZA, 2007; KILIC et al., 2020), are sensitive to surface terrain, climatic 

conditions and the size of the area of interest (AOI), which requires extremes surface conditions, 

one dry and another wet, often leading to subjective results, especially over humid areas where 

dry surfaces are hard to identify (BHATTARAI; MALLICK; JAIN, 2019; KHAND et al., 2017; 

LONG; SINGH; LI, 2011). While other automation attempts were validated at regional scales 

(BHATTARAI et al., 2017; SABOORI et al., 2021), they still require adaptations for global 

application. 

In the context of the lack of ET datasets based on the SEB equation at continental and 

global scales, and building upon the development of the geeSEBAL framework (LAIPELT et 

al., 2021) inside the Google Earth Engine (GEE) cloud computing platform (GORELICK et 

al., 2017), here we present a new version of geeSEBAL to continental-scale ET mapping, with 

an example presented for South America. The model innovations include a novel method for 

LST normalization and a new endmember selection procedure optimized for Moderate 

Resolution Imaging Spectroradiometer (MODIS) imagery at the continental scale, thus named 

geeSEBAL-MODIS. The new methodology is validated with multiple in situ ET measurements 

from a large flux tower network across South America, and with ET derived from water balance 
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from multiple river basins, and is further compared to eight previously developed global ET 

datasets. 

4.2 Methodology 

4.2.1 Input data 

The remote sensing and climate reanalysis data utilized to implement the geeSEBAL-

MODIS model in this study are described in Table 4.1. Daily datasets were aggregated to the 

8-day time window of MODIS AQUA. For datasets with coarser temporal resolution, the image 

with closest date to each 8-day period was retrieved. All the data were resampled with the 

bicubic method and reprojected to a 500 m spatial resolution prior to model computation. 

Table 4.1 – Datasets used in the implementation of the geeSEBAL-MODIS. 

Dataset Variable Symbol 
Resolution 

Source 
Temporal Spatial 

SRTM Elevation Z - 90 m (JARVIS et al., 2008) 

MYD11A2 V6 Land Surface Temperature LST 8 days 1,000 m (WAN, 2014) 

MYD11A2 V6 Band 31 emissivity ε0 8 days 1,000 m (WAN, 2014) 

MYD13A1 V6 
Normalized Difference Vegetation 

Index 
NDVI 16 days 500 m (DIDAN, 2015b) 

MYD13A1 V6 Enhanced Vegetation Index EVI 16 days 500 m (DIDAN, 2015b) 

MCD43A4 V6 Surface nadir reflectance SNR 16 days 500 m 
(SCHAAF; WANG, 

2015) 

MCD12Q1 V6 Land Cover Type 1 LC 1 year 500 m 
(FRIEDL; SULLA-

MENASHE, 2015) 

ERA5-Land 

Hourly 
Air temperature at 2 m height Ta 1 hour 

11,132 

m 

(MUÑOZ SABATER, 

2019) 

ERA5-Land 

Hourly 

u component of wind speed at 10 m 

height 
uu 1 hour 

11,132 

m 

(MUÑOZ SABATER, 

2019) 

ERA5-Land 

Hourly 

v component of wind speed at 10 m 

height 
uv 1 hour 

11,132 

m 

(MUÑOZ SABATER, 

2019) 

ERA5-Land 

Hourly 

Hourly downwards surface solar 

radiation 
RS↓ 1 hour 

11,132 

m 

(MUÑOZ SABATER, 

2019) 

Soil Texture 

Class 

Soil texture class (USDA system) at 0 

cm depth 
STC - 250 m (HENGL, 2018) 

4.2.2 The geeSEBAL-MODIS algorithm 

In this section, the general formulation of the geeSEBAL-MODIS model is described, 

followed by the adaptations to continental scale application, namely, the LST normalization 

and the automated endmembers selection. 
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4.2.2.1 Model description 

The geeSEBAL-MODIS algorithm (Figure 4.1) uses multiple remote sensing data and 

complementary meteorological data to estimate instantaneous SEB fluxes (usually between 

1:30 and 2:00 PM local time, for MODIS AQUA imagery). Instantaneous ET computation is 

based on the residual of the Energy Balance Equation (1): 

LE = Rn − G − H (1) 

where LE is the instantaneous latent heat flux (W m-2); Rn is the instantaneous net radiation (W 

m-2); G is the instantaneous soil heat flux (W m-2); and H is the instantaneous sensible heat flux 

(W m-2). LE represents the energy used on the land surface to vaporize water into the 

atmosphere. In SEBAL, it is computed as the residual of the SEB closure equation, while the 

other energy fluxes are calculated from remote sensing and meteorological data. 

 
Figure 4.1 – Data processing flowchart of the geeSEBAL-MODIS algorithm. 

Rn is the computed through the radiation budget as the difference between incoming and 

outgoing radiation at the surface, as presented by Eq. (2): 
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Rn = (1 − α)RS↓ − RL↑ + ε0 ∙ RL↓ (2) 

where α is the surface albedo (dimensionless), calculated with a commonly used 

formulation (TASUMI; ALLEN; TREZZA, 2008); RS↓ is the incoming shortwave radiation (W 

m-2); RL↑ is the outgoing longwave radiation (W m-2); RL↓ is the incoming longwave radiation 

(W m-2); and ε0 is broadband surface thermal emissivity (dimensionless). The variables in Eq. 

(2) are derived for clear sky conditions (ALLEN, R. et al., 2011), which a plausible assumption 

given that the instantaneous energy fluxes are computed for visible pixels only. 

G is computed from Eq. (3) (BASTIAANSSEN et al., 1998a): 

G

Rn
= (LST − 273.15)(0.0038 + 0.0074 α)(1 − 0.98 NDVI4 ) (3) 

where LST is the surface temperature (K); and NDVI is the normalized difference vegetation 

index (dimensionless). Even though there are other empirical equations for the relationship 

between G and Rn found in the literature (DANELICHEN et al., 2014; PURDY et al., 2016), 

with improved results observed in South America machine learning models (DE ANDRADE 

et al., 2021a), we opted for the original equation, since all methods present limitations when 

applied to a broad set of climate and surface cover conditions. For water bodies, G was 

arbitrarily defined as 20% of Rn, to maintain spatial continuity. Although the G/Rn rate changes 

significantly over time, this ratio falls in the observed range shown in the literature (LIU; 

ZHANG; DOWLER, 2012; ZHAO; LIU, 2018) and is considered a reasonable first estimate. 

H is determined by Eq. (4): 

H =
ρair ∙ Cp ∙ dT

rah
 (4) 

where ρair is the air density (kg m-3); Cp is the specific heat capacity (J kg-1 K-1); dT is the near 

surface temperature gradient (K); and rah is the aerodynamic resistance (s m-1) between two 

heights z1 and z2. 

One of the main characteristics of SEBAL is the use of an estimated dT value instead of 

the difference between LST and air temperature (Ta), which allows it to overcome the Ta 

uncertainties (ALLEN, R. et al., 2011). dT is obtained via the assumption of a linear relationship 

to LST, according to Eq. (5): 

dT = a + b ∙ LST (5) 
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where a and b are empirically determined for each satellite image. To define the linear 

relationship, two extreme conditions are required, a hot and dry one, where LE is assumed as 

zero; and another that is colder and wet, where the H value is assumed to be equal to zero. The 

“cold” and “hot” pixels (endmembers) selection methods are described in Item 4.2.2.2. 

The value of H is determined iteratively, via corrections to the aerodynamic resistance 

and to the friction velocity based on the Monin-Obukhov similarity (BASTIAANSSEN et al., 

1998a). In the first step, the value of rah is estimated by Eq. (6): 

rah =
ln

z1

z2

u∗ ∙ k
 

(6) 

where z1 and z2 are heights above the zero-plane displacement height (0.1 and 2.0 m are 

commonly used values); u* is the friction velocity (m s-1); and k is the von Karman constant 

(dimensionless), equal to 0.41. The friction velocity in the first step is computed for each pixel, 

according to Eq. (7): 

u∗ =
k ∙ u200

ln (
200
zom

)
 

(7) 

where u200 is the wind speed (m s-1) at 200 m above the surface; and zom is the momentum 

roughness length (m) (WATERS et al., 2002). 

After the iterative computation of H, instantaneous LE can be determined via Eq. (1). To 

compute daily ET values, equations (8) and (9) are used, in a similar approach used by 

geeSEBAL in the OpenET ET ensemble (MELTON et al., 2021): 

FE =
LE

Rn − G
 (8) 

ET = FE ∙ ETr (9) 

where FE is the evapotranspiration fraction (dimensionless); ET is the daily evapotranspiration 

(mm day-1); and ETr is the daily reference evapotranspiration (mm day-1). ETr values are 

calculated for a rough surface crop, such as alfalfa (ASCE-EWRI, 2005), Eq. (10): 

ETr =
0.408 Δ(Rn 24h − G24h) +

1600
Tair 24h + 273.15

∙ γ ∙ u2 24h(es 24h − ea 24h)

Δ + γ(1 + 0.38 u2 24h)
 

(10) 
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where Rn 24h is the daily net radiation (MJ day-1 m-2); G24h is the daily soil heat flux (MJ day-1 

m-2); Tair 24h is the daily mean air temperature (°C); γ is the psychrometric constant (kPa °C-1); 

u2 24h is the daily mean wind speed (m s-1) at 2 m height; es 24h and ea 24h are the saturation and 

actual vapor pressure for the daily time step (kPa); and Δ is the slope of the saturation vapor 

pressure-temperature curve (kPa °C-1). G24h is assumed equal to zero. Tair 24h and u2 24h are 

acquired from meteorological reanalysis data, and es 24h, ea 24h and Δ are calculated with 

commonly used equations (ALLEN, R. et al., 2011; ASCE-EWRI, 2005; BASTIAANSSEN et 

al., 1998a; WATERS et al., 2002) and meteorological reanalysis data. Rn 24h is computed by the 

radiation budget (ALLEN et al., 1998-) with RS↓ obtained from reanalysis to account for cloud 

cover during the 8-day period.  

4.2.2.2 geeSEBAL model adaptations for continental-scale application 

Land surface temperature normalization 

One of the main assumptions of SEBAL is the direct relationship between LST and H, 

correlating the available water for ET to LST. However, other factors also influence LST such 

as elevation and solar radiation (CHEN et al., 2009; MALBÉTEAU et al., 2017; RIGON; 

BERTOLDI; OVER, 2006; ZHAO et al., 2019a, 2019b). As such, LST is generally lower at 

higher altitudes and latitudes (CHEN et al., 2009). Until recently, these phenomena have limited 

the application of the SEBAL model to flat terrains and to small AOI (ALLEN et al., 2013; 

BHATTARAI; MALLICK; JAIN, 2019; LONG; SINGH; LI, 2011).  

The partitioning of the AOI into several cells that form a grid, with the separate 

computation of ET for each grid cell, mitigates this issue. However, vegetation distribution and 

SEBAL’s parametrization have an influence on the final ET estimate, which often lead to 

inconsistent estimates along the edges of adjacent cells (BHATTARAI; MALLICK; JAIN, 

2019).  

To overcome this major limitation of SEBAL, we present a new and simple method for 

LST normalization as a function of surface elevation (z) and solar zenith angle (θ). Equations 

(11-13) show the steps in the novel LST normalization method: 

LSTdem = LST + 0.0065 ∙ z (11) 

LSTreg = lrcosθ ∙ cos θ + LSTcosθ=0 (12) 

LSTnorm = LSTdem − LSTreg θ + 300 (13) 
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where LSTdem (K) is the LST adjusted to a common elevation datum (sea level); LSTreg is the 

linear regression (K) between LSTdem and the cosine of θ (cos θ); lrcos θ and LSTcosθ = 0 are the 

slope and intercept of LSTreg(cos θ); and LSTnorm (K) is the LSTdem subtracted by LSTreg
 and 

offset by 300 K. Eq. (11) is the widely used LST correction for the adiabatic rate, which 

removes the surface elevation effect in LST, while Eq. (12-13), combined with the steps 

described in the next paragraph, represent a novel method to remove the Earth’s curvature effect 

on LST, based on the fact that the radiation incidence angle also affects surface heating 

(MALBÉTEAU et al., 2017). 

To calculate the LSTreg coefficients, only densely vegetated pixels on flat terrain were 

selected (NDVI ≥ 0.70, α < 0.23, terrain slope < 15°). Thus, a mask was applied prior to Eq. 

(12) computation. To consider the spatial variability of lrcos θ and LSTcos θ = 0, South America 

was divided into numerous 1,200 x 1,200 km cells (see examples in Figure 4.2), randomly 

distributed across the available densely vegetated pixels of each image, with a minimum 

distance between the centers of the cells around 600 km, aiming for maximum coverage. For 

every LST image, a different grid had to be generated, as available densely vegetated pixels 

vary according to surface conditions as well as cloud cover.  lrcos θ and LSTcosθ = 0 were 

calculated for each cell, and images of the entire study area for each coefficient were generated 

through spatial interpolation using the inverse-distance weighted method. After the 

interpolation process, Eq. (12) is applied with the gridded lrcos θ and LSTcosθ = 0 to compute 

LSTreg. 
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Figure 4.2 – Grids used for the computation of LSTnorm for six dates of 2015. The grid configuration is 

dependent on densely vegetated pixels availability and varies with each LST image used. 

Automated endmembers selection procedure 

The bottleneck for most SEBAL applications lies on the proper selection of the locations 

with extreme conditions, also known as endmembers. Sensitivity analysis results (FENG et al., 

2016; KAYSER et al., 2022; LONG; SINGH; LI, 2011) indicate that the model is most sensitive 

to hot and cold endmembers’ temperatures. Numerous methodologies have been proposed to 

optimally and operationally locate the endmembers (ALLEN et al., 2013; BHATTARAI et al., 

2017; MORTON et al., 2013; SABOORI et al., 2021). The automation of the hot and cold 

endmember selection enables the operational computation of ET image datasets. However, 

other issues remain regarding complex topographic landscapes and very large study areas.  
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In this study, the selection of the endmember candidates followed the steps described in 

Figure 4.3. The procedure is based on theoretical and empirical knowledge regarding SEB 

fluxes and LST patterns (ALLEN et al., 2013; BHATTARAI et al., 2017; LAIPELT et al., 

2020; SABOORI et al., 2021). As a result, one cold and one hot endmember pixels are selected 

for each image of South America. 

 
Figure 4.3 – Flowchart of the selection procedure of the cold and hot endmembers for automated 

calibration. 

Both groups of candidates were filtered for positive available energy (Rn – G). This 

removes regions where there is not enough energy for ET to occur. Additionally, pixels with 

LST ≤ 273.15 K (0°C) and LST ≥ 333.15 K (60°C) were masked out to ensure the linearity of 

the relationship between surface temperature and dT. Finally, areas of strong terrain slope were 

also masked out to avoid extreme illumination conditions. Based on visual inspection, only 

pixels with slope ≤ 15° were selected as acceptable endmember candidates. 
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The cloud masking algorithm of MODIS accurately identifies clouds and cloud shadow 

pixels. However, it commonly leaves residual pixels at the border of such features. These pixels 

are very detrimental to the cold endmember automatic selection procedure, as these areas tend 

to be colder than their surroundings. Thus, a buffer is applied to the MODIS cloud masked 

areas. Through observation of several images, a buffer of 2 km was deemed sufficient to avoid 

the cloud and cloud shadow residuals. The cold endmember candidates are considered to be 

well vegetated, so NDVI ≥ 0.70 was selected as the initial criterion. In addition, the dense 

vegetation generally displays lower reflectivity values, so pixels where α ≤ 0.23 were selected. 

From the remaining pixels, the 10% highest NDVI were selected. Then, the cold candidates 

were defined between the LSTnorm percentiles of 0.4% and 0.5%, ensuring that the cold 

endmember is in a very well vegetated area and probably with the highest soil moisture content. 

For the hot endmember, pixels identified as desert, snow or urban areas were masked out, 

as well as pixels classified as sand, loamy sand and sandy loam soils. In such areas, LST reaches 

higher values (or very low values, in snow), which leads to an overestimation of the hot 

endmember LST. The masked area received a 2 km buffer to mitigate land cover and soil 

classification potential issues. The hot endmember candidates are considered to be poorly 

vegetated or bare soil, so NDVI ≤ 0.30 was selected as the initial criterion. To avoid high 

emissivity areas such as dark lava rocks and high albedo desert areas, a mask was applied so 

only pixels with 0.10 ≤ α ≤ 0.35 were selected. An additional mask was applied to exclude 

pixels with elevation over 1,500 m to avoid possible inconsistencies in the LST topographical 

normalization process, which could strongly influence the hot endmember selection. From the 

remaining pixels, the 20% lowest NDVI were selected. Then, the hot candidates were defined 

between the LSTnorm percentiles of 65% and 70%, ensuring that the hot endmember is in a bare 

soil area with high probability of negligible soil moisture content. The upper limit of 70% is to 

avoid pixels that are excessively hot, which would be detrimental to ET modeling, based on 

sensitivity tests over the South American continent. Given the vegetation distribution and 

geography of South America, the steps described above ensure that a large number of 

endmembers are available for each MODIS image, from which one cold pixel and one hot pixel 

are selected. 

