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ABSTRACT

In recent years, we have witnessed a considerable increase in performance in image clas-

sification tasks. This performance improvement is mainly due to the use of deep learning

techniques. Generally, deep learning techniques demand a large set of annotated data,

making it a challenge to apply this method when little data is available. In this scenario,

transfer learning strategies have become a promising alternative to overcome these issues.

This work aims to compare the performance of different pre-trained neural networks for

feature extraction in image classification tasks. We evaluated 16 different pre-trained

models in four datasets, including a dataset of Geological Images that are the focus of this

work. Our results demonstrate that for the Geological Images dataset, the best model was

CLIP-ViT-B followed by CLIP-ResNet50. Similarly, the best general performance along

all four datasets was achieved by CLIP-ViT-B and ViT-H-14, where the CLIP-ResNet50

model had similar performance but with lesser variability. Therefore, our study provides

evidence supporting the choice of models for transfer learning in image classification

tasks involving the four target datasets.

Keywords: Machine learning. Neural Networks. Image Classification. Transfer Learn-

ing. Feature Extraction. Geology.



ABSTRACT

Nos últimos anos, temos testemunhado um aumento considerável da performance em

tarefas de classificação de imagens. Este aumento de performance se deve principalmente

à utilização de técnicas de deep learning. Em geral, a aplicação de deep learning de-

manda um grande conjunto de dados anotados, o que torna desafiador aplicar tais técnicas

em contextos com poucos dados anotados. Neste cenários, estratégias de transfer learn-

ing vêm se mostrando uma alternativa promissora para superar estes desafios. O objetivo

deste trabalho é avaliar a performance de extração de features de diferetes redes neu-

rais pré-treinadas aplicadas ao problema de classificação de imagens. Nossos resultados

demonstraram queue para o dataset de Images Geológicas, o melhor modelo foi o CLIP-

ViT-B, seguido do CLIP-ResNet50. Semelhante, a melhor performance geral dentre todos

os datasets foi alcançada pelos modelos CLIP-ViT-B e ViT-H-14, onde o modelo CLIP-

ResNet50 obteve perfomance semelhante, porém com variabilidade ainda menor. Sendo

assim, nosso trabalho pode fornecer evidências que suportem a escolha de modelos para

transfer learning em tarefas de classificação de imagens envolvendo o dataset de Imagens

Geológicas.

Keywords: Machine learning. Neural Networks. Image Classification. Transfer Learn-

ing. Feature Extraction. Geology.
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1 INTRODUCTION

The rapid advancements in technology in the last decades have pushed organi-

zations to produce and accumulate all kinds of data. In the past, critical organizational

information was primarily represented by structured data stored in databases. However,

nowadays a significant part of this information is represented in an unstructured way, for

instance as images (PFERD, 2010).

The industry of gas, energy, and biofuel is a billionaire sector that has an immense

volume of information represented in unstructured ways. Therefore, there is a need to

develop approaches capable of recovering and evaluating this type of information in this

industry (PFERD, 2010). In that sense, one of the challenges concerning image recovery

is that the semantic content of images is not apparent, so this information is not easily

acquired through direct queries. An alternative for recovering images is annotating them

first (HOLLINK et al., 2003) in a way that allows us to retrieve them by querying for

the annotations. However, it is necessary to bear in mind that manual annotation of large

databases of images is time-consuming and impractical. In this context, machine learn-

ing can be used to automatically classify these large databases of images, thus enabling

retrieval through direct queries.

Machine learning (ML) has proved to be an important tool in the growth and ex-

pansion of several areas of knowledge, such as the biomedical (ALZUBAIDI et al., 2021),

automotive (BORG et al., 2018), and industrial planning areas (CADAVID; PABLO et

al., 2020). In Geosciences, ML has shown impressive results in the analysis of seismic

attributes, facies classification, and other tasks (DOSOVITSKIY et al., 2020; MANIAR

et al., 2018; KARPATNE et al., 2018). These recent developments encourage the applica-

tion of state-of-the-art ML techniques for dealing with image classification and recovery

in Geosciences.

Image Classification (IC) aims to classify the image as a whole by assigning a

specific label to it. Usually, labels in an IC task refer to objects that appear in the image,

kinds of images (photographs, drawings, etc.), feelings (sadness, happiness, etc.), etc

(LANCHANTIN et al., 2021).

Most of the recent approaches for IC are based on deep neural network (DNN)

architectures. This architecture usually demands a large set of annotated data, making it

challenging to apply deep learning when small amounts of data are available. In this sce-

nario, transfer learning strategies have become a promising alternative to overcome these
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issues. One of the main alternatives of transfer learning is through feature extraction,

where models that were trained on large datasets can be used for producing informative

features that can be used by another classifier. By using transfer learning, we can lever-

age knowledge previously learned by neural network models on a large dataset and use

this knowledge in a context where just small datasets are available.

There are currently several large datasets available, such as Imagenet (DENG et

al., 2009), and a range of models that were pre-trained on these datasets 1. The literature

suggests that particular tasks on distinct datasets can benefit from different pre-trained

models (MALLOUH; QAWAQNEH; BARKANA, 2019; ARSLAN et al., 2021). In this

context, the main goal of this work is to compare and evaluate the performance of feature

extraction (FE) of various pre-trained neural networks in the task of geological image

classification. A secondary goal is to extend this comparison by including other well-

known image datasets. This analysis can support the choice of models for FE in image

classification tasks involving the Geological Images dataset and also, although in a more

limited way, it can suggest reasonable model choices for other datasets.

In this study, Geological Images (TODESCATO et al., 2023), Stanford Cars (KRAUSE

et al., 2013), CIFAR-10 (KRIZHEVSKY; HINTON et al., 2009), and STL10 (COATES;

NG; LEE, 2011) datasets were adopted for analyzing the performance of FE of the fol-

lowing pre-trained models: AlexNet, ConvNeXt Large, DenseNet-161, GoogLeNet, In-

ception V3, MNASNet 1.3, MobileNet V3 Large, RegNetY-3.2GF, ResNeXt101-64x4D,

ShuffleNet V2 X2.0, SqueezeNet 1.1, VGG19 BN, VisionTransformer-H/14, Wide ResNet-

101-2, and both CLIP-ResNet50, and CLIP-ViT-B. In order to evaluate the performance

of the considered pre-trained models, a set of metrics was selected: accuracy and macro

and weighted averages of precision, recall, and F1-measure.

Our results indicate that the pre-trained models CLIP-ResNet50, CLIP-ViT-B, and

VisionTransformer-H/14 had significantly better performance than the other pre-trained

models for all datasets, including the dataset of Geological Images. It is important to

notice that these are the only three models among those considered in our experiments

that include transformers in their architecture, while the others are based solely on CNN

architectures. Our analysis also indicates that there are differences regarding the pattern

of performances of these three transformer-based architectures in comparison with the

performances of the CNN-based architectures across the datasets, in all the considered

metrics. These differences become evident when we analyze the Pearson correlation in

1Can be accessed through <https://pytorch.org/vision/stable/models.html>

https://pytorch.org/vision/stable/models.html
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4.2. Moreover, our analysis suggests that the Stanford Cars dataset is the most challenging

of all datasets analyzed. We hypothesize that it is due to its large number of classes, few

samples per class, and the inclusion of images with different sizes and features at different

scales.

We discuss the theoretical background in Chapter 2 of this study. We also dis-

cuss some related works in Chapter 3. Then, we present our methodology and results in

Chapter 4. Finally, our conclusions are presented in Chapter 5.
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2 THEORETICAL BACKGROUND

The main concepts concerning this work will be presented in the following sec-

tions.

2.1 Machine Learning

Machine learning is a field of Artificial Intelligence (AI). The area of AI aims to

enable machines to mimic intelligent behavior. In that sense, ML is a subfield of AI that

studies methods in which computer systems learn and adapt upon experience (JOVEL;

GREINER, 2021; RUSSELL, 2010; MITCHELL, 1997).

In the context of machine learning, algorithms build models from data during a

training phase, and the resulting model is capable of making predictions on new observa-

tions. In this regard, the input data used during the training phase, in general, is a set of

data samples, where each sample is characterized by a set of features.

There are three main subdivisions of machine learning (MITCHELL, 1997):

• Supervised learning (SML): In this approach, models are trained with labeled data

sets, which are sets of samples associated with some class (in classification tasks) or

continuous value (in regression tasks). The resulting model learns to map an input

sample to a suitable output.

• Unsupervised learning: In this approach, the algorithm is applied to unlabeled

datasets. The goal, in this sense, is finding patterns or trends, for example. This

approach does not rely on labels for learning; it relies purely on the features of the

data samples.

• Reinforcement learning: Different from the other two approaches, reinforcement

learning does not need human-generated data for training. The algorithm learns

through trial and error to take the best action according to a reward system.

