
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CRISTIANO ALEX KÜNAS

Optimizing Machine Learning Models
Training in the Cloud

Thesis presented in partial fulfillment of the
requirements for the degree of Master of
Computer Science

Advisor: Prof. Dr. Philippe Olivier Alexandre
Navaux

Porto Alegre
May 2023

CIP — CATALOGING-IN-PUBLICATION

Künas, Cristiano Alex

Optimizing Machine Learning Models Training in the Cloud
/ Cristiano Alex Künas. – Porto Alegre: PPGC da UFRGS, 2023.

78 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2023. Advisor: Philippe Olivier Alexandre Navaux.

1. Cloud computing. 2. TPU. 3. Machine learning. 4. Perfor-
mance evaluation. 5. High performance computing. I. Navaux,
Philippe Olivier Alexandre. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Alberto Egon Schaeffer Filho
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Sometimes it is the people no one imagines anything of

who do the things that no one can imagine.”

— ALAN TURING

AGRADECIMENTOS

Nesses anos de mestrado, de muito estudo, esforço e empenho, gostaria de agrade-

cer a algumas pessoas que me acompanharam nessa jornada e foram fundamentais para

sua conclusão. Portanto, expresso aqui, a minha sincera gratidão a todas elas.

Agradeço primeiramente à minha companheira Gabriela, pelo apoio, amor, car-

rinho e dedicação que foram fundamentais desde o início.

À minha família pelo apoio que deram em toda minha caminhada acadêmica,

incentivando e ajudando-me a superar as dificuldades e os obstáculos encontrados.

Minha gratidão especial ao meu orientador Prof. Dr. Philippe Olivier Alexandre

Navaux, pelo apoio durante os últimos dois anos. Sou grato pelos ensinamentos e oportu-

nidades que contribuiram para o meu crescimento pessoal e profissional. Obrigado pela

confiança no Mestrado.

Ao corpo docente e quadro de funcionários do Instituto de Informática da UFRGS,

em especial: Prof. Carissimi e Prof. Lucas. Também gostaria de agradecer à CAPES pelo

apoio financeiro.

Agradeço à meus amigos e colegas do Grupo de Processamento Paralelo e Dis-

tribuído (GPPD) que me deram suporte, tornando estes anos mais suportáveis e propor-

cionando boas lembranças. Em especial: Matheus Serpa.

E a todos que de alguma maneira fizeram parte da minha formação, fica aqui

minha gratidão.

ABSTRACT

Driven by the development of new technologies such as personal assistants or self-driving

cars, machine learning has quickly become one of the most active fields in computer

science. From Big Data to Deep Learning applications, new workloads are resource-

demanding, driving high-performance computing (HPC) demand. Therefore, it is es-

sential to optimize the execution of these workloads on modern processors. Several ap-

proaches have been proposed to accelerate machine learning on GPUs, massively parallel

computers, and dedicated ASICs. On the other hand, there is a growth in the processing

of computer programs in the cloud. It is a way to reduce the cost of acquiring computers

to run programs locally.

In this master’s thesis, we adapted and migrated three DL applications to exploit Cloud

Computing resources. This approach helps alleviate contention for high-demand local

HPC resources, allowing them to focus on running applications. We optimize the exe-

cution of these applications using Tensor Processing Units (TPUs). The objective is to

evaluate the performance, accuracy, and cost of using such devices for ML/DL training.

In our experiments, we showed that the size of the application could influence perfor-

mance and execution costs. Small applications, which end up not using all the hardware,

may have little or no cost efficiency, i.e., the execution cost is higher and is not offset by

the performance obtained. In these cases, the choice to run in the cloud must be analyzed

with caution, noting if there are additional benefits. The performance achieved is im-

proved in larger applications, which use computational resources more effectively. Also,

it is about 50% cost efficient in running the same amount of work compared to the local

cluster. The cost per training can be further reduced through the use of preemptive TPUs,

costing about 70% less compared to on-demand TPUs.

Keywords: Cloud computing. TPU. Machine learning. Performance evaluation. High

performance computing.

Otimizando o Treinamento de Modelos de Aprendizado de Máquina na Nuvem

RESUMO

Impulsionado pelo desenvolvimento de novas tecnologias, como assistentes pessoais ou

carros autônomos, o aprendizado de máquina tornou-se rapidamente um dos campos mais

ativos da ciência da computação. De Big Data a aplicativos de Aprendizado Profundo, as

novas cargas de trabalho são notoriamente exigentes em termos de recursos intensificando

a demanda por computação de alto desempenho (HPC). Portanto, é de suma importância

otimizar a execução destas cargas de trabalho em processadores modernos. Várias aborda-

gens foram propostas para acelerar o aprendizado de máquina em GPUs e computadores

massivamente paralelos, bem como ASICs dedicados. Por outro lado, há um crescimento

no processamento de programas de computador na nuvem. É uma forma de reduzir o

custo de aquisição de computadores para executar programas localmente.

Nesta dissertação de mestrado, nós adaptamos e migramos três aplicações DL para explo-

rar recursos de Cloud Computing. Essa abordagem ajuda a aliviar a contenção de recursos

locais de alta demanda de HPC, permitindo que eles se concentrem na execução de apli-

cativos. Otimizamos a execução destas aplicações utilizando Tensor Processing Units

(TPUs). O objetivo é avaliar o desempenho, a acurácia e custo do uso de tais dispositivos

para treinamento de ML/DL. Em nossos experimentos, mostramos que o tamanho da apli-

cação pode influenciar no desempenho e no custo de execução. Pequenas aplicações, que

acabam não utilizando todo o hardware podem ter pouca ou nenhuma eficiência de custo,

ou seja, o custo de execução é maior e não é compensado pelo desempenho obtido. Nestes

casos, a escolha de executar na nuvem deve ser analisada com cautela, observando se há

beneficios adicionais. Em aplicações maiores, que usam de forma mais efetiva o recurso

computacional, o desempenho alcançado é melhorado. Além disso, apresenta eficiência

de custo de cerca de 50% na execução da mesma quantidade de trabalho comparado ao

cluster local. O custo por treinamento pode ser ainda mais reduzido através do uso de

TPUs preemptivas, custando cerca de 70% menos comparado com TPUs sob demanda.

Palavras-chave: Computação em nuvem. TPU. Aprendizado de máquina. Avaliação de

desempenho. Computação de alto desempenho.

LIST OF FIGURES

Figure 2.1 Cloud Computing service models..22
Figure 2.2 The architecture of the TPUv2 chip with 16GB of HBM. Each TPU v2

device has four internal chips comprising two cores and can achieve up to 180
TFlops. ..28

Figure 2.3 Illustration on how to offload to a cloud TPU. ..29
Figure 2.4 An example of an artificial neural network, where circles denote percep-

trons, and arrows denote connections between perceptrons (synapses). Each
arrow (excluding dashed ones) has an associated weight. The output of each
perceptron is calculated using an activation function. ..31

Figure 2.5 Strategies for model partitioning. Different colors represent different
computing devices. ...32

Figure 4.1 Visual representation of three different I/O access patterns commonly
observed in scientific HPC applications. ..41

Figure 4.2 Neural network architecture to classify metrics into three classes regard-
ing file layout and access spatiality. ..43

Figure 4.3 Sentiment Analysis RNN Architecture..45
Figure 4.4 Five-stage classification for Diabetic Retinopathy.46
Figure 4.5 Inception V3 architecture. ...47
Figure 4.6 Diabetic Retinopathy Model Architecture...48

Figure 5.1 Bandwidth used and total transferred. ...53
Figure 5.2 Sequential and parallel version execution times: comparing execution

on the Local and in the Cloud. ..54
Figure 5.3 Frequency histogram of images by size in KB without and with pre-

processing. ..54

Figure 6.1 Training and testing times of NN-TWINS application in each hardware.55
Figure 6.2 Training and testing times of the Neural Network in each computational

resource. ..56
Figure 6.3 Neural Network Training times in different hardware.57
Figure 6.4 Comparison of execution times adding time to transfer data to the cloud

(all values have been normalized)...58
Figure 6.5 Training and testing accuracy of NN-TWINS application.59
Figure 6.6 Training and testing accuracy of the Neural Network model.59
Figure 6.7 Neural Network Accuracy in different hardware...60

LIST OF TABLES

Table 3.1 Summary of related work. Each line represents a related work. Each
column represents a desired property..38

Table 4.1 Cost (in Dollar/hour) of each solution...40
Table 4.2 Examples of stop words...44

Table 5.1 Network measurements with the Iperf tool. ...52
Table 5.2 Throughput in images/second, in sequential and parallel runs, in Local

and Cloud environments. ..54

Table 6.1 Dataset transfer measurements to the cloud. ...58
Table 6.2 Estimated cost (in Dollar) for each application when using preemptible

TPUv3. ..61

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Network

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AWS Amazon Web Services

Azure Microsoft Azure

CPU Central Processing Unit

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

EC2 Elastic Compute Cloud

FLOPS Floating-point Operations Per Second

FPGA Field-Programmable Gate Array

GB GigaByte

GCP Google Cloud Platform

GCS Google Cloud Storage

GPU Graphic Processing Unit

GRPC Google Remote Procedure Call

HBM High Bandwidth Memory

HPC High Performance Computing

IaaS Infrastructure as a Service

I/O Input/Output

LNCC National Laboratory for Scientific Computing

LSTM Long Short-Term Memory

ML Machine Learning

MXU Matrix Unit

NIST National Institute of Standards and Technology

NN Neural Network

PaaS Platform as a Service

PFS Parallel File System

ReLU Rectified Linear Unit

RNN Recurent Neural Network

SA Sentiment Analisys

SaaS Software as Service

SLA Service Level Agreement

TB TeraByte

TFlops TeraFlops per second

TPU Tensor Processing Unit

TWINS Time WINdows Scheduler

UFRGS Federal University of Rio Grande do Sul

vCPU Virtual Central Processing Unit

VM Virtual Machine

CONTENTS

1 INTRODUCTION...19
1.1 Contributions of this research..20
1.2 Document Organization ...20
2 BACKGROUND ...21
2.1 Cloud Computing..21
2.1.1 Essential Characteristics ..21
2.1.2 Service Models...22
2.1.3 Features of Cloud Computing..23
2.2 Hardware Accelerators in Cloud Environments..25
2.2.1 FPGAs - Field-Programmable Gate Arrays...26
2.2.2 GPUs - Graphic Processing Units..26
2.2.3 TPUs - Tensor Processing Units ..27
2.3 Main deep learning concepts..29
2.3.1 Training deep learning models...31
2.3.1.1 Model partitioning strategies for distributed training ...32
2.3.2 Training deep learning models in the cloud...33
2.4 Concluding Remarks ..34
3 RELATED WORK ...35
3.1 Concluding Remarks ..37
4 METHODOLOGY ...39
4.1 I/O Access Pattern Detector ...40
4.1.1 NN-TWINS Architecture...42
4.2 Text Classification ...43
4.2.1 RNN-SA Architecture..44
4.3 Image classification ...45
4.3.1 IC-DR Architecture..46
4.4 Software Setting ..47
4.5 Experimental Platforms ...48
5 CHALLENGES OF EMPLOYING CLOUD HARDWARE ACCELERATORS.51
6 EXPERIMENTAL EVALUATION ...55
6.1 Performance Evaluation...55
6.1.1 NN-TWINS..55
6.1.2 RNN-SA...56
6.1.3 IC-DR...57
6.2 Accuracy Evaluation...58
6.2.1 NN-TWINS..58
6.2.2 RNN-SA...59
6.2.3 IC-DR...60
6.3 Cost Evaluation ...61
6.4 Discussion ..62
7 CONCLUSION AND FUTURE WORK ..65
7.1 Future work...66
7.2 Publications ...66
REFERENCES...69
APÊNDICE A — RESUMO EM PORTUGUÊS..75
A.1 Introdução...75
A.1.1 Contribuições ..76
A.2 Metodologia ..76

A.3 Resultados e Conclusão ...77

19

1 INTRODUCTION

Scientific applications from various research domains (e.g., health sciences, chem-

istry, physics, petroleum, climate) impose ever-increasing performance requirements on

high-performance computing (HPC) (MALISZEWSKI et al., 2020). In addition, new

workloads are entering HPC installations, from Big Data to Machine Learning (ML) ap-

plications, making systems increasingly complex. These requirements warrant permanent

upgrades and deployment of new large-scale platforms. As the complexity of these sys-

tems tends to grow, so does the number of parameters and factors that can directly or

indirectly affect performance.

Deep Learning (DL) techniques fuel recent advances in artificial intelligence. This

success is due to three main advancements: advances in neural network models and pro-

gramming frameworks, the availability of massive amounts of data, and hardware accel-

erators that can process that data faster, such as FPGAs, GPUs, and TPUs (CHO et al.,

2017; LIM, 2021; PINTO et al., 2018). DL models have been increasingly used to solve

complex problems. However, the complexity imposed on applications generates overhead

for the local system, which has its computational resources disputed by scientific appli-

cations and by training or updating these models. With the increasing complexity and

the amount of data, training these models has required increasingly powerful computing

systems with high acquisition and maintenance costs.

An alternative to reduce these costs is using services and computing resources in

the Cloud. This business model allows access to a wide range of computer systems, in-

cluding high-performance systems, only pay for usage, without the user having to bear the

cost of purchasing the equipment (ROLOFF, 2013). However, choosing the most suitable

computer system to train a DL model in the Cloud is complex. The choice should con-

sider factors such as execution time and cost (MALTA, 2021; MALTA; AVILA; BORIN,

2019; PAKDEL; HERBERT, 2017).

Unlike traditional systems, Cloud Computing does not require initial investments

in infrastructure and software licenses. Due to the elasticity and pay-per-use billing

model, the total maintenance cost can be close to zero when resources are not in use.

Furthermore, installation costs, hardware depreciation, power consumption, and cooling

are eliminated or significantly reduced. Also, the amount of resources available is vir-

tually unlimited. Therefore, the motivation for moving applications to the Cloud is to

minimize these costs while increasing scalability and availability.

20

In addition, Cloud Computing service providers frequently update their computa-

tional centers with new accelerators, such as GPUs and TPUs, which makes it possible

to train ever larger models at lower costs as technology advances. This type of benefit is

difficult to obtain with local computational centers since this equipment is costly, and the

renewal of the computational center in small companies and universities does not occur

with the frequency that new versions of this equipment are released. Thus, our work aims

to offload ML/DL algorithms training to the Cloud, one of the tasks that consume the

most computational resources and can take days, avoiding overloading the local system,

which is often highly overloaded by many scientific applications running1.