4.2.3 Validation of ET estimates  

In this study, we used the correlation coefficient (r), the linear regression slope, the Kling-

Gupta efficiency (KGE) (GUPTA et al., 2009), the Mean Absolute Error (MAE), the Root 

Mean Square Error (RMSE) and the bias as accuracy assessment metrics for the validation of 
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geeSEBAL-MODIS and other models against ET data from flux towers and calculated from 

water balance. 

4.2.3.1 Validation at local scale 

To assess the geeSEBAL-MODIS performance, the satellite-based ET was compared 

against ET data computed using the EC approach and calculated using observations from 

micrometeorological instrumentation installed at flux towers sites across South America over 

the last two decades. This network of EC towers is the culmination of many researchers’ efforts 

from multiple South American institutions, including the large-scale biosphere-atmosphere 

experiment in the Amazon (LBA-ECO), the South Brazilian network of surface fluxes and 

climate change (SULFLUX), the National Observatory of Water and Carbon Dynamics in the 

Caatinga Biome (ONDACBC), the long-term ecological research in Pantanal (PELD Pantanal), 

and networks from the Federal University of Mato Grosso (UFMT), and the University of Sao 

Paulo (USP). The location of the flux towers is presented in Figure 4.4, while Table 4.2 shows 

additional details about each flux tower site. 
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Figure 4.4 – Flux towers (a) and discharge stations with each respective river basin (b) used for ET 

validation, as well as biomes (c) and climates (d) in South America.  
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Table 4.2 – Flux towers used for ET validation, with information about the surrounding biome and 

land cover type, measurement technique (Eddy Covariance or Bowen Ratio), ET data availability and 

source. 

Tower Biome Land cover 
Measurement 

Technique 
Data Availability Source 

AFL Amazon Evergreen broadleaf forest EC Feb/2003-Apr/2004 (BIUDES et al., 2015) 

BAN Cerrado Seasonally flooded forest EC Oct/2003-Dec/2006 (BORMA et al., 2009) 

BDP Pantanal Seasonally flooded woodland EC Jun/2011-Aug/2015 (BIUDES et al., 2015) 

BRA Cerrado Savanna EC Dec/2010-Jan/2012 (SANTOS et al., 2003) 

CAM Pantanal Seasonally flooded forest BR Dec/2006-Oct/2010 (BIUDES et al., 2015) 

CAS Pampa Croplands (irrigated) EC Oct/2009-Mar/2015 (SOUZA et al., 2019) 

CRA Pampa Croplands (rainfed) EC Dec/2008-May/2013 
(TEICHRIEB et al., 

2013) 

CSE1 Caatinga Closed shrubland EC Jan/2013-Sep/2017 (BORGES et al., 2020) 

CSE2 Caatinga Open shrubland EC Mar/2013-Feb/2017 (BORGES et al., 2020) 

FEX Cerrado Pasture BR Aug/2006-Mar/2010 (BIUDES et al., 2015) 

FMI Cerrado Savanna grassland BR Apr/2009-Jun/2013 (BIUDES et al., 2015) 

FSN Amazon Pasture EC Mar/2002-Jul/2003 
(PRIANTE-FILHO et 

al., 2004) 

K34 Amazon Tropical rainforest EC Jul/2000-Sep/2006 (ARAÚJO, 2002) 

K67 Amazon Primary tropical moist forest EC Feb/2002-Jan/2006 (SALESKA, 2016) 

K77 Amazon Pasture then agriculture after Dec/2001 EC Dec/2000-Oct/2005 (SAKAI et al., 2004) 

K83 Amazon Primary tropical moist forest EC Jul/2000-Mar/2004 
(GOULDEN et al., 

2004) 

NPW Pantanal Woodland savanna (Seasonally flooded) EC Nov/2013-Jul/2017 
(DALMAGRO et al., 

2019) 

PAS Pampa Natural grassland EC Aug/2014-Sep/2016 (RUBERT et al., 2019) 

PDG Cerrado Woodland savanna EC Jan/2002-Jan/2004 
(DA ROCHA et al., 

2009) 

PRS Pampa Croplands (irrigated) EC Jun/2003-Jul/2004 (TIMM et al., 2014) 

QFR Amazon Permanent wetlands EC Feb/2018-Nov/2019 (GRIFFIS et al., 2020) 

RJA Amazon Tropical dry forest EC Jul/2000-Nov/2002 
(VON RANDOW et 

al., 2004) 

SIN Amazon Tropical dry forest EC Apr/2005-Jun/2008 (BIUDES et al., 2015) 

SMA Pampa Natural grassland EC Nov/2013-Jun/2016 (RUBERT et al., 2022) 

TNR Amazon Primary evergreen forest EC Dec/2016-Jul/2018 
(VIHERMAA et al., 

2016) 

USE Cerrado Cropland (rainfed) EC Feb/2001-Jan/2003 (CABRAL et al., 2003) 

VIR Chaco Evergreen needleleaf forests EC Dec/2009-May/2012 
(ULKE; GATTINONI; 

POSSE, 2015) 

4.2.3.2 Validation at basin scale 

Due to the high spatial variability of ET, the ability of the 27 flux towers to fully represent 

the heterogeneous South American territory is limited to the land cover over which they were 

installed and to their relatively small footprint, which is often in the order of a few hundred 

meters (VOLK et al., 2023). Thus, to evaluate large-scale ET performance, a regional validation 

of remotely sensed ET data is also recommended. Many studies evaluated the performance of 
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remotely sensed ET data using water balance and hydrological models (DE ANDRADE, 2018; 

RUHOFF et al., 2022, 2012; SENAY et al., 2017), which is recommended especially for 

regions with scarce monitoring data (RUHOFF et al., 2022). Therefore, we coupled 

precipitation and water storage with in situ streamflow data to perform water balance 

calculations for 29 river basins in South America (MOREIRA et al., 2019; RUHOFF et al., 

2022). As presented in Figure 4.4, they cover five major South American rivers, including the 

Amazon, Tocantins, São Francisco, Paraná and Parnaíba. Water balance-based ET was 

calculated annually, between 2003 and 2014, according to Eq. (14): 

ET = P − Q −
dS

dt
 (14) 

where ET is the annual evapotranspiration on the basin’s surface (mm year-1), P is the annual 

precipitation over the basin (mm year-1), Q is the annual streamflow measured at the discharge 

station (mm year-1), and dS/dt is the basin’s total water storage variation during a hydrological 

year (mm year-1). Precipitation was calculated as an ensemble of five datasets: the Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS) (FUNK et al., 2015); ERA5 

Land (MUÑOZ SABATER, 2019); Global Land Data Assimilation System (GLDAS) version 

2.1 (RODELL et al., 2004b); Global Precipitation Measurement (GPM) (HUFFMAN et al., 

2019); and Terra Climate (ABATZOGLOU et al., 2018). Streamflow data is based on the 

measurements provided by the Brazilian Water and Sanitation Agency (ANA) (available at 

https://www.snirh.gov.br, last accessed on 04 November 2022) and the Argentinian 

Hydrological Database System (SNIH) (available at https://snih.hidricosargentina.gob.ar/, last 

accessed on 04 November 2022). Storage variation was calculated using the Gravity Recovery 

and Climate Experiment (GRACE) dataset of total water storage (TWS) (LANDERER; 

SWENSON, 2012; SWENSON, 2012; SWENSON; WAHR, 2006b). Annual TWS variation 

(dS/dt) was calculated as the difference of TWS between two time steps, corresponding to the 

last day of two consecutive hydrological years. Hydrological years were defined with their 

endings falling on the last day of the month with the lowest streamflow monthly mean value. 

Due to the temporal availability of all the datasets, the water balance approach was applied from 

2003 to 2014. Based on recent findings (VISHWAKARMA; DEVARAJU; SNEEUW, 2018), 

only basins with areas over 100,000 km² were selected. No gap filing methods were employed. 

Thus, only years with full data availability were used. 

https://www.snirh.gov.br/
https://snih.hidricosargentina.gob.ar/
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Uncertainty in the ET based on water balance was estimated by Eq. (15) (LONG; 

LONGUEVERGNE; SCANLON, 2014; RODELL et al., 2004a, 2011; SENAY; BUDDE; 

VERDIN, 2011; SHEFFIELD et al., 2009): 

υET̅̅ ̅̅ =

√υP̅
2P̅2 + υQ̅

2 Q̅2 + υdS
dt

̅̅̅̅
2 dS

dt

̅̅ ̅2

P̅ − Q̅ −
dS
dt

̅̅ ̅
 

(15) 

where υ is the relative uncertainty of each water balance component. The absolute uncertainties 

of dS/dt and P were assumed to be the average of the standard deviation among the different 

datasets’ estimations. Q uncertainty was assumed as equal to 5% of average annual streamflow. 

4.2.3.3 Comparison with other global ET datasets  

To assess geeSEBAL-MODIS performance relative to previously available ET datasets, 

we selected eight state-of-the-art global ET datasets (Table 4.3) and compared the validation 

results of each one at both local and river basin scales, between 2003 and 2014. Three of these 

models are based on vegetation phenology methods, the Global Land Evaporation Amsterdam 

Model (GLEAM), MOD16 and Penman-Monteith-Leuning (PML), while the SSEBop is a SEB 

based model. ERA5 and GLDAS are based on land surface models, the Breathing Earth System 

Simulator (BESS) is a Biophysical process-based model, and Terra Climate utilizes a simplified 

water balance approach to estimate ET. 
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Table 4.3 – Description of the eight ET datasets used for comparison with geeSEBAL-MODIS. 

Model 

Spatial and 

temporal 

resolution 

ET method Advantages Limitations References 

BESS 
5 km, 

8 days 

Biophysical process-

based model 

Linkage between 

carbon and water 

fluxes 

Complex terrain and 

heterogeneity of land 

surface are not 

considered 

(JIANG; RYU, 

2016; RYU et 

al., 2011) 

ERA5 

(v. Land) 

0.1 degree, 

Hourly 
Land surface model 

High temporal 

resolution 

Complex terrain and 

heterogeneity of land 

surface are not 

considered 

(HERSBACH et 

al., 2020) 

GLDAS 

(v. 2.1) 

0.25 degree, 

3 hours 
Land surface model 

High temporal 

resolution 

Complex terrain and 

heterogeneity of land 

surface are not 

considered 

(RODELL et al., 

2004b) 

GLEAM 

(v. 3.3b) 

0.25 degree, 

daily 

Remote sensing 

(Priestley-Taylor 

equation) 

Moderate 

meteorological inputs 

requirements 

Limitations in areas 

with high soil and 

water evaporation 

(MARTENS et 

al., 2017; 

MIRALLES et 

al., 2011) 

MOD16 

(v. 6) 

500 meters, 

8 days 

Remote sensing 

(Penman-Monteith 

equation) 

Low complexity for 

implementation 

Requires measured 

data for model 

calibration 

Limitations in areas 

with high soil and 

water evaporation 

(MU et al., 2007; 

MU; ZHAO; 

RUNNING, 

2011b) 

PML 

(v. 2) 

500 meters, 

8 days 

Remote sensing 

(Penman-Monteith 

equation) 

Physically sound 

High meteorological 

data 

requirements 

(ZHANG et al., 

2019) 

SSEBop 

(v. 4)1 

1 km, 

monthly 

Remote Sensing 

(Simplified surface 

energy balance) 

Low complexity for 

implementation 

Requires clear-sky 

conditions 

(SENAY et al., 

2013; SENAY; 

KAGONE; 

VELPURI, 2020) 

Terra 

Climate 

2.5 arcmin, 

monthly 

One-dimensional 

water balance 

(modified 

Thornthwaite-

Mather equation) 

Simple application 
Sensitive to 

precipitation error 

(ABATZOGLO

U et al., 2018) 

1 – SSEBop versions 4 and 5 were compared with both flux towers and water balance ET. Accuracy assessment indicated that SSEBop 

version 4 yielded better performance than version 5 in South America. Thus, we chose to include SSEBop version 4 in this intercomparison. 

 

4.2.4 ET application cases 

To demonstrate breakthrough research opportunities with the new geeSEBAL-MODIS, 

we provide two applications to foster our comprehension of large and continental-scale ET 

dynamics.  
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4.2.4.1 Deforestation and cropland expansion impacts on ET 

To evaluate the impacts of land cover change on ET, we investigate ET patterns over two 

regions in Brazil, the Amazon deforestation arc (CAVALCANTE et al., 2019; GATTI et al., 

2021; SPERA et al., 2016; SPRACKLEN; GARCIA-CARRERAS, 2015) and the Urucuia 

Aquifer System (DE ANDRADE et al., 2021b; GASPAR; CAMPOS; DE MORAES, 2012; 

GONÇALVES et al., 2020), that are undergoing intensive anthropic alterations, based on land 

cover data from the MapBiomas project (SOUZA et al., 2020) between 2003 and 2020. 

Deforestation and cropland expansion areas were identified, and local ET time series were 

extracted as the pixel value in each area for every processed image. The time series were then 

resampled to monthly time intervals. Seasonal ET means were also computed for the periods 

before and after the land cover change. 

4.2.4.2 Net evaporation of artificial lakes 

Net evaporation (En) of an artificial lake is defined as the difference of evaporation from 

the lake and the ET of the lake if there was no lake, for which the ET of the surrounding area 

can be used as a surrogate (ANA, 2021b). The En constitutes a water use that can heavily impact 

water resources availability. In this study, we considered the surrounding area as the land within 

a 5 km buffer around the lake margins. The lake’s limits were obtained from MapBiomas 

(SOUZA et al., 2020) between 2003 and 2020. Seasonal values of lake evaporation, 

surrounding area ET and the lake En were computed, as well as annual trends, for two huge 

artificial lakes in Brazil (Porto Primavera and Sobradinho reservoirs). 

4.3 Results and Discussion 

4.3.1 Multi-scale model validation 

Figure 4.5 shows the ET time series calculated using geeSEBAL-MODIS and measured 

at the 27 flux towers in South America. Measured values were averaged for each 8-day time 

window of the geeSEBAL-MODIS dataset. geeSEBAL-MODIS data agree with the flux tower 

ET, generally falling within the shaded area that captures the daily variability in ET over each 

8-day period. Also, geeSEBAL-MODIS is able to explain local ET seasonality and is sensitive 

to interannual variability. Scatterplots for all towers with additional performance metrics are 

available in Supplementary Material (Figure S1). geeSEBAL-MODIS performs best in areas of 

high seasonal variation. geeSEBAL-MODIS tends to overestimate ET over central Brazil 
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(BDP, BRA, NPW and PDG) during September, which represents the end of the dry season. 

This phenomenon is still not fully understood, and additional investigations are needed to 

understand why the model predictions deviate from measured values in this context. However, 

a previous study (ALLEN et al., 2021) indicates that the FAO Penman-Monteith method for 

calculating ETr tends to be overestimated when reanalysis data are used over hot and arid 

climates. This artificial increase in atmospheric demand overcompensates for the reduction in 

available surface moisture observed in the dry season, generating higher values of ET. The 

results indicate that errors of geeSEBAL-MODIS are within the range found by other validation 

studies of SEBAL with MODIS data, which are around 20% of average ET from local 

measurements (RUHOFF et al., 2012; ZHENG; WANG; LI, 2016). 

Figure 4.6 shows the annual ET anomalies time series estimated by geeSEBAL-MODIS 

and the water balance approach for 29 river basins. Overall, geeSEBAL-MODIS 

underestimates ET compared to ET computed from water balance, with an average bias 

of -86 mm year-1 (around 8%). Higher uncertainty in water balance ET is observed over 

Amazon basins, which is mainly caused by a larger distribution among the precipitation datasets 

used. The lowest deviations occur in the São Francisco, Paraná and Northeast Atlantic basins. 

Meanwhile, ET is consistently underestimated in the Tocantins and Amazon basins. 

geeSEBAL-MODIS interannual variations mostly occur inside the water balance ET range of 

uncertainty and agrees with the overall long-term trends. However, ET anomalies for some 

years present opposite signals. Further investigation is needed to identify the cause of these 

diverging variations. On one hand, the relatively higher ET anomalies from geeSEBAL-

MODIS could be caused by the overestimation in ETr in dry climates (ALLEN et al., 2021) or 

by a possible insensitivity of the water balance approach to plant responses and soil hydraulic 

conductivity effects on positive ET anomalies during short dry periods, due to low stomatal 

control, deep root zone and antecedent increased vegetation cover caused by a prior wet period 

(GOULDEN; BALES, 2019; ZHAO et al., 2022). On the other hand, the negative correlation 

between moisture (precipitation) and atmospheric demand (ETr) (HUNTINGTON et al., 2011a) 

can lead to lower geeSEBAL-MODIS ET anomalies than those derived from water balance, 

especially in areas of humid climate. Scatterplots for all basins with additional performance 

metrics are available in Supplementary Material (Figure S2).  
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Figure 4.5 – Time series of geeSEBAL-MODIS ET and ET measured at flux tower sites, averaged for 

every 8-day interval, at 27 sites in South America, with RMSE and Bias in mm day-1. The grey shaded 

areas represent flux tower ET variation (maximum and minimum values) during each 8-day time 

window. 
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Figure 4.6 – Annual time series of anomalies of geeSEBAL-MODIS and water balance ET of 29 river 

basins in South America, with RMSE and Bias in mm year-1. The grey shaded areas represent the 

uncertainty of the ET from water balance. 

