
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

FABIO BENEVENUTI

Enhancements on Fault Injection for Xilinx
7 Series and Ultrascale+ SRAM-Based

FPGAs

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Microelectronics in the field of test of electronic
circuits and systems.

Advisor: Dr. Fernanda Gusmão de Lima
Kastensmidt

Porto Alegre
2022

CIP — Cataloging-in-Publication

Benevenuti, Fabio

Enhancements on Fault Injection for Xilinx 7 Series and Ul-
trascale+ SRAM-Based FPGAs / Fabio Benevenuti. – 2022.

234 f.: il.

Advisor: Fernanda Gusmão de Lima Kastensmidt.

Thesis (Doctoral) – Universidade Federal do Rio Grande do
Sul, Programa de Pós-Graduação em Microeletrônica, Porto Ale-
gre, Brazil, 2022.

1. SRAM-based FPGA. 2. Radiation. 3. Single-event effects.
4. Reliability. 5. Fault injection. I. Kastensmidt, Fernanda Gus-
mão de Lima (advisor). II. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Júlio Otávio Jardim Barcellos
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PGMICRO: Prof. Tiago Roberto Balen
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro

ACKNOWLEDGMENT

The research for this thesis was supported, in part, by scholarship granted by the

Brazilian funding agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES).

The research for this thesis relied on sample preparation and decapsulation at the

Núcleo de Qualificação e Análise de Produtos Eletrônicos (NAPE) from Centro de Tec-

nologia da Informação Renato Archer (CTI), and at the Analytical Laboratory from the

Centro Nacional de Tecnologia Eletrônica Avançada S. A. (CEITEC), both entities under

the Brazilian Ministry of Science, Technology and Innovations (MCTI).

This thesis used data obtained from experiments performed at the Pelletron 8 MV

heavy ions accelerator from the Laboratório Aberto de Física Nuclear (LAFN) and at the

IEA-R1 research nuclear reactor from the Instituto de Pesquisas Energéticas e Nucleares

(IPEN), both facilities on the premises of the University of São Paulo (USP), Brazil, at

the fast neutrons generator facility from the Laboratório de Radiação Ionizante (LRI)

of the Instituto de Estudos Avançados (IEAv), a research unit under the Brazilian Air

Force (FAB), at the Thermal and Epi-thermal Neutron Irradiation Station (TENIS) from

Institut Laue-Langevin (ILL), France, and at the single- and two-photon absorption laser

fault injection facilities at the Institut D’Électronique et des Systèmes at Université de

Montpellier, France.

I am very grateful to the support of Fernanda Gusmão de Lima Kastensmidt, which

went beyond the obligations as my advisor, to the support and encouragement of Reinaldo

de Bernardi and Cristiano Krug, my immediate supervisors while working at CEITEC, to

Vitor Ângelo Paulino de Aguiar, for sharing the dataset from static tests experiments on

FPGA board under heavy ions, and to Augusto Gouvêa Weber, for the support during

the coordinated effort in the development and integration of the INPE-SMDH/UFSM-

UFRGS payload board for the NanosatC-BR2 mission.

Finally, I am very grateful to colleagues in Laboratory 230 who allowed the use of

their designs as test specimen for fault injection, mainly André Flores dos Santos and Juan

Suzano da Fonseca with benchmark designs based on high-level synthesis (HLS), Ádria

Barros de Oliveira and Luis Alberto Contreras Benites with softcore microprocessors,

Marcio Macedo Gonçalves with softcore graphics processing unit (GPU), and Fabiano

Libano and Israel da Costa Lopes with neural network experimental designs.

ABSTRACT

Commercial grade SRAM-based FPGAs are susceptible to radiation effects that can affect

safety- and mission-critical cyber-physical systems. Emulated fault injection is a test strat-

egy based on provoking failures in a controlled manner, which can be applied in assessing

the reliability and fault tolerance of such systems. The use of fault injection inside the en-

gineering process of complex systems, such as systems on chip and applications of neural

networks, with a higher problem dimensionality and combining several fault mitigation

techniques, requires a higher consistency between the results of fault injection and the be-

havior under radiation to steer the engineering process in right direction. Fault injection

must also be fast enough to not hinder the engineering productivity. The main claims of

this thesis are that a higher consistency is achieved, when related to accelerated radiation

experiments, by the use of synchronous and asynchronous cumulative-randomized fault

injection emulating single and multiple bits upsets and that the sampling by cumulative-

randomized fault injection improves the fault injection campaign productivity to be used

inside design space exploration engineering processes. The originality and main contri-

butions of this thesis resides on injecting faults clustered together on the Xilinx 7 Series

FPGA memory emulating patterns generated by a single radiation particle, injecting mul-

tiple faults cumulatively over time to allow better comparison with data from radiation

experiments, injecting faults in the presence of Xilinx 7 Series memory scrubber, inject-

ing faults on user memory holding persistent data, and, finally, porting the fault injection

to the newer family of Xilinx UltraScale+ devices. The consistency with radiation exper-

iments and fault injection campaign speedup are evaluated in comparison with the legacy

methodology that consisted on exhaustive and synchronous fault injection emulating sin-

gle bit upsets only in the persistent configuration memory of the FPGA. Dynamic tests

of study-case designs are used for comparison between fault injection and radiation. The

methodology adopted on this thesis consists in bibliographic review, development of the

study-case designs for comparative experiments, laboratory experiments for characteriza-

tion of the target devices and the study-case designs, enhancement of the fault injection

tool and development of fault injection campaign scripts realizing the proposed method-

ologies.

Keywords: SRAM-based FPGA. Radiation. Single-event effects. Reliability. Fault in-

jection.

Aperfeiçoamentos em Injeção de Falhas para FPGAs SRAM

Xilinx 7 Series e UltraScale+

RESUMO

Os arranjos de portas lógicas configuráveis em campo (FPGAs) de classe comercial ba-

seados em SRAM são suscetíveis aos afeitos de radiação que podem afetar sistemas de

segurança crítica e de missão crítica. A injeção de falhas baseada em emulação é uma

estratégia de testes que consiste em provocar falhas de forma controlada, a qual pode ser

aplicada na avaliação de confiabilidade e tolerância a falhas destes sistemas críticos. O uso

de injeção de falhas dentro do processo de engenharia de sistemas complexos, com uma

dimensionalidade de problema maior e combinando diversas técnicas de mitigação de fa-

lhas, requer maior fidelidade entre a injeção de falhas e o comportamento sob radiação

para que o processo seja conduzido na direção correta. A injeção de falhas também precisa

ser rápida para manter a produtividade do processo de engenharia. As principais hipóte-

ses de trabalho nesta tese são de que uma consistência maior é obtida, quando comparado

com experimentos de radiação, pelo uso de injeção de falhas acumulada-aleatória sin-

cronamente e assincronamente, e de que a amostragem pela injeção acumulada-aleatória

acelera e melhora a produtividade da campanha de injeção de falhas a ser utilizada na ex-

ploração do espaço de projeto. A originalidade e principais contribuições desta tese estão

na injeção de falhas agrupadas para emular o efeito de radiação, na injeção de falhas acu-

muladas, na injeção de falhas na presença do mecanismo de deteção e correção de erros

de memória, na injeção de falhas em memória do usuário, e no porte da injeção de falhas

para a família de FPGAs Xilinx UltraScale+. A consistência com radiação e a aceleração

da injeção de falhas são avaliadas em comparação com a metodologia de injeção síncrona

e exaustiva emulando falhas simples na memória de configuração do FPGA. Testes di-

nâmicos de estudos de caso são utilizados para a comparação entre injeção de falhas e

radiação. A metodologia adotada nesta tese consiste em revisão bibliográfica, desenvol-

vimento das aplicações de estudo de caso para experimentos comparativos, realização de

experimentos em laboratório para a caracterização dos dispositivos alvo e aplicações de

estudo de caso, aperfeiçoamentos na ferramenta de injeção de falhas e desenvolvimento

de scripts de automação da campanha que realizam as metodologias propostas.

Palavras-chave: FPGAs SRAM, Radiação, Efeitos de eventos singulares, Confiabili-

dade, Injeção de falhas.

LIST OF ABBREVIATIONS AND ACRONYMS

BRAM Block RAM; memory on FPGA dedicated to storage of user data.

CRAM Configuration RAM; memory layer on FPGA dedicated to storage of config-

uration for logic resources, signal fabric and, occasionally, a small amount

of user data.

DUT Design under test; refers to the entire FPGA design or selected modules im-

plemented in a designated region in the FPGA floorplan; not to be confused

with the DUT abbreviation present in the literature when referring to device

under test.

FPGA Field programmable logic device, historically were based on gate arrays

while modern devices have logical functions defined by look-up tables.

ICAP Internal Configuration Access Port, proprietary communication interface

available on Xilinx FPGA devices.

IES Institut d’Electronique et des Systèmes of the Université de Montpellier.

IEAv Instituto de Estudos Avançados (Institute for Advanced Studies) under the

Brazilian Air Force.

LAFN Laboratório Aberto de Física Nuclear (Nuclear Physics Open Laboratory)

at University of São Paulo (USP).

LET Linear energy transfer. Measure of energy deposited by distance unit along

the particle trajectory through material.

LUT Look-up table; FPGA configuration memory storing logic equation or truth

table.

MBU Multiple bits upset, a SEU affecting multiple memory bits, may refer to bits

in a same logical word.

MCU Multiple cells upset, a SEU affecting multiple memory bits, may refer to bits

in different logical words or be irrespective to the logical word organization.

MPSoC Multiprocessor system-on-chip; system-on-chip featuring multiple homo-

geneous or heterogeneous microprocessors, may include also programmable

logic.

RAR Reset after reconfiguration; attribute of a physical block in placement con-

straint file that causes the configuration of the global reset mask in Xilinx 7

Series FPGAs.

SAFIIRA Sistema de Feixes Iônicos para IRradiações e Aplicações (ion beam system

for irradiation and applications), test facilty at the LAFN 0◦ beamline.

SBU Single bit upset, a SEU affecting a single memory bit.

SCU Single cell upset, equivalent to SBU.

SET Single event transient, a short pulsed transient caused by a single particle

strike.

SEU Single event upset, a memory upset caused by a single particle strike.

SoC System-on-chip, refer to combinations of microprocessors, memory resources

and peripherals on a single chip, typically interconnected by an open or gen-

eral purpose communication subsystem such as a NoC or AMBA.

SRAM Static random-access memory.

TID Total ionizing dose; associated with effects of long-term exposition to radi-

ation.

UFRGS Universidade Federal do Rio Grande do Sul (Federal University of Rio

Grande do Sul).

LIST OF FIGURES

Figure 1.1 Report organization ...20

Figure 2.1 Schematic view of classical transistor ...23
Figure 2.2 A 6T-SRAM cell..23
Figure 2.3 Model of a Telstar satellite on display at the CNAM, Paris24
Figure 2.4 Radiation effects on semiconductor devices..25
Figure 2.5 Air shower: secondary cosmic rays in the atmosphere27
Figure 2.6 Schematic representation of frontside and backside laser irradiation30
Figure 2.7 Interactions of proton with matter ...32
Figure 2.8 Range and stopping power in silicon estimated by SRIM/TRIM..................33
Figure 2.9 Range and stopping power in silicon estimated by SRIM/TRIM..................35
Figure 2.10 Simulated neutron cross-section for planar and FinFET devices38
Figure 2.11 Experimental heavy-ions cross-section for planar and FinFET devices......38
Figure 2.12 Experimental neutron and alpha particles SEU rates for planar and Fin-

FET devices ..39

Figure 3.1 Simplified view of a logic block with 4 inputs and one memory element42
Figure 3.2 Simplified island interconnection architecture ..43
Figure 3.3 Simplified view of dedicated memory array..45
Figure 3.4 Simplified view of carry logic integrated with the logic block......................46
Figure 3.5 Simplified view of dedicated DSP block ...46
Figure 3.6 Simplified view of FPGA elements ...47
Figure 3.7 Recent Xilinx devices families ..48
Figure 3.8 FPGA circuitry and data planes...49
Figure 3.9 Xilinx FPGA bitstream instructions ..50
Figure 3.10 Example Xilinx bitstream to program FPGA ..51

Figure 4.1 Construction of the empirical reliability curve..56
Figure 4.2 SEUs on FPGA configuration memory and user data58
Figure 4.3 Relationship between configuration memory, essential and critical bits.......59
Figure 4.4 Heavy-ions cross section for Xilinx Kintex-7 ...60
Figure 4.5 Heavy ions cross section for Xilinx Zynq-7000 Z020...................................60
Figure 4.6 Neutron cross section for Xilinx Artix-7 ...61
Figure 4.7 Heavy ions cross section for Xilinx UltraScale+ MPSoC.............................61
Figure 4.8 Proton cross section for Xilinx UltraScale+ RFSoC62
Figure 4.9 Proton cross section for UltraScale+ MPSoC and Xilinx Zynq-7000 Z020 .62

Figure 6.1 Electronic microscopy of Xilinx 7 Series Kintex-7 device71
Figure 6.2 Xilinx Zynq-7000 ..72
Figure 6.3 Xilinx 7 Series ASMBL construction and stacked SSI assembly72
Figure 6.4 Different kinds of Xilinx 7 Series building blocks ..73
Figure 6.5 Fragment of the floorplan content in different Xilinx devices.......................74
Figure 6.6 Organization of the PL in different Xilinx devices..75
Figure 6.7 Rows, columns, frames and bits in Zynq-7000 XC7Z03076
Figure 6.8 Hardware access to FPGA configuration data ...78

Figure 7.1 Fragment of logic location report (.ll file) ...79
Figure 7.2 FPGA dies frontside and backside assembly...83
Figure 7.3 Code fragment initializing LUT6 primitive with 1’s84

Figure 7.4 Code fragment initializing RAMB36E1 primitive with 1’s...........................85
Figure 7.5 Code fragment instantiating static elements ..85
Figure 7.6 Placement constraints for static elements ..86
Figure 7.7 Placement of static elements in the floorplan ..86
Figure 7.8 Static test procedure with laser fault injection...86
Figure 7.9 Laser test facility..87
Figure 7.10 Sample laser artifacts...87
Figure 7.11 Laser scan regions of interest for static tests ...88
Figure 7.12 Laser trajectory time and frame number (trajectory x axis)89
Figure 7.13 Sample heavy ions microbeam artifacts ..90

Figure 8.1 SAFIIRA facility at the LAFN 0◦ beamline ..92
Figure 8.2 Estimated LET for LAFN beam ..93
Figure 8.3 Heavy ions cross section considering LET at surface94
Figure 8.4 Heavy ions cross section considering LET at active region95
Figure 8.5 Nuclides and energies at the SAFIIRA facility ...95
Figure 8.6 Most frequent heavy ions and alpha particles SEUs96
Figure 8.7 Heavy ions cross-section for most frequent SEU geometries97
Figure 8.8 IEAv 14.1MeV D-T neutron generator facility...98
Figure 8.9 Static cross-section in different irradiation angles...99
Figure 8.10 Most frequent 14.1MeV neutron SEUs ..99
Figure 8.11 Board shielding for thermal neutrons experiments....................................100
Figure 8.12 Most frequent thermal and epithermal neutron SEUs101
Figure 8.13 Frequency of SEU cluster sizes in configuration memory (CRAM).........102
Figure 8.14 Frequency of SEU cluster sizes in user data memory (BRAM)................102

Figure 9.1 Legacy fault injector setup...105
Figure 9.2 Modified setup for many-bits fault injection ...106
Figure 9.3 An example of fault artifact geometric model ...107
Figure 9.4 Example of diagnosis of the design under test ..107

Figure 10.1 Two fault injection test approaches ...110
Figure 10.2 Reliability curves for study case design ..112
Figure 10.3 Critical bits comparison...113
Figure 10.4 Comparative failure distribution by neural network layer and failure

criticality. ..114

Figure 11.1 Example of scrubber scan cycle ..115
Figure 11.2 Fault injector operating in synchronous mode...116
Figure 11.3 Fault injector operating in asynchronous mode...117
Figure 11.4 Observed reliability under fault injection and radiation119
Figure 11.5 Observed reliability under fault injection and radiation121

Figure 12.1 Examples of BRAM frame bits set during readback.................................123
Figure 12.2 Masking of BRAM bits set on frame readback for Xilinx 7 Series124
Figure 12.3 Floorplan of NanosatC-BR2 benchmark application126
Figure 12.4 Type of software failure under BRAM fault injection...............................128

Figure 13.1 Capture and restore operations ..130
Figure 13.2 Type of software failure under FF fault injection132

Figure 14.1 Fault injector modules ...136
Figure 14.2 Reference frame and examples of SBU and MBU shapes137

Figure 14.3 Reliability metrics for MXM HLS benchmark application.......................139
Figure 14.4 Reliability curves from radiation and fault injection.................................140
Figure 14.5 Ratio between dynamic cross section and fault injection error rate140

Figure 15.1 Masking of BRAM bits set on frame readback for Xilinx UltraScale+142
Figure 15.2 Benchmark application reliability curves ..145

Figure B.1 Expected trend in electronic sensors count per car193
Figure B.2 Fragment of a sequence from GTSRB..194
Figure B.3 Example of a scene from TT100K and extracted traffic signs....................194
Figure B.4 Example of a scene from BRTSD...195
Figure B.5 Examples from UC Merced Land Use Dataset in RGB198
Figure B.6 Examples from fMoW in RGB ...199
Figure B.7 Examples from SAT-6 dataset in RGB (top) and NIR (bottom)199
Figure B.8 Strategies for implementation of NN on FPGA..205
Figure B.9 Processing speed for a SAT-6 three layers CNN...206
Figure B.10 Required power for a SAT-6 three layers CNN...206
Figure B.11 Energy consumption by image for a SAT-6 three layers CNN207
Figure B.12 CNN accuracy improvement over generations ...208
Figure B.13 Structure of a CNN evolved for the GTSRB task209
Figure B.14 Structure of a CNN evolved for the SAT-6 task in floating-point211
Figure B.15 Structure of a CNN evolved for the SAT-6 task in fixed-point212