In this study, we will focus on IC, which, in general, can be characterized as an

SML task in the literature. Besides that, in this work, we are adopting artificial neural

networks for performing IC.
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2.2 Artificial Neural Networks

Artificial neural networks (ANNs), or neural networks, are a specific class of ML

approaches. Originally, ANNs were formulated with a strong inspiration from the inter-

connected system of neurons in the human brain, in which thousands of processing nodes

are interconnected and organized into layers (ALZUBAIDI et al., 2021; GOODFELLOW;

BENGIO; COURVILLE, 2016; LECUN; HINTON, 2015).

The architecture of an ANN consists of layers of units (or neurons) connected to

each other by weighted links (GOODFELLOW; BENGIO; COURVILLE, 2016). Each

unit can process inputs and produce an output that is sent through the links to other units.

Specifically, the input layer receives the input data and the output layer shows the result

generated by the hidden layers. Figure 2.1 illustrates a simple neural network architecture

built according to these principles.

Training ANN involves two main algorithms: back-propagation, and gradient de-

scent. The back-propagation algorithm allows the information to flow backward after each

forward pass through a network. Back-propagation refers to the method for computing

the gradient, while the gradient descent is the process of descending through the gradient

adjusting the parameters of the model to go down through the loss function (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). Gradient descent is an iterative algorithm, that

starts from a given point on a function and travels down its slope in steps with the aim

of reaching the lowest point of that function (GOODFELLOW; BENGIO; COURVILLE,

2016).

In a simplified way, DNNs are artificial neural networks with several layers of

neurons and, in this context, deep learning (DL) is a set of machine learning approaches

based on DNNs.

In conventional ML approaches, it is common to adopt pre-processing steps for

feature engineering and feature selection on the raw input data, aiming to improve the

learning process and, consequently, the model classification performance. On the other

hand, some DL approaches offer advantages over conventional approaches, since they

are able to directly learn a more convenient set of features to support the classification

tasks (Figure 2.2). Thus, such techniques can be used directly on raw unstructured data,

eliminating the need for feature engineering and feature selection. These advantages are

widely explored in the context of IC (ALZUBAIDI et al., 2021; GOODFELLOW; BEN-

GIO; COURVILLE, 2016).
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Figure 2.1: Visual representation of a simple Artificial Neural Network architecture. The
units are represented by individual circles and are divided by color in each layer. Blue
circles for the input layer, grey circles for the hidden layer, and red circles for the output
layer. Each circle is linked to each other through colorful lines representing the different
weighted links between the layers

Figure 2.2: Illustration of the difference between deep learning and traditional machine
learning

While ANNs might have a few hidden layers, a DL network can have hundreds

of layers. The increasing of the number of different layers and nodes may increase the

accuracy of a network, however, in general, this also implies that DL requires more com-

puting power and data during the learning process (YAMASHITA et al., 2018; LECUN;

HINTON, 2015).

There are several different DNN architectures proposed in the scientific literature.

In the last decade, convolutional neural networks (CNNs) and vision transformers (ViTs)

have shown promising results in IC tasks.

CNNs are a class of ANN architectures. They were inspired by the organization of

the visual cortex of the human brain, where different individual neurons of the visual cor-

tex are responsible for recognizing a small portion of the visual field, and the overlapping

of those images that creates complex images (JOVEL; GREINER, 2021). Thus, CNN is

a highly hierarchical approach, with specialized neurons and layers that are capable of

detecting complex patterns, such as faces, for example.
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The main characteristic of CNNs is the convolutional layers (CL), which specify

a trainable set of filters that perform convolutional operations on image areas. These

operations generate more suitable features for the IC task. These layers allow CNN to

adaptively learn through backpropagation how to extract informative spatial features from

an image. This allows us, for example, to identify objects accurately, the location of

objects, as well as their relationship with other objects in an image (YAMASHITA et al.,

2018).

ViT is a transformer architecture applied to computer vision that adopts the no-

tion of attention (the relationship between pairs of input tokens) to process information

across images. When used directly to sequences of image sets, it shows an impressive

performance in IC cases (DOSOVITSKIY et al., 2020). Also when pre-trained on large

quantities of data, ViT reaches excellent results even when compared to state-of-the-art

convolutional networks (DOSOVITSKIY et al., 2020).

Since training DNNs from scratch requires large labeled datasets, it can be a chal-

lenge in certain domains in which data acquisition is hard. In this sense, transfer learning

emerges as a promising approach for dealing with this scenario (ZHUANG et al., 2020).

2.3 Transfer Learning

Transfer learning (TL) is an ML approach inspired by the human ability to trans-

fer knowledge across tasks. Thus, TL intuitively involves transferring the comprehension

of a previously learned related task to a new one to improve learning in the new task

(ZHUANG et al., 2020; SHRESTHA; MAHMOOD, 2019). This strategy has been ap-

plied in a variety of tasks, including IC (YAMASHITA et al., 2018).

As previously stated, DL networks are trained using a huge amount of data to

learn suitable weights and biases during the training process. After training, the patterns

learned by the network represented in its weights can be transferred in different ways for

different tasks (ALZUBAIDI et al., 2021). Therefore, the advantage of transfer learning

lies in its power to pre-train a model on one sort of information (for which there is a

sufficient amount of labeled data available) and apply the learned patterns to different

tasks for which only small datasets are available.

The two main approaches of TL are fine-tuning and feature extraction (LI; HOIEM,

2017). The fine-tuning approach involves training an initial model with large volumes of

data and, in the next step, refining the model by training it on a smaller specific dataset
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(ZHUANG et al., 2020; SHRESTHA; MAHMOOD, 2019) reusing the weights and biases

of the pre-trained model as the initial condition for training it for the new task. On the

other hand, FE, which will be the focus of this work, only reuses the weights and biases of

the pre-trained architecture, without refining them in a subsequent learning process. Thus,

parts of the pre-trained architecture are used only for extracting relevant features from the

input data. In this context, these relevant parts of pre-trained models play the role of fea-

ture extractors that can be integrated into a novel architecture. In this sense, the resulting

architecture can be trained in a smaller dataset, but keeping the weights and biases of the

feature extractor in their original form, without updating them during the training. For

applying FE, a common practice involves replacing the last layer of the pre-trained model

(responsible for performing the classification) with a novel layer with a suitable number

of output units for the task and trainable parameters that are updated during the training

process (LI; HOIEM, 2017).

Thus, the main difference between these two TL approaches is that in fine-tuning

the entire network is kept free (trainable) and retrained in the new task, starting from the

weights it had in the original task. When doing FE, the pre-trained part of the network

responsible for extracting features is not re-trained; it is maintained "frozen" during the

training of the new network, performing only FE (LI; HOIEM, 2017; DARA; TUMMA,

2018).

2.4 Pre-trained Models

There is a range of pre-trained models available in repositories1. Bellow, we will

provide a brief description of the pre-trained models considered in this work. Their de-

scription will be summarized since it is not included in the scope of this work to discuss

the details of each model.

The majority of the models considered in this work were pre-trained using ImageNet-

1K2(DENG et al., 2009) dataset and two of these models were pre-trained using a dataset

called YFCC100M3(THOMEE et al., 2016). Table 2.1 presents the following properties

of the selected models: number of output features, number of parameters, training dataset,

and architecture.

1Can be accessed through <https://pytorch.org/vision/stable/models.html>
2Can be accessed through <https://image-net.org/index.php>
3Can be accessed through <http://projects.dfki.uni-kl.de/yfcc100m/>

https://pytorch.org/vision/stable/models.html
https://image-net.org/index.php
http://projects.dfki.uni-kl.de/yfcc100m/
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Table 2.1: Pre-trained Models Information
Models Output features Parameters Training dataset Architecture
alexnet 256 61,100,840 ImageNet-1K CNN

clip_rn50 1024 63,000,000 YFCC100M CNN + Transformer
clip_vit_b 512 63,000,000 YFCC100M Transformer + Transformer

convnext_large 1536 197,767,336 ImageNet-1K CNN
densenet161 2208 28,681,000 ImageNet-1K CNN

googlenet 1000 6,624,904 ImageNet-1K CNN
inception_v3 1000 27,161,264 ImageNet-1K CNN
mnasnet1_3 1000 6,282,256 ImageNet-1K CNN

mobilenet_v3_large 960 5,483,032 ImageNet-1K CNN
regnet_y_3_2gf 1000 19,436,338 ImageNet-1K CNN

resnext101_64x4d 1000 83,455,272 ImageNet-1K CNN
shufflenet_v2_x2_0 1000 7,393,996 ImageNet-1K CNN

squeezenet1_1 512 1,235,496 ImageNet-1K CNN
vgg19_bn 512 143,678,248 ImageNet-1K CNN
vit_h_14 1000 632,045,800 ImageNet-1K Transformer

wide_resnet101_2 1000 126,886,696 ImageNet-1K CNN

AlexNet (eg., alexnet) 4: It is a deep convolutional neural network architecture with

more than 60 million parameters, consisting of five CL, some of which are followed

by max-pooling layers, and three fully connected layers with a final 1000-way soft-

max (KRIZHEVSKY, 2014). AlexNet also introduced the concept of using recti-

fied linear unit (ReLU) activation functions instead of traditional sigmoid activation

functions (eg., alexnet)

CLIP-ResNet50 (eg., cliprn50) 5: Its base model uses a ResNet50 modified version as

its image encoder and a masked self-attention Transformer as its text encoder. These

encoders are trained to maximize the similarity of pairs of image and text using a

contrastive loss technique. The model uses ResNet50 (HE et al., 2016) as the base

architecture for the image encoder and replaces the global average pooling layer

with an attention pooling mechanism. This mechanism is implemented as a single

layer of transformer-style multi-head attention where the query is conditioned on

the global average-pooled representation of the image (RADFORD et al., 2021).