4.3.2 Intercomparison with global ET datasets 

Figure 4.7 shows the distribution of the comparison statistics between the nine datasets 

(i.e., including geeSEBAL-MODIS) and ET measured at each individual flux tower. All models 

generally yielded an average slope higher than 0.5. The KGE, r, bias, MAE and RMSE metrics 
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indicate a superior performance of geeSEBAL-MODIS at the local scale, when compared to 

the eight global datasets. Scatterplots for all models with aggregated performance metrics are 

available in Supplementary Material (Figure S3). Given that geeSEBAL-MODIS uses ERA5-

Land data for computing ETr, it was expected to yield similar results in areas of higher FE, 

where ET values are close to the atmospheric demand. However, ERA5 overestimated ET by 

around 1 mm day-1 for towers located in the Amazon rainforest (K34, K67, K77 and K83), 

whereas geeSEBAL-MODIS bias in these towers ranged between -0.56 and 0.13 mm day-1. On 

the other hand, both models yielded similar results over rice paddy croplands (CAS and PRS). 

 
Figure 4.7 – Boxenplots of performance metrics between ET estimated by nine models (BESS, ERA5, 

GLDAS, GLEAM, MOD16, PML, SSEBop, Terra Climate and geeSEBAL-MODIS) and ET 

measured at 21 flux towers in South America. Slope, bias (mm day-1), KGE, MAE (mm day-1), 

correlation coefficient (r), and RMSE (mm day-1) are displayed. 



 

 

66 

 

Figure 4.8 presents the comparison of annual ET obtained from water balance and annual 

ET from geeSEBAL-MODIS and other ET datasets, for 29 river basins in South America, 

between 2003 and 2014. In contrast to the comparison at local scale, the datasets showed 

distinct patterns at the basin scale. Wider ranges are identified for slope, r and KGE. ERA5, 

GLDAS, GLEAM, MOD16 and PML overestimate ET in the Amazon, while underestimating 

it in other basins. Most models showed lower sensitivity to ET interannual variations in the 

Amazon when compared to water balance ET. SSEBop yielded consistently lower bias, but also 

the lowest slope values. Despite the considerable bias of geeSEBAL-MODIS, it yielded the 

lowest overall errors (MAE and RMSE) of all datasets, and the errors are 30% lower than the 

average of the other eight datasets. geeSEBAL-MODIS also yielded the highest r-value when 

compared to the water balance ET. 
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Figure 4.8 – Comparison between annual ET estimated by 9 models (BESS, ERA5, GLDAS, 

GLEAM, MOD16, PML, SSEBop, Terra Climate and geeSEBAL-MODIS) and aggregated ET 

calculated from water balance of 29 river basins in South America. The black dashed line represents 

the 1:1 relationship, and point color represents the major river basin. Slope, correlation coefficient (r), 

bias (mm year-1), KGE, MAE (mm year-1) and RMSE (mm year-1) are also displayed. 

Out of the eight ET datasets used in the geeSEBAL-MODIS cross-validation, we selected 

Terra Climate, MOD16, PML and SSEBop to perform a spatial analysis of ET patterns. Despite 

their performance, BESS, ERA5, GLDAS and GLEAM were excluded because of their coarser 

spatial resolution. Figure 4.9 presents the dataset comparisons over five areas in South America: 

(a) the reservoir of the Sobradinho Dam, in northeastern Brazil; (b) a portion of the Amazon 

deforestation arc, in northwestern Brazil; (c) the Pantanal biome; (d) a portion of the Andes 

Mountains and vegetated plains with areas of cropland, in northern Argentina; and (e) the 

mouths of the Uruguay and Paraná Rivers into the Atlantic Ocean, near the border between 

Argentina and Uruguay. Different periods from 2013 were selected for each region, in order to 
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maximize the ET contrast among the various land covers. For reference, EVI images for each 

location are also shown. 

Terra Climate’s coarse spatial resolution is insufficient to represent the spatial features 

and ET spatial variations in all locations. The other datasets better represent the ET spatial 

distribution. MOD16 and PML display higher ET over dense forests and lower ET over sparser 

vegetation, when compared to SSEBop and geeSEBAL-MODIS. Also, both MOD16 and PML 

do not estimate ET rates over water bodies, as seen at Sobradinho Dam’s reservoir and Pantanal 

wetlands, yielding either masked or extreme values for the analyzed time period (especially 

PML over the Pantanal). SSEBop and geeSEBAL-MODIS showed similar spatial patterns and 

are more sensitive to ET differences between natural vegetation and croplands. However, 

SSEBop yields lower ET rates in deep water pixels, contrasting with the ET rates observed at 

water pixels near the water bodies margins. All datasets yielded lower ET for the Andean 

region. For the PML dataset, a gridded pattern is observed, probably due to a coarse resolution 

of one of its input datasets. 

Among the assessed continental to global-scale ET datasets, geeSEBAL-MODIS has one 

of the highest spatial (500 m) and temporal (8 days) resolutions. Because of this and due to its 

SEB-based structure, it is able to represent several natural and human-affected surface features, 

such as land cover change, including deforestation and cropland expansion; irrigated cropland 

water use; surface water evaporation and net evaporation from artificial lakes; vegetation 

greening/wilting and water stress conditions. In addition, through coupling of trend analysis 

and climate change studies, the dataset can also be used for prediction of future conditions, 

which can improve decision making at both regional and continental scales.  
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Figure 4.9 – Mean daily ET (Terra Climate, MOD16, PML, SSEBop and geeSEBAL-MODIS) over 

the reservoir of the Sobradinho Dam (a); a portion of the Amazon deforestation arc (b); the Pantanal 

biome (c); a portion of the Andes Mountains and vegetated plains with areas of cropland (d); and the 

lower portions of the Uruguay and Paraná rivers into the Atlantic Ocean (e). Details with EVI values 

for each location are presented as well. White areas represent pixels with no data. 

Incorporation of features such as lower latency (from three months to near-real time) and 

global spatial coverage should provide geeSEBAL-MODIS the conditions to be used as a tool 

for land ET monitoring worldwide. Additionally, the combination of multi-sensor moderate 

resolution LST data, such as MODIS AQUA, MODIS TERRA and, with the decommissioning 

of these two in the near future, the transition to Visible Infrared Imaging Radiometer Suite 

(VIIRS) are potential next steps for optimizing geeSEBAL-MODIS accuracy and continuation 

of global ET long-term monitoring over the next decades. Multi-source satellite images also 

help overcome the limitation of temporal resolution of the geeSEBAL-MODIS dataset, which 

was set to 8 days due to the MODIS satellite orbit and to cloud cover conditions. Finally, 

regional biases identified for some regions in South America need to be investigated and may 

result in improvements to the geeSEBAL-MODIS model formulation and parameterization. 
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4.3.3 LST normalization procedure 

Figure 4.10 displays bimonthly means of LST (Figure 4.10a), LSTnorm (Figure 4.10b) and 

NDVI (Figure 4.10c), derived between 2003 and 2021, as well as scatterplots of LST and 

LSTnorm against latitude (Figure 4.10d). Higher slopes of LST versus latitude occur between 

April and September, due to a higher radiation differential during winter. In the summer, higher 

temperatures are found in the mid latitudes and in drier areas, such as the Brazilian Northeast 

and the Patagonia region. LST over the Andes Mountains follows is lower because of the higher 

altitudes, despite the lack of vegetation. The scatterplots evidence that the procedure 

successfully removes the geographical position effects on LST, as areas with similar NDVI 

presented similar LSTnorm consistently throughout the year. Differences in LSTnorm for pixels in 

the same range of NDVI values can, therefore, be associated with the effects of evaporative 

cooling. Although LSTnorm on low NDVI areas showed a trend to decrease with higher latitudes, 

this effect is not detrimental to the geeSEBAL-MODIS algorithm, as the lower dT values in 

these latitudes can be associated to lower available energy, resulting in lower Rn and H rates. 

The LST normalization procedure adjusted LST values based on pixel illumination. The 

resulting LSTnorm yielded a higher correlation with vegetation cover and land cover types. This 

procedure provided the grounds for geeSEBAL-MODIS continental-scale application and the 

development of the geeSEBAL-MODIS dataset, which overcame the limitations presented in 

previous very large scale applications of SEBAL (BHATTARAI; MALLICK; JAIN, 2019; 

CHENG et al., 2021), and maintained the model’s independence from reanalysis Ta data during 

surface energy fluxes computation. The model validation at local and basin scale demonstrated 

the model’s high accuracy and its potential for a future global implementation. 
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Figure 4.10 – Effects of the LST normalization procedure for the period of Feb-2003 to Nov-2021. 

Bimestrial average maps of LST (a), LSTnorm (b), and NDVI (c). Scatterplots for each bimester of LST 

(d) and LSTnorm against Latitude (e). The colors in the scatterplots correspond to the NDVI value. 
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4.3.4 The South American ET regime 

4.3.4.1 Long-term spatiotemporal patterns of ET 

Figure 4.11 shows long-term (2003-2021) spatiotemporal patterns of ETr, FE and ET in 

South America. Seasonal variation is observed for ETr, with lower values during winter and 

higher ones during summer, especially for higher latitudes, which is related to the seasonality 

of radiation and Ta. Higher FE values are also observed during summer, in parts of central and 

northeastern Brazil, but this seasonality is associated with the rainfall regime in the Cerrado 

and Caatinga biomes, with most rainfall concentrated between November and March. 

Throughout the year, the highest values of ETr (and one of the lowest ET) occur in the Brazilian 

Northeast, where there is a combination of high Ta, wind speed, and radiation, with low 

atmospheric water content. FE reflects the surface water availability for ET (DE ANDRADE 

et al., 2021b). Generally, high FE values (between 0.8 and 1.0) are associated with densely 

forested areas, wetlands, irrigated crops and open water surfaces, as well as along the eastern 

shoreline. The highest FE are mainly observed in water bodies. Lower FE occurs in the Andes 

mountains, as well as in Patagonia and parts of Brazil’s Northeast, which can be related to the 

sparser vegetation and are subjected to lower precipitation rates. Average monthly values 

(2003-2021) of ETr, FE and ET are available in Supplementary Material (Figure S4). 
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Figure 4.11 – Frequency of (a) ETr, (b) FE and (c) ET (2003-2021). Colors indicate the frequency at 

which a pixel yields high (blue), moderate (green) or low (red) ETr, FE or ET. 

4.3.4.2 The drivers of ET in South America 

Figure 4.12 presents the atmospheric and surface drivers of geeSEBAL-MODIS ET, 

derived from the absolute value the correlation coefficient between ET (a) atmospheric (Wind, 

VPD and Rs) and (b) surface (Albedo, EVI and LST). In areas where ET is classified as low, 

weak correlations are identified to both atmospheric and surface variables, since seasonal 

variations of ET are almost absent and rare anomalies can be associated with numerous factors. 

Over the humid biomes of the Amazon, Chaco, Pampa, Atlantic Forest and south of the Andes, 

the most dominant drivers of ET are VPD, Rs and LST. On the Brazilian Cerrado and Caatinga 

biomes, wind speed and EVI play a stronger influence on ET variation. Albedo and LST were 

found to be the dominant forces over wetlands, riparian forests, and higher elevation areas. 

These findings agree with results similar studies (PENG et al., 2019), which indicate that EVI 

and VPD are opposite drivers of ET. EVI is associated with stomatal activity, the parts of plants 

responsible for transpiration, and correlates positively to ET. Meanwhile, VPD, which is 

associated to the water content, controls stomatal functions, closing the stomata when VPD is 

high, thus correlating negatively to ET. r-values between ET and each driver is available in the 

Supplementary Material (Figure S5). 
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Figure 4.12 – (a) Atmospheric (VPD, Wind and Rs), and (b) surface (Albedo, EVI and LST) drivers of 

ET in South America, based on the period 2003-2021. Dark areas indicate low correlation between ET 

and the drivers. 

4.3.5 ET application cases  

4.3.5.1 Deforestation and cropland expansion impacts on ET 

Figure 4.13 displays deforestation and cropland expansion for two areas in Brazil between 

2003 and 2020: one in the Brazilian Amazon Arc of Deforestation, and another in the Urucuia 

Aquifer System, in the Northeast of Brazil. In the Amazon, the black arrow points to an area 

where deforestation occurred in 2010, becoming a pastureland. In the time series of anomalies, 

consistent positive and negative anomalies are distinguished before and after the deforestation 

event, which is expected, given the ET rates of arboreous vegetation compared to grasslands. 

The chart of monthly means for the area shows lower ET values throughout the year after the 

deforestation event, especially during the dry season, with a decrease of up to 30 mm month-1 

in August. In the Urucuia region, the black arrow indicates an area where savanna was replaced 

by irrigated soy crop in 2009. Higher ET rates occur after the conversion of the area. Also, the 
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cropland shows less sensitivity to variations in climate conditions, as evidenced by the lower 

ET rates in the 2008 drought event that are not perceived for other drought events (2012, 2015 

and 2020). The higher ET rates follow the crop cycles, occurring twice a year with harvests in 

March and September/October. These results agree with findings by (LAIPELT et al., 2021), 

that evaluated high resolution (30 m) ET over human-affected areas in Brazil. Despite the 

coarse spatial resolution of the MODIS LST datasets, geeSEBAL-MODIS is sensitive to 

changes in land cover smaller than the 1 km pixel of MODIS Aqua. This example demonstrates 

that geeSEBAL-MODIS is a valuable tool for quantifying the hydrological impacts of 

deforestation and cropland expansion and monitoring the impacts of land conversion on 

evapotranspiration and water consumption. 

 

Figure 4.13 – (a) Land cover change corresponding to deforestation and cropland expansion between 

2003 and 2020. Details for areas of (b) deforestation occurred in the Amazon, in 2010, and (c) 

irrigated soy cropland that started in 2009, in the Brazilian Cerrado. ET anomalies time series with 

three month (black lines and two years (red lines) rolling averages for both areas (d and e), where 

shaded areas represent the year of land cover change for each location. Mean monthly ET values for 

both areas before (black lines) and after (red lines) the land cover change (f and g) are also presented, 

where the shaded areas represent the monthly standard deviation. 

4.3.5.2 Net evaporation of artificial lakes 

Figure 4.14 displays the En analysis for the Porto Primavera and Sobradinho reservoirs, 

between 2003 and 2020. During this period, Sobradinho yielded a high interannual storage 

variation than Porto Primavera, with a lower water cover frequency along the borders and the 
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upstream portion of the reservoir. The same occurs for the ET variation, with higher monthly 

evaporation standard deviation over Sobradinho. Such differences could be attributed either to 

climatic variation or to dam operation rules. En over Sobradinho averages 1,280 mm year-1, 

which represents a 207% increase in water lost via evaporation because of the open water 

surface. In Porto Primavera, average En is 459 mm year-1, representing an increase of 42% of 

water loss over the artificial lake. The contrasting results for both reservoirs are associated with 

the different atmospheric demand (ETr), which is higher over the semi-arid climate around 

Sobradinho, as well as to the higher vegetation cover around the Porto Primavera reservoir, that 

yields higher ET rates. Along with the higher water loss in Sobradinho, a positive trend (18.6 

mm year-2) in En is observed between 2003 and 2020, resulting from the decrease of ET in the 

reservoir surroundings. Porto Primavera, on the other hand, shows decreasing En trend (-1.2 

mm year-2). Compared to findings by (ANA, 2021b), our results of En are similar for Porto 

Primavera, but much lower for Sobradinho. The seasonality, however, is similar for both 

locations. The magnitude differences might be related to the approach for ETr calculation, 

which can cause overestimations of ET, especially over arid and semi-arid regions (Allen et al., 

2021). 
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Figure 4.14 – Net evaporation of artificial lakes using ET from the geeSEBAL-MODIS dataset. Tre 

cover and drainage map of Brazil (a); Porto Primavera and Sobradinho reservoirs with water cover 

frequency (as in years with water cover over the total of years in the series) and frequency of the 5 km 

water buffer (b and c); time series of water evaporation, buffer area evapotranspiration and reservoir 

net evaporation for both artificial lakes (d and e), where the stronger lines represent a rolling average 

of 12 months; and monthly means of water evaporation, buffer area evapotranspiration and reservoir 

net evaporation for both artificial lakes (f and g), where the shaded areas represent the monthly 

standard deviation. 

4.3.6 Advances in making continental scale ET datasets locally relevant 

geeSEBAL-MODIS ET estimates were generally more accurate than other ET model 

products, with error reduction of 13% at the local and 30% at the regional scale, when compared 

to the average error of the other global datasets. geeSEBAL-MODIS also displayed a more 

consistent performance over the different surface and climatic conditions found in South 

America, with higher KGE and correlation values, revealing its robustness for continental-scale 
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ET modeling. We also demonstrate the model’s ability to represent local processes, such as 

deforestation and cropland area expansion. This represents a new era for SEB-based ET 

modeling, in which the spatial coverage obstacle is no longer a limitation to models such as 

SEBAL and METRIC. 