Figure C.1 NanosatC-BR CubeSats ..214
Figure C.2 NanosatC-BR1 Assembly ...214
Figure C.3 NanosatC-BR1 INPE-SMDH/UFSM-UFRGS payload board215
Figure C.4 NanosatC-BR2 Assembly ...215
Figure C.5 NanosatC-BR2 INPE-SMDH/UFSM-UFRGS payload board216
Figure C.6 NanosatC-BR2 INPE-SMDH/UFSM-UFRGS payload overview..............217
Figure C.7 Simplified C source code for benchmark application219

LIST OF TABLES

Table 6.1 Composition of the frame address in Xilinx 7 Series......................................77

Table 7.1 Fragment of floorplan mapped to Zynq-7000 XC7Z030 bitstream81
Table 7.2 Laser cartography static test runs ..87

Table 10.1 Design Area Assessment and Fault Injection Results113

Table 12.1 Results from fault injection on BRAM ...128

Table 13.1 Results from fault injection on flip-flop ..133

Table 14.1 Examples of SBU and MBU shapes encoding bitmaps137

Table 15.1 Differences in ICAP hardware interface ...142
Table 15.2 Resources utilization by the benchmark application...................................144

Table 16.1 Development maturity level of fault injector implementations...................148

Table B.1 Example of small satellite classes ..196
Table B.2 Best fitted individuals in the GTSRB floating-point CNN population209
Table B.3 Best fitted individuals in the SAT-6 floating-point CNN population............211
Table B.4 Best fitted individuals in the SAT-6 fixed-point CNN population212

Table C.1 Benchmark supervisory serial communication messages220

CONTENTS

1 INTRODUCTION...15
1.1 Applications of SRAM-based FPGA in critical systems..15
1.2 Motivation and innovative contributions...17
1.3 Thesis claim ..18
1.4 Thesis goals...18
1.5 Description and organization of this report ..19

I SRAM-BASED FPGAS AND RELIABILITY UNDER RADIATION...............21

2 RADIATION EFFECTS AND RADIATION-INDUCED MEMORY UPSETS...22
2.1 Semiconductor devices ...22
2.2 Radiation effects on electronic devices...23
2.3 Sources and characteristics of space radiation environment.....................................26
2.4 Interactions of radiation with matter...28
2.5 Single-event effects and memory upsets...28
2.6 Laser induced memory upsets...29
2.7 Protons, alpha particles and heavier ions induced memory upsets32
2.8 Thermal and fast neutrons induced memory upsets..34
2.9 Qualification and reliability metrics for radiation...36
2.10 Radiation-induced susceptibility to memory upsets in modern devices37

3 PROGRAMMABLE GATE ARRAYS..41
3.1 Combinational and sequential logic..42
3.2 Signal fabric ..43
3.3 Memory blocks ...44
3.4 Arithmetic ...45
3.5 Other features in modern FPGA devices ..47
3.6 Configuration memory and bitstream ...48

4 QUALIFICATION AND RELIABILITY IN SRAM-BASED FPGAS..................53
4.1 Qualification parameters ...53
4.2 Additional radiation and reliability metrics ..54
4.3 Single-event memory upsets in SRAM-based FPGAs ...58

5 TEST AND FAULT INJECTION METHODOLOGY..63
5.1 Fault injection as a reliability assessment tool..63
5.2 Emulation-based fault injection for SRAM-based FPGAs.......................................65
5.3 UFRGS fault injection tool for Xilinx FPGAs ...67

II CHARACTERIZATION OF THE XILINX 7 SERIES DEVICES70

6 DISCOVERING XILINX 7 SERIES SRAM-BASED FPGA71
6.1 Constructive structure of Xilinx 7 Series devices ..71
6.2 Logical organization of the device..73
6.3 Organization of the configuration and user data memory...75
6.4 Programming interfaces and access to configuration data..77

7 DETAILED DEVICE CARTOGRAPHY...79
7.1 Mapping floorplan to bitstream file...79

7.2 Laser cartography on Xilinx 7 Series FPGA ..82
7.3 Analysis of physical arrangement of configuration memory....................................88

8 STATIC TESTS AND MULTIPLE-BIT UPSETS INVENTORY..........................91
8.1 Static tests of Xilinx 7 Series under proton, alpha and heavy ions...........................91
8.2 Static tests of Xilinx 7 Series under fast neutrons ..96
8.3 Static tests of Xilinx 7 Series under thermal neutrons..100
8.4 Summary of multiple-bit upsets profile on Xilinx 7 Series FPGA101

III ENHANCEMENTS ON FAULT INJECTOR AND METHODOLOGY.......103

9 MANY-BITS FAULT INJECTION ...104
9.1 Motivation...104
9.2 Implementation ...105
9.3 Methodology and scripting ...106
9.4 Study case and results ...107

10 ACCUMULATED FAULT INJECTION ...108
10.1 Motivation...108
10.2 Implementation ...109
10.3 Methodology and scripting ...109
10.4 Study case and results ...109

11 ASYNCHRONOUS FAULT INJECTION..115
11.1 Motivation...115
11.2 Implementation ...116
11.3 Methodology and scripting ...117
11.4 Study case and results ...118

12 FAULT INJECTION ON MEMORY BLOCKS ..122
12.1 Motivation...122
12.2 Implementation ...122
12.3 Methodology and scripting ...125
12.4 Study case and results ...125

13 FAULT INJECTION ON FLIP-FLOPS ...129
13.1 Motivation...129
13.2 Implementation ...129
13.3 Methodology and scripting ...131
13.4 Study case and results ...132

14 FAULT INJECTION EMULATING MULTIPLE-BIT UPSETS.......................134
14.1 Motivation...134
14.2 Implementation ...134
14.3 Methodology and scripting ...137
14.4 Study case and results ...138

15 PORT OF THE UFRGS FAULT INJECTOR TO ULTRASCALE+.................141
15.1 Motivation...141
15.2 Implementation ...141
15.3 Methodology and scripting ...143
15.4 Study case and results ...143

16 CONCLUSIONS AND FURTHER DEVELOPMENTS.....................................146

REFERÊNCIAS...149

APPENDIX A — PUBLICATIONS...186
A.1 On experimental physics ..186
A.2 On fault injection methodology ...186
A.3 On softcore microprocessors, high-level synthesis and communication buses187
A.4 On machine learning and embedded inference engines...190

APPENDIX B — STUDY-CASE APPLICATIONS IN IMAGE CLASSIFICA-
TION ..192

B.1 Driving automation and traffic sign classification..192
B.2 Earth observation and land use classification...195
B.3 Neural networks ...199
B.4 Image classification with neural networks ...201
B.5 Convolutional neural networks on FPGA ..203
B.6 Prototype CNN for GTSRB traffic sign classification task....................................207
B.7 Prototype CNN for SAT-6 land cover classification task210

APPENDIX C — STUDY-CASE APPLICATION ONBOARD NANOSATC-BR2213
C.1 NanosatC-BR2 mission ..213
C.2 NanosatC-BR2 payload overview ..215
C.3 NanosatC-BR2 benchmark applications on Xilinx Artix-7217

APPENDIX D — RESUMO EXPANDIDO EM PORTUGUÊS221
D.1 Introdução ..221
D.1.1 Motivação..223
D.1.2 Objetivos ...224
D.2 Conceitos preliminares...224
D.3 Estado-da-arte e trabalho proposto ..225
D.4 Resultados experimentais...227
D.4.1 Testes estáticos..227
D.4.2 Injeção de falhas acumuladas..227
D.4.3 Injeção de falhas na presença de scrubbing ..229
D.4.4 Injeção de falhas com múltiplos bit-flips ..231
D.5 Conclusão...232

15

1 INTRODUCTION

1.1 Applications of SRAM-based FPGA in critical systems

Recent advances on computing and electronics made feasible new embedded real-

time and computing-intensive applications in safety- or mission-critical fields like trans-

portation, autonomous vehicles, driver assistance systems, industrial automation, medical

diagnosis, implantable medical devices, biology research, earth observation, pervasive

surveillance, military and defense, among others. Some of those applications include dig-

ital signal processing, sensor fusion, image processing, computer vision, pattern recogni-

tion and machine learning, which require high productivity, efficiency and adaptability of

computing systems.

When we take into account these computing-intensive applications, the modern

programmable logic devices may be a competitive alternative to application specific inte-

grated circuits (ASIC) and general-purpose microprocessors in terms of design and pro-

duction costs, power consumption, time to market, maintainability and capability of im-

provement to cope with changing environment or evolving requirements.

Commercial grade SRAM-based FPGAs are notably attractive for such applica-

tions due to its low cost given the technology in use and the large-scale production, its

general availability, high density of resources and combination with multicore micropro-

cessors allowing load distribution between hardware and software.

However, due to the huge amount of SRAM cells and its inherent susceptibility

to radiation effects, the use commercial grade SRAM-based FPGAs in critical cyber-

physical systems in radiation rich environments, or even on ground level, may raise some

concerns in terms of reliability and fault tolerance. Although radiation hardened devices

are also available on the market, they may have a higher cost or limited availability due

to export restrictions given its potential use in military applications. These limitations of

the radiation hardened devices may help in choosing a commercial grade device.

Consequently, the use of such devices in critical cyber-physical systems requires

the characterization of the reliability of the devices and applications, and, occasionally, the

use of proper mitigation techniques for fault tolerance coping with reliability requirements

on the target environment.

Ideally, those critical systems and application could be tested and qualified in its

operational environment subject to the effects of radiation. The reliability evaluation in

16

operational conditional, however, have several disadvantages, including higher cost and

longer test time. Another disadvantage is that it would be performed only in the later

stages of development, increasing the correction costs.

As alternative, the fault injection, in laboratory environment, allows the evaluation

since the earlier stages of proof of concept until later stages near the real environment and

operational conditions.

The fault injection, in itself, is also a complex task, because it requires deep under-

standing of the target environment, the target device, and its behavior in that environment.

Notwithstanding, fault injection also enables new engineering approaches, for in-

stance the reliability aware design space exploration for complex applications where re-

liability and fault tolerance compete with other engineering constraints and requirements

such as area, power consumption and processing time. To cope with this higher dimen-

sionality of the problem, design space exploration can use methods of heuristic search

which, in turn, are fed with reliability metrics that can be fused in the multi-objective

search for a satisfying solution.

Although accelerated irradiation and circuit simulation can provide such reliabil-

ity metrics, its use inside design space exploration may not be feasible due to large cost

of radiation facilities and large processing time of circuit simulation for complex systems.

As alternative, the use of fault injection can emulate the radiation effects while the appli-

cation runs on hardware at full speed, orders of magnitude faster than circuit simulation

and cheaper than accelerated irradiation.

The challenges, however, are that adequate fault injection methodology must be

devised to achieve the desired speed to be used inside the design space exploration process

and that a higher level of consistency between fault injection and radiation effects must the

achieved to avoid that the search process converges towards solutions that do not present

the desired fault tolerance and reliability properties under radiation.

To tackle these challenges, this thesis implements improvements on an existing

emulated fault injection tool based on Xilinx Internal Configuration Access Port (ICAP)

and the associated fault injection methodologies, supported by study-case applications

using high-level synthesis and softcore microprocessors for mathematical processing and

flagship machine learning applications.

17

1.2 Motivation and innovative contributions

The emulated fault injection engine adopted in this thesis is built around the Xilinx

ICAP interface and have a long line of development. Nazar et al. (2012) used this mech-

anism for fault injection of addressed bits on configuration memory of a Xilinx Virtex-5

device, being later adapted by Leipnitz et al. (2016) for other applications. Tarrillo et

al. (2015) also used this mechanism on a Xilinx Virtex-5 device, injecting fault on ran-

domized memory addresses of the configuration memory. Tonfat et al. (2016) used the

mechanism on a Xilinx Artix-7 device to inject faults exhaustively on the whole configu-

ration memory of the device.

While the fault injection tool evolved across the families of Xilinx devices, in-

cluding Xilinx 7 Series FPGAs and Xilinx Zynq-7000 MPSoCs, the test methodology

targeted only injection of single faults on the configuration memory, either on random-

ized locations or exhaustively and sequentially on contiguous locations. In either case, the

test methodology provided an estimate on the number of memory bits that, alone, could

cause a functional failure on the application implemented on the FPGA, also known as

the critical bits.

The number of critical bits is relevant as a reliability metric, but it do not repre-

sent properly the cumulative behavior of the memory upsets on the FPGA configuration

memory as we see under radiation environments. Another limitation of critical bits is

that it does not consider temporal windows in which the information is relevant, for in-

stance when healing by memory scrubbing is active on when faults affect memory storing

application user data.

Also, although previous works injected faults on memory locations known as sus-

ceptible to memory upsets caused by radiation, the methodology does not cover the cases

where a single radiation particle causes memory upsets on multiple memory cells.

The originality and the main contributions of this thesis resides on (1) injecting

multiple faults clustered together on the FPGA memory, emulating arbitrary patterns such

as those generated by a single radiation particle or by laser fault attacks, (2) injecting mul-

tiple faults cumulatively over time, emulating the effect of multiple radiation particles, (3)

injecting faults synchronously and asynchronously enabling reliability evaluation in the

presence of memory scrubber, (4) injecting faults on user memory holding persistent data,

and, finally (5) porting the fault injection mechanism and the associated methodologies to

the newer family of Xilinx UltraScale+ devices.

18

In this context, this investigation is motivated by questions such as:

1. what type of patterns of single and multiple bit upsets are dominant on the two main

types of memory of the FPGA under different radiation particles?

2. what type of patterns and to which level of detail they need to be emulated to achieve

adequate accuracy of the reliability metrics obtained from fault injection when com-

pared to radiation experiments?

3. taking into account the interest in higher levels of reliability, how far the injected

faults must be accumulated or, in other terms, where the sampling process can be

interrupted to further increase the fault injection campaign productivity?

4. what are the fault injection campaign conditions, or the methodology simplifica-

tions, that allows for faster fault injection and, hence, higher productivity?

1.3 Thesis claim

The main claims of this thesis are that a higher consistency is achieved, when re-

lated to accelerated radiation experiments, by the use of synchronous and asynchronous

cumulative-randomized fault injection emulating single and multiple bits upsets and that

the sampling by cumulative-randomized fault injection improves the fault injection cam-

paign productivity to be used in design space exploration processes. The consistency with

radiation experiments and fault injection campaign speedup are evaluated in comparison

with the legacy methodology that consisted on exhaustive and synchronous fault injection

emulating single bit upsets only in the persistent configuration memory of the FPGA.

1.4 Thesis goals

The main objective of this thesis is to improve the fault injector for Xilinx SRAM-

based FPGAs developed at UFRGS to enhance the consistency between emulated fault

injection and radiation tests, accelerate the fault injection process to reduce campaign

time, and extent the support of the fault injector to an additional family of Xilinx products.

The activities performed to achieve this objective include:

• Analyze the FPGA memory organization using laser to build a cartographic model

in terms of memory rows, columns and direction of the columns;

19

• Investigate the multiple upset patterns occurring on configuration memory and user

data memory under alpha particles, heavy ions, fast neutrons and thermal neutrons;

• Implement required changes on the fault injection engine to support asynchronous,

cumulative fault injection and faults affecting multiple bits, both on configuration

memory and user data;

• Port the fault injection engine to the newer UltraScale+ family of Xilinx SRAM-

based FPGA devices;

• Develop reference procedures and scripting for fault injection campaigns imple-

menting different test strategies;

• Demonstrate the use of the fault injection methodology with different study-case

applications based on high-level synthesis and softcore microprocessors.

1.5 Description and organization of this report

The main body of this thesis is organized in three parts with the main topics sum-

marized in Figure 1.1.

The first part of this thesis addresses the theoretical aspects of radiation effects

in electronic devices that are relevant for mission critical an safety critical applications,

the characteristics of SRAM-based FPGAs, and the use of fault injection as a tool for

reliability assessment. This part is based exclusively on bibliographic research in the

fields of radiation effects, reliability and tests of electronics circuits and systems.

The second part of the thesis deepens in the description of the organization and

addressing of the memory matrix in Xilinx FPGAs, including results from laser and ra-

diation experiments performed to clarify the memory organization, the underlying static

cross section, and the occurrence of multiple-bit memory upsets under radiation. This

part is partly based on bibliographic research on Xilinx documentation for the products

object of this thesis, but also includes results from floorplan mapping, laser experiments

and radiation experiments for static tests required to understand and describe the behavior

of the device under radiation.

The third part of the thesis addresses the improvements on the legacy fault injec-

tion engine adopted in this thesis as well as further improvements in the fault injection

methodology. This part if mostly based on experimental results from fault injection and

20

Figure 1.1 – Report organization

Introduction

Appendix
Publications

Conclusions and
Future Work

Xilinx 7 Series
FPGAs

Part II Device
Characterization

Part I Reliability
Under Radiation

Radiation &
SEU

SRAM-Based
FPGA & Reliability

Appendix
NCBR2 Study Case

Part III Injector
Enhancements

Radiation Static
Tests

Device Floorplan
& Cartography

Accumulated
Fault Injection

Fault Injection
Under Scrubbing

Multiple-bit
Fault Injection

Appendix
CNN Study Case

Test & Fault
Injection

Fault Injection
on User Data

Port to Xilinx
UltraScale+

Many-bits
Fault Injection

Appendix
Extended Abstract

Source: The Author

irradiation of case-study and benchmark applications.

Finally, we present the main conclusions and proposals for future works and fur-

ther development in this research theme.

An appendix provides a list of publications and knowledge transfer activities that

incorporate the contributions of this thesis. Another appendix describes the study-case

application of image classification based on machine learning and convolutional neural

networks developed by a prototyped design space exploration framework based on generic

algorithms. A third appendix describe the context of the study-case microbenchmark

applications onboard the NanosatC-BR2 payload. An additional appendix presents an

expanded abstract of this thesis.

21

Part I

SRAM-Based FPGAs and Reliability

Under Radiation

22

2 RADIATION EFFECTS AND RADIATION-INDUCED MEMORY UPSETS

2.1 Semiconductor devices

Semiconductor devices are fabricated and commercialized either as discrete com-

ponents, such as single diodes or transistors, or combined with other elements composing

an integrated circuit. In both cases, the technological manufacturing process consists

of fabricating the devices over a substrate of semiconductor material, where silicon is

the more commonly used material due to its electrical properties at room temperature,

abundant availability in nature in the form of sand and quartz, among other advantages

(KANO, 1998).

