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ABSTRACT

Identifying cancer driver genes (CDGs) is crucial for improving the understanding of

cancer biology and developing effective diagnostic and treatment strategies. However,

accurately identifying CDGs from a vast array of somatic mutations remains a challenge

despite the substantial amount of genomic data available. Recent developments in graph-

based machine learning (ML) methods, such as Graph Neural Networks (GNNs), have

made them powerful tools for analyzing protein-protein interaction (PPI) networks and

performing predictions at the node level of biological networks. However, the use of

GNNs for identifying candidate CDGs is still underexplored. This study aims to explore

the predictive power of GNNs and develop a practical approach for predicting CDGs by

integrating PPI networks and multi-omics data across several cancer types. We investigate

data-centric and algorithmic decisions involved in model training to understand the poten-

tial of GNNs for this prediction task and to identify a robust methodology for classifying

genes as cancer-causing or neutral in 16 types of cancer. Three primary decision levels are

addressed: (i) node feature definition, (ii) class imbalance mitigation, and (iii) choice of

the learning algorithm. We extensively analyze different GNN models trained through a

semi-supervised approach, using six different PPI networks and four types of omics data:

single nucleotide variant, copy number variation, DNA methylation, and gene expression.

These models are contrasted with the performance achieved by traditional ML algorithms

using regular structured data for model development. Following the experimental com-

parative analysis, we explore ensemble learning strategies and hyperparameter tuning to

improve the predictive power of the top-performing model. Our results demonstrate that

GNNs outperform traditional ML approaches in predicting CDGs, and that adding node

centrality measures as node features improves learning outcomes even for graph-based

learning methods. We also highlight the significant contribution of ensemble learning

methodologies in improving performance metrics by aggregating predictions of models

trained on multiple PPI networks. Finally, using the proposed approach, we provide pre-

dictions for unlabeled genes regarding their potential role as CDGs. Overall, this study

provides relevant insights into using GNNs to predict CDGs and highlights Graph Con-

volutional Networks as an effective algorithm for this task.

Keywords: Cancer driver genes. prediction model. machine learning. bioinformatics.

graph-based learning. graph neural networks.



Predição de genes causadores de câncer com Graph Neural Networks: uma análise

comparativa e um modelo baseado em Graph Convolutional Networks

RESUMO

Identificar os genes causadores de câncer (CDGs, de cancer driver genes) é crucial para

melhor compreender a biologia do câncer e desenvolver estratégias eficazes de diagnós-

tico e tratamento. No entanto, a identificação precisa de CDGs a partir de uma vasta gama

de mutações somáticas continua sendo um desafio, apesar da quantidade substancial de

dados genômicos disponíveis. Desenvolvimentos recentes em métodos de aprendizado de

máquina (AM) baseados em grafos, como Graph Neural Networks (GNNs), tornaram-se

ferramentas poderosas para analisar redes de interação proteína-proteína (PPI) e realizar

previsões em nível de nós. No entanto, o uso de GNNs para identificar CDGs candidatos

ainda é pouco explorado. Este estudo visa explorar o poder preditivo de GNNs no con-

texto de predição de CDGs, desenvolvendo uma abordagem prática baseada na integração

de redes PPI e dados multi-ômicos em vários tipos de câncer. Investigamos decisões cen-

tradas em dados e algorítmicas envolvidas no treinamento de modelos para entender o po-

tencial de GNNs para essa tarefa de predição e para identificar uma metodologia robusta

para classificar genes como CDGs ou neutros em 16 tipos de câncer. Três níveis primários

de decisão são abordados: (i) definição de atributos do nó, (ii) mitigação do desequilíbrio

de classes e (iii) escolha do algoritmo de aprendizado. Analisamos extensivamente di-

ferentes modelos de GNNs treinados por meio de uma abordagem semi-supervisionada,

usando seis redes PPI diferentes e quatro tipos de dados ômicos: variantes de nucleotí-

deos únicos, variação do número de cópias, metilação do DNA e expressão gênica. Esses

modelos são comparados com o desempenho alcançado pelos algoritmos tradicionais de

AM, treinados sobre dados estruturados regulares. Após a análise comparativa experi-

mental, exploramos estratégias de aprendizado ensemble e ajuste de hiperparâmetros para

melhorar o poder preditivo do modelo de melhor desempenho. Nossos resultados de-

monstram que as GNNs superam as abordagens tradicionais de AM na previsão de CDGs

e que a adição de medidas de centralidade de nós como atributos dos nós no grafo melhora

os resultados de aprendizado, mesmo para métodos de aprendizado baseados em grafos.

Também destacamos a contribuição significativa das metodologias de aprendizado ensem-

ble na melhoria das métricas de desempenho, agregando previsões de modelos treinados

em várias redes PPI. Finalmente, usando a abordagem proposta, fornecemos previsões



para genes não marcados em relação ao seu papel potencial como CDGs. No geral, este

estudo fornece informações relevantes sobre o uso de GNNs para prever CDGs e destaca

as Redes Convolucionais de Grafos como um algoritmo eficaz para esta tarefa.

Palavras-chave: Genes causadores de câncer, modelo preditivo, aprendizado de má-

quina, bioinformática, aprendizado baseado em grafos, rede neural de grafo.
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1 INTRODUCTION

Cancer is a complex and heterogeneous disease that arises from a combination of

genetic and environmental factors. According to the International Agency for Research on

Cancer (IARC)1, approximately one in five individuals worldwide develop cancer during

their lifetime. Unfortunately, the incidence and mortality of cancer are rapidly increasing

(FERLAY et al., 2020), with the GLOBOCAN 2020 projecting 28.4 million new cases of

cancer globally by 2040, which represents a 47% increase from 2020 (BRAY et al., 2018).

Moreover, cancer is a leading cause of deaths across the globe, accounting for nearly 10

million deaths in 2020. A recent study showed that cancer was the first or second cause of

premature death (i.e., under the age of 70) in 112 of 183 countries analyzed, and ranked

third or fourth in other 23 countries (FERLAY et al., 2020), as shown in Figure 1.1. Thus,

early detection and treatment of cancer lesions are crucial in reducing cancer mortality

rates and the burden of this major public health problem.

Figure 1.1 – National ranking of cancer as a cause of premature death in 2019.

Source: Ferlay et al. (2020)

As a multifactorial disease, several factors may impact cancer risk. The risk

factors include environmental and lifestyle factors, such as UV radiation, air pollution,

cigarette smoking, hormone therapy, physical activity, and dietary patterns (WU et al.,

2018). Nonetheless, cancer is largely the result of acquired genetic and epigenetic changes

that culminate in abnormal and uncontrolled cell growth (TOMASETTI; VOGELSTEIN,

2015; ANANDAKRISHNAN et al., 2019). Somatic mutations, which are genetic alter-

ations acquired during an individual’s lifetime, are the most significant contributors to

1<https://www.iarc.who.int/>

https://www.iarc.who.int/
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tumorigenesis (MARTÍNEZ-JIMÉNEZ et al., 2020). Specifically, the somatic mutations

that confer a selective growth advantage to a tumor cell, called “driver” mutations, reside

in a subset of genes known as cancer driver genes (CDGs) (STRATTON; CAMPBELL;

FUTREAL, 2009). However, the majority of somatic mutations are neutral or “passen-

ger” mutations that have no impact on cancer initiation and progression (STRATTON;

CAMPBELL; FUTREAL, 2009; VOGELSTEIN et al., 2013). Thus, identifying all genes

carrying mutations that can drive carcinogenesis is a major goal in cancer research.

Distinguishing between driver mutations and passenger mutations is a challeng-

ing task, despite the increasing availability of cancer genomic datasets. The hetero-

geneity of mutation rate and mutation types across tumors pose the need for rigorous

analytical methods that can effectively deal with these issues and also handle the natu-

ral challenges of genomic data analysis (MARTÍNEZ-JIMÉNEZ et al., 2020). Various

computational approaches have been proposed to improve the detection of driver mu-

tations and CDGs from genomics data. Machine learning (ML) algorithms have been

particularly successful in predicting CDGs, as noted in a recent survey (ANDRADES;

RECAMONDE-MENDOZA, 2022). However, advanced deep learning (DL) techniques

are gaining momentum in the field by enabling the construction of end-to-end models that

can handle complex data.

Among DL methods, there has been a growing interest in the use of graph-based

learning algorithms for prediction tasks in bioinformatics due to their ability to learn pat-

terns from graph-structured data modeling the complex relationship and manifold inter-

actions among biological entities (GEORGOUSIS; KENNING; XIE, 2021). Specifically,

graph neural networks (GNN) are emerging as key tools since they have shown promise

in learning in the presence of irregular geometric shapes commonly found in biology,

such as in protein-protein interaction (PPI) networks. Moreover, these algorithms allow

integrating node-level features into the learning process, creating rich node embeddings

that encompass information from nodes’ properties and local structure in the graph.

However, there is limited exploration of GNNs for predicting CDGs across dif-

ferent cancer types. Existing research has shown the potential of GNNs to integrate PPI

networks and high-throughput omics data, such as transcriptomic and epigenetic data

from healthy and tumor tissues, to identify CDGs more accurately (SCHULTE-SASSE

et al., 2019; SCHULTE-SASSE et al., 2021). Nevertheless, several data-centric strate-

gies in GNN-based models’ development, such as node feature vectors, node centrality

measures, and class imbalance mitigation methods, remain unexplored. Additionally, pre-
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vious works have not investigated the concept of ensemble learning alongside GNNs for

CDGs prediction. Therefore, further research is needed to determine the effectiveness of

these strategies in improving CDGs prediction.

In light of this, the present study aims to propose an effective approach for pre-

dicting cancer driver genes (CDGs) by exploring graph neural network (GNN) algorithms

that integrate protein-protein interaction (PPI) networks and multi-omics data. Using a

semi-supervised approach, we conducted a thorough investigation towards data-centric

and algorithm-centric decisions during model training to better understand the potential

of GNNs and identify a robust methodology capable of classifying genes as cancer drivers

or passengers across 16 cancer types. Moreover, we selected one top-performing GNN

algorithm, namely Graph Convolution Network (GCN), and carried out an extensive hy-

perparameter optimization process with six distinct PPI networks, comparing the perfor-

mance among these models and also against ensemble-based approaches proposed in our

work. Our contributions can be summarized as follows:

• Evaluation of three GNN algorithms and four traditional ML algorithms for three

PPI networks in controlled experiments;

• Comparative analysis among different node feature vectors defined from four types

of omics data;

• Investigation of the impact of including node centrality measures as node features

in the performance of GNN models;

• Comparison among three strategies to handle class imbalance in GNNs;

• Proposal and evaluation of ensemble-based GCN approaches for CDG prediction.

The remainder of the work is organized as follows: Chapter 2 provides a the-

oretical foundation for the biological and computational aspects underlying this work.

Chapter 3 conducts a comprehensive and critical literature review, which has also been

published as a survey paper in the Briefings in Bioinformatics journal (ANDRADES;

RECAMONDE-MENDOZA, 2022). Chapter 4 details the materials and methods em-

ployed in the study, for both the comprehensive experimental investigation and the de-

velopment of GNN-based prediction models for CDGs. The results are presented in two

chapters. Chapter 5 reports a series of experiments to compare algorithms and data strate-

gies for CDGs prediction, and Chapter 6 provides a detailed analysis of fine-tuned GCN-

based models for this task. Finally, the conclusions and perspectives for future works are

summarized in Chapter 7.
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2 THEORETICAL BACKGROUND

This chapter provides a theoretical background with the main concepts needed

for the understanding of this work. The chapter is divided into two parts: the first part

provides a brief biological summary that aims to situate the reader into the research prob-

lem, its relevance, and types of data involved; the second part presents an overview of the

computational aspects of the work, describing the algorithms and techniques employed.

2.1 Biological concepts

Human cells contain a complete set of molecular instructions for life that are en-

coded in deoxyribonucleic acid (DNA) molecules (ALBERTS et al., 2002). DNA serves

as the storage material for genetic information and is the chemical structure that transmits

these instructions from one generation to the next. Each DNA molecule is composed of

a sequence of nucleotides that are linked end to end, forming a long chain. These nu-

cleotides are represented by a single-letter code that stands for the nitrogen-containing

base they carry: adenine (A), guanine (G), cytosine (C), and thymine (T).

The human genome, which is made up of a relatively small number of long

DNA molecules arranged into structures called chromosomes, contains specific regions

called genes that are known as the functional units of DNA (SIMPSON, 2022). Genes

play a crucial role in encoding the instructions necessary to produce functional ribonu-

cleic acid (RNA) molecules (noncoding RNA genes) or proteins (protein-coding genes)

(SALZBERG, 2018). The production of functional products from instructions carried by

a gene is a process known as gene expression, and was formalized more than 50 years

ago, when Francis Crick enunciated the central dogma of molecular biology explaining

the flow of genetic information within a biological system (CRICK, 1970).

The first step of gene expression occurs when the genetic information encoded in

the DNA is used to produce an RNA molecule through a transcription process (Figure

2.1). When this molecule is a messenger RNA (mRNA), it can be decoded into a protein

in a second step known as translation. Although, initially, only proteins were recognized

as the final functional product of gene expression, nowadays it is known that noncoding

RNA molecules may also play a vital role for organisms functioning and diseases, being

thus recognized as functional products of noncoding genes. Besides transcription and

translation, the central dogma of molecular biology also includes a DNA replication pro-
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cess, in which two identical replicas of DNA are produced from a single DNA molecule.

Figure 2.1 – Central dogma of molecular biology

DNA ProteinRNA

Genomics Transcriptomics Proteomics

Transcription TranslationReplication

Source: Prepared by the author

Proper gene function is essential for life, but when the gene sequence or activity

(i.e., gene expression) is disrupted by biological or environmental factors, it can lead to

diseases. Genomic instability, which refers to an increased propensity for changes in the

genome during the life cycle of cells, is influenced by genetics to varying degrees, as noted

by Shen (2011). Although all diseases are to some extent influenced by the genetic consti-

tution of individuals, making them more or less susceptible to disorders, it is challenging

to identify the genetic changes associated with a particular disease due to the vast number

of variations between human genomes (JACKSON et al., 2018). Moreover, a disease may

result from multiple variants in the DNA sequence involving one or a few nucleotides and

also from environmentally induced heritable changes in gene expression that do not result

from a change in the DNA sequence (known as epigenetic dysregulation).

One disease that arises from genetic and epigenetic dysregulation is cancer, a con-

dition characterized by uncontrolled cell growth and metastasis. As there are many po-

tential causes of cancer, the field of molecular biology is continually developing genome

sequencing and computational tools to better understand cancer phenotypes and the un-

derlying genotypic or molecular changes (SANT’ANNA et al., 2018). The next sections

review relevant concepts related to the cancer genome, including the genomic changes

related to the development of the disease and the types of genome-wide biological data

useful for their investigation.

2.1.1 The cancer genome

Cancer is a group of complex diseases caused by genetic changes that result in

abnormal and uncontrolled cell growth (STRATTON; CAMPBELL; FUTREAL, 2009).

The genetic changes may be due to inherited genetic variation or acquired somatic mu-
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tations, that is, DNA alterations that occur after conception. I classical tumorigenesis

model, cancer is described as multiple and successive clonal expansions driven by the

accumulation of genomic alterations that are preferentially selected by the tumor envi-

ronment (YATES; CAMPBELL, 2012). These alterations may include various forms

of mutations on specific genes, amplifications, deletions or rearrangements of chromo-

some segments, copy number changes that cause gain or loss of an entire chromosome(s),

among others (SHEN, 2011). As a consequence, the functioning of protein-coding genes

or regulatory components of the genome can be affected, particularly with regard to the

control of cell growth and division (STRATTON; CAMPBELL; FUTREAL, 2009). Ul-

timately, cancer cells acquire the ability to invade neighboring tissues and metastasize,

which makes cancer such a dangerous disease.

Since the first sequencing of the cancer genome in 2008, research has shown

promising potential to advance prevention, diagnosis, prognosis, and treatment by pro-

moting a better understanding about the fundamental biology of cancer (MWENIFUMBO;

MARRA, 2013). An important advance was the description of several features common

to most cancer cells that affect a handful of essential cellular functions and contribute to

abnormal and uncontrolled cell growth, referred to as “cancer hallmarks”.

According to Hanahan (2022), these hallmarks comprise “the acquired capabilities

for sustaining proliferative signaling, evading growth suppressors, resisting cell death,

enabling replicative immortality, inducing/accessing vasculature, activating invasion and

metastasis, reprogramming cellular metabolism, and avoiding immune destruction”.

However, genome-wide analyses of tumors also revealed that cancer genome is

characterized by a significant heterogeneity between and even within tumor types (VO-

GELSTEIN et al., 2013). The mutation load in cancer is abundant and complex - although

many variations may be found between different genomes, not all of them are implicated

in cancer. Moreover, it has been observed that most common cancers are associated with

several genetic mutations that occur at low frequencies (YATES; CAMPBELL, 2012).

Thus, one of the great challenges of cancer research is precisely discovering the “drivers”

of the disease, such as mutations that induce tumorigenesis, and the genes whose mutated

forms affect the normal functioning of a ser of essential cellular processes - known as

“cancer driver genes” (CDGs) (MARTÍNEZ-JIMÉNEZ et al., 2020).

Cancer driver genes can be of two types based on their role in cancer progression:

(i) oncogenes (OGs), which promote uncontrolled cell growth and division, or (ii) tumor

supressor genes (TSGs), which prevent the cell from undergoing uncontrolled division
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(CHANDRASHEKAR et al., 2020). Therefore, the abnormalities in the cell cycle pro-

cesses that control the tumor formation and development are due to genomic alterations

that cause gain-of-function of OGs together with the loss-of-function of TSGs.

2.1.2 Driver and passenger mutations

As discussed in the previous section, the task of characterizing and understanding

somatic genomic alterations and their relation with disease represents a significant chal-

lenge in cancer biology. According to Stratton, Campbell and Futreal (2009), the DNA

sequence of most human cells acquire a set of differences from its progenitor fertilized

egg through somatic mutations. Somatic mutations in cancer genome may include distinct

classes of DNA sequence changes (STRATTON; CAMPBELL; FUTREAL, 2009):

• Single nucleotide variant (SNV) refers to a simple substitution of a single nu-

cleotide for another. When this point mutation affects a coding region but does lead

to amino acid substitution, the SNV is referred to as synonymous (or silent) mu-

tation. When the nucleotide substitution alters the encoded amino acid, the SNV

is called a nonsynonymous mutation. Nonsynonymous mutations can be further

classified into missense or nonsense, depending on whether the nucleotide substi-

tution results in the codon1 sequence for a different amino acid that affect protein

function in varying degrees (missense), or in a stop codon (nonsense) that generates

truncated, incomplete, and nonfunctional protein products.

• Insertion or deletions (indels) refer to a small length of DNA (usually less than

50 base pairs) that is inserted into or deleted from the genome. When the length

of the indel is not a multiple of three (i.e., the length of a codon), this causes a

frameshit that may drastically alter the mRNA sequence and, thus, the product of

RNA translation.

• Copy number alteration (CNA) refers to gain or loss of large (greater than 50

base pairs) DNA sequences due to genomic rearrengements such as deletions or

duplications. CNAs may encompass gene sequences, resulting in gene duplication

or deletion. It is sometimes also referred to as copy number variation (CNV).

Occasionally, due to the mutations accumulated over the lifetime, a single cell

may gain the capability to proliferate and survive more effectively than its neighbours.

1Codon is a sequence of three consecutive nucleotides that codes for a specific amino acid.
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The so-called “driver” mutations can confer cells the advantage of growing uncontrol-

lably, thus driving tumorigenesis. Although it is straightforward to define a cancer driver

gene as one that carries a driver mutation that provides a selective growth advantage to

a cell, a plethora of somatic abnormalities present in the cell is not necessarily linked

to the cancer initiation or progression. When a mutation does not provide an advantage

in clonal growth and therefore does not contribute to cancer development, it is referred

to as a “passenger” mutation (VOGELSTEIN et al., 2013). In summary, a driver muta-

tion induces uncontrolled cell proliferation and tumor growth, while a passenger mutation

does not (STRATTON; CAMPBELL; FUTREAL, 2009). Since passenger mutations fre-

quently arise during cell division, they are also present in cancer genomes, but they have

no functional impact.

Therefore, the key analytical challenge in the study of cancer genome is to differ-

entiate driver mutations from passenger mutations. Several computational strategies have

emerged with the increasing availability of mutation profile data for thousands of cancer

patients through initiatives such as The Cancer Genome Atlas (TCGA) or more recently,

the International Cancer Genome Consortium (ICGC) (HIRANO et al., 2020). The vast

amount of genomic data generated in the last years and the development of more power-

ful computational methods provide an excellent opportunity to predict cancer driver genes

from molecular data. The next section introduces the main types of datasets explored in

the prediction of cancer driver genes.

2.1.3 Genome-wide biological data

The identification of cancer drivers has been greatly advanced by high-throughput

technologies that allow genome-wide measurements of molecular components that com-

prise human biological systems in any level - from DNA to proteins. This big data ap-

proach in the context of biology has generated a new field of “omics” science, which

refers to the extensive quantification (i.e., profiling) of molecular-level information span-

ning the whole cell or tissue of an organism (LI; CHEN, 2014). Depending on the nature

of the molecular component being measured, a different type of omics data is generated:

genomics, transcriptomics, epigenomics, proteomics, etc. Moreover, because every com-

ponent of the human system behave as part of a highly interconnected and dynamic net-

work, multifactorial diseases like cancer are the result of disruptions in several biological

and pathological processes interacting in a complex network (BARABÁSI; GULBAHCE;
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LOSCALZO, 2011). Thus, one way to interconnect different omics data is through bi-

ological networks, which are theoretical models that aim to represent the inherent com-

plexity of biological systems (LIU et al., 2020). In what follows, we review the types

of omics data employed in the current work and the concept of protein-protein interac-

tion networks. Whereas here we focus in the theoretical aspects of the biological data, in

Chapter 4 we explain in more detail how the datasets were collected and pre-processed to

be more informative for a computational prediction method.

2.1.3.1 Omics data

Since the completion of the Human Genome Project in 2003, high-throughput

technologies have continued to progress and improve the rate and quality of biological

data collection (ROBINSON; NIELSEN, 2016). Nowadays, genome-scale measurements

often replace molecule-scale measurements, allowing for investigation of the entire com-

plement of a specific type of molecule that composes biological systems, in various levels

of interrogation (KARCZEWSKI; SNYDER, 2018). The so-called “omics” data are cru-

cial for elucidating the genomics of cancer and provide an unprecedented understanding

of the molecular features underlying tumors. The Cancer Genome Atlas (TCGA) and

the PanCancer Atlas have generated and analyzed omics profiling for more than 11,000

tumor samples across 33 cancer types. Among the several types of existing omics data

(KARCZEWSKI; SNYDER, 2018), this work is interested in the following:

• Genomics: genome sequencing assays help to determine the complete DNA se-

quence of organisms and to identify DNA-level changes between cancer and healthy

samples. It is through genomics that different types of mutations can be character-

ized in their totality, such as SNVs and CNAs.

• Transcriptomics: DNA microarrays and high-throughput sequencing technologies

provide the ability to measure the gene expression for the entirety of genes in an

organism at the transcriptional level. Although mRNA is not the final functional

product of a gene, but rather an intermediary step in gene expression, the informa-

tion about transcription levels is necessary for understanding the regulatory mech-

anisms controling gene expression and for finding dysregulated genes associated

with diseases (BRAZMA; VILO, 2000). In transcriptomics, the complete set of

RNA transcripts (i.e., transcriptome) is quantified and may comprise both coding

RNAs (i.e., mRNA) and noncoding RNAs.
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• Epigenomics: refers to the study of heritable changes in the genome that are

not caused by DNA sequence mutations but still influence gene expression. The

most common epigenetic mechanism is DNA methylation. DNA methylation in-

volves the transfer of a methyl group to the C5 position of cytosine to form 5-

methylcytosine (MOORE; LE; FAN, 2013). DNA methylation is considered an

important regulator of gene expression, causing gene silencing by recruiting pro-

teins involved in gene repression or inhibiting the binding of the transcription factor

(KULIS; ESTELLER, 2010).

2.1.3.2 Protein-protein interaction networks

Proteins are important building components of cells and carry out the majority of

their functions. However, proteins do not function independently within a biological sys-

tem; they interact with other functional components in a complex network to maintain the

stability of the internal environment of cells (KOH et al., 2012). Following this principle,

the phenotypic impact of a disease is determined by the network context of a mutated

or disregulated gene, including not only the gene itself and its function through the en-

coded functional products, but also its interaction partners (BARABÁSI; GULBAHCE;

LOSCALZO, 2011).

There are various types of biological networks that differ in the types of macro-

molecules and interactions they describe. Generally, the macromolecule is represented

as a “node” of the network and a large number of interactions, whether physical, bio-

chemical, or functional, are represented as “edges” between nodes. This modeling tech-

nique provides an excellent understanding of subcellular systems on a global scale by

representing the human interactome (LIU et al., 2020). In this study, we focus solely on

protein-protein interaction (PPI) networks.

PPI networks offer a valuable framework for comprehending the functional orga-

nization of the proteome, and has been frequently applied in the study of human con-

ditions such as cancer, infectious diseases, and neurodegenerative diseases (LU et al.,

2020). They map physical links between two or more proteins, which are represented

by the nodes of the biological network (LIU et al., 2020). To map human PPIs, there

are a variety of experimental strategies, such as the yeast two-hybrid assay (Y2H), which

measures direct physical interactions in cells, and affinity purification mass spectrometry,

which measures the composition of protein complexes. This powerful tool can be ap-

plied in a high-throughput manner to detect these interactions in a genome-wide fashion,
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although at high costs (STELZL et al., 2005). Additionally, literature-curation may be

employed to systematically collect interactions from thousands of published small-scale

studies targeting a single or few specific hypotheses (DAS; YU, 2012).

2.2 Computational concepts

Advancements in cancer genomics projects have generated massive amounts of

data, providing opportunities to leverage computational approaches for more accurate

prediction of cancer driver genes. A number of computational strategies have been pro-

posed in literature, exploring several types of biological data. In Chapter 3, we provide a

comprehensive review of related works, summarizing these efforts under the perspective

of computational methods and data employed. This section aims to present theoretical

concepts that are important for building a prediction model, including the learning algo-

rithms and the evaluation metrics adopted.

2.2.1 Machine learning and learning paradigms

While various methods exist for prediction tasks, it is imperative to address the

fundamental concept of machine learning. Machine learning (ML) is an artificial intelli-

gence (AI) branch that allows computer algorithms to learn patterns from dat a (NAQA;

MURPHY, 2015). The primary goal of ML is to develop a predictive model based on

statistical associations between features of a given dataset. Through this approach, ML

algorithms can be explored to learn an optimal mapping between genomic features and the

capacity of a given mutation or mutated gene to drive tumorigenesis. Once these predic-

tive patterns of cancer-driving genomic variations are learned, the model can be applied

in classification tasks such as discerning if a somatic mutation is a driver mutation or a

passenger mutation, or if a given gene is responsible for or does not contribute to cancer.

Considering the scope of classification tasks, ML-based models are trained to

specify which of k categories some input sample belongs to. The models are generated

based on a given set of input data (i.e., training data) that usually consists of “features”

and “labels” across a set of samples. Features are the measurements across all samples,

raw or mathematically transformed, while labels are the categories the model aims to

predict, i.e., the output of the model (CAMACHO et al., 2018). When the labels of the
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training data are known and the model aims to estimate the unknown mapping between

input (i.e., features) and output (i.e., label) data, the ML algorithm is said to follow a

supervised learning approach. The opposite of supervised learning is the unsupervised

learning approach, in which only input samples are provided to the learning system and

the labels are unknown.

In some situations, the labels are incomplete, that is, only a portion of the training

data was previously labeled with the correct or expected outputs. Semi-supervised learn-

ing deals with problems in which the data is partially labeled. A common approach con-

sists in using the labeled part to infer labels for the unlabeled part, and then proceed with

a traditional supervised learning using the complete set of (now labeled) data (NAQA;

MURPHY, 2015). According to Camacho et al. (2018), the use of semi-supervised learn-

ing may help surpass the model performance that can be achieved using only the labeled

data (conducting a fully supervised learning), or ignoring the labels and considering all

samples as unlabeled data in an approach known as unsupervised learning. In Chapter

4, we discuss in more detail how semi-supervised learning represents an interesting per-

spective for predicting cancer driver genes, since many human genes still lack proper

annotation for their role in tumorigenesis.

The following sections describe specific ML algorithms commonly used for clas-

sification tasks, where the model output is in the form of categories. It is worth noting

that we use an organization commonly seen in the literature, grouping algorithms into

traditional machine learning and Deep learning (DL) methods. Moreover, we highlight

algorithms that are important for the experiments conducted in the upcoming chapters.

2.2.2 Traditional machine learning algorithms

In this section, we present some traditional ML algorithms that are commonly

explored in bioinformatics and are mostly aimed at supervised learning (KOTSIANTIS;

ZAHARAKIS; PINTELAS, 2006). Traditional ML relies on manual feature engineering

to craft features for the model. Thus, as complex as they may seem, they still demand

domain expertise and human intervention. In what follows, we review support vector

machine, tree-based learning algorithms, and artificial neural networks.
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2.2.2.1 Support Vector Machine

Support Vector Machine (SVM) is a powerful method for classification tasks that

creates a decision boundary between two classes to predict the labels of new samples,

which are comprised of one or more features. This decision boundary is a hyperplane that

is oriented to be as far as possible from the closest data points of each class, which are

known as the support vectors (HUANG et al., 2018b).

