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Abstract: Paspalum notatum is an important forage grass contributing significantly to the coverage of the 

natural fields of Southern Brazil. Simple sequence repeat (SSR) markers were used to evaluate the genetic 

similarity of strains within a P. notatum collection. Genomic DNA was extracted in bulk from young leaves of 

five plants from each accession obtained from the USDA. In the molecular analysis, the eight SSR markers 

evaluated formed seven distinct groups, and two isolated genotypes, with an average similarity index of 0.29, 

ranging from zero to 0.83. All the loci were polymorphic and the polymorphism information content ranging 

from 0.41 to 0.69. The results evidenced a low genetic similarity, which can be explored via parental selection 

in a breeding program. 
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HIGHLIGHTS 
 

 Low genetic similarity in Paspalum notatum accessions. 

 High genetic distance among diploid accessions. 

 The accessions have good potential to breeding program. 
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INTRODUCTION 

Paspalum notatum Flügge (Poaceae) is a grass species of great economic importance. It is responsible 

for most of the coverage of the natural fields of southern Brazil [1] and has excellent forage potential [2,3]. 

However, genetic improvement of this species has been limited to identification of promising material traits, 

without the possibility of performing crosses to obtain new varieties, due to the apomictic mode of 

reproduction of most of its accessions [4-7]. Paspalum species exhibit ploidy-dependent apomixes. Diploid 

accessions generally have sexual reproduction, while tetraploid accessions are apomictic [8,9]. 

Several studies of Paspalum species have aimed to find diploid accessions that can be used to perform 

intra or inter-specific crosses to obtain new cultivars [1,10-13]. P. notatum, cultivar Pensacola, is a diploid, 

sexually reproducing cultivar that has been used, after chromosome doubling by colchicine, to perform 

crosses with apomictic parents [4,7,14-16]. Other diploid species of Paspalum have also been used as sexual 

parents, after chromosome doubling, to obtain interspecific hybrids [4,17]. Although, chromosome doubling 

of sexual diploid plants to create tetraploid plants can also result in apomictic plants [15,16,18], several 

crosses have had satisfactory results [16,17,19].  

The discovery of new wild diploid accessions of P. notatum has great importance for breeding programs, 

since they can increase the number of possible crosses with apomictic tetraploids after chromosome 

doubling. Four wild diploid accessions of Paspalum notatum have recently been identified [20]. These 

accessions exhibited higher dry matter production and greater persistence in winter conditions than 

Pensacola [2], and morphological traits that allow them to be differentiated from Pensacola [21]. 

Parental selection is the critical step in the development of new cultivars [22] and can be directed to 

facilitate exploitation of maximum genetic variability and production of superior recombinant genotypes [23]. 

Parental selection decisions must be carefully made, because populations with reduced genetic potential 

may waste time and money. Thus, individuals featuring high performance, wide adaptability and yield stability 

must be considered when choosing parental genotypes [23]. Studies that quantitatively assess genetic 

diversity provide useful information for identification of parents that allow exploitation of heterotic effects and 

generation of segregating populations with greater variability [24]. 

Methods used to quantify genetic distance include morphological (syn. Phenotypic) traits [25], molecular 

markers, and pedigree information [26,27]. Molecular markers have the advantage of providing genome 

assessments that are not influenced by gene-environment (G x E) interactions and are not limited in number, 

as is true for morphological data [28]. Based on these considerations the objective of this study was to 

characterize a collection of P. notatum accessions through SSR markers to contribute to the identification of 

future favorable parental combinations. 

MATERIAL AND METHODS  

A total of 53 accessions of Paspalum notatum were obtained from the USDA for molecular 

characterization. These accessions have been previously evaluated at under field conditions [2]. The samples 

consisted of a mixture (bulk) of young and healthy leaves from five plants in each accession. DNA extraction 

was performed according to the CTAB method [29] with minor modifications.  

Polymerase chain reactions (PCR) amplifying Simple Sequence Repeats (SSRs) were adapted to a final 

volume of 15 μL using: 3 μL of template DNA solution (15 ng/μL), 1.5 μL of 10X PCR buffer (Invitrogen, São 

Paulo, Brazil), 0.90 μL MgCl2 (50 mM), 0.6 μL of 10 mM dNTP mix containing 2.5 mM of each of the four 

nucleotides (Invitrogen, São Paulo, Brazil), 1.2 μL primers (100 ng/μL), 0.27 μL Taq DNA polymerase (5 

U/μL) (Invitrogen, São Paulo, Brazil) and sterile MilliQ water to complete the volume [30]. 