1.1 Contributions of this research

The main objective of our research is to optimize the training of DL algorithms

using high performance computing resources on the Cloud. To this end, our main contri-

butions are:

• We adapt and migrate DL applications to exploit Cloud Computing features;

• We developed an application to optimize the data preprocessing to transfer to the

cloud;

• We optimize the execution of these applications on the Cloud using Tensor Process-

ing Units (TPUs);

• We study the performance, accuracy, and cost of using TPUs on the Cloud.

1.2 Document Organization

The document is organized as follows. Chapter 2 presents a background on the

topics of this dissertation and discusses related work on cloud-based training of large

neural networks using TPUs and TPU Pods. Chapter 4 presents the methodology of our

work, details the applications, and outlines the hardware and software setup used. In

chapter 6, we showcase the results achieved, covering the performance, accuracy, and

cost evaluation. Finally, chapter 7 draws conclusions based on our findings and presents

some future work insights.

1In progress projects on the SDumont Supercomputer: https://sdumont.lncc.br/projects_statistics.php

21

2 BACKGROUND

The following sections explain some concepts that serve as a base for this disser-

tation. It starts by reviewing Cloud Computing, including its definition, essential char-

acteristics, service models, and features that can affect application execution. Then, we

present the hardware accelerators available, especially TPUs. Later, we describe the main

components involved in training a deep model and present strategies for training large

models.

2.1 Cloud Computing

Currently, cloud computing is a well-established method of providing computing

resources on-demand. It combines various features from distributed, grid, and parallel

computing, as well as technologies like virtualization, which dynamically abstract hard-

ware resources (BUYYA et al., 2009).

The National Institute of Standards and Technology (NIST) provides a widely ac-

cepted definition of cloud computing that serves as the basis for this document. According

to NIST, cloud computing is a model that enables access to a shared pool of computing

resources (such as networks, servers, storage, applications, and services) on-demand via

the network. These resources can be quickly provisioned and released with minimal effort

or interaction from the service provider (MELL; GRANCE, 2011).

This Section describes the definition of Cloud Computing, presents the service

models, the features of Cloud Computing, and the hardware accelerators in cloud envi-

ronments.

2.1.1 Essential Characteristics

For a cloud computing service to be considered to adhere to the NIST definition

(MELL; GRANCE, 2011), it needs to exhibit five essential characteristics.

• On-demand self-service: This feature allows you to allocate and deallocate com-

putational resources without requiring human interaction with the service provider.

• Broad network access: All services offered by the provider must be accessible

over a network, and access must be available through standard mechanisms.

22

• Resource pooling: The provider manages a pool of computing resources using a

multi-tenant model with different physical and virtual resources and serves multiple

users per their demand.

• Rapid elasticity: The provider allows the user to elastically provision resources of

any amount at any time. To the user, the available resources seem limitless.

• Measured Service: The provider is responsible for controlling resource usage and

availability. This information must be transparent to the user to guarantee the Ser-

vice Level Agreement (SLA). They are also used for billing purposes.

2.1.2 Service Models

The National Institute of Standards and Technology (NIST) defines three service

models in their proposal: Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS). These models determine what the user will receive and

how much control they will have over the features and services. Figure 2.1 shows the

abstraction levels for each service model. The hardware layer is placed at the bottom to

emphasize that the higher the service is from this layer, the more abstract it becomes and

the less control the user will have. The following is a brief explanation of each service

model.

Figure 2.1 – Cloud Computing service models.

Datacenter (facilities)

IaaS

PaaS

SaaS

Hardware

Source: The Author.

• Software as a Service (SaaS): This is the most common model. In this model,

23

users have access to ready-to-use applications. The customer only needs to register

to use the system and doesn’t have to worry about installation, maintenance, and up-

grades. However, the control over the service is limited, with only certain aspects of

configuration and administration available to the user. The provider is responsible

for all technical aspects, including servers, security, and data center issues.

• Platform as a Service (PaaS): This model provides a platform for end-users to

build their applications. It includes all the necessary infrastructure, servers, tools,

libraries, and databases, so companies can focus solely on their systems. The user

is responsible for their data and applications. With PaaS, there’s no need to buy, set

up, or maintain hardware and software. The developer doesn’t see the underlying

infrastructure but can configure the apps and their environment. This supports agile

software development and is often adopted by startups that lack resources. Having

a cloud-based development platform is important for remote work and is a key

strategy for new or pandemic-affected organizations.

• Infrastructure as service (IaaS): It is the model that provides a higher level of

control to users by offering virtual machines over which they have administrative

control. The user has complete authority over their virtual machine and can decide

the processing capacity (e.g., number of processing cores) and the software to be

used, including the operating system. This model allows users to customize their

virtual machine environment to meet their specific needs. IaaS abstracts physical

components such as servers, storage, space, and networks, eliminating the need for

companies to buy hardware.

2.1.3 Features of Cloud Computing

Cloud computing service providers such as Amazon Web Services (AWS), Mi-

crosoft Azure (Azure), and Google Cloud Platform (GCP) offer many types of computing

services. In the most basic model, infrastructure as a service (IaaS), users can hire vir-

tual machines (VMs), storage devices, network connectors, etc., and pay only for their

use. Virtual machines are usually charged by the time they remain powered on (e.g.,

US$/h), while storage devices are charged by the space occupied and the time of use (e.g.,

US$/GB/h). Although the IaaS model is similar to traditional high-performance clusters,

the Cloud has several characteristics that differentiate it from these systems.

24

Variety of computational resources: Cloud computing service providers offer

diverse computing resources, including several virtual machine options, with different

combinations of CPU and memory and storage and network devices. For example, AWS

offers hundreds of virtual machine1, with prices ranging from 0.0042 US$/h (with 2 vC-

PUs and 0.5 GB of memory) to 109.20 US$/h (with 448 vCPUs and 12TB of mem-

ory). Additionally, many virtual machine configurations have specialized hardware such

as GPUs, TPUs, and FPGAs that are useful for accelerating the execution of many work-

loads requiring high computational performance. AWS, for example, offers a category of

virtual machines with 8 NVIDIA Ampere A100 GPUs with prices of up to 11.57 US$/h.

The types of computing resources hired can affect both the cost and the total processing

time of a high-performance application in the Cloud. In this context, the computational

resources with the highest price (in US$/h) have better configurations and tend to offer

the best performance. On the other hand, as the total cost of processing depends on price

and processing time, the resource with the lowest price does not always offer the lowest

processing cost. The variety of resources offered in Cloud Computing allows users to

adjust both the hardware of the computational system and the software of the application

to optimize the cost or performance of processing. On the other hand, to maximize the

performance of an application in a high-performance cluster, the user is generally limited

to adjusting the application’s software to make good use of the resources available in the

computational system.

Performance volatility: Cloud computing service providers use virtualization

technologies to flexibly allocate computing resources to customers. With this, it is pos-

sible to divide the computational resources of a single physical server among multiple

virtual machines so that different clients hire fractions of the system for exclusive use.

Although the virtualization layer provides a reasonable level of resource isolation, some

parts of the hardware, such as the processor’s cache and the communication channel with

main memory, cannot be divided and are shared by virtual machines running on the same

physical machine. In this way, the intense demand for these parts in a virtual machine

(e.g., high memory access) can affect the performance of applications in other virtual

machines allocate in the same physical machine. As the user has no control over the allo-

cation of other virtual machines on the same physical machine, the performance of virtual

machines may vary throughout their use. Some Cloud Computing service providers allow

the user to hire the physical machine for exclusive use, which would avoid performance

1https://aws.amazon.com/ec2/instance-types/

25

volatility. On the other hand, the price of this type of service can be much higher than

hiring VMs that share the physical machine.

Preemptible Virtual Machines: Cloud Computing service providers typically

offer different models for contracting VMs with different prices and guarantees regarding

availability and volatility. Most providers offer three main models: (i) the on-demand

model, where the user hires VMs as needed, i.e., on demand. In this case, the user is

guaranteed VM availability, but the price is higher; (ii) the reserved model, where the

user commits to using a minimum amount of resources in a given period (e.g., one year).

In exchange, the provider offers a reduced price and guaranteed resource availability; and

(iii) the spot model (or preemptive), where the user can contract VMs on demand at a

reduced price. However, the provider reserves the right to resume these VMs anytime,

i.e., no availability guarantees exist. The availability of preemptible VMs fluctuates based

on users’ demand. If there are not enough instances to meet customers’ demands, the

VM can be stopped by the cloud provider (temporarily or permanently). In this case, the

provider hibernates the VM, saving its memory and context. If the demand decreases, the

instance can be resumed from the hibernation point. Despite the risk of unavailability, the

main advantage of preemptible VMs is that their prices are much lower than on-demand

VMs.

2.2 Hardware Accelerators in Cloud Environments

Cloud providers offer several accelerators such as FPGAs, GPUs and TPUs. This

section aims to introduce the instance types and discuss the main characteristics of each

computer architecture.

The cloud providers offer a wide selection of optimized instance types to cater to

different use cases. The instance types consist of various combinations of CPU, memory,

storage, and network capabilities and offer the flexibility of choosing the suitable com-

position of resources for their applications. Each type of instance includes one or more

instance sizes, allowing the scalability of its resources according to the workload’s re-

quirements to be executed. Accelerated computing instances use hardware accelerators,

or coprocessors, to execute functions, such as floating-point number calculations, graphic

processing, or data standard matching, more efficiently than is possible with software ex-

ecuting on CPUs. They have several instances for accelerated computing, ranging from

GPUs to FPGAs, besides cloud providers’ accelerators own, such as AWS Inferentia and

26

Google Cloud TPU.

2.2.1 FPGAs - Field-Programmable Gate Arrays

We introduce the field-programmable gate arrays (FPGAs) available on the cloud

providers, mainly used for machine learning inference.

Amazon EC2 F1 instances offer customizable hardware acceleration with pro-

grammable field port arrays (FPGAs). They use FPGAs to enable the delivery of cus-

tom hardware accelerations. F1 instances are easy to program and come with everything

needed to develop, simulate, debug, and compile hardware-accelerated code.Using F1

instances to deploy hardware accelerations can be helpful in a variety of applications to

solve complex problems in science, engineering, and business that require high band-

width, enhanced networks, and very high computing power. Examples of target applica-

tions that can benefit from F1 instance acceleration are genomics, search/analysis, image

and video processing, network security, electronic design automation (EDA), image and

file compression, and big data analysis. The instance has Intel Xeon Scalable processors

and Xilinx Virtex UltraScale+ VU9P FPGAs with up to 64 GB of memory.

Amazon EC2 VT1 instances are designed to accelerate real-time video transcod-

ing and deliver low-cost transcoding for live video streams. They can deliver up to 30%

lower cost per stream compared to Amazon EC2 G4dn GPU-based instances and up

to 60% lower cost per stream compared to Amazon EC2 C5 CPU-based instances for

transcoding live video streams. VT1 instances can support streams up to 4K UHD reso-

lution at 60 frames per second (FPS) and can transcode up to 64 simultaneous 1080p60

streams in real-time. They are powered by up to 8 Xilinx® Alveo™ U30 media ac-

celerator cards and support up to 96 vCPUs, 192GB of memory, 25 Gbps of enhanced

networking, and 19 Gbps of EBS bandwidth. They are optimized for workloads such as

live broadcast, video conferencing, and just-in-time transcoding. It has up to 8 Xilinx

U30 media accelerator cards with accelerated H.264/AVC and H.265/HEVC decoders.

2.2.2 GPUs - Graphic Processing Units

Usually, computational clouds like Amazon AWS have instances with the most

modern GPUs and some low-cost ones with older GPUs. As of June 2022, AWS has

27

8 GPU instances. Amazon EC2 P4 instances are the latest generation of GPU-based

instances and provide the highest performance for machine learning training and high-

performance cloud computing. The instance has 8 NVIDIA A100 Tensor Core GPUs,

each with 6,912 CUDA Cores and 432 Tensor cores.

These instances provide the highest performance for training machine learning

(ML) and high-performance computing (HPC) applications in the cloud. P4d instances

are powered by the latest NVIDIA A100 Tensor Core GPUs and deliver industry-leading

high throughput and low latency networking. These instances are the first in the cloud

to support 400 Gbps instance networks. P4d instances offer up to 60% lower cost to

train ML models, with an average 2.5× better performance for deep learning models than

previous generation P3 and P3dn instances.

Researchers, data scientists, and developers can use the P4 instances to train ma-

chine learning (ML) models for different use cases such as Natural Language Processing

(NLP), object detection and classification, and recommendation systems, as well as run

High-Performance Computing (HPC) applications such as oil and gas simulation, finan-

cial modeling and pharmaceutical discovery. Unlike on-premises systems, customers can

access “unlimited” compute and storage resources, scaling their infrastructure based on

their business needs without any setup or maintenance cost.

Like P4 instances, AWS EC2 P3 instances provide up to 8 NVIDIA V100 Tensor

Core GPUs and up to 100 Gbps of network throughput for ML and HPC applications.

The main difference between the P4 and P3 instances is that P4 has NVIDIA A100 GPUs

while P3 has NVIDIA V100. Another similar instance is the AWS EC2 P2, which is

intended for general-purpose GPU computing applications. The GPU of this version is

the NVIDIA K80.

2.2.3 TPUs - Tensor Processing Units

This section discusses the Tensor Processing Unit (TPU), an AI accelerator devel-

oped by Google and available on the Google Cloud Platform (GCP). It is deeply integrated

with the TensorFlow software.

TPUs are specialized application-specific integrated circuits (ASICs) to support

large-scale machine-learning tasks. The performance of linear algebraic computing, in-

tensely used in machine learning, is accelerated with the TPU resources, minimizing the

time it takes to generate precision when training large and complex neural network mod-

28

els. Figure 2.2 shows the architecture of a TPUv2 chip. Each TPUv2 device has four

internal chips, and each is made up of two cores. Each core has scalar, vector, and ma-

trix units (MXU) connected with the on-chip high bandwidth memory (HBM) of the 8

GB for each TPUv2 core. The performance of each TPU chip is 180 TFlops (32-bit and

16-bit mixed precision) (YOU et al., 2019). Compared to TPUv2, TPUv3 doubles the

number of MXUs and HBM capacity per core and has a peak of 420 TFlops, 2.3× greater

than TPUv2 (WANG; WEI; BROOKS, 2019). Furthermore, each core of the TPU device

performs calculations independently, and the high bandwidth interconnections allow the

chips to communicate directly with each other in the TPU device (GOOGLE, 2022b).

Figure 2.2 – The architecture of the TPUv2 chip with 16GB of HBM. Each TPU v2 device has
four internal chips comprising two cores and can achieve up to 180 TFlops.

Matrix
Unit

(MXU)

Scalar / Vector
Units

Matrix
Unit

(MXU)

Scalar / Vector
Units

HBM

8GB

HBM

8GB

Source: The Author.