One of the main advantages of SVM is its ability to handle non-linearly sepa-

rable data using a kernel function to transform the low-dimensional space into a higher-

dimensional feature space in which the problem becomes linearly separable (MAMMONE;

TURCHI; CRISTIANINI, 2009). This makes it easier to find a decision boundary that

separates the classes. In essence, the kernel function is a mathematical trick that enables

SVM to transform lower dimensional data into higher dimensional data with the help of

new features created, and separate the points in a higher dimension.

While there are different variations and extensions of the SVM algorithm, they all

maintain the main properties that characterize the algorithm, such as the separation hyper-

plane, maximum margin hyperplane, and kernel function. These features allow SVM to

find linear constraint problems without local maxima efficiently (MAMMONE; TURCHI;

CRISTIANINI, 2009).

2.2.2.2 Tree-based learning algorithms

Tree-based methods are a popular class of supervised learning algorithms for clas-

sification and regression tasks. These algorithms have the structure of a decision tree

(DT), which divides the data recursively based on the most discriminative features and

assigns a label to each region of the input feature space. Decision trees are more inter-

pretable than other classifiers because they combine simple questions about the data in

an understandable way. Other advantages of decision trees include scalability, flexibility,

and less requirements regarding data preparation (KOTSIANTIS, 2013).

Complex decision trees are prone to overfitting and, in this case, may exhibit poor

generalization performance on new data. To address this challenge, pre-pruning and post-

pruning techniques can be employed to control the growth of decision trees. Pre-pruning

halts tree growth when there is insufficient data while post-pruning removes subtrees with

inadequate data after tree construction. Nevertheless, to further address this problem,

several variants of decision trees have been proposed, such as random forests and gradient
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boosting (KINGSFORD; SALZBERG, 2008).

Random forests (RF) consist of a set of decision trees, each trained on a random

subset of the training data and a random subset of the features. Random samples are gen-

erated independently and with the same distribution for all trees in the forest (BREIMAN,

2001). That is, the training set is is created based on sampling with replacement through

a bootstrap process to create a modified training set of the same size as the original. Fur-

thermore, during the construction of each tree, only a small, randomly selected subset of

the available resources is considered when choosing the best split at each node (KINGS-

FORD; SALZBERG, 2008). To obtain the final prediction, the algorithm aggregates the

predictions of all individual trees using the majority vote (BREIMAN, 2001). The main

advantages of the random forest algorithm over a single decision tree include built-in ran-

domness that reduces overfitting and increases the diversity of individual trees. This leads

to a more accurate and robust model.

Another widely used tree-based algorithm is Gradient Boosting Trees (GBT),

which combines multiple weak learners into a single stronger model. The main difference

between GBT and the previous techniques is that GBT applies optimization by repeatedly

re-weighting the training examples to focus on the most problematic ones. This includes a

learning procedure where the objective is to construct base learners so that they are maxi-

mally correlated with the negative gradient of the loss function associated with the entire

model (i.e., the set of base learners) (SAGI; ROKACH, 2018).

Specifically, in GBT, a sequence of regression trees is computed, where the final

prediction is obtained by aggregating these predictions from all trees in an additive man-

ner, with each added model trained to minimize the loss function. It is a powerful and

versatile algorithm that can be customized and optimized for different problem domains

(KINGSFORD; SALZBERG, 2008).

2.2.2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) have become widely accepted as a powerful

computational tool to solve complex real-world classification problems. ANNs are capa-

ble of modeling complex nonlinear problems, making them a popular choice in machine

learning (ZOU; HAN; SO, 2009). A key property of ANNs is that they are inspired by

early models of sensory processing in the human brain. Thus, just as the brain is made

up of an elementary unit called a neuron, artificial neurons are the fundamental building

blocks of all ANN models. In essence, an artificial neuron is a mathematical function
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that takes in the linear combination of inputs, applies the function to them, and returns an

output value (KROGH, 2008). This neural network unit is reffered to as the perceptron,

which is also considered a single-layer neural network able to model only linear problems.

The most common architecture of ANNs is the Multilayer Perceptron (MLP),

which is illustrated in Figure 2.2. Neurons are arranged in sequential fully connected

layers. The leftmost layer in this network is called the input layer and the neurons within

the layer are called input neurons. The rightmost or output layer contains the output neu-

rons or, as in this case, a single output neuron. The intermediary layers between the input

and the output ones are known as the hidden layers. All connections among nodes in the

network have their corresponding weight represented by w in the figure. When designing

the ANN topology, one must consider mainly , the number of hidden layers in the network

and the number of nodes in each layer.

Figure 2.2 – Example of a Multilayer perceptron model.

Source: Trlin (2023)

Except for the nodes in the input layer, which propagate the original values of the

input data for the subsequent layer, all other nodes implement a mathematical function

that applies weights to the inputs and directs them through an activation function. These

weights can be thought of as analogous to the strength of synapses in the brain. This

mathematical function can be represented as follows:

y = Φ

(
N∑
i=1

(wixi) + b

)
(2.1)

where N represents the number of inputs to be processed, xi represents a single variable

or input feature, wi represents a learnable weight for that input, b represents a learnable

bias term, and Φ represents anactivation function that takes a linear combination of the
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input values and returns a single output (ZOU; HAN; SO, 2009).

The activation function introduces non-linearity in the modeling process. While

the sigmoid function was a traditional choice for early ANN models, other functions,

such as the rectified linear unit (ReLU), are now commonly applied due to their superior

performance (GOODFELLOW; BENGIO; COURVILLE, 2016). The ReLU activation

function sets negative input values to zero, while passing input values that are equal to or

greater than zero. This activation function allows faster learning compared to alternatives

like the sigmoid function.

During the training process, the weights of an ANN are adjusted to minimize the

total error between its output and the desired output (i.e., the labeled data). These weights

are typically initialized with small random values, and the training involves measuring

the square difference between the ANN output and the desired output for each input, with

the goal of minimizing the sum of these differences as much as possible. Backpropaga-

tion, a gradient-based optimization algorithm, is commonly used to adjust the weights by

propagating the errors back through the network (KROGH, 2008).

2.2.3 Deep learning and graph-based learning

The field of bioinformatics is experiencing an increase in the accumulation of

omics data through experimental studies. While traditional ML algorithms, such as ANNs,

have been widely used to extract knowledge from this data, the emergence of big data has

led to the development of more advanced and complex model architectures. Although

these architectures are still based on ANNs, there has been a shift in focus towards deep

learning (DL), which has shown promising results in achieving higher accuracy and per-

formance compared to traditional ML algorithms. Consequently, DL has generated sig-

nificant interest in academic and research communities. According to Min, Lee and Yoon

(2017), this growth can be attributed to the advances made in deep learning, which have

contributed to the growth of both sub-areas, as illustrated in Figure 2.3.

The success of deep learning can be attributed to the significant algorithmic detail

involved in both constructing and training its architectures. Typically composed of mul-

tilayer artificial neural networks that leverage non-linear transformations, these architec-

tures take on various forms depending on the characteristics of the input data and research

objectives. Deep learning, as a subfield of ML, employs hierarchical architectures to learn

high-level abstractions in data, enabling more accurate and sophisticated predictions and
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Figure 2.3 – Number of published deep learning articles by year.

Source: Min, Lee and Yoon (2017)

insights to be made from the data (GOODFELLOW; BENGIO; COURVILLE, 2016).

One of the most representative network architectures in the field of deep learning

is the convolutional neural network (CNN), which is designed to process data in matrix

format. CNNs can be seen as a sequence of convolution layers and pooling layers. The

convolution operation is implemented through the application of filters in the input. The

filters are defined as a matrix of weights with the same values repeated in a specific order

that is multiplied by the input. During this operation, specific characteristics are retained

from the input while others are ignored, depending on the filter applied. The result of the

convolution is usually passed through a non-linear activation function such as ReLU (LI et

al., 2021; LECUN; BENGIO; HINTON, 2015). The convolution layer can be followed by

a pooling layer that applies the poolin operation. In this step, groups of adjacent values in

the input data (for example, groups of 2x2 pixels in an image) are aggregated by taking the

maximum value among the (i.e., Max Pooling) or the average among them (i.e., Average

Pooling). Pooling operations have the utility of intensifying important characteristics or

features identified in the convolution layer.

Despite the effectiveness of CNNs in modeling regularly structured information,

several domains produce data with irregular structure in non-Euclidean space. Graphs,

which provide an effective representation of entities and their relationships, are among

the many irregular geometric shapes commonly encountered in these domains (GEOR-

GOUSIS; KENNING; XIE, 2021). Graphs are well-suited to modeling complex struc-

tures such as protein-protein interactions, which are natural networks found in the biolog-
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ical domain, as discussed in Section 2.1.3.2. In what follows we provide basic definitions

of graph structures and we introduce adaptations in deep learning algorithms to allow

learning from graphs.

2.2.3.1 Basics of graph theory and node centralities

A graph is a mathematical structure comprising a set of vertices (or nodes) and

edges that connect them. We represent a graph as a pair of vertices (V) and edges (E),

denoted as G = (V,E). An edge that links two vertices i and j may optionally have a

weight wij ∈ R assigned to it. Depending on whether each edge has a weight assigned

to it or not, a graph can be either weighted or unweighted. Likewise, a graph can be

either directed or undirected, depending on whether its edges have a specific direction.

For instance, protein-protein interactions can be represented as graphs, where nodes de-

pict proteins and edges depict physical or functional connections among them. When a

graph is weighted, the weights can signify the confidence level of the existence of a given

connection between proteins.

Among the many utilities in using graph-based representation, the analysis of cen-

trality measures are among the most widely used applications. Centralities are crucial fea-

tures of graphs and help to identify the most influential or central nodes. Four centrality

measures are of special interest in this work:

• Degree: is the number of neighbors of a node i in the network, or in other words,

the number of edges that are incident on a given node, considering an undirected

graph.

• Betweenness: quantifies the number of times that a given node is needed for any

node to reach any other node in the graph. Nodes that appear more frequently along

the shortest paths between other nodes will receive higher betweenness centrality

scores. It is a way of detecting the influence that a node has on the flow of infor-

mation in a graph based on the extent to which it lies on the shortest paths between

pairs of other nodes.

• Closeness: computes the sum of distances from a given node to all other nodes,

based on the shortest paths between all pairs of nodes. The resulting sum is then

inverted to determine the closeness centrality score for that node. In the case of

disconnected graphs, where there may not be a path between every pair of nodes,

the number of nodes is used as a substitute for the length of the geodesic, which
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always results in a longer path than the longest possible geodesic.

• Clustering coefficient: also called transitivity, is defined as the ratio of the num-

ber of edges between the node’s neighbors over the maximum possible number of

such edges. The transitivity of a graph is then defined as the average of the cluster-

ing coefficients of all its nodes. In case of the local transitivity, this probability is

calculated separately for each node.

These different types of centralities can be used in various contexts to understand

the structure and behavior of networks and to identify important nodes for distinct appli-

cations.

2.2.3.2 Introduction to graph neural networks

To extend the application of convolution and pooling operations from regular grids

to arbitrary graphs, it is necessary to recognize that the connectivity patterns in graphs,

specially those deriving from biological networks, are typically irregular. Graphs do not

exhibit the regular structure found in images, thus presenting a challenge for deep learning

algorithms (CHEN et al., 2020).

Graph Neural Networks (GNNs) are a promising approach to address the com-

plexity of such patterns by extending the structural principles of CNNs to non-Euclidean

data. In GNNs, a filter is applied to each node in the graph and its neighboring nodes,

allowing the recognition of patterns in the local neighborhood of a node and the extraction

of local structural information from the graph. This enables GNNs to learn representa-

tions of graph-structured data and perform various tasks such as node classification, link

prediction, and graph-level prediction (ZHANG et al., 2019).

In the process of selecting a GNN model, some crucial steps must be considered.

One such step is determining the type of graph structure, which can be divided into two

scenarios: structural and non-structural. In structural scenarios, the graph’s structure is

explicit in the applications, whereas in non-structural scenarios, the graph is implicit, and

it must be built from the task at hand. After obtaining the graph structure, the type of graph

must also be determined. As previously mentioned, graphs are typically categorized as

either directed or undirected, with directed graphs having edges that are directed from one

node to another. Additionally, graphs can be classified as either homogeneous or hetero-

geneous, with homogeneous (heterogeneous) graphs having nodes and edges of the same

(different) types. Moreover, it is also important to define the loss function based on the
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type of learning task addressed (i.e., at node-level, edge-level, or graph-level prediction).

A GNN model is usually built based on the combination of computational mod-

ules, which commonly include the propagation module, the sampling module, and the

pooling module (ZHOU et al., 2020; GEORGOUSIS; KENNING; XIE, 2021). The prop-

agation module is particularly important for our work, as it enables the dissemination of

information between nodes, allowing for the aggregation of both features and topological

information to create embeddings. The sampling module is typically used in conjunc-

tion with the propagation module when the graphs are large and need to be separated

into modules. Finally, the pooling module is employed to extract information from nodes

when representations of subgraphs or high-level graphs are required.

The propagation modules in GNNs typically consist of three subcomponents: the

convolution operator, the recurrent operator, and the jump connection, as discussed by

Zhou et al. (2020). In this text, we will focus on the most commonly used subcomponent

for GNN models, the convolution operator, which aims to generalize convolutions from

other domains to the graph domain.

Graph convolutions have shown successful applications in various fields, includ-

ing bioinformatics, where they are particularly useful for analyzing data with no clear and

visible structure, such as protein-protein interactions (ERASLAN et al., 2019). Existing

graph convolution models can be broadly classified into two categories: spectral-based

and spatial-based. Spectral-based models utilize principles from graph signal processing,

such as the Laplacian and Fourier transform, to map the irregular structure of a graph

onto a regular Euclidean space, enabling convolutional operations. In contrast, spatial-

based models directly define the convolution operation using the information dissemi-

nation mechanism inherent in the graph, with propagation methods similar to those of

standard CNNs.

Figure 2.4 – Algorithms selected under computational module

Propagation
Module

Convolution
Operator

Spectral

Spatial

Basic

Attentional

CGN

GAT

GraphSAGE

Source: Adapted from Zhou et al. (2020)

The GNN algorithms selected for exploration in this work are presented in Fig-



36

ure 2.4, adapted from Zhou et al. (2020). These algorithms are part of the propagation

modules, which are responsible for propagating information between nodes, allowing for

the capture of topological and feature-related data. This aligns with the goals of our

work, which aims to leverage the structure of PPI networks and the information contained

in omics data for identification of CDGs, which can be modeled as a node prediction task.

As such, these algorithms are ideal constructs for the design of our predictive model. The

next sections briefly explain these algorithms

2.2.3.3 Spectral-based models: Graph Convolutional Networks

Spectral graph theory provides the foundation for graph convolution in the spectral

domain, which involves transforming graph signals from the nodes domain to the spectral

domain. By applying a Fourier or wavelet transform to the signal using the graph Lapla-

cian, spectral approaches can convert graph signals to the graph’s frequency domain or

spectrum, allowing local convolutions using shared weights similar to traditional CNNs

(GEORGOUSIS; KENNING; XIE, 2021).

Graph Convolutional Networks (GCN), proposed by Kipf and Welling (2016),

are based on the idea that the properties of a node within a network are substantially

influenced by its neighboring nodes’ attributes (i.e., features). The model aims to learn

a function of signals/features in a graph G = (V,E) that takes as input a feature matrix

X = N ×D and an adjacency matrix A representing the graph structure. The output is a

node-level matrix Z of size N × F , where F is the number of output features per node.

Each neural network layer can be expressed as a non-linear function:

H(l+1) = f(H(l), A) (2.2)

where H(0) = X and H(L) = Z (where L represents the number of layers). The different

models vary only in how the function f is selected and parameterized.

The layer propagation rule can be represented by:

f(H(l), A) = σ(AH(l)W (l)) (2.3)

where W is a weight matrix for the l-th neural network layer, and σ is a non-linear acti-

vation function like ReLU.

Enforcing self-loops in the graph is a common approach to guarantee that each

node propagates its own feature vector. This is done by simply adding the identity matrix

to A. However this A is typically not normalized and therefore multiplying with will
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completely change the scale of the feature vectors. To solve this problem, it is necessary

to guarantee the normalization of A so that all lines add up to one, that is, D−1A, where

D is the diagonal node degree matrix. Multiplying with D−1A corresponds to taking

the average of neighboring node features. And when we use a symmetric normalization

D− 1
2AD− 1

2 we essentially arrive at the propagation rule introduced by Kipf and Welling

(2016):

f(H(l), A) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)) (2.4)

with Â = A+ I , where I is the identity matrix and D̂ is the diagonal node degree matrix

of Â.

Figure 2.5 illustrates the input channels (C) and the feature maps (F) in the output

layer of a spectral-based graph convolution (ZHANG et al., 2021).

Figure 2.5 – Schematic depiction of a graph convolution model.

Source: Kipf and Welling (2016)

2.2.3.4 Spatial-based models: Graph Attention Networks and GraphSage

Spatial convolution on a graph is similar in concept to convolution on a regular

domain. Spatial techniques define convolutions directly on the graph, leveraging its topol-

ogy. However, the challenge lies in devising a convolution operation that can accommo-

date varying neighborhood sizes while preserving the local invariance of Convolutional

Neural Networks (CNNs) (ZHOU et al., 2020).

To address the limitations of Graph Convolutional Network (GCN) and other

structurally similar models, Graph Attention Network (GAT) was proposed by Veličković

et al. (2017). GAT incorporates an attention mechanism during the graph propagation

stage to learn the edge weights between connected nodes. The GAT model takes the node
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feature set x = {x1, x2, ..., xn} as input to an attention layer, which outputs a new set of

learned node features h = {h1, h2, ..., hn}. The attention coefficient for the edge (i, j) is

denoted by αij and is defined by the following equation:

αij =
exp(LeakyReLU(aT [Wxi||Wxj]))∑

k∈Ni
exp(LeakyReLU(aT [Wxi||Wxk]))

(2.5)

here, Ni refers to the set adjacent nodes of node i, a denotes the learnable weight vector,

and W is the shared linear transformation weight matrix. The output features for each

node are computed using the following equation:

hi = σ(
∑
j∈Ni

αijWxj) (2.6)

The technique of multi-head attention extends the attention layer to K separate

attention mechanisms, thereby promoting the stability of the self-attention learning pro-

cess. Figure 2.6 illustrates how the algorithm operates. The final expression is provided

as follows:

hi = σ(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kxj) (2.7)

Figure 2.6 – Multi-head attention (with K = 3 heads) by node 1 on its neighborhood.

Source: Veličković et al. (2017)

Hamilton, Ying and Leskovec (2017) proposed another spatial-based model that

uses a conceptually simpler GCN, referred to as GraphSAGE (SAmple and aggreGatE).

This model is a general inductive framework that leverages node attribute information

to generate node embeddings for previously unseen data efficiently. Instead of training
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separate embeddings for each node, a function is learned that generates embeddings by

performing sampling and aggregation of features from a node’s immediate neighborhood.

Each layer of the GraphSAGE network consists of two principal procedures: sam-

pling and aggregation. The aggregation procedure for a layer l also consists of two steps.

The first step is the aggregation of the signals from a node’s immediate neighborhood:

hl+1
Ni

= aggregatel+1(
{
hl
j,∀j ∈ Ni

}
) (2.8)

The second step is the concatenation of the aggregated signals with the target node

signal, which is passed through a dense layer:

hl+1
i = σ(W l+1.[hl

j||hl+1
Ni

]) (2.9)

where Wl ∈ Rd×2c is a matrix of learned weights for the lth layer, and σ is a non-linear

activation function, and the first layer h0 is the imput signal.

2.2.4 Ensemble learning

Ensemble learning is a popular approach in machine learning that involves com-

bining multiple individual models to improve overall predictive performance, particularly

in supervised tasks. Once the individual models, also known as base learners or base

models, are trained, their combined predictions can be used to label new, unseen data.

The central idea behind ensemble learning is that introducing diversity among models,

whether through variations in data or algorithms, can compensate for errors in individual

models and improve overall performance more effectively than a single model (SAGI;

ROKACH, 2018; DONG et al., 2020).

Building an ensemble model involves, in general, applying a methodology for

training the individual models in order to introduce some degree of diversity among them,

and choosing a suitable process for combining the outputs of these models into a single

output. Diversity can be introduced, for example, by random resampling the data or by

employing different learning algorithms or different hyperparameters configuration. Re-

garding the combination of the results from the base models, although several approaches

exist, they can be organized into two main categories:

• Strategies that combine the predicted class labels: each base model provides a

class label that is meaningful to the problem domain. A simple, yet very effective
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approach to combine these predictions, is by voting. The majority voting method,

for instance, involves predicting the class label with the most votes.

• Strategies that combine the predicted class probabilities: most ML algorithms

are able to assign a probability for each class, which summarizes the likelihood of

an instance belonging to that class. Thus, combination rules for ensemble models

can also be applied over the predicted probabilities. One common way to merge

probabilities is simply to take the average among values predicted for a given class.

Then, the ensemble class label can be extracted based on the class that maximizes

the merged probabilities.

We note that the algorithms Random Forest and Gradient Boosting Trees, presented in

Section 2.2.2, are examples of ensemble-based learning methods. RF introduces diversity

by applying a repeated resampling without replacement (i.e., bootstrap), while GBT uses

a boosting strategy that resamples data based on weights that are adjusted throughout the

process according to previous classification hits and errors.

2.2.5 Class imbalance

Class imbalance occurs when there is an uneven distribution of instances across

the target classes in a classification problem. The majority class has the highest proportion

of instances, while the minority class has the fewest, resulting in limited representation

for the concept underlying the minority class in the dataset (HE; GARCIA, 2009). In

many cases, the minority class is of particular interest, such as in clinical diagnosis with

ML predictive models, where only a small fraction of patients are expected to present the

disease, or when predicting cancer driver mutations, where most sequenced mutations are

passenger rather than driver mutations.

Although several real world problems are characterized by class imbalance in their

data distribution, when the training data is imbalanced, ML algorithms struggle to distin-

guish effectively between the minority and majority class. This happens because most

standard ML algorithms expect balanced class distributions or assume equal misclassifi-

cation costs (i.e., the cost of a false positive prediction is the same as of a false negative

one) (HE; GARCIA, 2009). Thus, class imbalance presents a longstanding challenge for

ML, as models tend to be biased towards the majority class, leading to high error rates for

the minority class (LEEVY et al., 2018).
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Several class imbalance learning solutions have been proposed in literature (HE;

GARCIA, 2009). In what follows, we briefly review those employed in the current work:

• Undersampling Majority Class: a widely used approach that involves a direct

subsampling technique to balance class distributions. The technique randomly ex-

cludes instances of the majority class, usually until this class has the same number

of instances as the minority class. This technique is only suitable for large datasets

as it can potentially discard crucial data points for the model.

• Balanced Cross-Entropy: a popular technique to tackle class imbalance that in-

volves introducing a weighting factor, denoted as α ∈ [0, 1] for the positive class

and 1 − α for the negative class. This weight factor represents an attempt to read-

just the misclassification costs. In practice, α can be determined by the inverse class

frequency or treated as a hyperparameter and determined through cross-validation.

The α-balanced cross-entropy (CE) loss can be expressed as follows:

CE(pt) = −αtlog(pt) (2.10)

where pt is the model’s estimated probability p for the positive class if the observed

class is actually positive

• Focal Loss: a newer approach proposed by Lin et al. (2017), which is a dynamically

scaled cross-entropy loss encompassing a scaling factor that gradually decreases to

zero as the confidence of the model in the correct class prediction increases. This

scaling factor (1 − pt)
γ can effectively reduce the influence of simpler examples

during the training phase and facilitate the model to concentrate on more complex

examples. Thus, the α-weighted FL for binary classification is defined as shown by

the equation below:

FL(pt) = −αt(1− pt)
γlog(pt) (2.11)

where α is the same weighting parameter used in balanced cross-entropy, while γ

is a new adjustable parameter that controls the degree of focusing. When γ = 0,

the function is equivalent to the balanced cross-entropy approach.
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2.2.6 Model evaluation

Model evaluation is a critical step in a machine learning pipeline and is typically

applied to three main sub-tasks in model development (RASCHKA, 2018): (i) estimate

the generalization performance of a trained model, that is, assess the predictive perfor-

mance of the model on future (unseen) data, (ii) increase the predictive performance of

a learning algorithm by exploring the hypothesis space more broadly with different hy-

perparameter settings (i.e., conduct a fine-tuning of hyperparameters), and (iii) select the

ML algorithm that is best-suited for our prediction problem (i.e., compare different al-

gorithms). The step of model evaluation entails two main decisions: how to split the

original dataset to allow model training and performance assessment, and how to evaluate

the predictive performance. The next sections review concepts related to these aspects.

2.2.6.1 Data splitting strategies

The holdout method is a simple and commonly used data splitting strategy in ma-

chine learning. It involves randomly dividing a labeled dataset into two parts: a training

set and a test set, typically in a 75:25 ratio (other common ratios are 70:30 and 80:20). The

training set is used to fit the model, while the test set is used to evaluate its performance

on unseen data. To ensure that the resulting subsets are representative of the original

dataset, random splitting is often conducted in a stratified manner, preserving the original

class proportions in the resulting subsets. Although widely adopted for model evaluation,

holdout method presents some limitations: (i) it is very sensitive to how we split the data

into training and test sets, (ii) it does not allow us to estimate how performance varies

according to differences in the test set, (iii) it does not support the hyperparameter opti-

mization process, which must be done with independent data to avoid the effect of data

leakage (RASCHKA, 2018).

To address these limitations and provide a more robust estimate of performance, k-

fold cross-validation (CV) has become the most common technique for model evaluation

and selection in ML. The idea of k-fold CV is to split the dataset into k disjoint parts (i.e.,

folds) of similar size: one part is used for validation, and the remaining k − 1 parts are

merged into a training set in an iterative process. Although k is a hyperparameter of the

algorithm, k = 5 and k = 10 are commonly applied values. At the end, the performance

is usually estimated as the arithmetic mean (and standard deviation) over k validation

sets. Through this process, k-fold CV guarantes that all instances are used for training
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and testing, reducing the risks of a highly pessimistic or optimistic performance estimate.

Holdout and k-fold CV are often used together for model evaluation and selec-

tion. In this approach, holdout is applied as a first step to split the original dataset into

training and test sets. The test set is kept aside as an independent dataset from the process

of model training and selection to avoid data leakage. The training set is then used in

the k-fold CV to experiment with one or more algorithms and various hyperparameter

settings. The resulting performance estimates from k-fold CV are used to select the best

hyperparameter setting for the algorithm, which is then used to fit the model with the

complete training data. Finally, the independent test set withheld in the first step is used

for the final evaluation of model performance.

2.2.6.2 Performance metrics for classification tasks

Several performance metrics can be adopted to assess distinct types of correct

predictions (i.e., true positive (TP) and true negative (TN)) and incorrect predictions (i.e.,

false positive (FP) and false negative (FN)) in binary classification tasks. Here, we sum-

marize the metrics analyzed in the current work.

• Accuracy (Acc): reflects the proportion of instances in the test set that were pre-

dicted correctly by the model (i.e., the hit rate). Accuracy alone may not properly

reflect the model performance for datasets with class imbalance, especially in sev-

erily skewed data distribution, as it may be biased towards the majority class. The

metric is computed as follows:

Acc =
TP + TN

TP + FP + TN + FN
(2.12)

• Precision (Prec): estimates the proportion of positive instances predicted correctly

by the model. Precision is also called Positive Predictive Value (PPV) and is a

measure of classifiers exactness. Low precision indicates a high number of false

positives. Precision is computed according to the following equation:

Pre =
TP

TP + FP
(2.13)

• Recall (Rec): measures the ability of a model to correctly identify positive in-



44

stances. Recall is also called Sensitivity or True Positive Rate (TPR), and a low

recall indicates a high number of false negatives. Recall is estimated as follows:

Rec =
TP

TP + FN
(2.14)

• Specificity (Spe): measures the proportion of true negatives that are correctly iden-

tified by the model. Specificity is also called True Negative Rate (TNR), and is

computed according to the following equation:

Spe =
TN

TN + FP
(2.15)

The sum of specificity and false positive rate (FPR) is always 1. Thus, it is common

estimate the FPR as:

FPR = 1− Spe (2.16)

• Area under the ROC curve (AUC-ROC): the Receiver Operator Characteristic

(ROC) curve shows the trade-off between true positive rates (i.e., sensitivity, in the

y-axis) and false positive rates (in the x-axis) across different thresholds of predic-

tion probability2. The area under the generated ROC curve (AUC-ROC) is often

used as an estimate of model performance and represents the probability that a

randomly chosen positive instance will be ranked higher than a randomly chosen

negative instance. Thus, the higher the AUC-ROC value, the better the predictive

performance of the model.

• Area under the Precision-Recall curve (AUC-PR): the Precision-Recall (PR)

curve shows the tradeoff between precision (i.e., in the y-axis) and recall (in the

x-axis) for distinct thresholds of prediction probabilities. The area under the PR

curve (AUC-PR) is very useful to summarize the performance, with high scores

meaning that the model is able to return precise results (high precision), as well as

to correctly predict the majority of the positive instances (high recall). The AUC-

2Most performance metrics evaluate classifiers based on a specific probability threshold, usually 0.5,
meaning that an instance is assigned to the positive class if the predicted probability is equal or above 0.5.
This is the case, for instance, for accuracy, precision, recall, and specificity. When using approaches based
on performance curves, the skill of a model is assessed across all thresholds of probability.
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PR is a more appropriate measure of classification success under the presence of

class imbalance.
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3 RELATED WORKS

This chapter reviews computational approaches proposed in previous works to

identify driver mutations and cancer driver genes. Due to the scope of this work, we focus

on machine learning-based solutions, discussing how interactions between data types and

ML algorithms have been explored in related works. We also describe current analytical

limitations identified through literature review, some of which served as motivation for the

present work. The chapter is based on a survey paper published in the journal Briefings in

Bioinformatics (ANDRADES; RECAMONDE-MENDOZA, 2022), as follows:

ANDRADES, R.; RECAMONDE-MENDOZA, M. Machine learning methods for

prediction of cancer driver genes: a survey paper. Briefings in Bioinformatics,

Volume 23, Issue 3, May 2022, bbac062. Available: <https://doi.org/10.1093/bib/

bbac062>.