To be used in the fabrication of electronic devices, the silicon substrate must be

in a very pure crystalline form that is obtained by refining quartz or sand from nature

using chemical and metallurgical processes in high temperatures. In this process, the

purified silicon is also carefully contaminated, or doped, with very specific impurities,

such as atoms of boron (to obtain a P-type substrate) or phosphorous (to obtain a N-type

substrate), in very specific concentrations, to leverage its semiconducting properties. The

final result is typically a circular slice of monocrystalline semiconductor substrate with

the silicon atoms in a very specific crystalline orientation.

One of the devices most commonly found in integrated circuits is the transistor

or, more specifically in modern microelectronics, the field-effect transistor (FET). For

historical reasons, this type of transistor is known as metal-oxide semiconductor (MOS)

transistor (MOSFET). The electrical properties of transistors are decided by selecting

the technological process of fabrication and scaling the transistor geometry, such as the

channel width and length. A simplified view of a typical transistor is presented in Figure

2.1a. A transistor where the source and drain regions area heavily doped to be of P-type,

as seen in Figure 2.1a, is named a PMOS transistor. Conversely, a transistor with source

and drain regions of N-type is named as NMOS transistor. Figure 2.1b and Figure 2.1c

present the schematic symbol for PMOS and NMOS transistors.

Combining several PMOS and NMOS transistors together we can build digital

circuits such as logical functions and data storage elements. The storage elements are of

particular interest to this thesis, notably the static random access memory (SRAM) found

in commercially available off-the shelf (COTS) integrated circuits. A simplified view

of a SRAM cell using six transistors (6T-SRAM) is depicted in Figure 2.2a comprising

23

Figure 2.1 – Schematic view of classical transistor
Insulation

p -Drain+p -Source+

Gate oxide
Channel

p-Si substrate

Gate
Contact

n-Well

Substrate bias

DrainSource

Gate

Drain

Source

Gate

Drain

Source

(a) P-channel transistor built on
P-doped substrate

(b) Symbol for
P-channel transistor

(c) Symbol for
N-channel transistor

Source: Adapted from Sze et al. (2007)

two cross-coupled inverters in the center using four transistors where the information

is latched. A scanning electron microscope image of such a memory cell measuring

0.16 μm2 is presented in Figure 2.2b.

Figure 2.2 – A 6T-SRAM cell

Vdd

Bitline Bitline (inverted)

Wordline

(a) Schematic view of memory
cell

(b) Memory cell fabricated in
TSMC 28 nm technology

process

Source: (a) adapted from Weste et al. (2010); (b) extracted from Dixon-Warren (2012).

SRAM memory cells of this kind is found on several COTS products such as

microprocessors and programmable logical devices (FPGA), holding critical information

inside the processor registers, tightly coupled memory supporting high performance logic

and configuration memory of logical elements.

2.2 Radiation effects on electronic devices

Since the invention of transistors in the 40’s and the growth of semiconductor in-

dustry, the increasing use of semiconductor devices in computing and data storage systems

intensified the research on the reliability of such devices. Starting in the 60’s, several stud-

ies on how ionizing radiation could affect those devices were conducted influencing new

24

applications of semiconductor devices, such as in aerospace technology and computer

systems in environments with continuous exposition to ionizing radiation like nuclear

reactors and high energy particle accelerators.

An iconic event of perturbations on electronic devices attributed to radiation is

the degradation and loss of the Telstar communication satellite (model in Fig. 2.3) in

1963, only a few months after launched, in the aftermath of high-altitude nuclear tests

(ECOFFET, 2007). Nevertheless, ionizing radiation is also an issue in mission critical

and safety critical electronics operating at ground level (MAY et al., 1979; NORMAND,

1996; OLIVEIRA et al., 2020).

Figure 2.3 – Model of a Telstar satellite on display at the CNAM, Paris

Source: The Author

Pacini (2017) notes that the pioneers on research of atmospheric ionization in

the beginning of the 20th century did not recognize the corpuscular nature of cosmic

sources and associated this phenomenon initially with electromagnetic rays (radiation),

hence the term radiation is still used nowadays for both electromagnetic radiation and

particles. In this thesis we consider the effect of rays, such as photons, but we are mostly

concerned with the effects of particles, such as protons, alpha particles, other heavier ions

and neutrons.

Radiation effects on electronics can be divided into long-term parametric degra-

dation or transient changes on the device (SCHRIMPF, 2007). In the first class we have

the displacement damage (DD) and effects associated with the total ionizing dose (TID).

Among the transient effects we are interested in the effects caused by a single particle

(SEE). These effects will be described briefly on the following while Bräunig et al. (1994,

Table 4) summarize the sensitivity of different types of devices to the effects of radiation.

The displacement damages (DD) refer to the displacement of atoms in the crys-

talline lattice due to atomic collisions, characterized by a non-ionizing energy loss (NIEL),

caused by particles such as protons, heavy ions, neutrons, nuclear recoils and high energy

25

electrons. Displacement damages create defects in the crystalline lattice of the material,

which may be vacancies in the lattice or displacement of atoms to interstitial positions

(Figure 2.4a), among others, and acts as charge accumulation regions due to the trap ef-

fect. The displacement damages electrically active defects affects both insulating material

and semiconductor material (SCHRIMPF, 2007), impacting several types of devices, such

as bipolar junction transistors and image sensors, but the MOS transistor, specifically, are

less affected by displacement damages.

Figure 2.4 – Radiation effects on semiconductor devices

Interstitials

Vacancies

Oxide

Silicon

p+ (e-)

+ + + + + + + + +
+ - - + - + - + - - -

Oxide

Silicon

Trapped
charges

Interface
traps

p+e- Ion

Ionisation
+ - +

- + + -
+ - - +
-+ + +

Oxide

Silicon

p+

Ion 2nd

(a) Displacement damage (DD) (b) Total ionizing dose (TID) (c) Single event effect (SEE)

Source: Extracted from Poivey (2017)

The total ionizing dose (TID) refers to the cumulative effects of deposited dose of

different types of photons and particles, including protons, heavy ions, electrons and neu-

trons, affecting primarily insulating materials. The silicon dioxide used in semiconductors

is usually amorphous and creates an interface region between the oxide and bulk silicon,

as present in transistor gate oxide (Figure 2.1a), where there is a perturbation of the peri-

odic potential of the lattice. Besides, oxygen atoms also perturb the periodic potential of

the lattice creating traps. These traps may become centers of charge accumulation (Fig-

ure 2.4b) under the presence of electric field due to the different mobility of electrons and

holes in the oxide. This effect is enhanced by the incidence of radiation during the de-

vice operation when the electrical field is present. The effect of trapped charges includes

the degradation of electrical parameters of the devices, including increased leakage cur-

rent and power consumption, reduced breakdown voltage, increased noise, changes in the

characteristic curves and threshold voltage of transistors.

Single-event effects (SEE) refer to the immediate effects of a single ionizing par-

ticle strike on a electronic device. These effects are observed when a single ionizing

particle is capable of generating an amount of electron-hole pairs enough to cause pertur-

bations in the operation of the device (Figure 2.4c). Single-event effects can be observed

by incidence of heavy ions, alpha particles, muons, pions, as well as byproducts of inci-

dence of neutrons and protons. Scale reduction of devices also decreased the amount of

charge required to trigger a single-event effect enabling the observation of such effects

26

by direct ionization by electrons (TRIPPE et al., 2015) and protons (RODBELL et al.,

2007; HEIDEL et al., 2008; SIERAWSKI et al., 2009). The amount of charge gener-

ated by the incidence of radiation can lead to different types of SEE, some of them being

non-destructive creating momentary consequences (the soft errors) and others destruc-

tive making the device permanently defective (the hard errors). Examples of soft errors

include the single-event transients (SET), single-event upsets (SEU) affecting storage el-

ements, single-event functional interrupt (SEFI). As hard errors we can find single-event

burn-out (SEB), single-event dielectric rupture (SEDR), among others.

A single-event upset (SEU) occurs when charges generated by the particle inci-

dence are collected and interfere with some of the transistors in the storage element, seem

in the example of Figure 2.2. Those transient charges can disturb the balance inside the

storage element, causing the stored value to change, that is, a logical zero (0) value is

changed to a logical one (1) or a logical one is changed to a logical zero, what is also

named as a bit-flip. Occasionally, it can also be interpreted as a SEU when a single-

event transient (SET) in the input of a the storage element occurs concomitantly with the

clock edge and a false value is registered changing the stored value at the storage element

(DODD et al., 2004). In this case, increase on clock frequency also increases the likeli-

hood of capturing SETs, therefore increasing the sensitivity to transient effects. A similar

situation occurs when a transient propagates through clock signal causing an invalid value

to be captured by the storage element.

2.3 Sources and characteristics of space radiation environment

Radiation as a natural phenomenon has its sources in cosmic rays, solar flares,

radiation belts and materials on Earth. It comes also from man-made sources such as

nuclear reactors and particle accelerators for experimental physics and medical purposes.

The main sources of radiation affecting electronic devices include neutrons, en-

ergetic particles such as electrons, protons, alpha and heavy ions, and electromagnetic

radiation such as x-rays and gamma rays (STASSINOPOULOS et al., 1988; CLAEYS

et al., 2002).

At space environment near Earth and low atmosphere, affecting airborne electron-

ics on orbital stations, satellites and other spacecrafts, there are energetics particles such

as protons and heavy ions from cosmic rays and solar flares, protons and electrons trapped

in Van Allen belts and heavy ions trapped in the magnetosphere (CLAEYS et al., 2002;

27

BOUDENOT, 2007).

Additionally, the terrestrial atmosphere acts as a filter protecting the earth from

radiation (BOUDENOT, 2007) with the exposition to radiation increasing with the alti-

tude and, for lower altitudes, increasing in the proximity of polar regions. Cosmic rays

entering the atmosphere will interact with other particles triggering a process of spalla-

tion and consequent chain reactions that produces more particles at higher altitudes The

particle flux then decreases with altitude due to energy loss, absorption and decay, with

thermal and high energy neutrons representing the more relevant contribution to single-

event effects in electronic devices at sea level (O’GORMAN, 1994; NORMAND, 1996).

This phenomenon is named air shower adopting a term coined by Blackett et al. (1933)

after the works of Bruno Rossi in the 30’s (KAMPERT et al., 2012). Figure 2.5 shows

an schematic representation of such air shower with a possible development of secondary

cosmic rays in the atmosphere, triggered by an incident high-energy cosmic particle.

Figure 2.5 – Air shower: secondary cosmic rays in the atmosphere

NP

n
pP

N

N

P

N
α

n

p

α

p
n

n

p

π

n p

nN

p

π0

π−π�

μ�

e�

n

μ−
N

e+
e−

Primary
cosmic-ray
particle

NucleonicMesonicElectromagnetic

S
o

ft
e

n
in

g
 o

f
e

n
e

rg
y

sp
e

ct
ru

m

n

p

Target nucleus

γ
γ

Abbreviations used:

n: neutron
p: proton

(capital letter for particle
carrying the nuclear
cascade)

α: alpha particle
e : electron or positron
γ: gamma-ray photon
π: pion

�

μ: muon

Source: Dunai (2010)

Overall, the effect of cosmic ray heavy ions and trapped protons on radiation belts

are the dominant sources of single-event effects in altitudes higher than 18.000 m while

neutron interaction is the dominant source for lower altitudes and ground level (TSAO

et al., 1984; STASSINOPOULOS et al., 1988; HANDS et al., 2017). Consequently,

heavy ions and protons are the main concern for electronics onboard satellites and other

aircrafts on orbit while neutrons are the main concern for civil aviation, ground level

high-performance computing and safety critical electronics such as autonomous vehicles.

28

2.4 Interactions of radiation with matter

Ionizing radiation, such as photons, protons, heavy ions, fast neutrons and thermal

neutrons, transfer energy to the matter but present different interaction mechanisms.

Photons with sufficient energy can interact with the matter by three main pro-

cesses. At the photoelectric effect all the photon energy is transferred to an atomic elec-

tron. At the Compton effect, only part of the energy is transferred to an electron and

a photon is scattered in a given angle. Finally, at the production of pairs, photons are

transformed in electron-positron pairs. Cross section for the occurrence of each of these

effects depends on the energy of the photons and the nature of the matter.

Energetic particles, such as proton, alpha particles and heavy ions interacts more

easily with matter because they are charged. Charged particles loses energy across the

matter interacting with each atom and transferring small amounts of energy. This is a

stochastic process where the mean energy transfer can be known and is named stopping

power. In the case of light particles such as electrons and positrons, the energy loss occurs

also by irradiation (bremsstrahlung). The gradual loss of energy across the matter defines

a maximum range of the particle in the matter.

Neutrons, having no electrical charge, do not interact with electrons and ionizes

indirectly by producing a recoil that will cause ionization or by a nuclear reaction where

generated charged particles will cause ionization.

2.5 Single-event effects and memory upsets

The charge deposited by a single ionizing particle can produce a wide range of

single-event effects, that can, in turn, be divided into hard errors, which induce destructive

effects, and soft errors, which are non-destructive functional errors.

As hard errors we can find single-event burn-out (SEB), single-event dielectric

rupture (SEDR), among others. Examples of soft errors include the single-event transients

(SET), single-event upsets (SEU) affecting storage elements, single-event functional in-

terrupt (SEFI) (IBE, 2015).

Due to the object of this thesis, which is the fault injection on FPGA memory, and

the nature of the target device, which is a commercial grade COTS SRAM-based FPGA,

we will be mostly concerned with the single-event upsets (SEU).

In a simplified form, a memory element in a digital circuit, that is, one data bit,

29

is a storage cell whose value will be updated from its input upon a clock event and when

that update is enabled. The storage cell current value can then be read at its output.

There are two main mechanisms by which the radiation effect can cause a memory

upset changing stored value of the data bit from zero to one or from one to zero, that is

a bit-flip. One mechanism is when a transient is occurring at the input signal of the

storage cell at same time as the clock event and enable signal allowing the memory value

to be updated with a potentially erroneous value. As the transient is a short pulse, the

coincidence of the transient and the clock event may be seen as a rare event although

increasing the operating frequency of digital circuits also increases the likelihood of such

events.

Another mechanism is when the transient occurs by incidence of radiation inside

the storage cell itself, disrupting its balance and allowing its value to change sponta-

neously. This type of mechanism is more likely to be seen in the case of unhardened

commercial grade COTS devices.

In any case, minimal amount of charges must be generated to reach a critical

current where the transient is observed as a logical value or the unbalanced storage cell

inverts its value.

Alpha particles, heavy ions and neutrons will be used in this thesis for study of the

static cross section of the target device and as benchmark for reliability comparison with

fault injection.

We are also interested in the use of photons from laser to investigate the organiza-

tion of memory cells on the target device (cartography). However, since photon radiation

causes ionization by absorption and generation of electron-positron pairs, a single pho-

ton is not enough to reach the critical current for a memory upset. Hence, in the case

on photon, it must be clarified that it is conceptually incorrect to name the process as a

single-event since a burst of photons is required to cause the memory upset.

2.6 Laser induced memory upsets

Ionization and transients in semiconductor devices can be generated by irradia-

tion with laser in an adequate wavelength (HABING, 1965). Besides the use of laser,

other sources of photons can also be used to cause memory upsets. Skorobogatov et al.

(2003), for instance, reports the occurrence of memory upsets in SRAM memory caused

by a photographic flash attached to focusing lens. Most wavelengths are not suitable for

30

simulating radiation-induced transients because of the absorption characteristics of the

matter. Infrared laser, for instance, have low absorption coefficient in silicon but photon

energy below the bandgap. Near-infrared laser may represent a compromise between ab-

sorption coefficient and photon energy above the bandgap. With green laser in silicon,

for instance, we will have photon energy well above bandgap, but most energy will be

converted in heat, presenting a small penetration depth that may not reach the memory

cell active region. With infrared laser we may have a higher penetration range in silicon

due to absorption coefficient but smaller photon energy below bandgap may not generate

enough electron excitation.

There are two technical processes for simulating radiation induced transient ef-

fects in semiconductor devices using laser.

The first one is the single photon absorption (SPA) where the wavelength is chosen

so that the photon energy is above bandgap. The small penetration range may suggest

frontside irradiation (Figure 2.6a) but, in the case of complex devices such as FPGAs, it

is obstructed by the dense metal interconnection (Figure 2.6b). Alternatively, backside

irradiation could overcome the obstruction problem but the use of wavelengths for single

photon absorption would require thinning of the device substrate.

Figure 2.6 – Schematic representation of frontside and backside laser irradiation

Laser source

Focusing objective

Metalization
Active region

Substrate

(a) (b) (c) (d)

3D stage stepper

Frontside irradiation
λ < 1.1 μm

Above bandgap
Single photon absorption

Easily obstructed by metal

Backside irradiation
λ > 1.1 μm

Subbandgap bandgap
Two photon absorption

More sensitive do depth (focusing and absorption)

Δz
Metalization

Substrate

Active region

Source: The Author

The second process for laser testing of electronic devices is the two photon ab-

sorption (TPA) (GÖPPERT-MAYER, 2009; MCMORROW et al., 2002). In this case,

wavelength in infrared is used to obtain higher penetration range allowing backside irra-

diation (Figure 2.6c) without substrate thinning but, since a single photon energy will be

below bandgap, the ionization depends on the excitation of the electron by the absorption

of two photons whose energies added will be above bandgap. However, the relatively

rare occurrence of two photon absorption and the need of a minimal amount of electron

31

positron pairs for creating a significant transient effect will require meticulous focusing of

the laser beam in the region of the storage cell active region (Figure 2.6d) which, in turn,

requires complex focusing optics, positioning and control of environment parameters such

as air temperature to continuously compensate or minimize substrate undulations due to

manufacturing process and thermal gradient along device body.

In brief, while single photon absorption (SPA) has lower cost, is easier to use and a

more stable process, the two photon absorption (TPA) process overcomes the problem of

obstruction and penetration depth and has a smaller laser spot size affecting less storage

cells simultaneously.

Buchner et al. (1987) describe simulation of single-event upsets (SEU) in SRAM

memory using single-photon absorption (SPA) in near-infrared from frontside obtaining

a laser spot size of 2 μm that was of the same order of the size of the sensitive area of

the transistor at the time. McMorrow et al. (2013) also uses single-photon absorption

(SPA) for simulation of single-event upsets (SEU) in SRAM memory but using backside

irradiation in a thinned substrate. In this case, the wavelength in the range of ultraviolet

allowed the acquisition of a laser spot size of 0.32 μm.

