

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Aplicação de redes neurais artificiais para localização de fonte
	radiativa
Autor	GUILHERME ROSA MELO
Orientador	PEDRO HENRIQUE DE ALMEIDA KONZEN

Há um crescente interesse em resolução de problemas inversos de transporte de partículas, tanto de uma perspectiva científica quanto tecnológica. Um caso particular é o problema de localização de fonte radiativa, cujo propósito principal é estimar a posição da fonte com base na intensidade radioativa do meio. E este é o objetivo geral deste trabalho: resolver o problema inverso para localização de fonte utilizando técnicas de Redes Neurais Artificiais (RNA's). O método aplicado para encontrar esta solução consiste em, primeiramente, resolver o problema direto, ou seja: estimar os valores do fluxo de radiação em diferentes posições da fonte para posterior construção dos conjuntos de treinamento e validação. Tal solução foi obtida através do Método das Ordenadas Discretas e do Método das Características considerando-se um domínio cartesiano unidimensional em um meio isotrópico e condições de contorno do tipo vácuo. O conjunto de treinamento foi utilizado para calibrar uma Rede Neural Artifical do tipo Perceptron Multicamadas, tendo medições dos fluxos como valores de entrada e a localização da fonte como saída. A validação da rede foi feita utilizando-se de amostras randomicamente geradas. As computações foram feitas em linguagem computacional Python e com auxílio do pacote scikit-learn. Os resultados obtidos a partir deste método foram bastante satisfatórios como indica o coeficiente de determinação $R^2 = 0.9993$. Tais resultados demonstram não somente a eficiência do método aplicado como também seu potencial para resolver problemas inversos de transporte mais complexos.