3.1 Initial considerations

Previous works have dedicated efforts to summarize and organize literature re-

garding computational approaches for prediction of CDGs and driver mutations, with

different focuses (ZHANG et al., 2014; CHEN; SUN; SHEN, 2015; CHENG; ZHAO;

ZHAO, 2016; DIMITRAKOPOULOS; BEERENWINKEL, 2017; CHEN et al., 2020;

ROGERS; GAUNT; CAMPBELL, 2020). Although some ML-based methods were cov-

ered by some of these works, they were mostly developed for a more general problem

of distinguishing disease-related SNVs from common polymorphisms (ZHANG et al.,

2014; CHEN; SUN; SHEN, 2015). Other surveys have categorized methods according to

their major feature types (CHENG; ZHAO; ZHAO, 2016) or prediction strategy (DIM-

ITRAKOPOULOS; BEERENWINKEL, 2017), without emphasis on ML. Recent works

also focused on comparing the predictive performance of distinct computational methods

for cancer drivers prediction (CHEN et al., 2020; PHAM et al., 2021). Finally, Rogers,

Gaunt and Campbell (2020) reviewed generic ML-based tools to predict the pathogenic

impact of human genome variants, further concentrating their discussion on a specific set

of tools to predict cancer drivers. Nonetheless, the theoretical background and method-

ological details of ML were not discussed by the authors.

A table summarizing the articles mentioned, with a brief description of their scope,

https://doi.org/10.1093/bib/bbac062
https://doi.org/10.1093/bib/bbac062
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is provided in the appendix (Table A.1). All these previous works, jointly, have covered a

large body of the literature regarding computational methods for cancer driver discovery

and have been crucial to elucidate the particular niche targeted by each solution, as well as

their potential in solving the task. We emphasize, however, that aspects entailed in the de-

velopment of ML models for CDG prediction were not the focus of previous discussions.

This chapter provides a comprehensive analysis of ML-based computational approaches

to identify driver mutations and CDG, constructing an integrated, panoramic view of data

and ML techniques within this domain.

3.2 Search methodology

Two main bibliographic repositories were used as search sources, PubMed and

DBLP. While the former is most focused on biomedical literature, the latter is specialized

in computer science bibliography. These repositories were chosen because, together, they

cover a wide range of papers from high-impact international scientific journals and con-

ferences in both the fields of medicine and computer science. The query for the PubMed

database was constructed using keywords related to “cancer driver genes”, “prediction”,

and “machine learning” as terms of interest. For DBLP, the search was conducted us-

ing only terms related to the domain of interest since all indexed articles are within the

computer science field. These terms included “cancer driver genes”, “cancer”, “disease-

associated genes”, and “oncogenes”.

Our initial search returned 355 related papers found in PubMed and 84 papers re-

trieved from DBLP. Duplicates were removed, resulting in 420 papers. Each paper was

individually evaluated regarding its relevance to the research topic covered. As inclusion

criteria, we only considered papers that explicitly mention any ML algorithm as part of

its methodological approach. All titles and abstracts were screened to identify papers that

employed machine learning techniques to predict cancer driver genes. When necessary,

we carried out a diagonal reading of the papers to confirm their suitability for this chap-

ter’s scope. After this initial analysis, 45 (12.68%) papers from PubMed and 7 (8.33%)

papers from DBLP were considered to be significantly related to the research question

addressed by this work. Interestingly, many discarded papers focused on network-based

computational methods to identify cancer drivers. Here, we only selected those that ad-

dressed the use of ML techniques in their methodology in conjunction with network-based

approaches.
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The 52 eligible papers were read in full for a more in-depth analysis of their

methodology. We verified aspects such as which specific ML techniques were adopted

in the proposed solution and the operating steps in which they were used. After this sec-

ond round of paper examination, 36 papers were confirmed to be relevant, as they applied

ML algorithms as a central part of the proposed computational solution for cancer drive

gene prediction. Finally, to guarantee that no significant contribution to the field of cancer

driver gene prediction was left behind, we manually revised the references of the selected

papers to search for relevant works that our search strategy has not retrieved. Besides, we

used Google Scholar to search the scientific literature for studies that have cited the se-

lected papers and thus increase the range of articles included in this review chapter. Five

papers were selected after these additional searches, totaling 41 relevant papers for our

work (Table 3.1). Our search was concluded on April 1st, 2021.

The acronyms used in Table 3.1 represent the categorization regarding the data

used by the authors, Functional Genomics (FG), Functional Integration (FI), Genomic

variation (GV), Ontology-based (Ob) and Network-based (Nb). As for the algorithm used,

Artificial neural network (ANN), Probabilistic methods (Pm), Regression-based (Rb),

SVM-based (SVM), Tree-based (Tb), Supervised learning (others) (So), Deep learning

(DL), Traditional unsupervised learning (UL) and evolutionary algorithm (EA). These

concepts will be explored in detail in the following sections. In addition, the performance

metrics column also includes a list of acronyms used to simplify the table, accuracy (Acc),

F1-measure (F1), Matthew’s correlation coefficient (MCC), precision (Pre), area under

the Precision-Recall curve (AUC-PR), area under the ROC curve (AUC-ROC) and recall

(Rec).
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3.3 Overview of selected papers

Papers distribution according to the publication year (Figure 3.1) suggests a grow-

ing interest in the research topic. Most papers (56.09%) were published after 2018 and

the highest number of publications were found in 2019 (10). The low number of related

papers published in 2021 is justified by the short period covered by our analysis. Papers

were published mainly in scientific journals, with only five (FU et al., 2012; TAVANAEI

et al., 2017; NICORA et al., 2019; SCHULTE-SASSE et al., 2019; CUTIGI et al., 2020)

appearing in conference proceedings. The top three journals in terms of number of papers

were Bioinformatics (6), Journal of Computational Biology (3), and Plos One (3).

Figure 3.1 – Number of selected papers per year of publication.
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In terms of target prediction problem, 32 papers (i.e., 78.04%) concentrated in

running predictions at the gene level. Among these, six papers (DAVOLI et al., 2013;

GNAD et al., 2015; TAVANAEI et al., 2017; CHANDRASHEKAR et al., 2020; CO-

LAPRICO et al., 2020; LYU et al., 2020) aimed to distinguish oncogene and tumor sup-

pressor gene (TSG) (i.e., the two subclasses of CDGs), whereas the others focused on

classifying a given gene as CDG or not. Seven papers targeted predictions on mutation

level (MAO et al., 2013; U et al., 2014; SOLIMAN et al., 2015; AGAJANIAN et al.,

2018; ZHOU; GAO; SKOLNICK, 2018; AGAJANIAN; OLUYEMI; VERKHIVKER,

2019; WANG et al., 2020), most of which restricted the analysis for missense mutations.



51

We also found one paper aiming at identifying cancer modules to discover cancer driver

genes (MANOLAKOS et al., 2014) and other focusing on the prediction of false posi-

tive CDGs (CUTIGI et al., 2020). Also, while most papers addressed cancer drivers in

general, some focused on specific types of cancer, such as colon adenocarcinoma (FU

et al., 2012; LUO et al., 2019), breast cancer (CELLI; CUMBO; WEITSCHEK, 2018;

LU et al., 2018; LUO et al., 2019), lung adenocarcinoma (LUO et al., 2019), thyroid

(CELLI; CUMBO; WEITSCHEK, 2018), and kidney (CELLI; CUMBO; WEITSCHEK,

2018). We also observed predictive models for cancer-related mutations in human protein

kinases (U et al., 2014) and, more specifically, in the Epidermal Growth Factor Receptor

(ANOOSHA et al., 2015).

To better map the current state-of-the-art in terms of available resources and adopted

methodologies, two main analyses were made. The first one focused on the data types

used as model’s feature, while the second focused on summarizing the computational

aspects of the proposed predictive model, such as type of learning and specific ML algo-

rithms adopted. The next sections describe and organize the selected papers in terms of

data categories and computational strategies.

3.4 Data categories

A core component for ML-based predictive models is the training data due to

the common sense that much of the model’s success depends on the fed data. A given

prediction problem may have its concept represented in many different ways, which is

especially true in the genomics domain. Some of these representations may be better than

others in revealing the patterns we sought to learn. Thus, a clear comprehension of the

possible types of features for instances representation within our domain may provide

insights into current limitations and new analytical opportunities. We observed a large

variety of information used as models’ input features for cancer drivers prediction. Af-

ter careful analysis of the selected papers, we classified them into five categories based

on the properties evaluated as predictors (Table 3.2): (1) Genomic Variation (GV), (2)

Functional Impact (FI), (3) Functional Genomics (FG), (4) Network-based (Nb), and (5)

Ontology-based (Ob). Subcategories were defined for some categories to better organize

the corresponding features based on their semantics.

A general overview of papers in terms of the data categories employed is shown

in Figure 3.2. Genomic variation was the most common feature category used (29 papers,
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Table 3.2 – Data categories and subcategories adopted to classify selected papers according to
types of features employed.

Category Subcategory Description

Genomic Variation
Mutations properties of somatic single nucleotide variants (SNV) and frameshift insertion/deletion

(e.g., estimate of the mutation frequency, mutation ratio, mutation hotspots)
Copy number
alteration (CNA)

information related to amplifications, deletions, and duplication of segments of DNA
that changes the number of copies of a particular DNA segment within the genome (e.g.,
deletion and amplification frequency)

DNA sequence raw nucleotide sequence

Functional Impact
Functional impact
scores

outputs of in silico variant effect predictors concerning the probability of deleterious
changes on protein function

Protein-based properties of protein sequence and structure, from amino acids to protein’s tertiary
structure

Evolution-based evolutionary conservation scores, amino acids substitution rate, gene age, gene damage
index, number of human paralogs, etc.

Functional Genomics
Transcriptomics large-scale gene expression profiles or statistics derived from differential gene

expression analyses
Epigenomics DNA methylation, histone modifications, chromatin accessibility, DNA replication time
Proteomics protein expression data, mainly expressed as categorical features that indicate whether or

not a protein is expressed in a given human tissue
Ontology-based - functional, cellular, or phenotypic annotations obtained from bioinformatics databases or

related works
Network-based - node properties from structural analysis of molecular networks (e.g., PPI or gene-gene

networks)

i.e., 70.73%), followed by Functional Impact (26 papers) and Functional Genomics (16

papers). Network-based and Ontology-based features were each employed in 9 papers

(Figure 3.2a). Since some data categories contain multiple subcategories, we analyzed

the number of distinct feature datasets adopted per paper and found that it varied from 1

to 8 ((NULSEN et al., 2021)), with an average of 2.87 (± 1.17) datasets.

One of our main findings regarding the features aspect of ML models is that many

works adopted more than one data category. Twenty-nine papers (i.e., 70.73%) used two

or more data categories and were classified in a Data integration category. The distri-

bution of the number of occurrences of data categories by years of publication does not

suggest any association between these factors (Figure 3.2b).

Moreover, integrating different data categories is not necessarily a recent tendency,

as papers published in 2009 and 2011 already proposed such strategy. Nonetheless, most

of the papers using features from three or more data categories were published from 2015,

and those that used four (TOKHEIM et al., 2016; LYU et al., 2020) or five (COLAPRICO

et al., 2020; NULSEN et al., 2021) data categories were published mainly in 2020 and

2021, which may indicate a trend for increasing data diversity in newer models.

The Venn diagram in Figure 3.2c summarizes the intersections among distinct data

categories. The most recurrent combination was the integration of Genomic Variation and

Functional Impact (8 papers), followed by Genomic Variation and Functional Genomics

(5 papers). Also, while Functional Impact was the most common data category used as

a single source of features in the proposed models, the Network-based category was not

exclusively used by any ML model among the revised papers. In what follows, we review
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Figure 3.2 – Analysis of data categories used as model features by selected papers.
(a) Relation of data categories per paper, organized by year of

publication in ascending order.
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the particularities of each data category.
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3.4.1 Genomic variation

Three papers (LI et al., 2016; HAN et al., 2019; XI et al., 2019) used Genomic

Variation data as the single source of feature, whereas 23 (i.e., 56.09%) combined it with

other categories. A long-standing hypothesis in the discovery of cancer drivers is that

driver genes are mutated more frequently than expected as compared to a background mu-

tation rate (BMR) estimated from cancer samples for a given cancer type (TAMBORERO

et al., 2013). Nonetheless, the mutational landscape of cancer consists of ‘mountains’

of very frequently mutated genes and of ‘hills’ of significantly but less frequently mu-

tated genes (VOGELSTEIN et al., 2013). Thus, simply characterizing candidate driver

genes with frequency-based methods poses the challenge of robust BMR estimation: a

low BMR may lead to many spurious findings, whereas a high BMR may miss the driver

genes mutated at very low frequency. ML-based methods aim to allow the algorithm to

learn the mutational patterns related to cancer drivers from training data. Here, we consid-

ered three subcategories (Table 3.2): i) mutations, ii) copy number alteration (CNA); and

iii) raw DNA sequence, which was included since information regarding DNA variants

would be implicitly available.

Mutation-related properties was the most common feature type, employed by 26

papers (i.e., 63.41%). Fifteen papers explored mutations’ properties as the single source

of genomic variation features, and one paper (HAN et al., 2019) exclusively relied on

mutation-based features for model development. Mutation frequency was widely used

by selected papers, usually estimated from databases such as Catalogue of somatic mu-

tations in cancer (COSMIC) (TATE et al., 2018), The Cancer Genome Atlas (TCGA),

and HapMap (GIBBS et al., 2003). Some works (DAVOLI et al., 2013; GNAD et al.,

2015; LYU et al., 2020) distinguished between potentially high (HiFI) or low (LoFI)

functional impact mutations when computing mutation frequency, adopting in silico pre-

dictors of mutations’ functional impact. Moreover, silent mutations and LoFI missense

mutations, or a combination of both (GNAD et al., 2015; LYU et al., 2020), were of-

ten taken as a measure for genes’ BMR. Davoli et al. (2013) proposed an entropy-based

mutation selection score that reflects the spatial distribution of these features, measuring

the occurrence of ‘mutation hotspots’. This measure of positional clustering was adopted

by several papers (GNAD et al., 2015; TOKHEIM et al., 2016; COLLIER; STOVEN;

VERT, 2019; LUO et al., 2019; COLAPRICO et al., 2020; NULSEN et al., 2021). Muta-

tion hotspots were also detected using scores computed by OncoDriveCLUST (TAM-
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BORERO; GONZALEZ-PEREZ; LOPEZ-BIGAS, 2013; SCHROEDER et al., 2014;

NULSEN et al., 2021) and applying density estimates to aggregate closely-spaced mis-

sense mutations into peaks and compute mutation fraction inside the highest peak (CHAN-

DRASHEKAR et al., 2020).

The normalized number of single nucleotide variants (SNVs) in the mutation’s

exon (MAO et al., 2013), mutations’ distance to closest Transcribed Sequence Start (TSS)

and closest Transcribed Sequence End (TSE) (AGAJANIAN; OLUYEMI; VERKHIVKER,

2019), and a gene-level binary matrix summarizing mutation occurrence across all sam-

ples (LI et al., 2016; XI et al., 2019) were also adopted.

Fourteen papers (i.e., 34.15%) (DAVOLI et al., 2013; SCHROEDER et al., 2014;

GNAD et al., 2015; PARK et al., 2015; DONG et al., 2016; LI et al., 2016; PARK et

al., 2017; GUAN et al., 2018; LU et al., 2018; JIANG et al., 2019; SCHULTE-SASSE et

al., 2019; XI et al., 2019; LYU et al., 2020; NULSEN et al., 2021) adopted CNA data as

models’ features, which was first introduced in this domain by Davoli et al. (2013).

Their model analyzed the deletion and amplification frequency to distinguish among

neutral genes, oncogenes, and TSGs. Two papers (GNAD et al., 2015; LI et al., 2016) em-

ployed the Genomic Identification of Significant Targets In Cancer (GISTIC) (BEROUKHIM

et al., 2007; MERMEL et al., 2011) algorithm to obtain DNA amplification and deletion

regions. Gnad et al. (2015) used as features the sums of amplification or deletion frequen-

cies across 13 TCGA cancer types. Eleven papers that fall within the CNA subcategory

also adopted mutation data. However, in most cases, the features from the different sub-

categories were used independently rather than combined into a single input feature. One

exception is the work by Schulte-Sasse et al. (2019), in which the sum of SNVs and CNA

is averaged across all samples of a given cancer type to estimate a cancer mutation rate per

gene. Furthermore, among the three papers that apply only CNA features from the Ge-

nomic variation category, two (PARK et al., 2017; GUAN et al., 2018) also adopted gene

expression data in their analyses, since CNA is known to mediate phenotypic changes

through their impact on expression. Park et al. (2017) quantified the association between

CNA and gene expression using a previously proposed method (YUAN et al., 2011),

differentiating between cis-effects (i.e., when gene expression is influenced by CNA in

proximal genes within a several Mb window) and trans-effects (i.e., when gene expres-

sion is influenced by remote alterations throughout the genome). Guan et al. (2018) used

gene-level summarized cell-lines CNA and expression profiles obtained from the Cancer

Cell Line Encyclopedia (CCLE).
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Finally, only one paper (AGAJANIAN; OLUYEMI; VERKHIVKER, 2019) used

raw DNA sequence as model’s features. Mutations were represented by stacking two nu-

cleotide sequences on top of each other, one with the original nucleotide for a given po-

sition and the other with the mutated version, and a convolutional neural network (CNN)

was trained to automatically extract driver-related sequence patterns.

3.4.2 Functional impact

The functional impact (FI) of SNVs on protein function was analyzed by 63.41%

of papers. Their goal is to better identify lowly recurrent mutated driver genes or driver

genes that are mutated late during tumor development, which are more challenging cases

for methods that exclusively analyze genomic variation features (GONZALEZ-PEREZ;

LOPEZ-BIGAS, 2012). This has become a widely applied strategy even outside the scope

of ML-based papers, as reflected by the several computational methods developed for

pathogenicity prediction of SNVs (CHEN et al., 2020; WU et al., 2016). Three sub-

categories were created (Table 3.2): i) functional impact scores provided by in silico

predictors for variant effect; ii) protein-based features; and iii) evolution-based features.

Although most FI predictors rely on features related to proteins’ properties or evolutionary

conservation (CHEN et al., 2020), we did not consider this in our classification.

FI scores was the largest subcategory, employed by 18 papers. Table 3.3 sum-

marizes the FI predictors used. Most works adopted the predicted scores or p-values

as models’ features, while others (e.g., (COLLIER; STOVEN; VERT, 2019)) estimated

the number of damaging missense mutations per gene using a pre-defined score threshold.

Several works integrated the output of multiple FI predictors in their feature vectors (MAO

et al., 2013; DONG et al., 2016; AGAJANIAN et al., 2018; AGAJANIAN; OLUYEMI;

VERKHIVKER, 2019; ZHU et al., 2019; WANG et al., 2020). Dong et al. (2016) used

11 tools for point coding mutations and one tool, FunSeq2 (FU et al., 2014), to anno-

tate non-coding variants. Wang et al. (2020) explored the largest diversity of tools: 23

conservation-base, ensemble-based, and function-prediction methods.

The protein-based subcategory was adopted by 11 papers. Some works (CARTER

et al., 2009; TAN; BAO; ZHOU, 2012; MAO et al., 2013) evaluated the changes in

residues’ charge, volume, polarity, the hydrophobicity resulting from the mutation, the

predicted residue solvent accessibility and backbone flexibility, the mutation’s effect on

protein stability, and the probability that the secondary structure of the wild type residue’s
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Table 3.3 – In silico tools for functional impact prediction
Reference Tools
Capriotti and Altman
(2011)

PANTHER (THOMAS et al., 2006)

Davoli et al. (2013) Polyphen-2 (ADZHUBEI et al., 2010)
Mao et al. (2013) SIFT (NG; HENIKOFF, 2003), PolyPhen-2 (ADZHUBEI et al., 2010), CONDEL

(GONZÁLEZ-PÉREZ; LÓPEZ-BIGAS, 2011), MutationAssessor (REVA; ANTIPIN; SANDER,
2011), PhyloP (POLLARD et al., 2010), GERP++ (DAVYDOV et al., 2010), and LRT (CHUN;
FAY, 2009)

Schroeder et al. (2014) OncodriveFM (GONZALEZ-PEREZ; LOPEZ-BIGAS, 2012)
Gnad et al. (2015) MutationAssessor (REVA; ANTIPIN; SANDER, 2011)
Dong et al. (2016) SIFT (NG; HENIKOFF, 2003), PolyPhen-2 (ADZHUBEI et al., 2010), LRT (CHUN; FAY, 2009),

MutationTaster (SCHWARZ et al., 2010), MutationAssessor (REVA; ANTIPIN; SANDER, 2011),
FATHMM (SHIHAB et al., 2013), GERP++ (DAVYDOV et al., 2010), PhyloP (POLLARD et al.,
2010), CADD (KIRCHER et al., 2014), VEST (CARTER et al., 2013), SiPhy (GARBER et al.,
2009), FunSeq2 (FU et al., 2014)

Tokheim et al. (2016) VEST (CARTER et al., 2013)
Agajanian et al. (2018) SIFT (NG; HENIKOFF, 2003), PolyPhen-2 (ADZHUBEI et al., 2010), LRT (CHUN; FAY, 2009),

MutationAssessor (REVA; ANTIPIN; SANDER, 2011), MutationTaster (SCHWARZ et al., 2010),
FATHMM (SHIHAB et al., 2013), MSRV (JIANG et al., 2007), SinBaD (LEHMANN; CHEN,
2013), GERP++ (DAVYDOV et al., 2010), SiPhy (GARBER et al., 2009), PhyloP (POLLARD et
al., 2010), Grantham (GRANTHAM, 1974), CADD (KIRCHER et al., 2014), GWAVA (RITCHIE et
al., 2014), MetaLR (DONG et al., 2015), and MetaSVM (DONG et al., 2015)

Wang et al. (2018b) SIFT (NG; HENIKOFF, 2003) and GERP++ (DAVYDOV et al., 2010)
Zhou, Gao and Skolnick
(2018)

ENTPRISE (ZHOU; GAO; SKOLNICK, 2016)

Agajanian, Oluyemi and
Verkhivker (2019)

SIFT (NG; HENIKOFF, 2003), PolyPhen-2 (ADZHUBEI et al., 2010), LRT (CHUN; FAY, 2009),
MutationAssessor (REVA; ANTIPIN; SANDER, 2011), MutationTaster (SCHWARZ et al., 2010),
FATHMM (SHIHAB et al., 2013), MSRV (JIANG et al., 2007), SinBaD (LEHMANN; CHEN,
2013), GERP++ (DAVYDOV et al., 2010), SiPhy (GARBER et al., 2009), PhyloP (POLLARD et
al., 2010), Grantham (GRANTHAM, 1974), CADD (KIRCHER et al., 2014), GWAVA (RITCHIE et
al., 2014), MetaLR (DONG et al., 2015), and MetaSVM (DONG et al., 2015)

Collier, Stoven and Vert
(2019)

Polyphen-2 (ADZHUBEI et al., 2010)

Zhu et al. (2019) 20/20+ (TOKHEIM et al., 2016), MutSigCV (LAWRENCE et al., 2013), OncodriveFM
(GONZALEZ-PEREZ; LOPEZ-BIGAS, 2012), OncodriveCLUST (TAMBORERO;
GONZALEZ-PEREZ; LOPEZ-BIGAS, 2013), DrGaP (HUA et al., 2013), and MUFFINN (CHO et
al., 2016)

Colaprico et al. (2020) VEST (CARTER et al., 2013)
Gumpinger et al. (2020) MutsigCV (LAWRENCE et al., 2013)
Lyu et al. (2020) VEST (CARTER et al., 2013), PolyPhen-2 (ADZHUBEI et al., 2010)
Wang et al. (2020) GERP++ (DAVYDOV et al., 2010), PhastCons, PhyloP (POLLARD et al., 2010), LRT (CHUN;

FAY, 2009), SiPhy (GARBER et al., 2009), FATHMM (SHIHAB et al., 2013), fitCons (GULKO et
al., 2015), MutationAssessor (REVA; ANTIPIN; SANDER, 2011), MutationTaster (SCHWARZ et
al., 2010), PolyPhen2-HDIV (ADZHUBEI et al., 2010), PolyPhen2-HVAR (ADZHUBEI et al.,
2010), PROVEAN (CHOI; CHAN, 2015), SIFT (NG; HENIKOFF, 2003), VEST3 (CARTER et al.,
2013), CADD (KIRCHER et al., 2014), DANN (QUANG; CHEN; XIE, 2015), Eigen
(IONITA-LAZA et al., 2016), FATHMM-MKL (SHIHAB et al., 2015), GenoCanyon (LU et al.,
2015), M-CAP (JAGADEESH et al., 2016), MetaLR (DONG et al., 2015), MetaSVM (DONG et al.,
2015), and REVEL (IOANNIDIS et al., 2016)

region is helix, loop, or strand. Anoosha et al. (2015) considered 49 physical, chemi-

cal, energetic, and conformational parameters comparing wild type and mutant residues,

as well as neighboring residue information at different window lengths. Feature vectors

encoding the mutated sequence and the mutation’s local sequence environment (CAPRI-

OTTI; ALTMAN, 2011) or the biochemical properties of the atomic coordinates of pro-

teins’ PDB structure (TAVANAEI et al., 2017) were also proposed. Other characteristics

considered were the fraction of the affected protein structure (ZHOU; GAO; SKOLNICK,

2018), amino acid composition of the residues in contact with the mutation or of its do-

main (ZHOU; GAO; SKOLNICK, 2018), amino acid’s position in the codon or protein
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(AGAJANIAN; OLUYEMI; VERKHIVKER, 2019), number of complexes containing

the protein (NULSEN et al., 2021), and background probability for observing the wild

type or mutant residue in the first, middle, or last position of an amino acid triple, or

at the center of a window of 5 amino-acid residues (CARTER et al., 2009; TAN; BAO;

ZHOU, 2012). Finally, amino acids substitution scores were employed by several stud-

ies (CARTER et al., 2009; TAN; BAO; ZHOU, 2012; MAO et al., 2013; U et al., 2014;

ANOOSHA et al., 2015), most of which integrated distinct substitution scoring matrices.

The evolution-based subcategory was employed in 14 studies, most of which com-

puted evolutionary conservation scores using distinct strategies or tools (CARTER et al.,

2009; CAPRIOTTI; ALTMAN, 2011; MAO et al., 2013; U et al., 2014; ANOOSHA

et al., 2015; TOKHEIM et al., 2016; AGAJANIAN et al., 2018; ZHOU; GAO; SKOL-

NICK, 2018; AGAJANIAN; OLUYEMI; VERKHIVKER, 2019; COLAPRICO et al.,

2020; LYU et al., 2020). MGAentropy, for instance, was employed by three papers

(MAO et al., 2013; TOKHEIM et al., 2016; LYU et al., 2020). The rationale is that

the more an amino-acid residue is functionally or structurally important, the more con-

served is over evolution. Chandrashekar et al. (2020) computed the mean substitution rate

of all protein’s positions as well as of positions under the highest peak of closely-spaced

mutations. Lyu et al. (2020) employed the gene age, gene damage index, and the number

of human paralogs for each gene, among others. Finally, Nulsen et al. (2021) included

the indication of genes’ evolutionary origin (i.e., pre-metazoan, metazoan, vertebrate, or

post-vertebrate).

We observed that six studies (U et al., 2014; ANOOSHA et al., 2015; TAVANAEI

et al., 2017; AGAJANIAN et al., 2018; ZHU et al., 2019; WANG et al., 2020) in the

Functional Impact category only used this data type for developing their predictive mod-

els (Figure 3.2a). Among these, Zhu et al. (2019) and Wang et al. (2020) defined their

features exclusively based on scores from FI predictors. This is not surprising, as this

feature carries rich underlying information provided by the various properties analyzed

by each FI predictor.

3.4.3 Functional genomics

About 39% of papers used Functional Genomics features, which we divided in

three subcategories (Table 3.2): i) transcriptomics; ii) epigenomics; and iii) proteomics.

The motivation comes from the observation that mutation frequency is strongly cor-
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related with transcriptional activity and DNA replication timing (JIANG et al., 2019;

LAWRENCE et al., 2013), and that driver gene mutations are tightly tied to DNA methy-

lation landscape in multiple types of cancer (CHEN et al., 2017). Moreover, muta-

tion rates vary among individual genes and are influenced by many factors, including

the chromatin state (SCHUSTER-BÖCKLER; LEHNER, 2012) and the aforementioned

ones (i.e., gene expression, replication timing, DNA methylation). Thus, integrating these

properties in the ML models may help differentiate cancer genes from the rest of human

genes (NULSEN et al., 2021).