CLIP-ViT-B (eg., clipvitb
6: It is similar to the CLIP-ResNet50 architecture, where the

ResNet image encoder is replaced for a Vision Transformer with a B4 backbone.

The B4 backbone refers to a specific variation of the ViT architecture with larger

image resolution and more parameters compared to the original model, making it

more powerful than the original ViT model. The ViT has an additional layer nor-

malization to the combined patch and position embeddings before the transformer

4Can be accessed through <https://pytorch.org/vision/stable/models/alexnet.html>
5Can be accessed through <https://github.com/openai/CLIP/blob/main/model-card.md>
6Can be accessed through <https://github.com/openai/CLIP/blob/main/model-card.md>

https://pytorch.org/vision/stable/models/alexnet.html
https://github.com/openai/CLIP/blob/main/model-card.md
https://github.com/openai/CLIP/blob/main/model-card.md
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and uses a slightly different initialization scheme (DOSOVITSKIY et al., 2020).

The text encoder is also a transformer (VASWANI et al., 2017). As a base size,

they use a 63M-parameter, 12-layer, 512-wide model with 8 attention heads (RAD-

FORD et al., 2021).

ConvNeXt Large (eg., convnextlarge) 7: A larger and more powerful version of the

ConvNext DL architecture (LIU et al., 2022) that achieves high accuracy in im-

age recognition tasks by increasing the number of CL and parameters in the model

(LIU et al., 2022). This model consists of multiple blocks of CL that extract increas-

ingly complex features from an input image. Each block is composed of multiple

CL with batch normalization and non-linear activation functions in between. The

architecture also uses a technique called skip connections, where inputs are added

to outputs from earlier layers in the model. This allows the model to maintain infor-

mation from earlier stages of processing and can help prevent the vanishing gradient

problem that can occur in DNNs.

DenseNet-161 (eg., densenet161) 8: This model has a dense connectivity pattern, where

each layer in the model is directly connected to every other layer in a feed-forward

fashion (HUANG et al., 2017). This allows the model to learn more complex fea-

tures by reusing and combining the outputs from earlier layers in the network. The

architecture consists of multiple dense convolutional blocks, where each block con-

tains multiple CL with batch normalization and non-linear activation functions in

between. The output of each block is fed into a transition layer, which reduces

the spatial dimension of the feature maps before passing them to the next dense

block. DenseNet-161 is particularly effective at recognizing fine-grained details in

images, making it useful for applications such as medical imaging, natural scene

classification, and object detection (HUANG et al., 2017).

GoogLeNet (eg., googlenet) 9: The key innovation in GoogleNet is its Inception mod-

ule, which consists of multiple CL with different filter sizes that are combined

in parallel (SZEGEDY et al., 2015). This allows the model to capture both fine-

grained and high-level features in an image at the same time, improving its accu-

racy. GoogLeNet also uses a technique called global average pooling, where the

output of the last convolutional layer is pooled to a single value for each feature

map. This reduces the number of parameters in the model and helps prevent over-

7Can be accessed through <https://pytorch.org/vision/stable/models/convnext.html>
8Can be accessed through <https://pytorch.org/vision/stable/models/densenet.html>
9Can be accessed through <https://pytorch.org/vision/stable/models/googlenet.html>

https://pytorch.org/vision/stable/models/convnext.html
https://pytorch.org/vision/stable/models/densenet.html
https://pytorch.org/vision/stable/models/googlenet.html
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fitting. The architecture consists of multiple Inception modules, with each module

followed by a pooling layer and a batch normalization layer. The output of the final

pooling layer is fed into a fully connected layer, which produces the classification

output.

Inception V3 (eg., inceptionv3) 10: The key innovation in Inception V3 architecture is

the adoption of factorization techniques to reduce the number of parameters in the

model (SZEGEDY et al., 2016). This allows the model to be more efficient and

faster to train. In addition, Inception V3 uses batch normalization, which helps the

model to converge faster during training and prevents overfitting. The architecture

consists of multiple Inception modules, where each module consists of multiple

branches with different filter sizes and pooling operations. The outputs of these

branches are then concatenated and fed into the next layer. Inception V3 also uses a

technique called auxiliary classifiers, where smaller classifiers are inserted at inter-

mediate layers of the network. These classifiers provide additional gradients during

training and help to regularize the model.

MNASNet 1.3 (eg., mnasnet13)
11: MNASNet 1.3 was designed as a DL architecture for

mobile devices (TAN et al., 2019). It was developed as a result of a search algorithm

that automatically discovers the optimal architecture, given a set of constraints such

as model size and latency. The final architecture consists of multiple blocks, where

each block contains multiple depthwise-separable CL with batch normalization and

ReLU activation functions in between (TAN et al., 2019). This allows the model to

learn complex features while minimizing the number of parameters and computa-

tions required. MNASNet 1.3 also uses a technique called Squeeze and Excitation

blocks, which adaptively recalibrates the feature maps based on their importance,

further improving the accuracy of the model.

MobileNet V3 Large (eg., mobilenetv3large)
12: MobileNet V3 Large is a DL archi-

tecture designed for mobile devices and optimized for efficient computation and a

small memory footprint (HOWARD et al., 2019). The key innovation is the use of a

combination of depthwise and pointwise convolutions, which reduces the computa-

tion required while maintaining accuracy. The architecture of MobileNet V3 Large

was developed by applying an architecture search algorithm that discovers the opti-

mal architecture for the model given a set of constraints such as model size and la-

10Can be accessed through <https://pytorch.org/vision/stable/models/inception.html>
11Can be accessed through <https://pytorch.org/vision/stable/models/mnasnet.html>
12Can be accessed through <https://pytorch.org/vision/stable/models/mobilenetv3.html>

https://pytorch.org/vision/stable/models/inception.html
https://pytorch.org/vision/stable/models/mnasnet.html
https://pytorch.org/vision/stable/models/mobilenetv3.html
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tency (HOWARD et al., 2019). The architecture consists of multiple blocks, where

each block contains a combination of depthwise and pointwise convolutions with

activation functions and batch normalization in between. The model also includes a

feature fusion module that combines features from different layers to improve accu-

racy (HOWARD et al., 2019). MobileNet V3 Large also uses a technique called the

h-swish activation function, which is a faster alternative to the widely used ReLU

activation function. This further reduces computation requirements and improves

performance.

RegNetY-3.2GF (eg., regnety32gf) 13: RegNetY stands for "Regularized Network" and

3.2GF refers to the number of floating-point operations per second (FLOPS) the

model requires for inference (RADOSAVOVIC et al., 2020). The resulting archi-

tecture is built by a regularized design space search algorithm that finds an optimal

architecture. The architecture consists of multiple stages, where each stage contains

multiple blocks with different numbers of channels and different levels of regular-

ized scaling factors (RADOSAVOVIC et al., 2020). The regularized scaling factors

ensure that the model is efficient and scalable, and the number of channels deter-

mines the depth and width of the model.

ResNeXt101-64x4D (eg., resnext10164x4d) 14: ResNeXt101-64x4D is a variant of the

popular ResNet architecture. Its key innovation is the use of a group convolutional

approach to increase the model’s capacity and performance (XIE et al., 2017). This

approach divides the input channels into groups and applies a separate convolutional

operation to each group. This allows the model to learn more diverse and complex

features while using fewer parameters than traditional CL. The architecture consists

of multiple blocks, where each block contains multiple CL with batch normalization

and ReLU activation functions in between (XIE et al., 2017). The number of groups

and the number of channels in each block can be adjusted to optimize the model’s

performance and efficiency.