Additionally, you can run machine learning workloads on a TPU pod that in-

creases workloads with little or no code changes. A TPU pod is a set of TPU devices con-

nected by dedicated high-speed network interfaces. A TPU pod allows you to distribute

the processing load among multiple TPUs, which can have up to 512 cores and provide

11.5 petaFLOPS performance for TPUv2 and up to 2048 cores with 100+ petaFLOPS

performance for TPUv3. A high-performance CPU-based host machine is connected to

each TPU board for data loading and preprocessing (YING et al., 2018).

Figure 2.3 illustrates how a user can access a Cloud TPU. Cloud TPUs are network-

attached. The user must create a virtual computing engine machine and apply a cloud

TPU. The virtual machine connects to the cloud TPU through grpc2, Google’s open-

source high-performance Remote Procedure Call that can run in any environment. Users

do not need to install any driver and can use the machine images provided by Google

2https://grpc.io/

29

Cloud. However, the users still need to design the algorithm and write the code for their

applications (YOU et al., 2019).

Figure 2.3 – Illustration on how to offload to a cloud TPU.

ssh gRPC

User Compute Engine VM Cloud TPU

Source: The Author.

When working with the Cloud TPU model, it is important to configure it correctly

in order to take advantage of the distributed training capabilities of the device. One strat-

egy for doing this is to scale the batch size by the number of TPU cores that are available.

For example, if the batch size is 32, the global batch size will be 256 (8 cores x 32 = 256)

(KÜNAS et al., 2021). This means that each core will process a batch of 32 examples, and

the results will be combined across all cores to form the final output. The global batch

size is then automatically fragmented across all replicas, which allows for the efficient

processing of large data sets. This approach allows for the parallel processing of multiple

examples simultaneously, greatly speeding up the training process.

2.3 Main deep learning concepts

An ML algorithm is capable of learning how to perform a task from a dataset

(GOODFELLOW; BENGIO; COURVILLE, 2016). Typically, a machine learning system

consists of four key components: a dataset, a model that generalizes a function f based

on the dataset, a cost function that measures the deviation of the model from a correct

solution, and an optimization algorithm that aims to optimize (minimize or maximize) the

value of the cost function.

Machine learning algorithms are generally categorized into three types: super-

vised learning, unsupervised learning, and reinforcement learning algorithms. In super-

vised learning algorithms, a set of labels Y is included in addition to the dataset X , which

describes each element of X . The objective is to optimize the parameters of a parametric

function f , also known as the model, so that for each sample in X , f returns a value

that closely matches its respective label (BEN-NUN; HOEFLER, 2019). This process is

30

referred to as training (MAYER; JACOBSEN, 2020), and the aim is to minimize the train-

ing error (also known as loss), which is the error observed when generating a prediction

based on an input. In unsupervised learning, the dataset is not labeled, and the model is

designed to uncover insights about the data by identifying patterns and hidden structures

within it. Finally, in reinforcement learning, observations are made at specific time points

within an environment, and the training process involves optimizing a policy function that

maximizes the observer’s reward (BEN-NUN; HOEFLER, 2019).

Artificial neural networks (ANNs) are one of the most powerful machine learning

algorithms among the various types available. These algorithms are inspired by biolog-

ical nervous systems (MCCULLOCH; PITTS, 1943) and consist of artificial neurons or

perceptrons arranged in layers, as illustrated in Figure 2.4. The layers are formed by

multiple sequentially connected neurons, and the connections between neurons are called

synapses, which have associated weights that are part of the model’s parameters. In the

input layer, various parts of the input data are mapped to the input layer’s perceptrons.

The subsequent layers receive the previous layer’s output, which is calculated using a

mathematical function (activation function) of the previous activation functions and the

weights associated with the corresponding synapses. Ultimately, the output layer contains

the prediction produced by the model. The training process consists of finding values for

the weights (i.e., the parameters) that optimize the accuracy of the result produced by the

model (i.e., the model accuracy).

Artificial neural networks with many hidden layers are called Deep Neural Net-

works (DNNs). Chaining in multiple layers allows DNNs to learn increasingly complex

functions and increase input data abstraction levels at each layer (WANG et al., 2015).

Different architectures were proposed as these deep neural networks evolved. Convolu-

tional Neural Networks, for example, introduced new layers, such as convolutional and

pooling layers, and were inspired by the visual cortex of animal brains (GOODFELLOW;

BENGIO; COURVILLE, 2016). This category of models is called Deep Learning (DL).

Deep learning techniques have grown rapidly following their success in image

classification. Currently, DL models have been used for various purposes, such as fi-

nancial forecasting, and driving assistance, among others (KIM; CHUN; DEY, 2015;

HATCHER; YU, 2018; ABIODUN et al., 2018). As these models got more complex with

more parameters, trained with more data, and high-resolution data, training them started

demanding more computational resources and the development of strategies to improve

training efficiency.

31

Figure 2.4 – An example of an artificial neural network, where circles denote perceptrons, and
arrows denote connections between perceptrons (synapses). Each arrow (excluding dashed ones)

has an associated weight. The output of each perceptron is calculated using an activation
function.

Source: The Author.

2.3.1 Training deep learning models

Training a deep learning model involves an iterative forward, and backward prop-

agation process performed multiple times over the entire dataset. The dataset is typically

partitioned into three subsets: the training subset, used to tune the model parameters; the

validation dataset used to verify the model’s performance on new data during training;

and the test dataset, used to evaluate the model at the end of training.

Each iteration over the training dataset is called an epoch, and each consists of

multiple steps, including computing gradients and updating the model parameters using

a batch of data. The training process continues until a stop criterion is met, including

reaching a target accuracy or loss or training for a fixed number of epochs.

Hyperparameters, such as batch size, also affect the training process and the qual-

ity of the resulting model. Choosing the correct hyperparameters is critical for optimiz-

ing the model’s quality. The process of tuning hyperparameters is usually done during

the model’s development. The choice of hyperparameters must consider the computing

infrastructure’s specifications. For example, the batch size can affect the model’s accu-

racy and training time, with its maximum value being limited by the processing device’s

volatile memory.

32

2.3.1.1 Model partitioning strategies for distributed training

The time required to train a deep learning model can be significant, depending on

various factors such as the model size (number of parameters), operations performed, the

number of samples in the dataset, the batch size, the data type, and other hyperparam-

eters. However, a practical approach to reducing training time while meeting the grow-

ing demand for computational power is to distribute the training process across multiple

computing devices, such as GPUs or TPUs (BEN-NUN; HOEFLER, 2019). This can be

achieved by partitioning different components of the model, such as the input data (using

data parallelism), the model itself (using model parallelism), or the layers of the model

(using pipeline parallelism), as presented in Figure 2.5.

Figure 2.5 – Strategies for model partitioning. Different colors represent different computing
devices.

Source: The Author.

Data parallelism: Data parallelism involves partitioning the dataset across mul-

tiple computing devices, each possessing a copy of the model parameters and perform-

ing independent propagation. AllReduce synchronizes gradients, but overhead may limit

scalability. Asynchronous training is an alternative to reduce synchronization overhead,

but periodic synchronization is required. The batch size may need to be reduced as the

number of devices increases (GUPTA; ZHANG; WANG, 2016).

Model parallelism: Model parallelism distributes neurons of each layer across

devices for training using the same data batch. This allows the training of large models

not fitting device memory but incurs additional communication after each layer finishes

processing. Forward propagation and backward propagation are synchronous operations

33

and may cause device underutilization issues.

Pipeline parallelism: Pipeline parallelism refers to overlapping computations,

such as between layers (as data becomes ready) or by partitioning layers and assigning

each to a specific worker (BEN-NUN; HOEFLER, 2019). Layer parallelism allows train-

ing large models without workers storing all layer parameters. Communication occurs at

layer boundaries, avoiding all-to-all operations. To fully use the computing system, the

pipeline must be partitioned among devices to all process the same amount of samples per

second.

2.3.2 Training deep learning models in the cloud

A typical machine-learning workflow can be divided into the following stages:

1. Data preparation: In this stage, the relevant data to train the model is extracted and

pre-processed. Feature extraction or selection is often performed to enhance model

accuracy;

2. Training: The model is trained using the prepared data and techniques described in

previous sections. The output of the training process is usually stored in a model

registry, which offers a range of APIs to manage the lifecycle of trained models.

3. Serving: The trained model is retrieved from the model registry and served through

a prediction service that can be used for inference.

Cloud computing provides multiple options for executing the stages of the ma-

chine learning workflow. Based on their requirements and technical capabilities, users

can choose between these three types of services: Infrastructure as a Service (IaaS), Plat-

form as a Service (PaaS), and Software as a Service (SaaS).

Several cloud operators have added machine learning as a service to their cloud of-

ferings. Most providers offer multiple options for running machine learning tasks on their

clouds, ranging from IaaS-level services (VM instances with prepackaged ML software)

to SaaS-level solutions (Machine Learning as a Service). Much of the technology of-

fered is standard distributed machine learning systems and libraries. Among other things,

Google’s Cloud Machine Learning Engine supports TensorFlow and even provides TPU

instances (GOOGLE, 2022a). As a competitor to Google’s TPUs, Microsoft Azure Ma-

chine Learning supports ML application acceleration through FPGAs (OVTCHAROV et

al., 2015). Amazon AWS introduced SageMaker, a hosted service for building and train-

34

ing machine learning models in the cloud. The service includes Jupyter notebooks and

support for TensorFlow, MXNet, and Spark (SERVICES, 2022).

2.4 Concluding Remarks

This chapter has introduced various concepts related to cloud computing based on

the NIST definition. The pay-per-use is the billing model used in cloud computing, where

the user pays just for the real usage of the resources. This characteristic is interesting

for DL users because this group of users sometimes does not have a permanent resource

demand since they can work on temporary projects.

35

3 RELATED WORK

This section discusses the most representative works that evaluate the application’s

performance. They cover existing work on cloud-based training of large neural networks

using primarily TPUs and TPU Pods.

You et al. (2019) investigate supercomputers’ capability of speeding up DNN

training. The approach is to use a large batch size powered by the Layerwise Adaptive

Rate Scaling (LARS) algorithm for efficient usage of massive computing resources. They

empirically evaluate the effectiveness on five neural networks: AlexNet, AlexNet-BN,

GNMT, ResNet-50, and ResNet-50-v2 trained with large datasets while preserving the

state-of-the-art test accuracy. Using 2,048 Intel Xeon Phi 7250 Processors, they reduced

the 90-epoch ResNet-50 training time from hours to 20 minutes. They implemented an

approach on Google’s cloud Tensor Processing Unit (TPU) platform, which verifies your

previous success on CPUs and GPUs (YOU et al., 2018). They scaled the batch size of

ResNet-50-v2 to 32K and achieved 76.3 percent accuracy. They applied the approach to

Google’s Neural Machine Translation (GNMT) application, which helps to achieve a 4x

speedup on the cloud TPUs.

Wongpanich et al. (2021) explore techniques to scale up the training of Efficient-

Nets on TPU-v3 Pods with 2048 cores, motivated by speedups that can be achieved when

training at such scales. Currently, EfficientNets can take on the order of days to train.

EfficientNets are a family of state-of-the-art image classification models based on ef-

ficiently scaled convolutional neural networks. They discuss optimizations required to

scale training to a batch size of 65536 on 1024 TPU-v3 cores, such as selecting large batch

optimizers and learning rate schedules and utilizing distributed evaluation and batch nor-

malization techniques. Additionally, they presented timing and performance benchmarks

for EfficientNet models trained on the ImageNet dataset to analyze the behavior of Effi-

cientNets at scale. With the optimizations, they could train EfficientNet on ImageNet to

an accuracy of 83% in 1 hour and 4 minutes.

Deep learning is computationally intensive, and hardware vendors have responded

by building faster accelerators in large clusters. Training deep learning models requires

overcoming both algorithmic and systems software challenges. Ying et al. (2018), discuss

three systems-related optimizations: (1) distributed batch normalization to control per-

replica batch sizes, (2) input pipeline optimizations to sustain model throughput, and (3)

2-D torus all-reduce to speed up gradient summation. They combined these optimizations

36

to train ResNet-50 on ImageNet to 76.3% accuracy in 2.2 minutes on a 1024-chip TPU

v3 Pod with a training throughput of over 1.05 million images/second and no accuracy

drop.

The paper of Jouppi et al. (2017) evaluates a Tensor Processing Unit (TPU) in a

data center environment. They compared the TPU to a server-class Intel Haswell CPU

and an Nvidia K80 GPU and found that the TPU was significantly faster and more power-

efficient. The workload, written in the high-level TensorFlow framework, uses production

neural networks (NN) applications (MLPs, CNNs, and LSTMs) that represent 95% of NN

inference demand. Despite low utilization for some applications, the TPU is, on average,

about 15X to 30X faster than the GPU or CPU. The authors also examined the impact of

different hardware and software configurations on the TPU’s performance and found that

specific optimizations could further improve its speed and efficiency.

There is an industry-wide trend toward hardware specialization to improve per-

formance, principally, compute-intensive deep learning models. To systematically bench-

mark deep learning platforms, Wang, Wei and Brooks (2019) introduce ParaDnn, a bench-

mark suite for deep learning that generates models for fully connected (FC), convolutional

(CNN), and recurrent (RNN) neural networks. Along with six real-world models, they

benchmarked Google’s Cloud TPU v2/v3, NVIDIA’s V100 GPU, and an Intel Skylake

CPU platform. They deeply dive into TPU architecture, reveal its bottlenecks, and high-

light valuable lessons learned for future specialized system design. They also provide a

thorough comparison of the platforms and find that each has unique strengths for some

types of models.

You et al. (2019) studied a principled layerwise adaptation strategy to accelerate

the training of deep neural networks using large mini-batches. Using this strategy, they de-

veloped a new layerwise adaptive large batch optimization technique called LAMB. The

empirical results demonstrate the superior performance of LAMB across various tasks,

such as BERT and ResNet-50 training, with very little hyperparameter tuning. In par-

ticular, for BERT training, their optimizer enables the use of huge batch sizes of 32,868

without any degradation of performance. By increasing the batch size to the memory limit

of a TPUv3 Pod, BERT training time can be reduced from 3 days to just 76 minutes.

A performance investigation of graphics processing units (GPUs) and tensor pro-

cessing units (TPUs) on Google Colaboratory for training convolutional neural networks

(CNNs) was approached by Sharma, Gupta and Gupta (2021). The authors conducted

experiments using popular CNN architectures, including AlexNet, VGG16, and Incep-

37

tionV3, and measured training time and accuracy on both GPUs and TPUs. They also

compare the results to those obtained on a local machine with a high-end GPU. The

authors find that TPUs outperform GPUs regarding training speed and achieve similar ac-

curacies. They also note that Google Colaboratory provides a cost-effective way to train

deep learning models using powerful hardware resources.

