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Abstract
Polymyxin	B	(PMB)	has	reemerged	as	a	last-	line	therapy	for	infections	caused	
by	multidrug-	resistant	gram-	negative	pathogens,	but	dosing	is	challenging	be-
cause	of	its	narrow	therapeutic	window	and	pharmacokinetic	(PK)	variability.	
Population	PK	(POPPK)	models	based	on	suitably	powered	clinical	studies	with	
appropriate	sampling	strategies	that	take	variability	into	consideration	can	in-
form	PMB	dosing	 to	maximize	efficacy	and	minimize	 toxicity	and	resistance.	
Here	we	reviewed	published	PMB	POPPK	models	and	evaluated	them	using	an	
external	validation	data	set	(EVD)	of	patients	who	are	critically	ill	and	enrolled	
in	 an	 ongoing	 clinical	 study	 to	 assess	 their	 utility.	 Seven	 published	 POPPK	
models	 were	 employed	 using	 the	 reported	 model	 equations,	 parameter	 val-
ues,	covariate	relationships,	interpatient	variability,	parameter	covariance,	and	
unexplained	 residual	 variability	 in	 NONMEM	 (Version	 7.4.3).	 The	 predictive	
ability	of	the	models	was	assessed	using	prediction-	based	and	simulation-	based	
diagnostics.	Patient	characteristics	and	 treatment	 information	were	compara-
ble	across	studies	and	with	the	EVD	(n	=	40),	but	the	sampling	strategy	was	a	
main	source	of	PK	variability	across	studies.	All	models	visually	and	statistically	
underpredicted	EVD	plasma	concentrations,	but	the	two-	compartment	models	
more	accurately	described	the	external	data	set.	As	current	POPPK	models	were	
inadequately	predictive	of	the	EVD,	creation	of	a	new	POPPK	model	based	on	
an	appropriately	powered	clinical	study	with	an	informed	PK	sampling	strategy	
would	be	expected	to	improve	characterization	of	PMB	PK	and	identify	covar-
iates	 to	 explain	 interpatient	 variability.	 Such	 a	 model	 would	 support	 model-	
informed	precision	dosing	frameworks,	which	are	urgently	needed	to	improve	
PMB	 treatment	efficacy,	 limit	 resistance,	 and	 reduce	 toxicity	 in	patients	who	
are	critically	ill.
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INTRODUCTION

The	 treatment	 of	 patients	 who	 are	 critically	 ill	 remains	
challenging	because	of	the	unabating	global	increase	in	an-
timicrobial	resistance,	regarded	as	one	of	the	three	great-
est	threats	to	human	health.1 This	threat	has	been	further	
amplified	by	the	increased	incidence	of	infections	caused	
by	 multidrug-	resistant	 (MDR)	 gram-	negative	 pathogens	
and	dwindling	therapeutic	options	for	these	pathogens.2–	4	
Polymyxins,	an	“old”	antibiotic	class,	reemerged	into	clin-
ical	use	 in	 the	1990s	as	a	 last-	line	 therapy	against	MDR	
gram-	negative	pathogens.5,6	Polymyxin	B	is	a	cyclic	lipo-
peptide7	with	dosing	guided	by	the	relationship	between	
unbound	 drug	 exposure,	 as	 indicated	 by	 the	 area	 under	
the	 unbound	 plasma	 concentration–	time	 curve	 (fAUC),	
and	the	minimum	inhibitory	concentration	(MIC)	of	the	
infecting	pathogen,	that	is,	fAUC/MIC.8,9 The	risk	of	ne-
phrotoxicity	in	patients	is	also	associated	with	the	plasma	
exposure	 (area	 under	 the	 plasma	 concentration–	time	
curve	[AUC]).10,11

Polymyxin	 B	 has	 a	 narrow	 therapeutic	 window	
that	 necessitates	 optimization	 of	 its	 exposure	 to	 max-
imize	 its	 bactericidal	 effect	 while	 minimizing	 the	
potential	 for	 the	 emergence	 of	 resistance8–	12	 and	
polymyxin-	associated	 adverse	 effects,	 notably	 neph-
rotoxicity.13,14  Pathophysiological	 changes	 in	 patients	
who	are	critically	ill	(e.g.,	immune	status,	organ	failure,	

comorbidity,	 comedication)	 can	 introduce	 pharmacoki-
netic	 (PK)	 variability,13,15	 making	 it	 difficult	 to	 predict	
polymyxin	B	PK	exposure.	Population	PK	(POPPK)	ap-
proaches	 have	 enabled	 the	 development	 of	 models	 de-
scribing	 both	 predictable	 (interpatient	 variability)	 and	
random	unexplained	variability	to	provide	the	necessary	
framework	for	dose	 individualization.16 Well-	developed	
POPPK	 models	 characterize	 responses	 in	 a	 “typical”	
patient	 as	 well	 as	 the	 range	 of	 likely	 responses,	 tak-
ing	 the	 influence	 of	 patient	 heterogeneity	 on	 PK	 into	
consideration.17	 Such	 POPPK	 models	 are	 essential	 for	
model-	informed	precision	dosing	(MIPD)	dose	individu-
alization	and	optimization.	Current	polymyxin	B	dosing	
recommendations,	 aimed	 at	 improving	 clinical	 efficacy	
and	reducing	toxicity,	are	provided	in	the	published	poly-
myxin	B	dosing	guidelines.13

POPPK	 models	 based	 on	 PK	 data	 collected	 from	
clinical	 studies	 with	 adequate	 numbers	 of	 patients	
combined	 with	 well-	informed	 sampling	 strategies	 can	
accurately	 characterize	 drug	 PK.18–	20  Patient	 (demo-
graphic	 and	 clinical)	 characteristics	 assist	 in	 defining	
the	 study	 population	 and	 determining	 the	 statistically	
or	 clinically	 influential	 characteristics	 that	 can	 help	
explain	 PK	 variability	 within	 the	 studied	 population.21	
Current	knowledge	regarding	polymyxin	B	PK	is	largely	
based	on	clinical	experience	and	observational	POPPK	
data	collected	from	healthy	volunteers	or	during	routine	