Towards the case of SRAM-based FPGAs, Bocquillon et al. (2007), Pouget et al.

(2007) and Canivet et al. (2008) discuss the use of laser as a test tool in SRAM-based

FPGAs and, more specifically, the Xilinx Virtex and Virtex II FPGAs using single photon

absorption (SPA) with near-infrared laser and backside irradiation, both with and without

substrate thinning, analyzing aspects of sensitivity to different levels of power in the laser

pulse and the SRAM memory geometry and organization in the FPGA.

While testing a Virtex and Virtex II FPGAs fabricated with 150 nm technology,

Pouget et al. (2007) noted that the laser spot size obtained was too big for an accurate

simulation of single-event effects induced from radiation.

More recently, Kastensmidt et al. (2014) discuss laser testing in a Xilinx Virtex 5

SRAM-based FPGA fabricated with 65 nm technology using green laser with spot diam-

eter of 1.2 μm and near-infrared laser with spot size of 2.2 μm, while Pouget et al. (2017)

uses laser on a Xilinx 7 Series / Zynq-7000 MPSoC device fabricated with 28 nm technol-

ogy using two photon absorption with near-infrared laser and backside irradiation without

substrate thinning obtaining a spot size of 1.5 μm.

32

2.7 Protons, alpha particles and heavier ions induced memory upsets

A certain amount of electron-hole pairs must be produced to overcome the cur-

rent threshold necessary to unbalance the memory cell causing it to change its value. A

major difference between memory upsets induced by laser, as described previously, and

induced by charged particles, is that in the case of laser a large number of photons must

be absorbed in a short period of time to reach that current threshold while a single charged

particle may produce the amount of electron-holes reaching the current threshold.

Charged particles interact easily and strongly with matter and may ionize directly.

Taking as example the case of protons, the three main mechanisms of interaction are

depicted in Figure 2.7.

Figure 2.7 – Interactions of proton with matter

(a) Coulomb interaction with
atomic electrons

(b) Coulomb interaction with
atomic nuclei

(c) Nuclear interaction with
atomic nuclei

Source: Extracted from Newhauser et al. (2015)

The ionization due to inelastic Coulomb interaction with electrons (Figure 2.7a)

is the dominating effect, with a small energy loss per interaction. The gradual loss of

energy limits the range of the particle in matter. Since the particle mass is significantly

larger than the mass of electron there is no significant deflection of the incident particle

that would impact its depth range in matter. Differently, in the elastic Coulomb scattering

(Figure 2.7b) the lateral deflection due to nucleus repulsion will reduce the depth range of

the particle in matter. Finally, in the nonelastic nuclear interaction (Figure 2.7c) the pro-

duction of secondary particles, including neutrons, protons and heavier ions may lead to

indirect ionization following further interactions of such secondary particles with matter.

Each single incident particle will have a large number of interactions, of different

types, losing continuously small amounts of energy while interacting with each atom

throughout its trajectory. The average energy loss by unit of length in the particle depth

range in matter, known as stopping power, can be estimated using stochastic processes

and extensive empirical data. Despite its complex formulation, the particle beam range

33

and stopping power for protons and heavy ions can be conveniently calculated using the

SRIM/TRIM software tool (ZIEGLER et al., 2010).

As mentioned earlier, to create a memory upset, the particle incidence must gener-

ate an amount of electron-hole pairs large enough to interfere with the memory cell. The

amount of electron-hole pairs is proportional to the energy deposited by the particle in the

matter, known as linear energy transfer (LET). In silicon, for instance, the average energy

required to create an electron-hole pair is 3.6 eV (LUTZ, 2007).

As a first approximation, the energy deposited in the matter is the energy loss,

hence we can approximate the LET by the value of stopping power, as estimated by

SRIM/TRIM software. Figure 2.8 depicts a SRIM/TRIM simulation for alpha parti-

cles (He2+) with energy of 5.48MeV, for instance from a 241Am radioactive source,

on bulk silicon giving an average depth range of 28 μm with the peak of the Bragg

curve at the depth of 26 μm where the approximate LET is 33.6 eVÅ
−1

(or equivalently

1.4MeVmg−1cm−2).

Figure 2.8 – Range and stopping power in silicon estimated by SRIM/TRIM

(a) Depth range of 5.48MeV
alpha particle

(b) Stopping power of
5.48MeV alpha particle

Source: The Author

It is worth noting that this ionization mechanism is present both in the direct ion-

ization, as in the example of Figure 2.7a, and in the indirect ionization by secondary

particles after a nuclear interaction, as in the example of Figure 2.7c. That second case is

particularly relevant in the case of protons.

There is direct ionization by protons and, in fact, most of the proton energy loss

occurs by direct ionization while interacting with electrons. Energy loss, and direct ion-

ization, is higher in low energy protons and can cause memory upsets in some classes of

devices (SIERAWSKI et al., 2009). However, the LET in this case is too low to produce

memory upsets in most electronic devices.

In devices with a higher LET threshold, it is more likely to observe memory upsets

34

in consequence of nuclear interactions. With protons of medium and higher energies, the

main mechanisms causing memory upsets are recoils from elastic scattering and byprod-

ucts of nuclear reactions such as emission of alpha particles (evaporation) and heavier

particles (fission) (PETERSEN, 1981; REED et al., 2002; AKKERMAN et al., 2017).

For these recoils and fission products on proton collision, in turn, the same interaction

mechanisms of Figure 2.7 may occur, again possibly causing direct or indirect ionization.

Han et al. (2017) use simulation to study the effects of neutrons and protons in

silicon and present the estimates of an equivalent LET considering also the effects of

those recoils and nuclear fragments.

2.8 Thermal and fast neutrons induced memory upsets

Neutrons generated by incidence of high energy particles from cosmic radiation

in outer atmosphere (Figure 2.5) are the main contribution to memory upsets in natural

environment at ground level and low altitudes. Being electrically neutral, the interaction

mechanisms for neutrons are mostly nuclear reactions similar to that of protons seen on

Figure 2.7c. Also, having no energy loss by direct ionization, neutrons have a penetration

depth typically larger than protons.

Neutrons that lost energy down to an average kinetic energy around 25meV, be-

coming in equilibrium with room temperature, are known as thermal neutrons. For in-

stance, high energy neutrons generated by high energy particles in upper atmosphere may

lose energy while going deeper in the atmosphere being reduced to thermal energies.

In its low energy state, the thermal neutrons present a random trajectory follow-

ing elastic collisions with nuclei in the medium until they decay or are absorbed by one

of the colliding nuclei. Only a few isotopes have relevant interaction with thermal neu-

trons causing memory upsets, one of those being the boron (10B) with alpha particles and

lithium (7Li) as its fission byproducts causing memory upsets by indirect ionization. Fig-

ure 2.9 presents simulation results from SRIM/TRIM software tool for typical energies of

alpha particles and lithium produced by thermal neutron capture reactions (BAUMANN

et al., 1995), with ranges of approximately 5.1 μm and 2.4 μm in silicon, and peak LET

of 32.2 eVÅ
−1

(1.5MeVmg−1cm−2) and 48 eVÅ
−1

(2.1MeVmg−1cm−2), respectively

for alpha particles (4He) and lithium (7Li). In earlier generations of electronic devices,

the 10B isotope was present in insulating materials, for instance at the integrated circuit

packaging, but in modern devices it is present mostly as dopant in semiconductors.

35

Figure 2.9 – Range and stopping power in silicon estimated by SRIM/TRIM

(a) Depth range of 1.47MeV
alpha particle

(b) Stopping power of
1.47MeV alpha particle

(c) Depth range of 0.84MeV
7Li

(d) Stopping power of
0.84MeV 7Li

Source: The Author

Interactions of fast neutrons are different from thermal neutrons in many aspects.

First, fast neutrons do not bounce around in a random path like thermal neutrons. Second,

the fission products are scattered in a forward angle covering 180°. As a consequence,

while testing electronic devices in neutron irradiation facilities, the difference between

frontside and backside irradiation must be taken into account (HARADA et al., 2012;

MILLER et al., 2013; KATO et al., 2019; KORKIAN et al., 2020). Finally, fast neutron

interactions are not limited to the neutron capture with a few isotopes producing a few

types of secondary particles as is the case for thermal neutrons.

In silicon, for instance, secondary charged particles generated by nuclear interac-

tion of fast neutrons ranges from hydrogen (H) to phosphorus (P), including its isotopes,

with varying energies, ranges and LETs (VIAL et al., 1998; MILLER et al., 2013). Be-

sides silicon, depending on the foundry technology process, many materials can be found

in the vicinity of sensitive region of transistors and can be target of neutron interactions,

including, for instance, tungsten (W), aluminum (Al), tantalum (Ta), titanium (Ti), oxy-

gen (O), hafnium (Hf), nickel (Ni), copper (Cu), nitrogen (N), carbon (C) and hydrogen

36

(H) (WROBEL et al., 2003; JAMES, 2012).

2.9 Qualification and reliability metrics for radiation

Static and dynamic cross-sections are metrics often applied in the qualification of

devices and designs under radiation.

Dynamic cross-section and other metrics used in reliability analysis will be dis-

cussed later in Section 4.2, but for now we will focus on the static cross-section, which is

an intrinsic parameter of the device or technology.

The static cross section (σSEU) is usually expressed in terms of area, typically in

cm2 or cm2bit−1, and is related to the minimum SEU susceptible area of the device for a

particle species such as neutrons, protons and heavier ions.

The particle fluence (Φ), typically in cm−2, can be estimated from average particle

flux (ϕ), typically in cm−2s−1, and irradiation time (t) (Eq. 2.1). The static cross section

can be obtained from particle fluence (Φ) and number of observed SEU (NSEU) (Eq.

2.2)(JEDEC, 2006). For comparability among devices with different memory volumes,

static cross section is usually normalized by the number of bits in the device (Nbit) (Eq.

2.3).

Φ = ϕ× t, (2.1)

σSEU =
NSEU

Φ
, (2.2)

σSEU,bit =
NSEU

Φ×Nbit

. (2.3)

Overall, the static cross section conveys the sense of probability of a particle gen-

erating a memory upset (SEU).

Using the static cross section, we can estimate the soft error rate for the underlying

device (SERSEU) (Eq. 2.4) for the design in a targeted environment with a given the

particle flux (ϕenv).

SERSEU = σSEU × ϕenv, (2.4)

SERSEU,bit = σSEU,bit × ϕenv.

37

The soft error rate (SER) is usually expressed in Failure in Time (FIT) units, being

defined as the expected number of errors per 109 hours of device operation in a determined

radiation environment.

2.10 Radiation-induced susceptibility to memory upsets in modern devices

Schrimpf (2007) notes that commercial devices reduced its sensitivity to total-

dose effects in recent years but, at the same time, the technology scaling and reduction

of device dimensions increased its fabrication variability and sensitivity to transient ef-

fects. Operation at higher frequencies and lower voltages also contributes to sensitivity to

transient effects (BARNABY et al., 2008; TRIPPE et al., 2015).

These historical trends on electronic devices were influenced by planar CMOS

technology and the trends may be disrupted by the introduction of FinFET technology

in modern devices presenting new profiles for TID and SET sensitivity (HUGHES et al.,

2015; HAO et al., 2016).

As mentioned in Section 2.5, a key aspect in the SEUs is that a minimal amount

of charges must be generated reaching a critical current to unbalance the storage cell and

invert its value.

Using geometric modeling and simulations, Fang et al. (2011) compared the charge

collection due to neutrons incidence on SRAM memory cells built in planar and FinFET

technologies. The key finding was that the two technologies would present a similar

critical current, but the charge collection would be lower in FinFET because of the con-

structive geometry of the transistors. Combining all the factors, the authors estimated a

SER to be around 16× lower in FinFET, compared to planar technologies.

Noh et al. (2015) use a similar approach of geometric modeling and simulations,

comparing with results from irradiation experiments, for different technological nodes of

32 nm and 14 nm, for planar and FinFET respectively. The authors address also the occur-

rences of single-events causing memory upsets in single memory cells (SBU, for single-

bit upsets) and in multiple cells (MBU, for multiple-bit upsets, or MCU, for multiple-cell

upsets). The authors report SEU, SBU e MCU rates lower for FinFET, besides FIT rates

10× lower for FinFET, with the caveat that this comparison is not only between planar

and FinFET, but also 32 nm and 14 nm. After validating the simulations against irradi-

ation results, the authors present the simulated static cross section (σSEU) for different

energies, as presented in Fig. 2.10. As with Fang et al. (2011), Noh et al. (2015) also

38

infer that the factor with higher impact to the better results of FinFET resides in the con-

structive geometry of the FinFET, more than doping profile, interconnection (back-end)

or other electrical elements.

Figure 2.10 – Simulated neutron cross-section for planar and FinFET devices

Source: Noh et al. (2015)

Nsengiyumva et al. (2016) perform a similar comparative study between planar

and FinFET for memory elements, but under heavy-ions with energies over 100MeV.

The authors observe cross section orders of magnitude lower for FinFET, but with the

remark that this difference is less prominent at higher LETs, as seen in Fig. 2.11.

Figure 2.11 – Experimental heavy-ions cross-section for planar and FinFET devices

Source: Nsengiyumva et al. (2016)

In another work from Fang et al. (2016), different technology nodes of planar

40 nm, 28 nm and 20 nm devices, and 16 nm FinFET, are compared with results from

spallation neutrons, thermal neutrons and alpha particles from 241Am. The authors present

the single-bit SEU rates for different technologies irradiated with different particles (Fig.

2.12a), as well as the rate and probability of occurrence of multiple-cell SEU for high-

energy neutrons (Fig. 2.12b).

It worths noting in Fig. 2.12 that the occurrence of MCUs, and the overall SEU

rate, scales not only because the constructive geometry of planar and FinFET devices, but

39

Figure 2.12 – Experimental neutron and alpha particles SEU rates for planar and FinFET devices

(a) Measured neutrons and alpha particle SBU
rates (b) High-energy neutrons MCU rates

Source: Fang et al. (2016)

also with the technology node, although it seems to have a new trend starting with the

FinFET technology.

The work from Fang et al. (2016) is specially relevant in the context of this study

because it addresses the two technologies near the technologies used at the Xilinx 7 Series

and Zynq-7000 devices, and the Xilinx UltraScale+ devices covered in this thesis, which

are fabricated in planar 28 nm and FinFET 16 nm respectively.

Narasimham et al. (2018) also address the 16 nm FinFET, compare with planar

technology in different technological nodes, and go beyond analyzing the 7 nm FinFET.

The authors present results from irradiation experiments with neutrons and alpha particles

from 241Am.

Other works addressing planar and FinFET technologies, as well as scaling trends,

are summarized in the survey from Bhuva (2018).

When we go into the world of SRAM-based FPGAs, more specifically, the pres-

ence of MBUs plays an important role in the reliability as it may interfere with fault

tolerance techniques implemented in the circuit by the FPGA manufacturer, such as error

correction codes in memory blocks and healing by memory scrubbing, as well as fault

tolerance techniques implemented in the design or application by the end-user, such as

fine-grained modular redundancy.

This is where some authors start to distinguish between the multiple-bit upsets

(MBU) and multiple-cell upsets (MCU). There is no standardized nomenclature, but some

authors prefer to call MCU the SEU occurring and the lower level of memory devices, and

MBU whenever that MCU affects multiple bits in a data word at the higher level of circuit

or application. For instance, for some authors working with microprocessors, a MCU is

40

a MBU when multiple bit-flips are seen in the same memory byte. Such byte may be

protected by mitigation techniques like Hamming codes that can correct only single-bits,

hence the distinction between MBU, which would not be corrected by the Hamming code,

and the MCU, where the bit-flips occurs in different bytes, prone to be corrected by the

Hamming code.

As we will work mostly at an intermediate level of memory organization, with

little or no access to the physical organization of the memory cells, throughout this thesis

we will use preferably the term MBU irrespective of the bit-flips occurring or not in the

same data word in some arbitrary level of memory organization.

41

3 PROGRAMMABLE GATE ARRAYS

Most integrated circuits in mass production are custom designed, for instance the

application-specific integrated circuits (ASIC). In contrast, programmable devices, typi-

cally of general purpose, are used when low volume, quick design turnaround and upgrade

capability are important (MENCER et al., 2020). The programmable logic devices of in-

terest for this thesis are known as field-programmable gate arrays (FPGA).

The computing power of FPGA devices comes from basic components such as

logic gates, registers, signal routers, arithmetic blocks and memory blocks.

The FPGA technology as we know today grew out of the programmable logic

at the beginning of the decade of 1980s. At that time already existed gate arrays from

several manufacturers, typically programmable structures of AND, OR and NOT gates.

Distinctive characteristics introduced by FPGAs were the programmability of both the

interconnects, which compose the signal fabric, and the logic gates, which are the com-

binational logic function typically with truth table encoded in the form of a look-up table

(LUT) (XILINX, 1988b). The FPGAs also used volatile (RAM) memory to store the con-

figuration bits instead of fuses and EPROM memory. Some of these characteristics are

seem on earlier models of FPGA from major manufacturers like Altera Corporation, with

its FLEX 8000 (ALTERA, 2003) device family, and Xilinx Inc., with its XC2000 family

(XILINX, 1988a).

Market forecasts from Gartner analysts (BLANCO et al., 2017) suggested that by

2021 75% of the of new business volume for large-scale FPGAs would be driven by AI,

mobile telecommunication networks (5G) and industrial Internet of things (IoT).

The interest for SRAM-based FPGAs in aerospace applications have also in-

creased in recent years. For space applications this phenomenon is twofold. First, in clas-

sical space applications, there is an increase of lifetime for satellites, meaning that higher

flexibility and reprogrammability are becoming requirements for future proof spacecrafts.

Studies fostered by the European Space Agency (ESA) in the beginning the the decade

of 2000s (HABINC, 2002) already tried to map opportunities and challenges of using

SRAM-based FPGAs in space. Second, we have seem the emergence of the called “new-

space” paradigm (PAIKOWSKY, 2017), with increased participation of private compa-

nies leading low cost small satellite missions adopting simplified industrial and engineer-

ing processes for reliability, conformance and quality assurance aiming at saving costs.