Other works evaluate the performance of Google Colaboratory, a cloud-based plat-

form for running Jupyter notebooks with free access to GPUs, as a tool for accelerating

deep learning applications. For example, Kimm, Paik and Kimm (2021) compares the

performance of TPUs, GPUs, and CPUs by conducting experiments with the ResNet-50

and Inception-V3 models and measuring training time and accuracy. They also investigate

the impact of different batch sizes and the number of workers on training times and scal-

ability. The authors find that TPUs outperform GPUs and CPUs in terms of both training

speed and scalability, with up to a 24x speedup over GPUs and up to a 228x speedup over

CPUs. They also note that, for TPUs and GPUs, the performance is highly dependent on

the selected batch size and the number of workers, while the performance of CPUs is little

affected by these factors. On the other hand, although Carneiro et al. (2018) do not use

the TPU in their study, they compare their results to those obtained on a local machine

with a high-end GPU, investigating the impact of different hardware configurations and

batch sizes on training times. For authors, the Google Colaboratory provides a way to ac-

celerate deep learning applications with GPU performance comparable to that of a local

machine with a high-end GPU.

3.1 Concluding Remarks

In Table 3.1, we present a comprehensive description of the coverage of the state-

of-the-art in comparison with this work. Several studies have performed evaluations with

TPUs on cloud computing. Some of the related works address training large deep-learning

models using TPU Pods. Differently from these related works, we used a single TPU with

eight cores, and although we didn’t explore optimization techniques, we achieved exciting

results. In addition, as with most related works, we also evaluate the accuracy achieved

by our models. On the other hand, none of them performs a cost-efficiency analysis when

using TPUs compared to a local cluster. This aspect is analyzed in this work.

38

Table 3.1 – Summary of related work. Each line represents a related work. Each column
represents a desired property.

Pe
rf

or
m

an
ce

A
cc

ur
ac

y

C
os

t-
E

ffi
ci

en
cy

U
se

T
PU

U
se

Po
ds

T
PU

You et al. (2019)
Wongpanich et al. (2021)
Ying et al. (2018)
Jouppi et al. (2017)
Wang, Wei and Brooks (2019)
You et al. (2019)
Sharma, Gupta and Gupta (2021)
Kimm, Paik and Kimm (2021)
Carneiro et al. (2018)
This Thesis

Source: The Author.

39

4 METHODOLOGY

After the great success in solving image classification problems, the application

of machine learning techniques gained speed and spread to other areas. Training more

extensive and complex models make hardware accelerators essential tools. With high ac-

quisition costs for high-performance platforms, an alternative is using cloud computing

resources. In this paradigm, the user pays only for the use, eliminating equipment acqui-

sition costs. In this context, our work aims to offload ML/DL algorithms training to the

Cloud to avoid overloading the local system.

For this, we adapted and migrated three DL models to the Cloud. We studied each

model carefully and identified the sections of code that needed to be modified to run on

the TPU. The intention is to adapt the model as much as possible but keep its original

structure, i.e., without adding or removing layers or modifying hyperparameters. Hence,

changes must be timely and specific so the algorithm can connect to the device and allow

parallel training on all available TPU cores.

We added code to detect and connect to the TPU device. For the model structure,

it is important to use a deep learning library that provides direct support for TPU training,

such as TensorFlow. The model needs to be built using TPU-specific APIs, such as those

available in TensorFlow’s tf.distribute.TPUStrategy. This strategy allows leveraging the

parallel processing power of TPUs. Additionally, it is recommended to use the tf.data API

to create an input pipeline optimized for TPUs. This enables asynchronous and parallel

execution of data reading and preprocessing alongside model training, maximizing the

TPU’s speed. When training the model on a TPU, it is necessary to adjust the training

function to be executed in a distributed manner across multiple processing units. This

involves splitting the data batch among the TPU replicas, performing parallel training,

and synchronizing gradient updates between replicas using the reduction operations (all-

reduce) available in the TPU APIs.

The following sections detail each of the three applications with its architecture.

We also present the used hardware and software configuration. For each application, we

collect performance metrics and compare them to the baseline. Performance is measured

by total training time in seconds. Accuracy metrics were also analyzed to validate the

application migration, i.e., if the model presents accuracy rates similar to those found in

the baseline or even in the literature, the model migration was successful.

We run and collect metrics for four architectures: GPUs P100 and V100, TPUv2,

40

and TPUv3. However, we do not experiment with all the architectures mentioned in some

cases due to difficulties with availability and access to such architectures. The results

presented are an average of at least 10 runs, with a relative error of less than 5% and a

95% confidence level using the t-Student distribution.

To analyze the cost-efficiency of using the Cloud TPU for model training, we scale

the performance value with the price per hour. Table 4.1 shows the cost per hour for a

local cluster and the Google Cloud TPUs1. The value for the cluster was calculated as

follows. We consider the hardware cost for a machine of $25, 000 and that the machine

will be used for one year, so we arrive at a hardware cost per hour of $2.85.

$25, 000

1× 365× 24
= $2.85

This is a simplified cost calculation. We do not measure the price for facilities,

personnel, and power consumption and do not include them in the total price.

Table 4.1 – Cost (in Dollar/hour) of each solution.

Device Cost

TPUv3-8 $8.00
TPUv2-8 $6.00
Local cluster $2.85

Source: The Author.

4.1 I/O Access Pattern Detector

A Neural Network (NN) model was developed on Bez et al. (2019) to automati-

cally detect the I/O access pattern of HPC applications at runtime and was integrated on

the TWINS (BEZ et al., 2017) scheduler. The dataset used to train this model contains

metrics collected at runtime on access patterns frequently used by the HPC I/O commu-

nity (they cover ≈ 39,000 observations)2. The patterns are classified according to the file

approach (single file vs. file-per-process) and the spatiality (contiguous or 1D-strided)

into three classes. We do not consider the 1D-strided approach for the file-per-process as

it is not representative.
1https://cloud.google.com/tpu/pricing
2https://cristianokunas.gitlab.io/wcc-sbac-pad-2021/

41

The first class is the file-per-process with contiguous access (Fig. 4.2(a)), where

each process of an application issues its operations in its own file, accessing one offset

after the other. The second class is the shared file with contiguous access (Fig. 4.2(b)),

where all the processes read and write data to a common file by accessing contiguous

chunks of the file. Finally, the third class is the shared file with 1D-strided access

(Fig. 4.2(c)), where each process accesses portions of the file with a fixed-size gap be-

tween them.

Figure 4.1 – Visual representation of three different I/O access patterns commonly observed in
scientific HPC applications.

0 1 2

File A Layout

Process 0 Process 1 Process N

File B Layout File N Layout

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

(a) File-per-process

0 1 2

File Layout

Process 0 Process 1 Process N

0 1 2

3 4 5

3 4 5

6 7 8

6 7 8

(b) Shared file with contiguous accesses

0 3 6

File Layout

Process 0 Process 1 Process N

0 1 2

1 4 7

3 4 5

2 5 8

6 7 8

(c) Shared file with with 1D-strided accesses

Source: The Author.

This model was initially proposed to work at the I/O forwarding layer of HPC

systems (though not restricted to it). Its access pattern detection engine receives input

information collected at each I/O node, which stands between the compute nodes and the

PFS. This information, referring to the previous observation period, consists of the re-

quest size (minimum, average, maximum), the number of file identifiers, and the average

distance between consecutive requests for the same file identifier (to represent the spatial-

42

ity of accesses). After applying the Spearman non-parametric correlation (SPEARMAN,

1904) to identify those most related to the access pattern class, the authors selected these

parameters.

This application will be referenced throughout the text as NN-TWINS. For the

evaluation, we considered the following metrics: Train Time, Train Accuracy, Test Time,

and Test Accuracy.

4.1.1 NN-TWINS Architecture

The classifier implementation uses Keras (MOOLAYIL, 2019), a high-level neural

network API with TensorFlow (ABADI et al., 2016a) as the back-end. Before feeding the

metrics to the Neural Network, we applied Yeo-Johnson (YEO; JOHNSON, 2000), scal-

ing, and data transformations to make the data more suitable for the network and to speed

up training. Yeo-Johnson is a power-transform similar to Box-Cox (BOX; COX, 1964)

but supports zero or negative value features. In this particular case, some metrics can have

zero values. The scale transformation calculates the standard deviation for a character-

istic and divides each value by that deviation. Finally, the data transform computes and

subtracts the mean from each value.

The model is built with three layers, as illustrated in Fig. 4.2: an input layer with

all five features (metrics), a hidden layer with the same number of neurons, and an output

layer with three units, one to represent each access pattern class. The first two layers use

a Rectified Linear Unit (ReLU) (HAHNLOSER et al., 2000) activation function with a

normal kernel initialization function. The ReLU activation introduces non-linearity into

the network. The output layer uses a softmax activation function to crunch the outputs of

each unit in the range [0, 1] and ensure that the sum of the outputs equals 1.

The model uses the optimizer RMSProp, with a learning rate of 0.001 and mo-

mentum of 0.9. The loss function was categorical cross-entropy. The result has an n-

dimensional vector that is all-zeros except for a one at the index corresponding to the

sample class. In our case, we have a three-dimensional vector for each sample. We have

followed the same approach used in previous work, where we split the dataset in two

using Scikit-Learn (PEDREGOSA et al., 2011): 70% for training and 30% for testing.

43

Figure 4.2 – Neural network architecture to classify metrics into three classes regarding file
layout and access spatiality.

Source: Bez et al. (2019).

4.2 Text Classification

This application is a Recurrent Neural Network (RNN) for text Sentiment Analysis

(SA). The approach focuses on using RNN with Long Short-Term Memory (LSTM).

RNN analyzes an input text (review) and predicts how positive or negative the sentiment

expressed is. The implementation of RNN of this work is done using Python (ROSSUM;

DRAKE, 2011) programming language, and the modules Keras (MOOLAYIL, 2019),

TensorFlow (ABADI et al., 2016b), and Scikit-learn (PEDREGOSA et al., 2011).

The database used was elaborated in the work of Maas et al. (2011). This base has

a collection of 50, 000 IMDb3 ratings. The built data set is balanced, containing an even

number of analyses in 2 possible classes: positive (pos) and negative (neg). This means

that the sentences are well distributed among the classes. No class has a much larger

number of sentences than the other. Thus, the sentiment classification in this dataset can

be interpreted as a binary classification problem. The set consists of sentences written

in English and is used in several works dealing with sentiment analysis (GANDHI et al.,

2021; HAQUE; LIMA; MISHU, 2019; QAISAR, 2020; SUBRAMANIAN et al., 2021;

VIELMA; VERMA; BEIN, 2020). This data can be easily found on the Internet4.

The pre-processing is done in stages. These aim at removing noise present in the

sentences and coding the texts so that they can be used in LSTM-based model training:

• Special characters and punctuation marks are removed;

3https://www.imdb.com/
4https://ai.stanford.edu/ amaas/data/sentiment/

44

• All words are written in lowercase;

• Stopwords are removed. These are words that do not add much meaning to the

text, usually articles, conjunctions, and prepositions. Table 4.2 shows examples of

stopwords. The NLTK library was used to remove stop words;

• Sequences are limited to a fixed size (300 words).

Table 4.2 – Examples of stop words.
a all an and
at as be but
do even from go

hello just look too
this who with you

Source: The Author.

The dataset was split into two following the approach found in the literature:

80% for training and 20% for testing (QAISAR, 2020; MUTINDA; MWANGI; OKEYO,

2023). This application will be referenced throughout the text as RNN-SA. For the eval-

uation, we considered the following metrics: Train Time, Train Accuracy, Test Time, and

Test Accuracy.

4.2.1 RNN-SA Architecture

The model consists of six layers: an input layer, an embedding layer, an LSTM

layer, and three dense layers, the last being the model’s output. Figure 4.3 shows the

RNN architecture. The input layer receives as a parameter the maximum size of the

sequences. That is, each review present in the dataset is reduced to a fixed size in order

to standardize the input. In our experiments, we defined this size as 300 words. For the

embedding layer, we defined the maximum amount of words to keep in the vocabulary

(20,000), the dimension of word embedding (128), and the size of the sequences defined

in the first layer. Word embedding gives us a way to use a representation in which similar

words have similar coding. The embedding dimension is defined according to the size of

the data set. A higher dimensional embedding can capture refined relationships between

words but requires more data to learn.

The dimensionality of the output space of the LSTM layer has 128 internal units.

The dropout configures the fraction of units to be discarded for the linear transformation

of the inputs. The dropout value varies in the interval [0, 1], and the higher the rate, the

45

Figure 4.3 – Sentiment Analysis RNN Architecture.

?×300

input

Embedding

embeddings〈20000×128〉
activity_regularizer =
batch_input_shape = null, 300
embeddings_constraint =
input_dim = 20000
input_length = 300
output_dim = 128

LSTM

kernel〈128×512〉
recurrent_kernel〈128×512〉
bias〈512〉
dropout = 0.2
recurrent_activation = sigmoid
recurrent_dropout = 0.2
time_major = false
units = 128

TanH

Dense

kernel〈128×128〉
bias〈128〉
activation = relu
batch_input_shape = null, 64
bias_constraint =
kernel_constraint =
units = 128

ReLU

Dense

kernel〈128×64〉
bias〈64〉
activation = relu
bias_constraint =
kernel_constraint =
units = 64

ReLU

Dense

kernel〈64×2〉
bias〈2〉
activation = sigmoid
bias_constraint =
kernel_constraint =
units = 2

Sigmoid

dense_5

Source: The Author.

fewer neurons are adjusted during net training. This causes the remaining neurons to learn

ways to suppress the absence of the others. This creates a system of redundancy where

one neuron can respond to another. The dropout value used is 0.2. For the first dense

layer, the output space dimensionality was the same as the LSTM layer, decreasing to 64

in the second and 2 in the last. Uniform is the initializer for the kernel weight matrix.

A Rectified Linear Unit (ReLU) activation function was applied for the first two Dense

layers. The last dense layer uses a simple Sigmoid activation function, to adjust the output

between 0 and 1. The final product is a single output.

4.3 Image classification

This application is an image classification to detect Diabetic Retinopathy. Our in-

spiration codebase is the Voets reproduction codebase5 (VOETS; MØLLERSEN; BONGO,

2019). As input, we used Kaggle’s EyePACS dataset6. This database is commonly used

for deep learning applications in DR detection and is divided into two subsets, train and

test. The training dataset contains 35,126 images, where 25,810 have no signs of disease;

2,443 present mild retinopathy; 5,292 present moderate retinopathy; 873 present grave

retinopathy; and 708 present proliferative retinopathy. We split these images into training

and validating datasets. Thus, we perform a 5-class classification.