ShuffleNet V2 X2.0 (eg., shufflenetv2x20)
15: ShuffleNet V2 X2.0 is a variant of the

ShuffleNet architecture. Its key innovation is the use of a channel shuffle operation

that mixes feature maps from different channels to reduce computational complex-

ity and improve performance (MA et al., 2018). The architecture also uses depth-

wise convolution, which applies a single filter to each input channel instead of using

13Can be accessed through <https://pytorch.org/vision/stable/models/regnet.html>
14Can be accessed through <https://pytorch.org/vision/stable/models/resnext.html>
15Can be accessed through <https://pytorch.org/vision/stable/models/shufflenetv2.html>

https://pytorch.org/vision/stable/models/regnet.html
https://pytorch.org/vision/stable/models/resnext.html
https://pytorch.org/vision/stable/models/shufflenetv2.html
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multiple filters, further reducing computation requirements. The architecture con-

sists of multiple stages, where each stage contains multiple ShuffleNet units (MA

et al., 2018). Each ShuffleNet unit consists of a pointwise convolution, depthwise

convolution, channel shuffle operation, and another pointwise convolution.

SqueezeNet 1.1 (eg., squeezenet11)
16: SqueezeNet 1.1 is designed to have a small mem-

ory footprint and low computational complexity. Its key innovation is the use of

fire modules, which are composed of squeeze and expand layers (IANDOLA et al.,

2016). The squeeze layer uses 1 × 1 convolutions to reduce the number of input

channels, while the expand layer uses both 1× 1 and 3× 3 convolutions to increase

the number of output channels. This approach reduces the number of parameters

required while maintaining accuracy. SqueezeNet 1.1 also uses techniques such

as network pruning and regularization to further reduce the model’s memory foot-

print and computational complexity. This allows it to achieve comparable accuracy

to larger models while requiring significantly fewer parameters and computation

requirements. The architecture consists of multiple fire modules, interleaved with

max pooling and dropout layers (IANDOLA et al., 2016). The final layer is a global

average pooling layer followed by a softmax classifier.

VGG19 BN (eg., vgg19bn) 17: VGG19 BN is an extension of the VGG16 architecture.

The "BN" in VGG19 stands for "Batch Normalization", a technique that normalizes

the inputs to each layer of the network to improve training stability and performance

(SIMONYAN; ZISSERMAN, 2014). This technique is applied after every convo-

lutional layer in the VGG19 BN architecture. Its architecture consists of 19 layers,

including 16 CL and 3 fully connected layers. The CL use 3x3 filters with a stride

of 1 and padding of 1, while the fully connected layers have 4096 units each. The

architecture also includes max pooling layers after some of the CL (SIMONYAN;

ZISSERMAN, 2014). One of the key features is its use of a uniform architecture

throughout the network, with all CL having the same number of filters and the same

filter size. This makes it easy to train and optimize the network.

Vision Transformer-H/14 (eg., vith14) 18: Vision Transformer-H/14 is an extension of

the original ViT architecture. The "H" in ViT-H/14 stands for "huge", indicating

that this model is larger and more powerful than the original ViT. The "14" refers to

the number of layers in the network. ViT-H/14 is designed to handle high-resolution

16Can be accessed through <https://pytorch.org/vision/stable/models/squeezenet.html>
17Can be accessed through <https://pytorch.org/vision/stable/models/vgg.html>
18Can be accessed through <https://pytorch.org/vision/stable/models/vision_transformer.html>

https://pytorch.org/vision/stable/models/squeezenet.html
https://pytorch.org/vision/stable/models/vgg.html
https://pytorch.org/vision/stable/models/vision_transformer.html
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images and has a total of 634 million parameters, making it one of the largest avail-

able models for dealing with images (DOSOVITSKIY et al., 2020). Like other

transformer-based models, ViT-H/14 uses a self-attention mechanism to process

images. It first splits the input image into a set of patches, which are then fed into

a sequence of transformer blocks. Each block consists of a multi-head attention

mechanism and a feed-forward neural network. The multi-head attention mecha-

nism allows the model to attend to different parts of the input sequence and capture

long-range dependencies (DOSOVITSKIY et al., 2020). In addition, ViT-H/14 uses

a hybrid approach that combines both convolutional and transformer-based archi-

tectures. It applies a small number of CL to the input image before feeding it into

the transformer blocks. This helps the model capture low-level features and reduce

computational costs.

Wide ResNet 101-2 (eg., wideresnet1012)
19: Wide ResNet 101-2 is a variant of the

ResNet architecture (ZAGORUYKO; KOMODAKIS, 2016). The "101" refers to

the number of layers in the network. At the same time, the "2" indicates that the

network is wider than the original ResNet architecture, with a wider block structure

that includes two CL in each residual block. The network architecture consists of

a series of residual blocks, which allow the network to learn deep representations

of the input image. Each residual block includes two CL followed by batch nor-

malization and ReLU activation function. The output of each block is added to the

input of the block, creating a shortcut connection that helps to propagate gradients

and improve training. It also incorporates several other features to improve its per-

formance, including dropout regularization, pre-activation, and strided convolution.

2.5 Model Evaluation

This section discusses metrics and techniques that can be applied to evaluate ML

classifiers and that will be adopted in this work.

19Can be accessed through <https://pytorch.org/vision/stable/models/wide_resnet.html>

https://pytorch.org/vision/stable/models/wide_resnet.html
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2.5.1 Performance Metrics

Here we present the metrics that will be adopted to evaluate the performance of our

models: accuracy, precision, recall, and F1-score. Since we are dealing with multiclass

classification problems, in this context, precision, recall, and F1-score will be considered

with a macro and weighted average (VANI; RAO, 2019).

The adopted metrics are calculated according to a confusion matrix (CM), which

shows the relationship between actual and predicted values in a classification problem.

The evaluation metrics are defined by the following prediction categories: True positives

(TP), which correctly indicates the presence of a condition or characteristic; True neg-

atives (TN), which correctly shows the absence of a condition or characteristic; False

positive (FP), which wrongly indicates that a particular condition or attribute is present;

False negative (FN), which wrongly indicates that a particular condition or attribute is

absent. A schema of a confusion matrix for a binary classification problem is represented

in Figure 2.3. For multiclass classification problems with N classes, the resulting confu-

sion matrix is a N × N matrix, whose lines and columns represent each class, and the

prediction categories previously discussed are calculated class-wisely.

Figure 2.3: Schema of a confusion matrix for a binary classification problem. Where Y
stands for yes, N for no, p for positive, and n for negative
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2.5.2 Accuracy

Accuracy computes the proportion of correctly classified observations out of all

observations.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)

2.5.3 Precision

Precision is calculated as the ratio between true positives and the sum of true

positives and false positives. A model that has no false positives shows a precision of 1.0.

Precision =
TP

TP + FP

2.5.4 Recall

Recall is the ratio of correctly predicted positive observations to all the observa-

tions originally classified as yes. A model that shows no false negatives has a recall of

1.0.

Recall =
TP

TP + FN

2.5.5 F1-score

F1-score is a measure that deals with both false positives and false negatives. It

combines the precision and recall of a classifier into a single metric by taking their har-

monic mean.

F1 − score =
2 × (Recall × Precision)

(Recall + Precision)
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2.5.6 Macro and Weighted Averages

In this work, we adopt two main methods of calculating precision, recall, and F1-

score for multi-class classification tasks. These two methods involve different ways of

aggregating results on the CM in multiclass classification problems.

2.5.6.1 Macro Average

This method treats all classes equally regardless of their support values. The

macro average is calculated individually for each performance measure as follows.

The macro-average of Precision is calculated by taking the average of all precision

values calculated for each class:

PrecisionMacro =
Σn

i=1Pi

n
,

where n is the count of classes in the dataset and Piis the precision value of the i-th class.

The macro-average of Recall is calculated by taking the average of all Recall val-

ues calculated for each class:

RecallMacro =
Σn

i=1Ri

n
,

where n is the number of classes in the dataset and Ri, is the recall value calculated for

the i-th class.

The macro-average of the F1-score is the harmonic median of the Macro-average

of Recall and Precision.

F1 − scoreMacro =
Σn

i=1Fi

n
,

where n is the number of classes in the dataset and Fi, is the recall value calculated for

the i-th class.

2.5.6.2 Weighted-average

The weighted average of the F1-score takes the mean of all per-class F1-score

weighted by each class’s support.
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F1 − scoreWeighted =
Σn

i=1Fi × Ci

C
,

where Fi, is the F1-score calculated for the i-th class, Ci is the number of instances of the

i-th class, C is the total number of instances and n is the number of classes in the dataset.

Similarly, we can calculate Weighted-precision and Weighted-recall:

PrecisionWeighted =
Σn

i=1Pi × Ci

C
,

where Pi is the Precision calculated for the i-th class, Ci is the number of instances for

i-th class.

RecallWeighted =
Σn

i=1Ri × Ci

C

, where Ri is the Recall calculated for the i-th class.

2.5.7 Cross Validation

Cross-validation is a process that can be used to estimate the quality of a classifica-

tion model (such as a trained neural network). It also allows for comparing and selecting

an appropriate model for the specific problem. When applied to different classifiers with

different free parameter values (such as the number of hidden nodes, back-propagation

learning rate, etc), the results of cross-validation can be used to select the best set of

parameter values. These procedures are based on the idea of repeating the training and

testing on different randomly chosen subsets or splits of the original dataset.