Transcriptomic data was employed in 15 papers, representing 93.75% of papers

classified as Functional Genomics. Gene expression levels were provided as model in-

puts in several works (FU et al., 2012; MANOLAKOS et al., 2014; PARK et al., 2015;

GUAN et al., 2018). Other papers summarized gene expression profiles by computing

differential gene expression scores (GNAD et al., 2015; TOKHEIM et al., 2016; LU et

al., 2018; WANG et al., 2018b; SCHULTE-SASSE et al., 2019; COLAPRICO et al.,

2020; LYU et al., 2020) or average expression in cancer tissues or cell lines (JIANG et

al., 2019). In Nulsen et al. (2021), authors quantified the number of tissues expressing

each gene, as well as binary features indicating whether the gene is expressed in a certain

number of tissues. We observed that 11 studies used only transcriptomic data, while three

(JIANG et al., 2019; SCHULTE-SASSE et al., 2019; LYU et al., 2020) combined tran-

scriptomics and epigenomics, and one (NULSEN et al., 2021) combined transcriptomic-

and proteomic-based features.

Five papers (TOKHEIM et al., 2016; CELLI; CUMBO; WEITSCHEK, 2018;

JIANG et al., 2019; SCHULTE-SASSE et al., 2019; LYU et al., 2020) used features from

the epigenomic domain. Despite the low number of papers, a wide range of informa-

tion was registered. In Tokheim et al. (2016), authors used as features the DNA replica-

tion time and the 3D chromatin interaction capture (HiC) statistic, which is a measure of

open vs. closed chromatin state, obtained from the MutSigCV webpage (LAWRENCE et

al., 2013). Jiang et al. (2019) complemented these features with chromatin accessibility

by ATAC-Seq data and beta values obtained from DNA methylation data. In Schulte-

Sasse et al. (2019), authors analyzed 16 types of cancer from TCGA and represented each

gene by a 16×3-dimensional vector, containing estimates of differential DNA methyla-

tion from the gene’s promoter region, differential gene expression, and gene’s mutation

rate in each type of cancer analyzed. Lyu et al. (2020) explored several types of epige-

netic properties, including early replication timing quantified by the S50 score, promoter
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and gene-body cancer–normal methylation difference, and histone modifications from the

ENCODE project. Finally, one paper (CELLI; CUMBO; WEITSCHEK, 2018) focused

exclusively on DNA methylation data, using the beta values as model’s predictors.

Lastly, only one paper (NULSEN et al., 2021) was classified in the proteomics

subcategory, using features that reflect the number of healthy human tissues expressing

a protein and whether a protein is expressed in 0 to 8 tissues, or in 41 or more tissues

according to the Protein Atlas v18.

3.4.4 Ontology-based

In the Ontology-based category, annotations varied from Gene Ontology (GO)

terms to specific categorization of genes’ role in organisms’ functioning and phenotype

(e.g., essentiality, diseases involvement, cellular localization). The rationale is that prior

knowledge regarding genes associated with diseases or molecular processes implicated

in cancer may help improve gene prioritization in the search for CDGs. Nine papers

(21.95%) were classified within this subcategory. While most papers used ontology-based

features in combination to other data types, one paper employed exclusively background

knowledge about gene functions, cellular locations, and cellular and organism phenotypes

obtained from Cellular Microscopy Phenotype Ontology (CMPO), Gene Ontology (GO),

and Mammalian Phenotype Ontology (MP) databases to learn an embedding for each

gene using a neuro-symbolic approach (ALTHUBAITI et al., 2019).

Information from biological processes was integrated into two frameworks (CAPRI-

OTTI; ALTMAN, 2011; COLAPRICO et al., 2020), either as features encoding the num-

ber of GO terms associated with a given gene (CAPRIOTTI; ALTMAN, 2011) or as prior

knowledge about biological processes linked to cancer to identify their mediators (CO-

LAPRICO et al., 2020). Prior knowledge regarding disease involvement of protein under

altered function was also explored by selected works, using, for instance, the databases

Phenolyzer (DONG et al., 2016) and GeneCards (ZHOU; GAO; SKOLNICK, 2018).

Moreover, two papers adopted protein essentiality annotations based on the rationale that

functional changes in essential proteins are more likely to be associated with diseases

(ZHOU; GAO; SKOLNICK, 2018; NULSEN et al., 2021).

Annotations about regulatory roles or interactions were integrated into the models

proposed by two works (MANOLAKOS et al., 2014; NULSEN et al., 2021). In the

first (MANOLAKOS et al., 2014), authors explored transcription factors obtained from
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the Human Protein Reference Database (HPRD) (VAQUERIZAS et al., 2009) to identify

cancer-related modules formed by regulatory genes and their downstream targets. In the

second (NULSEN et al., 2021), authors included the number of microRNAs targeting a

given gene (NULSEN et al., 2021) registered at miRTarBase (CHOU et al., 2018) and

miRecords (XIAO et al., 2009) databases, motivated by the hypothesis that genes related

to canonical driver are targeted by more microRNAs. Finally, one work (LYU et al.,

2020) used annotations regarding super-enhancer from the dbSUPER database (KHAN;

ZHANG, 2016) and cell proliferation scores as a proxy for essentiality.

3.4.5 Network-based

The Network-based category appeared in nine papers. In biological systems, the

interactions between proteins are essential for the comprehension of cell physiology since

most proteins interact with others for proper biological activity. This also implies that any

abnormality in a given gene or protein may spread through its links in the molecular

network and impact the activity of other elements. Thus, the hypothesis that a disease

phenotype is rarely a consequence of a defect on a single gene or protein but rather

of alterations in the biological processes that interact in a complex network has moti-

vated network-based approaches to study human diseases (BARABÁSI; GULBAHCE;

LOSCALZO, 2011).

The predictive features in this domain were mainly related to centrality measures

obtained from Protein-protein interaction (PPI) networks (Table 3.4), such as degree, be-

tweenness, and clustering coefficient (TOKHEIM et al., 2016; ZHOU; GAO; SKOL-

NICK, 2018; COLAPRICO et al., 2020; CUTIGI et al., 2020; NULSEN et al., 2021).

The hypothesis is that proteins encoded by canonical drivers tend to have higher central-

ity than other proteins (NULSEN et al., 2021). Cutigi et al. (2020) considered several

other node properties: closeness, eigenvector, coreness, average of neighbors’ degree,

leverage, information, and bridging. Nulsen et al. (2021) defined a binary feature indi-

cating whether a protein is a hub (i.e., top 25% of degree distribution) or not in the PPI

network.

Park et al. (2015) leveraged gene networks constructed based on comprehensive

genome-scale information, including PPIs (unspecified sources), gene expression, SNVs,

and CNA. Collier, Stoven and Vert (2019) quantified the gene-gene similarity using an

integrated kernel function that combines prior information about mutations and PPI net-
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Table 3.4 – Protein-protein interaction (PPI) networks adopted by selected papers
Reference PPI Networks
Tokheim et al. (2016) BioGRID (STARK et al., 2006)
Zhou, Gao and Skolnick (2018) HIPPIE (SCHAEFER et al., 2012)
Collier, Stoven and Vert (2019) HPRD (PRASAD et al., 2009)
Schulte-Sasse et al. (2019) ConsensusPathDB (KAMBUROV et al., 2011)
Cutigi et al. (2020) ReactomeFI (JASSAL et al., 2020), HINT (DAS; YU,

2012), HPRD (PRASAD et al., 2009), HuRI (LUCK et
al., 2020)

Gumpinger et al. (2020) InBio Map (LAGE et al., 2007)
Nulsen et al. (2021) BioGRID (STARK et al., 2006), MIntAct(ORCHARD et

al., 2014), DIP (SALWINSKI et al., 2004), HPRD
(PRASAD et al., 2009)

work. In Schulte-Sasse et al. (2019), instead of exploring handcrafted network-based

features, authors adopted the Graph Convolutional Network (GCN) algorithm that can

directly analyze graph-structured data and recognize patterns in a local neighborhood of

a node, using the PPI network as the input graph. Similarly, Gumpinger et al. (2020)

generated node embeddings that integrate the PPI network structure with nodes’ MutSig

p-values. Their findings suggest that nodes’ context in the network introduces valuable

information for CDGs prediction.

3.5 Machine learning strategies

Regarding computational methods, we categorized the selected papers into tradi-

tional ML and deep learning (DL). Traditional ML was further subdivided into supervised

and unsupervised methods in our analysis (Figure 3.3), while DL may comprise super-

vised, unsupervised and semi-supervised approaches, which were considered here as a

single category. A theoretical background for ML was provided in Chapter 2.

Two papers follow distinct methodologies: the first uses a genetic algorithm (LI

et al., 2016), which is a population-based nature-inspired learning algorithm, and the

second is a web-based consensus CDG caller that performs rank-based aggregation of

FI predictors’ scores, including ML-based tools (ZHU et al., 2019). We will not give

emphasis to these works in our review.

Most papers (80%) adopted a traditional supervised learning approach, explor-

ing the known examples of true cancer drivers that are available in specialized databases

(Table 3.5) as training data. The COSMIC database (TATE et al., 2018) and its CGC

resource (SONDKA et al., 2018) were the most common sources for positive labels (i.e.,

drivers), followed by TCGA (significantly mutated genes) and NCG (REPANA et al.,
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Figure 3.3 – Classes and examples of machine learning algorithms identified through this work
with applications in cancer driver gene prediction.
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2019). Some works restricted the selection for CDGs verified by at least two sources

(COLAPRICO et al., 2020). High-quality negative examples (i.e., non-drivers) are, in

general, more challenging to define when applying ML to omics data (LIBBRECHT;

NOBLE, 2015; SCHUBACH et al., 2017) since the choice is highly prone to biased pre-

dictions or false negatives depending on filtering criteria applied (ROGERS; GAUNT;

CAMPBELL, 2020), and no comprehensive ground truth datasets are available. Selected

papers explored mainly neutral variants from public genomic variation databases (CAPRI-

OTTI; ALTMAN, 2011; TAN; BAO; ZHOU, 2012; U et al., 2014) and synthetically gen-

erated passenger missense mutations (CARTER et al., 2009; SOLIMAN et al., 2015).

Another adopted approach is to start from all genes and recursively remove positive la-
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beled genes according to a compendium of annotation databases (SCHULTE-SASSE et

al., 2019; WANG et al., 2020). Many papers (SOLIMAN et al., 2015; TOKHEIM et al.,

2016; AGAJANIAN et al., 2018; COLLIER; STOVEN; VERT, 2019; LUO et al., 2019;

NICORA et al., 2019; CHANDRASHEKAR et al., 2020; COLAPRICO et al., 2020)

also collected labeled datasets from the scientific literature (e.g., (CARTER et al., 2009;

TAMBORERO et al., 2013; VOGELSTEIN et al., 2013; MARTELOTTO et al., 2014;

BAILEY et al., 2018)).

Table 3.5 – Databases adopted in the selected papers for constructing labeled datasets of positive
and negative examples of cancer drivers

Sources for positive examples
Database References
COSMIC (TATE et al., 2018) or Cancer Gene Census
(CGC) (SONDKA et al., 2018)

(CARTER et al., 2009; CAPRIOTTI;
ALTMAN, 2011; TAN; BAO; ZHOU, 2012;
MAO et al., 2013; SCHROEDER et al., 2014;
U et al., 2014; ANOOSHA et al., 2015;
DONG et al., 2016; TAVANAEI et al., 2017;
JIANG et al., 2019; ZHU et al., 2019; LUO et
al., 2019; COLAPRICO et al., 2020;
CHANDRASHEKAR et al., 2020;
GUMPINGER et al., 2020; LYU et al., 2020)

TCGA (MAO et al., 2013; DONG et al., 2016;
WANG et al., 2018b; ZHU et al., 2019;
CHANDRASHEKAR et al., 2020; NULSEN
et al., 2021)

Network of Cancer Genes (NCG) (REPANA et al.,
2019)

(SCHULTE-SASSE et al., 2019; CUTIGI et
al., 2020; NULSEN et al., 2021)

OMIM (HAMOSH et al., 2005) (FU et al., 2012; ZHU et al., 2019)
intOGen (GONZALEZ-PEREZ et al., 2013) (ALTHUBAITI et al., 2019; HAN et al., 2019)
ClinVar (LANDRUM et al., 2018) (ZHOU; GAO; SKOLNICK, 2018)
CBioPortal (CERAMI et al., 2012) (AGAJANIAN; OLUYEMI; VERKHIVKER,

2019)
DriverDBv2 (CHUNG et al., 2016) (HAN et al., 2019)
OncoKB (CHAKRAVARTY et al., 2017) (WANG et al., 2020)
FASMIC (NG et al., 2018) (WANG et al., 2020)

Sources for negative examples
Database References
Synthethic examples (CARTER et al., 2009; CAPRIOTTI;

ALTMAN, 2011)
Swiss-Prot Variant Pages (YIP et al., 2008) (CAPRIOTTI; ALTMAN, 2011; TAN; BAO;

ZHOU, 2012)
CCLE (BARRETINA et al., 2012) (MAO et al., 2013)
SNP@Domain (HAN et al., 2006) (U et al., 2014)
COSMIC (TATE et al., 2018) (ANOOSHA et al., 2015)
CBioPortal (CERAMI et al., 2012) (AGAJANIAN; OLUYEMI; VERKHIVKER,

2019)
intOGen (GONZALEZ-PEREZ et al., 2013) (ALTHUBAITI et al., 2019)
OncoKB (CHAKRAVARTY et al., 2017) (WANG et al., 2020)
FASMIC (NG et al., 2018) (WANG et al., 2020)
gnomAD (KARCZEWSKI et al., 2020) (WANG et al., 2020)

Three papers (MANOLAKOS et al., 2014; LU et al., 2018; XI et al., 2019)
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adopted traditional unsupervised learning and four papers explored DL (TAVANAEI et al.,

2017; AGAJANIAN; OLUYEMI; VERKHIVKER, 2019; LUO et al., 2019; SCHULTE-

SASSE et al., 2019).

To provide a more granular discussion about traditional supervised learning ap-

proaches, we further divided them into six subcategories: SVM-based methods, regression-

based methods, tree-based methods, neural network, probabilistic methods, and other ap-

proaches that do not fall into any of the previous classes. Figure 3.4a shows the algorithm

categories distribution across the year of paper publication. In Figure 3.4b, we summarize

the observed associations between ML strategies and data categories.

3.5.1 Methods based on traditional supervised learning

Tree-based and SVM-based methods were the most common supervised learning

approaches, observed in 39.02% and 36.59% of selected papers. The first proposals by

Carter et al. (2009) and Capriotti and Altman (2011) were based on these algorithms.

Among the SVM-based approaches, whereas most papers adopted the traditional SVM

algorithm (CAPRIOTTI; ALTMAN, 2011; TAN; BAO; ZHOU, 2012; MAO et al., 2013;

U et al., 2014; SOLIMAN et al., 2015; DONG et al., 2016; GUAN et al., 2018; CUTIGI

et al., 2020; GUMPINGER et al., 2020; LYU et al., 2020; WANG et al., 2020), we ob-

served three papers using OneClass SVM (COLLIER; STOVEN; VERT, 2019; NICORA

et al., 2019; NULSEN et al., 2021) and one paper using Sequential Minimal Optimization

(SMO) (ANOOSHA et al., 2015). SVM is a popular and consolidated technique in the

field, as it continues to be largely applied since 2011.

Considering tree-based methods, although some papers explored the traditional

decision tree algorithm (SCHROEDER et al., 2014; U et al., 2014; WANG et al., 2020),

the vast majority used tree-based ensemble classifiers. Ensemble methods train multi-

ple weak classifiers, such as decision trees, and combine their output (e.g., with majority

voting) to achieve a better predictive performance. We observed a frequent use of Ran-

dom Forests (RF) (CARTER et al., 2009; SCHROEDER et al., 2014; U et al., 2014;

TOKHEIM et al., 2016; AGAJANIAN et al., 2018; CELLI; CUMBO; WEITSCHEK,

2018; AGAJANIAN; OLUYEMI; VERKHIVKER, 2019; NICORA et al., 2019; CHAN-

DRASHEKAR et al., 2020; COLAPRICO et al., 2020; CUTIGI et al., 2020; GUMPINGER

et al., 2020; LYU et al., 2020; WANG et al., 2020), as well as Gradient Boosting Trees

(GBT) (ZHOU; GAO; SKOLNICK, 2018; AGAJANIAN et al., 2018), and eXtreme Gra-
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Figure 3.4 – Analysis of types of algorithms used for model development in the selected papers.
(a) Distribution of the number of occurrences found for each algorithm category per year of

publication. (b) Association between data categories and algorithm categories.
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dient Boosting (XGBoost) (LYU et al., 2020; WANG et al., 2020). Other less common

tree-based variants were also explored, including Conditional trees, NB trees, and Func-

tional trees (SCHROEDER et al., 2014).

Regression-based methods appeared in 11 selected papers, most of which adopted

logistic regression (SCHROEDER et al., 2014; GNAD et al., 2015; SOLIMAN et al.,

2015; DONG et al., 2016; AGAJANIAN et al., 2018; GUMPINGER et al., 2020; LYU et

al., 2020). We also found papers using Ridge (NICORA et al., 2019) and Lasso (DAVOLI

et al., 2013) regularized regressions.

The works by Park et al. (PARK et al., 2015; PARK et al., 2017) introduced new

approaches based on linear regression and regularization schemes. Authors proposed

a sparse overlapping group Lasso to perform group selection while identifying crucial

genes (i.e., potential CDGs) within each group (PARK et al., 2015), and an interaction-

based feature-selection strategy with adaptive regularization that adjusts the amount of

the L1-type penalty imposed on each gene proportionally to the degree to which gene

expression alteration is explained by CNAs (PARK et al., 2017).

Probabilistic methods and artificial neural networks (ANN) were less frequent

among selected papers. Naïve Bayes was applied in two studies (SCHROEDER et al.,

2014; U et al., 2014), while a Bayesian network was adopted only in one (U et al., 2014).

U et al. (2014) used both the traditional implementation of naïve Bayes, as well as the

DTNB algorithm that combines naïve Bayes with induction of decision tables (HALL;

FRANK, 2008). Wang et al. (2018b) proposed a Bayesian hierarchical modeling ap-

proach to identify mutations that best predict alterations in gene expression, which rep-

resent candidate drivers. Furthermore, ANNs were used in three works (U et al., 2014;

ALTHUBAITI et al., 2019; WANG et al., 2020).

Althubaiti et al. (2019) and Wang et al. (2020) trained an ANN with two hidden

layers using a Rectified Linear Unit (ReLU) as an activation function for the hidden layers.

In the former, the network receives as input embedding vectors generated from different

ontologies, while in the latter, the input vectors are built from the pathogenicity prediction

scores provided by in silico tools.

We highlight three works that explored the greatest number of algorithms. U et al.

(2014) compared 11 algorithms, including SVM-based, tree-based, ANN, and probabilis-

tic methods. SVM presented the best performance among the classifiers, but a weighted

voting approach among all models achieved the most robust results. Schroeder et al.

(2014) compared six regression-based, probabilistic, and tree-based methods, and ob-
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served that RF produced the highest predictive performance. Wang et al. (2020) analyzed

seven algorithms, including SVM-based, tree-based, and ANN, and pointed XGBoost as

the top-performing method.

We also identified the use of less conventional supervised learning methods, in-

cluding the Bayesian Factor Regression Modeling (BFRM), a sparse statistical model for

high-dimensional data analysis (FU et al., 2012), Decision Tables, and Locally Weighted

Learning (LWL) (U et al., 2014).

Finally, Han et al. (2019) applied a ML principle, but the weight parameters in the

proposed score are learned by maximizing their global weighted score stats from previous

genes in the training mutation data.

3.5.2 Methods based on traditional unsupervised learning

Three papers applied unsupervised methods to CDGs prediction. Manolakos et

al. (2014) proposed an algorithm for detecting gene drivers using clustering to find genes

with similar expression profiles across cancer patients. Gene clusters are created using

K-means, and then sparse representations of genes in a given cluster are identified as a

linear combination of a small number of regulatory genes, pointed as potential cancer

drivers. An Expectation-Maximization technique was used by Lu et al. (2018) in their

module-based framework integrating transcriptome and genome. To identify CDGs, au-

thors proposed an iterative approach that determines the best modulators to explain gene

expression profiles of genes in a given module and re-assigns each gene to the module

whose associated regulation program best predicts its behavior. In Xi et al. (2019), a

subspace learning framework was employed to obtain a low-dimensional vectorized rep-

resentation of unannotated genes using a binary mutation matrix as input. Driver genes

can be discriminated evaluating the distances between the output vectors and the origin

in the low-dimensional subspace, with the top-ranked genes being promising driver can-

didates.

3.5.3 Methods based on deep learning

Despite the increasing use of DL in Bioinformatics, only four (TAVANAEI et al.,

2017; AGAJANIAN; OLUYEMI; VERKHIVKER, 2019; LUO et al., 2019; SCHULTE-
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SASSE et al., 2019) papers adopted this class of algorithms. Convolutional neural net-

works (CNN) were used in three papers (TAVANAEI et al., 2017; AGAJANIAN; OLUYEMI;

VERKHIVKER, 2019; LUO et al., 2019) following a supervised approach. Tavanaei et

al. (2017) developed a parallel CNN with three branches followed by a multi-layer fully

connected neural network. Each branch receives a projection of a 3-D protein structure to

a 2-D feature map set for 16 features associated with the atomic coordinates < x, y, z >.

The input data is processed by four convolution and pooling layers adopting the ReLU

activation function and three fully connected layers. Luo et al. (2019) trained a 1-D CNN

with a mutation-based feature matrix as input. Authors varied the number of convolu-

tional layers (1-4) and the number of fully connected layers (1-3), determining the best

hyperparameters by grid search.

Agajanian, Oluyemi and Verkhivker (2019) trained a CNN model that processes

encoded raw nucleotide sequences, using grid search to optimize its architecture. The

authors evaluated label encoding (i.e., each nucleotide receives a unique integer ID),

word2vec embedding (i.e., each nucleotide receives a numeric representation in a vec-

tor space based on the analysis of its sequential context), and one-hot encoding (i.e., each

nucleotide receives a bit encoded string), with the latter achieving best predictive perfor-

mance. Their approach has the attractive property of combining high-level DNA-derived

scores computed by the CNN with 32 features obtained from FI predictors as inputs for

an RF model, resulting in performance improvement.

Finally, Schulte-Sasse et al. (2019) used an extension of the CNN framework de-

signed to handle graph-structured data as input, named Graph Convolutional Network

(GCN) (KIPF; WELLING, 2016). The GCN directly classifies the nodes of a network

based on the network structure (e.g., PPI network) and nodes’ characteristics (e.g., gene

mutation rates, gene expression, and DNA methylation) using semi-supervised learning.

Their optimal GCN was composed of two graph convolutional layers with 50 and 100

filters, respectively.

3.5.4 Feature selection

Feature selection (FS) are dimensionality reduction approaches to reduce the input

feature space by removing irrelevant, redundant, or noisy features, as comprehensively

reviewed by Li et al. (2017). FS helps in decreasing the chance of overfitting, improving

performance, and interpreting the patterns learned by models. Several papers explored
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FS in their methodology (CARTER et al., 2009; TAN; BAO; ZHOU, 2012; DAVOLI

et al., 2013; MAO et al., 2013; U et al., 2014; ANOOSHA et al., 2015; GNAD et al.,

2015; PARK et al., 2015; SOLIMAN et al., 2015; DONG et al., 2016; PARK et al.,

2017; TAVANAEI et al., 2017; AGAJANIAN et al., 2018; GUAN et al., 2018; ZHOU;

GAO; SKOLNICK, 2018; LYU et al., 2020; NULSEN et al., 2021). Among these, we

observed the use of mutual information (CARTER et al., 2009), DX score (TAN; BAO;

ZHOU, 2012), Lasso regression (DAVOLI et al., 2013), Mann–Whitney U test (MAO et

al., 2013), and Chi-square (SOLIMAN et al., 2015).

U et al. (2014) applied five FS algorithms (i.e., oneR, reliefF, Chi-square, gain

ratio, and correlation-based) and retained all the top features indicated by at least three

algorithms. Mao et al. (2013) evaluated all possible combinations with fewer than four

features using k-fold cross-validation and the best feature subset was then expanded using

a hill-climbing strategy to iteratively include the remaining features into the combination.

Recursive feature elimination was employed by two papers (AGAJANIAN et al., 2018;

ZHOU; GAO; SKOLNICK, 2018). Also, some papers analyzed feature’s importance

separately for oncogenes and TSGs (DAVOLI et al., 2013; GNAD et al., 2015; LYU et

al., 2020). Davoli et al. (2013) identified the LOF/benign ratio and the missense entropy

as the best features to discriminate among oncogenes and TSGs in their model. Lyu et al.

(2020) grouped correlated features using hierarchical clustering prior to FS, identifying

three and five relevant feature groups for TSGs and OGs.

3.5.5 Model validation protocols

We analyzed the model validation protocols among traditional supervised learn-

ing and DL methods. This is crucial in ML methodology since an improper validation

may lead to over-optimistic expectations regarding the model’s performance. Two pa-

pers (TAVANAEI et al., 2017; CELLI; CUMBO; WEITSCHEK, 2018) used the basic

holdout method, i.e., a simple division of the original dataset into train and test sets. A

drawback of the holdout method is that the measured performance can highly depend on

the instances included in the train and test datasets. Tavanaei et al. (2017) repeated the

holdout process three times using different random seeds to observe performance vari-

ation; nonetheless, standard deviations were not reported. About 70.7% of papers used

the k-fold cross-validation process, which despite demanding more computational power

and time to run, it is the most recommended approach for model validation under limited
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data. Besides providing a more robust performance assessment based on k evaluations, it

ensures that every observation from the original dataset has the chance of appearing in the

train and test set. Finally, some papers (MANOLAKOS et al., 2014; AGAJANIAN et al.,

2018; AGAJANIAN; OLUYEMI; VERKHIVKER, 2019; LUO et al., 2019; NICORA

et al., 2019) combined the holdout and the k-fold cross-validation methods: the k-fold

cross-validation is run over the train set derived from the holdout, and the best model

built during this process is further applied over the test set. This is an interesting ap-

proach, as the performance obtained for the test set is more reliable since it is guaranteed

to be free from data leakage.

Additionally, some papers evaluated their predictive models with independent

test sets (TAN; BAO; ZHOU, 2012; MAO et al., 2013; SCHROEDER et al., 2014;

ANOOSHA et al., 2015; SOLIMAN et al., 2015; DONG et al., 2016; TAVANAEI et

al., 2017; ZHOU; GAO; SKOLNICK, 2018; COLLIER; STOVEN; VERT, 2019; HAN

et al., 2019; LUO et al., 2019; COLAPRICO et al., 2020; LYU et al., 2020; WANG et al.,

2020; NULSEN et al., 2021). For instance, Collier, Stoven and Vert (2019) used a subset

of cancer genes from the Cancer Gene Census (CGC) v86 that was not included in the

development of previous models. Han et al. (2019) analyzed the ability of their model to

recover a set of high confidence cancer genes manually curated from literature. Nulsen

et al. (2021) evaluated their method with an independent cancer cohort data of osteosar-

coma, a rare bone cancer, and found that it was able to identify reliable cancer drivers in

individual patients even for cancer types not used for training. Interestingly, some papers

carried out experimental analyses of selected findings to characterize mutations and their

functional impact (U et al., 2014; WANG et al., 2018b; HAN et al., 2019).

3.5.6 Predictive performance of ML strategies

The performance of traditional supervised learning and DL methods was assessed

mainly using accuracy, the area under the ROC curve (AUC-ROC), recall (i.e., sensitiv-

ity), and precision. Some papers also summarized the trade-off between precision and

recall reporting the area under the precision-recall curve (AUC-PR) and the F1-score

(i.e., the harmonic mean between precision and recall, attaching equal weights to both

false positives and false negatives). Moreover, three papers reported the Matthew’s Cor-

relation Coefficient (MCC) (SOLIMAN et al., 2015; ZHOU; GAO; SKOLNICK, 2018;

SCHULTE-SASSE et al., 2019) and one paper (TOKHEIM et al., 2016) proposed the
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mean absolute log2 fold change (MLFC) metric, which quantifies the deviation between

the theoretically expected p-values and the p-values generated by a method. Although

some unsupervised approaches were evaluated with the above metrics (LU et al., 2018;

XI et al., 2019), others within this category used Jaccard index, R2, and Pearson correla-

tion (MANOLAKOS et al., 2014).

We summarized methods’ predictive performance for common metrics, as re-

ported by the authors in their original publication (Figure 3.5). Since these models were

evaluated on different benchmarks and for different cancer types, it is improper to com-

pare them directly. Thus, our analysis aims to provide an overview of the predictive

power achieved by ML-based methods. Although it may guide methodological choices

in future works, it should not be used for drawing hard conclusions about top-performing

approaches. Observing the trade-off between precision and recall (Figure 3.5a), the pre-

dictive performance does not seem to be segregated by algorithm type but rather by the

features type. The work by U et al. (2014) is a good example for this observation. Authors

used five algorithm classes to train models with the same feature vector and found a slight

variation among their performances. However, this hypothesis should be confirmed in a

more profound analysis using the same experimental settings for different methods.

A summary of accuracy and AUC-ROC values (Figure 3.5b) suggests that SVM-

based and Tree-based methods had consistent performance, with most models surpassing

the 90.00 mark. ANN and other supervised learning techniques, although not as frequent

as others, also resulted in models with high predictive performance. Orienting the anal-

ysis for learning paradigms, the AUC-ROC values varied between 87.90 (TAVANAEI

et al., 2017) and 98.00 (LUO et al., 2019) for DL, and between 87.00 (WANG et al.,

2018b) and 99.07 (WANG et al., 2020) for supervised learning. The average accuracy

was 89.68 and 89.90 for traditional supervised and unsupervised learning, respectively,

and 83.96 for DL. However, AUC-ROC and accuracy might be deceptive and lead to in-

correct conclusions with class imbalance. In general, the AUC-PR values varied from

41.65 (GUMPINGER et al., 2020) to 83.00 (SCHULTE-SASSE et al., 2019), and the F1-

score from 33.40 (GUMPINGER et al., 2020) to 99.00 (CELLI; CUMBO; WEITSCHEK,

2018), reflecting a much larger variability.