Amplification conditions for SSRs are as follows: denaturation at 94 °C for 4 minutes; ten cycles of 94 °C 

for 1 minute, 50 °C for 30 seconds, and 72 °C for 40 seconds with a decrease of 0.5 °C in the annealing 

temperature; 35 cycles of 94 °C for 1 minute, 45 °C for 30 seconds, 72 °C for 40 seconds; final extension at 

72 °C for 10 minutes [30]. 

A total of 11 primers were tested based on studies performed with Lolium multiflorum L. [31], Paspalum 

vaginatum Sw. [30], Trifolium repens L. [32] and Paspalum urvillei St. [33] (Table 1). Amplified fragments 

were electrophoresed in 4% agarose gels containing 0.08 μL/mL ethidium bromide (10 mg/mL) and visualized 

on an ultraviolet light transilluminator (wavelength 260 nm). Images were captured using a Kodak EDAS 

(Electrophoresis Documentation and Analysis System) 290. Eight primers were used in the genetic diversity 

analyses due to satisfactory amplification of the expected DNA fragments (Table 1). 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Genetic Similarity in Paspalum notatum 3 
 

Brazilian Archives of Biology and Technology. Vol.64: e21190007, 2021 www.scielo.br/babt 

Table 1. SSR primers tested for amplification of 53 Paspalum notatum accessions.  

Primer Sequence F (5’ – 3’) 
Sequence R (3’ – 5’) 

*Pv-3 TATGGACCGACTGCATGATTCTT 
CTTACGGAGAGTGGATCGATG 

*Pv-11 AGGTTTGTAGGTTGGGTGCAACTGA 
TAATGGGAGGCGGCGGGTT 

 Pv-35 TCGAAATCGAAAAAGAAGATCGTTC 
GATTGGAACATCGACCGCGG 

 Pv-51 TCCCATCATCAGTTCTTCCAATC 
TTCTACTACTTATTATCGTGTCCCG 

*Pv-53 CTCGGAAACCGCAGCTCA 
ACCTTATCTCCTCCGCCTCG 

*M4-213 CACCTCCCGCTGCATGGCATGT 
GGAACTGTACAGAACAT 

*M15-185 GGTCTGGTAGACATGCCTAC 
CTTGGACGGACACGACCAT 

*M16-B TGCTGTGGCTCTTGTGAC 
AGCTCGACTCGGAGCCGA 

 M4-136 AGAGACCATCACCAAGCC 
GTTCCTTTAGAAGAAGGTCT 

*M2-148 GCAACTTCTATCGAGTTG 
AGGCACTTCTAGCTCGGAG 

*M12-52 CTACAATGCATTCGTGCA 
TCCCGCGCCCACGGAGAT 

*Primers used in genetic similarity analyses. 

Amplified SSR DNA fragments were scored for each accession according to a binary matrix: presence 

(1) or absence (0) characters. The accessions V32 and 87N were excluded from analysis because their DNA 

extractions were unsatisfactory. The resulting data matrix was analyzed using “Numerical Taxonomy and 

Multivariate Analysis System” NTSYSpc version 2.1 [34]. Jaccard’s coefficient was used to generate a 

similarity matrix comparing all the accessions. The clustering analysis was performed using the UPGMA 

(Unweighted Pair-Group Method Using an Arithmetic Average) method to construct a genetic similarity 

dendrogram. 

Number of alleles per locus (A), genotypic and allelic frequencies, polymorphism information content 

(PIC= 1 - ∑ pi2, pi= allele frequency) for each locus, and heterozygosity observed were calculated manually. 

RESULTS 

Eight of the 11 SSR primers tested were used in the molecular and similarity analyses (Table 1). The 

markers detected four alleles per locus, for a total of 32 polymorphic DNA fragments in the 53 accessions of 

Paspalum notatum (Table 2). The average allele number was four, and alleles ranged in size from 115 to 

383 base pairs (bp) (Table 2). 

Table 2. Allele size range (bp), number of alleles (A), polymorphism information content (PIC), and observed 
heterozygosity (Ho) of each SSR marker. 

Primer Allele size (pb) A PIC Ho 

Pv-3 115-364 4 0.41 0.32 
Pv-11 135-255 4 0.42 0.46 
Pv-53 118-289 4 0.65 0.69 
M4-213 121-233 4 0.67 0.73 
M15-185 169-330 4 0.56 0.89 
M16-B 142-369 4 0.69 0.60 
M2-148 144-383 4 0.54 0.72 
M12-52 139-358 4 0.60 0.78 

Total  32   
Average  4 0.57 0.65 
Min-Max 115-383  0.41-0.69 0.32-0.89 
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In this work, DNA fragments that were not associated with SSR regions (as judged by size) were ignored. 

