

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Substrate reduction therapy for mucopolysaccharidosis using
	the CRISPRi system
Autor	LAURA PILONETO LIMA HOEFEL
Orientador	GUILHERME BALDO

Introduction: Substrate Reduction Therapy (SRT) is a treatment option to reduce the production of substrates in certain metabolic disorders. This work suggests that gene editing-mediated inhibition (CRISPRi) of genes involved in heparan, and dermatan sulfate (HS and DS) synthesis could be used as SRT in Mucopolysaccharidosis I and II. To negatively regulate the biosynthesis of DS and HS, critical genes involved in this process must be targeted. : CHST15, a sulfotransferase, and FAM20B, a phosphokinase **Objective:** To develop an alternative method to treat MPS type I and II through SRT by CRISPRi to reduce glycosaminoglycans (GAGs) biosynthesis. Methodology: We designed sgRNAs for the promoter regions of these genes using CHOPCHOP program version 3 based on the reference genome (hg38/GRCh38). Minimum efficiency of 40%, GC content between 40 and 80%, and the lowest possible number of mismatches up to 3 were considered. Besides, the sgRNAs for the 1st exon were designed based on the same gene strand for disturbing transcription elongation. Additional selection criteria were based on the repression of different gene transcripts. A total of 15 sgRNAs were found for CHST15 and 15 for FAM20B. For the CHST15 gene, at least one sgRNA without predicted off-targets was found either for the 1st exon or the promoter region. For the FAM20B gene, the best results in terms of off-targets were sgRNAs without predicted off-targets in coding regions, both for the 1st exon and the promoter region. Conclusion: The repression of FAM20B and CHST15 is crucial to influencing the GAGs biosynthesis. Thus, it reduces the amount of glycosaminoglycans accumulation into lysosomes, which triggers the MPSs patient's multi-systemic symptoms. These results suggest a new therapeutic option to treat MPS diseases using CRISPRi, that must be corroborated by experimental validation.