The most common cross-validation is the k-fold cross-validation procedure. In

this process, the dataset is split into k-folds, and a process of training classifiers and

evaluating test data is performed k times. At each iteration of the process, some fold is

used as a test set and the remaining k−1 folds are used as the training set. In this process,

every sample in the data will be included in the test set at some step. The performance

of the model may then be estimated by taking the average performance across the k-folds

used as a test set (GOODFELLOW; BENGIO; COURVILLE, 2016).



30

2.6 Datasets

Image datasets are collections of digital images that can be both annotated or not.

In general, image datasets can be used for various computer vision tasks, such as image

recognition, object detection, segmentation, object tracking, etc. These datasets may con-

tain images of different sizes, resolutions, and formats, and they are often annotated with

additional information such as object classes, bounding boxes, segmentation masks, etc.

They are essential for training and evaluating computer vision models, and their availabil-

ity has enabled significant advances in the field of computer vision in recent years. These

datasets are often used to benchmark new algorithms and to improve the performance of

existing ones.

There are several widely used image datasets in computer vision research. In this

work, the following ones were considered for image classification, since they are widely

used in the literature, are colorful, and have different characteristics: Geological Images

dataset (TODESCATO et al., 2023), Stanford Cars (KRAUSE et al., 2013), CIFAR-10

(KRIZHEVSKY; HINTON et al., 2009), and STL10 (COATES; NG; LEE, 2011).

The main focus of this work is to evaluate the performance of the pre-trained

models over the Geological Images dataset. However, as a secondary objective, Stanford

Cars, CIFAR-10, and STL10 datasets were also included in our evaluation, in order to

carry out a more comprehensive evaluation of the models. Table 2.2 shows the main

information of all datasets used in this work.

Table 2.2: Datasets Information
Dataset Instances Classes Average Instances per Class ± Std
Geological Images (TODESCATO et al., 2023) 25725 45 571,67 ± 1290,90
Stanford Cars (KRAUSE et al., 2013) 16185 196 84 ± 6,28
CIFAR-10 (KRIZHEVSKY; HINTON et al., 2009) 60000 10 6000 ± 0
STL10 (COATES; NG; LEE, 2011) 100000 10 10000 ± 0

Regarding the selected datasets, CIFAR-10 and STL10 are balanced and include

sets of images of homogeneous size. The Geological images and the Stanford Cars

datasets are unbalanced (Stanford Cars is slightly unbalanced) and have images of het-

erogeneous sizes. In the following, we will provide more details regarding each dataset

adopted in this study.
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2.6.1 Geological Images dataset

This is a domain-specific dataset (ABEL et al., 2019) that includes a set of anno-

tated images that are relevant for applications in Geosciences. The adopted image dataset

includes images extracted from public and private sources. The images were obtained

from the Petrobras Geoscience Bulletins, Theses, and Dissertations from the Geosciences

Institute of UFRGS, as well as from several sources on the internet. Cleaning procedures

were performed to refine the set of images, aiming to remove invalid and/or non-relevant

images. In total, the dataset includes 25,725 annotated images of 45 different classes. This

dataset presents an imbalance in the distribution of images across classes, where there are

classes with only 36 images and classes with 8450 images. The average of images per

class is 571,67 with a standard deviation of 1290,90. The distribution of instances per

class of this dataset is represented in Figure 2.4. Figure 2.5 shows a set of images that

are included in the Geological Images dataset. Besides that, the images included in this

dataset are heterogeneous regarding height, width, and aspect ratio, as is represented in

Figure 2.6.

Figure 2.4: Illustration of the imbalance in the number of images for each class on the
Geological Images dataset (TODESCATO et al., 2023).
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Figure 2.5: Examples of images included in the Geological Images dataset (TODESCATO
et al., 2023).
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Figure 2.6: Statistics of the distribution of height, width, and aspect ratio of images in the
Geological Images dataset (TODESCATO et al., 2023).

2.6.2 Stanford Cars

It consists of 16,185 images of 196 different car classes, where each car class has

been carefully labeled with its make, model, and year. The images were collected from

various online sources, including auction websites, car dealerships, and online classifieds.

Each image in the dataset 20 is associated with a text file that contains metadata about the

car, including the car’s make, model, and year, as well as its class ID, which ranges from

1 to 196. The dataset also includes a set of bounding boxes for each image, which identify

the location of the car within the image. Figure 2.8 shows a set of images that are included

in the Stanford Cars dataset. Also, the images included in Stanford Cars dataset compared

to Geological Images dataset are partially heterogeneous regarding height, width, and

aspect ratio, as is represented in Figure 2.7.

2.6.3 CIFAR-10

The dataset 21 contains 60,000 32x32 color images in 10 different classes. Each

class contains 6,000 images, and the dataset is split into 50,000 training images and 10,000

test images. The classes in the dataset are airplane, automobile, bird, cat, deer, dog, frog,

horse, ship, and truck. Figure 2.9 shows a set of images that are included in the CIFAR-10

dataset.

20<https://ai.stanford.edu/~jkrause/cars/car_dataset.html>
21<https://www.cs.toronto.edu/~kriz/cifar.html>

https://ai.stanford.edu/~jkrause/cars/car_dataset.html
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2.7: Statistics of the distribution of height, width, and aspect ratio of images in the
Stanford Cars dataset (TODESCATO et al., 2023).

Figure 2.8: Images included in the Stanford Cars dataset (KRAUSE et al., 2013).

Figure 2.9: Images included in the CIFAR-10 dataset (KRIZHEVSKY; HINTON et al.,
2009).
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2.6.4 STL10

This is an image recognition dataset22 that contains a set of 10 classes, each rep-

resented by 1,000 labeled images. The images in the dataset are 96x96 pixels and are

derived from a larger set of unlabeled images collected from the Internet. STL10 was

developed to be a more challenging dataset for image recognition tasks, as the images are

larger than those in other popular datasets like CIFAR-10 and ImageNet. The 10 classes

are airplane, bird, car, cat, deer, dog, horse, monkey, ship, and truck. It is also divided into

a training set of 5,000 images and a test set of 8,000 images, with each class evenly repre-

sented in both sets. In addition to the labeled images, the STL10 dataset also includes an

unlabeled set of 100,000 images, which can be used for unsupervised learning tasks like

FE and clustering. In this work, we adopted only the labeled images. Figure 2.10 shows

a set of images that are included in the STL10 dataset.

Figure 2.10: Images included in the STL10 dataset (COATES; NG; LEE, 2011).

22<https://cs.stanford.edu/~acoates/stl10/>

https://cs.stanford.edu/~acoates/stl10/
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3 RELATED WORKS

The TL approach based on FE has been adopted for IC in several domains, such

as Biomedicine (ALZUBAIDI et al., 2021) and Geology (DOSOVITSKIY et al., 2020;

MANIAR et al., 2018; KARPATNE et al., 2018). In this work, we reviewed the literature

covering the last five years and focused on comparing the performance of FE for different

pre-trained models. In total, we selected eighteen papers for our literature overview, of

which five are specific to IC in Geology. In our literature review, twenty-three different

models were found, among which the most recurrent pre-trained models were the VGG16

and the Inception V3, both for studies in general and those specific to Geology, and the

third most used model was the AlexNet. Of the eighteen articles, only two did not use the

ImageNet dataset for pre-training the models. Therefore, we can observe that ImageNet

is one of the most used datasets for pre-training models for IC.

There is a range of pre-trained models that can be applied for transfer learning.

The main expected result of FE from the pre-trained models is to improve classification

quality. The size and similarity of the target dataset and the source task can be used to

choose the pre-trained model (FAWAZ et al., 2018).

The literature suggests that each dataset may need a different pre-trained model.

For instance, for plankton classification (LUMINI; NANNI, 2019), when adopted as a

feature extractor the Inception V3, AlexNet, VGG16, VGG19, ResNet50, ResNet101,

DenseNet-161, and GoogLeNet pre-trained models with three different datasets, the DenseNet-

161 model presented the best results. On the other hand, when classifying pathological

brain images, Kaur & Gandhi (2020) found that among eight pre-trained models, the

AlexNet showed the best results.

Finally, using the CIFAR-10 dataset, and experimenting with the Inception V3,

GoogLeNet, SqueezeNet 1.1, and DarkNet53, ShuffleNet models, Kumar, Anuar and

Hassan (2022) found that, overall, the Inception V3 model achieved the highest accu-

racy, as well as higher values in other evaluation metrics including precision, sensitivity,

specificity, and F1-score (KUMAR; ANUAR; HASSAN, 2022).

In summary, for specific application needs, finding the right pre-trained model can

be challenging. Different models can present better results for different datasets and dif-

ferent parameters of performance (BAKER; ZENGELER; HANDMANN, 2022). There-

fore, it is essential to systematically investigate the usability of several pre-trained models

to find the best match for specific datasets.
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Although ML has been successfully applied in Geosciences in the last years, TL

for IC in this domain is still not as much explored as in other areas (LIMA et al., 2019).

