

Evento	Salão UFRGS 2022: SIC - XXXIV SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2022
Local	Campus Centro - UFRGS
Título	Síntese de nanopartículas híbridas para aplicação como
	aditivo retardante de chama em matrizes poliméricas
Autor	MARIANA PORN TAVARES
Orientador	RAQUEL SANTOS MAULER

Síntese de nanopartículas híbridas para aplicação como aditivo retardante de chama em matrizes poliméricas

O uso massivo de materiais poliméricos em nossa vida cotidiana é impulsionado por sua notável combinação de propriedades, baixo peso e facilidade de processamento. No entanto, os polímeros também são conhecidos por sua inflamabilidade relativamente alta; na maioria das vezes acompanhada pela produção de gases corrosivos ou tóxicos e fumaça durante a combustão. Consequentemente, melhorar o comportamento retardador de chama dos polímeros é um grande desafio para estender seu uso à maioria das aplicações. Hoje, os retardadores de chama são usados principalmente como sistemas que consistem em vários componentes. Em relação à estabilidade térmica as argilas são uma das nanopartículas mais interessantes, pois são termicamente estáveis, facilmente encontradas na natureza, não são tóxicas e não requerem destinação especial de resíduos. Existem dois processos pelos quais o retardamento de chama é alcançado usando nanoargilas, a formação de uma barreira, que reduz o transporte de material da fase polimérica para a fase de vapor e também reduz a capacidade de transferência de calor para o polímero subjacente, e captura de radicais paramagnéticos, captura radicais poliméricos em degradação para que eles não possam entrar na fase de vapor. Portanto, este trabalho tem como principal objetivo sintetizar nanopartículas híbridas orgânicas e inorgânicas e a sua aplicação das mesmas como aditivos em matrizes poliméricas para o desenvolvimento de nanocompósitos com propriedades retardantes de chama. Sendo assim, foi realizada a funcionalização da HDL para posterior precipitação da magnetita in-situ e utilização dessas nanocargas híbridas para obtenção de nanocompósitos com possível aplicação como retardantes de chama, utilizando EVA e PS como matrizes poliméricas. Em virtude da prevenção do COVID-19, algumas etapas de realização de analise foram atrasadas, mas que agora estão sendo retomadas.