First, we process all images by locating the center and radius of the eye fundus

and redimensioning every picture to 256x256 pixels. The images dataset was converted

to TFRecord format and then uploaded to a bucket on Google Storage for the training in

the TPU device. Each TFRecord file contains 2,000 images (except the last one, which

has 1,126). We split the TFRecord files into training (80%) and validating (20%) datasets.

Therefore, the training dataset7 consists of 28,000 images, and the validating dataset con-

5https://github.com/mikevoets/jama16-retina-replication
6https://www.kaggle.com/competitions/diabetic-retinopathy-detection
7https://kaggle.com/datasets/cristianokunas/diabetic-tfrecords256

46

Figure 4.4 – Five-stage classification for Diabetic Retinopathy.

Source: The Author.

sists of 7,126 images.

TFRecord, TensorFlow’s custom data format, is a powerful tool. It’s natively

supported by the high-performance tf.data API, can handle distributed datasets, and takes

advantage of parallel I/O. Working with large datasets can greatly benefit from using

a binary file format for storage. Binary data consumes less space on disk, is faster to

transfer, and can be read more efficiently. Using a binary file format can lead to a faster

import pipeline and ultimately reduce the training time for your model.

In addition to performance benefits, the TFRecord file format is also optimized for

use with TensorFlow. It simplifies combining multiple datasets and seamlessly integrates

with the library’s data import and preprocessing features. This is particularly useful for

datasets that are too large to fit in memory (88.29 GB for the EyePACS dataset without

preprocessing), as only the necessary data (e.g. a batch) is loaded from the disk and

processed at a time. Overall, the TFRecord file format provides a convenient and efficient

way to work with large datasets in TensorFlow.

This application will be referenced throughout the text as IC-DR. We considered

the following metrics for the evaluation: Train Time and Train Accuracy.

4.3.1 IC-DR Architecture

Our model uses the Inception v3 architecture to transfer learning. We initialized

the network with imagenet weights for all layers except the fully connected layer on top,

which received random weights. In Figure 4.5, the layers and operation of the Inception

v3 architecture are detailed.

After loading the imagenet weights, we add a Global Average Pooling 2D layer

and two Dense layers, the first fully connected with 1024 units using Rectified Linear

47

Figure 4.5 – Inception V3 architecture.

Source: https://cloud.google.com/tpu/docs/inception-v3-advanced.

Unit (ReLU) activation function, and the second using Softmax activation function and

five units, one to each of 5 classes. Figure 4.6 shows the architecture.

The model uses Adam optimizer, a gradient descendent algorithm based on the

adaptive estimation of first and second-order moments. The learning rate value was

0.0014. The accuracy was collected to judge the model. The loss function calculates

the logarithmic loss between actual and predicted labels. In this paper, we use the Sparse

Categorical Crossentropy function. In this model, we used callbacks to collect the model

metrics, monitor the val_loss metric to reduce the learning rate, and checkpoints to

save the best model.

4.4 Software Setting

A recent survey showed that Python remains the top language for deploying, ex-

ecuting, and integrating ML/DL algorithms and related tasks like data transformation

(WANG et al., 2019). Its popularity stems from its ease of learning, fast implementa-

tion, and rich environment, including popular ML/DL frameworks like Caffe, Tensorflow,

Torch, and MXNet.

Our applications were deployed using Python 3.7.3 and the embedded frameworks

Tensorflow (2.6.0) and Keras (2.6.0). We used CUDA Toolkit 11.8 and cuDNN 8.7 for

GPU versions, following each developer’s recommended installation procedures. This

software configuration was chosen due to compatibility.

48

Figure 4.6 – Diabetic Retinopathy Model Architecture.
input

Inception V3

input = (None, 256, 256, 3)

output = (None, 6, 6, 2048)

[256, 256, 3]

Global Average Pooling 2d

input = (None, 6, 6, 2048)

output = (None, 2048)

Dense

input = (None, 2048)

output = (None, 1024)

activation = relu

Dense

input = (None, 1024)

output = (None, 5)

activation = softmax

output

Source: The Author.

4.5 Experimental Platforms

The experiments described in this paper were conducted on the computational

resources available at the Google Cloud8, in the PCAD infrastructure at INF/UFRGS9,

and Santos Dumont Supercomputer (SDumont)10 at the National Laboratory for Scientific

Computing (LNCC)11. For the selection of the platforms, we adopt as a criterion the

access availability.

• Cloud TPUv2: We use a single TPUv2 with 8 cores and 64 GB memory. The TPU

device provides 180 Teraflops performance. This environment is named TPUv2

throughout the rest of this work (Google Cloud - Iowa us-central1).

• Cloud TPUv3: We use a single TPUv3 with 8 cores and 128 GB memory. The TPU

8https://cloud.google.com/
9http://gppd-hpc.inf.ufrgs.br/

10https://sdumont.lncc.br
11https://www.lncc.br

49

device provides 420 Teraflops performance. This environment is named TPUv3

throughout the rest of this work (Google Cloud - Iowa us-central1).

• Blaise: A single compute node composed of two Intel Xeon E5-2699 v4 Broad-

well (2.2GHz) CPU, 44 physical cores (22 per socket), 256 GB of RAM, and four

NVIDIA Tesla P100-SXM2-16GB. All the experiments conducted used only one

GPU. This environment is named P100 throughout the rest of this work (PCAD -

Porto Alegre).

• Bull Sequana X1120 (GPU): A single compute node composed of two Intel Xeon

Cascade Lake Gold 6252 (2.1GHz) CPU, 48 physical cores (24 per socket), 384 GB

of RAM, and four NVIDIA Tesla V100-SXM2-32GB. All the experiments con-

ducted also used only one GPU. This environment is named V100 throughout the

rest of this work (Santos Dumont - Petrópolis).

50

51

5 CHALLENGES OF EMPLOYING CLOUD HARDWARE ACCELERATORS

With the emergence of new intelligent applications, there has been a revolution in

information management, mainly including processing routines, storage, and computing

capacity. We have seen a significant evolution of computing paradigms in the last decade.

Cloud computing is one of the most well-known and popular paradigms, and its adoption

continues to accelerate as companies seek agility, flexibility, and new sources of com-

petitive advantage. Hardware accelerators, such as GPUs, FPGAs, and ASICs, have be-

come increasingly popular in the cloud due to their ability to accelerate compute-intensive

workloads. However, employing hardware accelerators in the cloud also presents several

challenges that need to be considered.

One of the main challenges is related to data when employing hardware acceler-

ators in the Cloud. For example, TPUs are designed to work in conjunction with Google

Cloud Storage (GCS) to access data efficiently. However, transferring large volumes of

data to the Cloud can be time-consuming and costly, especially if the data is stored in a

different cloud or on-premise. Storing large volumes of data on the Cloud can be expen-

sive, especially if the data needs to be accessed frequently. Also, preprocessing the data

for use with TPUs can be time-consuming and computationally expensive.

These challenges can be mitigated by automating data preprocessing and optimiz-

ing data transfer and storage. With that in mind, we developed a pre-processing applica-

tion to optimize data storage and transfer and investigated the impact that pre-processing

causes on network interconnection (KÜNAS et al., 2022). This pre-processing applica-

tion also was used to prepare the EyePACS dataset for the IC-DR application. Then, its

performance was evaluated and verified in Cloud and Local. The application was im-

plemented in Python and is composed of two modules. The first module performs all

pre-processing in a local environment and then sends the data to the storage. Differently,

the second module does the opposite, sending the original data to the storage and then

pre-processing it on the Cloud.

The dataset used in this experiment is the APTOS 2019 Blindness Detection avail-

able in the Kaggle competition for diabetic retinopathy1, which was chosen because it

has a smaller size compared to the EyePACS dataset used in this dissertation to train the

IC-DR application, facilitating our experiment. This dataset is commonly used for ma-

chine learning applications in DR detection and is divided into two subsets. We selected

1https://www.kaggle.com/c/aptos2019-blindness-detection/data

52

the training subset containing 3, 662 retinal images. The images are in PNG (Portable

Network Graphics) format and have varying sizes (Figure 5.3).

The Cloud environment consists of a virtual machine type N1 Standard (16 cores,

60 GB RAM), Linux Ubuntu 20.04 LTS operating system, located in eastern South Amer-

ica. The Storage is a Bucket on Google Cloud Storage provided through an instance of

Firebase. This storage is an object storage solution with large capacity, high availability,

and redundancy. The Local environment comprises a device with an Intel Core i7-9750

processor with 6 physical cores (2.60 GHz). This equipment has 16 GB of DDR4 RAM

Memory. We used the Linux Ubuntu 20.04.4 LTS operating system with kernel version

5.13.0-41.

To evaluate the implementation, we first evaluated the network connection. This

evaluation measured the maximum amount of data that could be sent from the local node

to the cloud provider. The measurements started with throughput analysis using the Iperf

tool (TIRUMALA et al., 2005). The results obtained from this first step are described in

Table 5.1.

Table 5.1 – Network measurements with the Iperf tool.

Parameter Local to Cloud

Interval 60 seconds
Total transferred 406 MBytes
Bandwidth 56.8 Mbits/second

Source: The Author.

Figure 5.1 shows the bandwidth and the amount of bytes transferred every second.

Comparing with the measurement performed with the Iperf tool, it is noticeable that

when sending the original data, we used all the available bandwidth, with an average of

≈ 66 Mbps (Figure 5.1 (a)), which can overload the network. The opposite occurs when

sending pre-processed data, in which we reduce the bandwidth used by about ≈ 11.5×,

with an average of ≈ 5.7 Mbps (Figure 5.1 (b)). We also observed a variation in the

original data’s minimum and maximum transfer peaks (Figure 5.1 (a)). This is due to size

differences between the files.

We compare the sequential execution time between the Local and Cloud environ-

ments and the parallel execution time between the Local and Cloud environments. The

parallel version splits tasks between processes. For both executions, we set 5 processes.

Parallel executions on the Local and the Cloud show a gain of ≈ 71.12% and

≈ 73.01%, respectively, compared to the sequential version. In comparison, the average

53

Figure 5.1 – Bandwidth used and total transferred.

0

50

100

0

5

10

0 20 40 60
Time interval (s)

M
bi

ts
/s

ec
on

d
M

bytes/second

Mbits/s Mbytes/s

(a) Without pre-processing.

0.0

2.5

5.0

7.5

0.00

0.25

0.50

0.75

0 20 40 60
Time interval (s)

M
bi

ts
/s

ec
on

d
M

bytes/second

Mbits/s Mbytes/s

(b) With pre-processing.

Source: The Author.

execution time of the sequential application on the Local was ≈ 2, 318.03s, a gain of

≈ 63.63% compared to the same version running on the Cloud. In the parallel version,

the average execution time on the Local was ≈ 669.52s, which represents a gain of ≈

61.07% compared to the same version running on the Cloud (Figure 5.2). As we can see,

executions on the Local perform better than on the Cloud because they do not overload

the network. By pre-processing the data on the Local, in addition to decreasing the total

size of the data by ≈ 44× (decreasing from ≈ 8, 204.5 MB to ≈ 185.7 MB), we also save

bandwidth for transferring this data.

We present the application’s throughput in Table 5.2. This throughput rate repre-

sents the number of images pre-processed and transferred every second. It can be seen

that in the cloud sequential execution model, where the first step is sending the original

data to the Cloud, the throughput is too low. This is because the dataset has a large vari-

ation in the sizes of the original images. In Figure 5.3 (a), we demonstrate this variation,

with sizes ranging from ≈ 200 KB to ≈ 7, 500 KB. This disparity in values significantly

impacts execution time and bandwidth consumption.

The best result in terms of throughput is obtained in the parallel version executed

54

Figure 5.2 – Sequential and parallel version execution times: comparing execution on the Local
and in the Cloud.

2318.03

669.52

6373.59

1719.99

E
dge

C
loud

0 1000 2000 3000 4000 5000 6000 7000

Sequential

Parallel

Sequential

Parallel

Time (s)

Parallel Sequential

Source: The Author.

Table 5.2 – Throughput in images/second, in sequential and parallel runs, in Local and Cloud
environments.

Local Cloud

Parallel 5.47 images/second 2.13 images/second
Sequential 1.58 images/second 0.57 images/second

Source: The Author.

Figure 5.3 – Frequency histogram of images by size in KB without and with pre-processing.

0

20

40

60

80

100

120

0 2000 4000 6000
Size in KB

F
re

qu
en

cy

0

30

60

90

Count

(a) Without pre-processing.

0

10

20

30

40

40 50 60
Size in KB

F
re

qu
en

cy

0

10

20

30

Count

(b) With pre-processing.

Source: The Author.

on the Local, reaching ≈ 5 images/second. This is because the pre-processing step allows

us to normalize the data, reducing the size of each image and the size variation observed

in the original data (30 - 70 KB), as shown in Figure 5.3 (b).

55

6 EXPERIMENTAL EVALUATION

In this section, we showcase the performance evaluation results obtained from the

experimental platform mentioned in Section 4. We present metrics for execution time for

different architectures. We also present the accuracy achieved by our models and perform

a cost-efficiency analysis when using TPUs compared to a local cluster.

6.1 Performance Evaluation

6.1.1 NN-TWINS

For NN-TWINS application, the performance metrics are illustrated in Figure 6.1.

The t-test (KIM, 2015) was used to compare all sets of time metrics collected and indicates

that the results of training times are significantly different from each other. The average

training time on the V100 was ≈ 1.74× faster than on the P100, and the mean training

time of TPUv2 was ≈ 1.41× faster than on the P100. However, using the V100, we

observed a speedup of ≈ 1.24× compared to the TPUv2.

Figure 6.1 – Training and testing times of NN-TWINS application in each hardware.

76.29

54.17

43.79

45.31

0.74

1.37

0.78

1.62

T
ra

in
T
e

s
t

0 10 20 30 40 50 60 70 80

P100

TPUv2

TPUv3

V100

P100

TPUv2

TPUv3

V100

Time (s)

A
rc

h
it
e
c
tu

re

P100 TPUv2 TPUv3 V100

Source: The Author.

On the other hand, the average training time on the TPUv3 was ≈ 1.68× faster

than on the P100 and ≈ 1.20× faster than on the TPUv2. But, the speedup observed on

the V100 over the TPUv2 is not observed compared to the TPUv3. The V100 was only

56

≈ 1.03× faster than on the TPUv3.

The first hypothesis to explain this result is that the application context may nega-

tively influence performance since it is a relatively small model with few parameters. The

second point is that TPUs can perform better when the batch size is larger, making better

use of TPU memory. The documentation recommends that to optimize memory use, you

should use the largest batch size that can fit in memory.

6.1.2 RNN-SA

Previous studies have shown that the batch size influences the training time, which

tested batch sizes from 32 up to 2048, with little or no degradation in the model’s accuracy

(KÜNAS et al., 2022). For this reason, in this dissertation, we used a larger batch size

that allowed shorter training times. Also, as explained earlier, it is essential to increase

the batch size to better use the architecture’s capacity.