These DNA fragments were probably amplified due to the use of heterologous primers for Paspalum notatum 

species. In the gel analyses, only DNA fragments between the 100 and 400 bp markers were considered 

prior to standardization of analyses to obtain reliable estimates of material diversity. 

The PIC values ranged from 0.41 to 0.69, with an average of 0.57 (Table 2). All loci were polymorphic, 

ranging from zero to four alleles per accession analyzed. This information can be associated with 

heterozygosis, since the reproduction mode in tetraploids and hexaploids is apomictic, and their place of 

origin is much diversified. The observed heterozygosity ranged from 0.32 to 0.89, with an average of 0.65 

(Table 2). These results reinforce the hypothesis of a high heterosis for the loci evaluated in this work. 

The accessions evaluated in this study presented low genetic similarity values, with an average of 0.29 

(Jaccard’s coefficient), ranging from zero (among several accessions) to 0.83 (between V31 and V66). Based 

on the genetic similarity values, accessions were separated into seven distinct groups, and two isolated 

genotypes (Figure 1). 

 
-201

 
Figure 1. Relationships among Paspalum notatum accessions based on molecular markers, and obtained by Jaccard’s 
similarity. The dashed line indicates the mean similarity. 

DISCUSSION 

Assessment of genetic diversity based on phenotypes has limitations, since most morphological 

characteristics of economic importance are influenced by environmental factors and plant developmental 

stage. By contrast, molecular markers based on DNA sequence polymorphisms are independent of 

environmental conditions, and show a higher degree of polymorphism [35]. 

The primers used in this study were designed for other species, such as maize (Zea mays), rice (Oriza 

sativa) and sorghum (Sorghum bicolor). Transferability of these SSR markers was studied to Paspalum was 
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studied, and transfer rates of 67.5, 49.0 and 66.8% were obtained, respectively [30]. Other researchers have 

also obtained satisfactory data using these markers [31,32]. The use of these same primers to analyze 

Paspalum urvillei, also detected the presence of four alleles per locus, yielding 28 polymorphic DNA 

fragments [33]. In Paspalum notatum, the use of 11 SSR-specific markers identified 7.9 alleles per locus, and 

the PIC ranged from 0.36 to 0.89 [36]. These values are higher than those obtained in our work, probably 

due to the use of specific primers. 

The results obtained in this study were in accordance with the large morphologic diversity [21] and 

variability in dry matter production [2] observed in the same group of accessions in field conditions. The 

observed genetic similarity allowed separation of the 53 accessions of P. notatum into seven groups and two 

isolated genotypes. These groups did not present a clear relation with the region of origin of the accessions, 

as well as forage production [2], morphologic analysis [21] or ploidy [20]. Low genetic similarity was also 

observed among the diploid accessions, 66N, 67N, 92N, and Pensacola, although they grouped together 

(Figure 1). The observed genetic diversity was similar to that described by other authors using dominant 

markers. A study of 95 accessions of P. notatum with ISSR markers detected a wide polymorphism, with only 

2.2% of monomorphic DNA fragments, with Jaccard’s index ranging from 0.43 to 0.97 (average 0.59) and 

the formation seven distinct groups, suggesting considerable genetic variation within species [37]. On the 

other hand, the use of AFLP markers, found low genetic distances ranging from 0.01 to 0.36 [38]. 

The formation of genetically distant groups favors the selection of genotypes to be used as parents to 

obtain new cultivars, with the aim of keeping heterosis high. Genetic distance between genotypes is a way 

to predict genetic variability among hybrid combinations [39]. Examples of molecular markers used in genetic 

distance studies were reported for several plant species of agronomic importance. A positive correlation 

between the genetic distance between parents, and heterosis has been reported in maize [40,41], wheat 

[42], alfalfa [43], rice [44], oilseed rape [45,46] and cacao [47]. 

CONCLUSION 

Taking into consideration the relationship between the groups formed based on SSR markers, on 

morphological characteristics and dry matter production, could be helpful in selecting progenitors with good 

forage yields. The combination of desirable morphological characteristics and low genetic similarity increases 

the probability of obtaining more vigorous progeny. The P. notatum accessions possess low genetic similarity, 

allowing the formation of seven groups and two isolated genotypes. These groups can direct parental 

selection from genetically distinct accessions. Gathering the several studies carried out with this germplasm 

collection, it is possible to affirm that these accessions show excellent potential for development of new 

varieties, because they combine high genetic diversity, good forage production, and persistence in winter 

conditions, and diploid accessions with higher forage potential than cv. Pensacola. 
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