Study Highlights
WHAT	IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Polymyxin	B	is	a	narrow	therapeutic	index	antibiotic	with	high	interpatient	varia-
bility	administered	to	patients	who	are	high	risk	and	critically	ill.	Accurate	dosing	
can	be	challenging,	prompting	the	development	of	population	pharmacokinetic	
(POPPK)	models	that	account	for	patient	heterogeneity	and	the	remaining	unex-
plained	variability	between	patients.	However,	it	is	uncertain	which	models	best	
account	for	interpatient	and	residual	variability	and	would	therefore	be	most	use-
ful	for	guiding	polymyxin	B	dosing	in	patients	who	are	critically	ill.
WHAT	QUESTION DID THIS STUDY ADDRESS?
Can	one	or	more	of	the	published	polymyxin	B	POPPK	models	be	used	for	model-	
informed	precision	dosing	in	populations	of	patients	who	are	critically	ill?
WHAT	DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This	study	uses	an	external	validation	data	set	of	patients	who	are	critically	ill	to	
assess	the	predictive	ability	of	existing	population	PK	models	to	determine	their	
utility	for	model-	informed	precision	dosing	of	polymyxin	B	and	explores	sources	
of	bias	in	the	models	based	on	study	design.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This	study	tells	us	which	published	models	may	best	guide	model-	informed	pre-
cision	dosing	of	polymyxin	B	and	best	practices	for	designing	new	clinical	studies	
to	develop	POPPK	models	for	individualized	polymyxin	B	dosing.

11Division	of	Infectious	Diseases,	
Department	of	Internal	Medicine,	
Columbia	University	Vagelos	College	
of	Physicians	and	Surgeons,	New	York,	
New	York,	USA
12Biomedicine	Discovery	Institute,	
Monash	University,	Clayton,	Victoria,	
Australia
13Division	of	Infectious	Diseases,	
University	of	Michigan	Medical	School,	
Ann	Arbor,	Michigan,	USA

Correspondence
Gauri	G.	Rao,	University	of	North	
Carolina,	Chapel	Hill,	NC	27599,	USA.
Email:	gaurirao@live.unc.edu

 21638306, 2021, 12, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12720 by U

frgs - U
niversidade Federal D

o R
io G

rande D
o Sul, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:gaurirao@live.unc.edu


   | 1527PREDICTIVE PERFORMANCE OF POLYMYXIN B POPPK MODEL

clinical	care	of	patients	who	are	critically	ill.	These	data	
have	 enabled	 the	 development	 of	 POPPK	 models	 that	
relate	 observed	 polymyxin	 B	 concentrations	 to	 admin-
istered	 doses	 and	 identify	 significant	 covariate	 rela-
tionships	 that	 describe	 sources	 of	 variability	 in	 these	
populations.11,22–	26	Such	POPPK	models	can	be	used	to	
develop	 an	 MIPD	 framework	 for	 precision	 dosing.16,27	
Before	this	step,	it	is	important	to	consider	the	study	de-
sign	(patient	population,	dosing	regimen,	and	sampling	
strategy)	used	 to	develop	each	model.	Furthermore,	as	
performed	for	other	narrow	therapeutic	antibiotics,28–	30	
evaluation	 of	 the	 predictive	 performance	 and	 general-
izability	of	POPPK	models	must	be	performed	via	vali-
dation	assessments	using	“external”	data	sets	obtained	
from	separate	groups	of	patients	from	those	used	to	de-
velop	the	model.31

The	 objective	 of	 this	 study	 was	 to	 review	 and	 exter-
nally	 validate	 published	 polymyxin	 B	 POPPK	 models	 to	
determine	whether	they	can	be	used	for	MIPD	in	patients	
who	are	critically	ill.	POPPK	data	from	an	ongoing	obser-
vational	clinical	study	for	polymyxin	B	in	patients	who	are	
critically	ill	(NCT02682355)	was	used	as	the	external	vali-
dation	data	set.32

METHODS

Review of published POPPK studies

The	 PubMed,	 MEDLINE,	 and	 Embase	 databases	 were	
searched	 to	 identify	 published	 POPPK	 analyses	 of	 poly-
myxin	 B	 using	 the	 following	 keywords:	 “polymyxin	 B”	
[AND]	 “pharmacokinetics”	 [AND]	 (“population”	 [OR]	
“model”).	 The	 search	 included	 studies	 published	 in	
English	between	May	1,	1986,	and	May	10,	2021.	Included	
POPPK	 models	 were	 those	 developed	 using	 the	 follow-
ing:	(1)	polymyxin	B	PK	data	from	adult	patients	who	are	
critically	 ill;	 (2)	 a	 compartmental,	 parametric	 modeling	
approach;	and	(3)	polymyxin	B	sample	quantification	per-
formed	 via	 a	 chromatographic	 method.	 POPPK	 models	
were	excluded	if	(1)	polymyxin	B	was	administered	via	a	
nonintravenous	route,	 (2)	 the	model	description	was	 in-
sufficient/inadequate	to	fully	reproduce	the	model,	or	(3)	
the	model	was	developed	based	on	data	from	patients	with	
cystic	fibrosis	(CF)	or	healthy	volunteers.

Independent external validation data set

Polymyxin	 B	 PK	 and	 demographic	 data	 were	 collected	
from	adult	patients	who	are	critically	 ill	and	enrolled	 in	
an	 ongoing,	 observational,	 multisite	 polymyxin	 B	 clini-
cal	 study	 (https://clini	caltr	ials.gov/ct2/show/study/	

NCT02	682355)	conducted	at	Singapore	General	Hospital	
(Outram	 Road,	 Singapore),	 Hospital	 Moinhos	 de	 Vento	
(Porte	Alegre,	Brazil),	and	Pontifical	Catholic	University	
of	 Rio	 Grande	 do	 Sul	 (Porte	 Alegre,	 Brazil)	 from	 June	
2017	 to	December	2019.	The	study	was	approved	by	 the	
ethical	committees	at	all	participating	centers.	 Inclusion	
criteria	were	anticipated	use	of	intravenous	polymyxin	B	
for	48 h	or	more	following	enrollment	for	the	treatment	of	
bacteremia,	urinary	tract	infection,	respiratory	infections,	
or	sepsis.	Patients	were	excluded	if	 they	were	diagnosed	
with	CF,	were	not	anticipated	to	survive	beyond	48 h	fol-
lowing	 enrollment,	 or	 received	 concomitant	 polymyxin	
B	delivered	directly	into	the	respiratory	tract.	No	patient	
in	this	study	was	analyzed	in	previously	published	poly-
myxin	B	POPPK	studies.	The	polymyxin	B	dose,	infusion	
duration,	 and	 dosing	 interval	 were	 at	 the	 discretion	 of	
the	physician	caring	for	each	patient	and	were	recorded.	
Between	days	1	and	5,	PK	plasma	samples	were	collected	
predose	and	at	nominal	times	of	0.5,	1,	2,	6,	and	12 h	after	
cessation	of	infusion.	Total	polymyxin	B	plasma	concen-
trations	 were	 assessed	 by	 measuring	 polymyxin	 B1	 and	
B2	components	 in	each	plasma	sample.	 Individual	com-
ponents	were	measured	using	a	liquid	chromatography–	
tandem	 mass	 spectrometry	 assay	 with	 a	 lower	 limit	 of	
quantification	of	0.05 mg/L	and	coefficient	of	variation	of	
8.42%.24 Patient	age,	weight,	creatinine	clearance	(CrCL),	
Acute	 Physiologic	 Assessment	 and	 Chronic	 Health	
Evaluation	 II	 (APACHE	 II)	 score,	 sex,	 race,	 and	 renal		
replacement	therapy	status	were	recorded.