The performance metrics of the RNN-SA application are illustrated in Figure 6.2.

The t-test was used to compare all sets of time metrics collected and indicates that the

results of training times are significantly different from each other. The average training

time on the TPUv2 was ≈ 2.63× faster than on the P100, and the mean training time of

TPUv3 was ≈ 2.18× faster than on the TPUv2. We observed a speedup of ≈ 5.74× on

the TPUv3 compared to the P100.

Figure 6.2 – Training and testing times of the Neural Network in each computational resource.

50.75

23.27

133.47

1.9

0.98

0.29

T
ra

in
T
e

s
t

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

P100

TPUv2

TPUv3

P100

TPUv2

TPUv3

Time (s)

A
rc

h
it
e

c
tu

re

P100 TPUv2 TPUv3

Source: The Author.

57

Based on the experimental results, using Cloud TPU appears to be a favorable

option for training a sentiment analysis model. Despite the potential cost associated with

transferring the dataset to the cloud (which we determined to be approximately 7 seconds

for this particular dataset), it is outweighed by the benefits of faster training time and

avoiding additional strain on local resources.

6.1.3 IC-DR

The performance results of IC-DR application are presented in Figure 6.3, show-

casing that the V100 outperformed the P100 in terms of average training time, with a

1.63× improvement. On the other hand, the TPUv3 showed a remarkable performance

with an average training time that was 3.48× faster than the V100. This result is even

more significant when compared to the P100, where the TPUv3 demonstrated an im-

provement of 5.63× in terms of average training time.

Figure 6.3 – Neural Network Training times in different hardware.

4347.19

2690.12

772.81

P100

V100

TPUv3

0 50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

Time (s)

A
rc

h
it
e

c
tu

re

P100 TPUv3 V100

Source: The Author.

This gain is achieved without any code optimization. Furthermore, although there

is a time spent to transfer the dataset to the cloud to run on the TPU device, as shown in

Figure 6.4, the performance of TPUv3 is still quite considerable, about 4.95× and 3.06×

more effective than P100 and V100, respectively. Even though it needs to transfer the

data to the cloud, it is possible to run the model multiple times on the TPU (Execution

1 and 2) in less time compared to local runs where the data is already available. The

information about the transfer is presented in Table 6.1. The measurements demonstrate

that the average throughput was ≈ 12.2 MBytes/second, with an average size of 20.73

MBytes.

Although we did not explore optimization techniques for scaling training to large

58

Figure 6.4 – Comparison of execution times adding time to transfer data to the cloud (all values
have been normalized).

P100

V100

TPUv3

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Normalized time

A
rc

h
it
e

c
tu

re

Execution 1 Execution 2 Transfer Time

Source: The Author.

batch sizes, such as selecting large batch optimizers and learning rate schedules, as well

as utilizing distributed evaluation techniques and batch normalization, we still achieved

good performance on the TPUv3, which indicates that Cloud TPU can be a good choice

for deep learning models training, especially for the Diabetic Retinopathy use case.

Table 6.1 – Dataset transfer measurements to the cloud.

Parameter Local to Cloud

Time 106.510 seconds
Average throughput 12.2 MBytes/second
Total Tranferred 932.2 MBytes

Source: The Author.

6.2 Accuracy Evaluation

6.2.1 NN-TWINS

We trained the NN-TWINS model on 27,238 samples and tested it on 11,674

samples, with a batch size of 32 and limiting to 50 epochs. It is important to notice that all

three classes are correctly identified with reasonable probability. The model’s accuracy

exceeds 99% for training and testing, with a standard deviation of less than 1%. The

statistical test has indicated that the training accuracy is not significantly different, but the

testing accuracy is significantly different. Figure 6.5 depicts the accuracy when running

in each platform. In this application, the global batch size was 256. Even using a TPU for

59

training, the accuracy remained similar to the baseline.

Figure 6.5 – Training and testing accuracy of NN-TWINS application.

Train Test

P
10

0

TP
U
v2

TP
U
v3

V
10

0

P
10

0

TP
U
v2

TP
U
v3

V
10

0

99.5

99.6

99.7

99.8

99.9

100.0

Architecture

A
c
c
u
ra

c
y
 (

%
)

P100 TPUv2 TPUv3 V100

Source: The Author.

6.2.2 RNN-SA

We trained the RNN-SA model on 36,000 samples, validate on 10,000 samples,

and tested it on 4,000 samples, and limiting to 5 epochs. We chose the batch size of 1024

because, according to a previous study, it was the one that presented the best performance

in the average training time. The model’s average accuracy achieves 97.51% for train-

ing and 89.30% for testing with a standard deviation of less than 1% on both platforms.

Figure 6.6 depicts the accuracy when running in each platform.

Figure 6.6 – Training and testing accuracy of the Neural Network model.

Train Test

P
10

0

TP
U
v2

TP
U
v3

P
10

0

TP
U
v2

TP
U
v3

86

88

90

92

94

96

98

100

Architecture

A
c
c
u
ra

c
y
 (

%
)

P100 TPUv2 TPUv3

Source: The Author.

60

6.2.3 IC-DR

As mentioned previously, we use the Inception V3 architecture for the IC-DR

model. After loading and initializing the network with the imagenet weights and adding

all layers described in the previous section, we trained the model on 28,000 samples and

validated it on 7,126 samples, with a batch size of 32 and limiting to 25 epochs. For

the TPU, we use the strategy presented in Section 2.2.3, where each core processes 32

examples, resulting in a global batch size of 256. All values shown are averages, and the

t-test is used to compare them. The model’s average accuracy achieves 85.45%, 81.59%

and 81.43% for TPUv3, V100, and P100, respectively, with a standard deviation of less

than 1% on both architectures. Figure 6.7 depicts the accuracy when running in each

architecture.

Figure 6.7 – Neural Network Accuracy in different hardware.

0.814320.81529
0.85454

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TP
U
v3

V
10

0

P
10

0

Architecture

A
c
c
u
ra

c
y
 (

%
)

P100 TPUv3 V100

Source: The Author.

The 85% accuracy of the diabetic retinopathy detection model is deemed appro-

priate. This is reinforced by the fact that other studies have shown similar accuracy rates

(LIN et al., 2018; GHOSH; GHOSH; MAITRA, 2017), including using the Inception V3

architecture (MOHAMMADIAN; KARSAZ; ROSHAN, 2017). It is important to high-

light that the early detection of diabetic retinopathy is crucial to avoid serious vision com-

plications. A model with an accuracy of 85% can provide reliable results and significantly

contribute to the accurate diagnosis of the disease.

61

6.3 Cost Evaluation

This section performs a cost-efficiency analysis when using TPUs compared to a

local cluster. We considered a local cluster for the cost estimation, the one with the worst

training time.

NN-TWINS: This application presents the worst cost-efficiency. The local cluster

cost estimated is nearly USD 0.060, while in a TPUv3 is USD 0.10. This means the cost

is higher to run this application in the cloud than in a local cluster, about 66% more. In

this case, the achieved performance, around 1.68×, is not worth the execution cost. The

TPUv3 is about 41% less efficient compared to a local cluster.

RNN-SA: The TPUv3 achieves performance that is approximately 5.73× better

than the local cluster. If we were to train the model on the local cluster, we estimate the

cost to be USD 0.106. On the other hand, training the model on the TPUv3 results in an

average cost per training of USD 0.052. Compared to the local cluster, the cloud is about

51% more efficient in performing the same amount of work.

IC-DR: For the IC-DR application, the TPUv3 cost per hour is about ≈ 2.8×

higher than the local cluster. However, the performance achieved was ≈ 5.63× better.

On the local cluster, our estimated cost would be USD 3.44 to train the model. On the

other hand, TPUv3, costing USD 8 per hour, gives us an average cost per training of USD

1.72. TPUv3 is about 50% more efficient, i.e., it costs 50% less to perform the same

amount of work in the cloud than in the local cluster. This indicates that Cloud TPU can

be a good choice for training deep learning models, especially for this case, the Diabetic

Retinopathy model.

Additionally, the cost per training can be further reduced by using preemptible

TPUs. Preemptible TPUs cost much less than non-preemptible ones, about 70% less.

However, it can be interrupted at any time. In this case, the application must be restart-

resilient to save model checkpoints regularly and restores the most recent one upon restart.

The estimated cost of using preemptible TPUv3 is presented in Table 6.2.

Table 6.2 – Estimated cost (in Dollar) for each application when using preemptible TPUv3.

Application Cost Cost-Efficiency (%)

NN-TWINS $0.030 49.50%
RNN-SA $0.016 84.91%
IC-DR $0.52 84.88%

Source: The Author.

62

This cost is about 3.3× better than the on-demand TPU in both cases and rep-

resents a cost efficiency of around 84.88%, 84.91%, and 49, 50% for IC-DR, RNN-SA,

and NN-TWINS applications, respectively, compared to the local cluster. Compared to

on-demand TPU, it is possible to observe that applications achieve better cost efficiency

when using the preemptive TPU, including the NN-TWINS application.

6.4 Discussion

We sought to evaluate the performance and accuracy of DL training models by

asynchronously offloading the training to the Cloud using TPU devices. Such an approach

aids in alleviating the contention for high-demanded local HPC resources, allowing them

to be focused on running applications.

The I/O access pattern classifier model presented up to 1.68× gain compared to

the other devices. Cloud TPUs are designed to excel in performing matrix operations in

parallel. However, small models with small datasets may not have enough matrix opera-

tions to take advantage of the full parallelism offered by the TPU, leading to less efficient

use of resources and resulting in lower performance. In addition, there is overhead asso-

ciated with transferring data to and from the TPU and initializing the TPU for each task.

With small datasets, this overhead may represent a more significant proportion of the total

time required to complete the task, reducing overall performance. Training the model on

cloud TPU devices is feasible in this case because the (re)training phase can take longer

to complete and can be done asynchronously in the background. It is important to note

that, in a production environment, the number of observations collected to (re)train the

model will be more expressive, which may cause a more significant burden on the HPC

system as the dataset gets larger. Furthermore, the model presented accuracy above 99%

for the training and test datasets in all the computing environments we explored.

Differently, the performance achieved is better for the Sentiment Analysis, where

the dataset is a little bigger, reaching 5.74×. This occurs because the dataset, although

more extensive than the one used with NN-TWINS, still fits into the TPU memory and

also because we increased the global batch size to 1024. The TPU cores operate on the

XLA memory layout (GOOGLE, 2023), which requires that the batch dimension of each

tensor be a multiple of 8 (JOUPPI et al., 2017) to more optimally utilize the memory of

each TPU core and increase throughput. However, it’s important to note that training with

large batch sizes can lead to a degradation in model quality due to the "generalization

63

gap" (KESKAR et al., 2016). This has been observed compared to models trained with

smaller batch sizes. In this application, we achieved reasonable accuracy rates in both

architectures we explored. This accuracy rate is similar to that found in other studies that

used the same dataset and similar models (QAISAR, 2020; HAQUE; LIMA; MISHU,

2019; WIDAYAT; ADJI et al., 2018; YENTER; VERMA, 2017).

For higher datasets is recommended to convert to another format that is easier to

read from storage. TFRecord, TensorFlow’s custom data format, is a powerful tool. It’s

natively supported by the high-performance tf.data API, can handle distributed datasets,

and takes advantage of parallel I/O. Working with large datasets can greatly benefit from

using a binary file format for storage. Binary data consumes less space on disk, is faster

to transfer, and can be read more efficiently. Using a binary file format can lead to a

faster import pipeline and reduce the model training time. In addition to performance

benefits, the TFRecord file format is also optimized for use with TensorFlow. It simpli-

fies combining multiple datasets and seamlessly integrates with the library’s data import

and preprocessing features. It is particularly useful for datasets too large to fit in mem-

ory, e.g., the EyePACS dataset used in the IC-DR application with about 88.29 GB, as

only the necessary data (e.g., a batch) is loaded from the disk and processed at a time.

Overall, the TFRecord file format provides a convenient and efficient way to work with

large datasets in TensorFlow. As we mentioned earlier, this dataset was preprocessed

by locating the center and radius of the eye fundus and redimensioning every picture to

256 × 256 pixels and then converted to TFRecord format and sent to storage on Google

Cloud. This application achieved up to 5.63× speedup in the best case with competitive

accuracy, and similar to others studies (LIN et al., 2018; GHOSH; GHOSH; MAITRA,

2017; MOHAMMADIAN; KARSAZ; ROSHAN, 2017).

When evaluating cost efficiency, we found that TPUs offer better cost efficiency

for larger applications, which indicates that Cloud TPU can be a good choice for training

large DL models. However, small applications that end up not using all the hardware

may have little or no cost efficiency, i.e., the execution cost is higher and is not com-

pensated by the performance obtained. In these cases, the choice to run in the Cloud,

especially on TPU devices, must be done cautiously, noting if there are other benefits

besides performance. For the NN-TWINS application, e.g., such an approach is promis-

ing, considering that in a production environment, the number of observations collected

to (re)train the model will be much larger than what we used in our experiments. In addi-

tion, the (re)training phase can take longer to complete and can be done asynchronously

64

in the background.

65

7 CONCLUSION AND FUTURE WORK

TPUs are specialized hardware devices designed to accelerate machine learning

workloads, especially matrix operations used in deep learning algorithms. TPUs are con-

sidered better for deep learning tasks because they provide a high computational perfor-

mance, efficient and cost-effective solution for accelerating these workloads.

In this thesis, we sought to evaluate the performance and accuracy of three appli-

cations by asynchronously offloading the training to the cloud using TPU devices. Such

an approach aids in alleviating the contention for high-demanded local HPC resources,

allowing them to be focused on running applications. We have observed promising re-

sults by modifying the neural network models to train on TPU devices. We also evaluate

the cost-efficiency of running these applications on such devices.

The I/O access pattern classifier (NN-TWINS) presented accuracy above 99% for

the training and test datasets in the three computing environments we explored. The av-

erage training time of this model on TPUv3 was ≈ 1.68× faster than on P100. The

execution of NN-TWINS on cloud TPU devices, although it is 41% more expensive than

the local execution, it is still a feasible solution because the (re)training phase can take

longer to complete and can be done asynchronously in the background. Also, it is im-

portant to remember that the amount of data collected to train this model will be larger in

a production environment. The Sentiment Analysis model (RNN-SA) presented average

accuracy of ≈ 97% for the training and ≈ 89% for the test datasets in the three comput-

ing environments we explored. The performance of TPUv3 was ≈ 5.74× faster than on

P100. Compared to the local cluster, the cloud is about 51% more efficiently performing

the same amount of work for this application.