Recent papers are showing the capacity of DL and TL to facilitate the analysis of

uninterpreted images that have been neglected due to a limited number of experts, such

as fossil images, slabbed cores, or petrographic thin sections (LIMA et al., 2019), or even

for environmental images (SUN et al., 2021). The ability to create distinctive models for

specific sets of data allows a versatile application of those techniques.

When comparing pre-trained models, de Lima and colleagues (2019) found that

both MobileNet V2 and Inception V3 showed promising results on geologic data interpre-

tation, with MobileNet V2 having slightly better results. Also, when Sun and colleagues

(2021) compared the performance of AlexNet, VGG16, ResNet50, GLNet (AlexNet),

GLNet (VGG16), and GLNet (ResNet) pre-trained models on remote sensing scene clas-

sification using FE, the authors found that their proposed new model shows better results

compared to other traditional DNN architectures. The proposed model GLNet (VGG16),

which uses VGG16 as its base, got over 95% accuracy in analyzing a clear environment

and over 94% in a cloudy environment. In contrast, the traditional VGG16 got over 93%

and over 78%, for clear and cloud environments, respectively (SUN et al., 2021).

On seismic imaging classification, which is essential for oil and gas exploration,

Chevitarese et al. (2018a), applied the TL of FE to train a DNN and found improvements

in accuracy (CHEVITARESE et al., 2018a; CHEVITARESE et al., 2018b). Finally,

Cunha et al. (2020) also trained a CNN specially developed for the fault identification

problem using a dataset with synthetic patches whose seismic signal frequency content

does not match that of real data. They used the first layers of this pre-trained CNN as a

feature extractor to classify another dataset (CUNHA et al., 2020).

Table 3.1 presents a summary of the literature review, representing the pre-trained

models used by each study identified in our review process. Table 3.2 presents the target

datasets used in each study for comparing the performance of the feature extractors.

Table 3.1 provides a summary of the reviewed literature, emphasizing which pre-

trained models were used for FE in each study considered in our review.

Table 3.2 summarizes the datasets in which different works evaluated different

pre-trained models for FE in the literature reviewed in this work.
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Table 3.1: Summary of literature review - pre-trained models
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Table 3.2: Summary of literature review - datasets
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4 EXPERIMENTS

In this chapter, we discuss the experiments carried out to evaluate the different

pre-trained models in different datasets. Section 4.1 presents the methodology adopted in

these experiments and Section 4.2 presents and discusses the results of the experiments.

Our goal is to evaluate the performance of different available pre-trained models

as feature extractors in the task of classification of geological images.

4.1 Methodology

In the experiments, we evaluated the performance of all pre-trained models pre-

sented in Section 4.2 for feature extraction in an image classification task, considering

all datasets presented in Section 2.6. We evaluate the performance using the evaluation

metrics presented in Section 2.5. The models presented in Section 4.2 were selected for

covering a wide spectrum of the variability of architectures, including those identified

in our literature review. Notice also that, since there are different versions available for

each family of models, we have selected a single model for each family that presented

the best overall performances according to the literature. Besides that, we adopted macro

and weighted precision, recall, and f-score because we are considering in our analysis the

geological dataset, which presents a reasonable imbalance.

Since we are considering 16 models and four datasets, a total of 64 experiments

considering pairs of models and datasets were performed.

In each experiment, each pre-trained model was used as a feature extractor. There-

fore, in this context, all initial layers (except the last one) of the model, responsible for

extracting relevant features from the input images, were maintained, while the last layer

was replaced by a new output layer, with N units (where N is proportional to the number

of classes in the used dataset) and a linear activation functionNotice that we are using an

implementation of the adopted loss function that takes as input the raw logits provided

by this layer. During the model training, the weights of the initial layers (responsible for

extracting features) are not adjusted (they are kept "frozen"), while the weights of the last

layer are adjusted.

For each experiment, the datasets went through a homogeneous pre-processing.

The pre-processing consisted of applying resizing, center cropping, and normalization.

The resize is always done by decreasing or increasing the size of the smallest dimension of
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the image to the size of the pre-trained model’s input. Then the center crop is performed,

where the central area of the image is cut so that it is square with the size of the input, and

this information is used for representing the whole image. Finally, images are converted

to RGB.

In addition, each model was evaluated considering a 5-fold cross-validation pro-

cess. Thus, the metrics reported in Section 4.2 are averages obtained considering the

performance in each test fold of this process.

Regarding the training hyperparameters, the learning rate used in this study was

0.001 with a momentum of 0.9. We adopted the Adam Optimizer with default parameters,

with the Cross-Entropy1 loss function. All executions were done using 100 epochs and

early stopping with a minimal improvement of 0.001 and patience of 5.

4.2 Results

The following tables represent the model’s performance according to the selected

metrics for each dataset. Table 4.1 represents the model’s evaluation on the Geological

Images dataset. Table 4.2 represents the model’s evaluation according to Stanford Cars

dataset. Table 4.3 represents the model’s evaluation considering the CIFAR-10 dataset.

Table 4.4 represents the model’s evaluation for the STL10 dataset. In each table, we

highlight the model with the best performance in green and with the less performance in

red.

In order to facilitate the data analysis, we have represented the data generated in

our experiments in the following line charts, which demonstrate the performance (accord-

ing to different metrics) of each pre-trained model for classifying the images in the four

selected datasets. Figure 4.1 represents the accuracy. Figure 4.2 shows the macro preci-

sion. Figure 4.3 indicates the macro recall. Figure 4.4 demonstrates the macro f1-score.

Figure 4.5 presents the weighted precision. Figure 4.6 shows the weighted recall. Figure

4.7 indicates the weighted f1-score of each model on each dataset.

The line charts in Figures 4.2-4.7 present a very similar pattern of variation of the

model’s performance across all datasets. We can notice also that, in general, the model’s

performance pattern increases and the differences among patterns decrease (resulting in a

smoother pattern) in the Geological Images dataset when we consider the accuracy and the

weighted averages of precision, recall, and f-score in comparison with the macro averages

1Notice that we are using the Pytorch implementation of cross-entropy, which takes as input raw logits.
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Table 4.1: Geological Images Dataset
Geological Images Dataset

Macro Weighted
Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,85 0,74 0,67 0,69 0,84 0,85 0,84
clip_rn50 0,93 0,86 0,83 0,84 0,92 0,93 0,92
clip_vit_b 0,93 0,86 0,83 0,84 0,93 0,93 0,93
convnext_large 0,91 0,84 0,80 0,82 0,91 0,91 0,91
densenet161 0,90 0,83 0,78 0,80 0,90 0,90 0,90
googlenet 0,87 0,75 0,72 0,73 0,86 0,87 0,86
inception_v3 0,83 0,70 0,65 0,67 0,82 0,83 0,83
mnasnet1_3 0,88 0,77 0,73 0,75 0,87 0,88 0,87
mobilenet_v3_large 0,90 0,82 0,77 0,79 0,90 0,90 0,90
regnet_y_3_2gf 0,89 0,79 0,76 0,77 0,89 0,89 0,89
resnext101_64x4d 0,88 0,79 0,74 0,76 0,88 0,88 0,88
shufflenet_v2_x2_0 0,89 0,80 0,76 0,78 0,89 0,89 0,89
squeezenet1_1 0,87 0,77 0,72 0,74 0,87 0,87 0,87
vgg19_bn 0,88 0,79 0,74 0,76 0,88 0,88 0,88
vit_h_14 0,91 0,82 0,79 0,80 0,90 0,91 0,90
wide_resnet101_2 0,89 0,79 0,75 0,77 0,89 0,89 0,89

Average 0,89 0,79 0,75 0,77 0,88 0,89 0,88
Standard Deviation 0,02 0,04 0,05 0,05 0,03 0,02 0,03

Table 4.2: Stanford Cars Dataset
Stanford Cars Dataset

Macro Weighted
Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,28 0,26 0,28 0,26 0,26 0,28 0,26
clip_rn50 0,82 0,82 0,82 0,82 0,82 0,82 0,82
clip_vit_b 0,83 0,83 0,83 0,83 0,83 0,83 0,83
convnext_large 0,65 0,65 0,64 0,64 0,65 0,65 0,64
densenet161 0,64 0,64 0,64 0,64 0,64 0,64 0,64
googlenet 0,41 0,41 0,41 0,41 0,40 0,41 0,40
inception_v3 0,34 0,33 0,34 0,33 0,33 0,34 0,33
mnasnet1_3 0,42 0,42 0,42 0,42 0,41 0,42 0,41
mobilenet_v3_large 0,56 0,56 0,56 0,55 0,56 0,56 0,55
regnet_y_3_2gf 0,49 0,49 0,49 0,49 0,49 0,49 0,49
resnext101_64x4d 0,35 0,35 0,35 0,34 0,34 0,35 0,34
shufflenet_v2_x2_0 0,50 0,50 0,50 0,50 0,50 0,50 0,50
squeezenet1_1 0,42 0,42 0,42 0,41 0,41 0,42 0,41
vgg19_bn 0,51 0,50 0,51 0,50 0,50 0,51 0,50
vit_h_14 0,86 0,86 0,85 0,85 0,86 0,86 0,86
wide_resnet101_2 0,44 0,44 0,44 0,44 0,44 0,44 0,44