Considering predictive performance, we did not observe great difference among

supervised and unsupervised learning, although for the latter we only evaluated three pa-

pers. Since collecting experimentally validated driver genes may be difficult and there

is currently no agreement on gold standard datasets to train and validate models (RAI-
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Figure 3.5 – Summary of predictive performance reported by selected papers. (a) Trade-off
between precision and recall. (b) Summary of accuracy and AUC-ROC values.
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MONDI et al., 2021), the main advantage of using unsupervised over supervised learning

(either shallow or deep) is that it eliminates the need to curate positive and negative ex-

amples for training. It also alleviates the class imbalance problem and the uncertainty in

the definition of non-drivers. However, as shown by Gumpinger et al. (2020), the exist-
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ing knowledge on well-established cancer genes, although limited, is valuable to improve

learning results when appropriately exploited.

3.6 Methodological challenges

Undoubtedly, the use of ML algorithms to predict CDGs and driver mutations has

enabled critical scientific advances and has an excellent potential to go even further. In

this chapter, we have shed light on the broad data and algorithmic landscape behind this

problem, summarizing the myriad of possibilities of combining them into novel solutions

and their achievements. Nonetheless, to accelerate the computational discovery of new

cancer drivers with ML, several challenges remain to be explored. In what follows, we

highlight open problems identified through our review.

3.6.1 Class imbalance

The prediction of cancer driver mutations constitutes an inherent class imbalance

issue, given the significantly lower number of known driver mutations in comparison to

passenger mutations. Despite the negative impact on the model development process,

few selected papers using traditional supervised or deep learning approaches have dis-

cussed strategies to deal with this issue. We observed the use of undersampling of the

majority class (CAPRIOTTI; ALTMAN, 2011; TAN; BAO; ZHOU, 2012; GNAD et al.,

2015; LUO et al., 2019; CUTIGI et al., 2020; GUMPINGER et al., 2020), weighted SVM

(MAO et al., 2013), cost-sensitive classifier (U et al., 2014), and weighted cross-entropy

as loss function (SCHULTE-SASSE et al., 2019). One-class SVM, although not origi-

nally designed to deal with class imbalance, may be particularly useful in this scenario

(COLLIER; STOVEN; VERT, 2019; NULSEN et al., 2021). A better understanding of

the effectiveness of existing strategies, as well as an elaboration of new ways of mitigating

class imbalance, are relevant points to investigate. Semi-supervised and self-supervised

learning paradigms can also be promising directions to explore.

Another related issue is the choice of appropriate performance metrics. We ob-

served a prominent use of accuracy and AUC-ROC values for performance assessment,

which under skewed class distributions do not provide adequate assessment for the minor-

ity class (i.e., driver genes or mutations). Both metrics are less sensitive to false positives
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as the size of the negative class grows and can produce misleadingly high values. Thus, it

is crucial to use metrics that can pay proper attention to methods’ performance for the mi-

nority class, such as precision, recall, F1 score, AUC-PR, and MCC. This methodological

aspect is crucial for model assessment and should not be neglected in future efforts.

3.6.2 Data leakage

Data leakage happens when information from the test set is accidentally used to

develop the model. For instance, pre-processing the complete dataset with normalization,

standardization, or data imputation techniques before data partitioning causes instances

from the test set to influence the train set. Similarly, performing feature selection in the

complete dataset that will further be divided into independent partitions for model train-

ing and validation produces the same unintentional effect. Even under the use of cross-

validation, data leakage may occur if the same test fold used to optimize the model with

hyperparameter tuning or feature selection, for instance, is applied for model evaluation

and selection. These methodological flaws were identified in several revised papers. Tak-

ing steps to prevent data leakage is imperative to guarantee better model generalization.

Data preparation pipelines should be modeled based on training data and then applied to

all partitions (e.g., train, test, and validation set). Nested cross-validation is a promising

alternative for comparing and selecting ML models with size-limited datasets, reducing

the bias in the error estimate when both hyperparameter tuning and evaluation are carried

out (VARMA; SIMON, 2006; VABALAS et al., 2019). Moreover, FS protocols designed

for high-dimensional data may control optimistic performance estimates (KUNCHEVA;

RODRÍGUEZ, 2018), especially under low-sample-size as it is the case for some cancer

types.

3.6.3 Data representativeness

In ML, guaranteeing that all the variability associated with a prediction task is

represented in the training dataset is as essential as data volume. In the context of can-

cer, the high intra- and inter-tumor heterogeneity pose additional challenges to data rep-

resentativeness. Data may be unevenly distributed across distinct cancer types, tumor

stages, patients’ clinical profiles, or even distinct demographic groups (e.g., gender and
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ethnicity), which certainly interferes with model generalization power. For instance, sex-

associated differences in tumor molecular profiles and mutation frequency were previ-

ously reported (LI et al., 2018). Likewise, mutational processes vary widely among can-

cer types (BROWN et al., 2019). Thus, any underrepresented subpopulation may suffer

from biased prediction results when building models without considering this inequality.

This rationale applies not only to a sample-oriented perspective but also to a gene-

oriented perspective. Here, we highlight two possible underrepresentation issues. First,

some driver genes are commonly mutated across cancer types, while others are tumor-

specific (POULOS; WONG, 2019). Thus, tumor-specific drivers may not be identified

in pan-cancer models due to low statistical power arising from low-sample size. Patterns

from local samples tend to be diluted among patterns from the population, hindering their

identification by the ML algorithm.

Second, known cancer driver mutations tend to occur in a subset of human genes,

while negative samples are spread across the genome. As discussed by Raimondi et al.

(2021), this may cause ML models to learn the simpler gene-level patterns instead of the

more intricate molecular-level functional effects of driver variants, achieving an unreal-

istic good performance for variant-level prediction. Thus, we stress the importance of

defining high-quality, unbiased negative class samples for supervised learning methods.

Finally, to continue advancing, new computational strategies are needed to overcome the

underrepresentation issues aforementioned. Some promising directions are developing

patient-level and cohort-level methods and exploring multi-task learning for simultane-

ously optimizing pan-cancer and cancer-specific models.

3.6.4 Model interpretability

Although some works have investigated the most relevant features to predict CDGs,

model interpretability is still in its infancy within this domain. Model interpretability

helps increase the predictive model’s trust and provides valuable biological insights about

molecular differences among driver and passenger mutations that may fill current knowl-

edge gaps. Although interpreting deep learning and graph-based learning models is es-

pecially challenging, recent works have proposed strategies to comprehend the decision-

making process, exploring their applications to bioinformatics (SCHULTE-SASSE et al.,

2021; TALUKDER et al., 2021). We advocate the use of model interpretability tools in

future works as they may explain the discovered patterns and, consequently, ensure these
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patterns are significant and consistent with the target task (i.e., avoid Clever Hans effect

(LAPUSCHKIN et al., 2019)), elucidate properties associated to subgroups of drivers, and

point to particular cases that deserve further attention from experts. However, we raise

caution that pitfalls in model interpretability may produce incorrect conclusions (MOL-

NAR et al., 2020), thus demanding careful use.

3.6.5 Non-coding drivers

Mutations occurring in both coding and non-coding DNA regions may play a cru-

cial role in cancer development. For instance, highly recurrent mutations in the promoter

region of TERT gene have been found in more than 50 tumor types, prompting efforts

to identify additional non-coding driver events (ELLIOTT; LARSSON, 2021; BELL et

al., 2016). However, there are few computational tools specifically tailored for detecting

drivers in non-coding regions (e.g., (FU et al., 2014; LAWRENCE et al., 2013; GUO;

CHANG; SKANDERUP, 2020)). Identifying signals of positive selection in non-coding

DNA is even more challenging because the non-coding region is about 50 times larger

than the coding exome, and the number of known cancer genes with non-coding muta-

tions is much more limited (BELKADI et al., 2015; ELLIOTT; LARSSON, 2021). The

more frequent use of whole-genome sequencing (WGS) tends to produce more and more

data that could be analyzed for this purpose. Given the several ways in which variations in

non-coding DNA may contribute to tumor emergence, exploring ML learning (especially

unsupervised algorithms) and the increasing volume of WGS data represents an important

research opportunity to advance in the field.

3.6.6 Graph-based machine learning

Networks are pervasive in biology, representing the existing interactions between

genes, gene products, and other molecules. Network-based analysis has attracted con-

siderable attention in the prediction of disease genes in general (ATA et al., 2021), and

cancer drivers specifically (ZHANG; ZHANG, 2016; DIMITRAKOPOULOS; BEEREN-

WINKEL, 2017). Thus, a natural and still underexplored direction in this domain is the

use of graph-based ML algorithms, which can directly process graph-structured data in

an end-to-end manner without the need for handcrafted feature engineering.
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Graph Neural Networks (GNNs), as reviewed by Wu et al. (2020), can better ex-

plore network’s topological information for node-level or edge-level prediction tasks in

contrast to traditional network analyses, thus finding several fruitful applications in Bioin-

formatics (ZHANG et al., 2021). Although only one selected paper adopted this approach,

recent papers (SCHULTE-SASSE et al., 2021; PENG et al., 2021) further explored GNNs

and their variants (e.g., Graph Convolutional Networks) for cancer driver gene identifi-

cation, obtaining outstanding performance compared with the state-of-the-art methods.

We believe that a deeper exploration of GNNs with multimodal data (e.g., multi-omics),

proposing strategies to improve robustness to structural noise and class imbalance, may

enable a more precise and comprehensive identification of CDGs.

3.7 Summary

In recent years, researchers have made significant progress in identifying genomic

changes that contribute to the development of tumors and in distinguishing driver muta-

tions from passenger mutations. This chapter highlights efforts that use machine learning

algorithms, including traditional ML and deep learning algorithms, and summarizes the

different datasets and approaches used to define features for predictive models. However,

despite these advances, the field is still facing many biological and technical challenges

that hinder our ability to comprehensively detect cancer drivers. To continue making

progress, it is important to review significant advances and methodological details from

previous research, identify gaps that need to be addressed, and propose new perspectives

to advance our understanding of cancer drivers. This work focuses on one particular trend

identified, which is the integration of data, and aims to address two specific challenges

among those outlined in Section 3.6: treating class imbalance and better exploring PPI

network structures during learning with graph-based learning algorithms.
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4 MATERIALS AND METHODS

In the previous chapter, it was possible to note that despite the important computa-

tional advancements in predicting CDGs, there are still several methodological challenges

that require attention. One area that remains underexplored is the use of graph-based

learning algorithms, such as graph neural networks. However, given the increasing suc-

cess of GNNs in bioinformatics applications as reviewed by Zhang et al. (2021), exploring

the potential of these algorithms for predicting CDGs is a promising research direction.

Thus, the primary focus of this work is to investigate the potential of GNNs for

predicting CDGs and develop a model that can efficiently leverage information con-

tained in PPI networks and multi-omics data to learn patterns related to CDGs. Our

approach is motivated by findings from previous research highlighting that a node context

within a biological network provides valuable information for predicting cancer drivers

(GUMPINGER et al., 2020).

To develop a graph-based predictive model for CDG discovery, we conducted a

comprehensive analysis of several important aspects related to model development, in-

cluding the choice of PPI networks and omics data employed as node features, the use

of distinct GNN algorithms, and the strategies adopted for handling class imbalance.

Furthermore, we proposed ensemble-based approaches to improve the predictive perfor-

mance of individual models. A summary of our methodology is provided in Figure 4.1.

This chapter details the materials and methods utilized in this work, providing an

overview of each methodological step involved in both the comprehensive experimental

investigation of learning algorithms and data representation (reported in Chapter 5) and

the development of a GNN model for CDGs prediction (reported in Chapter 6).

4.1 Data collection

All the data employed in this work derive from publicly available sources. The

following sections detail our data collection process to obtain protein-protein interaction

networks (i.e., our graphs used as the basis for learning), omics data (i.e., our node fea-

tures), and gene annotations regarding their role in causing cancer (i.e., our node labels).

Figure 4.2 illustrates how these different types of data are integrated, summarizing the

multi-omics data collected.
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Figure 4.1 – Methodology employed in the current work for model development.
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4.1.1 Protein-protein interaction networks

As explained in Section 2.1.3.2, PPI networks depict the physical or functional

relationship between proteins (i.e., the nodes of the networks). Several databases provide

organized and structured information about PPI networks. In this work, we adopted a

reference database for the retrieval of molecular networks in human diseases research,

named the Network Data Exchange (NDEx) (PRATT et al., 2015; PILLICH et al., 2017;

PRATT et al., 2017). The NDEx Project1 is a web-based resource that allows for the

storage, sharing, manipulation, and publication of biological network models in human

disease research (PRATT et al., 2015; PILLICH et al., 2017; PRATT et al., 2017).

From the NDEx repository, we selected six pre-processed PPI networks that were

1Network Data Exchange (NDEx): <https://www.ndexbio.org/>

https://www.ndexbio.org/
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Figure 4.2 – Multi-omics Data Collection
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deposited by Huang et al. (2018a) in a study that performed a systematic evaluation of

molecular networks regarding their ability to recover gene sets that characterize human

diseases. Specifically, we downloaded the following networks: Human Protein Refer-

ence Database (HPRD), MultiNet, IRefIndex (IREF), Consensus Path DB (CPDB), Par-

simonious Composite Network (PCNET), and Search Tool for Recurring Instances of

Neighboring Genes (STRING). These networks were chosen because they vary in size,

comprising from 30,000 (HPRD) to 5 million (STRING) molecular interactions. More-

over, PCNET showed the highest performance in retrieving the disease-associated gene

sets among a total of 21 networks evaluated in the original work (HUANG et al., 2018a).

PPI networks are typically represented as undirected and unweighted graphs (sim-

ilar to the citation networks used in original GCN applications (KIPF; WELLING, 2016)).

Although the NDEx repository provides edge weights for some PPI networks, which rep-
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resent the total weight of evidence for an interaction between two proteins, we discarded

this information for all PPI networks used in this study. The PPI networks had already un-

dergone a normalization process to enable comparison among them. In the original study

(HUANG et al., 2018a), only interactions among protein-coding genes were kept, and all

nodes (proteins) were mapped to their corresponding Gene Symbols provided by HUGO

Gene Nomenclature Committee (HGNC). However, because this data was compiled in

2018, PPI data underwent another normalization process for nomenclature in our study,

which will be later explained in Section 4.2.1.

Finally, we defined a large consensus PPI network by merging the six selected

PPI networks into a single network and removing duplicated edges. This PPI network is

the most comprehensive among all collected interaction datasets and it aims to evaluate

how the algorithms perform for larger and denser networks. We call this merged network

the UNION PPI network, which is composed of more than 7.5 million interactions. De-

tails about the original number of nodes and edges in each PPI network are provided in

Table 4.1.

Table 4.1 – Number of nodes and edges in PPI networks
HPRD MULTINET IREF CPDB PCNET STRING UNION

Edges 36,867 109,595 133,548 1,648,426 2,724,724 5,135,768 7,515,970
Nodes 9,453 14,445 14,667 16,301 19,781 18,266 21,968

4.1.2 Omics data

Integrating different types of omics data in the discovery of CDGs is a common

approach, as discussed in Chapter 3, since each type of omics carries a distinct, partial

view about the molecular changes associated with cancer. In this work, we followed this

trend and collected four types of omics data interrogating SNVs, CNAs, DNA methyla-

tion, and gene expression in a large scale (see Section 2.1.3 for theoretical background).

The datasets were originally produced by the TCGA project and comprise over 8,000

samples from 16 different cancer types. We downloaded a version of the data that was

pre-processed by a previous study (SCHULTE-SASSE et al., 2021) to create informa-

tive features from this genome-wide molecular data. The authors defined computational

features as relative values comparing a quantity of a biological feature in tumor sample

compared to a matched normal sample from the same cancer type. Due to this definition,

the analysis was limited to those cancer types with data available for both cancer and
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normal samples, as listed in Table 4.2.

Table 4.2 – List of cancer types included in the omics data analyzed.
Abbreviation Cancer Type Description
BRCA Breast invasive carcinoma
LUAD Lung adenocarcinoma
UCEC Uterine Corpus Endometrial carcinoma
KIRC Kidney renal clear cell carcinoma
HNSC Head and Neck squamous cell carcinoma
THCA Thyroid carcinoma
LUSC Lung squamous cell carcinoma
PRAD Prostate adenocarcinoma
COAD Colon adenocarcinoma
STAD Stomach adenocarcinoma
BLCA Bladder Urothelial Carcinoma
LIHC Liver hepatocellular carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
KIRP Kidney renal papillary cell carcinoma
ESCA Esophageal carcinoma
READ Rectum adenocarcinoma

In what follows, we briefly mention the pre-processing steps conducted by Schulte-

Sasse et al. (2021); more details can be obtained in the original work.

• SNVs: the somatic mutation provided in Mutation Annotation Format (MAF) was

subject to statistical analysis for variants calling following the pipeline from Hot-

Net2 (LEISERSON et al., 2015). Silent mutations were removed from data to con-

centrate on SNVs that have an effect on the mRNA or protein. A normalized muta-

tion rate (i.e., SNV frequency) was computed for each gene in each cancer type, by

dividing the number of non-silent SNVs in that gene its by exonic length.

• CNAs: copy number alterations detected through DNA sequencing were analyzed

with GISTIC2 (MERMEL et al., 2011) to identify the exact amplified or deleted

target genes. Ultra-mutated samples from TCGA were removed. The copy number

rate of a certain gene in a TCGA cohort was defined as the number of times a gene

was amplified or deleted in that specific cohort.

• DNA methylation: the DNA methylation status was analyzed for the promoter

region of genes, defined as the region of ±1000 base pairs around the Transcription

Start Site (TSS) of that gene. Probes annotation was carried out with Gencode.

Within the promoter region, the average beta value (i.e., DNA methylation signal)

across all probes was used to determine the DNA methylation status of the gene.

The beta value ranges between 0 and 1 and describes the portion of cells that are
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methylated in the sample. For each gene, the average differential DNA methylation

was computed by averaging the difference between the beta values for a cancer

sample and its matched normal sample across all samples in a given TCGA cohort.

• Gene expression: authors used the data from Wang et al. (2018a), in which gene

expression levels for TCGA cancer samples were combined with gene expression

data for normal samples of the same tissue produced by the Genotype-Tissue Ex-

pression (GTEx) consortium in a controlled protocol to ensure similar distributions

among cancer and normal samples. The differential expression for a gene in a given

cancer sample was calculated as a log2-fold change between the expression values

in the cancer versus a matched normal sample. Finally, for each gene, an average

differential expression was computed across all samples from the same cancer type.

After individual pre-processing, each type of omics data results in a feature ma-

trix in the form of N × 16, in which N denotes the number of genes and 16 refers to the

number of TCGA cancer cohorts analyzed (as illustrated in Figure 4.2). Thus, for each

gene, we obtained 16 features corresponding to its molecular profile in terms of SNVs,

CNAs, differential DNA methylation or differential gene expression across 16 types of

cancer. Each feature matrix was passed through min-max normalization to ensure simi-

larity among the scale of the different types of omics data in joint analyses. Besides the

individual features matrices, we also generated a multi-omics feature matrix by simply

concatenating the four individual feature matrices for the individual omics levels, gener-

ating a 22, 193× (4 ∗ 16) matrix.

4.1.3 Positive and negative examples of CDGs

To create a reliable list of labeled genes, we examined catalogs of cancer-causing

genes available in previous studies or public databases. We defined two main sets of

genes: the positively labeled genes, which are driver genes, and the negatively labeled

genes, which are non-cancer genes or passenger genes. However, many genes do not

fall into either of these categories because they have some evidence of involvement in

oncogenesis but lack definitive annotation to be considered as true drivers, or because

they have been associated with other diseases, increasing their chance to be cancer-related

genes. These genes are referred in our work as the unlabeled set, but we note that they

may still represent potential candidate driver genes. The data collection process for these
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gene sets is elaborated in the following paragraphs.

We obtained six lists of genes to be processed as necessary for creating node labels

for our networks: (i) driver and candidate drivers from the Network of Cancer Genes

(NCG) version 7.0 (REPANA et al., 2019); (ii) Tier 1 and Tier 2 lists from the Cancer

Gene Census (CGC) available in COSMIC v95 (TATE et al., 2018); (iii) the OncoKB

Cancer Gene List (version of July 1st, 20222) (CHAKRAVARTY et al., 2017); (iv) a

compilation of cancer genes organized by Bushman Lab2 (v5, from June 2021); (v) genes

related to cancer pathways in the Consensus Path DB (CPDB) (Release 35, updated on

05/06/2021) (KAMBUROV et al., 2011); and (vi) disease-associated genes registered in

the Online Mendelian Inheritance in Man (OMIM) (HAMOSH et al., 2000). All gene

lists were downloaded at January 14th, 2022.

For positive examples of CDGs, we collected a list of canonical cancer drivers

from NCG 7.0 (591 genes), the Tier 1 list from CGC (578 genes) that contains genes with

cancer gene mutation patterns and documented activity relevant to cancer, and a list of

TSGs and OGs from OncoKb (500 genes). Combining the three lists and removing the

duplicated genes, we arrive at 907 positive genes.

Next, we compiled a list of disease candidate genes, which are those gene im-

plicated in other diseases or that have indications of an oncogenic role (e.g., through

computational prediction) but the body of scientific evidence supporting their role is still

emerging, thus, they lack strong experimental evidence to be labeled as positive examples

of cancer drivers. We collected the list of candidate cancer drivers from NCG 7.0 (3177

genes), the Tier 2 list from CGC (151 genes), the cancer-related gene list provided by the

Bushman Lab (2580 genes), and the cancer gene list from OncoKB excluding annotated

TSGs and OGs (500 genes). We also obtained a list of genes annotated in cancer path-

ways according to CPDB (4333 genes) and a list of genes previously associated with other

human diseases according to OMIM (2143 genes). Again, as redundancy may exist when

integrating the lists obtained from different data sources, many duplicates were found and

removed. Moreover, genes that were classified as drivers in any of the sources previously

mentioned were removed from the list. We obtained a total of 5777 unique disease can-

didate genes that were grouped as the unlabeled gene set. These genes were treated as

unlabeled nodes in our computational prediction approach, since the uncertainty about

their role in oncogenesis prevents us from considering true cancer drivers, but it is risky

to label them as passenger ones due to existing evidence of association with cancer or

2Available at <http://www.bushmanlab.org/links/genelists>

http://www.bushmanlab.org/links/genelists
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other diseases.

Given that the definition of robust negative examples of CDGs is more challeng-

ing, as mentioned in Chapter 3, we followed a similar strategy applied in previous works

and filtered the list of genes available in the collected PPI networks and omics data to re-

move all genes with previously reported association with cancer or other diseases (includ-

ing strong and weak evidences). Thus, we considered as negative examples (non-cancer

genes), all the genes in our data that were not included in any of the following lists: the

compiled list of positive examples of CDGs, the candidate cancer genes list, the cancer

pathways gene list from CPDB, and the disease-related genes list from OMIM. In sum-

mary, negative examples of CDGs are those that do not appear in the defined driver gene

set or in the defined unlabeled gene set.

With the complete list of positive and negative examples of CDGs, it is possible

to cross this information with the genes present in each PPI network to define node labels

distribution per network. This process and other pre-processing steps will be detailed in

the next section. However, the final class label distribution per PPI network is shown in

Figure 4.3. We can observe the high class imbalance in the dataset, with the driver genes

representing the minority class.

Figure 4.3 – Final distribution of class labels per PPI network.
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4.2 Data pre-processing

All collected data were subject to further pre-processing to allow creating a con-

sistent training data for the learning algorithms explored in this work. In this section,

we describe the steps involved in data pre-processing, which comprise (i) mapping gene

IDs, (ii) intersecting genes among PPI networks and omics data, and (iii) extracting node

centralities from PPI networks.

4.2.1 Gene ID mapping

To carry out the experiments for model training with ML or DL, the nodes IDs

need to be standardized across the various data sources that are collected in this work.

As mentioned earlier, the genes of the PPI networks are standardized in Gene Symbols

provided by HUGO Gene Nomenclature Committee (HGNC), however the networks were

last updated in 2018. The HGNC is a committee within the Human Genome Organization

(HUGO), which frequently update its databases and has a curated online repository of

HGNC-approved gene nomenclature.

To ensure that we have the most up-to-date gene IDs, we used the HGNC Multi-

symbol checker. This tool allows the user to upload a list of gene symbols in a search

field to verify if they are HGNC approved symbols. The results include a “match type”

column that shows how each queried symbol matches the returned HGNC symbol – if

either with approved HGNC symbols, alias symbols, updated symbols, or if the queried

gene symbol has been withdrawn from database or if it did not return any match. Based on

these results, we created a dictionary with the list of query genes and their corresponding

approved symbols. We conducted the query on November 26th, 2021, and downloaded a

complete dictionary of gene ID mappings that was used throughout all experiments.

Table 4.3 shows the original number of nodes in each of the seven PPI networks

used and the resulting number of nodes after gene ID mapping. It is important to note that

some nodes, and their connected edges, may have been removed from the network if their

original ID could not be mapped to the updated HGNC gene symbols. This may lead to a

reduction in the number of edges as well.
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Table 4.3 – Original and modified number of nodes and edges in PPI networks as a result of data
pre-processing steps.

PPI Networks Original Gene ID mapping Omics intersection
Edges Nodes Edges Nodes Edges Nodes

HPRD 36,867 9,453 36,852 9,444 36,844 9,438
MULTINET 109,595 14,445 108,568 13,987 108,568 13,987
IREF 133,548 14,667 133,100 14,632 133,095 14,627
CPDB 1,648,426 16,301 1,641,909 16,251 1,641,849 16,243
PCNET 2,724,724 19,781 2,712,881 19,116 2,712,881 19,116
STRING 5,135,768 18,266 5,028,709 18,044 5,002,412 17,872

UNION 7,515,970 21,968 7,391,452 19,792 7,365,082 19,602

4.2.2 Intersection of PPI networks and omics data

In the proposed approach, a prediction model is built from the joint use of PPI

networks and omics data through GNNs. The PPI network provide the fundamental graph

structure for the graph-based learning, whereas the omics data provide node features that

enrich node embeddings generated for the classification task. Thus, it is imperative to

ensure a correspondence among genes in the PPI networks and genes present in the multi-

omics dataset. For each PPI network, we compared the genes in the network and the genes

in the muli-omics data to keep in the PPI network only genes that are in the intersection

among both datasets. After this step, the number of nodes and edges were updated again,

as shown in Table 4.3. This step allowed all nodes from all PPI networks to have their

own set of features.

4.2.3 Extraction of node centralities

In Section 2.2.3.1, we provided definitions of four measures of node centralities:

degree, betweenness, closeness, and clustering coefficient. In the present section, we pro-

vide a brief overview of the extraction and normalization procedures used to obtain these

measures. We employed a network analysis package, called igraph (CSARDI; NEPUSZ,

2006), which is an open-source tool that can be implemented using various programming

languages, including Python, R, Mathematica, and C/C++. The igraph provides a versa-

tile network analysis that enables mining information from graphs, ranging from simple

operations such as adding and removing nodes to more complex theoretical constructions



89

such as community detection. The Python interface of igraph (version 0.9.8) is utilized in

this work to compute the four node-level properties, as detailed below:

• Degree: accepts either a singular node ID or a list of node IDs as an input parameter

and returns the number of edges incident on a node of the graph. The output is a

single integer or a list, based on the input parameter. Degree values were normalized

by the min-max method to keep it contained in an interval from 0 to 1, similar to

the range of values for the omics features.

• Betweenness: assigns higher betweenness centrality scores for nodes that appear

more frequently along the shortest paths computed. The score returned by the func-

tion is not standardized, so the same min-max normalization is also used.

• Closeness: when assessing how many steps is required to reach every other node

from a given node, a normalized value is obtained by the inverse average distance

to all reachable nodes.

• Clustering coefficient: the function returns a score value between 0 and 1, that

means the probability that the adjacent nodes of a given node i are connected. Thus,

it was not necessary to apply a normalization. However, when a node has a degree

lower than two, there is no transitivity, so a parameter was defined to consider these

cases as zero (by default they are defined as NaN).

The analysis of centrality values adds four features to each node in the PPI net-

works. One of the goals of our experiments is to evaluate the effect of using centrality

measures as features in GNNs, as will be later discussed in Chapter 5. We emphasize

that the centrality measures for a given gene vary among PPI networks because they are

highly dependent on the graph structure. Unlike omics-based features, which remain the

same for a given gene across PPI networks, the centralities-based features differ among

PPI networks.

4.3 Model training and evaluation

After data collection, two classes of algorithms were applied for model develop-

ment: graph neural network algorithms, which are the focus of our work, and traditional

machine learning algorithms, which served as baselines in our experimental compari-

son. While graph neural networks were applied following a semi-supervised learning

paradigm, traditional ML algorithms were trained in a pure supervised learning approach.
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This section aims to clarify the technical details underlying the application of the learning

algorithms to the collected data.