The adoption of dual-use technology, commercial grade off-the-shelf (COTS) devices,

42

and higher integration of microprocessors and reprogrammable logic in systems on chip

(SoC) helps in reducing volume, mass and power consumption to fulfill the new-space

requirements.

However, a well known characteristic of reprogrammable FPGAs based on SRAM

is its higher susceptibility to SEUs, meaning that even in the more relaxed scenario of

new-space the use of COTS SRAM-based FPGAs without the proper qualification, relia-

bility evaluation and SEU mitigation may jeopardize the mission objectives.

To better understand the role of SRAM memory in reconfigurable FPGA applica-

tions and its relationship with the reliability under radiation, the architecture if the FPGA

devices is described briefly on the following, with focus on devices from Xilinx.

3.1 Combinational and sequential logic

Combinational and sequential logic resources are some of the fundamental ele-

ments of FPGA devices. The architecture varies with manufacturers and device families,

but usually these two classes of resources are tightly related into a configurable logic

block as depicted in Figure 3.1.

Figure 3.1 – Simplified view of a logic block with 4 inputs and one memory element

I1

I2

I3

I4

CLK

LUT FF

Configurable logic

O

Source: Adapted from Xilinx (2013)

In earlier products from Xilinx the basic structure of LUT and flip-flop was named

a logic cell (LC) (XILINX, 2013), organized in structures named slice which, in turn, was

grouped in a structure named Configurable Logic Block (CLB). The number of LUT, flip-

flop and slices by CLB, as well as the number of inputs in a LUT, varied along the various

generations of Xilinx products. In Xilinx 7 Series product family each each slice includes

four 6 input LUT and eight flip-flops. In these devices the CLB is composed of two

slices (XILINX, 2016). In later UltraScale+ product family (XILINX, 2017a) the slice

pairs were fused into a single slice, one CLB having one slice with eight 6 input LUT

and sixteen flip-flops, hence the same resources density of 7 Series but potentially more

43

efficient routing and logical mapping.

3.2 Signal fabric

The signal fabric is the second fundamental element of an FPGA. It is a key el-

ement because most of the FPGA area and configuration resources will be dedicated to

the signal routing. The transport of signals throughout the FPGA is implemented with

programmable switches to build different connections using the interconnect architecture

available at the device. There are many forms of organization for the interconnection ar-

chitecture, including sea of gates, row-based, hierarchical and island style (BETZ et al.,

1999; GEORGE et al., 2001). Many FPGA devices use combinations of these different

interconnection styles.

An organization similar to island is found in Xilinx FPGAs (XILINX, 2013) but

other styles of interconnection are also present on the same devices. In the island inter-

connection (Fig. 3.2) the array of logic blocks is interwoven with vertical and horizontal

wires connecting to the logic blocks through programmable switch boxes (SB) and con-

nection boxes (CB) . Masud et al. (1999) describe also different styles of switch matrices

to implement in a SB considering wires of different lengths.

Figure 3.2 – Simplified island interconnection architecture

Logic

CB

CB

Logic

CB

CB

CB CB

SB

Logic Logic
CB CB

SBSB

SB

Source: Adapted from Betz et al. (1999) e George et al. (2001)

Besides que island structure, direct interconnections between adjacent elements

are also seen on Xilinx (XILINX, 2013) devices for high-speed connections between

horizontally adjacent CLBs.

Another aspect of the signal fabric is that switch matrices may be unidirectional

(single-driver), for instance using buffers, bidirectional (multiple drivers), for instance

using pass transistors, or combination of both. Lewis et al. (2003) e Lemieux et al. (2004)

44

discuss advantages of unidirectional over bidirectional routing wires in aspects such as

area and delay. Modern FPGAs use mostly unidirectional routing wires but bidirectional

wires may still show useful for long wire segments.

In Xilinx FPGAs the signal routing is implemented by a structure named Pro-

grammable Interconnection Point (PIP), which is a connection multiplexer that can be

programmed to connect one wire to another forming the routing required to implement a

specific net in the design (XILINX, 2018c).

The PIP specifies a configurable connection between a switch matrix input and a

switch matrix output, which is connected to a fixed unidirectional wire in turn connected

to the input of another switch matrix or to a pin (BOZZOLI et al., 2017). These switch

matrices can the interconnection blocks, which are similar to the SB in Fig. 3.2, the in-

terface blocks, which are similar to the CB in Fig. 3.2, or the dedicated clock distribution

blocks forming the clock tree or clock spine.

3.3 Memory blocks

Data storage resources on FPGAs go beyond the one bit flip-flops available on the

logic block. One of the first attempts to provide larger volumes of data memory inside

the FPGA consisted in reorganizing the memory already available at the logic block, for

instance the memory used to store the LUT, as an array to store user data.

In Xilinx products, the LUT memory inside the CLBs can be used as on-chip

ROM, single-port or dual-port RAM, shift registers (SR), stacks (last-in first-out, LIFO)

and buffers (first-in first out, FIFO) (XILINX, 1999; HSIEH et al., 1990). This resource,

also known as distributed RAM or LUTRAM, allows the use of LUT memory to store

end user data, but the memory available inside the logic block is limited to small arrays

that must be cascaded to build larger memory structures. Another limitation is that only

part of the device CLBs can be configured as LUTRAM.

Another kind of memory resource available in FPGAs is the RAM blocks, which

are dedicated memory arrays for data storage (Fig. 3.3). In Xilinx products these re-

sources are known as block RAM (BRAM) and UltraRAM (URAM).

In Xilinx 7 Series product family (XILINX, 2019) the BRAM size is 36× 210 bits

that could also be configured as two independent blocks of 18×210 bits (XILINX, 2012b).

Xilinx UltraScale+ product family introduced a new type of memory block named Ultra-

RAM (URAM) with 288 Kibit but these devices also have BRAM with the same size and

45

Figure 3.3 – Simplified view of dedicated memory array

Dual-port block memory

ADDRA

DIA

WEA

ENA
CLKA

ADDRB

DIB

WEB

ENB
CLKB

DOA

DOB

Port A

Port B

Source: Adapted from Xilinx (2013)

functionality of the 7 Series product family (XILINX, 2021e).

3.4 Arithmetic

Arithmetic operators can be implemented using combinational logic resources in

the logic block while propagating intermediate results through the general routing of the

signal fabric. Notwithstanding, FPGAs may have also specialized structures supporting

high-performance arithmetic computations.

A hardware structure commonly used by arithmetic operators is the carry chain

logic, passing information from one logic function (implemented in CLB) to another (Fig.

3.4). A typical use of carry chain is seen in addition operators but carry chain can also be

used in other cases, for instance in comparison operators.

Despite a small increase in area, the presence of dedicated carry chain logic can

improve significantly the computation performance. Also, there are different architectures

of carry chain, such as ripple carry, carry select and carry look-ahead, that present different

area requirements and performances.

Xilinx introduced dedicated carry logic circuit in its earlier products (XILINX,

1999; HSIEH et al., 1990). Xilinx 7 Series (XILINX, 2016) and UltraScale+ (XILINX,

2017a) product families supports fast carry look-ahead dedicated logic over LUTs in the

same slice and high-speed carry cascading between slices.

Other important resources for arithmetic operations are the dedicated digital signal

processing (DSP) blocks (Fig. 3.5) that increase performance in DSP applications with

46

Figure 3.4 – Simplified view of carry logic integrated with the logic block

I1

I2

I3

I4

CLK

LUT FF

Configurable logic

O

Carry chain logic

CI Carry logic CO

Carry look-ahead

Source: The Author

high data throughput, such as radio and image processing, while saving resources from

the logic blocks.

Figure 3.5 – Simplified view of dedicated DSP block
DSP block

+ –+
DO

D

C

A

Pre-adder ALU

×
Multiplier

B

Source: Adapted from Xilinx (2011)

Earlier Xilinx products featured a dedicated multiplier block operating on two’s-

complement signed 18 × 18 bits with 36 bits output (XILINX, 2007). Using this mul-

tiplier block, the implementation of multiply-accumulate (MACC) operations commonly

found in DSP required the addition stage to be implemented in the logic block. A major

improvement was introduced later with a DSP block a 48 bits adder block that could be

used independently, could be combined with the multiplier to implement fused MACC

operation, or could be used as a pre-adder to another DSP block (XILINX, 2008). This

DSP block could still operate in the legacy mode equivalent to the previous generation

of multiplier block. Along the different product families the adder inside the DSP block

became an arithmetic logic unit (ALU) extended with bit-wise logical operations like

AND, OR and XOR (XILINX, 2017b). In Xilinx 7 Series device the DSP block features

a 25 bits pre-adder, 25 × 18 bits multiplier and 48 bits ALU (XILINX, 2018a), while in

47

Xilinx UltraScale the DSP block was extended with a pre-adder of 27 bits and 27 × 18

bits multiplier, maintaining the 48 bits ALU (XILINX, 2021d). Another major improve-

ment was introduced in Xilinx Versal product family with a 27 × 24 bits multiplier, 58

bits ALU, complex operations and floating-point operations in 16 bits and 32 bits (IEEE

754™ binary16 and binary32 representation) (XILINX, 2021f).

3.5 Other features in modern FPGA devices

Modern FPGA devices are also implemented as systems-on-chip (SoC) along with

multicore or real-time microprocessors, typically a RISC (reduced instruction set com-

puter) microprocessor, graphics processing unit (GPU), arrays of specialized processing

architectures supporting very long instruction word (VLIW), and communication infras-

tructure such as network-on-chip (NoC), extensible interface for microcontroller bus ar-

chitecture (AMBA AXI), external DDR interface and external gigabit I/O (Fig. 3.6). As

stated by Mencer et al. (2020), everything is becoming an SoC.

Figure 3.6 – Simplified view of FPGA elements

+ –+
×

Gigabit I/O
blocks

I/O blocks

DDR I/O
block

General purpose
and real-time

multicore
microprocessors

AI manycore
VLIW

microprocessors

Memory
blocks

DSP blocks

Configurable
interconnect

NoC

Configurable
logic blocks

Source: The Author

As this works focus on Xilinx devices, Figure 3.7 summarizes main features avail-

able on recent devices families from this manufacturer.

48

Figure 3.7 – Recent Xilinx devices families
16 nm FinFET 7 nm FinFET28 nm planar

F
ie

ld
-p

ro
g

ra
m

m
ab

le
 G

at
e

A
rr

ay
(F

P
G

A
)

A
ll

P
ro

gr
am

m
ab

le
 S

ys
te

m
-o

n-
C

hi
p

(A
P

 S
o

C
)

A
d

ap
tiv

e
C

om
p

ut
e

 A
cc

el
er

at
io

n
 P

la
tfo

rm
(A

C
A

P
)

Ultrascale+

Gigabit serial
I/O

transceivers
(16−58 Gb/s)

Integer
DSP

SRAM-based
 FPGA

Versal Prime/Premium

Gigabit serial
I/O

transceivers
(32−112 Gb/s)

Integer and
Floating-point

DSP

Application
Processing
Unit (ARM
Cortex-A72)

Real-time
Processing
Unit (ARM

Cortex-R5F)

SRAM-based
 FPGA

SRAM-based
 FPGA

Zynq Ultrascale+

Gigabit serial
I/O

transceivers
(16−32 Gb/s)

Integer
DSP

Graphics
Processing

Unit (non
OpenCL)

Application
Processing
Unit (ARM
Cortex-A53)

Real-time
Processing
Unit (ARM

Cortex-R5/F)

7 Series

Gigabit serial
I/O

transceivers
(6−28 Gb/s)

Integer
DSP

SRAM-based
 FPGA

Zynq-7000

Gigabit serial
I/O

transceivers
(6−12 Gb/s)

Integer
DSP

Application
Processing
Unit (ARM
Cortex-A9)

SRAM-based
 FPGA

Versal AI Core/Edge

Gigabit serial
I/O

transceivers
(32 Gb/s)

AI Engine
(VLIW)

Network on
chip (NoC)

Integer and
Floating-point

DSP

Application
Processing
Unit (ARM
Cortex-A72)

Real-time
Processing
Unit (ARM

Cortex-R5F)

SRAM-based
 FPGA

DDR
Controller

DDR
Controller

DDR
Controller

DDR
Controller

AMBA AXI
Interconnect

AMBA AXI
Interconnect

AMBA AXI
Interconnect

AMBA AXI
Interconnect

Source: The Author

3.6 Configuration memory and bitstream

As mentioned previously, the FPGAs contain a set of basic elements such as logic

gates, registers, signal routers, arithmetic blocks and memory blocks that can be pro-

grammed, in the field, into a specific application.

The FPGA device can be seen as organized different planes (Fig. 3.8). Behind the

FPGA configurable elements there are bits, in the configuration memory, that programs

the desired behavior of the FPGA for the targeted application. Inside the FPGA, that

programming, or configuration, can be stored in different technologies, the most relevant

being antifuse, Flash and static RAM (SRAM).

The behavior of antifuse is the opposite of the fuse. An antifuse is a device that

initially does not conduct current (normally open) but can be programmed, or burned, to

conduct current, for instance by breaking a dielectric and forming a low-impedance con-

nection. As antifuses cannot be opened to its initial factory state, it can be programmed

only once and the regions of an antifuse-based FPGA that were programmed cannot be

49

Figure 3.8 – FPGA circuitry and data planes

Source: The Author

reprogrammed anymore. One example of antifuse-based FPGA is the Actel, now Mi-

crochip, SX-A product family (ACTEL, 2007).

As design errors cannot be corrected in antifuse-based FPGAs by reprogramming

the device, design verification and test procedures for antifuse-based FPGAs are more

rigorous than on the other technologies, becoming closer to the ASIC design flow and

potentially undermining the faster time-to-market and lower non-recurring engineering

(NRE) cost advantages of the FPGAs. Being unable to reprogram also makes it difficult

to upgrade and adapt to new functions, requirements or environment changes over the

product lifetime.

Another type of FPGAs store the configuration data in non-volatile, but repro-

grammable, Flash memory, therefore allowing upgrade and correction of errors in the

design. Example of Flash-based FPGAs are the Actel, now Microchip, ProASIC and

ProASIC3 product families (ACTEL, 2002; MICROSEMI, 2012).

Finally, in SRAM-based FPGAs the configuration data is stored in SRAM cells

that, being volatile, must be programmed each time the device is powered on. FPGA

products from Xilinx, Altera, now Intel, and NanoXplore are examples of SRAM-based

FPGAs.

The two leading manufacturers of FPGA, Xilinx and Altera, now Intel, adopted

the SRAM approach and, consequently, SRAM-based FPGAs had a prominent position in

the market over the last decades, with antifuse-based and Flash-based FPGAs alternating

in the second place in market share.

Flash-based FPGAs still may have an advantage over SRAM-based FPGAs in

terms of power consumption, but the production scale of SRAM-based FPGAs make it

competitive in costs. Another important advantage of SRAM-based FPGAs is the recon-

figuration and partial reconfiguration that allows the programmed design to be changed

quickly allowing the same hardware device to be retargeted to different tasks.

50

The configuration data is loaded into the SRAM-based FPGA in the form of a

sequence of bits, the bitstream, generated by the synthesis or configuration tools. The bit-

stream does not contain only the memory image of configuration data for the FPGA basic

elements but also other configuration commands and instructions for setup and mainte-

nance of the FPGA device, such as to configure encryption keys or to reset the device by

reloading the contents of flip-flips to its initial value.

In the case of Xilinx devices, the bitstream is a sequence of instructions and these

instructions may of may not have data arguments (Fig. 3.9). The data present in the bit-

stream can be broadly classified into two types, which are the values for configuration

registers and contents for the programming memory, or configuration data. The instruc-

tions to write the configuration registers will be followed by the new value of the regis-

ter as its argument. The instruction to write the configuration data will be followed by

the new contents of the programming memory, which can be a long sequence of several

megabytes.

Figure 3.9 – Xilinx FPGA bitstream instructions

Source: The Author

The Xilinx bitstream to program the FPGA, simplified in Fig. 3.10, typically starts

with a sequence of instructions to place the FPGA in a well known state and configuration

mode, for instance setting the values of configuration registers, followed by an instruction

to set the configuration data, which follows as an argument to that instruction, and then

terminates with another sequence of instructions to complete the configuration, check if

51

the bitstream was loaded correctly and begin the FPGA startup sequence to put the device

in execution mode (XILINX, 2012b, 2018b, 2021c).

Figure 3.10 – Example Xilinx bitstream to program FPGA

Bitstream preamble

No operation Write command register

… Write configuration data

Write warm boot address Write configuration data register

0x00000000 0xXXXXXXXX

Write command register 0xXXXXXXXX

Null command (does nothing) 0xXXXXXXXX

… 0xXXXXXXXX

Write configuration options 0xXXXXXXXX

0xXXXXXXXX …

Write device identification No operation

0xXXXXXXXX …

… Write command register

Write control options Begin startup sequence

0xXXXXXXXX No operation

No operation …

… Write command register

End configuration

No operation

…

Bitstream end

Actual memory image
configuring LUTs, flip-flops,
signal fabric, DSP, memory

blocks and other FPGA
elements.

Source: The Author

A bitstream or, in other words, a sequence of instructions, can also be loaded into

the FPGA not to write a new value into a configuration register but to read the current

value of the register. In the same way, a bitstream can be loaded into the FPGA not to

write but to read back its current configuration data.

The configuration data loaded by the bitstream may apply to the whole device,

for instance when the device is first powered on, or apply to only a region of the device,

for instance in the case of partial reconfiguration where only a region of the FPGA is

retargeted to another task or application. This configuration data also may contain not

only configuration for the logical elements and signal fabric, but also the initial values for

the memory blocks.

The Xilinx FPGA programming memory is divided logically in three types, which

are:

• The configuration memory (CRAM) for BRAM blocks, DSP blocks, CLB blocks

and signal fabric, among other elements,

• The initialization user data contents for BRAM blocks, and

52

• The special configuration for the CLB blocks.

It is worth noting that BRAM blocks may appear twice in the bitstream, once

to configure the BRAM block, for instance to define address and data width and if it will

operate as a single port or dual port memory, and again to load the initial user data content

of the memory. In the first case the configuration data goes into the CRAM memory region

for BRAM and in the second case the configuration data goes into the BRAM memory

region for BRAM.