Average 0,53 0,53 0,53 0,53 0,53 0,53 0,53
Standard Deviation 0,18 0,18 0,18 0,18 0,18 0,18 0,18

of these measures. This behavior is expected since the imbalance of this dataset is more

pronounced. We can notice that, in general, the CLIP-ViT-B and VisionTransformer-H/14

models tend to show the best performances, considering all metrics in most datasets. In
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Table 4.3: CIFAR-10 Dataset
CIFAR-10 Dataset

Macro Weighted
Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,79 0,79 0,79 0,79 0,79 0,79 0,79
clip_rn50 0,88 0,88 0,88 0,88 0,88 0,88 0,88
clip_vit_b 0,95 0,95 0,95 0,95 0,95 0,95 0,95
convnext_large 0,96 0,96 0,96 0,96 0,96 0,96 0,96
densenet161 0,93 0,93 0,93 0,93 0,93 0,93 0,93
googlenet 0,87 0,87 0,87 0,87 0,87 0,87 0,87
inception_v3 0,86 0,86 0,86 0,86 0,86 0,86 0,86
mnasnet1_3 0,90 0,90 0,90 0,90 0,90 0,90 0,90
mobilenet_v3_large 0,91 0,91 0,91 0,91 0,91 0,91 0,91
regnet_y_3_2gf 0,93 0,93 0,93 0,93 0,93 0,93 0,93
resnext101_64x4d 0,95 0,95 0,95 0,95 0,95 0,95 0,95
shufflenet_v2_x2_0 0,92 0,92 0,92 0,92 0,92 0,92 0,92
squeezenet1_1 0,85 0,85 0,85 0,85 0,85 0,85 0,85
vgg19_bn 0,88 0,88 0,88 0,88 0,88 0,88 0,88
vit_h_14 0,98 0,98 0,98 0,98 0,98 0,98 0,98
wide_resnet101_2 0,95 0,95 0,95 0,95 0,95 0,95 0,95

Average 0,91 0,91 0,91 0,91 0,91 0,91 0,91
Standard Deviation 0,05 0,05 0,05 0,05 0,05 0,05 0,05

Table 4.4: STL10 Dataset
STL10 Dataset

Macro Weighted
Model \Metrics Accuracy Precision Recall F-Score Precision Recall F-Score
alexnet 0,88 0,88 0,88 0,88 0,88 0,88 0,88
clip_rn50 0,97 0,97 0,97 0,97 0,97 0,97 0,97
clip_vit_b 0,99 0,99 0,99 0,99 0,99 0,99 0,99
convnext_large 0,99 0,99 0,99 0,99 0,99 0,99 0,99
densenet161 0,98 0,98 0,98 0,98 0,98 0,98 0,98
googlenet 0,96 0,96 0,96 0,96 0,96 0,96 0,96
inception_v3 0,96 0,96 0,96 0,96 0,96 0,96 0,96
mnasnet1_3 0,97 0,97 0,97 0,97 0,97 0,97 0,97
mobilenet_v3_large 0,96 0,96 0,96 0,96 0,96 0,96 0,96
regnet_y_3_2gf 0,98 0,98 0,98 0,98 0,98 0,98 0,98
resnext101_64x4d 0,99 0,99 0,99 0,99 0,99 0,99 0,99
shufflenet_v2_x2_0 0,97 0,97 0,97 0,97 0,97 0,97 0,97
squeezenet1_1 0,91 0,91 0,91 0,91 0,91 0,91 0,91
vgg19_bn 0,96 0,96 0,96 0,96 0,96 0,96 0,96
vit_h_14 1,00 1,00 1,00 1,00 1,00 1,00 1,00
wide_resnet101_2 0,99 0,99 0,99 0,99 0,99 0,99 0,99

Average 0,97 0,97 0,97 0,97 0,97 0,97 0,97
Standard Deviation 0,03 0,03 0,03 0,03 0,03 0,03 0,03

the Geological Images dataset, the CLIP-ViT-B presents the best performance, in all met-

rics. The CLIP-ResNet50 also tends to perform well in the other datasets, although in the

case of the CIFAR-10 and Geological Images datasets, this model’s performance is rea-
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Figure 4.1: Line chart representing the accuracy of each model on each dataset.

Figure 4.2: Line chart representing the macro precision of each model on each dataset.

Figure 4.3: Line chart representing the macro recall of each model on each dataset.

sonably lower than the performance of CLIP-ViT-B and ViT-H/14, in all metrics. In the

CIFAR-10 dataset, it is also worth highlighting the good performance of ConvNeXt Large
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Figure 4.4: Line chart representing the macro f1-score of each model on each dataset.

Figure 4.5: Line chart representing the weighted precision of each model on each dataset.

Figure 4.6: Line chart representing the weighted recall of each model on each dataset.

and ResNeXt101-64x4D. The ConvNeXt Large model also performs better than CLIP-

ViT-B and CLIP-ResNet50 in STL10. In our evaluation, AlexNet presents the worst per-

formance on most datasets, considering all metrics. Inception V3 also performed poorly

on the Stanford Cars, CIFAR-10, and Geological Images datasets, where it performed the
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Figure 4.7: Line chart representing the weighted f1-score of each model on each dataset.

worst. Another model that had reasonably low performance compared to the others was

Squezenet1-1. The poor performance of this model is more pronounced on the CIFAR-10

and STL10 datasets.

The following boxplots reveal the minimum value (excluding outliers), the max-

imum value (excluding outliers), the median, the first quartile, the third quartile, and

outliers of the performance of the different models considering all the datasets, accord-

ing to different metrics. Figure 4.8 represents the accuracy. Figure 4.9 shows the macro

precision. Figure 4.10 indicates the macro recall. Figure 4.11 demonstrates the macro f1-

score. Figure 4.12 presents the weighted precision. Figure 4.13 represents the weighted

recall. Figure 4.14 shows the weighted f1-score of each model on each dataset. Notice

that each boxplot is built from only four measures (one for each dataset), however, despite

this small amount of data, this visualization can provide further insights.

Figure 4.8: Boxplot of accuracy for each model.

In the boxplots represented in Figures 4.8-4.14, it is possible to notice a pattern in
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Figure 4.9: Boxplot of macro precision for each model.

Figure 4.10: Boxplot of macro recall for each model.

Figure 4.11: Boxplot of f1-score for each model.

the different metrics, although some differences can be noticed in the Geological Images

dataset when comparing the macro averages of precision, recall, and f-score with the ac-
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Figure 4.12: Boxplot of weighted precision for each model.

Figure 4.13: Boxplot of weighted recall for each model.

Figure 4.14: Boxplot of weighted f1-score for each model.

curacy and weighted averages of those metrics. The CLIP-ResNet50, CLIP-ViT-B, and

VisionTransformer-H/14 models present the lowest variability in performance, in general.
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In the macro averages of precision, recall, and f-score, CLIP-ResNet50 presents the lowest

variability. On the other hand, when considering the accuracy and weighted averages of

precision, recall, and f-score, CLIP-ViT-B presents less variability in its performance. It

is important to note that CLIP-ResNet50, CLIP-ViT-B, and VisionTransformer-H/14 are

the only models adopted in our experiments that include transformers in their architecture.

It is also worth noting that, among the CNN-based architectures, ConvNeXt Large pre-

sented a higher median, compared to the other CNN-based architectures, which is similar

to the medians of performances obtained by CLIP-ViT-B and VisionTransformer-H/14,

although with greater variability in performance. The boxplots also suggest that, in the

considered datasets, AlexNet tends to present the worst performances, in general, present-

ing low medians and high variability. High variability is also present in the performances

of ResNeXt101-64x4D, Wide ResNet 101-2, and Inception V3, which also presents low

medians when compared to the other models.

The previous analysis (Figures 4.1-4.7) suggests that some models present a very

similar performance behavior across the datasets while other models exhibit behaviors

that do not follow the general pattern. In order to emphasize how similar are the model’s

behaviors, we analyzed the Pearson correlation (COHEN et al., 2009) of the performances

of each pair of models across the datasets according to all the selected metrics. The

following heat maps were created to visually represent this information. In the following

sequence of charts, the darker a cell gets corresponds to the lower the correlation of a

given pair of models, according to a given performance metric. Figure 4.15 represents

the correlation regarding the accuracy. Figure 4.16 shows the correlation regarding the

macro precision. Figure 4.17 indicates the correlation regarding the macro recall. Figure

4.18 demonstrates the correlation regarding the macro f1-score. Figure 4.19 presents

the correlation regarding the weighted precision. Figure 4.20 represents the correlation

regarding the weighted recall. Figure 4.21 shows the correlation regarding the weighted

f1-score between each pair of models.