4.3.1 Graph-based learning algorithms

One of the goals of our study is to conduct a comparison among graph-based

learning algorithms. To achieve this, we utilized a library called StellarGraph (DATA61,

2018), which offers implementations for state-of-the-art GNNs. This Python library is

built on TensorFlow 2 and Keras, as well as Pandas and NumPy. We selected StellarGraph

for its ease of use, modularity, extensibility, and range of algorithms that solve many

ML tasks on graphs, including node-level predictions, which enables a fairer comparison

among algorithms using the same data representation format and library.

Graph-based model training was conducted primarily with StellarGraph, but also

employing TensorFlow, Keras, Pandas, and scikit-learn for auxiliar functions. Three GNN

algorithms were selected for evaluation: Graph Convolutional Networks (GCN), Graph

Attention Networks (GAT), and GraphSAGE (see Section 2.2.3 for technical details).

Since the algorithms were selected for a categorical prediction task, the categorical cross-

entropy loss function is used as the standard loss function. While some of our experi-

ments were based on default hyperparameters for the applied algorithms (see Chapter 5

for details), other experiments addressed hyperparameters optimization in an extensive

evaluation of selected methods (see Chapter 6 for details). Section 4.3.2 will elaborate

more on the optimization of hyperparameters.

When employing GNN algorithms, the task of predicting CDGs is modeled as a

semi-supervised node classification task. Semi-supervised learning on graphs leverages

the propagation of information in a per-layer fashion to obtain more advanced node repre-

sentations, thereby avoiding the need for labeled data for all nodes while making the best

use of available prior knowledge. In our domain, there are positively and negatively la-

beled genes, as well as a large set of unlabeled genes due to the lack of definitive evidence

regarding their role in oncogenesis. However, by propagating feature information among

neighboring nodes in a layer-wise manner, GNNs can still enable the model to learn pat-

terns that can help discriminate CDGs. After training, the model can be used to predict

the class of the unlabeled nodes. This setup is particularly well-suited for discovering

associations between entities in biological networks, such as cancer driver genes, given

the limited knowledge about biological and molecular mechanisms underlying diseases.
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4.3.2 Hyperparameters in GNNs: definitions and optimization

The success of ML and DL algorithms, including GNNs, is partly attributed to the

configuration of their hyperparameters, which enable them to achieve superior results on

a given dataset (YUAN; WANG; PANG, 2021). Therefore, it is crucial to comprehend

the hyperparameters involved in the chosen algorithms and conduct hyperparameter opti-

mization when feasible. Despite the high similarity among the GNN algorithms applied

in this work (Section 4.3.1) in term of their propagation module, each algorithm has par-

ticular hyperparameters on their own that are, in general, introduced as a way to help the

algorithm to stand out from previous approaches. Table 4.4 presents a brief description

for hyperparameters involved in GNNs training.

Table 4.4 – Hyperparameters of the selected GNN algorithms
Hyperparameter Description
Layer sizes The number of hidden convolutional layers of the GNN used for

training and the feature dimensions for each hidden layer.

Activation function The non-linear transformation function that is applied to the in-
put signal and outputs a value that is passed on to the next layer.

Dropout rate The percentage of units in the hidden layers that are randomly
dropped during training.

Learning rate The step size for a model’s weight updates to reach the minimum
loss function.

Number of epochs The length of the training or, in other words, the number of times
the training data will pass through the neural network.

Loss function The evaluation function to estimate how well the algorithm can
model the input data, measuring the difference between the pre-
dicted output and the actual output.

Attention heads The number of operations of the layer that are independently
replicated K times, used for regularization process to avoid fit-
ting.

Attention dropout The dropout rate applied to attention coefficients.

Batch size The number of random samples that will be propagated through
the network.

Number of samples Number of neighboring nodes to sample at each level of the
model
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However, the high number of hyperparameters in GNN algorithms is a primary

challenge in developing effective predictive models, as several hyperparameters can sig-

nificantly impact model performance. Furthermore, hyperparameters optimization is of-

ten computationally expensive, and there is no guarantee that the chosen configuration is

the optimal choice without experimental comparison. However, it is possible to obtain

suitable hyperparameters value guidelines based on prior research.

For instance, Kipf and Welling (2016) reported that two to three convolutional lay-

ers are sufficient for learning patterns with GCNs, such that we start our experiments with

only two layers. As for the number of units per layer, it depends on the specific model, but

we decided to initially employ 64 units. The optimal dropout rate for improving model

performance can range from 0 to 1, with a 10% dropout already able to enhance the per-

formance. Dropout is implemented in GNNs by randomly removing edges from the graph

during training. Thus, our experiments started with a dropout rate of 0.1. Meanwhile, the

learning rate usually falls within the range of 0.1 to 0.0001, according to Koutsoukas et

al. (2017). We adopted, initially, a learning rate of 0.001 with ADAM optimizer. Addi-

tionally, the number of epochs should be chosen based on the local computing capacity.

Our exploratory experiments used 300 epochs for GNN model training.

Activation functions are used in all GNN components to incorporate the feature-

topology coupling into the network. The activation function ReLU has been frequently

used due to its superior performance in many prediction tasks (GOODFELLOW; BEN-

GIO; COURVILLE, 2016). For our classification task, the recommended loss function by

StellarGraph is categorical cross-entropy. Finally, batch size is the only hyperparameter

common to all algorithms that receives different recommendations for distinct algorithms

according to StellarGraph default values. GCN and GAT are full-batch models, which

means the batch size is one, while GraphSAGE trains the model with a batch size of 50.

The hyperparameters discussed so far are shared among the three selected GNN

algorithms. Nonetheless, some algorithms introduce other hyperparameters specific to

their functioning. The GAT algorithm has two hyperparameters of its own, the attention

heads and attention dropout (as described in Table 4.4), which we initially configured with

the default values recommended by the library: 8 and 0.01, respectively. GraphSAGE

includes a hyperparameter related to the number of nodes to sample, for which we also

used the standard setup of 10 sampled nodes in the first layer and 5 sampled nodes in the

second layer for a two-layer network.

In our study, we performed two rounds of experiments to evaluate the performance
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of GNN algorithms for CDGs prediction based on PPI networks. In the first round, we

used the default hyperparameter values, as outlined in the previous paragraphs, while in

the second round, we fine-tuned a GNN model using a hyperparameter optimization pro-

cess based on a grid search and k-fold cross-validation. The specific hyperparameter grid

used is described in detail in Chapter 6. However, we note that due to the computational

complexity of the PPI networks, a large number of hyperparameter combinations can re-

sult in long execution times, demanding an adaptation to the methodology of training and

evaluating models. To address this, we adopted a strategy where we first ran hyperpa-

rameter optimization for the three smallest PPI networks with less than 140,000 edges

(HPRD, MULTINET, and IREF). Based on an analysis of these results, we simplified the

hyperparameters grid and used a reduced number of combinations for the three largest

PPI networks. Further details on this analysis can be found in Chapter 6.

4.3.3 Traditional machine learning algorithms

Four traditional ML algorithms were chosen as baseline methods in our experi-

ments, namely Support Vector Machines (SVM), Random Forests (RF), Gradient Boost-

ing Trees (GBT), and Artificial Neural Networks (ANN). A theoretical background for

these algorithms was provided in Section 2.2.2. For these methods, the prediction of

CDGs was modeled as a conventional supervised classification task, in which labeled

positive and negative examples are used to learn the data patterns and fit a predictive

model that can be latter applied to classifiy unseen, unlabeled data.

The traditional ML algorithms were applied in our pipeline for model develop-

ment through implementations provided by the scikit-learn package (PEDREGOSA et

al., 2011) version 1.1.1, for SVM, RF, and GBT, and by the Keras library (CHOLLET et

al., 2015) for ANN, using default hyperparameters in most cases, as listed below:

• SVM: C = 1, kernel = “rbf”, degree = 3, gamma = “scale”, coef0 = 0, shrinking

= True, probability = False, tol = 0.001, cache size = 200, class weight = None,

verbose = False, max iter = -1, decision function shape = “ovr”, break ties = False,

and random state = None

• RF: n estimators = 100, criterion = “gini”, max depth = None, min samples split =

2, min samples leaf = 1, min weight fraction leaf = 0, max features = “sqrt”, max

leaf nodes = None, min impurity decrease = 0, bootstrap = True, oob score = False,
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n jobs = None, random state = None, verbose = 0, warm start = False, class weight

= None, ccp alpha = 0, max samples = None

• GBT: loss = “log_loss”, learning rate = 0.1, n estimators = 100, subsample = 1, cri-

terion = “friedman_mse”, min samples split = 2, min samples leaf = 1, min weight

fraction leaf = 0, max depth = 3, min impurity decrease = 0, init = None, random

state = None, max features = None, verbose = 0, max leaf nodes = None, warm start

= False, validation fraction = 0.1, n iter no change = None, tol = 0.0001, ccp alpha

= 0

Only ANN had the hyperparameters configured to allow a more direct comparison

with the GNNs models, as will be detailed in Chapter 5.

4.3.4 Class imbalance strategies

The issue of class imbalance is a frequent problem in the context of predicting

CDGs with ML, and it can be addressed by applying different strategies that prevent

models from biasing their predictions for the majority class. In this work, we applied

some popular strategies to correct or compensate the class imbalance as reviewed in Sec-

tion 2.2.5: Random Undersampling, Balanced Cross-Entropy, and Focal Loss.

Undersampling and oversampling strategies are quite common in ML with class

imbalance and relatively simple to apply in tabular data. However, because we are deal-

ing with graph structures, none of the traditional oversampling strategies satisfied our

needs. Moreover, a recent algorithm proposed for synthetic oversampling from minority

class in graph-based learning, named GraphSMOTE (ZHAO; ZHANG; WANG, 2021),

could not be applied to our framework using the same data structures adopted for other

approaches, preventing a fair comparison in our methodological analyses. Thus, we de-

cided to use only a random undersampling method by removing excessive negative labels

and their corresponding nodes from the PPI network to balance the amount of positively

and negatively labeled nodes. This operation causes a decrease in the PPI networks used

for training. Nonetheless, turning negatively labeled nodes into unlabeled nodes could

introduce unintentional effects in the learning process, which we aimed to avoid.

Despite the use of StellarGraph library to train the GNN models, we still worked

with the conventional Keras prediction values, allowing us to directly employ Keras loss

functions. We used the Balanced Cross-Entropy and the Focal Loss functions, which are
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straightforward methods to apply to GNNs and were introduced in Section 2.2.5. The

use of Focal Loss involves the configuration of hyperparameters α and γ. We explored

different values for these hyperparameters in two ways: using pre-defined combinations

of values extracted from the original work (as will be explained in Chapter 5) and running

a hyperparameter optimization process that included these hyperparameters in the search

grid (as will be later discussed in Chapter 6).

4.3.5 Performance evaluation

An important step in the pipeline for ML model development is the performance

assessment of the generalization power of the model, which usually involves the defini-

tion of the data splitting strategy and of the performance metrics. In this work, model

development was conducted in two stages, starting with an initial comparison of a set of

algorithms, followed by hyperparameters optimization of the best performing algorithm.

The decision to explore in-depth only a selected algorithm was motivated by the high

computational costs involved in our experiments. Thus, while the general approach for

model validation is the same for the two stages, some differences exist between them and

also among GNNs and traditional ML methods, which will be explained next.

In all experiments, GNN models were evaluated using a Holdout data split to gen-

erate stratified training and test sets in a 80:20 ratio, followed by a 5-fold cross-validation

in the training set, as shown in Figure 4.4 (see Section 2.2.6 for detailed explanation).

Since the training process is based on semi-supervised learning, performance evaluation

is limited to the labeled data. Therefore, unlabeled genes are not used for creating train-

ing and test sets and are saved for a final prediction of the model, while the labeled genes

are passed through the data splitting strategy to allow model training and validation. Our

performance comparison is based mainly on the prediction for the test set, although the

performance for the training and validation sets in the 5-fold CV process is also monitored

and analyzed to better understand the results and investigate the risk of model overfitting.

Ensuring fairness and reproducibility is crucial for comparing GNN models across

different PPI networks. To achieve this, we aimed to maintain a consistent test set through-

out the experiments. In the first stage, we accomplished this by setting the random_state

parameter of the function used to divide the labeled data into training and test sets. This

guarantees that the same test set is employed for each PPI network during the comparative

performance evaluation carried out. In the second stage, on the other hand, we aimed to
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Figure 4.4 – Strategy for GNNs model training and validation based on a Holdout followed by a
5-fold CV in the training set.

Test Set

Training Set

Validation

Genes

Labeled
Genes

Train

Source: Prepared by the author

compare not only model predictive performance but also actual predictions for the same

set of genes across different PPI networks. Thus, for this stage of our methodology, we

manually separated a test set that is common to all PPI networks and used it as a fixed

independent test set in the experiments. This process is further discussed in Section 6.1.1.

For traditional ML algorithms, the performance evaluation was based only on a 5-

fold CV process in the complete labeled data. Since in the stage of algorithms comparison,

we did not included a step of tuning ML models using hyperparameters optimization, the

k-fold CV procedure is a reliable approach to conduct model evaluation and extract robust

performance estimates.

All models were evaluated based on the Area under the Precision-Recall Curve

(AUC-PR), Area under the ROC curve (AUC-ROC), and accuracy. These metrics were

defined in Section 2.2.6. Due to the severe class imbalance found in our data and to the

negative impact it causes in the model evaluation through accuracy and AUC-ROC, we

employed AUC-PR as our main metric.

4.4 Construction of ensemble models

Two ensemble models were constructed based on the strategies outlined in Sec-

tion 2.2.4. Our aim was to investigate whether the consensus among a set of predictive

models, each of which trained with a specific PPI network as the base graph for learning,

can introduce robustness and performance gain to our approach.

The trained GNN models, regardless of the algorithm used, are able to provide for

a given test instance (i.e., an unlabeled node referring to an unannotated gene) a predicted
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class and predicted class probabilities. Since our task is binary classification, we obtain

two probabilities for each gene, one for the Driver class (positive) and one for the Pas-

senger class (negative), with both probabilities summing to one. A higher probability for

the positive class indicates a greater likelihood of the gene being a driver gene, according

to the model. Thus, two strategies were adopted to obtain ensemble-based predictions:

• Ensemble-Majority: combines predicted class labels using majority voting. A

gene is classified as a driver if it is predicted as such by at least three PPI networks

(i.e., models), with ties considered positive due to the even number of networks.

• Ensemble-Average: combines class probabilities by taking the average across all

six PPI networks (i.e., models). A gene is classified as a driver if its average proba-

bility for the Driver class is equal to or greater than 0.5.

Finally, we note that for the purpose of discussing results, we will refer to the GCN

trained with UNION PPI network, with the Ensemble-Majority, and with the Ensemble-

Average as our ensemble-based prediction models.

4.5 Summary

This chapter introduced the datasets and the methods explored in this work to build

the framework for our comparative analysis among learning algorithms and to develop a

graph-based predictive model for identifying CDGs. The selected pre-processed multi-

omics datasets, derived from TCGA, encompass 16 different types of cancer and four

levels of omics data, including genomics (SNVs and CNAs), transcriptomics, and epige-

nomics. Furthermore, six different PPI networks of different dimensions were collected

and pre-processed to extract centrality measures and to fit the needs for the application

of GNNs. From these networks, a UNION PPI network was generated based on a simple

merging of all collected PPI networks. A careful curation of databases was conducted

to define the most possible reliable sets of positive and negative examples of CDGs to

serve as node labels for model training. Finally, the methodology for model develop-

ment included strategies for handling class imbalance and for building ensemble models

as means to improve the prediction results. The next chapters will detail the application of

these materials and methods for a comprehensive experimental investigation of learning

algorithms and data representation and for the and the development of a GNN model for

CDGs prediction.
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5 COMPARATIVE EVALUATION OF ALGORITHMS AND DATA STRATEGIES

FOR CANCER DRIVER GENE PREDICTION

In this chapter, we present and discuss a series of experiments designed to eval-

uate and compare various methodological strategies for predicting CDGs. Specifically,

we focus on three decision levels: (i) the types of features used to describe genes (i.e.,,

instances) for the prediction task, (ii) the strategies employed to address class imbalance,

and (iii) the specific algorithm used for CDG prediction. In the latter, we include a com-

parative analysis between two classes of learning algorithms, traditional (i.e., “shallow”)

ML algorithms and graph neural networks, to better understand the potential benefits of

using graph-based learning for discovering CDGs.

The following sections present the experimental setup and our results for this set

of experiments. Our discussion will be oriented towards five main research questions:

• RQ1 – How does the choice of omics data used as node features impact the predic-

tive performance of GNNs?

• RQ2 – Can GNNs benefit from the inclusion of node centrality measures as node

features?

• RQ3 – What is the best strategy to handle class imbalance in the node prediction

problem addressed?

• RQ4 – How do traditional ML algorithms compare to GNNs when applied to the

same omics data?

• RQ5 – Which graph neural network model performs best for CDG prediction?

We conducted the analyses described in this chapter using the three smallest PPI

networks presented in Section 4.1.1, namely HPRD, MULTINET, and IREF, due to the

high computational costs involved. In total, we carried out 468 experiments testing vari-

ations in terms of features, algorithms, class imbalance strategies, and networks. For the

sake of brevity, we focus our comparison mainly on the performance of the test set, and

we present only the most meaningful results in this chapter. However, additional results

for these experiments can be found in Appendix B, specifically in Tables B.1, B.2, and

B.3 for GNNs, and Tables B.4, B.5, and B.6 and Figure B.4 for traditional ML algorithms.
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5.1 Experiments setup

To ensure a fair comparison between the selected GNN algorithms, we maintained

fixed hyperparameter values across all experiments described in this chapter. This ap-

proach allowed us to focus on comparing the impact of other decisions related to the

methodology employed in model development. Table 5.1 shows the hyperparameter con-

figuration for the three GNN algorithms, with most of the values defined as default by the

StellarGraph library. The cross-entropy loss function was used in all experiments unless

loss function variations are mentioned in the text, e.g., when assessing the class imbalance

solutions. Furthermore, since we used the same Python library to train GNN models in

our experiments (as described in Chapter 4), the data structure used was the same for all

algorithms, making performance comparisons more straightforward.

The models based on SVM, RF, and GBT were built using the Scikit-learn library

(PEDREGOSA et al., 2011) and the ANN was trained using the Keras library (CHOLLET

et al., 2015). For the ANN, we configured the hyperparameters similar to the values

presented in Table 5.1. We used two hidden layers with 64 neurons in each, the cross-

entropy loss function, and a dropout rate and learning rate of 0.01 and 0.001, respectively.

The hyperparameters for the remaining algorithms (i.e., RF, GBT, and SVM), were kept

as the default values provided by the Scikit-learn library (version 1.1.1).

Model evaluation was conducted as explained in Chapter 4, applying the Holdout

method followed by 5-fold CV in the training data for GNNs, and using a 5-fold CV over

the complete dataset for traditional ML algorithms. Although accuracy and AUC-ROC

were collected through the experiments, we concentrate our discussion in the AUC-PR

metric, as it represents a better compromise for evaluating problems with class imbalance

in which the other metrics tend to be highly optimistic.

5.2 Results

5.2.1 How does the choice of omics data used as node features impact the predictive

performance of GNNs?

Similarly to traditional ML algorithms, GNNs can leverage the information pro-

vided by node feature vectors to learn patterns associated to CDGs. By integrating this

information with the local structure of the nodes in the graph, the GNN learns to predict
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Table 5.1 – Hyperparameters configuration used for GNNs in the comparative evaluation
experiments.

Hyperparameter Algorithm
GAT GCN GraphSAGE

Number of layers 2 2 2
Number of units on each layer 64 64 64
Activation function ReLU ReLU ReLU
Loss function Cross-entropy Cross-entropy Cross-entropy
Dropout rate 0.01 0.01 0.01
Learning rate 0.001 0.001 0.001
Number of epochs 300 300 300
Attention heads 8 - -
Attention dropout 0.01 - -
Batch size 1 1 50
Number of samples per layer - - 10 and 5

their labels. Therefore, it is reasonable to assume that the use of different types of omics

data as node feature vectors may impact on the performance of the model.

To evaluate the effects of applying different types of omics data as node features

on the performance of GNN models, we carried out five experiments with each of the

smallest PPI networks (i.e., HPRD, MULTINET, and IREF). First, we analyzed the model

performance using a single type of omics data (e.g., Mutations, CNA, DNA Methylation,

or Gene expression) as node feature vectors during training. Next, we trained models

concatenating the four types of omics data as node features, which is known as a multi-

omics approach. We note that these experiments used the traditional cross-entropy loss

function, thus, they do not address the issue of class imbalance.

Table 5.2 summarizes the results for the AUC-PR metric for the test set. We high-

light in boldface the best results for each algorithm and PPI network. It is worth noting

that the overall performance of all GNN models falls short of what is expected from a

good classifier. The low AUC-PR values suggest that the models are not performing

well in correctly identifying all true CDGs and avoiding false positive predictions, which

means classifying a gene as a cancer driver when it is not. Nevertheless, given the sig-

nificant class imbalance in our dataset, such difficulty is expected, and the performance

metrics still provide a basis for comparison.

Our experiments showed that the choice of node feature vector can have a sig-

nificant impact on the performance of GNN models. For example, in the HPRD PPI

network, performance ranged from 0.2761 (using CNA node features) to 0.3844 (using

DNA Methylation) for GAT, from 0.2967 (using Gene Expression) to 0.4984 (using Multi-

omics) for GCN, and from 0.2397 (using Gene Expression) to 0.4089 (using Mutations)
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Table 5.2 – AUC-PR performance comparison among GNNs for variations of types of omics data
used as node features.

Features PPI Network Algorithm
GAT GCN GraphSAGE

Mutations

HPRD

0.3565 0.4470 0.4089
CNA 0.2761 0.3992 0.3134
DNA Methylation 0.3844 0.3708 0.2402
Gene Expression 0.2806 0.2967 0.2397
Multi-Omics 0.3258 0.4984 0.3317

Mutations

MULTINET

0.2142 0.3523 0.3842
CNA 0.2865 0.3277 0.1996
DNA Methylation 0.2219 0.3185 0.1770
Gene Expression 0.2562 0.2506 0.1981
Multi-Omics 0.2182 0.3839 0.2671

Mutations

IREF

0.2606 0.4344 0.3550
CNA 0.3027 0.2844 0.2036
DNA Methylation 0.3088 0.2509 0.1482
Gene Expression 0.2211 0.2699 0.1850
Multi-Omics 0.2144 0.4315 0.2001

for GraphSage. GraphSage consistently showed the largest performance variations be-

tween minimum and maximum values across the three PPI networks (HPRD: 70.58%,

MULTINET: 117.06%, and IREF: 139.54%), while GAT showed the smallest (HPRD:

39.22%, MULTINET: 33.75%, and IREF: 44.02%), indicating that GraphSage is more

sensitive to changes in node features than GAT and GCN in our domain.

Additionally, the ranking of feature types based on performance is not consistent

across all networks and algorithms. For instance, while Mutation yielded the highest

performance in four out of the nine combinations of PPI network and GNN algorithm,

Multi-omics and DNA methylation achieved the best performance in two combinations

each. CNA, on the other hand, was the top-performing feature set in only one combination.

This result is biologically plausible, since DNA mutations are the primary cause of most

cancers. Nonetheless, integrating the four types of omics in the multi-omics approach still

seemed advantageous as it was able to improve performance in some cases, especially for

the GCN algorithm. Thus, for the next experiment, we select the multi-omics strategy as

our default configuration for the node features vector.
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5.2.2 Can GNNs benefit from the inclusion of node centrality measures as node fea-

tures?

Node centrality measures, such as degree and betweenness, are commonly em-

ployed as handcrafted graph features for ML approaches in disease gene prediction. This

was the traditional approach to explore the information contained in biological networks

(e.g., PPI networks) in node prediction tasks before the advent of graph-based learning

algorithms (ATA et al., 2021). Given that node centrality measures were relatively suc-

cessful in capturing the global and local graph structure of nodes in previous efforts, we

aimed to investigate whether they can increase model reliability and improve performance

metrics when used as features along with multi-omics data.

We extracted four node centrality measures - degree, betweenness, closeness, and

clustering coefficient (see Section 2.2.3 for definitions) - from each of the PPI networks

using the igraph package (CSARDI; NEPUSZ, 2006). These centrality measures were

used exclusively as additional features for the PPI network from which they were com-

puted since they are node features that rely on the graph structure. We then conducted

a new round of model training and evaluation using a node feature vector composed of

multi-omics data and centrality measures.

Figure 5.1 – Analysis of the impact of the inclusion of centrality measures as node features in the
performance of GNNs.

Source: Prepared by the author

Figure 5.1 shows the results of this experiment for the test set, compared against

the results when considering only multi-omics features (Section 5.2.1). We observed
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that centrality measures provided important information for training the model since they

improved the performance in most scenarios. The only exception was the GCN model

for the IREF network, which did not benefit from the additional features. The predictive

performance increased up to 67.81% for the GAT model applied to the IREF network. In

general, the GAT model was the most benefited when adding centrality measures to the

node features vector, although the GCN model also significantly improved the predictive

performance after the inclusion of centrality features in the HPRD network.

Whereas Figure 5.1 presents the results for the independent test set, which is our

main interest for performance comparison, we also provide the learning curves for the

HPRD network when using multi-omics and centralities as node features in Figure 5.2

(the same analyses can be seen for MULTINET and IREF networks in the Appendix B,

Figures B.1 and B.2). These figures allow us to evaluate the training and validation per-

formance history of the algorithms through 300 epochs. Values represent the mean and

standard deviation across 5-fold CV. We note that GAT (Figure 5.2a) and GraphSage (Fig-

ure 5.2c) tend to quickly overfit in the first 50 epochs when using default hyperparameters.

Moreover, GAT shows the highest performance variation among the five repetitions.

Another interesting point in Figure 5.2 is that the ROC curves (right column) are

all shifted upwards compared to the PR curves (left column). This means that the model

evaluation through the AUC-ROC metric suggests higher predictive performance. How-

ever, this is an artifact of our dataset, which contains a low proportion of instances in the

positive class (i.e., true CDGs).

To better illustrate this issue and reinforce our choice to focus the comparative

analysis on the AUC-PR values, we provide a direct comparison among accuracy, AUC-

ROC, and AUC-PR for the test set (Table 5.3). We observed that accuracy and AUC-ROC

are always higher than AUC-PR for every combination of GNN algorithm and PPI net-

work. While the AUC-PR values range from 0.2427 to 0.5960 in these experiments,

accuracy varies between 0.8289 and 0.9213, and AUC-ROC varies between 0.6629 and

0.8453. Finally, given that the use of centrality measures as node features improve the pre-

dictive performance for graph-based learning algorithms, from this point forward, we will

always use the node feature vector composed of multi-omics data and centrality measures

as the default feature set.
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Figure 5.2 – Training and validation performance for the HPRD network in (a) GAT, (b) GCN,
and (c) GraphSAGE in terms of AUC-PR (left column) and AUC-ROC values (right column).

(a) GAT

(b) GCN

(c) GraphSAGE

Source: Prepared by the author

5.2.3 What is the best strategy to handle class imbalance in the node prediction prob-

lem addressed?

Class imbalance is a recurring problem when working with cancer genomics and

cancer driver prediction, as the target factor, either a true driver mutation or a true CDG,

is always the most rare phenomenon when compared to passenger mutations or neutral

genes. As noted in Chapter 3, other authors also face this inherent obstacle, although only

a few reviewed papers clearly discuss the strategy adopted to address this issue.

In Section 2.2.5, we presented the theoretical foundation for most common strate-
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Table 5.3 – Different performance metrics for predictions on the test set using a combination of
multi-omics and centrality measures as node features.

Algorithm PPI Network Performance metric
Accuracy AUC-ROC AUC-PR

GAT
HPRD 0.8580 0.7969 0.3992
MULTINET 0.9043 0.8312 0.3648
IREF 0.9120 0.8453 0.3598

GCN
HPRD 0.8889 0.8418 0.5960
MULTINET 0.9123 0.8162 0.4019
IREF 0.9213 0.8246 0.4274

GraphSAGE
HPRD 0.8289 0.7132 0.3786
MULTINET 0.9011 0.7201 0.3174
IREF 0.8827 0.6629 0.2427

gies to deal with class imbalance, which we experimentally compare in the current sec-

tion: Random Undersampling, Balanced Cross-entropy, and Focal Loss. For each GNN

algorithm and PPI network, we applied five different strategies to mitigate the class imbal-

ance among positive and negative examples of CDGs. Besides Random Undersampling

and Balanced Cross-entropy, we selected three variations of the Focal Loss function from

Table 5.4 – AUC-PR peformance comparison between strategies to address the class imbalance
issue. The values refer to predictive performance on the test set.
Strategy PPI Network Algorithm

GAT GCN GraphSAGE
Cross-entropy

HPRD

0.3992 0.5960 0.3786
Undersampling 0.3275 0.5479 0.3332
Balanced cross-entropy (α=0.85) 0.4215 0.5918 0.4069
Focal loss (γ=0.5; α=0.50) 0.3873 0.5235 0.4230
Focal loss (γ=1; α=0.25) 0.3581 0.5756 0.3985
Focal loss (γ=2; α=0.25) 0.3792 0.5583 0.4480

Cross-entropy

MULTINET

0.3648 0.4019 0.3174
Undersampling 0.2817 0.4521 0.2188
Balanced cross-entropy (α=0.85) 0.3551 0.4661 0.3929
Focal loss (γ=0.5; α=0.50) 0.4143 0.4177 0.3264
Focal loss (γ=1; α=0.25) 0.3363 0.2978 0.3196
Focal loss (γ=2; α=0.25) 0.2753 0.4481 0.3822

Cross-entropy

IREF

0.3598 0.4274 0.2427
Undersampling 0.1714 0.4384 0.1887
Balanced cross-entropy (α=0.85) 0.3135 0.4841 0.3013
Focal loss (γ=0.5; α=0.50) 0.3546 0.4664 0.2296
Focal loss (γ=1; α=0.25) 0.2977 0.3776 0.2832
Focal loss (γ=2; α=0.25) 0.3917 0.4488 0.2928
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the original article (LIN et al., 2017), which presents a series of experiments and arrives

at a set of best combinations for the hyperparameters γ and α. We used γ = 0.5 and α

= 0.50, γ = 1 and α = 0.25, and γ = 2 and α = 0.25. We note that the Balanced Cross-

Entropy resembles a Focal loss function with γ = 0 and with the α parameter indicating

the weight to balance the importance of positive/negative instances (here, we adopted

α = 0.85). The Cross-entropy cost function was used in two moments: in the initial ex-

periments conducted previously (considered as our “baseline”) and in the scenario where

the Random Undersampling technique is applied to data. Table 5.4 presents the results of

our experiments comparing strategies to deal with class imbalance. The best results for

each algorithm and PPI network are highlighted in boldface.