SEB models are known to better represent the surface-atmosphere interactions than 

vegetation-based and low spatial resolution models (ANDERSON et al., 2012; BHATTARAI 

et al., 2019; LU et al., 2019; YIN et al., 2020), especially over irrigated areas. Furthermore, the 

general trend for improvements in big data computation, quality of meteorological datasets and 

spatiotemporal resolution of thermal imagery suggest a great potential to increase the accuracy 

of SEB models beyond what is possible with other available methods (ANDERSON et al., 

2012; FISHER et al., 2017). These conditions pave the way for the implementation of novel, 

very large-scale SEB models, such as the geeSEBAL-MODIS and SSEBop (SENAY; 

KAGONE; VELPURI, 2020), and expansion of projects like OpenET and WaPOR, helping 

improve their accuracy and spatial coverage and, consequently, aiding water resources 

management.  

Although recent missions like Landsat 9 (MCCORKEL et al., 2018) and ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) (FISHER et al., 

2020a) support a trend towards high-resolution modelling of ET (FISHER et al., 2017; MASEK 

et al., 2020), the generation of datasets at high resolution for very large areas is still 

computationally expensive with additional demands for storage of hundreds of terabytes to 

petabytes of data. Therefore, moderate spatial resolution models, like the ones based on MODIS 

and VIIRS data, provide a near-term pathway to continental and global ET modeling, with the 

advantage of a higher temporal resolution, which can help to address cloud cover limitations in 

many regions around the world. Given the near-term plans for decommissioning the MODIS 

instruments and de-orbiting the Terra and Aqua satellites, the VIIRS sensor is a candidate for 

the continuity of the global scale ET model development (TANG et al., 2020)., with the benefit 

of a higher LST spatial resolution (750 m against 1 km from MODIS) while preserving the 

global daily coverage. 

4.4 Conclusions 

In this study, we presented the first continental-scale application of the geeSEBAL model 

at moderate spatial resolution, resulting in the geeSEBAL-MODIS dataset. The ET dataset was 

developed with 500 m / 8-day spatiotemporal resolution, between July-2002 and December-
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2021, covering the entire South America. Accuracy assessment demonstrated that geeSEBAL-

MODIS improves ET estimations at field scale by 13% and at basin scale by 30% when 

compared to the average performance existing global ET datasets. geeSEBAL-MODIS also 

yielded with a more stable performance, without the overestimations made by vegetation 

phenology and land surface models in densely vegetated areas. The higher spatiotemporal 

resolution also suggests that geeSEBAL-MODIS is more appropriate for land monitoring, 

helping to identify local impacts of human activities on ET, indicating a decrease in deforested 

areas of the Amazon rainforest and an increase for irrigated cropland expansion in the Brazilian 

Cerrado biome. 

Based on the geeSEBAL-MODIS results, the South American territory was classified 

regarding ET spatiotemporal patterns. Applications of the model to surface monitoring were 

suggested at multiple scales, indicating the ability of geeSEBAL-MODIS model to represent 

both local and regional processes. The geeSEBAL-MODIS development represents a new era 

in ET modeling, with the ability to combine powerful cloud computing with complex 

mathematical models based on the SEB approach. This opens possibilities for the development 

and expansion of SEB-based global datasets, helping to improve water resources management 

worldwide. 

4.5 Data availability statement  

The geeSEBAL-MODIS dataset with evapotranspiration estimates for South America is 

freely available at https://code.earthengine.google.com/?asset=projects/et-

brasil/assets/geesebal/myd11a2/sa/v0-02. 

https://code.earthengine.google.com/?asset=projects/et-brasil/assets/geesebal/myd11a2/sa/v0-02
https://code.earthengine.google.com/?asset=projects/et-brasil/assets/geesebal/myd11a2/sa/v0-02
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4.6 Supplementary material 

 
Figure S1. Comparison between ET estimated by geeSEBAL and measured at the 27 flux towers in 

South America, averaged for every 8-day interval from the geeSEBAL product. The black dashed line 

represents the 1:1 relationship. Correlation coefficient (r), bias (mm day-1), MAE (mm day-1) and 

RMSE (mm day-1) are also displayed. 
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Figure S2. Comparison between annual ET estimated by geeSEBAL and calculated from water 

balance of 29 river basins in South America. The black dashed line represents the 1:1 relationship. 

Correlation coefficient (r), bias (mm year-1), MAE (mm year-1) and RMSE (mm year-1) are also 

displayed. 
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Figure S3. Comparison between ET estimated by 9 models (BESS, ERA5, GLDAS, GLEAM, 

MOD16, PML, SSEBop, Terra Climate and geeSEBAL-MODIS) and aggregated ET measured at 21 

flux towers in South America, at a monthly time interval. The black dashed line represents the 1:1 

relationship. Slope, correlation coefficient (r), bias (mm day-1), KGE, MAE (mm day-1) and RMSE 

(mm day-1) are also displayed. 
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Figure S4. Average monthly values (2003-2021) of ETr, FE and ET, respectively, in South America. 
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Figure S5. Maps of correlation coefficient (r-value) between ET and various meteorological and 

remote sensing variables, including FE and ETr
 used in geeSEBAL-MODIS, in South America. 
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Chapter 5: Spatiotemporal Patterns of Evapotranspiration and 

other Hydrological Processes in Twenty First Century 

South America 

5.1 Introduction 

Climate change is a global phenomenon that poses a great challenge on humanity, with 

particular effects on water management, as changing patterns of precipitation (P) and 

evapotranspiration (ET) alter the availability and quality of freshwater resources. The effects of 

climate change on the hydrological cycle are complex, far-reaching, and often divergent 

([MASSON-DELMOTTE et al., 2021). As atmospheric temperature rises, more water 

evaporates from oceans, lakes, and rivers, and transpires from vegetation, leading to increased 

atmospheric moisture content. This, in turn, results in more intense and frequent precipitation 

events. However, increased ET also means that some regions are experiencing more frequent 

and severe droughts, as water is lost from the land surface and vegetation at a faster rate than it 

can be replenished by precipitation. 

In South America, studies indicate that climate change leads to more extreme events of 

precipitation and droughts, which compromise food security, ecosystems survival, and water 

supply (CABALLERO; RUHOFF; BIGGS, 2022; CARVALHO, 2020). In order to assess 

water availability, it is essential to monitor hydrological variables such as P, ET, discharge (Q), 

and total water storage (TWS). And given the evidence of climatological non-stationarity, it is 

also necessary to calculate trends and patterns of the water cycle processes changes, which aid 

in the prediction of future scenarios and development effective adaptation strategies. 

This chapter provides an investigation of the closure of river basin water balance in major 

South American basins, using the novel geeSEBAL-MODIS dataset as the evapotranspiration 

source, in association with well-established data sources of P Q and TWS. The chapter also 

describes the trends of ET and correlates it with ten other remote sensing and meteorological 

variables, investigating their relation and potential causes, such as global warming ([MASSON-

DELMOTTE et al., 2021). 

5.2 Material and Methods 

5.2.1 Input Data 

Figure 5.1 presents the 29 river basins located in South America that were used to 

compare remote sensing and water balance (WB) variables, as well as the climates and biomes 

of the region. For this study, I used the datasets shown in Table 5.1 to compute WB based 
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hydrological processes and analyze the trend of meteorological and remote sensing variables. 

All computations were performed on the Google Earth Engine (GEE) platform (Gorelick et al., 

2017). I gathered the datasets' time series between 2000 and 2022 and aggregated them monthly. 

To ensure pixel area independence from latitude, I performed spatial aggregations for each 

month using the MODIS sinusoidal projection (SR-ORG:6974).  

To calculate precipitation data, I took the ensemble mean of six datasets and assumed that 

the standard deviation of these datasets represented the uncertainty, as follows: the Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS) (FUNK et al., 2015); ERA5 

Land (MUÑOZ SABATER, 2019); Global Land Data Assimilation System (GLDAS) version 

2.1 (RODELL et al., 2004b); Global Precipitation Measurement (GPM) (HUFFMAN et al., 

2019); Terra Climate (ABATZOGLOU et al., 2018); and Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks–Climate Data Record 

(PERSIANN-CDR) (ASHOURI et al., 2015). Monthly streamflow data were obtained from 

measurements provided by the Brazilian Water and Sanitation Agency (ANA) (available at 

https://www.snirh.gov.br, last accessed on 07 March 2023) and the Argentinian Hydrological 

Database System (SNIH) (available at https://snih.hidricosargentina.gob.ar/, last accessed on 

07 March 2023). Monthly TWS variation (dS/dt) was calculated as the difference of TWS 

between two time steps, corresponding to the last day of two consecutive hydrological months. 

Based on recent findings (VISHWAKARMA; DEVARAJU; SNEEUW, 2018), only basins 

with areas over 100,000 km² were selected. No gap filing methods were employed. 

Vapor Pressure Deficit (VPD) and wind speed at 2 m height (u2) data were obtained from 

Eq. (16-18): 

VPD = 0.6108 ( e
17.27 Tair

Tair+237.3 −  e
17.27 Tdew

Tdew+237.3) (16) 

u10 = √𝑢𝑥
2 + 𝑢𝑦

2 (17) 

u2 = 𝑢10

4.87

𝑙𝑜𝑔(678 − 5.42)
 (18) 

where u10 is wind speed at 10 m height (m/s). 

 

https://www.snirh.gov.br/
https://snih.hidricosargentina.gob.ar/
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Figure 5.1 – 29 flow stations with their respective drainage areas, grouped into five major river basins 

(A). The climates (PEEL; FINLAYSON; MCMAHON, 2007) in South America (B). The South 

American biomes (OLSON et al., 2001) (C).  
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Table 5.1 – Remote sensing and meteorological variables used in this study. 

Dataset Variable Symbol 
Resolution 

Source 
Temporal Spatial 

GLDAS 2.1 Precipitation P 3 hours 27,830 m (RODELL et al., 2004b) 

ERA5-Land Precipitation P Monthly 11,132 m (MUÑOZ SABATER, 2019) 

Terra Climate Precipitation P Monthly 4,638 m (ABATZOGLOU et al., 2018) 

CHIRPS Precipitation P Daily 5,566 m (FUNK et al., 2015) 

GPM Precipitation P Monthly 11,132 m (HUFFMAN et al., 2019) 

PERSIANN-CDR Precipitation P Daily 27,830 m (ASHOURI et al., 2015) 

GRACE – Global 

Mascons 
Total Water Storage TWS Monthly 55,660 m (WATKINS et al., 2015) 

geeSEBAL-MODIS Evapotranspiration ET 8 days 500 m 
(COMINI DE ANDRADE et al., 

2023) 

geeSEBAL-MODIS 
Reference 

Evapotranspiration 
ETr 8 days 500 m 

(COMINI DE ANDRADE et al., 

2023) 

MYD11A2 V6.1 Land Surface Temperature LST 8 days 1,000 m (WAN, 2014) 

MYD13A1 V6.1 
Normalized Difference 

Vegetation Index 
NDVI 16 days 500 m (DIDAN, 2015b) 

MYD13A1 V6.1 Enhanced Vegetation Index EVI 16 days 500 m (DIDAN, 2015b) 

ERA5-Land 

Monthly 

Air temperature at 2 m 

height 
Tair Monthly 11,132 m (MUÑOZ SABATER, 2019) 

ERA5-Land 

Monthly 

Dew point temperature at 2 

m height 
Tdew Monthly 11,132 m (MUÑOZ SABATER, 2019) 

ERA5-Land 

Monthly 

u component of wind speed 

at 10 m height 
uu Monthly 11,132 m (MUÑOZ SABATER, 2019) 

ERA5-Land 

Monthly 

v component of wind speed 

at 10 m height 
uv Monthly 11,132 m (MUÑOZ SABATER, 2019) 

ERA5-Land Hourly 
Hourly downwards surface 

solar radiation 
RS 1 hour 11,132 m (MUÑOZ SABATER, 2019) 

5.2.2 River basin water balance calculation 

5.2.2.1 Evapotranspiration from water balance 

Many studies evaluated the performance of remotely sensed ET data using WB and 

hydrological models (DE ANDRADE, 2018; RUHOFF et al., 2022, 2012; SENAY et al., 

2017), which is recommended especially for regions with scarce monitoring data (RUHOFF et 

al., 2022). Therefore, I coupled precipitation and water storage with in situ streamflow data to 

perform WB calculations for 29 river basins in South America (MOREIRA et al., 2019; 

RUHOFF et al., 2022). As presented in Figure 5.1, they compose five major South American 

rivers, including the Amazon, Tocantins, São Francisco, Paraná and Parnaíba. WB-based ET 

was calculated monthly, between 2000 and 2022 (23 years), according to Eq. (16): 

ET = P − Q −
dS

dt
 (16) 
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where ET is the monthly evapotranspiration on the basin’s surface (mm month-1), P is the 

monthly precipitation over the basin (mm month-1), Q is the monthly average streamflow 

measured at the discharge station (mm month-1), and dS/dt is the basin’s total water storage 

variation during a month (mm month-1).  

Uncertainty in the ET from WB was computed with Eq. (17) (PASCOLINI-CAMPBELL; 

REAGER; FISHER, 2020), which is less conservative than the one often used in literature 

(LONG; LONGUEVERGNE; SCANLON, 2014; RODELL et al., 2004a, 2011; SENAY; 

BUDDE; VERDIN, 2011; SHEFFIELD et al., 2009): 

υET̅̅ ̅̅ = √υP̅
2 + υQ̅

2 + υdS
dt

̅̅̅̅
2  (17) 

where υ is the relative uncertainty of each WB component. The absolute uncertainties of dS/dt 

and P were assumed to be the average of the standard deviation among the different datasets’ 

estimations. Q uncertainty was assumed as equal to 5% of average monthly streamflow.  

Similar to ET, dS/dt was also computed from WB, based on Eq. (18), a rewritten form of 

Eq. (16): 

dS

dt
= P − Q − ET (18) 

where ET is the actual evapotranspiration obtained from geeSEBAL-MODIS (mm month-1). 

Uncertainty of dS/dt estimates were computed according to Eq. (18): 

υdS
dt𝑖

= √υ𝑇𝑊𝑆𝑖+1

2 + υ𝑇𝑊𝑆𝑖

2  (18) 

where υdS

dt 𝑖

 is the uncertainty of TWS variation on the i-th month(mm);  υ𝑇𝑊𝑆𝑖
 and υ𝑇𝑊𝑆𝑖+1

are 

the uncertainties in TWS data of the i-th month and the next one (mm), which are provided with 

the TWS dataset. 

Monthly anomalies were also calculated, based on Eq. (19): 

xanom,i = xi − μx (19) 

where xanom, i is the monthly anomaly of the x variable (ET or dS/dt) on the i-th month; xi is the 

variable value for the same month; and μx is the average value of x for each month of the year. 
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5.2.3 Long-term trends calculation 

Long-term trends were calculated for 11 remote sensing and meteorological variables at 

pixel scale, for the entire South American continent between July-2002 and July-2022 (20 

years). Trend calculations were performed using the Theil-Sen’s slope estimator (SEN, 1968) 

and trend significance analysis was done using the Mann-Kendall trend test at 95% confidence 

level (KENDALL, 1975; MANN, 1945).  

Monthly anomalies and monthly normalized anomalies were also calculated, based on 

Eq. (20-21), respectively: 

xanom,i = xi − μx (20) 

x̂anom,i =
xi − μx

σx
 (21) 

where xanom, i is the monthly anomaly of the x variable on the i-th month; x̂anom, i is normalized 

anomaly; xi is the variable value for the same month; μx is the average value of x for each month 

of the year; and σx is the standard deviation of x for each month of the year. 

5.3 Results and Discussion 

5.3.1 Comparison of dS/dt and ET from Remote Sensing and Water Balance 

5.3.1.1 Long-term statistical comparison of dS/dt 

Figure 5.2 presents a Budyko framework for the 29 South American basins. The 

relationship between the dryness and the evaporative indexes follows an asymptotic curve 

(called Budyko curve) that approaches both the demand and supply limits. The basins’ indexes 

correlate to their location climates, where basins located at humid climates (Af, Am, Cf), such 

as the Amazon ones, PR-7, and PR-8, yield both lower evaporative and dryness indexes, while 

ones located at dry (Bw and Bs) climates, such as the NE Atlantic, SF-5, and SF-6, show the 

highest indexes. The Tocantins, upper São Francisco, and upper Paraná basins lie in between, 

with ETr/P > 1, as they are located at a tropical climate with a dry winter. Differences between 

ET from geeSEBAL-MODIS and water balance are small, and both approaches lie within the 

behavioral limits of the Budyko framework (below the energy and water limits), indicating they 

are both physically sound methods. 
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Figure 5.2 – Budyko framework relating long-term (2002-2022) evaporative index (ET/P) with the 

dryness index (ETr/P), where ETr/P > 1 refers to water-limited basins, and ETr/P < 1 to energy-limited 

ones. The circles represent ET obtained using the geeSEBAL-MODIS data, while the horizontal bars 

represent ET estimated from the river basins water balance. The diagonal line represents the 

demand/energy limit, where ET = ETr. The horizontal line ET/P = 1 represents the supply/water limit. 

The dashed curve represents the Budyko curve (BUDYKO; MILLER, 1974). 