Figures 4.15-4.21 suggest that the correlation of the performances of each pair of

models presents a similar pattern in all metrics. We can notice also that, in all perfor-

mance metrics, the correlation between models based solely on CNN architectures is high

(in general, above 0.97). However, the performances of CLIP-ResNet50, CLIP-ViT-B,

and VisionTransformer-H/14 models present a lower correlation with the performances

of other models solely based on CNN. In the case of CLIP-ViT-B, the correlation with the

other models is subtly lower considering accuracy and the weighted averages of precision,
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Figure 4.15: Heat map representing the correlation between each pair of models regarding
accuracy.

Figure 4.16: Heat map representing the correlation between each pair of models regarding
the macro precision.

recall, and f-score. However, when we consider the macro averages of precision, recall,

and f-score, this model’s correlation is significantly lower. It is important to note that the

CLIP-ResNet50, CLIP-ViT-B, and VisionTransformer-H/14 models include transformers

in their architectures. This performance correlation analysis suggests that this difference
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Figure 4.17: Heat map representing the correlation between each pair of models regarding
the macro recall.

Figure 4.18: Heat map representing the correlation between each pair of models regarding
the macro f1-score.

in the basic principles of the architecture of these models is correlated with this difference

in the performance pattern of these models when compared to architectures based solely

on CNN. Further analysis should be done in the future in order to investigate this hypoth-

esis. The heat maps also allow us to note that the correlations among the performances
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Figure 4.19: Heat map representing the correlation between each pair of models regarding
the weighted precision.

Figure 4.20: Heat map representing the correlation between each pair of models regarding
the weighted recall.

of CLIP-ResNet50, CLIP-ViT-B, and VisionTransformer-H/14 models are not high when

compared with the correlations among the performances of models based solely on CNN.

In the previous analyses, we focused on the performance of the models considered

in our experiments. In the following charts, we focused on analyzing the datasets consid-
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Figure 4.21: Heat map representing the correlation between each pair of models regarding
the weighted f1-score.

ered in our experiments. Each chart represents how the performances of all models vary

across the different datasets, considering different metrics. This information is already

present in Figures 4.1 - 4.7. However, these charts provide an alternative visualization of

this information that can suggest, for example, how hard is to classify each dataset. Fig-

ure 4.22 focuses on accuracy. Figure 4.2 represents macro precision. Figure 4.24 shows

macro recall. Figure 4.25 indicates macro f1-score. Figure 4.26 demonstrates weighted

precision. Figure 4.27 presents weighted recall. Figure 4.28 focuses on the weighted

f1-score of all models across the datasets.

Figure 4.22: Chart representing the accuracy of all models on different datasets.
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Figure 4.23: Chart representing the macro precision of all models on different datasets.

Figure 4.24: Chart representing the macro recall of all models on different datasets.

Figure 4.25: Chart representing the macro f1-score of all models on different datasets.

The line charts represented in Figures 4.22-4.28 present a similar pattern that can

be seen across the different metrics. There are subtle differences when comparing the

macro averages of precision, recall, and f-score with accuracy and weighted averages of
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Figure 4.26: Chart representing the weighted precision of all models on different datasets.

Figure 4.27: Chart representing the weighted recall of all models on different datasets.

Figure 4.28: Chart representing the weighted f1-score of all models on different datasets.

those metrics. Note that, in general, the models tend to perform better in the STL10

dataset, in second place CIFAR-10 has the best overall results, in third place the dataset

of Geological Images and, finally, the dataset with the worst performances, in general,



56

is the Stanford Cars. This is an expected result since this dataset has a large number

of classes, few samples per class, and the inclusion of images with different sizes and

features at different scales. The Geological Images dataset has similar properties but has

fewer classes and more samples per class than Stanford Cars, although it presents a greater

imbalance.

The following boxplots represent the performances considering all the models in

each dataset, according to different metrics. Figure 4.29 represents the variation of ac-

curacy. Figure 4.30 shows the variation of macro precision. Figure 4.31 indicates the

variation of macro recall. Figure 4.32 demonstrates the variation of macro f1-score. Fig-

ure 4.33 presents the variation of weighted precision. Figure 4.34 represents the variation

of weighted recall. Figure 4.35 shows the variation of weighted f1-score in each dataset.

Figure 4.29: Boxplot of accuracy for each dataset.

Figure 4.30: Boxplot of macro precision for each dataset.
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Figure 4.31: Boxplot of macro recall for each dataset.

Figure 4.32: Boxplot of macro f1-score for each dataset.

Figure 4.33: Boxplot of weighted precision for each dataset.

The boxplots represented in Figures 4.29-4.35 present a similar pattern across the

different metrics. There are subtle differences when comparing the macro averages of
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Figure 4.34: Boxplot of weighted recall for each dataset.

Figure 4.35: Boxplot of weighted f1-score for each dataset.

precision, recall, and f-score with accuracy and the weighted averages of those metrics.

These boxplots emphasize some properties found in the previous graphs (Figures 4.22 -

4.28). Firstly, these charts provide evidence that the Stanford Cars dataset is the most

challenging among those analyzed, with the worst performances and the greatest variabil-

ity of performances in all metrics. Besides that, we can notice also that the STL10 dataset

and Geological Images have a smaller variability in the performance of the different mod-

els when compared with the other two datasets.
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5 CONCLUSIONS

In this work, our goal was to compare the performance of sixteen pre-trained neu-

ral networks for FE in four different datasets, with an emphasis on geological image

classification.

By analyzing the accuracy and macro and weighted averages of f-score, recall,

and precision, our experiments have shown that CLIP-ViT-B achieved the best results for

the Geological Images dataset, which was the main focus of this work. Our experiments

showed also that CLIP-ResNet50 and VisionTransformer-H/14 also achieved similar per-

formances.

When we focus on the general performances, considering all the datasets, our

experiments suggest that CLIP-ViT-B and VisionTransformer-H/14 achieved better per-

formance results for all datasets and low variability in their performances. Besides that,

CLIP-ResNet50 achieved performance similar to the performance achieved by CLIP-ViT-

B, and VisionTransformer-H/14 and even lower variability. It is important to notice that

CLIP-ViT-B, VisionTransformer-H/14, and CLIP-ResNet50 include transformers in their

architectures. Thus, our results suggest that the principles underlying the transformers

can be the reason corroborating these remarkable results, but further studies should be

carried out to investigate this hypothesis.

Among the CNN-based architectures, ConvNeXt Large presents the best per-

formance, in general, and lower variability when compared to other CNN-based archi-

tectures. AlexNet showed the worst performance and high variability. Besides that,

ResNeXt101-64x4D, Wide ResNet 101-2, and Inception V3 also showed high variability.

Our analysis also showed that the performances of models based solely on CNN

architectures present a high Pearson correlation in all performance metrics. However,

the performances of CLIP-ResNet50, CLIP-ViT-B, and VisionTransformer-H/14 models

show a lower correlation with other models based solely on CNN. This difference in

performance is hypothesized to be due to differences regarding the basic principles of the

architecture of these models. However, the correlations among the performances of CLIP-

ResNet50, CLIP-ViT-B, and VisionTransformer-H/14 models are not high, if compared to

correlations among the performances of CNN-based models. Further studies are needed

to better investigate this finding.

Our analysis also has shown that the selected models performed better on the

STL10 dataset, followed by CIFAR-10, then the Geological Images dataset, and finally
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the Stanford Cars dataset. Thus, we can conclude that the Stanford Cars dataset is the

most challenging dataset evaluated in this work. The Stanford Cars present a particularly

large image size (when compared with CIFAR-10 and STL10, for example) and a high

amount of classes with just a few samples per class. These characteristics may explain

this result. The Geological Images dataset shares some of the properties of the Stanford

Cars dataset, but it presents a higher imbalance, has a lower amount of classes, and has

more images per class, in general.

The investigation presented in this work can provide evidence that supports the

choice of models for transfer learning in image classification tasks involving the Geolog-

ical Images dataset. Since our evaluation also covered other image datasets, it can also

suggest reasonable choices for transfer learning in other domains.

In future works, to make the analysis more comprehensive, it is important to ex-

pand it by including other image datasets. Besides that, the investigation can also be

expanded to include more pre-trained models that eventually were not considered in the

scope of this work. Furthermore, future works could also investigate the relationship be-

tween the underlying principles of each architecture, the properties of the datasets used

in the pre-training of these models, and the properties of the target datasets, in which the

pre-trained models are applied to extract features. This investigation can reveal insights

into what makes the pre-trained model best suited for each task.
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