Overall, we observed performance improvements in most cases where class im-

balance correction was carried out. Balanced Cross-Entropy yielded the most promis-

ing results, while the undersampling strategy was generally less effective. Although the

results are still below the desired level of predictive performance, they show potential

for further improvement through hyperparamenter optimization in the case of Balanced

Cross-Entropy and Focal Loss. Since the Balanced Cross-Entropy is a special case of a

Focal Loss, we defined Focal Loss as the most promising approach to handle class imbal-

ance in our domain.

5.2.4 How do traditional ML algorithms compare to GNNs when applied to the same

omics data?

As part of our investigation, we aimed to understand the potential benefits of us-

ing the full network structure through graph-based learning methods compared to rely-

ing solely on handcrafted features such as omics data and centrality measures for model

learning. To this end, we conducted a series of experiments with four traditional ML

algorithms widely used in the bioinformatics domain: SVM, Random Forests, Gradient

Boosting Trees, and Artificial Neural Networks. For more information on the theoretical

background, please refer to Chapter 2.

For the traditional ML algorithms, we had a conventional classification task in

which the algorithm was only provided with a dataframe containing instances (i.e., genes)

with their features vector and corresponding label. The structure of the PPI network was

not used when the features were based solely on omics data. Therefore, the predictive

performance was entirely associated with the informative power of omics data. Never-
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Table 5.5 – AUC-PR peformance comparison among traditional ML algorithms and variations in
the omics data used as features.

Features PPI Network Algorithm
SVM RF GBT ANN

Mutations

HPRD

0.3272 0.3664 0.3753 0.2252
CNA 0.1950 0.1702 0.1846 0.1619
DNA Methylation 0.1435 0.1519 0.1487 0.1324
Gene Expression 0.1368 0.1559 0.1564 0.1563
Multi-Omics 0.2595 0.3566 0.3565 0.2119

Mutations

MULTINET

0.2819 0.3066 0.3212 0.1726
CNA 0.1247 0.1136 0.1169 0.1220
DNA Methylation 0.0951 0.1122 0.1089 0.0853
Gene Expression 0.0997 0.1071 0.1151 0.0946
Multi-Omics 0.2025 0.2976 0.3066 0.1614

Mutations

IREF

0.2598 0.2929 0.3087 0.1848
CNA 0.1204 0.1201 0.1268 0.1165
DNA Methylation 0.0969 0.1023 0.1044 0.1081
Gene Expression 0.0906 0.1016 0.1077 0.0981
Multi-Omics 0.1958 0.2869 0.3029 0.1519

theless, we performed experiments for each PPI network since the set of genes analyzed

differed among networks. To ensure consistency, we kept the hyperparameters constant

through all experiments and evaluated the impact of omics levels on each algorithm.

Table 5.5 summarizes the results for the test set. The best performance per PPI

network is highlighted in boldface, and the values refer to the average performance across

5-fold CV. The traditional ML algorithms performed better on mutation data, but the

overall performance of these models was worse than those achieved by GNN algorithms.

Among the four traditional ML algorithms applied, GBT was the top-performing one for

all PPI networks, followed by RF. Multi-omics data was the second-best feature set for all

PPI networks.

We also assessed the effect of using class weights during training to adjust the cost

of misclassifications and avoid concentrating the learning on the majority class, similar

to the experiments with GNNs. However, these experiments did not yield any significant

results since most of the models did not exceed the standard performance presented in

Table 5.5 upon class imbalance mitigation with class weights. Therefore, we do not report

these results here.

Finally, we assessed the impact of incorporating node centrality measures as fea-

tures in traditional ML algorithms, inspired by the promising results achieved with GNNs.



108

We used the multi-omics features vector as our baseline and added measures for node de-

gree, betweenness, closeness, and clustering coefficient for each PPI network. The results

presented in Figure 5.3 demonstrate that the inclusion of centrality measures as an extra

source of information improved the performance of all models, surpassing the results ob-

tained with individual omics data or their combination (i.e., multi-omics). We can also

clearly visualize that the magnitude of performance change upon addition of centrality

measures was greater for traditional algorithms than for GNNs (Figure 5.1 ), which is

expected, since GNNs by definition already have information about the graph (i.e., PPI

network) in the learning process. Another interesting observation is that the decision tree-

based algorithm had a very close performance in this prediction task, and also very similar

behavior with the inclusion of centrality features.

Figure 5.3 – Analysis of the impact of including node centrality measures as features in the
traditional ML algorithms.

After comparing the results of experiments using multi-omics data and node cen-

tralities among the best-performing traditional ML algorithm (i.e., GBT) and GNNs, as

depicted in Figure 5.4, we can conclude that GBT had a competitive performance in rela-

tion to graph-based models. GBT achieved better results than GAT and GraphSAGE for

all PPI networks. When we compared GCN and GBT, we noticed that GCN outperformed

GBT in two of the analyzed networks, while GBT achieved the highest score among all

the evaluated approaches for MULTINET.

Overall, our experiments indicate that the task of predicting CDGs is, in general,

more challenging for traditional ML algorithms than for GNNs. However, traditional
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Figure 5.4 – Comparison between GNNs and GBT using multi-omics and node centralities as
features.
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ML algorithms stand out in some cases, as in the use of tree-based methods with mu-

tation data. Additionally, our analyses including centrality measures highlighted their

relevance as a complement to multi-omics data. This was particularly evident in this set

of experiments, where centralities played a significant role in enhancing the predictive

performance obtained with multi-omics data for algorithms that learn from tabular data.

These observations underscore the importance of considering the network structure for

CDG prediction and suggest that centralities may play a critical role in such scenarios.

5.2.5 Which graph neural network algorithm performs best for CDG prediction?

The last and main question raised in this chapter refers to investigating which

of the GNN algorithms is the most promising for the task of predicting CDGs. After

conducting several exploratory experiments comparing various approaches, we aimed to

select one algorithm for further development through a more detailed methodological

process, including hyperparameter optimization, in an effort to improve its predictive

performance for this task.

Figure 5.5 provides a comparison of the test performance measures of the three

evaluated GNN algorithms. Based on our analysis of these results, as well as the find-

ings discussed in Sections 5.2.1 to 5.2.4 in this chapter, we concluded that GCN is the

most promising algorithm for accurately predicting CDGs. GCN demonstrated superior

performance in nearly all scenarios tested, in terms of both PPI networks and the compo-

sition of the node features vector. Additionally, the highest performance achieved in this
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Figure 5.5 – Test set cross entropy performance of (a) HPRD, (b) MULTINET, and (c) IREF
networks.
(a) HPRD
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(b) MULTINET
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(c) IREF
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experimental comparison was associated with the use of GCN in conjunction with multi-

omics and centralities. Consequently, we have chosen the GCN model and the feature set

comprising multi-omics and centrality measures as our standard approach for the learning

algorithm and data representation. In the next chapter, we will provide a more in-depth

investigation of this strategy, including efforts to optimize hyperparameters.

5.3 Summary

The primary focus of this chapter was to investigate the potential of GNN algo-

rithms and distinct feature definition strategies for predicting CDGs. A series of experi-

ments were carried out to extract an understanding about how, in general, GNN algorithms

perform in this task. Besides comparing three graph-based models for three PPI networks,

we experimentally compared different strategies to define instances features vector and to

mitigate class imbalance. Moreover, we also compared the GNN algorithms with four

traditional ML algorithms. Based on the results of our extensive experiments, we have

concluded that graph-based learning algorithms generally outperform other approaches in

the prediction task by utilizing information about node connectivity for model training and

classification. Among the GNNs applied, GCN demonstrated the most promising results,

displaying consistent and robust performance across all evaluated scenarios. Our find-

ings also indicate that traditional ML algorithms are highly sensitive to the type of omics

data used, and tend to perform better when incorporating mutation information. Further-

more, we have observed that node centrality measures calculated from PPI networks can

be highly informative and beneficial for the prediction task, even for graph-based algo-

rithms. Given that GCN proved to be the most effective in detecting CDGs in different

scenarios, this algorithm will be the subject of a more detailed study of hyperparameters

optimization and ensemble prediction strategies using GCN in Chapter 6.
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6 GCN-BASED MODELS FOR CANCER DRIVER GENE PREDICTION

In this chapter, we provide a deeper examination of the prediction of CDGs using

the GCN algorithm, which showed the most promising performance in the experimental

comparison presented in Chapter 5. We detail the investigation of the best set of hyper-

parameters for the three smaller PPI networks and the three larger PPI networks. We also

report the performance of GCN models trained with each of the six PPI networks using

a common independent test set. Finally, we compare the predictive performance of the

models trained on the collected PPI networks with those trained on the UNION PPI net-

work defined in our work (as explained in Section 4.1.1) and ensemble-based approaches

(as detailed in Section 4.4).

6.1 Experiments setup

In this series of experiments, we aimed to optimize the hyperparameters of the

GCN algorithm to try to achieve higher predictive performance. Specifically, we con-

ducted hyperparameter optimization for each of the PPI networks collected from the lit-

erature, namely HPRD, MULTINET, IREF, CPDB, PCNET, and STRING.

To ensure a fair comparison between models for the same set of test genes, we

randomly split the main dataset into training and test sets considering only positively

and negatively labeled genes common to all PPI networks for the test set. With this, we

generated a fixed test set used in these experiments. We then used 5-fold cross-validation

in the training set to evaluate the performance during hyperparameter optimization. All

models were trained using the multi-omics data and centrality measures as node features.

After hyperparameter optimization, we trained a final model using the best hyper-

parameter configuration and the complete training set, and applied it to predict the label

for the independent test set and for the unlabeled nodes present in each PPI network. The

first dataset allowed us to evaluate the final performance of the model, while the second

dataset aimed to suggest potential candidate driver genes for further investigation.

In the following sections, we describe the creation of the independent test set used

in these experiments and the hyperparameter optimization strategy adopted.
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6.1.1 Creation of an independent test set

To create the independent test set for this series of experiments, we searched for

genes present in all six PPI networks collected. We identified a set of 8,068 genes, which

represents 41.2% of the total number of genes included in all networks (i.e., the union of

genes among all PPI networks). Taking as reference the smallest PPI network, which is

the HPRD network, we estimated the number of genes to withhold for the test considering

an 80:20 ratio for training and test sets. We found that about 1,134 labeled genes should

be reserved as a test set to follow this proportion of data split for the smallest network.

Then, we randomly selected 1,134 labeled genes among those that are common

to all six PPI networks in a stratified fashion, generating an independent test set with 159

driver genes (i.e., positive examples) and 975 passenger genes (i.e., negative examples).

This test set was fixed during our experiments in the sense that it was the same test set

used for all PPI networks. The strategy adopted causes the proportion of the test set to

vary among PPI networks, as shown in Figure 6.1. For example, the test set represents

only 8.5% of the total number of genes in the PCNET network. However, reserving 20%

of labeled data for the test set based on the number of genes comprised in the largest

network would cause a considerable restriction of data for training the models from small

PPI networks such as the HPRD. Therefore, in this chapter, all the results reported for

the independent test set will refer to exactly the same set of 159 driver genes and 975

passenger genes.

Figure 6.1 – Proportion of training and test sets for all PPI networks considering a fixed set of
labeled genes for testing.
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6.1.2 Strategy for hyperparameter optimization

Table 6.1 lists the hyperparameters that were chosen for the investigation con-

ducted in this chapter and the values that were initially included in the grid search, se-

lected based on the recommendations discussed in Chapter 4.

Table 6.1 – Hyperparameters evaluated for GCN training with HPRD, MULTINET, and IREF
networks

Hyperparameter Values tested
Number of layers 2
Number of neurons/units on each layer 64; 128; 256
Activation function ELU; ReLU
Dropout 0.001; 0.01; 0.1
Learning rate 0.00001; 0.0001; 0.001
Number of epochs 500
Focal loss (gamma) 0; 0.5; 1; 2
Focal loss (alpha) 0.25; 0.50; 0.75; 0.90

The training process for the GCN algorithm involves a total of 864 combinations

of hyperparameters related to the learning algorithm and to the focal loss function. Eval-

uating all these combinations can be computationally expensive due to the complexity of

the PPI network, especially for the three largest PPI networks, resulting in long execu-

tion times. Therefore, we adopted a strategy to simplify the search grid in these cases.

First, we evaluated all the 864 combinations of hyperparameters for the three smallest PPI

networks, namely HPRD, MULTINET, and IREF, which have less than 140,000 edges.

Based on the results obtained for this first round of experiments, we carried out a perfor-

mance impact analysis of hyperparameter values.

For this analysis, we defined a set of thresholds for AUC-PR performance and

counted the number of hyperparameter combinations that produced results higher than

the threshold, for each cutoff defined. The thresholds {0.2, 0.4} were used for the three

PPI networks, but the set was extended with higher threshold values that were closer to

the maximum AUC-PR performance obtained for each PPI network analyzed. The higher

the performance threshold applied, the fewer the number of hyperparameter combinations

attached to the training process that achieved that minimum performance mark. The in-

tention was to extract a fine-grained analysis of the relation of hyperparameters values

and AUC-PR performance for top-performing models.

Then, we analyzed the most frequent values of hyperparameters for each perfor-

mance threshold. We investigated, for instance, the existence of specific hyperparameter
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values that were never related to high performance, or, in contrast, that were very fre-

quent among the models with outstanding results. We used the findings of this analysis to

prune or to adjust the grid of hyperparameter values for the second round of experiments

involving the three largest PPI networks.

This approach was implemented in response to the intricacy of GNN techniques.

Specifically, the execution time of a training epoch for a small network, such as HPRD,

is typically measured in milliseconds, whereas larger networks, such as STRING, require

approximately 8 seconds to complete a single epoch, on average. Furthermore, even the

GCN algorithm, which is the most expeditious of the three GNN algorithms examined in

the preceding chapter, still necessitates a nontrivial amount of computational time.

6.2 Results

6.2.1 Hyperparameter optimization for the three smallest PPI networks

The hyperparameter values used for the HPRD, MULTINET, and IREF networks

were presented in Table 6.1. As previously mentioned, a total of 864 configurations were

assessed for the smallest PPI networks. The average performance of models in the valida-

tion set (i.e., the independent folds in the 5-fold CV) was analyzed for each hyperparam-

eter configuration. Observing the general panorama of this evaluation, as summarized in

Figure 6.2 for the HPRD network, we can note that there are hyperparameters combina-

tions that were clearly not promising in terms of the achieved performance, while others

stood out in this aspect. In other words, there is a discernible trend in higher and lower

performance according to the hyperparameters configuration adopted. This trend was

also observed for the analysis of the results obtained for the two other smallest networks,

MULTINET and IREF, as shown in the appendix (Figure C.1).

To illustrate how we conducted the impact analysis of hyperparameter combina-

tions, we show in the Table 6.2 the results for the HPRD network considering an AUC-PR

performance threshold of 0.53. Filtering the results by this threshold yielded a total of 97

hyperparameter combinations1. We observed, for instance, that higher learning rates oc-

curred more frequently, to the extent that the lowest learning rate (i.e., 0.00001) employed

1For comparison purpose, when considering the HPRD PPI network, using the threshold of AUC-PR
> 0.2 we obtained 556 combinations of hyperparameter values, using the threshold AUC-PR > 0.4 we
obtained 457 combinations, and using the threshold AUC-PR > 0.5 we obtained 350 combinations.
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Figure 6.2 – Performance analysis of all hyperparameter combinations for the HPRD network.
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Table 6.2 – Occurrence frequency of hyperparameters values for the models trained with the
HPRD network using AUC-PR threshold of 0.53. A total of 97 combinations met the criteria.

Activation function Alpha (α) Gamma (γ)
ReLU 84.5% 0.25 36.0% 0 22.6%
ELU 15.4% 0.5 22.6% 0.5 27.8%

0.75 23.7% 1 27.8%
0.9 17.5% 2 21.6%

Number of neurons Learning rate Dropout
64 39.1% 0.00001 0.0% 0.001 24.7%
128 30.9% 0.0001 9.2% 0.01 27.8%
256 29.8% 0.001 90.7% 0.1 47.4%

was never selected among the 97 combinations that met the AUC-PR threshold applied.

In summary, higher learning rates seem to produce more effective classification results.

Some hyperparameters are still inconclusive as to their impact on the predictive power,

especially because their impact varies according to the network analyzed.

Only two hyperparameters had clear and similar patterns across the three PPI net-

works that were significant for planning the next round of hyperameraters optimization:

the learning rate and the activation function. Thus, for the largest PPI networks, it was

possible to reduce the number of parameter combinations by approximately one-third just

by adjusting two hyperparameters, the activation function, for which we only maintained

the “ReLU” function, and the learning rate. For the learning rate, we removed the two

smallest values from the original grid, and used 0.001 and 0.005, where the latter was a

new value included for training the largest PPI networks.
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Figure 6.3 shows the performance variation for the top five combinations of hyper-

parameters in the experiments with (a) HPRD, (b) MULTINET, and (c) IREF networks.

The validation performance in the last training epoch in each of the five folds is observed

and used to report these results, with the white dot representing the mean. Additionally,

the best hyperparameter combination according to the average performance in the valida-

tion sets is highlighted in green. We observed that the median performance is around 0.60

for HPRD, and around 0.5 for MULTINET and IREF. Although the median performance

if very close among the top 5 configurations, some specific hyperparameter combinations

lead to larger variations in performance or to the occurrence of outliers.

6.2.2 Hyperparameter optimization for the three largest PPI networks

The CPDB, PCNET, and STRING networks belong to the group of largest PPI

networks, having more than 1.5 million edges. Processing these networks requires sig-

nificant computational power and longer execution time for each experiment. Therefore,

to address this issue, we modified the grid of hyperparameter values based on the results

described in the previous section. The modified grid is shown in Table 6.3 and it reduces

the number of hyperparameter combinations to a total of 288 possible combinations.

Table 6.3 – Hyperparameters evaluated for GCN training with CPDB, PCNET, and STRING
networks

Hyperparameter Parameter Ranges
Number of layers 2
Number of neurons/units on each layer 64; 128; 256
Activation function ReLU
Dropout 0.001; 0.01; 0.1
Learning rate 0.001; 0.005
Number of epochs 500
Focal loss (gamma) 0; 0.5; 1; 2
Focal loss (alpha) 0.25; 0.50; 0.75; 0.90

Again, based on an overview of the results for the STRING network (Figure 6.4),

we also noticed that the AUC-PR values varied according to the hyperparameter values

used. However, the amplitude of changes was lower than those observed in the experi-

ments for the smallest networks. In fact, most of the models trained using the STRING

network achieved an AUC-PR value close to 0.5, with similar results obtained for the

other PPI networks explored in this round of experiments (Figure C.2).

One interesting finding is that the PPI largest networks did not necessarily outper-
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Figure 6.3 – Five best combinations of parameters for (a) HPRD, (b) MULTINET and (c) IREF.
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form all the smallest networks, although, theoretically, they carry out more information

about the molecular aspects of genetic interactions. The best performance for validation

data was obtained with PCNET (i.e., AUC-PR = 0.5367). Figure 6.5 shows the five best
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combinations of hyperparameters for each of the largest networks analyzed. Although this

average performance of around 0.5 seems low, it shows the complexity that the studied al-

gorithms face in dealing with class imbalance, even when applying mitigation strategies.

Therefore, higher values for metrics such as accuracy and AUC-ROC may not represent

the prediction goal we aim to achieve.

Leveraging the results of the hyperparameters optimization for all the PPI net-

works, the next sections will present the results for model training and evaluation using

the fixed independent test set defined in Section 6.1.1.

6.2.3 Predictive performance of individual GCN-based models for the test set

Following hyperparameters optimization, the best hyperparameter values obtained

for each PPI network were applied to train GCN-based models for the prediction of CDGs

as explained in Section 6.1. These values are summarized in Table 6.4. We investigate the

performance of the models during training and validation through the learning curves, but

we focus the analysis on the performance for the fixed test set described in Section 6.1.1.

We selected three PPI networks that obtained the best results, regardless of their

dimension, to present the training and validation performance in this section. Figure 6.6

presents the main metrics observed in the experiments (i.e., AUC-PR and AUC-ROC)

Figure 6.4 – Performance analysis of all hyperparameter combinations for the STRING network.
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Figure 6.5 – Five best combinations of parameters for (a) CPDB, (b) PCNET and (c) STRING.
(a) CPDB
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for MULTINET, PCNET, and STRING. The other PPI networks are analyzed in the Ap-

pendix, Figure C.3. Furthermore, because the focal loss function has its own hyperpa-

rameters and each PPI network has been optimized with different combinations of the



121

Table 6.4 – Best hyperparameter configuration found for each PPI network.
HPRD MULTINET IREF CPDB PCNET STRING

Layer sizes 64; 64 256; 256 128; 128 128; 128 256; 256 256; 256
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Dropout 0.1 0.1 0.001 0.001 0.1 0.001
Learning rate 0.001 0.001 0.001 0.005 0.005 0.005
Loss (alpha) 0.5 0.5 0.25 0.75 0.9 0.75
Loss (gamma) 0.5 0.5 2 0 0.5 2

focal loss hyperparameters, the loss curves for these experiments are also provided in the

Appendix (Figure C.4).

Figure 6.6 – AUC-PR and AUC-ROC performance for GCN models trained with (a)
MULTINET, (b) PCNET, and (c) STRING networks.
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In Figure 6.6, we can note that in some cases, such as for MULTINET, the model
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shows signs of overfitting from 200 epochs onwards. This was also observed for HPRD,

IREF, and CPDB (Figure C.3). Despite this, we still noted an improvement in the per-

formance of models for the test data, compared with the metrics without hyperparameter

optimization reported in Chapter 5. We remind that the common test set used across the

PPI networks, as presented in Section 6.1.1, contains 1134 labeled genes: 159 positives

and 975 negatives examples.

Table 6.5 summarizes the performance metrics for the independent test set of the

GCN models trained on each of the PPI networks. AUC-PR values varied from 0.5646

for the CPDB network to 0.6358 for the STRING network. Accuracy and AUC-ROC

values, as expected, are higher, reaching values above 0.80, except for the accuracy of the

PCNET network. For the three smallest PPI networks, there was an increase of 10.42%,

on average, for the AUC-PR performance.

Table 6.5 – Performance of individual GCN-based models on the test set
PPI Network Metrics

Accuracy AUC-ROC AUC-PR
HPRD 0.8889 0.8433 0.5768
MULTINET 0.8915 0.8303 0.5947
IREF 0.8827 0.8063 0.5663
CPDB 0.8642 0.8314 0.5646
PCNET 0.7795 0.8527 0.5925
STRING 0.8951 0.8798 0.6358

However, even with hyperparameters optimization, the performance of the GCN-

based models, in general, did not exceed an AUC-PR of 0.6, such that compared to other

related works, the performance of our models are still limited. Schulte-Sasse et al. (2021),

for example, considered the state-of-the-art among related works, reported AUC-PR val-

ues of 0.74 and 0.68 with the GCN algorithm and the MULTINET and PCNET PPI net-

works, respectively. However, the authors use a different cost-sensitive loss function, dis-

tinct sets of positively and negatively labeled data, and also different data pre-processing

steps – all of which can impact the results.

In comparison to other relevant studies, we can include two cancer-specific ap-

proaches, namely MutSigCV (LAWRENCE et al., 2013) and 20/20+ (TOKHEIM et al.,

2016), which employed different networks and achieved AUCPR average results of 0.36

and 0.63, respectively. Additionally, the author of the EMOGI model (SCHULTE-SASSE

et al., 2021) proposed a baseline approach that utilizes a Random Forest and achieved an

average AUCPR of 0.58 across the analyzed networks, relying only in the extracted fea-

tures, as we did in Section 5.2.4.
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Figure 6.7 – Predicted probabilities for the test set using the STRING PPI network for training
the GCN model. The red dots represent driver genes and the blue dots represent passenger genes.

The confusion matrix is extracted considering a probability threshold of 0.5.
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Figure 6.7 presents a scatterplot with the predicted probability (y-axis) for each

gene (x-axis) in the test set using the STRING PPI network to train the GCN model. The

colors indicate the true class for the gene: the red dots represent driver genes, and the blue

dots represent passenger genes. The confusion matrix considering a probability threshold

of 0.5 is computed and provided at the top left corner. There were a total of 132 genes

predicted as drivers by the model, 86 of them correctly assigned to the positive class.

6.2.4 Predictive performance of ensemble-based prediction models for the test set

Continuing our analysis of GCN for CDGs prediction, we investigated the collec-

tive performance of all PPI networks in the test set. Our objective is to determine whether

combining multiple PPI networks can lead to superior predictions. We employed two

main approaches for combining the networks: unifying the nodes and edges of the six

PPI networks into a single network, which we refer to as the UNION PPI network (as

explained in Section 4.1.1), and applying aggregation methods to the outputs of six indi-

vidual GCN models, each trained with a specific PPI network. The latter approach utilized

ensemble learning strategies outlined in Section 4.4, resulting in the Ensemble-Majority

and the Ensemble-Average models.

We note that due to the large dimension and complexity of the UNION PPI net-
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work (i.e., 7,365,082 edges and 19,602 nodes), instead of conducting a hyperparameter

optimization for a GCN trained with this specific network, we used the best hyperpa-

rameters found for the STRING PPI network (i.e., the largest network collected from

literature). The training and validation performance for the UNION PPI network, shown

in Figure 6.8, achieved marks similar to those obtained with the other networks. We

obtained an average AUC-PR value of 0.4969 in the validation data, corroborating the

difficulty in predicting true positives faced in our domain. The average AUC-ROC value

was 0.8854, still consistent with the results obtained individually from the other networks.

However, for the test set, we obtained an AUC-PR value of 0.5579, indicating

that the simple merging of the nodes and edges of all PPI networks was not effective in

improving the results compared to the individual PPI networks. Figure 6.9 shows the

predicted probabilities for the labeled genes in the test set and also the confusion matrix

for a probability threshold of 0.5. The GCN model based on the UNION PPI network

predicted 119 genes as cancer drivers, where only 68 of them are true positives.

Finally, we compared another interesting approach to combining the knowledge

contained in distinct PPI networks inspired by the ensemble learning paradigm. We ana-

lyzed the results for the Ensemble-Majority and Ensemble-Average. We note that while

the former provides only predicted class labels due to the type of aggregation based on

class votes, the latter provides predicted class labels and predicted class probabilities.

The general performance of these models in predicting the genes of the test set is

summarized in Figure 6.10. For both models, we applied the standard probability thresh-

old of 0.5 to extract class labels. A clear impact of the two ensemble approaches, as com-

pared to the confusion matrices shown for the STRING (Figure 6.7) and the UNION (Fig-

ure 6.9) PPI networks, is the reduction in the number of false positives. The Ensemble-

Majority predicted a total of 110 driver genes, from which 80 are true positives and 30 are

false positives. The Ensemble-Average predicted a total of 92 driver genes, from which

Figure 6.8 – Learning curves for the UNION PPI network in terms AUC-PR and AUC-ROC.
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Figure 6.9 – Predicted probabilities for the test set using the UNION PPI network for training the
GCN model. The red dots represent driver genes and the blue dots represent passenger genes.

The confusion matrix is extracted considering a probability threshold of 0.5.
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73 are true positives and 19 are false positives. However, the ensemble methods failed to

identify 79 and 86 drivers (i.e., false negatives) at the probability threshold used.

Figure 6.10 – Confusion matrix for the test set, analyzing the ensemble models (a)
Ensemble-Majority and (b) Ensemble-Average.
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We compared the predictions of individual models and ensemble-based models

using a common test set. We summarized the number of predictions per class, as well as

the values of TP, FP, TN, and FN from their corresponding confusion matrices. Table 6.6

shows the results, with the first line displaying the reference numbers for the test set and

the following lines reporting the prediction results for each discussed model. For easier

comparison, we also included the precision (prec) and recall (rec) for each model.

We observed that while the IREF-based prediction model had the highest preci-
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sion, its recall was very low, correctly identifying only 28 true drivers from the test set. On

the other hand, the PCNET-based prediction model had the highest recall at the expense

of lower precision. The Ensemble-Average model had the most balanced performance in

terms of precision and recall.