External predictive performance 
evaluation of polymyxin B POPPK models

NONMEM	(Version	7.4.3;	ICON	Development	Solutions)	
was	 used	 for	 external	 evaluation.	 R	 software	 (Version	
4.0.2;	R	Foundation	 for	Statistical	Computing)	was	used	
to	postprocess	NONMEM	output	and	generate	graphics.	
The	 published	 POPPK	 models	 were	 employed	 using	 re-
ported	model	equations,	parameter	values,	covariate	rela-
tionships,	 interpatient	 variability,	 parameter	 covariance,	
and	unexplained	residual	variability;	the	latter,	when	not	
reported,	was	set	to	values	corresponding	to	the	published	
assay	 sensitivity	 and	 lower	 limit	 of	 quantification.	 For	
each	model,	polymyxin	B	concentrations	were	simulated	
using	dosing	regimens,	sampling	times,	and	covariate	in-
formation	from	the	EVD.

Prediction- based diagnostics

Based	on	the	observed	concentration	(Cobs)	and	popula-
tion	 prediction	 (Cpred),	 the	 prediction	 error	 percentage	
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(PE%)	and	absolute	prediction	error	percentage	(APE%)	
were	calculated	using	Equations (1)	and	(2),	respectively:

The	median	prediction	error	(MDPE)	and	the	median	
absolute	prediction	error	(MDAE)	were	used	to	evaluate	
the	accuracy	and	precision	of	the	predictive	performance,	
respectively.	 The	 PE%	 within	 ±20%	 (F20)	 and	 the	 PE%	
within	 ±30%	 (F30)	 were	 calculated	 as	 joint	 predictors	 of	
accuracy	and	precision.33	Predictive	performance	of	can-
didate	 models	 was	 considered	 satisfactory	 if	 |MDPE|	 ≤	
20%,	MDAE	≤	 20%,	F20	≥	 30%,	and	F30	≥	 45%.33	Further	
prediction-	based	 diagnostics	 using	 Bayesian	 forecasting	
are	described	in	the	Supplementary	Methods.

Simulation- based diagnostics

The	predictive	performance	of	each	POPPK	model	was	
evaluated	by	performing	Monte	Carlo	simulations	(MCS;	
n	 =	 1000)	 in	 NONMEM	 using	 patient	 characteristics,	
dosing,	 and	 the	 sampling	 scheme	 from	 the	 EVD.	 The	
prediction-	corrected	 visual	 predictive	 check	 (pcVPC)34	
profiles	 were	 used	 to	 visually	 assess	 if	 prediction-	
corrected	 simulations	 generated	 by	 a	 candidate	 model	
deviated	from	prediction-	corrected	observed	data.	This	
helped	 determine	 if	 intrapatient	 and	 interpatient	 vari-
ability	 were	 sufficiently	 specified	 in	 each	 model	 to	 re-
produce	 the	 central	 trend	 and	 variability	 in	 the	 EVD	
while	 accounting	 for	 differences	 in	 dosing	 and	 patient	
covariates.

Normalized	 prediction	 distribution	 errors	 (NPDE)	
based	on	MCS	were	used	to	assess	if	the	model-	simulated	
concentrations	 followed	 a	 normal	 distribution.35,36  The	
mean	 and	 variance	 of	 the	 NPDE	 calculated	 using	 the	
Wilcoxon	signed-	rank	test	and	Fisher	test	for	variance,	re-
spectively,	were	used	to	ascertain	if	the	models	correctly	
described	the	observed	PK	data.	Skew	and	kurtosis	of	the	
NPDE	were	used	to	assess	normality	using	the	Shapiro–	
Wilk	 test.	 In	addition,	 the	NPDE	versus	 time	 from	most	
recent	dose	and	versus	predicted	concentration	plots	 for	
each	model	were	visually	inspected.

PK profile comparison

To	 directly	 compare	 the	 different	 model-	predicted	 PK	
profiles,	 a	 dosing	 regimen	 based	 on	 median	 dosing	

	information	across	studies	was	simulated	for	a	standard-
ized	patient.	Dosing	was	simulated	for	3	days	to	simulate	
steady-	state	PK.	Simulated	PK	from	each	model	was	plot-
ted	 and	 visually	 inspected.	 Sampling	 times	 reported	 in	
each	study	were	included	in	the	plots	to	visually	assess	the	
impact	of	PK	sampling	schemes	on	PK	characterization.	
AUC	of	the	simulated	concentration	profile	over	the	dose	
interval	(AUCτ)	was	calculated	for	each	model	using	the	
linear	trapezoidal	rule	in	R	using	the	“pmxTools”	package	
(Version	1.2.1).