In the same way, CLB blocks may appear twice in the bitstream, once to configure

the CLB block, for instance loading the content of the LUTs and defining the initial value

and reset value of flip-flops, and once to configure the scope (or contour, fence, seal-ring,

or bounding box) for global operations, for instance restricting the scope of a global reset

to only a specific region of the FPGA that was subject to partial reconfiguration. In the

first case the configuration data go into the CRAM memory region for CLB and in the

second case the configuration data go into the special configuration memory region for

CLB.

The Xilinx FPGA programming memory is also divided logically in rows, columns

and frames. Each type of FPGA element, for instance I/O blocks, CLB blocks, DSP

blocks, BRAM blocks defines a different type of column, as depicted in the simplified

example of Fig. 3.6. The number of rows and columns on the device depends on the

model or size of the part.

A frame is a sub-element into the column. The size of a frame is fixed and depends

on the device family. For instance, in Virtex-5 product family the frame size is 1,312 bits,

in 7 Series product family the frame size is 3,232 bits and in UltraScale+ product family

the frame size is 2,976 bits. For each device family, the number of frames in a column

depends of the type of the column but, for each type, it is also fixed.

One frame is the minimal unit of the programming memory that the instructions in

a Xilinx bitstream can read or write, therefore the size of the argument to the instruction

to write the configuration data into the FPGA will always be a multiple of the size of the

frame.

53

4 QUALIFICATION AND RELIABILITY IN SRAM-BASED FPGAS

There are many parameters used to characterize a circuit, function or application

implemented into SRAM-based FPGA under soft errors. Some of the terms and metrics

useful in the scope of this thesis will be defined briefly in the following, as well as its

specific uses in the context of SRAM-based FPGAs.

4.1 Qualification parameters

Three important parameters used to characterize a design are computing perfor-

mance, energy, and area.

The computing performance of a design can be expressed in terms of the execu-

tion time, operational frequency and the processed workload. The execution time can be

defined by the number of clock cycles to perform the operation. According to the FPGA

and design architecture, a maximum clock frequency is achieved. Another important pa-

rameter is the workload processed by the design, being the amount of data computed in

one execution.

In terms of reliability, the computing performance information is helpful to know

how much time the design is exposed to radiation-induced errors during the execution of

the implemented function.

Another dimension that is relevant to embedded environments with constrained

power supply, such as small satellites and devices powered by batteries or energy harvest-

ing, is energy consumption. This aspect also translates in heat that must be managed.

In SRAM-based FPGAs the power rating of a design is usually expressed in terms

of static power, which does not depend on the electronics switching, and dynamic power,

which depends on electronics switching and, therefore, in influenced by operating fre-

quency and processed data. In SoC devices, discussed briefly in Section 3.5, the power

consumption by other elements such as microprocessors and external DDR memory can

easily surpass the power required by the FPGA elements.

The total power required by a device can be measured or estimated by synthe-

sis tools. To obtain the total energy consumption one must take into account also the

processing time. A design may be constrained by both the total energy budget an the

instantaneous power that can be delivered or dissipated by the heat management.

In SRAM-based FPGAs, the area of an implemented design can be expressed in

54

terms of the number of used resources such as the LUTs, flip-flops, BRAM blocks, DSP

blocks, etc, that were defined along the Chapter 3. Is is also possible to express area in

terms of number of frames in the region of the configuration memory used to implement

the design. Since each memory frame is related to a specific row and column in the

device floorplan, as described in Section 3.6, it is possible to calculate the number of

configuration frames used by a design.

Another form of expressing area is in terms of number of essential bits that will

be seen in Section 4.3.

It is also import to characterize the failure events. Functional failures can be fur-

ther classified in terms of failure behavior. For instance, a functional failure can be clas-

sified as a silent data corruption (SDC) when the design reports a result but that result

is found to be incorrect. Failures can also be classified as hang, timeout of functional

interruption (SEFI) in the case the design does not report a result in the expected time.

Depending on the fault detection and mitigation techniques implemented on the

design, other diagnostic status may also be reported, for instance a detected unrecoverable

error (DUE).

Different grades of severity can also be attributed to the failures, for instance con-

sidering how many elements in the output vector are incorrect (BENEVENUTI et al.,

2018c) or the error magnitude relative to an acceptance threshold (RODRIGUES et al.,

2019; MAILLARD, Pierre et al., 2022).

4.2 Additional radiation and reliability metrics

While the static cross section, seen on Section 2.9 refers to the underlying device

or technology susceptibility to SEU, the dynamic cross section refers to the susceptibility

to functional failure in the end-user design or application. Dynamic cross section encom-

passes the underlying susceptibility to SEU, but also takes into account the logical and

temporal masking characteristic of the design.

The dynamic cross section (σfailure) conveys the probability of a particle generat-

ing a functional failure in the design, that is, chance of a particle generating a SEU in a

relevant bit of memory to the design or application, in a relevant moment in the processing

cycle.

Dynamic cross section (σfailure) can be used to compare designs susceptibility

for soft errors, computed as the ratio between the number of events of functional failure

55

(Nevents) and total particles fluence (Φ), as presented at Eq. 4.1. Using the dynamic cross

section, one can also estimate the soft error rate for failures (SERfailure) (Eq. 4.2) for the

design in a targeted environment with a given the particle flux (ϕenv).

σfailure =
Nevents

Φ
, (4.1)

SERfailure = σfailure × ϕenv. (4.2)

Another form of expressing the area susceptible do SEU is in terms of number of

critical bits as seen in Section 4.3.

Yet another metric often seen in reliability analysis is the mean time between

failure (MTBF), which is composed by the mean time to failure (MTTF) and the mean

time to repair (MTTR). However, for reparable systems with negligible MTTR, the MTBF

can be simplified to MTTF as in Eq. 4.3, for a targeted environment with a given the

particle flux (ϕenv). Known the execution time (texec) of one application processing cycle,

one can estimate the mean execution between failure (MEBF) as in Eq. 4.4. A metric

for mean workload between failure (MWBF) evaluates the amount of data (workload, w)

processed correctly by the design before the appearance of an output error (RECH et al.,

2014), as seen in Eq. 4.5.

MTBF =
1

σfailure × ϕenv

, (4.3)

MEBF =
MTBF

texec
, (4.4)

MWBF = MEBF × w. (4.5)

The metrics presented above are useful to describe the design reliability but may

be inadequate to compare different choices of implementation, especially in designs with

the presence of parallelism, redundancy or mitigations techniques were the failure rate

changes over time. A better alternative in this case may be to look at the reliability, or

survival, curves of the design.

Given a set of Nevents observed failure events i for which are known the time

telapsed,i, or the fluence Φi, of occurrence of each failure, we can compute the empirical

cumulative distribution function, or failure curve, as in Eq. 4.6.

56

F (t) =
1

Nevents

Nevents∑
i=1

1{telapsed,i≤t}, (4.6)

F (Φ) =
1

Nevents

Nevents∑
i=1

1{Φi≤Φ},

1{P} =

1 if P

0 if ¬P .

For a varying flux ϕ, the fluence Φ must be integrated over time and the Eq. 4.6

must be applied in terms of particle fluence F (Φ). Alternatively, for a stable flux in the

experimental environment, known the average particle flux ϕ of the experiment we can

simplify to F (Φ) = F (t)× ϕ.

Being the reliability the reciprocal of failure, we can then compute the reliability

curves R(t) and R(Φ) as in Eq. 4.7.

R(t) = 1− F (t), (4.7)

R(Φ) = 1− F (Φ).

This is also depicted in the conceptual scheme of Fig. 4.1.

Figure 4.1 – Construction of the empirical reliability curve
Test 1
Test 2
Test 3

Test N
...

Φ1
Φ2

Φ3

ΦN

F (Φ)= 1
N events

∑
i=1

N events

1{Φ i⩽Φ}

R(Φ)=1−F (Φ)

Φ

F
(Φ
)

R
(Φ
)

Φ
Source: The Author

57

It is noteworthy that, known the particle flux ϕenv in the targeted radiation envi-

ronment, the reliability curve R(Φ) can be translated to R(t) at that specific environment.

The analysis of the reliability curves allows the comparison of alternative imple-

mentations of the design in zones of higher reliability, for instance where R(Φ)≥ 90% or

R(Φ)≥ 99%, where the behavior of the design may be very different from its behavior at

lower reliability zones characterized by the MTTF and its derived metrics.

Given a target reliability requirement, we can look at the reliability curves ob-

tained from radiation experiments to identify the maximum time the design under test

can be exposed to radiation while sustaining that target reliability. This metric we called

as Mission Time (MT) for the given reliability requirement, where the time can also be

expressed in terms of particle fluence.

The MT can be extracted directly from the empirical reliability curves R(Φ) or

R(t), obtained from radiation experiments, but it could also be obtained from the equa-

tion of a fitted model of probability distribution function. For instance, for a reliability

curve described by a Weibull distribution parameterized by scale parameter α, a shape

parameter β and an offset parameter γ in the form of Eq. 4.8, the MT sustaining a target

reliability R(t) ≥ r could be estimated as in Eq. 4.9.

R(t) = exp

[
−
(
t− γ

α

)β
]
, (4.8)

t = γ + α(− ln r)
1
β . (4.9)

In the context of fault injection, Velazco et al. (2010) introduced the metric of error

rate from fault injection τfailure which, similar to the dynamic cross section, is computed

as the ratio between the number of observed failure events NFI and the number of faults

injected ΦFI (Eq. 4.10).

Known the device underlying static cross section σSEU (Eq. 2.2), and following

the model from (VELAZCO et al., 2010), one can predict the dynamic cross section as

σfailure as in Eq. 4.11. For generality we introduced a proportionality constant κ that

accounts for other parameters such as fault injection density.

τfailure =
NFI

ΦFI

, (4.10)

σfailure = τfailure × σSEU × κ. (4.11)

58

4.3 Single-event memory upsets in SRAM-based FPGAs

As seen along the Chapter 3, the configuration elements of the FPGA have many

possible configurations and not all elements are required for every design. In modern

SRAM-based FPGAs, the configuration memory ranges from a few megabits to over a

gigabit and only the subset of these bits configuring the resources used by the specific

application programmed into the FPGA is relevant.

When using standard grade commercial grade off-the-shelf (COTS) devices, the

huge amount of SRAM cells behind every configurable elements in SRAM-based FPGAs

makes it specially susceptible to SEUs (Fig. 4.2). In ASIC devices and other FPGA

technologies, such as antifuse and Flash, only the end user data is under risk of memory

upsets. Besides the user data, in SRAM-based FPGAs an upset in the configuration mem-

ory can effectively change the circuit implemented in the FPGA and cause a functional

failure.

Figure 4.2 – SEUs on FPGA configuration memory and user data

Flip-
flop

Configuration Memory – SEU persistent until reconfiguration or scrubbing

C

C C
C C C C

BRAM

User Data Memory – SEU discarded on next write of user data

LUT

Configurable Logic Block Signal Fabric
Switch Boxes

Block RAM

Source: Adapted from Kastensmidt et al. (2004)

The number of configuration bits effectively required to realize a design mapped

in a certain FPGA device is called essential bits (XILINX, 2012a).

Disregarding eventual fabric short circuits on unused parts of the FPGA that could

provoke over-current or other perturbations, an SEU in any non-essential bit has a lower

likelihood of creating an error or a functional failure of the device.

In fact, even a SEU in an essential bit may not cause a functional failure in the

design implemented in the FPGA. This occurs for several reasons, including the logical

masking, temporal masking, and the effective data input to the application.

For instance, some fault mitigation technique may be implemented in the design,

such as triple modular redundancy (TMR) or Hamming codes, masking the effect of the

SEU. A SEU can also damage some part of the design or some piece of user data after

59

it was already used to compute the result. Also, some part of the design damaged by a

SEU may not be activated for a given set of input data. In the case of machine learning

applications, even errors on some output data element may not cause a functional failure.

As an example, a data element in the output vector of a neural network may be incorrect

but, as far as that error does not change the ranking of the true output element, the neural

network classification may still be correct.

There may be, however, a few configuration memory bits for a specific application

that will surely lead to a functional failure upon an SEU. These bits are known as critical

bits and are an important factor for the design reliability.

For typical designs, it is expected that only 5% to 10% (XILINX, 2021b) of the

essential bits will be critical bits. The critical bits can generally be seen as a subset of the

essential bits, while the essential bits can be seen as a subset of the configuration memory

bits. This relationship is represented in Fig. 4.3. However, there are situations where the

cumulative effect of SEUs in non-critical bits can also cause functional failure.

Figure 4.3 – Relationship between configuration memory, essential and critical bits

Essential Bits

Device
Configuration Bits

Critical Bits

Source: Adapted from Xilinx (2012a)

As discussed in the previous section, the knowledge about the device underlying

reliability metrics, such as the static cross section (σSEU), can be combined with other

qualification and reliability metrics extracted at higher levels of the design to estimate the

behavior in specific conditions of operation of specific environments.

There are in the literature several studies of the reliability of SRAM-based FPGA

products from Xilinx, which are of main interest in this thesis.

Lee et al. (2014) present the static cross section for a Xilinx Kintex-7 FPGA. Al-

though not exactly the same devices used here, the Kintex-7 is still inside the same family

of Xilinx 7 Series and Zynq-7000 devices manufactured in 28 nm planar technology. The

chart in Fig. 4.4 presents the static cross section for CRAM and BRAM under heavy ions

at different LETs. The authors also demonstrate the occurrence of MCUs in the device.

The same device is also tested by M. J. Wirthlin et al. (2014) in different facilities for

60

neutrons, protons and heavy ions irradiation, presenting statistics about the occurrence of

MBUs inside the same CRAM memory frame or in adjacent frames.

Figure 4.4 – Heavy-ions cross section for Xilinx Kintex-7

(a) SEU cross section at CRAM (b) SEU cross section at BRAM

Source: Lee et al. (2014)

The Xilinx Zynq-7000 (model Z020) was tested under heavy ions by Tambara

et al. (2015a), presenting the static cross section for CRAM, BRAM and other FPGA

elements. The authors also discuss the occurrences of MBUs. Figure 4.5 presents static

cross section for CRAM and BRAM, which is comparable to Fig. 4.4. The same device

is tested by Tambara et al. (2015b) under heavy ions and protons in another irradiation

facility.

Figure 4.5 – Heavy ions cross section for Xilinx Zynq-7000 Z020

(a) SEU cross section at CRAM (b) SEU cross section at BRAM

Source: Tambara et al. (2015a)

Fabero et al. (2020) tested a Xilinx Artix-7 FPGA under fast neutrons, with de-

tailed statistics and geometric description of MBU artifacts in the CRAM. Figure 4.6

presents the fast neutron cross section for SUB and MBU, with different number of bit-

flips per event, aside static cross section for flip-flops elements in CLB blocks and pre-

dicted cross section by as modeling and simulation tool (MUSCA-SEP3).

61

Figure 4.6 – Neutron cross section for Xilinx Artix-7

Source: Fabero et al. (2020)

Another device of interest for this thesis is the Xilinx UltraScale+, which is man-

ufactured in 16 nm FinFET technology.

Pierre Maillard et al. (2017) tested a Xilinx UltraScale+ MPSoC device under

proton and alpha particle, presenting static cross section and comparing with values from

literature. The authors also compare the Xilinx UltraScale+ with the Xilinx Kintex-7 and,

according to the authors, the UltraScale+ 16 nm FinFET device presents a reduction of

around 40× in the static cross section when compared with the previous 7 Series de-

vice 28 nm planar device. This improvement, however, is a consequence not only of the

technology change but also of the modifications on the design by the manufacturer.

The Xilinx UltraScale+ MPSoC was also tested by Glorieux et al. (2018) under

heavy ions. Fig. 4.7 presents static cross section for CRAM and BRAM under different

conditions of operating voltage.

Figure 4.7 – Heavy ions cross section for Xilinx UltraScale+ MPSoC

1.0x10-13

1.0x10-12

1.0x10-11

1.0x10-10

1.0x10-9

0 5 10 15 20 25 30 35

C
R

A
M

 S
E
U

 X
S
 (

cm
²/

b
it

)

LET (MeV.cm²/mg)

Vmin - UCL
Vnom - UCL
Vmax - UCL

Vmin - CERN
Vnom - CERN
Vmax - CERN 1.0x10-11

1.0x10-10

1.0x10-9

0 5 10 15 20 25 30 35

B
R

A
M

 S
E
U

 X
S
 (

cm
²/

b
it

)

LET (MeV.cm²/mg)

Vmin - UCL
Vnom - UCL
Vmax - UCL

Vmin - CERN
Vnom - CERN
Vmax - CERN

(a) SEU cross section at CRAM (b) SEU cross section at BRAM

Source: Glorieux et al. (2018)

Davis et al. (2019) present results from proton irradiation of a Xilinx UltraScale+

RFSoC device of the family. Fig. 4.8 shows static cross section for CRAM and BRAM

in this device.

Azimi et al. (2022) also tested a Xilinx UltraScale+ MPSoC device under proton,

62

Figure 4.8 – Proton cross section for Xilinx UltraScale+ RFSoC

1.0E-19

1.0E-18

1.0E-17

1.0E-16

0 20 40 60 80 100 120 140 160 180 200

C
ro

ss
-S

e
ct

io
n

 [
cm

2
]

Proton Energy [MeV]

1.0E-16

1.0E-15

1.0E-14

0 20 40 60 80 100 120 140 160 180 200

C
ro

ss
-S

e
ct

io
n

 [
cm

2
]

(a) SEU cross section at CRAM (b) SEU cross section at BRAM

Source: Davis et al. (2019)

together with a Xilinx Zynq-7000 Z020 for comparison. Figure 4.9 presents the CRAM

static cross section for these two devices. Another contribution of Azimi et al. (2022)

is to present an inventory and geometric description of MBU artifacts in the CRAM,

although it still lacks statistical information about the frequency of occurrence of each

MBU geometry.

Figure 4.9 – Proton cross section for UltraScale+ MPSoC and Xilinx Zynq-7000 Z020

1.00E 17

1.00E 16

1.00E 15

1.00E 14

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00

28 nm CMOS Zynq 16 nm FinFET UltraScale+

Cr
os
s
se
c
on

[c
m

2 /
bi
t]

Energy [MeV]

Source: Azimi et al. (2022)

Finally, Chang Cai et al. (2019) presents results from tests in a UltraScale+ Kintex

device using laser and heavy ions, with cross section for SBU and MBU with different

numbers of bit-flips. The authors, however, do not provide the geometric description of

the MBU artifacts and the frequency of occurrence of each artifact.