Figure 5.3 presents the comparison statistics of dS/dt and ET obtained from remote 

sensing and from river basin WB. Generally, dS/dt data yielded greater agreement than ET, 

with the values of the slope of linear regression (slope) and determination coefficient (R²) closer 

to one. However, the root mean square error (RMSE) and mean absolute error (MAE) values 

were slightly higher for dS/dt. Bias values indicate that WB dS/dt was overestimated in 

comparison to remote sensing, and the opposite pattern is observed for the ET comparison. The 

highest errors for both variables occur at the Tocantins River basin. These results agree with 

findings from other researches (COMINI DE ANDRADE et al., 2023; RUHOFF et al., 2022). 

Further investigation is needed to comprehend the reasons for such discrepancies in the 

Tocantins basin. The larger range of the comparison statistics over the Amazon River basin can 

be related to the higher uncertainty of the precipitation data as well as to higher magnitude of 

streamflow values, which also lead to higher uncertainty. Scatter plots with the comparison 

statistics for each river basin are available at the Supplementary Material (Figures S1 and S2), 

as well as time series of dS/dt and ET (Figures S3 and S4). 
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Figure 5.3 – Comparison statistics between water balance and remote sensing dS/dt (left column) and 

between remote sensing and water balance ET (right column) at 29 river basins in South America, 

discriminated by major river basin. Remote sensing dS/dt and water balance ET are considered the 

observed data in the comparisons, while water balance dS/dt and remote sensing ET are considered the 

estimated data.  

5.3.1.2 Seasonal patterns of dS/dt and ET 

Figure 5.4 presents the seasonal values of precipitation and discharge, as well as dS/dt 

obtained from GRACE and from WB, while Figure 5.5 presents seasonal ETr and ET from 

geeSEBAL-MODIS and from WB. GRACE and WB present similar seasonal patterns, with a 

strong correlation to precipitation. The major differences lie in the first trimester (Jan-Feb-Mar), 

when WB yields higher dS/dt, and in the third trimester (Jul-Aug-Sep), with lower WB 

estimates. In contrast, WB and geeSEBAL-MODIS present different seasonal patterns, 
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although the remote sensing ET lies mostly within the WB ET uncertainty range. WB ET shows 

larger seasonal differences and stronger correlation to water availability (precipitation), with 

minimum values mostly occurring in September, while geeSEBAL-MODIS correlates more 

strongly to energy availability (reference ET). 

Potential issues about ET estimates from geeSEBAL-MODIS were raised, regarding its 

sensitivity to the ETr input, as well as the influence of fire events, which could lead to 

overestimated ET overall, especially during August and September, due to wrong selection of 

anchor pixels in the model internal calibration (COMINI DE ANDRADE et al., 2023). On the 

other hand, higher ET rates on August and September can also be attributed to the presence of 

riparian vegetation, deep-rooted forests, and irrigated croplands, all of which have the ability to 

supply high atmospheric demand due to their access to subsurface and groundwater, despite the 

preceding months of low precipitation. A study in the São Francisco basin used the SSEBop 

ET model and indicated that forested areas are able to keep ET rates around 100 mm month-1 

in the driest months, while other surfaces (grassland, savanna and croplands) yield much lower 

ET rates (DE ANDRADE et al., 2021b). In the same study, a comparison was made between 

the ET estimates of SSEBop and a rainfall-discharge lumped model. The results showed that 

both methods produced more similar results to geeSEBAL-MODIS than to WB. 

ETr values can be viewed as the upper limit for ET rates, representing the energy limit 

beyond which the rate of evapotranspiration cannot exceed. However, ET estimates from WB 

are sometimes higher than ETr, specifically during the first trimester. During these months, 

when there are higher precipitation values, the changes in dS/dt may not correspond with these 

values, resulting in unrealistic estimates of ET. The sources of errors from WB ET can be 

attributed to various sources, including errors in the ensemble precipitation estimates, 

inaccuracies in streamflow gauged measurements, and to errors in GRACE TWS measurements 

(LEHMANN; VISHWAKARMA; BAMBER, 2022). Assessing the accuracy of streamflow 

discharge measurements can be challenging. However, ensemble precipitation estimates can be 

validated and calibrated using in situ measurements. Ultimately, the major limitation of ET 

estimation based on WB lies in the errors of dS/dt from GRACE, that can be caused by leakage, 

noise, measurements gaps, and by the coarse spatial resolution of the TWS dataset (WIESE; 

LANDERER; WATKINS, 2016).   
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Figure 5.4 – Monthly averages of dS/dt from GRACE and from water balance, as well as precipitation 

and discharge for the 29 basins. The shaded areas indicate the uncertainty of the GRACE dS/dt. 
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Figure 5.5 – Monthly averages of ET from water balance and from geeSEBAL-MODIS, as well as 

precipitation and discharge for the 29 basins. The shaded areas indicate the uncertainty of the water 

balance ET. 

Figure 5.6 presents the mean seasonal fluxes, as well as the imbalance of the water 

balance (imbalance = P – dS/dt – ET – Q). The imbalance values vary from -60 to 60 mm 

month-1, with most values being sufficiently close to zero that the uncertainty range includes a 

balance of zero. The positive imbalance values in the first semester are concurrent with the 
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overestimation of ET by the WB approach, forced by the high values of P, indicating the 

underestimation of either dS/dt or ET values. The negative values usually happen in the end of 

the dry season, around September, and indicate the overestimation of either ET, forced by the 

higher values of ETr, or dS/dt. The imbalance results agree with previous studies, and reveal 

that, despite the availability of several sources of data for P, Q, ET, and dS/dt, closure of the 

water balance remains challenging (LEHMANN; VISHWAKARMA; BAMBER, 2022; 

MOREIRA et al., 2019; PASCOLINI-CAMPBELL; REAGER; FISHER, 2020; RUHOFF et 

al., 2022). 
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Figure 5.6 – Seasonal water fluxes for South America basins. Shaded areas represent the uncertainty in 

the imbalance, which was considered the same as the uncertainty in the ET derived from water balance. 
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5.3.1.3 Anomalies and trends of dS/dt and ET 

Figure 5.7 and Figure 5.8 present the monthly anomalies of dS/dt and ET, respectively, 

from water balance and remote sensing, over the 29 South American river basins. To enhance 

visualization and clarity, a 12-month double moving average filter was utilized to smooth the 

series. The temporal phase and signal of the dS/dt anomalies are similar for both sources, which 

correlate to precipitation anomalies. However, anomalies tend to be smaller than that of WB 

dS/dt. This phenomenon is more prevalent in Amazon basin, but is also identified in all others, 

to lesser degree, and indicates that GRACE data has a low sensitivity to precipitation and 

discharge anomalies, which could be associated to several factors, such as sensor sensitivity, 

inter basin leakage, or the overcorrection of atmospheric effects (VELICOGNA; WAHR, 2013; 

WATKINS et al., 2015). 

The low amplitude of GRACE dS/dt is compensated by ET in the WB approach, which 

is generally larger than geeSEBAL-MODIS ET anomalies, as shown in Figure 5.7. 

Identification of the main drivers and their weight into ET anomalies is a complex task, as they 

often show opposing patterns, such as energy and water availability, due to the complementary 

feedback between ET and atmospheric demand (BRUTSAERT; STRICKER, 1979; 

HUNTINGTON et al., 2011b). In addition, local, regional, and global phenomena can affect 

the rate of ET. For example, in the Parana basins, precipitation presents a behavior that 

correlates positively to the Oceanic Niño Index (ONI), which is an index to classify the Pacific 

Ocean surface temperatures into La Niña (cool) and El Niño (warm) events (NOAA CLIMATE 

PREDICTION CENTER, 2014), while ETr correlation to ONI is mostly negative (Figure 5.9). 

The opposite can be said for NE Atlantic and Tocantins basins. ET from both WB and 

geeSEBAL-MODIS generally correlates positively with ONI, but with values close to zero. 

Overall, geeSEBAL-MODIS ET correlates more strongly to ONI over basins of central Brazil, 

which are subject to Tropical climate with dry winter (Aw climate), and present a savanna 

landscape. 
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Figure 5.7 – Monthly dS/dt anomalies time series derived from GRACE and from water balance data 

at 29 river basins. All the lines represent 12-month double moving averages. 
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Figure 5.8 – Monthly ET anomalies time series derived from geeSEBAL-MODIS and from water 

balance data at 29 river basins. All the lines represent 12-month double moving averages. 
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Figure 5.9 – Correlation between the Oceanic Niño Index (ONI) and the monthly anomalies 

(12-month double moving averages) of precipitation (P), reference ET (ETr), and actual 

evapotranspiration (ET) from geeSEBAL-MODIS and WB. Values are calculated for the 2002-2022 

period. 

Table 5.2 presents the long-term annual trends of dS/dt (from GRACE data and from WB 

estimates), ET (from WB estimates and from geeSEBAL data), P and Q, derived from monthly 

data. Significant trends were identified only for ET and Q, in some basins. Most basins yielded 

decreasing trends of dS/dt and P, with increasing trend of ETr. At several basins, Q values are 

determined by the operation of hydropower plants distributed along the developed rivers of 

each basin, and no correlation was identified between P and Q trends. Nonetheless, negative Q 

trends are observed for several basins in this study. 

Table 5.2 also shows the agreement between the different sources of dS/dt and ET. The 

agreement was verified if there was no significance to the trends of both, or if both were 

significant and with the same sign. Otherwise, it was decided that there is no agreement. Out of 

the 29 river basins, 7 presented disagreements with dS/dt trends from GRACE and from water 

balance, while the ET trends from geeSEBAL-MODIS and from WB disagreed on all basins 

but PR-4.  

On energy-limited basins, such as the Amazon ones and PR7 and PR-8, since precipitation 

is usually higher than reference evapotranspiration, changes in ET more associated to anomalies 

of ETr, rather than P. Therefore, the increase in ETr verified in these basins would lead to an 

increase in ET and, consequently, a decrease in dS/dt. This leads to believe that GRACE data 

is not sensitive enough to measure water storage variations in humid basins. Furthermore, 

uncertainties in precipitation, dS/dt from GRACE, and Q add to the total uncertainty in ET 
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estimates from water balance, that range from 30% to 65%, depending on the basin. Remote 

sensed ET, is able to provide global land evapotranspiration at good enough spatiotemporal 

resolution, that can be validated locally using micrometeorological data (BHATTARAI et al., 

2019; CHEN et al., 2016; LAIPELT et al., 2021; MELTON et al., 2021; SENAY et al., 2013). 

Table 5.2 – The long-term trends of dS/dt, ET, P, ETr and Q, with significant trends (95% confidence) 

highlighted in bold. Additionally, the time window with common data is also presented, as well as the 

trend agreement between the different sources of dS/dt and ET, with disagreeing trends highlighted in 

bold and colored according to their sign (red for negative and blue for positive trends). Agreement is 

discriminated by sign and by the combination of sign and significance. 

Basin 

Common 

data time 

window 

(years) 

 Trend Agreement 

dS/dt ET 

P ETr Q 

Sign 

Sign & 

Significance 

GRACE WB WB 

geeSEBAL- 

MODIS dS/dt ET dS/dt ET 

AM-1 16 -1.7 -16.3 -15.0 2.0 -4.4 0.2 8.4 Yes No No No 

AM-2 16 -0.4 -10.0 -9.4 2.5 -3.6 1.1 4.3 Yes No No No 

AM-3 15 -1.3 -1.7 6.4 3.3 -6.6 2.9 -2.4 Yes Yes Yes No 

AM-4 19 -0.5 -13.0 -8.0 3.8 3.3 3.2 10.9 Yes No No No 

AM-5 17 -1.5 -8.2 -5.1 3.4 -0.8 2.9 1.8 Yes No No No 

AM-6 8 -1.0 -3.3 -9.1 3.5 -1.9 3.1 14.6 Yes No Yes No 

AM-7 19 1.0 -12.7 -10.8 3.6 -1.5 2.4 8.0 No No No No 

AM-8 16 -4.7 -3.6 0.2 4.6 0.0 3.9 2.5 Yes Yes Yes No 

NE-1 18 6.0 -1.2 -7.2 3.8 -0.6 4.7 -1.2 No No Yes No 

NE-2 18 6.2 -2.3 -7.6 4.6 -0.2 3.9 -0.8 No No Yes No 

NE-3 19 5.7 -1.5 -5.8 5.5 0.0 3.3 -0.8 No No Yes No 

TO-1 12 -2.4 -2.2 14.0 6.1 -1.4 3.3 -3.8 Yes Yes Yes No 

TO-2 19 -1.2 -3.7 1.1 6.1 -1.8 3.4 -6.3 Yes Yes Yes No 

TO-3 18 -1.9 -1.2 4.1 6.1 -3.9 4.4 -6.5 Yes Yes Yes No 

TO-4 11 -1.8 -6.5 8.4 5.9 -3.4 3.9 -1.6 Yes Yes Yes No 

SF-1 19 -0.7 -3.7 -0.4 6.2 -3.9 3.8 -5.7 Yes No Yes No 

SF-2 18 -0.6 -5.0 -0.2 6.3 -3.7 3.7 -5.4 Yes No Yes No 

SF-3 18 -0.4 -4.0 -0.9 6.2 -3.5 3.7 -5.3 Yes No Yes No 

SF-4 5 -0.3 9.9 5.7 3.9 -1.7 4.0 10.1 No Yes Yes No 

SF-5 18 0.3 -0.4 -2.2 3.4 -1.5 3.4 -3.3 No No Yes No 

SF-6 19 0.6 -0.1 -1.9 3.8 -1.4 2.6 -3.0 No No Yes No 

PR-1 12 -1.7 -0.8 1.4 4.7 -5.0 3.1 1.1 Yes Yes Yes No 

PR-2 12 -0.6 0.6 1.8 4.6 -6.7 3.4 2.0 No Yes Yes No 

PR-3 12 -2.0 -3.5 10.8 6.1 -7.8 4.5 1.4 Yes Yes Yes No 

PR-4 16 -2.0 -0.8 10.0 6.1 -7.3 4.6 -3.4 Yes Yes Yes Yes 

PR-5 17 -4.1 -11.1 -3.5 5.0 -7.9 3.3 -0.5 Yes No No No 

PR-6 18 -2.6 -10.0 -4.6 4.5 -6.9 3.5 -0.6 Yes No No No 

PR-7 13 1.9 -18.0 -7.6 3.9 -9.7 2.8 -12.8 No No Yes No 

PR-8 15 2.8 -7.6 -3.6 3.7 -11.3 2.8 -7.0 No No Yes No 
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5.3.2 Spatiotemporal patterns of the trends of various meteorological and remote 

sensing variables  

Table 5.3 presents the long-term annual trends of several variables in South America, 

calculated between 2002 and 2022. Values are divided between the whole South America 

continent and areas with statistically significant trends. Over the whole South American 

continent, increasing trends were identified for ET, ETr, EVI, LST, Rs, Tair, and VPD; TWS 

presented a decreasing trend; and P and wind yielded no significant trends (at the 95% 

confidence level) between 2002 and 2022. Areas with significant trends ranged from 20.5% to 

83.5% and their spatial means generally yielded stronger trends than the whole continent 

aggregation.  

Table 5.3 – Means, long-term annual trends, and aggregated changes over 20 years (2002-2022) of 11 

meteorological and remote sensing variables in South America. Percentage of South America with 

statistically significant and their value is also presented for each variable.  

Variable 

Whole South America Area with significant trends 

Spatial mean 

Mean annual 

trend  

Change over 20 years 

(% of mean) 

Percentage of 

total area 

Mean annual 

trend  

ET (mm year-1) 896.63 3.78 75.53 (8.42%) 70.0% 5.07 

ETr (mm year-1) 1474.96 2.33 46.54 (3.16%) 65.1% 3.09 

EVI (-) 0.37 0.00031 0.00616 (1.68%) 49.2% 0.00051 

LST (K) 303.48 0.03 0.54 (0.18%) 67.3% 0.04 

TWS (mm) 1 -6.63 -1.17 -23.31 (-) 83.5% -1.43 

NDVI (-) 0.60 0.00003 0.00055 (0.09%) 46.0% 0.00006 

P (mm year-1) 1643.64 -2.22 -44.37 (-2.70%) 20.5% -5.15 

Rs (W m-2) 205.55 0.17 3.43 (1.67%) 39.0% 0.26 

Tair (K) 294.80 0.02 0.44 (0.15%) 69.1% 0.03 

VPD (kPa) 0.74 0.0032 0.0649 (8.75%) 62.4% 0.0045 

Wind (m s-1) 0.86 -0.0006 -0.0119 (-1.38%) 24.7% -0.0005 

1 It is not possible to calculate the percentage of the mean value of TWS as this variable is not an absolute value, but 

rather an anomaly. 

As shown in Table 5.3, the trends in South America vary in space, and there are both 

areas with significant and insignificant trends. While aggregated trends provide a summary of 

information, they fail to reveal crucial spatiotemporal details necessary for a comprehensive 

understanding of the dynamics behind the changes in the variables that drive the regional 

hydrological cycle. Figure 5.10 expands on this by presenting the long-term trends of the 11 

variables over the 10 South American biomes. Figures 5.11 to 5.21 present the annual average, 

and trends spatial distribution of all 11 variables, along with the anomalies’ series (three-month 

and two-year moving averages) for each biome in South America.  
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The continent presents an overall increasing trend of ET (Figure 5.11), with a spatial 

average of 3.78 mm/year, with an aggregated growth of 8.42% of the mean annual ET. 