RESULTS

Literature search and review of published 
POPPK analyses

Seven	polymyxin	B	POPPK	models	based	on	POPPK	data	
from	 six	 studies	 in	 patients	 who	 were	 critically	 ill	 were	
included	 for	 external	 evaluation	 (referred	 to	 as	 M1	 to	
M7).11,22–	26 Two	studies	were	conducted	at	multiple	sites	
(M2	and	M3).	Dosing	information,	PK	sampling	strategy,	
and	patient	characteristics	for	each	study	are	described	in	
Table 1,	whereas	patient	demographics,	that	is,	mean/me-
dian	age	(46–	63 years),	weight	(58–	78 kg),	and	CrCL	range	
(33–	123 ml/min)	are	visualized	in	Figure S1.	Of	note,	one	
study	separately	modeled	then	compared	two	patient	sub-
sets	based	on	renal	 function:	patients	with	normal	renal	
function,	M5,	and	those	with	renal	insufficiency,	M6.	In	
addition,	 M4  studied	 a	 subset	 of	 patients	 from	 M5	 and	
M6.	 All	 studies	 excluded	 patients	 on	 renal	 replacement	
therapy	 with	 the	 exception	 of	 M3,	 which	 included	 2/24	
(8.3%)	 patients	 on	 renal	 replacement	 therapy.	 Liquid	
chromatography–	mass	spectrometry	assays	were	used	in	
all	studies	to	determine	polymyxin	B	concentrations.

The	 median	 daily	 doses	 ranged	 from	 119	 to	 160  mg/
day.	 M4,	 M5,	 M6,	 and	 M7	 reported	 fixed	 polymyxin	 B	
dosing.	 All	 models	 were	 based	 on	 intravenous	 adminis-
tration	of	polymyxin	B	with	linear	first-	order	elimination.	
Infusion	durations,	when	reported,	ranged	from	0.5	to	4 h.	
Across	all	studies,	polymyxin	B	was	most	commonly	ad-
ministered	twice	daily;	however,	four	studies	included	pa-
tients	dosed	daily	or	once	every	2	days.	M3 had	the	largest	
polymyxin	B	daily	dose	range	resulting	from	the	high	dose	
administered	to	a	250 kg	patient.	The	number	of	patients,	
PK	samples	per	patient,	and	total	PK	samples	used	to	de-
velop	 each	 model	 are	 compared	 in	 Figure  S2.	 M3,	 M4,	
M5,	and	M6	used	intensive	sampling	(six	or	more samples	
per	patient),	 collected	150	or	more	PK	samples,	 and	de-
scribed	polymyxin	B	PK	using	a	two-	compartment	model.	
Conversely,	M1,	M2,	and	M7	collected	fewer	than	150	PK	
samples	 with	 four	 or	 fewer  samples	 per	 patient	 and	 de-
scribed	polymyxin	B	PK	with	a	one-	compartment	model.

(1)PE (%) =
Cpred − Cobs

Cobs
× 100%

(2)APE (%) =
|
|
|
|
|

Cpred − Cobs

Cobs

|
|
|
|
|

× 100%
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Table 2	details	the	models.	Patient	characteristics	that	
were	significant	predictors	of	polymyxin	B	PK	variability	
were	included	in	three	models.	Total	body	weight	was	in-
cluded	in	M3	as	a	predictor	of	variability	for	both	the	vol-
ume	of	distribution	and	clearance.	Renal	function	(CrCL)	
was	a	predictor	of	variability	for	clearance	in	M4	and	M7.	
Typical	 clearance	 values	 across	 studies	 ranged	 from	 1.58	
(M6)	 to	2.5	 (M2)	L/h.	The	 typical	volume	of	distribution	
ranged	 from	 17.6	 L	 (sum	 of	 compartment	 volumes	 for	
central	and	peripheral	in	M6)	to	34.4	L	(volume	of	central	
compartment	 in	M1).	Across	studies,	 the	mean	(percent-
age	coefficient	of	variation	[%CV])	population	estimate	for	
volume	of	distribution	for	the	one-	compartment	and	two-	
compartment	models	was	29.7	L	(27%)	and	20.8	L	(25%),	
respectively,	 indicating	 moderate	 interstudy	 variability,	
whereas	 the	 mean	 population	 estimate	 for	 clearance	 for	
the	one-	compartment	and	two-	compartment	models	was	
2.15	L/h	(23%)	and	1.86	L/h	(14%),	respectively,	indicating	
a	 relatively	 small	 interstudy	 variability.	 Interpatient	 vari-
ability	(%CV)	was	generally	higher	for	volume	parameters	
than	clearance	across	models,	 ranging	 from	16%	(M1)	 to	
88%	(M5)	and	13%	(M7)	to	51%	(M6),	respectively	(M7	did	
not	estimate	interpatient	variability	for	volume).

External validation data set cohort

The	EVD	included	230	PK	samples	from	40	patients	who	
were	critically	ill:	22 male	patients;	27	White,	four	Black,	
and	 nine	 Asian	 patients;	 and	 eight	 patients	 on	 renal	 re-
placement	therapy.	The	median	(range)	of	the	age,	weight,	
CrCL,	and	APACHE	II	score	was	60 years	(18–	90),	72 kg	
(32.5–	122),	62.0 ml/min	(19.3–	322),	and	17	(0–	41),	respec-
tively.	 Patients	 received	 polymyxin	 B	 doses	 from	 100	 to	
300 mg/day	twice	daily	as	intravenous	infusions	for	1	to	
5 h.	All	patients	were	sampled	between	days	1	and	5,	ex-
cept	for	two	patients	sampled	on	days	6	and	11.

Assessment of the predictive 
performance of published polymyxin 
POPPK models

Prediction-	based	diagnostics

The	residual	unexplained	variability	was	not	reported	for	
M2	 and	 was	 assumed	 to	 have	 a	 combined	 error	 model	
based	on	the	reported	assay	description:	0.05 mg/L	addi-
tive	error	and	5.11%	proportional	error.

Figure 1	displays	 the	observed	EVD	versus	population-	
predicted	 concentrations	 when	 each	 model	 was	 imple-
mented	 in	 NONMEM.	The	 PE%	 for	 each	 model	 is	 shown	
in	 Figure  2.	 Accuracy	 and	 precision	 measures	 generated	

for	each	model	 from	 the	prediction	errors	are	provided	 in	
Table 3.	All	models	had	an	MDPE	<	0,	 indicating	median	
underprediction	 of	 the	 observed	 plasma	 concentrations	 in	
the	EVD.	M7 had	an	MDPE	closest	 to	0	(−16.3%)	and	the	
lowest	MDAE	(32.0%),	indicating	that	this	model	had	better	
accuracy	and	precision	of	population	estimates,	respectively,	
than	the	other	models.	In	addition,	M7 had	the	best	relative	
accuracy	and	precision	as	characterized	by	an	F20	of	31.1%	
and	an	F30	of	46.5%.	M4	and	M6	were	the	second	and	third	
most	predictive	models	based	on	these	values,	respectively.