63

5 TEST AND FAULT INJECTION METHODOLOGY

5.1 Fault injection as a reliability assessment tool

The use of commercial grade SRAM-based FPGAs in critical cyber-physical re-

quires the characterization of the reliability of the devices and applications, and, occa-

sionally, the use of proper mitigation techniques for fault tolerance coping with reliability

requirements on the target environment.

On the engineering process, that evaluation of reliability may be part of the test

methodologies and one of the techniques used in this scenario is the fault injection.

Provoking faults in a controlled manner in memory cells of SRAM-based FP-

GAs to evaluate reliability can be done in several ways, such as accelerated irradiation

on particle generators, accelerators and radiation sources, use of laser beams, or direct

manipulation of the memory content emulating the radiation effects.

Fault injection can be used to verify the resilience against errors as well as safe

behavior in case of errors and is required. For instance, fault injection is present in the

IEC 61508 (IEC, 2010) international standard for functional safety on safety related sys-

tems and the ISO 26262 (ISO, 2018) international standard for functional safety on road

vehicles (ISLAM et al., 2013; VEDDER, 2015).

For SRAM-based FPGAs, there are broadly three main branches of fault injection

techniques:

• Physical fault injection use laser beams, radiation sources or particle accelerators

to induce errors in real hardware; some drawbacks of this approach are high cost

and availability of test facilities; this approach can also cause permanent damages

to the device; depending on the radiation flux or device area this approach may

require a long test time in controlled environments.

• Emulation-based fault injection also uses real hardware but explore debug struc-

tures and test pins to introduce errors in the device, for instance emulating the ef-

fects of radiation; emulation-based fault injection can overcome the cost and avail-

ability drawbacks of hardware-based fault injection because it does not require com-

plex facilities; as the application run in the real hardware at normal speed, there is a

small impact on test time while the fault rate can be controlled by the tester making

this approach potentially faster than hardware-based.

64

• Simulation-based fault injection use a model of the hardware or circuit to sim-

ulate the influence of faults, offering detailed observability of its effects; as it can

be executed in software only, simulation may have a lower cost than the previous

approach and can be used even in very early stages of engineering in the absence of

real hardware; however a major drawback of this approach is the very low speed.

In this thesis, we focus on the emulated fault injection on SRAM-based FPGAs,

more specifically the Xilinx 7 Series and UltraScale+ families of devices, that allows

the direct manipulation of SRAM memory through communication interfaces originally

designed for test and configuration of the FPGA.

Another relevant aspect of fault injection is the definition of the fault space, can

be seen as thee main dimensions:

• Injection location refers to the positions in the circuit, e.g. wires, or device mem-

ory, e.g. bits or bit groups, where the fault will be injected; in SRAM-based FPGAs

it includes notably all the configuration memory bits behind the FPGA configurable

elements and all the block memory block bits holding end user data.

• Fault type include the kind of effect, for example stuck-at zero, stuck-at one or bit-

flip, if it is single or multiple bit-flips, or even representative abstraction of physical

phenomena that can change the fault susceptibility or profile, such as operation

at lower voltages or emulation of a particular radiation environment with specific

particle types and energies.

• Injection time represents each point in time, during the application processing cy-

cle, where the fault can occur and affect the device; this aspect is specially relevant

in the case of end user data since faults may be subject to temporal masking; in

SRAM-based FPGAs without any healing technique applied to the configuration

memory the faults are mostly persistent and the injection time becomes less rele-

vant as persistent latent faults may be evidenced in the next processing cycles.

Emulation and simulation-based techniques give a good control of these aspects

but they are hard to control in hardware-based techniques, for instance using radiation.

Four desired properties are enumerated by Quinn et al. (2015) for emulation-based

fault injection frameworks for SRAM-based FPGAs:

• Have access to the internal memory element where the faults will be injected.

65

• Capacity to stimulate or execute the application or circuit implemented in the de-

vice.

• Ability to observe the processing cycle results and detect the occurrence of errors

or functional failures.

• Capacity to clear faults and return the device to a known good state.

5.2 Emulation-based fault injection for SRAM-based FPGAs

Antoni et al. (2000) report the implementation of fault injection in Xilinx XC4000

and Virtex devices by modifying the bitstream file before loading it into the FPGA. On

Xilinx Virtex devices, where partial reconfiguration is supported, the bitstream file can

contain the smaller memory image for partial reconfiguration of the regions of interest

while on previous devices the whole FPGA must be reconfigured, hence with a larger

bitstream file and longer communication time.

Lima et al. (2001) report results of fault injection on Xilinx Virtex devices using a

fault injector developed by the Los Alamos National Laboratory. In this implementation

faults were injected into the configuration memory of the FPGA from an external source

using the Xilinx MultiLINX cable (JOHNSON et al., 2002).

A fault injection testbed for Xilinx Virtex devices was presented by Johnson et

al. (2003), implemented by researchers from Brigham Young University (BYU) and Los

Alamos National Laboratory. This implementation was designed to manipulate the bit-

stream introducing bit-flips to simulate the effect of SEUs in the configuration memory

of the FPGA and explored the feature of partial reconfiguration of the FPGA by program-

ming only the configuration memory frame modified by the fault injection (JOHNSON

et al., 2002). In this implementation two FPGA devices were programmed with the same

design, only the golden bitstream was programmed with the clean bitstream while the

device under test was programmed with the faulty bitstream. The functional failure di-

agnosis was obtained by off-chip comparison of the results provided by the two devices

given the same stimulus vector.

Another implementation of fault injector at BYU is the XRTC Virtex-5 Fault In-

jector (XRTC-V5FI) (HARWARD et al., 2015). This implementation used one FPGA as

fault injector that manipulated the configuration memory of a second FPGA, the device

under test, using the Xilinx SelectMAP configuration access parallel port. The authors

66

reports an increase in the fault injection speed by using the SelectMAP port but it is not

clear if this improvement is due to programming at a single frame level, instead of pro-

gramming the whole bitstream, or only due to the higher speed of the parallel port.

One of the last implementations of fault injection on BYU is the TURTLE fault

injection platform (THURLOW et al., 2019) that explores the same principle of partial

reconfiguration and was implemented to Xilinx 7 Series product family, also using two

FPGAs and off-chip diagnosis. Although partial reconfiguration could allow the imple-

mentation of both the design under test and golden design in the same physical device, the

authors indicates that the implementation in two independent FPGA and using off-chip

diagnosis have the advantage to avoid any risk of a fault injection in the design under test

disrupt the test instrumentation and control logic.

Another approach is presented by Sterpone et al. (2007) exploring the Xilinx In-

ternal Configuration Access Port (ICAP) of the Xilinx Virtex-II to modify the contents of

the configuration memory from within the FPGA.

Villalta et al. (2014) follow a similar approach by using the Xilinx Processor Con-

figuration Access Port (PCAP) of the Xilinx Zynq-7000 device to modify the contents

of the configuration memory. The PCAP interface is also used by (GOMEZ-CORNEJO

et al., 2017) to modify the contents of the memory blocks (BRAM). The PCAP inter-

face, however, is available only in the Xilinx Zynq SoC devices, limiting the range of the

devices where the fault injection can be used.

Napoles et al. (2007) presents the FT-UNSHADES system (Fault Tolerant - UNi-

versity of Sevilla HArdware DEbugging System) for fault injection in Xilinx Virtex-II

devices using the Xilinx SelectMAP configuration access parallel port. Two FPGA de-

vices are used in this implementation, one used to control the fault injection following

commands from the campaign coordinating computer and to communicate at high-speed

SelectMAP interface with the second FPGA where the design under test is implemented.

This implementation used on-chip comparison to diagnosis of functional failures, with

both the golden design and design under test implemented into the same FPGA. A char-

acteristic reported to this fault injection is the synchronization and timing functions that

supports injection of fault in specific points in time and also the injection of multiple

bit-flips associated with the same SEU (NAPOLES et al., 2008). An improved version

FT-UNSHADES2 is presented by Mogollon et al. (2011), targeting the Xilinx Virtex-5

devices and still using the SelectMAP interface in the two FPGA scheme.

Alderighi et al. (2007) present the FLIPPER fault injection platform targeting Xil-

67

inx Virtex II devices. This fault injection platform also uses two FPGAs, one managing

the overall fault injection campaign and other implementing the design under test. The

tool can inject faults sequentially, at random positions or at arbitrary positions indicated

by the user. The tool can also inject single bit-flips or two adjacent bit-flips in a memory

frame. A given set of test vectors is exercised after each fault injected. Faults injected can

be accumulated allowing to obtain the probability distribution of the number of randomly

injected faults to cause a functional failure.

5.3 UFRGS fault injection tool for Xilinx FPGAs

The emulation-based fault injection engine adopted in this thesis was developed

in-house at the Universidade Federal do Rio Grande do Sul (UFRGS, Federal University

of Rio Grande do Sul) and is built around the Xilinx Internal Configuration Access Port

(ICAP).

This fault injector have a long line of development. One implementation of fault

injector is presented by Nazar et al. (2012), targeting Xilinx Virtex-5 devices. Both the

design under test and fault injection instrumentation are implemented inside the same

FPGA with the system composed of five modules:

• The design under test, which interfaces with a test vector.

• The design controller that contains parameter for the design under test, the set of

test vectors and the golden results.

• The reporting module that transmits diagnose information to the campaign coordi-

nating computer.

• The fault injection module that communicates with the Xilinx ICAP interface to

read and write the configuration memory frames.

• The system controller that coordinates the overall campaign process of fault injec-

tion, diagnosis of the design under test, reporting of diagnosis and fault clean-up.

To avoid risk of faults being injected over the fault injector itself, the placement

of both the fault injection module, the design under test and other modules is controlled

by floorplanning constraints at the synthesis tool. The author defines the area under test

68

(AUT) as floorplan region of interest for fault injection and the logical modules of the

circuit under test (CUT) must be contained into the AUT.

This implementation injected single faults in random locations of the AUT, with

the fault location randomized inside the fault injection instrumentation at the FPGA by a

pseudo-random number generator.

The fault injection process executed autonomously for a desired amount of faults

to be injected while reporting the processing results of the design under test. The faults

injected were not accumulated over time and, consequently, the information obtained was

a sample of the design sensitive bits and not a probability distribution for accumulated

faults.

Leipnitz et al. (2016) adapted the Xilinx Virtex-5 fault injector from Nazar et al.

(2012) in another configuration with the FPGA board as a PCI-Express peripheral of

the campaign controlling computer, therefore achieving higher speeds for data transfer of

configuration and diagnosis. This implementation simplified the design controller module

and eliminated the reporting module with the host computer communicating directly to

the design controller through the high speed of the PCI-Express interface to send the

stimulus vectors and collect processing results.

Tarrillo et al. (2014) presented another implementation of the fault injector for

Xilinx Virtex-5 devices with some of the fault injection instrumentation implemented by

a Xilinx PicoBlaze microcontroller. In this implementation, instead of using a pseudo-

random number generator to define the fault locations, the fault injection followed a

database of predefined fault locations obtained from radiation experiments and stored

in an external auxiliary memory. Another implementation from Tarrillo et al. (2015), still

supported by the Xilinx PicoBlaze microcontroller, had as alternative both using the exter-

nal fault location database or injecting faults on randomized memory addresses obtained

from a pseudo-random number generator.

Tonfat et al. (2016) adapted the fault injection mechanism from Tarrillo et al.

(2015) to a Xilinx Artix-7 device to inject faults exhaustively on the whole configura-

tion memory of a region of interest in the device. In this implementation there is no

system controller module inside the FPGA coordinating the fault injection campaign. In-

stead, the fault injection module communicates with a campaign coordinating computer

through a serial communication interfaces and wait the user commands for fault injection

containing the fault location.

This implementation used on-chip comparison to diagnose functional failures with

69

the design under test and a design controller implemented in the same FPGA. For each

fault injection command from the host computer, the fault injector module activated the

design controller to exercise the design, collect the processing results and compare with

the golden results to obtain a diagnose that was returned to the fault injector module and,

ultimately, transmitted blindly to the host computer. It was up to the host computer to

interpret the diagnosis information from the design controller.

The implementation from Tonfat et al. (2016), however, was used only to inject

faults sequentially covering the whole region of interest in the FPGA floorplan with each

fault injected being cleaned-up before injecting another fault. Another characteristic was

that faults were injected before the activation of the design controller and, consequently,

before the beginning of the processing cycle of the design under test.

70

Part II

Characterization of the Xilinx 7 Series

devices

71

6 DISCOVERING XILINX 7 SERIES SRAM-BASED FPGA

6.1 Constructive structure of Xilinx 7 Series devices

The FPGA devices investigated in this thesis are the Xilinx Zynq-7000 SoC and

7 Series manufactured in 28 nm technology by the TSMC HPL (high-performance, low-

power) process (Fig. 6.1) that uses HKMG (high-k metal gate) planar transistors (XIL-

INX, 2021h). This technology is relatively mature, available since 2011 (TSMC, 2018),

with newer devices of this manufacturer using 14 nm (XILINX, 2015c) and 7 nm (XIL-

INX, 2020b) technologies with FinFET transistors.

Figure 6.1 – Electronic microscopy of Xilinx 7 Series Kintex-7 device

Source: Dixon-Warren (2012)

The Xilinx Zynq-7000 devices can be divided in two main parts (Fig. 6.2) of

processing system (PS) and programmable logic (PL).

The processing system (PS) includes several communication peripherals, memory

interfaces, and application processing units (APU), which are Arm Cortex-A9 processors

based on ARMv7-A 32 bits core. The programmable logic is simply the SRAM-based

FPGA as found in other devices of the Xilinx 7 Series product family.

The Zynq-7000 device models XC7Z020 and XC7Z030 are of special interest here

because they were tested under radiation (Section 8.1, 8.2 and 8.3) and laser (Section 7.2),

respectively. According to the manufacturer (XILINX, 2021h), the model XC7Z020 has

the programmable logic (PL) based on the same logic of Xilinx Artix-7 FPGAs while the

XC7Z030 is based on Xilinx Kintex-7.

Different devices based on the Xilinx Advanced Silicon Modular Block (ASMBL)

technology share the implementation for the different FPGA columns (Fig. 6.3a), includ-

72

Figure 6.2 – Xilinx Zynq-7000

Source: Xilinx (2018d)

ing devices in the stacked silicon interconnect (SSI) assembly (Fig. 6.3b). Figure 6.4

shows a representation of the internal organization of some of these columns (note that

the GRM block, general routing, refers to the switch matrices as discussed in Section 3.2).

Figure 6.3 – Xilinx 7 Series ASMBL construction and stacked SSI assembly

Column
Based

ASMBL
Architecture

Feature Options

Domain A Domain B Domain C

Applications Applications Applications

Logic (SLICEL)

Logic (SLICEM)

DSP

Memory

Clock Management Tile

Global Clock

High-performance I/O

High-range I/O

Integrated IP

Mixed Signal

Transceivers

65 nm Silicon Interposer

Package Substrate

BGA Solder Balls

28 nm FPGA Die (SLR)

High-Bandwidth,
Low-Latency Connections

Microbumps

Through-Silicon Vias (TSV)

C4 Bumps

SLR3 SLR2 SLR1 SLR0

(a) ASMBL construction (b) SSI assembly

Source: Xilinx (2016, 2012c)

Based on these characteristics of the Xilinx ASMBL constructive technology, it

is expected that geometry information for the different FPGA columns of CLB, DSP and

BRAM extracted from Zynq-7000 XC7Z030 shall also apply to Zynq-7000 XC7Z020,

Artix-7 and Kintex-7 devices.

73

Figure 6.4 – Different kinds of Xilinx 7 Series building blocks

Source: Xilinx (2020a)

6.2 Logical organization of the device

The information about Xilinx Zynq-7000 and 7 Series devices can be obtained

from the Xilinx Vivado synthesis tool (XILINX, 2015b) while physical dimensions of the

die can be obtained from the packaging documentation (XILINX, 2021a).

As an example, the table in Fig. 6.5 presents the content of the first physical

columns for three devices in the same clock region. Despite two devices being a SoC, at

the clock region presented we have only PL columns, including I/O block (IOB), clock

management (CMT), clock distribution (HCLK), logic blocks (CLB), memory blocks

(BRAM) and DSP blocks (DSP).

Although the floorplan fragment presented in the example of Fig. 6.5 is quite

similar for the three devices, it is worth noting that for the Artix-7 XC7A100T device

the floorplan columns 10 and 14 had the logic blocks holding memory slices (CLBLM,

SLICEM) replaced by logic blocks for logic only slices (CLBLL, SLICEL), meaning

that these Artix-7 XC7A100T columns cannot be used to implement LUTRAM memory

blocks as discussed in Section 3.3 and may have a smaller circuit area. Besides that, the

three devices have a spacer (VBRK) in columns 9, 18 and 29 suggesting that these spacer

columns do not have, necessarily, the same physical width at the die.