Table 6.6 – Summary of models predictions for the independent test set.
#Drivers #Passengers TP FP TN FN Prec Rec

Test Set 159 975 - - - - - -
HPRD 85 1049 59 26 949 100 0.6941 0.3711
MULTINET 74 1060 55 19 956 104 0.7432 0.3459
IREF 30 1104 28 2 973 131 0.9333 0.1761
CPDB 173 961 89 84 891 70 0.5145 0.5597
PCNET 337 797 123 214 761 36 0.3650 0.7736
STRING 132 1002 86 46 929 73 0.6515 0.5409
Predicted UNION 119 1015 68 51 924 91 0.5714 0.4277
Ensemble-Majority 110 1024 80 30 945 79 0.7273 0.5031
Ensemble-Average 92 1042 73 19 956 86 0.7935 0.4591

Finally, we also plot the precision-recall curves (Figure 6.11) for all proposed

GCN models except the Ensemble-Majority one. This model was not included in the

analysis because it does not provide predicted class probabilities needed to analyze the

curve. This analysis corroborates the fact that the Ensemble-Average GCN model tends to

perform better than the other models in this classification task, as it presented the highest

AUC-PR score (AUC-PR = 0.677).

6.2.5 Analysis of GCN-based predictions for unlabelled nodes

The main goal of our work is to develop and evaluate a GCN-based model for the

prediction of CDGs. However, we are also interested in identifying potential driver genes

among the unlabeled genes of the PPI networks. This could be interesting since it would

enable pointing out candidate driver genes for further experimental investigation. In this

section, we conduct and discuss this analysis.

The GCN models were applied for the classification of the unlabeled nodes of their

underlying PPI network (or the multiple networks, in case of the ensemble approaches).

As an example, Figure 6.12 displays a scatterplot for the predicted probabilities of all

nodes in the STRING PPI network. Red dots represent true driver genes, blue dots repre-

sent true passenger genes, and gray dots represent unlabeled genes. Using a probability

threshold of 0.5 represented by the green dashed line, several of the unlabeled genes are



127

Figure 6.11 – Precision-Recall curves for GCN models predictions for the test set.
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classified as cancer driver genes by our GCN model based on the STRING PPI network.

The same visualization is provided for the other PPI networks in the Appendix C, Figure

C.7 and Figure C.8.

Figure 6.12 – Predicted probabilities for all genes in the STRING PPI network using the trained
GCN model.

By examining the prediction for the complete set of nodes comprised by a PPI net-
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work, we can assess the behavior of unlabeled genes that received the same predictions

in different models. Table 6.7 presents in the first column a subset of 10 genes that were

unanimously predicted as cancer driver genes by the six GCN models trained in the PPI

networks collected from the literature. The complete list of the 33 candidate cancer driver

genes predicted by the six individual GCN-based models is provided in the Appendix C

(Table C.4); however, we choose to show in the Table the 10 genes with the highest pre-

dicted probabilities for the driver class across individual models. In addition, 1477 genes

were unanimously predicted as passengers by the six individual models, from which we

select a sample of 33 to present in Table C.4, also prioritizing those with higher predicted

probabilities.

Table 6.7 – Top ten candidate driver genes with the highest predicted probabilities according to
some selected approaches.

Predicted by models
for the six PPI networks

Predicted by model
for the UNION network

Predicted by the
Ensemble-Average model

HDAC2 ALB GRB2
SP1 APP HDAC2

PTK2 ELAVL1 HDAC3
HDAC3 ETS1 KAT2B
UBE2I FOS NR3C1
NR3C1 GAPDH PRKCA
CDK1 NFKB1 PTK2
KAT2B SP1 RELA
NCK1 TBP SHC1

PRKCA TCF4 SP1

Table 6.7 also includes the top ten genes according to the probabilities for the

driver class predicted by the UNION-based GCN model and the Ensemble-Average GCN

model. Six genes are present in both the unanimous predictions among individual models

(first column) and in top 10 predictions for the Ensemble-Average model (third column).

Only one gene, SP1 (Sp1 Transcription Factor), is predicted as candidate in all three cases

analyzed in the table. Further investigation of these genes may elucidate new drivers of

tumorigenesis.

Another analysis we carried out was to investigate false positives indicated with

high probabilities as CDG by the proposed models. We include similarobservations as

in Table 6.7, but now considering false positive genes instead of candidates genes (Ta-

ble 6.8). The first column represents genes that are originally labeled as negative genes

and that were predicted as positive by five or more different networks, considering the

highest probability in all networks. Only three genes were unanimously predicted as false
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positives for this case YWHAZ, SPTBN1 and H2BC21. The second and third column

represent the original negative genes predicted as CDGs with the highest probability con-

sidering the UNION network model and the Ensemble-Average method, respectively.

Table 6.8 – Top ten false positives driver genes with the highest predicted probabilities according
to some selected approaches.

False positive predicted by
separated models of PPI networks

False positives predicted by
model for the UNION network

False positives predicted by
the Ensemble-Average model

SUMO2 MYH14 YWHAZ
H2BC21 VCAM1 YWHAG
SUMO3 PI3 SFN
YWHAQ TF YWHAH
SPTBN1 UTRN SRF
YWHAG MAFF IRAK1
PTPRF SST MBP

SRF YWHAZ PIN1
KHDRBS1 SMARCA5 SMARCA5
YWHAZ MBP PPFIA1

Observing the high-confidence false positives predictions of our models, we may

extract insights about genes that have strong indication of involvement with cancer, per-

haps as a CDG, but that were not experimentally verified as drivers of carcinogenesis.

This is the case for gene YWHAZ, which was unanimously predicted as a driver by all

analyzed networks, as well as by the UNION network and the Ensemble-Average model.

Interestingly, prior works have discussed that YWHAZ is frequently up-regulated in mul-

tiple types of cancers and may act as an oncogene by promoting malignant properties of

cancer cells (GAN; YE; HE, 2020). Thus, further investigation of false positives associ-

ated with high CDG probability is interesting to review original annotations and expand

the current knowledge about CDGs.

6.3 Summary

With the best GNN algorithm selected in the previous chapter, in this chapter we

seek to optimize the prediction results of the GCN model, we perform a search for better

combinations of hyperparameters in each of the selected networks, to meet the different

particularities of each one of them.

With this, we identified a set of genes common to all networks that could be used

as test data. We then apply a new training round to each of the networks, with the optimal

parameters found and with a common test set, from this we can analyze the prediction

tendency of each of the networks separately by looking at this fixed list that is evaluated
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in the same way for all networks.

We implemented a majority voting system and utilized the average prediction

scores of the networks to identify genes that were highly likely to be classified as driver

genes. In addition, we devised a new network architecture by combining the nodes and

edges of all six networks and removing duplicate gene links. This new network was also

subjected to prediction analysis using the same ensemble, but was found to be less effec-

tive in terms of metrics than the initial ensemble network analysis.

Despite this, we successfully identified a list of candidate genes that were not

previously classified as drivers or passengers but were classified as drivers in different

contexts. We also identified a list of 33 candidate genes that were unanimously predicted

by all selected networks to be cancer driver genes.
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7 CONCLUSION AND FUTURE WORK

Identifying cancer driver genes (CDGs) accurately remains a critical challenge in

cancer research. These genes play a crucial role in cancer development and progression.

Despite extensive work in the field, predicting CDGs remains complex due to the het-

erogeneity of underlying biological mechanisms. In recent years, the use of graph-based

learning methods, particularly Graph Neural Networks (GNNs), has shown great poten-

tial to improve the accuracy of CDG prediction. Schulte-Sasse et al. (2021), for example,

produced an approach capable of integrating pan-cancer data into a GCN-based model

to identify new drivers of cancer. Our study expanded on this approach by evaluating

and comparing different methodological strategies to predict CDGs using three different

GNN algorithms. We focused on adding useful information to describe genes and deal-

ing with class imbalance. Centralities added relevant information to node features vector,

increasing performance in graph-based learning methods as well as for traditional ML al-

gorithms. We also observed that graph-based learning algorithms generally outperformed

other approaches in the prediction task.

Among the applied GNNs, GCN demonstrated the most promising results, show-

ing consistent and robust performance in all evaluated scenarios. We carried out an ex-

tensive search for hyperparameter optimization to optimize prediction results in each of

the six PPI networks selected for the study. Moreover, we successfully implemented two

ensemble learning strategies, a majority voting system, and a system using the average

predicted clas probabilities among models networks. The overall performance of these

models in predicting test set genes showed a clear impact of the two ensemble approaches

in reducing the number of false positives. We compared these results with a compre-

hesinve PPI network defined in this work, which combines the nodes and edges of all

six selected PPI networks and removes duplicate gene links. The ensemble models out-

performed the other approaches used for prediction, surpassing both the individual PPI

networks and the unified PPI network. Our best approach, represented by the Ensemble-

Average GCN-based model, reached an AUC-PR score of 0.67 in an independent test set

of drivers and passenger genes. Although this result is promising, our model still failed

to improve over the performance of previously proposed approaches (SCHULTE-SASSE

et al., 2021).

Further research in this area could lead to a better understanding of the molec-

ular mechanisms underlying cancer and pave the way for more precise models that, in
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turn, will help in the development of more effective diagnostic and therapeutic strategies.

Areas for growth and development include new approaches for handling class imbalance

in graph-based learning, such as GraphSMOTE (ZHAO; ZHANG; WANG, 2021), and

multi-task learning on GNNs to be able to simultaneously train models capable of predict-

ing cancer-specific and pan-cancer driver genes. Understanding driver mutation profiles

of different cancer types is crucial, as driver mutations can differ between cancer types,

and individual tumors have their own mutation profiles. Finally, improving the strategies

to create labeled data for positive and negative examples of CDGs can have a great impact

on the overall performance of prediction model.
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Table A.1 – Summary of the scope and extent to which ML-based methods are covered by the
main reviews related to the prediction of cancer driver genes.

Reference Brief description of review’s scope
Zhang et al. (2014) Biology-based and ML-based approaches to identify driver mutations. Methods are

categorized into three strategies: analysis of difference in mutation frequencies between driver
and passenger mutations, prediction of functional impacts of mutation, and prediction provided
by ML models. Only four ML-based methods are included, two of which were developed for
the general problem of distinguishing disease-related mutations from common polymorphisms.

Chen, Sun and Shen
(2015)

Tools to decipher oncogenic drivers, categorized according to the specific mutational level
tackled, from nucleotide- to network-level. For nucleotide-level approaches, six ML methods
are discussed, but only four were specifically designed for classifying somatic mutations as
driver or passenger ones.

Cheng, Zhao and
Zhao (2016)

Computational approaches to identify driver mutations and significantly mutated genes from
next-generation sequencing data, categorized according to the types of features used: mutation
frequency, functional impact, structural genomics, network or pathway, and data integration.
Authors mention that ML underlie most tools reviewed, but do not provide methodological
details regarding ML algorithms used and model training procedures adopted.

Zhang and Zhang
(2016)

Brief summary of nine methods to predict driver genes, including two ML-based methods, and
a more extensive review regarding methods for identifying driver pathways or modules in
cancer. For the second part, the methods reviewed do not use ML algorithms but rather
probability models or network-based approaches.

Dimitrakopoulos
and Beerenwinkel
(2017)

Three different classes of approaches for prediction of cancer genes and pathways: methods
using known biological pathways, network-based methods, and methods detecting pathways
de novo. Although ML algorithms may be eventually used in the methods reviewed, they were
not the focus of the discussion carried out by the authors.

Chen et al. (2020) Comprehensive assessment of computational methods for prediction of cancer driver
mutations, in which 33 methods were analyzed in terms of predictive performance using five
consistent and complementary benchmark datasets. Authors include some ML-based methods
in their analyses, briefly describing the type of features used, but their emphasis is in
comparing methods’ performance rather than reviewing methodological details of their
implementation.

Pham et al. (2021) Computational methods for prediction of cancer drivers categorized according to their
prediction target: single driver identification, cancer driver module identification, and
personalized cancer driver identification. Twenty-four methods are discussed and eight were
selected for a comparative study of predictive performance. The ML algorithms adopted by
some of the reviewed methods are only cited, without further discussion about features used
and other methodological details.

Rogers, Gaunt and
Campbell (2020)

Seventeen generic ML-based tools to predict the pathogenic impact of human genome variants
and eight tools specialized in cancer driver mutations. Most reviewed approaches are based on
supervised learning techniques and data integration strategies. Although authors briefly
mention the ML algorithms employed in these tools, the review is limited in the number of
papers covered and in providing a detailed description about methodological aspects of tools’
development, such as biological features used and how they are jointly explored with distinct
ML approaches. Also, a substantial part of the review is dedicated to analyze the incidence of
predicted high-confidence driver mutations obtained with one specific ML-based predictor for
well-known cancer genes across distinct cancer types.
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APPENDIX B — ADDITIONAL RESULTS FOR THE COMPARATIVE

EVALUATION OF ALGORITHMS AND DATA FOR CDG PREDICTION

This appendix provides additional results for the experiments reported in Chap-

ter 5, which aim to conduct an experimental comparison of learning algorithms and data-

centric decisions for the prediction of CDGs.
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Figure B.1 – Training and validation for the MULTINET network in (a) GAT, (b) GCN and (c)
GraphSAGE using 300 epochs and AUC-PR and AUC-ROC as performance metrics

(a) GAT

(b) GCN

(c) GraphSAGE
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Figure B.2 – Training and validation for the IREF network in (a) GAT, (b) GCN and (c)
GraphSAGE using 300 epochs and AUC-PR and AUC-ROC as performance metrics

(a) GAT

(b) GCN

(c) GraphSAGE
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Figure B.3 – Loss curve for the GAT (left column), GCN (middle column), and GraphSAGE
(right column) models in (a) HPRD, (b) MULTINET and (c) IREF PPI networks.

(a) HPRD

(b) MULTINET

(c) IREF
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Table B.4 – Experiments for three traditional algorithms in HPRD network (mean used for the
metrics presented, from test data)

SVM
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.8701 0.7399 0.1172 0.5877 0.3272
CNA 0.8600 0.2000 0.0025 0.5297 0.1950
DNA Methylation 0.8600 0.0000 0.0000 0.4974 0.1435
Gene Expression 0.8600 0.0000 0.0000 0.4777 0.1368
Multi-Omics 0.8603 0.2000 0.0025 0.6346 0.2595
Multi-Omics and Centrality 0.8667 0.8512 0.0618 0.7608 0.4477

Random Forest
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.8699 0.6835 0.1386 0.7031 0.3664
CNA 0.8538 0.3411 0.0466 0.5303 0.1702
DNA Methylation 0.8591 0.0000 0.0000 0.5208 0.1519
Gene Expression 0.8596 0.0000 0.0000 0.5362 0.1559
Multi-Omics 0.8674 0.7072 0.0945 0.7073 0.3566
Multi-Omics and Centrality 0.8840 0.7441 0.2672 0.8054 0.5231

Gradient Boosting Tree
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.8681 0.6217 0.1525 0.6978 0.3753
CNA 0.8614 0.6783 0.0214 0.5249 0.1846
DNA Methylation 0.8582 0.0500 0.0012 0.5225 0.1487
Gene Expression 0.8579 0.1066 0.0025 0.5386 0.1564
Multi-Omics 0.8671 0.6178 0.1398 0.7015 0.3565
Multi-Omics and Centrality 0.8861 0.7079 0.3240 0.8174 0.5437
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Table B.5 – Experiments for three traditional algorithms in MULTINET network (mean used for
the metrics presented, from test data)

SVM
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9129 0.7395 0.1025 0.5667 0.2819
CNA 0.9069 0.0000 0.0000 0.5072 0.1247
DNA Methylation 0.9072 0.0000 0.0000 0.5027 0.0951
Gene Expression 0.9072 0.0000 0.0000 0.4793 0.0997
Multi-Omics 0.9073 0.2000 0.0011 0.6506 0.2025
Multi-Omics and Centrality 0.9075 0.4000 0.0034 0.7523 0.3126

Random Forest
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9121 0.6589 0.1152 0.7120 0.3066
CNA 0.9006 0.1393 0.0126 0.5357 0.1136
DNA Methylation 0.9070 0.0000 0.0000 0.5466 0.1122
Gene Expression 0.9070 0.0000 0.0000 0.5630 0.1071
Multi-Omics 0.9111 0.6618 0.0875 0.7238 0.2976
Multi-Omics and Centrality 0.9193 0.7331 0.2061 0.8193 0.4559

Gradient Boosting Tree
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9114 0.6098 0.1325 0.7228 0.3212
CNA 0.9053 0.4438 0.0115 0.5469 0.1169
DNA Methylation 0.9062 0.1666 0.0023 0.5513 0.1089
Gene Expression 0.9065 0.0000 0.0000 0.5803 0.1151
Multi-Omics 0.9092 0.5534 0.1210 0.7294 0.3066
Multi-Omics and Centrality 0.9166 0.6299 0.2442 0.8295 0.4505
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Table B.6 – Experiments for three traditional algorithms in IREF network (mean used for the
metrics presented, from test data)

SVM
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9148 0.7288 0.0938 0.5714 0.2598
CNA 0.9098 0.0000 0.0000 0.5131 0.1204
DNA Methylation 0.9100 0.0000 0.0000 0.5161 0.0969
Gene Expression 0.9100 0.0000 0.0000 0.4833 0.0906
Multi-Omics 0.9101 0.2000 0.0011 0.6433 0.1958
Multi-Omics and Centrality 0.9101 0.2000 0.0011 0.7060 0.2368

Random Forest
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9139 0.6549 0.1064 0.7084 0.2929
CNA 0.9041 0.1731 0.0182 0.5714 0.1201
DNA Methylation 0.9100 0.0000 0.0000 0.5227 0.1023
Gene Expression 0.9098 0.0000 0.0000 0.5448 0.1016
Multi-Omics 0.9131 0.6950 0.0697 0.7160 0.2869
Multi-Omics and Centrality 0.9181 0.7262 0.1476 0.8006 0.4052

Gradient Boosting Tree
Accuracy Precision Recall AUC-ROC AUC-PR

Mutations 0.9127 0.5832 0.1155 0.7245 0.3087
CNA 0.9103 0.6833 0.0114 0.5705 0.1268
DNA Methylation 0.9090 0.1066 0.0022 0.5398 0.1044
Gene Expression 0.9087 0.0000 0.0000 0.5607 0.1077
Multi-Omics 0.9129 0.5907 0.1167 0.7285 0.3029
Multi-Omics and Centrality 0.9187 0.6421 0.2231 0.8233 0.4230
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Figure B.4 – Training and validation for the Neural Network algorithm in (a) HPRD, (b)
MULTINET and (c) IREF using 300 epochs and AUC-PR and AUC-ROC as performance metrics

(a) HPRD

(b) MULTINET

(c) IREF
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APPENDIX C — ADDITIONAL RESULTS FOR THE DEVELOPMENT OF

GCN-BASED MODELS FOR PREDICTING CDGS

This appendix provides additional results for the experiments reported in Chap-

ter 6, which aim to train predictive models based on the GCN algorithm for the identifi-

cation of CDGs.

Table C.1 – Occurrence of hyperparameters in the results according to different thresholds for the
HPRD network

AUC-PR >0.2 (556 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 49.6% 0.001 33.2% 0.25 14.0% 0 23.7% 64 30.7% 0.00001 14.0%
ELU 50.3% 0.01 33.2% 0.5 20.1% 0.5 23.9% 128 32.5% 0.0001 34.1%

0.1 33.4% 0.75 26.9% 1 24.8% 256 36.6% 0.001 51.7%
0.9 38.8% 2 27.5%

AUC-PR >0.4 (457 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 50.1% 0.001 33.4% 0.25 15.7% 0 23.6% 64 31.5% 0.00001 0.8%
ELU 49.8% 0.01 33.2% 0.5 20.3% 0.5 24.2% 128 32.8% 0.0001 36.1%

0.1 33.2% 0.75 31.5% 1 25.1% 256 35.6% 0.001 63.0%
0.9 32.3% 2 26.9%

AUC-PR >0.53 (97 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 84.5% 0.001 24.7% 0.25 36.0% 0 22.6% 64 39.1% 0.00001 0.0%
ELU 15.4% 0.01 27.8% 0.5 22.6% 0.5 27.8% 128 30.9% 0.0001 9.2%

0.1 47.4% 0.75 23.7% 1 27.8% 256 29.8% 0.001 90.7%
0.9 17.5% 2 21.6%
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Table C.2 – Occurrence of hyperparameters in the results according to different thresholds for the
MULTINET network

AUC-PR >0.2 (506 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 49.2% 0.001 33.4% 0.25 14.2% 0 23.7% 64 31.4% 0.00001 14.2%
ELU 50.7% 0.01 33.4% 0.5 16.4% 0.5 24.3% 128 33.5% 0.0001 28.8%

0.1 33.2% 0.75 26.6% 1 25.4% 256 34.9% 0.001 56.9%
0.9 42.6% 2 26.4%

AUC-PR >0.4 (162 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 89.5% 0.001 33.9% 0.25 22.8% 0 20.3% 64 27.1% 0.00001 0.0%
ELU 10.4% 0.01 33.3% 0.5 26.5% 0.5 23.4% 128 30.8% 0.0001 3.1%

0.1 32.7% 0.75 25.3% 1 28.3% 256 41.9% 0.001 96.9%
0.9 25.3% 2 27.7%

AUC-PR >0.46 (89 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 100% 0.001 35.9% 0.25 17.9% 0 17.9% 64 12.3% 0.00001 0.0%
ELU 0.0% 0.01 34.8% 0.5 28.0% 0.5 22.4% 128 40.4% 0.0001 0.0%

0.1 29.2% 0.75 34.8% 1 26.9% 256 47.1% 0.001 100%
0.9 19.1% 2 32.5%

Table C.3 – Occurrence of hyperparameters in the results according to different thresholds for the
IREF network

AUC-PR >0.2 (497 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 49.1% 0.001 33.4% 0.25 14.3% 0 23.5% 64 31.0% 0.00001 14.5%
ELU 50.9% 0.01 33.2% 0.5 16.3% 0.5 24.3% 128 33.4% 0.0001 27.8%

0.1 33.4% 0.75 26.0% 1 25.6% 256 35.6% 0.001 57.7%
0.9 43.5% 2 26.6%

AUC-PR >0.4 (279 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 63.4% 0.001 34.1% 0.25 17.9% 0 21.1% 64 23.3% 0.00001 0.0%
ELU 36.6% 0.01 31.9% 0.5 24.0% 0.5 24.4% 128 35.5% 0.0001 12.9%

0.1 34.1% 0.75 29.0% 1 25.4% 256 41.2% 0.001 87.1%
0.9 29.0% 2 29.0%

AUC-PR >0.474 (92 parameter combinations)
Activation Dropout Loss (alpha) Loss (gamma) Layer sizes Learning rate

ReLU 100% 0.001 35.8% 0.25 21.7% 0 21.7% 64 21.8% 0.00001 0.0%
ELU 0.0% 0.01 32.6% 0.5 28.2% 0.5 27.1% 128 39.1% 0.0001 0.0%

0.1 31.5% 0.75 29.3% 1 23.9% 256 39.1% 0.001 100%
0.9 20.6% 2 27.1%
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Figure C.1 – Performance analysis of all hyperparameter combinations for the (a) MULTINET
and (b) IREF networks.
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Figure C.2 – Performance analysis of all hyperparameter combinations for the (a) CPDB and (b)
PCNET networks.
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Figure C.3 – Training and validation performance for (a) HPRD, (b) IREF, and (c) CPDB.
AUC-PR and AUC-ROC values are shown in the left and righ column, respectively

(a) HPRD

(b) IREF

(c) CPDB
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Figure C.4 – Loss curves for the six PPI networks.
(a) HPRD
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Figure C.5 – Prediction of GCN models trained with (a) HPRD, (b) MULTINET, and (c) IREF
networks in the test set.
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Figure C.6 – Prediction of GCN models trained with (a) CPDB and (b) PCNET networks in the
test set.
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Figure C.7 – Cancer driver genes prediction of (a) HPRD, (b) MULTINET and (c) IREF networks
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Figure C.8 – Cancer driver genes prediction of (a) CPDB and (b) PCNET networks
(a) CPDB
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Table C.4 – List of candidate genes unanimously predicted as driver or passenger gene
Candidates predicted

unanimously as driver gene
Candidates predicted

unanimously as passenger gene
XRCC6 DISP3

SP1 DLST
TNFRSF1A SLC22A5

KAT2B CASKIN1
HMGB1 SRSF9

TTN NPHP1
GRB2 DHDDS
VIM APOBEC2

PTK2B TMEM43
XRCC5 CDHR2
CHUK YY1AP1
GHR LHX4
SHC1 CALCR

PRKCA C7
HDAC3 RHO
UBE2I PEX19
KAT2A CXADR
ACTB GSTM4
GATA4 RBM7
CDK2 CCN3
ESR2 TPD52
FOS GCKR

RUNX2 MPZ
PIAS1 PCBP2
RELA GSTM2
JUP ZNF41

NCK1 PLRG1
FN1 IDH3A

PTK2 CPNE1
NR3C1 APOL1
HDAC2 BMF

CTNNA1 ACADM
CDK1 MGST2
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APPENDIX D — RESUMO EXPANDIDO

Identificar os genes e mutações específicas responsáveis pelo crescimento de tu-

mores é um passo crítico para avançar nossa compreensão do câncer e explorar novos

caminhos para diagnóstico e tratamento. Apesar da abundância de dados genômicos

disponíveis, identificar com precisão genes causadores de câncer (CDG), entre milhões de

possíveis mutações somáticas, apresenta um desafio significativo. Abordagens computa-

cionais tornaram-se cada vez mais úteis na identificação de padrões genômicos ligados a

fatores causadores de câncer e na construção de modelos para prever eventos causadores.

O aprendizado profundo, um subcampo especializado do aprendizado de máquina, provou

ser uma ferramenta valiosa em bioinformática, dada sua capacidade de criar e treinar ar-

quiteturas semelhantes à estruturas biológicas. Coletivamente, essas duas subáreas ofere-

cem oportunidades excepcionais para preencher as lacunas remanescentes no campo.

Nosso estudo começou com uma revisão abrangente dos métodos computacionais

que empregam técnicas de aprendizado de máquina para detectar mutações e genes cau-

sadores de câncer. Esta revisão visa fornecer uma perspectiva integrada da vasta paisagem

de dados e algorítmica que envolve esse desafio científico. Examinamos como as soluções

anteriores exploraram as interações entre diferentes tipos de dados e algoritmos de apren-

dizado de máquina e também descrevemos as restrições analíticas atuais. Nosso objetivo

é mapear os avanços significativos e detalhes metodológicos de pesquisas anteriores nesta

área e identificar direções promissoras para trabalhos futuros.

Com base em nossa revisão de pesquisas anteriores sobre a previsão de CDGs,

identificamos um desafio na área de aprendizado de algoritmos baseados em grafos, como

as graph neural networks (GNN). Portanto, o objetivo principal deste estudo é investigar

o potencial de GNNs na previsão de genes causadores de câncer e construir um modelo

que possa efetivamente utilizar informações de redes de interação proteína-proteína (PPI)

e dados multi-ômicos para identificar padrões relacionados ao CDGs. Para criar um mod-

elo preditivo baseado em grafo a fim de prever CDGs, realizamos uma análise completa

de vários aspectos importantes relacionados ao desenvolvimento do modelo. Isso incluiu

a coleta de seis redes PPI distintas e dados multi-ômicos, abrangendo 16 tipos diferentes

de câncer e quatro níveis de dados ômicos, que foram utilizados como features de nó.

Também avaliamos o desempenho de diferentes algoritmos GNNs e estratégias para re-

solver problemas de desequilíbrio de classe. Além disso, propomos técnicas baseadas em

ensemble para aumentar a capacidade preditiva de modelos individuais.
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Conduzimos uma série de experimentos para obter informações sobre o desem-

penho geral dos algoritmos GNN na previsão de genes condutores. Além de comparar

três modelos baseados em grafos para três redes PPI distintas, também comparamos difer-

entes estratégias para definir vetores de features de instância e mitigar o desequilíbrio de

classes. Além disso, comparamos os algoritmos GNN com quatro algoritmos tradicionais

de aprendizado de máquina.

Nossos resultados indicaram que entre as GNNs testadas, o algoritmo graph con-

volutional network (GCN) demonstrou os resultados mais promissores, exibindo desem-

penho consistente e robusto em todos os cenários avaliados. Nossas descobertas também

indicam que os algoritmos tradicionais de aprendizado de máquina são altamente sen-

síveis ao tipo de dados ômicos usados e tendem a ter um desempenho melhor ao incor-

porar informações de mutação. Além disso, observamos que medidas de centralidade de

nó calculadas a partir de redes PPI podem ser altamente informativas e vantajosas para a

tarefa de previsão, mesmo para algoritmos que não são baseados em grafos. Com base

nessas descobertas, selecionamos o algoritmo GCN para um estudo mais abrangente e

como o foco principal de nosso estudo para prever CDGs, dada sua eficácia em diferentes

cenários.

Por fim, conduzimos uma investigação completa para determinar as combinações

ideais de hiperparâmetros para todas as seis redes selecionadas. Em seguida, relatamos o

desempenho do treinamento usando um conjunto de teste compartilhado em todas as re-

des, permitindo-nos realizar diferentes estratégias de comparação. Primeiramente, com-

paramos uma rede que agrega todas as redes coletadas com seus respectivos desempenhos

individuais. E posteriormente utilizamos duas estratégias de aprendizado ensemble que

consiste em agregação dos rótulos preditos, por votação majoritária, e por combinação

de probabilidades de predição, através da média. A rede unificada não superou as redes

individuais, e as estratégias de aprendizado ensemble se mostraram eficazes ao superar o

desempenho de todas as redes coletadas.

Nas predições finais, apresentamos uma lista de genes não rotulados que foram

previstos como potenciais CDGs, que foram unanimemente preditos por todas as seis re-

des, a rede unificada e a estratégia de aprendizagem ensemble. Embora inúmeros desafios

permaneçam, nossos resultados promissores sugerem direções valiosas para incorporar

centralidades de rede como informações cruciais e a implementação de aprendizado en-

semble em GNNs.
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