Simulation-	based	diagnostics

pcVPC	 plots	 of	 prediction-	corrected	 plasma	 polymyxin	 B	
concentrations	 versus	 time	 since	 last	 polymyxin	 B	 dose	
(Figure 3)	indicated	systematic	underprediction	of	the	EVD	
by	all	models.	The	deviation	of	the	prediction-	corrected	con-
fidence	intervals	of	the	observed	data	from	the	simulated	data	
across	all	percentiles	demonstrated	that	the	PK	parameters	of	
all	candidate	POPPK	models	were	unable	to	describe	EVD	
PK.	Although	simulated	data	for	M4	and	M6	were	within	the	
90%	prediction	interval	of	observed	data	at	the	5th	and	95th	
percentiles,	 these	 models	 underpredicted	 the	 EVD	 at	 the	
50th	percentile,	indicating	slight	misspecification	of	param-
eter	estimates.	Large	deviations	between	observed	and	simu-
lated	data	at	specific	confidence	intervals	demonstrated	that	
intrapatient	 and	 interpatient	 variability	 were	 inadequately	
described,	as	in	the	case	of	the	5th	percentile	in	M7.

NPDE	distributions	were	not	normally	distributed	for	
any	model	(Figure S3,	Table S1),	indicating	that	these	mod-
els	poorly	described	the	EVD	when	accounting	for	intra-
patient	and	interpatient	variability.	However,	M4,	M5,	and	
M6  had	 NPDE	 distributions	 within	 expected	 confidence	
intervals	at	early	timepoints,	indicating	that	these	models	
adequately	characterized	the	EVD	immediately	following	
polymyxin	 B	 administration	 (Figure  S4).	 Only	 M4	 pre-
dicted	 the	EVD	well	across	 the	dosing	 interval	based	on	
NPDE	plots.	However,	when	assessing	NPDE	relative	 to	
predicted	concentration	(Figure S5),	M4	poorly	character-
ized	the	EVD	at	low	concentrations,	and	no	model	char-
acterized	the	EVD	well	across	the	predicted	concentration	
range.

PK profile comparison

The	dosing	regimen	used	to	explore	differences	in	pre-
dicted	PK	profiles	across	studies	was	a	75 mg	polymyxin	
B	dose	infused	for	2 h	every	12 h.	A	71 kg	patient	with	
a	CrCL	of	71.9 ml/min	was	used	to	standardize	the	PK	
profile	based	on	patient	characteristics	across	the	evalu-
ated	 models.	 Figure  4  shows	 PK	 curves	 simulated	 for	
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   | 1531PREDICTIVE PERFORMANCE OF POLYMYXIN B POPPK MODEL

each	model	with	nominal	sampling	times	of	each	study	
marked	with	a	circle.	Four	of	the	five	models	that	pre-
dicted	 high	 maximum	 (peak)	 plasma	 drug	 concentra-
tion	(Cmax)	were	two-	compartment	models	with	robust	
sampling	 early	 in	 the	 distribution	 phase,	 whereas	 the	
two	 models	 that	 predicted	 low	 Cmax	 values	 were	 one-	
compartment	 models	 with	 sparse	 sampling	 during	 the	
same	period.	M3,	M4,	M5,	and	M6,	studies	with	inten-
sive	 sampling	 during	 the	 distribution	 phase,	 described	
the	PK	using	a	two-	compartment	model.	The	AUCτ	for	
the	 two-	compartment	 models	 (%CV,	 15%)	 varied	 less	
compared	 with	 the	 one-	compartment	 models	 (%CV%,	
79%).

DISCUSSION

This	is	the	first	study	to	systematically	evaluate	the	pre-
dictive	 performance	 of	 published	 POPPK	 models	 for	
polymyxin	 B	 by	 external	 validation.	 A	 previous	 analy-
sis	 examined	 bias	 in	 five	 polymyxin	 B	 POPPK	 models	
by	calculating	the	predicted	AUC	based	on	the	popula-
tion	clearance	estimates.37	However,	the	analysis	did	not	
account	 for	 the	 random	 variability	 predicted	 by	 these	
models	 nor	 for	 the	 potential	 sources	 of	 bias.	 Our	 work	
helps	 assess	 the	 rigor	 of	 existing	 population	 analyses	
to	 determine	 (i)	 if	 the	 study	 designs	 were	 appropriate	
to	 identify	 a	 covariate	 relationship,	 (ii)	 if	 an	 identified	

T A B L E  2 	 Model	summary	of	published	POPPK	Polymyxin	B	models

Model 
reference Modeling software

Structural 
model

Parameter values and 
covariate relationships

Interpatient 
variability (%) RUV

M1 Monolix	2016R1
(SAEM)

1	CMT CL	(L/h)	=	2.37
V	(L)	=	34.4

CL	=	37.7
V	=	15.7

Add	=	0.00693 mg/L
Prop	=	23.3%

M2 ADAPT	5
(MLEM)

1	CMT CL	(L/h)	=	2.5
V	(L)	=	34.3

CL	=	43.8
V	=	47.8
Cov	=	12.8

M3 S-	ADAPT	(1.57)
(MCPEM)

2	CMT CL	(L/h)	=	1.87	×	(BW/70)
V1	(L)	=	6.35	×	(BW/70)
V2	(L)	=	22.3	×	(BW/70)
Q	(L/h)	=	9.86	×	(BW/70)

CL	=	32.4
V1	=	73.3
V2	=	70.1
Q	=	50.4

Add	=	0.05 mg/L
Prop	=	8.39%

M4a Phoenix	NLME	(7.0) 2	CMT CL	(L/h)	=	1.79	×	
(CRCL/105.9)0.362

V1	(L)	=	6.22
V2	(L)	=	11.92
Q	(L/h)	=	13.52

CL	=	0.208
V	=	0.318
V2	=	0.690
Q	=	1.508
Corr	V–	CL	=	0.713
Corr	V–	V2	=	0.667
Corr	CL–	V2	=	0.571

Prop	=	11%

M5a Phoenix	NLME	(7.0) 2	CMT CL	(L/h)	=	2.19
V1	(L)	=	6.87
V2	(L)	=	11.97
Q	(L/h)	=	13.83

CL	=	0.22
V	=	0.78
V2	=	0.32
Q	=	0.68
Corr	V–	CL	=	0.57
Corr	V–	V2	=	0.83
Corr	CL–	V2	=	0.76