Increasing ET is also identified for all South American biomes, with higher magnitude on 

central and eastern South America. However, non-monotonous patterns are observed in all 

biomes, with opposing trends between the first and second decades. Results agree with the 

literature (ANABALÓN; SHARMA, 2017; JAVADIAN et al., 2020; JUNG et al., 2010; LIU 

et al., 2021), and highlight a growing concern regarding South America water availability, due 

to decreasing precipitation and increasing atmospheric demand (Figure 5.12), associated with 

growing demands for water use (BRÊDA et al., 2020; COOK et al., 2020). TWS trends (Figure 

5.15) corroborate this concern, with significant TWS decrease over eastern South America, 

which puts hundreds of millions of people at risk of water scarcity. 

Localized ET trends are associated with land cover changes, such as deforestation, that 

lead to a decrease in ET, and cropland development, which may lead to opposing ET trends 

depending on the crop, prior vegetation cover, and presence of irrigation. These anomalies are 

also observed for NDVI (Figure 5.16), EVI (Figure 5.13), and are opposite for LST (Figure 

5.14). 

Changes in land cover are fairly easy to identify and generally lead to large changes in 

LST and NDVI values, leading to abrupt variations in ET. However, over natural landscapes 

there are several factors that may influence changes in ET. In the southern Chaco and Pampa 

biomes, positive changes in ET are strongly correlated (r ≈ 0.85) to EVI and NDVI, as well as 

LST. This phenomenon is also observed to a lesser degree in natural areas of the Cerrado biome, 

and shows low correlation to precipitation (r ≈ 0.30), suggesting that the natural vegetation in 

these areas is going through a greening effect caused by increases in available carbon dioxide 

in the atmosphere (PIAO et al., 2020; ZHU et al., 2016), although the mechanisms behind CO2 

controls on stomatal are complex and can vary based on vegetation species and drought 

conditions (HAMIM, 2005; LEAKEY, 2009; TAYLOR et al., 2018). On the other hand, the 

increase in ET over the primary forests of the Amazon deforestation arc are not related to 

greening, but rather to higher Rs (Figure 5.18), Tair (Figure 5.19) and VPD (Figure 5.20), which 

lead to an increase in ETr. In contrast, decreases in ET over the Caatinga biome natural 

landscapes are related to negative trends of P (r ≈ 0.65) and NDVI (r ≈ 0.73).  

The ensemble precipitation time series yielded negative trends for most biomes, except 

for the Amazon and the Guiana Highlands. However, only in the Andes, Pantanal and Patagonia 

it was considered significant. Figure 5.17 shows that significant P trends are not widespread 
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across the biomes, which leads to the insignificant trend results for the whole regions. 

Nonetheless, strong negative signals are observed in southern South America, as well as in parts 

of Atlantic Forest, Cerrado, Chaco, Amazon, and most of Pantanal. In contrast, a strong positive 

trend is observed in northeastern Amazon, near to the Atlantic Ocean. These findings are 

somewhat different from other investigations (DARAMOLA; XU, 2022; MU; JONES, 2022; 

SHIMIZU; ANOCHI; KAYANO, 2022), however various factor play a role in the trend 

calculation results. For example, the limits of the studied time window may influence results, 

especially if there are extreme anomalies close to the start or to the end of the time series. The 

limits of spatial aggregation are also important to consider. In the Amazon, both negative and 

positive trends are identified. However, these signals cancel each other, and the trend for the 

whole Amazon biome is insignificant. Finally, the precipitation sources show considerable 

differences, which can lead to diverging trends. 
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Figure 5.10 – Long-term annual trends (2002-2022) of 11 remote sensing and meteorological 

variables, for each of the 10 major biomes in South America. Error bars indicate the 95% confidence 

interval, while bar colors indicate positive (blue) or negative (red) trends. Error bars that cross the null 

trend line indicate that the trend is not statistically significant at the 95% confidence level. 
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Figure 5.11 – Long-term mean of ET in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.12 – Long-term trend of ETr in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.13 – Long-term trend of EVI in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.14 – Long-term trend of LST in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.15 – Long-term trend of TWS in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.16 – Long-term trend of NDVI in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.17 – Long-term trend of precipitation in South America (A); statistically significant long-

term trend (B); seasonal average (black lines) and standard deviation (shaded areas) for ten major 

biomes (C); and time series of monthly anomalies for the same biomes (D), with a rolling average of 

both three months (black lines) and two years (red lines). 
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Figure 5.18 – Long-term trend of Rs in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.19 – Long-term trend of Tair in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.20 – Long-term trend of VPD in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 
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Figure 5.21 – Long-term trend of wind in South America (A); statistically significant long-term trend 

(B); seasonal average (black lines) and standard deviation (shaded areas) for ten major biomes (C); 

and time series of monthly anomalies for the same biomes (D), with a rolling average of both three 

months (black lines) and two years (red lines). 

5.4 Conclusions 

River basin water balance is a widely used method to estimate the availability of water. 

However, it has some limitations due to the lack of monitoring of ground water storage (or total 

water storage) and evapotranspiration, which leads to significant gaps in this approach. This 

chapter proposes an assessment of remote sensing datasets of TWS (Total Water Storage) and 
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ET (Evapotranspiration) to close the river basin water budget. The results indicate that while 

some imbalances occur, they were generally within the uncertainty range of the datasets. Minor 

systematic biases were observed for TWS during the rainy season and for ET during the dry 

season. Despite these limitations, TWS and ET remote sensing datasets are considered valuable 

tools for assessing water availability in river basins. 

Another focus of this chapter was the assessment of trends of ET and 10 other remote 

sensing and meteorological variables in South America. The results indicate an overall increase 

in ET, driven by atmospheric warming and drying, in association with increased energy 

availability and, possibly, to carbon dioxide fertilization. On the other hand, precipitation 

presented no significant trends over the whole continent, while being negative over some areas. 

These findings point to the straining of water resources availability in a major part of South 

America, particularly in central and southeastern Brazil, an area of strategic importance for food 

production. 



 

 

119 

 

5.5 Supplementary Material 

 

 
Figure S 1 – Scatterplots comparing dS/dt estimates from GRACE and from water balance at 29 river 

basins. 
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Figure S 2 – Scatterplots comparing ET estimates from geeSEBAL-MODIS and from water balance at 

29 river basins. 
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Figure S 3 – Time series of dS/dt estimates from GRACE and from water balance at 29 river basins. 
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Figure S 4 – Time series of ET estimates from geeSEBAL-MODIS and from water balance at 29 river 

basins. 
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Chapter 6: Continuity and Expansion of The OpenET Project 

6.1 Introduction 

This chapter presents the OpenET framework (MELTON et al., 2021) for 

intercomparison of remote sensing evapotranspiration (ET) data with in situ flux tower ET data, 

as well as its application in South America. The current version of OpenET uses six models to 

produce the ensemble ET data, namely Atmosphere-Land Exchange Inverse/Disaggregation of 

the Atmosphere-Land Exchange Inverse (ALEXI/DisALEXI) (ANDERSON et al., 2018; 

ANDERSON; KUSTAS; NORMAN, 2007), Google Earth Engine implementation of the 

Mapping Evapotranspiration at High Resolution with Internalized Calibration (eeMETRIC) 

(ALLEN et al., 2005; ALLEN, R. G. et al., 2011; ALLEN; TASUMI; TREZZA, 2007), Surface 

Energy Balance Algorithm for Land using Google Earth Engine (geeSEBAL) 

(BASTIAANSSEN et al., 1998a; LAIPELT et al., 2021), Priestley-Taylor Jet Propulsion 

Laboratory (PT-JPL) (FISHER; TU; BALDOCCHI, 2008), Satellite Irrigation Management 

Support (SIMS) (MELTON et al., 2012; PEREIRA et al., 2020), and Operational Simplified 

Surface Energy Balance (SSEBop) (SENAY, 2018; SENAY et al., 2013, 2023). From the six 

models’ ET estimates, OpenET calculates an ensemble mean and uses it as the official 

evapotranspiration data. OpenET provides ET data for western and central United States from 

2017 to 2022 at a monthly timescale and 30 meter spatial resolution (https://openetdata.org/). 

The OpenET project provides accurate, consistent, reliable, and easily accessible ET 

information, which helps water users and managers make better decisions towards sustainable 

development. The single value ensemble approach addresses questions of the user community 

regard the multiple ET models options, with a lack of an established ranking. In the future, flux 

tower data validation results will be used to calculate a new ensemble, which will select the 

worst performing models over particular regions, crops, or land cover type will be filtered out 

or receive a lower weighting.  

The need for reliable ET data is not unique to the United States, as irrigation practices, 

climate variability, and water use conflicts are world spread. Countries from South America, 

Brazil in particular, can benefit from the local replication of the OpenET project to address 

these challenges, ensuring food security and water availability for all. The timing for initiating 

this endeavor is good, as a collaborative environment was built between American and Brazilian 

researchers, in situ ET data from several locations across South America is available for the 

intercomparison procedure, and there is growing interest from local water managers to monitor 

irrigation water use (ANA, 2020, 2021a). 

https://openetdata.org/
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The study in this chapter focuses on intercomparing ET data from SSEBop and 

geeSEBAL, as well as their mean, to flux tower data from 36 sites in South America, following 

the OpenET framework. This work represents the first step towards the development of a 

reliable, multi-model ET data source in South America. 

6.2 Material and Methods 

6.2.1 Flux Station Data 

6.2.1.1 Flux Station Sites 

The first stage of expansion of the OpenET project collects ET data from 36 

micrometeorological stations located across South America. Figure 6.1 presents the sites 

location, while Table 6.1 lists the stations with details on site land cover, climate, LE acquisition 

method, time range of data availability, and missing SEB fluxes data. The sites use either eddy 

covariance (EC) or Bowen ratio (BR) measurements to provide LE and ET data at sub-daily 

intervals. The EC method is considered the most direct and generally accurate method for 

measuring latent and sensible heat fluxes, and it is available at scale over many locations, 

vegetation, and climate conditions, allowing for robust intercomparisons in time and space 

(BALDOCCHI, 2020).  

The sites used in this study occur in a variety of climates and land covers. Although they 

are not well distributed over South America, they represent the majority (in terms of spatial 

distribution) of climatological and surface conditions of this continent. Land cover 

classifications were obtained using the International Geosphere-Biosphere Programme (IGBP) 

scheme, based on metadata and aerial imagery inspection.  

This flux tower catalog results from the collaboration of researcher from several 

institutions, namely from the large-scale biosphere-atmosphere experiment in the Amazon 

(LBA-ECO), the South Brazilian network of surface fluxes and climate change (SULFLUX), 

the National Observatory of Water and Carbon Dynamics in the Caatinga Biome (ONDACBC), 

the long-term ecological research in Pantanal (PELD Pantanal), the Pontifical Catholic 

University of Peru (PUC-PE), the Federal University of Mato Grosso (UFMT), the University 

of Sao Paulo (USP), and the Federal university of Rio Grande do Sul (UFRGS), as well as 

funding from national and regional research agencies. 
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Figure 6.1 – Locations of ground-based stations used in the first stage of expansion of the OpenET 

benchmark dataset. 
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Table 6.1 – List of micrometeorological stations used for the intercomparison. 

Site ID Climate 

IGBP land 

cover Method 

Time series (yyyy-mm-dd) Missing SEB 

flux data Start End 

AFL Aw EBF EC 2003-02-27 2004-04-17 G 

BAN Aw EBF EC 2003-10-24 2006-12-09  

BDP Aw WSA EC 2011-06-15 2015-08-12  

CAM Aw EBF BR 2006-08-27 2010-09-28  

CAS Cfa CRO EC 2009-10-19 2015-03-31  

CAX Am EBF EC 1999-01-01 2003-07-31 G 

CRA Cfa CRO EC 2009-01-01 2014-09-07  

CSE1 Aw CSH EC 2013-01-09 2017-09-04  

CSE2 Aw OSH EC 2013-03-19 2017-02-08  

CSJ Aw WSA EC 2019-04-01 2019-12-24  

CST BSh WSA EC 2014-01-17 2020-03-14  

FEX Aw GRA BR 2006-09-01 2010-03-11  

FMI Aw SAV BR 2009-04-10 2013-06-01  

FNS Aw GRA EC 1999-02-04 2002-11-05 G 

FSN Am GRA EC 2002-03-26 2003-10-03  

GUY Am EBF EC 2004-01-01 2015-01-01 G 

K34 Am EBF EC 1999-06-14 2006-10-01  

K67 Am EBF EC 2002-01-01 2012-01-01 G 

K77 Am CRO EC 2000-08-08 2005-11-02  

K83 Am EBF EC 2000-06-28 2004-03-12  

NPW Aw WSA EC 2013-01-01 2017-06-30 G 

PAN Aw SAV EC 2000-09-01 2002-06-01  

PAS Cfa GRA EC 2013-09-26 2016-09-07  

PDG Cwb WSA EC 2001-01-01 2004-01-01 G 

PRS Cfa CRO EC 2003-07-02 2004-07-22  

QFR Af WSA EC 2018-01-01 2020-01-01 G 

RJA Aw EBF EC 1999-03-23 2002-11-15 G 

SIN Aw EBF EC 2005-05-01 2008-10-18  

SJA Cfb EBF EC 2009-10-31 2012-04-20 Rn, G 

SLU BSk MF EC 2009-01-01 2012-01-01  

SMA Cfa GRA EC 2013-01-01 2016-06-15  

TF1 ET WET EC 2016-01-01 2018-05-17 Rn, G 

TF2 EF WET EC 2016-01-01 2018-04-17 Rn, G 

TNR Aw EBF EC 2017-01-01 2019-05-06 G 

USE Cwb CRO EC 2001-01-01 2003-01-05 G 

VIR Cfa ENF EC 2009-01-01 2013-01-01 G 

To assess and build confidence in the ground data, I conducted energy balance closure 

analyses at the daily timestep, using measurements of SEB components included: latent energy 

(LE), sensible heat flux (H), net radiation (Rn), and soil heat flux (G), all of which are required 

for energy balance closure analysis and correction.  On sites where G data was not available, a 

fraction of Rn was used, corresponding to 0.05 on forested sites, and 0.10 for all other surfaces. 

6.2.1.2 Flux Data Processing and Closure Corrections 

The processing, closure corrections and quality assessment for flux data are outlined by 

the following steps:  
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1) standardization of the multi-source data to single format. This step was necessary due 

to the multiple sources of flux data, with several formats, which hinder the application of the 

closure corrections; 

2) gap-filling of missing or faulty sub-daily energy balance components. Gaps up to 4 

hours long during the night (defined as periods with Rn < 0) and 2 hours during the day (defined 

as Rn >= 0) were linearly interpolated. Days with larger gaps were flagged for later inspection;  

3) daily aggregation; 

4) energy balance closure correction; 

5) visual inspection and screening of post-processed data. 

Steps 2-4 were done using the software developed using the QA/QC algorithm developed 

by the OpenET team (VOLK et al., 2021), which available via open-source Python package in 

a GitHub repository. The whole flux data processing and correction procedure is described in 

detail by Volk et al. (2023). 

SEB fluxes data is subject to SEB closure imbalances at daily time scale. To enforce the 

SEB closure, several methods have been developed, of which the most common are the Bowen 

ratio closure, where LE and H are both adjusted while preserving the observed daily Bowen 

ratio (H/LE) (TWINE et al., 2000); and the energy balance ratio (EBR) closure, where EBR = 

(LE + H)/(Rn – G), and in which LE and H are both adjusted such that the EBR averages to 1 

over some timescale larger than a day (PASTORELLO et al., 2020). In previous studies 

comparing remote sensed ET to flux data in South America, the BR method was used (DE 

ANDRADE, 2018; KAYSER et al., 2022; LAIPELT et al., 2020, 2021; RUHOFF et al., 2012). 

However, the EBR method is used in this study, to conform to the OpenET benchmark dataset 

(MELTON et al., 2021; VOLK et al., 2023). The primary benefit of the EBR is that it does not 

require the SEB to be closed at daily time scale, instead using a time window (in this study, 15 

days) for closure. On one hand, if the EBR extremes in the time window are accurate, the 

correction will be overly conservative; on the other, if the extremes result from measurement 

errors, the EBR method will smoothen the anomalies and approximate to more realistic values. 

6.2.1.3 Static Footprint Calculation 

In this study, I followed a simplified methodology for estimating the upwind footprint of 

the SEB fluxes around the micrometeorological towers (Figure 6.2). An initial polygon is 

centered on the flux tower site. Rectangles of three sizes were produced, with 90 m, 150 m, and 

210 m sides. Based on the flux site wind speed and direction daytime data (between 06:00 and 
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18:00 local time), the rectangles were shifted in order to capture a more representative area. 

The maximum shift was capped in order to include the tower location. Finally, an individualized 

post-processing was performed to remove non-representative features, such roads, 

constructions, open water, and different land covers. For the intercomparison with remote 

sensing data, only the 210 m polygon was used, as it has been demonstrated that it is more 

representative of a homogenous area and provides less remote sensing data gaps (FISHER et 

al., 2020b; MELTON et al., 2021; VOLK et al., 2023). 