For the Diabetic Retinopathy detection model (IC-DR), the TPUv3 demonstrated

an improvement of 5.63× in terms of average training time compared to the P100This

gain is achieved without any code optimization. Furthermore, although there is a time

spent to transfer the dataset to the cloud to run this model on the TPU device, the per-

formance of TPUv3 is still quite considerable, about 4.95× more effective. The data size

can negatively influence the application’s execution time and congests the network inter-

connection. Thus, pre-processing data at the Edge can contribute to bandwidth savings.

We studied this challenge in Section 5, where we considerably reduced the total data size.

The accuracy of the diabetic retinopathy detection model, which stands at 85%, is con-

sidered suitable. This is further supported by other studies that have reported comparable

66

accuracy rates. It should be emphasized that timely detection of diabetic retinopathy is

essential to prevent severe vision-related complications.

Our results provide a good starting point for those interested in improving the

performance of their deep-learning models.

7.1 Future work

Future work will deepen the cost analysis and extend the performance evaluation

will extend the performance evaluation to the Cloud TPUv4 and the TPU Pods, exploring

optimization techniques, such as selecting large batch optimizers and learning rate sched-

ules, to scale training to large batch sizes while keeping the accuracy rate. In addition,

future work will focus on proposing an automatic mechanism to select efficient Cloud

resources for DL workloads that optimize cost and performance.

7.2 Publications

The following papers were produced during this dissertation. We first list the ones

strongly related to this work, including those under review:

• KÜNAS, C. A.; PADOIN, E. L.; NAVAUX, P. O. A. Accelerating Deep Learning

Model Training on Cloud Tensor Processing Unit. In: 13th International Confer-

ence on Cloud Computing and Services Science, CLOSER 2023, (Accepted).

• KÜNAS, C. A.; PADOIN, E. L.; BEZ, J. L.; CARISSIMI, A.; NAVAUX, P. O. A.

Executando na Nuvem um Detector de Padrões de Acesso de E/S. In: In: ESCOLA

REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-RS), 2023.

Porto Alegre: Sociedade Brasileira de Computação, 2023, (Under Review).

• KÜNAS, C. A.; SERPA, M. S.; BEZ, J. L.; PADOIN, E. L.; NAVAUX, P. O.

A. Offloading the Training of an I/O Access Pattern Detector to the Cloud. In:

2021 International Symposium on Computer Architecture and High Performance

Computing Workshops (SBAC-PADW) (pp. 15-19). IEEE, 2021.

• KÜNAS, C. A.; PINTO, D. R.; NAVAUX, P. O. A.; GRANVILLE, L. Z. Com-

putaçao de Borda versus Computaçao em Nuvem: Impacto do Pré-processamento

de Imagens de Retinas. In: Anais do XXIII Simpósio em Sistemas Computacionais

de Alto Desempenho (WSCAD) (pp. 85-96). SBC, 2022.

67

• KÜNAS, C. A.; PINTO, D. R.; GRANVILLE, L. Z.; SERPA, M. S.; PADOIN,

E. L.; NAVAUX, P. O. A. Edge Computing versus Cloud Computing: Impact on

Retinal Image Pre-processing. In: 2022 International Symposium on Computer

Architecture and High Performance Computing Workshops (SBAC-PADW) (pp.

51-56). IEEE, 2022.

The following papers were also published during this dissertation:

• KÜNAS, C. A.; SERPA, M. S.; PADOIN, E. L.; NAVAUX, P. O. A. Improving

Performance of Long Short-Term Memory Networks for Sentiment Analysis Us-

ing Multicore and GPU Architectures. In: CARLA 2021 - Latin American High

Performance Computing Conference (pp. 34-47). Springer, Cham, 2022.

• SERPA, M.; SILVA, P.; KÜNAS, C.; CARISSIMI, A.; PANETTA, J.; NAVAUX,

P. Energy Efficiency of Reverse Time Migration on HPC Architectures. In: Third

EAGE Workshop on HPC in Americas (Vol. 2022, No. 1, pp. 1-5). European

Association of Geoscientists & Engineers, 2022.

• KÜNAS, C. A.; PADOIN, E. L.; SERPA, M. S.; DIENER, M.; NAVAUX, P. O.

A. Managing the Residual Load Imbalance and Clock Frequency to Save Energy

on Iterative Applications. In: CARLA 2022 - Latin America High-Performance

Computing Conference. Workshop 6: Energy and HPC, Porto Alegre, Brazil, 2022.

• HECK, L. P.; KÜNAS, C. A.; SERPA, M. S.; PADOIN, E. L.; NAVAUX, P. O.

A. Convolutional Neural Networks Applied to Emotions Recognition in Heteroge-

neous Architectures. In: CARLA 2022 - Latin America High-Performance Com-

puting Conference. Workshop 1: Advanced Computing Trends in Latin America,

Porto Alegre, Brazil, 2022.

• KÜNAS, C. A.; DIENER, M.; PADOIN, E. L.; NAVAUX, P. O. A. EnergyLB:

combinando balanceamento de carga dinâmico com técnicas DVFS para reduzir

o consumo de energia. In: In: ESCOLA REGIONAL DE ALTO DESEMPENHO

DA REGIÃO SUL (ERAD-RS), 2023. Porto Alegre: Sociedade Brasileira de Com-

putação, 2023, (Under Review).

• SCHUSSLER, B.S.; RIGON, P. H. C.; SERPA, M. S.; KÜNAS, C. A.; CARIS-

SIMI, A.; PANETTA, J.; NAVAUX, P. O. A. Comparando o Desempenho entre

Computação em Nuvem e Servidor Local na Execução do Método Fletcher. In: In:

ESCOLA REGIONAL DE ALTO DESEMPENHO DA REGIÃO SUL (ERAD-

RS), 2023. Porto Alegre: Sociedade Brasileira de Computação, (Under Review).

68

69

REFERENCES

ABADI, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

ABADI, M. et al. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467, 2016.

ABIODUN, O. I. et al. State-of-the-art in artificial neural network applications: A survey.
Heliyon, Elsevier, v. 4, n. 11, p. e00938, 2018.

BEN-NUN, T.; HOEFLER, T. Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR), ACM New York,
NY, USA, v. 52, n. 4, p. 1–43, 2019.

BEZ, J. L. et al. Detecting i/o access patterns of hpc workloads at runtime. In: 2019
31st International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). [S.l.: s.n.], 2019. p. 80–87.

BEZ, J. L. et al. Twins: Server access coordination in the i/o forwarding layer. In:
IEEE. 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). [S.l.], 2017. p. 116–123.

BOX, G. E.; COX, D. R. An analysis of transformations. Journal of the Royal Statistical
Society: Series B (Methodological), Wiley Online Library, v. 26, n. 2, p. 211–243, 1964.

BUYYA, R. et al. Cloud computing and emerging it platforms: Vision, hype, and real-
ity for delivering computing as the 5th utility. Future Generation computer systems,
Elsevier, v. 25, n. 6, p. 599–616, 2009.

CARNEIRO, T. et al. Performance analysis of google colaboratory as a tool for acceler-
ating deep learning applications. IEEE Access, IEEE, v. 6, p. 61677–61685, 2018.

CHO, M. et al. PowerAI DDL. arXiv preprint arXiv:1708.02188, 2017.

GANDHI, U. D. et al. Sentiment analysis on twitter data by using convolutional neural
network (cnn) and long short term memory (lstm). Wireless Personal Communications,
Springer, p. 1–10, 2021.

GHOSH, R.; GHOSH, K.; MAITRA, S. Automatic detection and classification of diabetic
retinopathy stages using cnn. In: IEEE. 2017 4th International Conference on Signal
Processing and Integrated Networks (SPIN). [S.l.], 2017. p. 550–554.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. [S.l.]: MIT press,
2016. <http://www.deeplearningbook.org>.

GOOGLE. Cloud TPU. 2022. Available from Internet: <https://cloud.google.com/tpu>.
Accessed in: Nov. 09, 2022.

GOOGLE. Cloud TPU System Architecture. 2022. Available from Internet: <https:
//cloud.google.com/tpu/docs/system-architecture-tpu-vm>. Accessed in: May 28, 2022.

http://www.deeplearningbook.org
https://cloud.google.com/tpu
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm

70

GOOGLE. XLA: Google’s Accelerated Linear Algebra library. 2023. [Accessed Jan.
26, 2023]. Available from Internet: <https://www.tensorflow.org/xla>.

GUPTA, S.; ZHANG, W.; WANG, F. Model accuracy and runtime tradeoff in distributed
deep learning: A systematic study. In: IEEE. 2016 IEEE 16th International Conference
on Data Mining (ICDM). [S.l.], 2016. p. 171–180.

HAHNLOSER, R. H. et al. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, Nature Publishing Group, v. 405, n. 6789, p. 947–
951, 2000.

HAQUE, M. R.; LIMA, S. A.; MISHU, S. Z. Performance analysis of different neural net-
works for sentiment analysis on imdb movie reviews. In: IEEE. 2019 3rd International
Conference on Electrical, Computer & Telecommunication Engineering (ICECTE).
[S.l.], 2019. p. 161–164.

HATCHER, W. G.; YU, W. A survey of deep learning: Platforms, applications and emerg-
ing research trends. IEEE Access, IEEE, v. 6, p. 24411–24432, 2018.

JOUPPI, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In:
Proceedings of the 44th annual international symposium on computer architecture.
[S.l.: s.n.], 2017. p. 1–12.

KESKAR, N. S. et al. On large-batch training for deep learning: Generalization gap and
sharp minima. arXiv preprint arXiv:1609.04836, 2016.

KIM, S.; CHUN, J.; DEY, A. K. Sensors know when to interrupt you in the car: Detecting
driver interruptibility through monitoring of peripheral interactions. In: Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Systems. [S.l.:
s.n.], 2015. p. 487–496.

KIM, T. K. T test as a parametric statistic. Korean journal of anesthesiology, Korean
Society of Anesthesiologists, v. 68, n. 6, p. 540, 2015.

KIMM, H.; PAIK, I.; KIMM, H. Performance comparision of tpu, gpu, cpu on google
colaboratory over distributed deep learning. In: IEEE. 2021 IEEE 14th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). [S.l.],
2021. p. 312–319.

KÜNAS, C. A. et al. Computaçao de borda versus computaçao em nuvem: Impacto do
pré-processamento de imagens de retinas. In: SBC. Anais do XXIII Simpósio em Sis-
temas Computacionais de Alto Desempenho. [S.l.], 2022. p. 85–96.

KÜNAS, C. A. et al. Offloading the training of an i/o access pattern detector to the cloud.
In: IEEE. 2021 International Symposium on Computer Architecture and High Per-
formance Computing Workshops (SBAC-PADW). [S.l.], 2021. p. 15–19.

KÜNAS, C. A. et al. Improving performance of long short-term memory networks for
sentiment analysis using multicore and gpu architectures. In: SPRINGER. High Perfor-
mance Computing: 8th Latin American Conference, CARLA 2021, Guadalajara,
Mexico, October 6–8, 2021, Revised Selected Papers. [S.l.], 2022. p. 34–47.

https://www.tensorflow.org/xla

71

LIM, R. Accelerating Machine Learning via Multi-Objective Optimization. Thesis
(PhD) — University of Oregon, 2021.

LIN, G.-M. et al. Transforming retinal photographs to entropy images in deep learning to
improve automated detection for diabetic retinopathy. Journal of ophthalmology, Hin-
dawi, v. 2018, 2018.

MAAS, A. L. et al. Learning word vectors for sentiment analysis. In: ASSOCIATION
FOR COMPUTATIONAL LINGUISTICS. Proceedings of the 49th annual meeting of
the association for computational linguistics: Human language technologies-volume
1. [S.l.], 2011. p. 142–150.

MALISZEWSKI, A. M. et al. Performance and cost-aware hpc in clouds: A network
interconnection assessment. In: 2020 IEEE Symposium on Computers and Commu-
nications (ISCC). [S.l.: s.n.], 2020. p. 1–6.

MALTA, E. M. Selecting efficient virtual machines for training deep learning models
on the cloud: Seleção de máquinas virtuais eficientes para o treinamento de modelos
de aprendizado profundo na nuvem. Dissertation (Master) — Universidade Estadual
de Campinas, Instituto de Computação, Campinas, SP, 2021.

MALTA, E. M.; AVILA, S.; BORIN, E. Exploring the cost-benefit of aws ec2 gpu in-
stances for deep learning applications. In: Proceedings of the 12th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing. [S.l.: s.n.], 2019. p. 21–29.

MAYER, R.; JACOBSEN, H.-A. Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools. ACM Computing Surveys (CSUR), ACM New York,
NY, USA, v. 53, n. 1, p. 1–37, 2020.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, Springer, v. 5, p. 115–133, 1943.

MELL, P.; GRANCE, T. The NIST definition of cloud computing. 2011. (NIST Special
Publication 800-145).

MOHAMMADIAN, S.; KARSAZ, A.; ROSHAN, Y. M. Comparative study of fine-
tuning of pre-trained convolutional neural networks for diabetic retinopathy screening.
In: IEEE. 2017 24th National and 2nd International Iranian Conference on Biomed-
ical Engineering (ICBME). [S.l.], 2017. p. 1–6.

MOOLAYIL, J. An introduction to deep learning and keras. In: Learn Keras for Deep
Neural Networks. [S.l.]: Springer, 2019. p. 1–16.

MUTINDA, J.; MWANGI, W.; OKEYO, G. Sentiment analysis of text reviews using
lexicon-enhanced bert embedding (lebert) model with convolutional neural network. Ap-
plied Sciences, MDPI, v. 13, n. 3, p. 1445, 2023.

OVTCHAROV, K. et al. Accelerating deep convolutional neural networks using special-
ized hardware. Microsoft Research Whitepaper, Citeseer, v. 2, n. 11, p. 1–4, 2015.

PAKDEL, R.; HERBERT, J. Adaptive cost efficient framework for cloud-based machine
learning. In: IEEE. 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC). [S.l.], 2017. v. 2, p. 155–160.

72

PEDREGOSA, F. et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research, JMLR. org, v. 12, p. 2825–2830, 2011.

PINTO, C. et al. Hoard: A distributed data caching system to accelerate deep learning
training on the cloud. arXiv preprint arXiv:1812.00669, 2018.

QAISAR, S. M. Sentiment analysis of imdb movie reviews using long short-term memory.
In: IEEE. 2020 2nd International Conference on Computer and Information Sciences
(ICCIS). [S.l.], 2020. p. 1–4.

ROLOFF, E. Viability and performance of high-performance computing in the cloud.
Dissertation (Master) — Universidade Federal do Rio Grande do Sul, Instituto de Infor-
mática, Porto Alegre, RS, 2013.

ROSSUM, G. V.; DRAKE, F. L. The python language reference manual. [S.l.]: Net-
work Theory Ltd., 2011.