Prop	=	13%

M6a Phoenix	NLME	(7.0) 2	CMT CL	(L/h)	=	1.58
V1	(L)	=	6.98
V2	(L)	=	10.57
Q	(L/h)	=	10.28

CL	=	0.26
V	=	0.38
V2	=	0.74
Q	=	Fixed
Corr	V–	CL	=	0.75
Corr	V–	V2	=	0.46

Prop	=	10%

M7 NONMEM	(7.4) 1	CMT CL	(L/h)	=	1.59	×	
(CRCL/80)0.408

V	(L)	=	20.5

CL	=	13
V	=	Fixed

Prop	=	40.5%

Abbreviations:	Add,	additive	residual	unexplained	error;	BW,	body	weight;	CL,	total	body	clearance;	CMT,	compartment;	Corr,	parameter	correlation;	
Cov,	parameter	covariance;	CRCL,	creatinine	clearance;	MCPEM,	Monte	Carlo	parametric	expectation	maximization;	MLEM,	maximum	likelihood	
expectation	maximization;	Prop,	proportional	unexplained	error;	Q,	intercompartmental	clearance;	RUV,	residual	unexplained	variability;	SAEM,	
stochastic	approximation	expectation	maximization;	V,	volume	of	distribution;	V1,	typical	volume	of	central	compartment;	V2,	typical	volume	of	peripheral	
compartment.
aInterpatient	variability	is	represented	by	the	log-	normal	variance	of	population	means.

 21638306, 2021, 12, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12720 by U

frgs - U
niversidade Federal D

o R
io G

rande D
o Sul, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1532 |   HANAFIN et al.

covariate	relationship	was	appropriate,	and	(iii)	the	bias	
in	interindividual	and	residual	variability.	This	analysis	
assists	in	identifying	models	that	are	useful	for	exploring	
“what	if”	scenarios	for	informing	polymyxin	B	dosing.17	
Based	on	our	analysis,	all	seven	published	polymyxin	B	
POPPK	models	evaluated	did	not	adequately	describe	the	
observed	polymyxin	B	PK	in	the	EVD.	We	explored	dif-
ferences	 in	 study	 design,	 number	 of	 patients,	 sampling	
strategy,	 and	 patient	 characteristics	 between	 studies	 as	

potential	 factors	 that	 could	 influence	 model	 develop-
ment	and	performance.

POPPK	models	based	on	studies	with	relatively	 large	
patient	 populations	 and	 an	 informed	 sampling	 strategy	
(six	 or	 more	 plasma	 samples	 per	 patient)	 characterized	
polymyxin	B	PK	of	the	EVD	better	overall.	Optimal	sam-
pling	over	the	distribution	phase	improved	the	assessment	
of	 the	 number	 of	 compartments	 needed	 to	 effectively	
characterize	polymyxin	B	PK	and	the	interindividual	vari-
ability.18,19,38  Two-	compartment	 models	 characterized	
polymyxin	B	PK	best:	M4	and	M6	were	based	on	data	from	
studies	that	used	robust	and	intensive	sampling,	resulted	
in	 better	 characterization	 of	 interpatient	 variability,	 and	
identified	covariance	relationships.	However,	M4	reported	

F I G U R E  1  Observed	versus	predicted	PK.	The	observed	polymyxin	B	concentration	(mg/L)	is	plotted	against	the	population-	predicted	
polymyxin	B	concentration	(mg/L)	for	each	of	the	seven	models	(denoted	M1	through	M7).	Data	points	are	depicted	as	blue	circles	and	the	
line	of	unity	as	a	black	line.	A	locally	estimated	scatterplot	smoothing–	transformed	line	(red)	depicts	the	local	trends	of	the	data.

F I G U R E  2  Prediction	errors.	Boxplots	of	the	prediction	error	
(x-	axis)	for	each	model	(y-	axis).	Solid	vertical	line	represents	0%	
prediction	error.	Dashed	vertical	lines	represent	±30%	prediction	
error.	Notches	on	the	boxplots	represent	the	95%	confidence	
intervals	of	the	median	prediction	error	for	each	model	(denoted	
M1	through	M7).	Black	dots	represent	prediction	errors	that	are	
beyond	1.5-	fold	of	the	interquartile	range.

T A B L E  3 	 Precision	and	accuracy	assessment	of	published	
POPPK	models	of	polymyxin	B

Model 
reference

MDPE 
(%) MDAE (%)

F20 
(%)

F30 
(%)

M1 −51.8 54.3 7.46 13.6

M2 −54.0 56.2 8.77 13.6

M3 −40.1 44.4 26.2 27.6

M4 −20.1 32.8 29.4 43.9

M5 −48.5 50.6 12.3 19.3

M6 −27.8 37.8 24.1 35.5

M7 −16.3 32.0 31.1 46.5

Note: F20	fraction	of	values	within	±20%	prediction	error,	and	F30	fraction	of	
values	within	±30%	prediction	error.
Abbreviations:	MDPE,	median	prediction	error;	MDAE,	median	absolute	
prediction	error;	POPPK,	population	pharmacokinetic.
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extremely	high	variability	for	the	intercompartment	clear-
ance	 parameter	 Q	 (122%),	 with	 no	 explanation	 (such	 as	
patient	 characteristics)	 provided	 that	 might	 explain	 this	
high	variability.	Despite	intensive	sampling,	M6	could	not	
identify	covariates	explaining	interpatient	variability	given	
the	small	patient	sample	size	(N	=	33).	M2 had	the	highest	
bias	among	the	seven	models,	probably	attributable	to	the	
study	design	and	sampling	strategy.	Of	the	three	samples	
collected	per	patient,	the	first	sample	was	obtained	up	to	
2  h	 following	 the	 end	 of	 infusion	 and	 likely	 resulted	 in	
an	 overall	 lower	 observed	 Cmax	 and	 concentration-	time	
profile.