 
Figure 6.2 – Example of the footprint calculation algorithm for two flux towers: BAN (top), and CSE1 

(bottom). The wind rose with wind speed and direction frequency for each tower is also shown. 

6.2.2 Remote Sensing Models 

6.2.2.1 Input Data 

Table 6.2 presents the open-source data used for the application of the SSEBop and 

geeSEBAL models. The major difference from the original OpenET is that global 
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meteorological and land cover datasets were used here. A land cover dataset was generated by 

merging data from Copernicus Global Land Cover (CGLS) – Collection 2 (BUCHHORN et al., 

2020) from 2015 to 2019, and European Space Agency (ESA) WorldCover 10m (ZANAGA et 

al., 2021) for 2020-2021. For periods before 2015, the first image of CGLS was used, while for 

periods after 2021, the last image of ESA was used. Other datasets that are model-specific are 

mentioned in the models’ description that follows. 

Table 6.2 – Input data for the remote sensing ET models. 

Variable Datasets Symbols 

Resolution 

Temporal Spatial 

Elevation USGS SRTM z - 30 m 

Land surface temperature 

LANDSAT 5 TM 

LANDSAT 7 ETM+ 

LANDSAT 8 OLI/TIRS 

LST 16 days 100 m 

Surface reflectance 

LANDSAT 5 TM 

LANDSAT 7 ETM+ 

LANDSAT 8 OLI/TIRS 

S 16 days 30 m 

Dew point temperature ERA5-Land Hourly Td 1 hour 11,132 m 

Air temperature ERA5-Land Hourly Ta 1 hour 11,132 m 

Wind ERA5-Land Hourly u 1 hour 11,132 m 

Solar radiation ERA5-Land Hourly Rs 1 hour 11,132 m 

Land cover 

CGLS-LC100 

ESA WorldCover 10m v100 

ESA WorldCover 10m v200 

LC 1 year 

100 m 

10 m 

10 m 

6.2.2.2 SSEBop Model 

Model description 

The Operational Simplified Surface Energy Balance (SSEBop) model is a widely used 

tool for global ET mapping, which computes actual ET as a product of ET fraction (ETf) and 

maximum ET under water-unlimited environmental conditions, often considered equivalent to 

alfalfa reference ET (ETr), as shown in Eq. 22: 

ET = ETf ∙ ETr (22) 

To estimate ETf (Eq. 23), SSEBop uses the concept of satellite psychrometry that employs 

two model parameters to define the model boundary conditions for minimum and maximum 

ET, in association with observed satellite land surface temperature (LST). 

ETf = 1 − γs ∙ (LST − Tc) (23) 

The first parameter, γs, is the surface psychrometric constant over a dry-bare surface, 

determined based on energy balance principles and may be assumed constant for a given 
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location and day of year, and can be interpreted as the inverse of the dT parameter (SENAY et 

al., 2013); and the second is the wet-bulb reference surface temperature (Tc) limit.  

γs pre-calculated for each day-of-year, using Eq. (24): 

γs =
ρ ∙ Cp

Rn ∙ rah
 

(24) 

Where ρ is the density of air (kg m−3), calculated as a function of elevation (ALLEN et al., 

1998-; SENAY et al., 2013); Cp is specific heat of air at constant pressure, 1.013 × 10−3 (MJ 

kg−1 °C−1); Rn is the daily average net radiation (MJ m−2 d−1); and rah (s m−1) is the aerodynamic 

resistance over dry-bare soil, 180 s m-1. γs is derived using Rn is derived from ERA5 downwards 

shortwave radiation, along with other weather datasets, Ta from Daymet and Chelsea, to create 

a daily median (SENAY et al., 2022). 

Recently, a new approach was developed to improve the accuracy of the Tc parameter 

estimation and expand the spatiotemporal coverage of the SSEBop model, addressing the 

limitations of previous methods, such as the lack of high NDVI pixels in arid and semi-arid 

regions, non-uniform distribution of high NDVI calibration landscapes, and widely varying Tc 

results due to the NDVI threshold for greenest pixel selection (SENAY et al., 2023). The new 

method, named forcing and normalizing operation (FANO) for the determination of Tc is given 

by Eq. (25-27): 

Tc
∗ = LST∗ −  

f

γs
∗

(0.9 − NDVI∗) 
(25) 

c =
Tc

∗

Tair
∗  

(26) 

Tc = c ∙ Tair 
(27) 

where * denotes the average value for a large area; f is a proportionality “FANO” constant, 

globally assumed as 1.25, that relates the ratio of LST- Tc to 0.9 – NDVI. Implementation of 

this set of equations is dependent on NDVI mean value and water pixels for each coarse pixel. 

Initially, a 5 km pixel is used, and Eq. (25) is applied if NDVI∗ is between 0.0 and 0.9; if mean 

NDVI∗ is higher than 0.9 or lower than 0.0, Tc
∗ is considered equal to LST∗; if NDVI∗ is between 

0.0 and 0.9, but too many water pixels are identified (10%), the large area is set to 100 km and 

Eq. (25) is reapplied. Tc
∗ is resampled to the Tair dataset resolution using Eq. (26-27), where Tair 

is the spatially averaged daily max air temperature. 
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6.2.2.3 geeSEBAL Model 

A detailed overview of geeSEBAL formulation can be found in Laipelt et al. (2021), 

which is based on the original model developed by Bastiaanssen et al. (1998a). Differently from 

geeSEBAL-MODIS, described in chapter 4 of this dissertation, the OpenET version of 

geeSEBAL uses Landsat images for retrieval of LST data, and evapotranspiration fraction is 

converted to daily ET using daily average net radiation instead of daily average ETr.  

The latest version of geeSEBAL incorporates several changes based on the accuracy 

assessment and intercomparison results from OpenET, as follows: 

1) the simplified version of CIMEC was improved by using additional filters to select the 

endmembers, including the use of land cover data and filters for NDVI, LST and albedo; 

2) corrections to LST for endmembers selection based on antecedent precipitation; 

3) definition of wind speed thresholds to reduce model instability; 

4) improvements to estimate daily net radiation, using FAO-56 as reference (ALLEN et 

al., 1998). 

6.3 Results 

6.3.1 Flux Data Closure Corrections 

The closure correction method results are presented in Figure 6.3. This technique rarely 

results in the perfect closure of the energy balance on any given date, but the SEB fluxes are 

adjusted so that closure converges to 1 over the sliding window periods (15 days). Figure 6.4 

presents the comparison of ET data from the flux towers, before and after the closure correction 

algorithm application. For the towers in South America, the EBR closure correction generally 

results in higher daily ET rates. The corrected value are used for the intercomparison with the 

remote sensing models. 
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Figure 6.3 – Daily average of turbulent fluxes and closure correction results. Regression lines and 

equation are presented for SEB fluxes before (black) and after (red) EBR closure corrections. 
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Figure 6.4 – Comparison of flux tower ET data before and after closure corrections. 

6.3.2 Intercomparison 

Figure 6.5 shows ET time series by day of (DOY) for the 36 flux sites of South America, 

used in the first stage of the OpenET expansion project outside of the United States. The remote 

sensing models (SSEBop, geeSEBAL, and ensemble, which is a simple mean of the two) are 

capable of representing the seasonality of flux tower ET data. However, a general 
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overestimation is observed for remote sensing ET. This overestimation occurs more frequently 

on drier climates (Figure 6.6), such as Aw (Tropical, dry winter), Bs (Dry, semi-arid), and Cw 

(Temperate, dry winter); and drier landscape (Figure 6.7), such as shrublands (OSH and CSH) 

and mixed forests (MF). On woody savannas (WSA), lower ET values from flux towers are 

overestimated by the remote sensing models, while the max values yield stronger agreement. 

Statistical comparison metrics for each climate (Figure 6.8) and for each land cover (Figure 6.9) 

reveal that the best performance of OpenET models occurs in temperate (Cfa) and in tropical 

monsoon (Am) climates, and over croplands (CRO) and grasslands (GRA). The 

intercomparison statistical metrics for each flux tower are available in Table S 1. 
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Figure 6.5 – Time series of ET from the towers (light grays is all tower data and black is data on days 

of satellite overpass, which provide remote sensing data as well), SSEBop, geeSEBAL, and the 

ensemble mean. Values are displayed by day of year (DOY), the black line represents the tower data 

15 DOY moving average. 
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Figure 6.6 – Comparison scatterplots between daily ET data from the towers and from the remote 

sensing models, for each climate classification. The linear regression equation and determination 

coefficient (R²) for the comparison between in situ (X) and Ensemble (Y) ET is also shown 

 

 
Figure 6.7 – Comparison scatterplots between daily ET data from the towers and from the remote 

sensing models, for each land cover classification. The linear regression equation and determination 

coefficient (R²) for the comparison between in situ (X) and Ensemble (Y) ET is also shown. 
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Figure 6.8 – Intercomparison statistics boxplots between flux tower ET and the remote sensing models 

for each climate. 
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Figure 6.9 – Intercomparison statistics boxplots between flux tower ET and the remote sensing models 

for each land cover. 

6.4 Discussion  

6.4.1 Limitations of Flux Station Data 

Flux towers are recognized among the best alternatives for measuring actual 

evapotranspiration, with applications over various surface and climate conditions 

(BALDOCCHI, 2020; JIANG; LIU, 2021; KOLARS et al., 2013), and that is traditionally used 

as the basis for comparison with remote sensing methods (BHATTARAI et al., 2019; DE 

ANDRADE, 2018; LI et al., 2018; MELTON et al., 2021; SENAY et al., 2022). A necessary 

assumption for the ET measurement from micrometeorological stations is that there is sufficient 

"fetch", which refers to the upwind distance with uniform features, to ensure that the 
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measurements accurately represent the underlying surface and are not affected by flux from 

neighboring surfaces (DREXLER et al., 2004). One of the towers with available data in South 

America was removed from the analysis due to its location between irrigated and non-irrigated 

croplands (LATHUILLIÈRE et al., 2018). 

In situ data gaps due to instrument malfunction, power outages, or other issues, can 

significantly impact the accuracy of analysis. First, gaps reduce data availability for the 

accuracy assessment. Second, they can influence the data processing, correction, and quality 

control, introducing biases and inaccuracies. Data gaps during extreme SEB events, the EBR 

moving average value may be underestimated or overestimated, leading to inaccurate 

corrections.  

The lack of G measurement in many flux towers is a major issue, as it decreases trust in 

other fluxes measurement, due to the inability to verify the SEB closure. In this study, G was 

estimated as a fraction of Rn at 12 sites. This simplified strategy allowed the closure correction 

algorithm application, but does not increase confidence in data. In the original OpenET 

benchmark dataset development (VOLK et al., 2023), only towers with the four SEB flux (Rn, 

H, LE, and G) measurements were selected. Nonetheless, the dataset still included over 300 

towers. Applying this criterion to our study would mean that more one-third (12 without G, and 

2 without Rn and G) of stations with available data would be eliminated. For this reason, the 

principal investigator decided for the maintenance of all towers. In future studies, it is 

recommended that more robust methods for estimating G are used (DE ANDRADE et al., 

2021a). Even then, data from such towers will always present high uncertainty associated. 

Energy balance closure correction methods exist because of the uncertainty in H and LE 

measurements, compared to Rn and G. Although they adjust H and LE to enforce energy balance 

closure, these methods can introduce additional uncertainties and biases in the data, depending 

on the method used and the assumptions made. The EBR method used in this study tends to 

apply overly conservative corrections, especially for data which presents high variability in the 

ratio. On the other hand, since it does not force EBR = 1.0 for all days, it reduces the effects of 

unrealistic values in measurements errors. 

6.4.2 OpenET models intercomparison  

Compared to flux tower ET data, SSEBop, geeSEBAL, and the ensemble performed 

similarly, with overall RMSE equal to 1.57, 1.81 and 1.58 mm day-1, respectively. The worst 

performance was identified in closed shrublands, followed by mixed forests, which occur in 

regions of dry climate (Bsh, Bsk). In these areas, both models overestimate ET, possibly due to 
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the parameterization in geeSEBAL endmember selection procedure, and for SSEBop, due to 

the ETr overestimation from ERA5-Land data (ALLEN et al., 2021). The rah parameter in 

SSEBop might also be overestimated, although ET is less sensitive to it in the new FANO 

formulation (SENAY et al., 2023). Generally, the ensemble model yielded errors within the 

other two or slightly lower. The same pattern is observed for other metrics, with the ensemble 

performance between the two models or very close to the best one. Overall, the results of this 

study reveal that even the simple average of two models provides more robust estimates of ET.  

The original OpenET has a distinct advantage over this study, which is the utilization of 

higher spatial resolution and bias-corrected meteorological data. This approach results in a 

significant reduction in errors within the gridded atmospheric dataset, which in turn improves 

the accuracy of the ET estimates generated by remote sensing models. In future studies, 

accuracy assessment and bias correction of ERA5 Land (or another global meteorological 

dataset) is recommended. 

In comparison to previous studies conducted in South America utilizing geeSEBAL and 

SSEBop (DE ANDRADE, 2018; LAIPELT et al., 2020, 2021; RUHOFF et al., 2012), the 

validation results in this study are relatively poorer. This decrease in performance is anticipated, 

as earlier studies were conducted on a smaller scale, with a limited number of study sites, and 

the models underwent a local calibration process to improve their accuracy. In the present study, 

the models were used in their default formulation, which provides average performance with 

occasional misestimations. 

Other potential sources of error in the remote sensing ET data are:  

1) the land cover classification error: For this study, global land cover datasets were 

selected due to the coverage and spatial resolution. However, the time range of data coverage 

was limited to 2015-2021. Since a big portion of flux tower data was obtained prior to 2015, 

erroneous land cover was assumed in geeSEBAL endmember selection, potentially leading to 

large errors between 1999 and 2014; 

2) the errors associated with Landsat collection 2 LST data: collection 2 provides LST 

data calculated from the sensor thermal bands and from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer Global Emissivity Dataset (ASTER GED) Version 3 

(GEDv3) emissivity data. The combination of the different spatial resolutions from Landsat and 

ASTER, in addition to the resampling method, results in artifacts that make LST images look 

blocky (BLOCKINESS ARTIFACT IN LANDSAT COLLECTION 2 SURFACE 

TEMPERATURE PRODUCTS | U.S. GEOLOGICAL SURVEY, [s. d.]). Despite these issues, 
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no significant improvement is observed overall in the intercomparison with flux tower data 

when using Landsat collection 1 imagery. Examples of this effect are exemplified in Figure 

6.10 for two flux tower sites, and a summary of the statistical metrics for the intercomparison 

with flux tower data is available in the supplementary material (Table S 2). Furthermore, data 

gaps in ASTER are replicated in the Landsat LST band (LANDSAT COLLECTION 2 

SURFACE TEMPERATURE DATA GAPS DUE TO MISSING ASTER GED | U.S. 

GEOLOGICAL SURVEY, [s. d.]). These issues can be detrimental to both the SSEBop and 

the geeSEBAL models, as it may lead to an incorrect relationship between vegetation indexes 

and LST. Given the discontinuation of Landsat collection 1, replacement of Landsat LST band 

with user-computed LST is recommended for the calculation of ET. 

 
Figure 6.10 – True color images (A, D) and ensemble average ET using Landsat collection 1 (B, E) 

and collection 2 (C, F), over CRA and PDG flux tower sites. 

6.4.3 Challenges in the OpenET implementation in South America 

The main drawback of remote sensing ET modeling is the requirement of clear-sky 

conditions (BHATTARAI et al., 2017). Cloud cover produces data gaps and hinders the 

construction of a time series and the comparison with ground data. For example, in the QFR 

site, despite a two-year window of available data, the comparison was possible for only two 
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dates, because of data gaps in both ground and satellite data. Cloud cover poses a challenge to 

the application of projects such as the OpenET, but investments in the increase of simultaneous 

orbiting satellites help reduce revisit time in mitigate this limitation. 

This study demonstrated the reproducibility of OpenET outside the United States, using 

South America as the starting point. Continuation of this research will require the inclusion of 

the other OpenET models and maybe even others, increasing remote sensing ET robustness and 

accuracy. Moreover, collaboration with regional and national water management agencies in 

South America, such as the Brazilian Water Agency (ANA), could provide valuable insights 

for the definition of the main interest areas for ET monitoring, such as irrigation districts and 

basins experiencing water use conflicts. Ultimately, this collaboration could contribute to 

improving water and food security in key regions, thereby advancing sustainable development 

efforts. 

6.5 Conclusions 

This chapter describes the implementation of the OpenET framework for intercomparison 

of remote sensing evapotranspiration (ET) models in South America. Ground truth data were 

obtained from flux data collected at 36 micrometeorological stations and corrected using the 

same state-of-the-art methodology used in the original project. Two OpenET models, SSEBop 

and geeSEBAL, were adapted for global application, and an ensemble mean was calculated. 

The results showed reasonable agreement between remote sensing models and flux tower data, 

although overestimations were observed in semi-arid climates. To increase the accuracy of the 

models, potential improvements could come from bias correction of meteorological data, 

following the example set by the original project. This work also demonstrated the 

reproducibility of the OpenET approach and its potential for expansion beyond the United 

States borders. Future efforts should focus on applying more models to increase the robustness 

and accuracy of the ensemble model. 

The implementation of the OpenET intercomparison framework in South America is a 

testament to the importance of a collaborative community in advancing scientific research. 