SERVICES, A. W. Amazon SageMaker. 2022. Available from Internet: <https://aws.
amazon.com/sagemaker/resources/>. Accessed in: Nov. 09, 2022.

SHARMA, V.; GUPTA, G. K.; GUPTA, M. Performance benchmarking of gpu and tpu
on google colaboratory for convolutional neural network. In: SPRINGER. Applications
of Artificial Intelligence in Engineering: Proceedings of First Global Conference on
Artificial Intelligence and Applications (GCAIA 2020). [S.l.], 2021. p. 639–646.

SPEARMAN, C. The proof and measurement of association between two things. The
American Journal of Psychology, v. 15, p. 72–101, 1904.

SUBRAMANIAN, R. R. et al. A survey on sentiment analysis. In: IEEE. 2021 11th
International Conference on Cloud Computing, Data Science & Engineering (Con-
fluence). [S.l.], 2021. p. 70–75.

TIRUMALA, A. et al. Iperf: the tcp/udp bandwidth measurement tool (2005). URL:
http://iperf. sourceforge. net, 2005.

VIELMA, C.; VERMA, A.; BEIN, D. Single and multibranch cnn-bidirectional lstm for
imdb sentiment analysis. In: SPRINGER. 17th International Conference on Informa-
tion Technology–New Generations (ITNG 2020). [S.l.], 2020. p. 401–406.

VOETS, M.; MØLLERSEN, K.; BONGO, L. A. Reproduction study using public data
of: Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. PloS one, Public Library of Science San Fran-
cisco, CA USA, v. 14, n. 6, p. e0217541, 2019.

WANG, W. et al. Singa: Putting deep learning in the hands of multimedia users. In:
Proceedings of the 23rd ACM international conference on Multimedia. [S.l.: s.n.],
2015. p. 25–34.

WANG, Y. E.; WEI, G.-Y.; BROOKS, D. Benchmarking tpu, gpu, and cpu platforms for
deep learning. arXiv preprint arXiv:1907.10701, 2019.

WANG, Z. et al. Various frameworks and libraries of machine learning and deep learning:
a survey. Archives of computational methods in engineering, Springer, p. 1–24, 2019.

https://aws.amazon.com/sagemaker/resources/
https://aws.amazon.com/sagemaker/resources/

73

WIDAYAT, W.; ADJI, T. B. et al. The effect of embedding dimension reduction on in-
creasing lstm performance for sentiment analysis. In: IEEE. 2018 International Semi-
nar on Research of Information Technology and Intelligent Systems (ISRITI). [S.l.],
2018. p. 287–292.

WONGPANICH, A. et al. Training efficientnets at supercomputer scale: 83% imagenet
top-1 accuracy in one hour. In: IEEE. 2021 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops (IPDPSW). [S.l.], 2021. p. 947–950.

YENTER, A.; VERMA, A. Deep cnn-lstm with combined kernels from multiple branches
for imdb review sentiment analysis. In: IEEE. 2017 IEEE 8th Annual Ubiquitous
Computing, Electronics and Mobile Communication Conference (UEMCON). [S.l.],
2017. p. 540–546.

YEO, I.-K.; JOHNSON, R. A. A new family of power transformations to improve nor-
mality or symmetry. Biometrika, Oxford University Press, v. 87, n. 4, p. 954–959, 2000.

YING, C. et al. Image classification at supercomputer scale. arXiv preprint
arXiv:1811.06992, 2018.

YOU, Y. et al. Large batch optimization for deep learning: Training bert in 76 minutes.
arXiv preprint arXiv:1904.00962, 2019.

YOU, Y. et al. Imagenet training in minutes. In: Proceedings of the 47th International
Conference on Parallel Processing. [S.l.: s.n.], 2018. p. 1–10.

YOU, Y. et al. Fast deep neural network training on distributed systems and cloud tpus.
IEEE Transactions on Parallel and Distributed Systems, IEEE, v. 30, n. 11, p. 2449–
2462, 2019.

74

75

APÊNDICE A — RESUMO EM PORTUGUÊS

In this chapter, we present a summary of this master thesis in the portuguese lan-

guage, as required by the PPGC Graduate Program in Computing.

Neste capítulo, é apresentado um resumo desta dissertação de mestrado na língua

portuguesa, como requerido pelo Programa de Pós-Graduação em Computação.

A.1 Introdução

As aplicações científicas de vários domínios de pesquisa (por exemplo, ciências

da saúde, química, física, petróleo, clima) impõem requisitos de desempenho cada vez

maiores para o campo da computação de alto desempenho (HPC) (MALISZEWSKI et

al., 2020). Além disso, novas cargas de trabalho estão entrando nas instalações de HPC,

de Big Data a aplicativos de Aprendizado de Máquina (ML), tornando os sistemas cada

vez mais complexos. Esses requisitos justificam atualizações contínuas e implantação de

novas plataformas de grande escala. À medida que a complexidade desses sistemas tende

a crescer, também aumenta o número de parâmetros e fatores que podem afetar direta

ou indiretamente o desempenho. Os modelos de Deep Learning (DL) têm sido cada vez

mais usados para resolver problemas complexos. Porém, a complexidade imposta às apli-

cações acaba gerando overhead para a máquina local, que por sua vez tem seus recursos

computacionais disputados por aplicações científicas e pelo treinamento ou atualização

destes modelos. Com o aumento da complexidade e da quantidade de dados, o treina-

mento destes modelos tem exigido sistemas de computação cada vez mais poderosos com

altos custos de aquisição e manutenção.

Uma alternativa natural para reduzir estes custos é o uso de serviços e/ou recur-

sos computacionais na nuvem, um modelo de negócio que permite o acesso a diversos

sistemas de informática, inclusive sistemas de alto desempenho, mediante pagamento por

uso, sem que o usuário tenha que arcar com os custos de aquisição do equipamento (RO-

LOFF, 2013). No entanto, escolher o sistema de computador mais adequado para treinar

um modelo de DL na nuvem é um processo trabalhoso. A escolha deve considerar fa-

tores como tempo e custo de execução (PAKDEL; HERBERT, 2017). Diferentemente

dos sistemas tradicionais, a Computação em Nuvem não requer investimentos iniciais em

infraestrutura e licenças de software. Devido à elasticidade e ao modelo de faturamento

de pagamento por uso, o custo total de manutenção pode ser próximo a zero quando os

76

recursos não estão em uso. Ademais, os custos de instalações, depreciação de hardware,

consumo de energia e resfriamento são eliminados ou, pelo menos, bastante reduzidos.

Ainda, a quantidade de recursos disponíveis é virtualmente ilimitada. Portanto, a mo-

tivação de mover aplicações para a nuvem é reduzir estes custos e, ao mesmo tempo,

aumentar a escalabilidade e a disponibilidade.

Além disso, provedores de serviço de Nuvem Computacional atualizam frequen-

temente seus parques computacionais com novos aceleradores, como GPUs e TPUs, o

que viabiliza o treinamento de modelos cada vez maiores e com custos menores à medida

que a tecnologia avança. Este tipo de benefício é difícil de se obter com parques com-

putacionais locais já que estes equipamentos são muito custosos e a renovação do parque

computacional em pequenas empresas e universidades não ocorre com a frequência que

novas versões destes equipamentos são lançadas. Assim, nosso trabalho visa a execução

do treinamento de algoritmos de ML/DL na Nuvem, uma das tarefas que mais consome

recursos computacionais e que pode demorar dias, evitando sobrecarregar o sistema lo-

cal, que muitas vezes está altamente sobrecarregado por muitas aplicações científicas em

execução1.

A.1.1 Contribuições

O principal objetivo de nossa pesquisa é otimizar a execução do treinamento de

algoritmos de Machine Learning (ML) e Deep Learning (DL) usando recursos de compu-

tação de alto desempenho na nuvem. Para isso, nossas principais contribuições são:

• Adaptamos e migramos aplicações DL para explorar recursos de Cloud Computing;

• Otimizamos a execução destas aplicações na Cloud utilizando Tensor Processing

Units (TPUs);

• Estudamos o desempenho, a precisão e o custo do uso de TPUs na nuvem, identifi-

cando desafios.

A.2 Metodologia

Após o grande sucesso na resolução de problemas de classificação de imagens, a

aplicação de técnicas de aprendizado de máquina ganhou velocidade e se espalhou para

1Projetos em andamento no Supercomputador SDumont: https://sdumont.lncc.br/projects_statistics.php

77

outras áreas. O treinamento de modelos maaiores e mais complexos, hardwares acelera-

dores tornam-se ferramentas essenciais. Com altos custos de aquisição de plataformas de

alto desempenho, uma alternativa é a utilização de recursos de computação em nuvem.

Neste paradigma, o usuário paga apenas pelo uso, eliminando custos de aquisição de equi-

pamentos. Nesse contexto, nosso trabalho visa descarregar o treinamento de algoritmos

ML/DL para a nuvem para evitar a sobrecarga do sistema local.

Para isso, adaptamos e migramos três aplicativos reais para a nuvem. Estudamos

cada aplicativo cuidadosamente e identificamos as seções de código que precisavam ser

modificadas para serem executadas na TPU. A intenção é adaptar o modelo o máximo

possível, mas manter sua estrutura original, ou seja, sem adicionar ou remover camadas

ou modificar hiperparâmetros. Portanto, as alterações devem ser oportunas e específicas

para que o algoritmo possa se conectar ao dispositivo e permitir o treinamento distribuído

em todos os núcleos de TPU disponíveis.

Para cada aplicação, coletamos métricas de desempenho e as comparamos com a

linha de base. O desempenho é medido pelo tempo total de treinamento em segundos.

Métricas de acurácia também foram analisadas para validar a migração da aplicação, ou

seja, se o modelo apresentar índices de acurácia semelhantes aos encontrados na linha de

base ou mesmo na literatura, a migração do modelo foi bem-sucedida.

Para analisar a relação custo-benefício do uso do Cloud TPU para treinamento de

modelo dimensionamos o valor do desempenho com o preço por hora. O custo por hora

de uma TPUv3 é de USD 8.00. O valor para o cluster foi calculado da seguinte forma.

Consideramos o custo de hardware de uma máquina de $25.000 e que a máquina será

usada por um ano, então chegamos a um custo de hardware por hora de $2, 85.

A.3 Resultados e Conclusão

Nesta tese, procuramos avaliar o desempenho e a precisão de três aplicações des-

carregando de forma assíncrona o treinamento para a nuvem usando dispositivos TPU.

Essa abordagem ajuda a aliviar a contenção de recursos locais de alta demanda de HPC,

permitindo que eles se concentrem na execução de aplicativos. Observamos resultados

promissores modificando os modelos de rede neural para treinamento em dispositivos

TPU. Também avaliamos o custo-benefício da execução de tais aplicações nesses dispo-

sitivos.

O classificador de padrão de acesso de E/S (NN-TWINS) apresentou precisão

78

acima de 99% para os conjuntos de dados de treinamento e teste nos três ambientes com-

putacionais que exploramos. O tempo médio de treinamento desse modelo no TPUv3

foi ≈ 1, 68× mais rápido do que no P100. A execução de NN-TWINS em dispositivos

Cloud TPU, embora seja 41% mais cara que a execução local, ainda é uma solução viável

porque a fase de (re)treinamento pode demorar mais para ser concluída e pode ser feita de

forma assíncrona em segundo plano. Além disso, é importante lembrar que a quantidade

de dados coletados para treinar este modelo será maior em um ambiente de produção. O

modelo de Análise de Sentimentos (RNN-SA) apresentou precisão média de ≈ 97% para

o treinamento e ≈ 89% para os conjuntos de dados de teste nos três ambientes compu-

tacionais que exploramos. O desempenho do TPUv3 foi ≈ 5, 74× mais rápido do que

no P100. Em comparação com o cluster local, a nuvem é cerca de 51% mais eficiente

executando a mesma quantidade de trabalho para este aplicação.

Para o modelo de detecção de retinopatia diabética (IC-DR), o TPUv3 demonstrou

uma melhoria de 5, 63× em termos de tempo médio de treinamento em comparação com

o P100. Esse ganho é alcançado sem nenhuma otimização de código. Além disso, em-

bora haja um tempo gasto para transferir o conjunto de dados para a nuvem para executar

esse modelo no dispositivo TPU, o desempenho do TPUv3 ainda é bastante considerá-

vel, cerca de 4, 95× mais efetivo. O tamanho dos dados pode influenciar negativamente

no tempo de execução da aplicação e congestionar a interligação da rede. Assim, o pré-

processamento de dados no Edge pode contribuir para a economia de largura de banda.

Estudamos esse desafio na Seção 5, onde reduzimos consideravelmente o tamanho total

dos dados. A acurácia do modelo de detecção da retinopatia diabética, que é de 85%,

é considerada adequada. Isso é apoiado por outros estudos que relataram taxas de acu-

rácia comparáveis. Deve-se enfatizar que a detecção oportuna da retinopatia diabética é

essencial para prevenir complicações graves relacionadas à visão.

Nossos resultados fornecem um bom ponto de partida para aqueles interessados

em melhorar o desempenho de seus modelos de aprendizado profundo.

	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Contributions of this research
	1.2 Document Organization

	2 Background
	2.1 Cloud Computing
	2.1.1 Essential Characteristics
	2.1.2 Service Models
	2.1.3 Features of Cloud Computing

	2.2 Hardware Accelerators in Cloud Environments
	2.2.1 FPGAs - Field-Programmable Gate Arrays
	2.2.2 GPUs - Graphic Processing Units
	2.2.3 TPUs - Tensor Processing Units

	2.3 Main deep learning concepts
	2.3.1 Training deep learning models
	2.3.1.1 Model partitioning strategies for distributed training

	2.3.2 Training deep learning models in the cloud

	2.4 Concluding Remarks

	3 Related Work
	3.1 Concluding Remarks

	4 Methodology
	4.1 I/O Access Pattern Detector
	4.1.1 NN-TWINS Architecture

	4.2 Text Classification
	4.2.1 RNN-SA Architecture

	4.3 Image classification
	4.3.1 IC-DR Architecture

	4.4 Software Setting
	4.5 Experimental Platforms

	5 Challenges of Employing Cloud Hardware Accelerators
	6 Experimental Evaluation
	6.1 Performance Evaluation
	6.1.1 NN-TWINS
	6.1.2 RNN-SA
	6.1.3 IC-DR

	6.2 Accuracy Evaluation
	6.2.1 NN-TWINS
	6.2.2 RNN-SA
	6.2.3 IC-DR

	6.3 Cost Evaluation
	6.4 Discussion

	7 Conclusion and Future Work
	7.1 Future work
	7.2 Publications

	References
	Apêndice A — Resumo em Português
	A.1 Introdução
	A.1.1 Contribuições

	A.2 Metodologia
	A.3 Resultados e Conclusão