The	 two-	compartment	 models	 had	 more	 consistent	
measurements	 of	 AUCτ	 (based	 on	 %CV),	 however,	 dis-
crepancies	in	sampling	strategies	between	the	two	groups	
of	model	structures	resulted	 in	differences	 in	simulated	
Cmax,	 AUCτ,	 and	 volume	 estimates.	 Robust	 sampling	
during	 the	 distribution	 phase,	 as	 seen	 in	 M3,	 M4,	 M5,	
and	M6,	resulted	in	lower	volume	estimates	and	a	more	
descriptive,	 consistent	 characterization	 of	 PK	 between	
peak	 and	 trough	 concentrations.	 M3  had	 lower	 simu-
lated	PK	concentrations	over	 the	distribution	phase	3	h	
after	dosing	compared	with	M4	and	M6.	This	is	because	
M3  had	 larger	 intercompartmental	 clearance	 and	 a	 tis-
sue	compartment	volume,	V2,	nearly	double	that	of	M4,	
M5,	 and	 M6.	 Differences	 in	 the	 volume	 estimates	 may	

be	 attributed	 to	 differences	 in	 protein	 binding	 between	
studies.	 However,	 protein	 binding	 was	 only	 reported	 in	
M3	(median,	58%).	Comparatively,	the	one-	compartment	
models,	M1	and	M2	with	sampling	later	in	the	distribu-
tion	phase	combined	with	sparse	sampling,	estimated	a	
higher	volume	of	distribution	and	therefore	predicted	a	
lower	 drug	 exposure	 with	 greater	 AUCτ.	 However,	 M7,	
another	one-	compartment	model	with	reduced	sampling	
in	 the	 distribution	 phase,	 had	 a	 lower	 volume	 estimate	
and	 had	 higher	 simulated	 Cmax	 and	 AUCτ	 inconsistent	
with	 M1	 and	 M2.	 A	 sparse	 and	 ill-	informed	 sampling	
strategy	combined	with	small	sample	size	makes	charac-
terization	of	polymyxin	B	PK	and	interpatient	variability	
challenging.18–	20

Based	 on	 our	 assessment	 of	 the	 prediction-	based	 di-
agnostics,	 M7	 best	 predicted	 population	 PK	 of	 the	 EVD	
before	 taking	 PK	 variability	 into	 account.	 The	 next	 best	
predictors	 of	 population	 PK	 were	 the	 two-	compartment	
models	M4	and	M6.	Bayesian	forecasting,	which	assesses	
the	 influence	 of	 observed	 concentrations	 on	 model	 pre-
dictability,	 found	 M4	 and	 M6	 best	 predicted	 observed	
PK	of	 the	EVD.	Based	on	 the	simulation-	based	diagnos-
tics	 (pcVPC	 plots	 and	 NPDE	 analysis),	 which	 take	 in-
terpatient	 and	 unexplained	 variability	 into	 account,	 all	
of	 the	 reviewed	 models	 underpredicted	 the	 EVD	 and	
deviated	 from	 the	 observed	 PK.	 M4	 and	 M6	 extensively	

F I G U R E  3  Prediction-	corrected	visual	predictive	checks	of	the	simulations.	A	total	of	1000 Monte	Carlo	simulations	of	the	
pharmacokinetics	of	polymyxin	B	for	each	model	(denoted	M1	through	M7)	were	run	using	the	external	validation	data	set.	The	5th,	50th,	
and	95th	percentiles	of	prediction-	corrected	simulated	data	and	prediction-	corrected	observed	data	over	time	are	plotted	relative	to	the	
most	recent	polymyxin	B	dose.	The	prediction-	corrected	observed	data	are	represented	by	gray	dots.	Confidence	intervals	of	the	5th,	50th,	
and	95th	percentiles	of	the	prediction-	corrected	observed	data	are	represented	by	red	lines.	Confidence	intervals	of	the	5th,	50th,	and	95th	
percentiles	of	the	prediction-	corrected	simulated	data	are	represented	by	blue	lines.	The	90%	prediction	interval	around	each	prediction-	
corrected	simulated	confidence	interval	are	represented	by	the	blue-	shaded	regions
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characterized	 the	 interpatient	variability	and	PK	param-
eter	 covariance,	 allowing	 them	 to	 predict	 the	 PK	 of	 the	
EVD	better	when	random	variability	was	included.	Most	
published	 polymyxin	 B	 models	 reviewed	 here	 did	 not	
identify	any	covariates	that	could	adequately	describe	the	
interpatient	 variability.	 Although	 M4	 and	 M6	 character-
ized	 random	 interpatient	 variability	 for	 each	 PK	 param-
eter,	random	variability	for	some	parameters	was	greater	
than	 85%.	 Inclusion	 of	 additional	 patient	 covariates	 for	
these	PK	parameters	would	help	explain	the	random	vari-
ability	and	increase	POPPK	model	utility.	This	highlights	
the	importance	of	effectively	characterizing	PK	variability	
for	models	intended	for	clinical	use:	models	with	poor	ac-
counting	of	variability	are	ineffective	for	describing	PK	in	
patients	that	diverge	from	“typical.”17

In	addition	to	using	patient	information	to	describe	PK	
differences	within	a	study,	the	differences	in	drug	charac-
teristics	within	a	study	should	be	explored	and	reported	as	
potential	sources	of	variability.	For	example,	polymyxin	B	
has	two	main	components	(B1	and	B2),	which	account	for	
>80%	of	the	total	composition.7	A	previous	analysis	of	the	
composition	of	polymyxin	B	at	1 mg/L	 from	four	differ-
ent	manufacturers	found	significant	differences	between	
B1	and	B2	forms	despite	total	polymyxin	B	concentrations	
not	 being	 significantly	 different.39	 PK	 characteristics	 of	
the	 two	 main	 polymyxin	 B	 components,	 when	 adminis-
tered	 individually	 to	 Sprague-	Dawley	 rats,	 were	 differ-
ent.	Plasma	protein	binding	for	B1	was	higher	compared	
with	 B2;	 however,	 there	 were	 no	 significant	 (p	 >	 0.05)	

differences	with	regard	to	total	clearance,	volume	of	dis-
tribution,	and	the	elimination	half-	life.40 Most	studies	re-
viewed	here	employed	assays	that	measured	polymyxin	B	
composition	as	the	sum	of	B1	and	B2.	The	assay	used	in	
M2 measured	polymyxin	B1	isoleucine	and	polymyxin	B3	
in	addition	to	B1	and	B2.	This	interstudy	assay	disparity	
may	have	an	impact	on	the	interpretability	of	the	PK	pa-
rameters	described	in	these	models.	Future	studies	should	
consider	 polymyxin	 B	 composition	 as	 well	 as	 the	 major	
components	measured	by	the	assay.

