

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Simulação de histerese magnéticas pelo método de
	minimização de energia
Autor	JULIA CAVALHEIRO MOREIRA
Orientador	SABRINA NICOLODI DE OLIVEIRA VIEGAS

Simulação de histereses magnéticas pelo método de minimização de energia Julia Cavalheiro Moreira

Universidade Federal do Rio Grande do Sul

Orientador: Sabrina Nicolodi

Objetivando analisar mecanismos do processo de magnetização, propriedades e parâmetros magnéticos de uma amostra, foi proposto o desenvolvimento de um modelo numérico para simular uma curva de magnetização de um sistema uniaxial não interagente. Este trabalho prosseguiu o desenvolvimento do programa computacional criado por Augusto Althoff com finalidade de encontrar a orientação magnética de equilíbrio em função do campo magnético externo aplicado, para um sistema magnético. Esta orientação minimiza o valor da função densidade de energia total do sistema $E(m(\phi,\theta),H)$. Para orientação particular do campo magnético externo encontra-se ângulos que definem a orientação da magnetização ϕ e θ que minimizem a energia. Como parâmetros da amostra, são definidos constante de anisotropia uniaxial, magnetização de saturação e fator desmagnetizante, normalmente compatível para filmes finos. O gráfico da curva de magnetização é obtido através dos ângulos de equilíbrio projetando o vetor magnetização de equilíbrio na direção do campo aplicado, para valores entre - H_{max} e + H_{max} .

Dois métodos de análise foram feitos, com código computacional e com software Origin. Através do código, as informações do arquivo R009D-Hys-a180.dat foram alocadas em colunas H (campo), Mx (componente x do vetor magnetização) e My (componente y) e separadas pelos respectivos ângulos. Para cada ângulo foi feito um gráfico da curva de magnetização, com os valores de campo e os valores das componentes x dos vetores de magnetização. Outra forma de análise foi a extração dos dados dos arquivos R054A-Hys-a180 e R054D-Hys-a180-02 com o Extrator de Histerese.rar desenvolvido por Leonardo Barcelos, ex-bolsista. Das informações foram plotadas curvas de magnetização pelo campo magnético externo, campo coercivo pelo ângulo do campo magnético externo e magnetização remanente pelo ângulo do campo magnético externo, com seus respectivos ângulos.