Given the challenging prospect of growing constraints and increasing interannual variability in 

water supplies, continued collaboration between researchers, water users, and water managers 

will be crucial in developing more accurate, accessible and reliable evapotranspiration data. 

Such information will aid in better management of water resources and agricultural practices, 
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addressing the challenges towards sustainable water resource management in South America 

and beyond. 

6.6 Supplementary Material 

Table S 1 – Summary of intercomparison statistics of daily evapotranspiration from flux tower and 

remote sensing data, including the SSEBop, geeSEBAL and the Ensemble models, derived with 

Landsat Collection 2 images. RMSE, MAE and Bias are in mm d-1; R² and the slope of the linear 

regression are nondimensional. 
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AFL Aw EBF 1.67 1.24 1.24 0.71 -2.36 1.90 1.86 1.86 0.27 0.71 1.68 1.55 1.55 0.37 -0.82 

BAN Aw EBF 1.68 1.46 0.51 0.02 -0.17 1.48 1.16 0.66 0.00 -0.05 1.47 1.19 0.57 0.01 -0.10 

BDP Aw WSA 1.87 1.48 1.43 0.04 0.24 1.71 1.46 1.39 0.29 0.73 1.71 1.44 1.40 0.19 0.47 

CAM Aw EBF 1.76 1.38 1.02 0.08 0.26 1.53 1.36 1.32 0.62 0.69 1.57 1.28 1.16 0.33 0.48 

CAS Cfa CRO 1.15 0.93 0.13 0.75 0.78 1.43 1.13 0.51 0.72 0.95 1.14 0.92 0.31 0.78 0.87 

CAX Am EBF 1.69 1.69 0.05 - -1.21 0.17 0.17 0.17 - 0.52 1.34 1.30 -0.35 - -0.70 

CRA Cfa CRO 1.28 0.86 -0.12 0.58 0.67 2.23 1.52 -1.05 0.25 0.55 1.51 0.93 -0.49 0.49 0.62 

CSE1 Aw CSH 3.73 3.41 3.40 0.06 -0.22 3.10 2.78 2.55 0.13 -0.39 3.38 3.11 3.00 0.12 -0.31 

CSE2 Aw OSH 0.87 0.74 0.44 0.03 0.17 1.71 1.39 0.76 0.20 -0.78 1.16 1.01 0.60 0.08 -0.29 

CSJ Aw WSA 1.76 1.62 0.52 0.08 -0.06 1.49 1.16 0.11 0.11 0.18 1.53 1.37 0.31 0.07 0.06 

CST BSh WSA 2.70 2.45 2.41 0.42 0.77 2.97 2.62 2.60 0.23 0.57 2.71 2.51 2.50 0.46 0.67 

FEX Aw GRA 0.94 0.78 -0.03 0.24 0.60 2.13 1.93 1.71 0.11 0.54 1.19 1.04 0.79 0.27 0.60 

FMI Aw SAV 1.39 1.13 -0.68 0.21 0.41 1.94 1.59 0.07 0.00 -0.02 1.45 1.13 -0.28 0.05 0.18 

FNS Aw GRA 0.65 0.52 -0.03 0.57 0.46 1.85 1.52 -0.86 0.03 0.27 1.08 0.85 -0.40 0.16 0.35 

FSN Am GRA 1.22 0.94 -0.34 0.12 0.14 1.78 1.41 -0.81 0.05 0.25 1.36 1.11 -0.58 0.10 0.19 

GUY Am EBF 1.25 1.01 0.05 0.02 -0.19 2.70 2.23 -1.58 0.02 0.48 1.53 1.23 -0.62 0.00 0.11 

K34 Am EBF 1.50 1.26 -0.88 0.01 0.07 1.23 0.88 0.12 0.05 0.16 1.28 1.04 -0.45 0.02 0.09 

K67 Am EBF 1.60 1.32 0.81 0.11 0.67 1.56 1.39 1.28 0.07 0.29 1.49 1.27 1.04 0.12 0.50 

K77 Am CRO 2.06 1.59 -1.52 0.00 0.03 2.11 1.55 -0.76 0.05 -0.26 2.03 1.47 -0.97 0.03 -0.16 

K83 Am EBF 1.50 1.19 0.38 0.05 0.34 1.54 1.21 0.62 0.12 0.57 1.51 1.21 0.40 0.07 0.42 

NPW Aw WSA 1.54 1.32 0.58 0.13 0.39 1.50 1.04 0.59 0.28 0.68 1.40 1.12 0.58 0.25 0.54 

PAN Aw SAV 0.93 0.71 -0.42 0.56 0.44 1.68 1.39 0.26 0.27 0.86 1.06 0.84 -0.09 0.38 0.66 

PAS Cfa GRA 0.99 0.77 -0.22 0.71 0.67 2.33 1.90 -1.42 0.25 0.49 1.33 1.06 -0.69 0.59 0.59 

PDG Cwb WSA 2.59 2.14 1.50 0.01 -0.08 2.23 1.80 1.44 0.08 0.22 2.32 1.86 1.47 0.01 0.07 

PRS Cfa CRO 1.65 1.11 -0.47 0.45 0.66 1.78 1.31 -0.56 0.51 0.86 1.67 1.19 -0.51 0.49 0.76 

QFR Af WSA 0.26 0.24 0.11 - 0.52 1.83 1.63 -1.63 - -0.68 0.93 0.76 -0.76 - -0.08 

RJA Aw EBF 1.33 1.03 -0.24 0.03 0.16 1.65 1.18 0.09 0.00 0.04 1.34 1.04 -0.09 0.02 0.11 

SIN Aw EBF 1.72 1.44 1.31 0.00 0.07 1.48 1.27 1.25 0.11 0.35 1.55 1.31 1.29 0.03 0.15 

SJA Cfb EBF 2.09 1.79 1.79 0.01 0.18 2.74 2.50 2.50 0.05 0.37 2.40 2.14 2.14 0.03 0.28 

SLU BSk MF 2.83 2.57 2.53 0.27 0.97 2.81 2.60 2.60 0.19 0.63 2.70 2.57 2.57 0.38 0.80 

SMA Cfa GRA 1.68 1.39 -1.36 0.68 0.59 1.71 1.39 -0.38 0.37 0.80 1.55 1.15 -0.97 0.52 0.63 

TF1 ET WET - - - - - 1.85 1.35 -0.27 0.01 0.13 1.85 1.35 -0.27 0.01 0.13 

TF2 EF WET 1.23 0.93 -0.90 0.20 0.22 1.54 1.30 -0.46 0.06 -0.25 1.33 1.03 -0.68 0.00 -0.02 

TNR Aw EBF 1.03 0.82 -0.37 0.10 0.48 1.09 0.97 0.48 0.04 0.26 0.93 0.79 0.05 0.07 0.37 

USE Cwb CRO 0.84 0.66 -0.46 0.84 1.24 1.02 0.83 0.05 0.67 1.22 0.77 0.64 -0.22 0.82 1.24 

VIR Cfa ENF 1.90 1.51 -0.09 0.20 0.49 1.39 1.12 0.10 0.45 0.67 1.57 1.30 0.01 0.34 0.58 
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Table S 2 – Summary of intercomparison statistics of daily evapotranspiration from flux tower and 

remote sensing data, including the SSEBop, geeSEBAL and the Ensemble models, derived with 

Landsat Collection 1 images. RMSE, MAE and Bias are in mm d-1; R² and the slope of the linear 

regression are nondimensional. 
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AFL Aw EBF 1.60 1.07 1.06 0.65 -2.49 1.67 1.66 1.66 0.72 0.82 1.51 1.36 1.36 0.38 -0.84 

BAN Aw EBF 1.63 1.36 0.31 0.02 -0.15 1.46 1.14 0.53 0.00 0.03 1.42 1.12 0.40 0.00 -0.05 

BDP Aw WSA 1.65 1.30 1.22 0.06 0.27 1.75 1.52 1.46 0.38 0.90 1.60 1.35 1.31 0.25 0.55 

CAM Aw EBF 1.57 1.25 0.78 0.09 0.25 1.49 1.33 1.26 0.61 0.72 1.43 1.17 0.99 0.36 0.48 

CAS Cfa CRO 1.15 0.86 -0.24 0.77 0.68 1.44 1.16 0.35 0.67 0.87 1.10 0.85 0.05 0.77 0.78 

CAX Am EBF 1.89 1.79 -0.59 - -1.35 1.40 1.40 -0.05 - -0.83 1.63 1.60 -0.32 - -1.09 

CRA Cfa CRO 1.25 0.86 -0.32 0.61 0.67 2.48 1.80 -1.53 0.24 0.52 1.57 1.05 -0.71 0.49 0.58 

CSE1 Aw CSH 3.27 2.99 2.93 0.02 -0.13 2.97 2.70 2.41 0.06 -0.29 3.14 2.90 2.75 0.05 -0.23 

CSE2 Aw OSH 0.95 0.73 0.50 0.01 0.13 1.67 1.28 1.14 0.05 -1.22 1.08 0.85 0.67 0.00 -0.06 

CSJ Aw WSA 1.53 1.34 -0.11 0.01 0.03 1.43 1.20 -0.38 0.16 0.21 1.41 1.27 -0.24 0.13 0.12 

CST BSh WSA 2.85 2.69 2.66 0.41 0.74 2.56 2.14 2.12 0.23 0.70 2.63 2.44 2.42 0.39 0.69 

FEX Aw GRA 0.92 0.74 0.14 0.24 0.56 2.42 2.29 2.03 0.15 0.69 1.31 1.20 1.03 0.28 0.54 

FMI Aw SAV 1.05 0.81 -0.10 0.30 0.47 2.11 1.81 1.75 0.23 0.46 1.27 1.04 0.77 0.31 0.44 

FNS Aw GRA 0.62 0.50 0.01 0.64 0.45 2.15 1.90 -1.39 0.03 0.30 0.98 0.77 -0.37 0.21 0.37 

FSN Am GRA 1.18 1.00 -0.04 0.16 0.16 1.81 1.50 -1.20 0.16 0.40 1.28 1.09 -0.54 0.19 0.25 

GUY Am EBF 1.33 1.10 -0.08 0.02 -0.22 2.46 1.87 -1.67 0.31 1.58 1.43 1.20 -0.77 0.14 0.68 

K34 Am EBF 1.58 1.31 -1.05 0.05 0.17 1.32 1.02 -0.26 0.10 0.29 1.42 1.18 -0.76 0.07 0.24 

K67 Am EBF 1.37 1.11 0.48 0.13 0.67 1.39 1.16 0.57 0.11 0.62 1.28 1.10 0.50 0.16 0.69 

K77 Am CRO 1.15 0.78 -0.47 0.23 0.31 1.64 1.31 -0.75 0.00 0.06 1.29 0.90 -0.63 0.16 0.28 

K83 Am EBF 1.26 1.03 0.22 0.07 0.35 1.72 1.41 0.00 0.23 1.05 1.39 1.18 0.07 0.15 0.67 

NPW Aw WSA 1.42 1.23 0.37 0.15 0.42 1.47 1.08 0.50 0.29 0.70 1.30 1.06 0.39 0.26 0.56 

PAN Aw SAV 0.82 0.65 -0.19 0.60 0.49 1.70 1.34 0.88 0.23 0.63 0.99 0.75 0.36 0.46 0.57 

PAS Cfa GRA 0.98 0.74 -0.29 0.71 0.68 3.17 2.73 -2.61 0.16 0.32 1.49 1.14 -0.95 0.56 0.52 

PDG Cwb WSA 2.79 2.17 1.15 0.12 -0.24 2.39 1.95 1.11 0.00 0.00 2.82 2.18 0.84 0.10 -0.26 

PRS Cfa CRO 1.51 1.00 -0.71 0.56 0.66 1.91 1.24 -0.43 0.26 0.57 1.57 0.98 -0.56 0.50 0.68 

QFR Af WSA 0.26 0.25 0.05 - 0.50 2.86 2.86 -2.86 - 1.35 1.40 1.40 -1.40 - 0.93 

RJA Aw EBF 1.42 1.08 -0.50 0.02 0.13 1.54 1.10 -0.22 0.01 0.13 1.40 1.06 -0.44 0.03 0.15 

SIN Aw EBF 1.39 1.12 0.90 0.06 0.34 1.44 1.23 1.20 0.13 0.38 1.28 1.09 1.02 0.15 0.38 

SJA Cfb EBF 1.85 1.50 1.47 0.01 0.14 2.65 2.39 2.39 0.05 0.35 2.22 1.93 1.93 0.03 0.24 

SLU BSk MF 2.52 2.24 2.21 0.28 1.00 2.51 2.29 2.03 0.02 0.26 2.34 2.11 2.11 0.21 0.66 

SMA Cfa GRA 1.67 1.41 -1.39 0.71 0.62 2.55 1.73 -0.68 0.08 0.37 1.87 1.26 -1.11 0.32 0.51 

TF1 ET WET - - - - - 1.38 1.01 -0.71 0.14 0.30 1.38 1.01 -0.71 0.14 0.30 

TF2 EF WET 1.36 1.03 -1.02 0.10 0.15 1.69 1.52 -0.89 0.41 -0.44 1.50 1.28 -0.96 0.09 -0.15 

TNR Aw EBF 1.17 0.97 -0.61 0.25 0.47 1.06 0.89 0.27 0.06 0.36 1.07 0.88 -0.28 0.22 0.47 

USE Cwb CRO 0.77 0.58 -0.32 0.78 1.12 1.11 0.77 -0.36 0.48 0.99 0.77 0.57 -0.34 0.76 1.07 

VIR Cfa ENF 1.86 1.55 -0.39 0.21 0.46 1.48 1.18 0.01 0.41 0.63 1.60 1.32 -0.23 0.32 0.53 
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Chapter 7: Final Conclusions 

This dissertation is centered on the estimation of actual evapotranspiration (ET) at 

multiple spatial resolutions using remote sensing data, and provides information on a major 

knowledge gap in water management. An adaptation of the Surface Energy Balance Algorithm 

for Land (SEBAL) model was developed in the Google Earth Engine platform for continental 

actual ET estimation. The resulting dataset, named geeSEBAL-MODIS, covers South America 

between 2002 and 2022, with pixels of 500 m and images every 8 days. The study shows the 

potential of cloud computing and provides a pathway for global ET estimation using complex 

and physically sound models.  

The geeSEBAL-MODIS dataset was validated through ground measurements, regional 

estimates based on river basin water balance, and global ET datasets. Results indicate that the 

dataset is sensitive to ET seasonality, temporal anomalies, and spatial heterogeneity, making it 

useful for land and climate monitoring. Furthermore, it yielded lower errors than existing global 

ET datasets at both field and basin scales, improving trust in remotely sensed ET data. 

An improvement for the soil heat flux (G) estimation was also developed, using artificial 

neural networks (ANN). The assessment of G from ANN shows potential for further 

improvements in surface energy balance fluxes modeling, leading to better ET estimations. 

Future comparison studies between geeSEBAL-MODIS estimates and local measured data are 

recommended for G and other surface energy balance fluxes, as well as ET fraction and 

reference evapotranspiration. 

The positive results of the continental version of geeSEBAL motivate the expansion of 

the model’s coverage towards global application. However, several steps are required before 

this goal can be accomplished, including model validation in climatic conditions found outside 

of South America, further verification and improvements to the LST normalization method, 

endmember selection, and estimation of SEB fluxes in complex surface and climate conditions, 

as well as resource acquisition regarding computational power and memory. 

Moreover, the LST normalization procedure presented in this work enabled the 

geeSEBAL model computation for the very large scale, paving the way for continental (or 

global) application of other contextual ET models. Given the forecasted discontinuation of 

MODIS image acquisition, an implementation of geeSEBAL with VIIRS imagery is necessary 

to ensure the construction of longer monitoring series. 

The novel geeSEBAL-MODIS dataset was utilized to explore trends in ET and other 

hydrologically significant variables. The findings indicate a general rise in ET due to factors 
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such as global warming, atmospheric drying, increased solar radiation at the Earth's surface, 

and potentially, atmospheric carbon dioxide fertilization. As precipitation dwindles across the 

continent, projections for the future suggest that water resources availability will be strained in 

many parts of South America, particularly in central and southeastern Brazil. This finding 

highlights the need for proactive measures to address water scarcity in these regions. 

In the final chapter of this dissertation, a reproduction of the OpenET approach for 

intercomparison of remote sensing and in situ ET measurements is presented. Despite 

implementing only two models, as opposed to the original project's six models, this study 

successfully demonstrated the feasibility of replicating OpenET beyond the borders of the 

United States. Continuation of this research is highly recommended, by increasing the number 

of models tested, the number of flux tower sites, as well as creating a feedback framework to 

improve remote sensing estimations. Establishing the OpenET ensemble as reliable source for 

ET data would be a significant contribution to the field of water management in South America, 

as much as has been in the United States, aiding in the development of effective water 

management policies and strategies. 

This dissertation approached ET modeling using various remote sensing sources and 

methods, providing multi-scale ET data, thereby providing water managers with essential 

information at the local and regional levels. By employing this multifaceted approach to ET 

modeling, water managers can make better informed decisions about water allocation, usage, 

and conservation, thereby contributing to the sustainable management of this vital resource.  
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