Appropriateness	of	the	external	data	set	to	assess	each	
model	needs	consideration	in	light	of	the	high	degree	of	
bias	and	imprecision	found	across	the	published	models.	
Dosing	 in	 the	 clinical	 study	 used	 to	 generate	 the	 EVD	
was	comparable	with	dosing	described	 in	 the	published	
models	 and	 is,	 therefore,	 an	 unlikely	 source	 of	 bias	 or	
imprecision.	M3	incorporated	body	weight	as	a	covariate,	
with	a	body	weight	range	similar	to	the	EVD	(excluding	
the	 250  kg	 patient	 in	 M3),	 enabling	 comparison	 of	 im-
pact	of	weight	on	dosing.	M4	and	M7	reported	CrCL	as	a	
clearance	covariate,	and	the	CrCL	ranges	in	these	studies	
were	comparable	with	the	CrCL	range	in	the	EVD.	This	
indicates	that	EVD	patient	demographic	and	clinical	fac-
tors	were	reflective	of	patient	covariates	identified	while	
building	these	models.	However,	the	clinical	relevance	of	
CrCL	as	a	covariate	needs	to	be	taken	into	consideration	
given	that	polymyxin	B	has	low	renal	excretory	clearance	
and	 it	 is	 unclear	 if	 renal	 function	 impacts	 polymyxin	
B	 exposure.11,24,41,42	 As	 mentioned	 previously,	 disease	

F I G U R E  4  Pharmacokinetic	(PK)	profile	comparison.	A	median	dose	regimen	of	75 mg	2-	h	infusions	of	polymyxin	B	every	12 h	for	
3 days	was	simulated	in	each	model	(denoted	M1	through	M7)	in	a	standardized	patient.	PK	was	simulated	to	steady	state	after	the	sixth	
dose	on	day	3.	PK	curves	represent	the	population-	predicted	value	without	variability	for	each	model.	The	number	of	PK	samples	collected	
per	patient	are	parenthesized	for	each	model.	Points	represent	the	sampling	scheme	from	each	study	design	as	described	in	the	literature.	
The	predicted	maximum	(peak)	plasma	drug	concentration	range	for	one-	compartment	(left)	and	two-	compartment	(right)	models	
with	the	given	dose	regimen	and	sampling	scheme	are	3.11–	5.53 mg/L	and	4.28–	5.60 mg/L,	respectively.	The	predicted	area	under	the	
plasma	concentration–	time	curve	of	the	simulated	concentration	profile	over	the	dose	interval	range	for	one-	compartment	(left)	and	two-	
compartment	(right)	models	were	17.7–	74.0 mg/L∙h	and	19.7–	28.6 mg/L∙h,	respectively

 21638306, 2021, 12, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12720 by U

frgs - U
niversidade Federal D

o R
io G

rande D
o Sul, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 1535PREDICTIVE PERFORMANCE OF POLYMYXIN B POPPK MODEL

severity	 measurements	 such	 as	 APACHE	 II	 scores	 may	
explain	some	patient	variability	between	studies,	but	M3	
was	the	only	study	to	report	them.	Descriptive	patient	de-
mographics	were	 recorded	 in	each	study,	but	additional	
information,	 such	 as	 measures	 of	 disease	 severity,	 was	
not	 reported	 in	 five	of	 six  studies,	nor	was	 it	 reportedly	
explored	 as	 a	 covariate.	 Therefore,	 disease	 severity	 was	
not	 used	 in	 this	 analysis.	 Disease	 severity,	 especially	 in	
patients	 who	 are	 critically	 ill,	 can	 impact	 PK	 in	 several	
ways	as	a	result	of	altered	fluid	balance,	clearance,	and/or	
protein	binding,	 leading	 to	changes	 in	volume	compart-
ment	distribution.15

An	additional	 limitation	of	this	study	is	 the	ability	to	
interpret	 the	published	models:	not	all	publications	pro-
vided	 methods	 and	 clear	 model	 descriptions.	 Despite	
using	 assay	 sensitivity	 information	 to	 describe	 residual	
unexplained	 variability	 for	 M2,	 the	 overall	 analysis	 was	
marginally	 impacted	 because	 several	 model	 assessment	
criteria	 used	 population-	predicted	 concentrations	 and	
typical	patient	values	(MDPE	and	MDAE),	which	are	not	
affected	 by	 residual	 unexplained	 variability.	 In	 addition,	
infusion	duration	was	not	reported	in	M7.	This	may	have	
limited	 our	 ability	 to	 assess	 potential	 sources	 of	 bias	 or	
imprecision;	however,	missing	information	did	not	impact	
the	predictive	analyses	performed	here.

Current	 polymyxin	 B	 POPPK	 models	 for	 patients	
who	are	critically	ill	described	in	the	literature	char-
acterize	 the	 external	 data	 set	 inadequately,	 hence	
these	 models	 may	 be	 not	 suitable	 for	 a priori	 dose	
determination.	Bayesian	forecasting	can	 improve	 in-
dividual	patient	PK	characterization	 to	optimize	 the	
dosing	regimen	based	on	the	concentrations	measured	
(observed)	 in	 the	 patients	 a posteriori.43,44	 However,	
no	 model	 was	 able	 to	 predict	 polymyxin	 B	 concen-
trations	at	high	(>10 mg/L)	concentrations,	which	is	
vital	to	prevent	polymyxin-	associated	nephrotoxicity.	
The	lack	of	alignment	of	these	published	population	
analyses	with	 the	aim	of	dosing	polymyxin	B	appro-
priately	 in	 patients	 who	 are	 critically	 ill	 combined	
with	 their	 poor	 predictive	 performance	 emphasizes	
the	 need	 to	 develop	 such	 a	 POPPK	 model.	 The	 de-
velopment	of	 this	POPPK	model	should	be	based	on	
well-	powered	studies	in	the	patient	population	of	in-
terest	with	an	informed	optimal	PK	sampling	strategy	
to	 identify	 clinically	 as	 well	 as	 statistically	 relevant	
covariates	 that	 can	 adequately	 characterize	 poly-
myxin	B	PK	and	help	explain	interindividual	variabil-
ity	within	 the	 studied	population	 to	dose	polymyxin	
B	appropriately.	A	large,	ongoing,	observational	clin-
ical	study	to	assess	the	PK	of	polymyxin	B	in	patients	
who	are	critically	ill	(NCT02682355)	will	provide	the	
PK	data	necessary	to	develop	a	robust	POPPK	model	
for	MIPD.
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