The study of the Xilinx 7 Series FPGA structure can lead to information about the

geometric proportions and physical location of the configuration memory (CRAM) and

block memory (BRAM) in the die. With this, and considering the nature of the ASMBL

74

Figure 6.5 – Fragment of the floorplan content in different Xilinx devices
Floorplan Physical Column CRAM Frame Column XC7Z030SBG485 XC7Z020CLG485 XC7A100TCSG324

X0Y1 X0Y0 X0Y1
0 LIOB33 LIOB33 LIOB33

HCLK_IOB HCLK_IOB HCLK_IOB
1 LIOI3 LIOI3 LIOI3

HCLK_IOI3 HCLK_IOI3 HCLK_IOI3
2 L_TERM_INT L_TERM_INT L_TERM_INT

HCLK_TERM HCLK_TERM HCLK_TERM
3 IO_INT_INTERFACE_L IO_INT_INTERFACE_L IO_INT_INTERFACE_L

HCLK_INT_INTERFACE HCLK_INT_INTERFACE HCLK_INT_INTERFACE
4 INT_L INT_L INT_L

HCLK_L HCLK_L HCLK_L
5 INT_R INT_R INT_R

HCLK_R HCLK_R HCLK_R
6 INT_INTERFACE_R INT_INTERFACE_R INT_INTERFACE_R

HCLK_INT_INTERFACE HCLK_INT_INTERFACE HCLK_INT_INTERFACE
7 CMT_PMV CMT_PMV CMT_PMV

CMT_FIFO_R CMT_FIFO_R CMT_FIFO_R
HCLK_FIFO_L HCLK_FIFO_L HCLK_FIFO_L

8 CMT_TOP_R_UPPER_T CMT_TOP_R_UPPER_T CMT_TOP_R_UPPER_T
CMT_TOP_R_UPPER_B CMT_TOP_R_UPPER_B CMT_TOP_R_UPPER_B
CMT_TOP_R_LOWER_T CMT_TOP_R_LOWER_T CMT_TOP_R_LOWER_T
CMT_TOP_R_LOWER_B CMT_TOP_R_LOWER_B CMT_TOP_R_LOWER_B

HCLK_CMT HCLK_CMT HCLK_CMT
9 VBRK VBRK VBRK

HCLK_VBRK HCLK_VBRK HCLK_VBRK
10 2 CLBLM_L CLBLM_L CLBLL_L

HCLK_CLB HCLK_CLB HCLK_CLB
11 INT_L INT_L INT_L

HCLK_L HCLK_L HCLK_L
12 INT_R INT_R INT_R

HCLK_R HCLK_R HCLK_R
13 3 CLBLM_R CLBLM_R CLBLM_R

HCLK_CLB HCLK_CLB HCLK_CLB
14 4 CLBLM_L CLBLM_L CLBLL_L

HCLK_CLB HCLK_CLB HCLK_CLB
15 INT_L INT_L INT_L

HCLK_L HCLK_L HCLK_L
16 INT_R INT_R INT_R

HCLK_R HCLK_R HCLK_R
17 5 CLBLM_R CLBLM_R CLBLM_R

HCLK_CLB HCLK_CLB HCLK_CLB
18 VBRK VBRK VBRK

HCLK_VBRK HCLK_VBRK HCLK_VBRK
19 6 BRAM_L BRAM_L BRAM_L

HCLK_BRAM HCLK_BRAM HCLK_BRAM
20 BRAM_INTERFACE_L BRAM_INTERFACE_L BRAM_INTERFACE_L

HCLK_INT_INTERFACE HCLK_INT_INTERFACE HCLK_INT_INTERFACE
21 INT_L INT_L INT_L

HCLK_L HCLK_L HCLK_L
22 INT_R INT_R INT_R

HCLK_R HCLK_R HCLK_R
23 7 CLBLM_R CLBLM_R CLBLM_R

HCLK_CLB HCLK_CLB HCLK_CLB
24 8 CLBLM_L CLBLM_L CLBLM_L

HCLK_CLB HCLK_CLB HCLK_CLB
25 INT_L INT_L INT_L

HCLK_L HCLK_L HCLK_L
26 INT_R INT_R INT_R

HCLK_R HCLK_R HCLK_R
27 INT_INTERFACE_R INT_INTERFACE_R INT_INTERFACE_R

HCLK_INT_INTERFACE HCLK_INT_INTERFACE HCLK_INT_INTERFACE
28 9 DSP_R DSP_R DSP_R

HCLK_DSP_R HCLK_DSP_R HCLK_DSP_R
29 VBRK VBRK VBRK

HCLK_VBRK HCLK_VBRK HCLK_VBRK
30 CLBLM_L CLBLM_L CLBLM_L

HCLK_CLB HCLK_CLB HCLK_CLB

Source: The Author

construction, we expect that gathering geometric information for a determined region of

the die, for instance with laser or heavy ions microbeam, we could apply that dimensions

and internal organization of the bits to all other columns of the same time at the FPGA

floorplan.

Although the FPGA devices contains simple wiring columns (FEEDTHRU) and

spacer columns (VBRK and VFRAME), with potentially variable widths, its is plausible

that the knowledge about the memory array geometry, density and location of the bits in

CLB, BRAM and DSP columns be enough to ensure a spatial distribution uniformity at

the emulation-based fault injection and to verify if occasional differences in density of

location of the bits have any impact at the reliability evaluation of the designs under fault

injection.

75

6.3 Organization of the configuration and user data memory

As mentioned in Section 3.6, the configuration (CRAM) and user data memory

(BRAM) in Xilinx 7 Series devices are organized in frames of 3,232 bits grouped in rows

and columns (XILINX, 2018b).

The frame is arranged vertically and have the same height of the row and the

column. Different device model have different number of rows.

The Zynq-7000 XC7Z020 (Fig. 6.6a), for instance, has three rows while the Zynq-

7000 XC7Z030 (Fig. 6.6a) and Artix-7 A100T (Fig. 6.6a) have four rows. Considering

the physical dimensions of the die (XILINX, 2021a,g) we can estimate the height of the

frame, column and row as 2.41mm.

Figure 6.6 – Organization of the PL in different Xilinx devices

X0Y0

X0Y1

X0Y2

X1Y0

X1Y1

X1Y2

X0Y0

X0Y1

X0Y2

X0Y3

X1Y0

X1Y1

X1Y2

X1Y3

X0Y0

X0Y1

X0Y2

X0Y3

X1Y0

X1Y1

X1Y2

X1Y3

(a) Zynq-7000 XC7Z020 (b) Zynq-7000 XC7Z030 (c) Artix-7 XC7A100T

Source: Adapted from Xilinx Vivado synthesis tool

In Xilinx 7 Series devices the device rows are organized in two regions, TOP and

BOTTOM. At the Artix-7 XC7A100T, for instance, the divider of TOP and BOTTOM

occurs in the middle of the die, the two first rows being TOP and the two last rows being

BOTTOM. On Zynq-7000 XC7Z020 and XC7Z030 devices this division does not occur

in the middle of the die but in the middle of the PS block. For these two devices the first

row is TOP and the remaining rows are BOTTOM (Fig. 6.7).

Also in Xilinx 7 Series the rows are numbered sequentially from the position of the

divider between TOP and BOTTOM with TOP rows numbered upwards and BOTTOM

rows numbered downwards. In Zynq-7000 XC7Z030 the row Y3 in the floorplan of Fig.

6.7 is the row TOP 0 in the frame address while rows Y2, Y1, and Y0 are, respectively,

BOTTOM 0, 1 and 2.

Each frame in configuration (CRAM) and data (BRAM) memories is identified by

76

Figure 6.7 – Rows, columns, frames and bits in Zynq-7000 XC7Z030
Columns growing to the right

X0Y0

X0Y1

X0Y2

X0Y3

X1Y0

X1Y1

X1Y2

X1Y3

B
O

T
T
O

M
 0

T
O

P
 0

B
O

T
T
O

M
 1

B
O

T
T
O

M
 2

R
o
w

s
g

ro
w

in
g

fr
o
m

 c
e
n
te

r

Fr
a
m

e
 b

it
s

g
ro

w
in

g
 u

p
w

a
rd

Frames growing to left or right
(depending on column type/direction)

Source: The Author

a 26 bits address composed by the type of memory, the identification of the region (TOP

or BOTTOM), the number of the row inside the region, the column number (major) and

the frame number inside the column (minor), according to the Table 6.1. This same frame

addressing is used in the UFRGS fault injector (Section 5.3).

Columns containing the signal fabric interconnects (INT) and configuration for

CLB blocks are typically 36 frames wide. In this configuration memory columns con-

tains routing configuration, LUT data, initial and reset values for flip-flops, among other

configurations to the logic block. Columns containing routing and configuration for DSP

and BRAM are typically 28 frames wide. The BRAM columns holding user data have

typically 128 frames.

The frame is a vertical vector of 3,232 bits. In some devices it was found frames

that do not have all the bits but even in those cases there was space reserved for the 3,232

bits in the bitstream.

From the static tests using laser fault injection presented in Section 7.2 it was

observed that frame grows upward, with the bit position 0 is at the bottom of the floorplan

row and the bit 3,231 at the top of the row, as indicated in Fig. 6.7.

77

Table 6.1 – Composition of the frame address in Xilinx 7 Series
Segment Address bits Description

Type of block 25:23 Typical values are 001b for BRAM con-
tent, 000b for CRAM including configu-
ration and routing for BRAM, CLB and
DSP, and 010b for special CLB configu-
ration.

Region (TOP/BOTTOM) 22 TOP rows are identified by value 0 and
BOTTOM by 1.

Row 21:17 Row number inside region, starting from
0, TOP rows numbered upwards and
BOTTOM rows numbered downwards.

Column (major) 16:7 Column number inside the row, starting
from 0 at the leftmost position and grow-
ing sequentially to the right.

Frame (minor) 6:0 Frame number inside the column, start-
ing from 0 with growing direction de-
pending on the column direction (see
Section 7.3).

Source: Adapted from Xilinx (2018b)

6.4 Programming interfaces and access to configuration data

As mentioned in Section 3.6 and Section 5.3, a complete image of the configura-

tion (CRAM) and data memory (BRAM) can be written or read from the FPGA in the

form of a bitstream, using different communication interfaces such as the internal ICAP

and PCAP ports and the external JTAG and SelectMAP ports (Fig. 6.8).

These different interfaces can operate in widths from 1 bit up to 32 bits in the

case of SelectMAP. Some of these interfaces are designed to load the bitstream during

the device power-up or during partial reconfiguration while others, like the JTAG, are

designed primarily for testing purposes. The internal and external configuration port can

also be used to correct SEUs by periodic memory scrubbing.

In Xilinx Zynq-7000 devices, the PCAP port allows software running in the Arm

Cortex-A9 microprocessors to read and write configuration data. This is the mechanism

used by the bootloader software to load the bitstream into the FPGA during power-up but

can also be used for partial reconfiguration the to manipulated single configuration data

frames.

Both Xilinx Zynq-7000 and 7 Series devices have an internal port, the ICAP, al-

lowing circuits implemented in the FPGA to manipulate the memory of the FPGA itself.

The PCAP and ICAP have the same constraint that minimal data unit to read or

write is a complete frame of 3,232 bits that are read or written as an array of 101 words

78

Figure 6.8 – Hardware access to FPGA configuration data

PS

PCAP

JTAG

SelectMAP
(parallel)

PL

ICAP

Serial

CLB
36 frames at CRAM

DSP
28 frames at CRAM

BRAM
28 frames at CRAM
128 frames at BRAM

Source: The Author

of 32 bits.

Xilinx design tools can be used to read and write the bitstream using cable adapters

to the programming interfaces discussed previously, for instance the JTAG port.

On some development board that have an external Flash to store the bitstream

this Flash device can be programmed with the Xilinx program_flash tool and the

bitstream can also be loaded directly from the computer to the FPGA using Xilinx xsdb

and xmd tools.

The graphical user interface of Xilinx Vivado tool can also be used to program the

board external Flash memory and load or readback the bitstream on the FPGA.

79

7 DETAILED DEVICE CARTOGRAPHY

7.1 Mapping floorplan to bitstream file

For generality, in this thesis the readback of the bitstream was done with the Xilinx

Vivado tool in batch mode using the JTAG port of the development boards.

To verify the bitstream, comparing the original bitstream file with the bitstream

read from the FPGA, was done with a tool named readback_compare developed by

the same team that developed the UFRGS fault injector (Section 5.3). In this thesis this

tool was extensively modified to allow different file formats for bitstream and mask files

and to allow to enforce mask starting from arbitrary positions defined by the user.

The configuration and data frames for CRAM and BRAM are positioned sequen-

tially inside the bitstream file. The Xilinx synthesis tool can generate a report of the

logical location of some FPGA elements, such as flip-flops and BRAM bits, instantiated

at the design. A sample of this logic location report is presented in (Fig. 7.1). Despite

not informing detailed location for routing and all elements of CLB and DSP, the logic

location file provides exact location of every data memory bit in memory blocks (BRAM),

which are the BRAM frames for BRAM (Section 3.6).

Figure 7.1 – Fragment of logic location report (.ll file)
. . .
B i t 22358275 0 x0042141f 2531 Block=SLICE_X58Y89 La tch =AQ

Net=ps7 / d e s i g n _ 1 _ i / axi_smc / i n s t / m00_nodes / m00_aw_node / i n s t /
i n s t _ m i _ h a n d l e r / a r e s e t _ r

. . .
B i t 22361839 0 x00421420 2863 Block=SLICE_X58Y94 Ram=A: 5 5
B i t 22361840 0 x00421420 2864 Block=SLICE_X58Y94 Ram=B: 1
B i t 22361841 0 x00421420 2865 Block=SLICE_X58Y94 Ram=B: 3
. . .
B i t 44925038 0 x00c40002 238 Block=RAMB36_X0Y0 Ram=B : BIT695
B i t 44925039 0 x00c40002 239 Block=RAMB36_X0Y0 Ram=B : BIT759
B i t 44925040 0 x00c40002 240 Block=RAMB36_X0Y0 Ram=B : PARBIT65
B i t 44925041 0 x00c40002 241 Block=RAMB36_X0Y0 Ram=B : PARBIT73
. . .

Source: The Author

Although the logical mapping for BRAM is clearly defined in the logic location

file, other researchers, such as Gomez-Cornejo et al. (2017), also investigated the inter-

nal organization of the BRAM. The main motivation, in those case, is to determine the

mapping between bits positions in BRAM and in data words in the user space since adja-

cent bits in user data word may not be adjacent in the logical addressing of the frames or

80

adjacent in the physical location in the die.

In this study of the geometry of the configuration data in the physical device it is

expected to determine the mapping of the bits in three different coordinate systems:

• The (x,y) position, in micrometer, relative to the die surface.

• The offset of that bits in the bitstream file.

• The bit and frame addresses (Table 6.1) to the configuration memory and logical

floorplan.

The strategy adopted to map between the bitstream file and the bit and frame

addresses consisted in three steps that were repeated several times in different regions of

the device floorplan:

1. Change the content of the memory inside the FPGA in a delimited region.

2. Read back the modified bitstream from the FPGA.

3. Compare the readback bitstream with the original bitstream file.

The bitstream comparison allowed to determine the offset of the bit and frame

address inside the bitstream file.

In the case of the configuration memory (CRAM), the fault injector was used to

change the contents of the memory in every column. Since the logic location report from

Xilinx Vivado tool already provide the offset and frame address for every BRAM bit in

the design, the complete map was obtained by synthesizing a circuit where all the memory

blocks in the device were instantiated. To verify this mapping the block memories were

also modified in random positions to compare the offset on the readback with the offset

informed in the logic location file.

Table 7.1 presents a fragment of the mapping between the start of the column in

the bitstream file and the logical floorplan for the configuration memory (CRAM) and

user data (BRAM) frames in the Zynq-7000 XC7Z030 device.

The organization of the bits inside the SRAM array of the memory blocks is rela-

tively complex but the distribution of the columns and frames among the several memory

block is rather simple. Each row in the floorplan have, typically, 10 memory blocks ar-

ranged vertically in each column. For each frame, the first 320 bits belong to the first

memory block, the next 320 bits belong to the memory block immediately above, and so

81

Table 7.1 – Fragment of floorplan mapped to Zynq-7000 XC7Z030 bitstream
Frame

type
Column

type Region Row Column Bitstream file
byte offset

. . .

CRAM CLB Top 0 20 278,360

CRAM CLB Top 0 21 292,904

CRAM BRAM Top 0 22 307,448

CRAM CLB Top 0 23 318,760

CRAM CLB Top 0 24 333,304

CRAM DSP Top 0 25 347,848

CRAM CLB Top 0 26 359,160

. . .

CRAM CLB Bottom 2 71 4,328,864

CRAM CLB Bottom 2 72 4,343,408

CRAM I/O Blocks Bottom 2 73 4,357,952

. . .

BRAM BRAM Top 0 2 4,475,112

BRAM BRAM Top 0 3 4,526,824

BRAM BRAM Top 0 4 4,578,536

. . .

BRAM BRAM Bottom 2 4 5,822,048

BRAM BRAM Bottom 2 5 5,873,760

BRAM BRAM Bottom 2 6 5,925,472
Source: The Author

on. Each block memory have 4,096 parity bits and 32,768 data bits distributed horizon-

tally along the 128 frames of the BRAM data memory column.

A descriptive model was build, in the form of a Python script, using the infor-

mation gathered from fault injection, logic location report and readback to reverse map

bits in the readback file to the respective bit and frame address as defines in Table 6.1.

This model is not complete in the sense that is was not extensively validated in some

columns such as the clock buffer columns (BUFHCE and BUFG) and the I/O blocks for

PCI-Express.

The descriptive model was verified with additional fault injection campaigns in-

jecting faults in randomized positions of the floorplan. This procedure consisted in in-

jecting a fault in some random row, column, frame and bit, reading back the bitstream,

identify the bitstream file position of the fault, apply the model the reverse map that posi-

82

tion to the bit and frame address and, finally, compare the randomized addresses with the

address obtained from the model. This procedure was repeated for 10 thousand different

positions to build a reference database for validation of the model.

This whole mapping process was repeated also for the Xilinx Zynq-7000 XC7Z020

to which was built another descriptive model in the Python script.

7.2 Laser cartography on Xilinx 7 Series FPGA

Although the process described previously could determine the mapping between

the logical floorplan and the bitstream file, it is not enough to map the logical floorplan to

the die surface. To this, static tests with laser were executed for study of the bit density

and organization of the configuration memory and end user memory blocks.

A first step for physical fault injection using laser may be the sample prepara-

tion. When the die is covered by packaging it must be decapsulated (decapped), at least

partially to open a window for laser test. Figure 7.2a shows the example of an Actel,

now Microchip, SmartFusion A2F200M3F Flash-based FPGA decapped using fuming

nitric acid at the Analytical Laboratory facilities of the Centro Nacional de Tecnologia

Eletrônica Avançada (CEITEC, National Center for Advanced Electronic Technology),

Porto Alegre. Figure 7.2b shows a Xilinx Artix-7 XC7A35T decapped at the Electronic

Products Qualification and Analysis Center (NAPE) facilities of the Centro de Tecnologia

da Informação Renato Archer (CTI, Center for Information Technology Renato Archer),

Campinas.

Dies assembled by wire bonding typically have its backside (bulk) glued to the

package frame leaving the frontside exposed. In the case of FPGAs, a first challenge

will be the dense metallization on the frontside of the device that prevents the laser from

passing through, as seen in Fig. 7.2a and 7.2b. Conversely, dies assembled in flip-chip

will have the frontside attached to the package frame or interposer leaving the backside

(bulk). Some products assembled in flip-chip are offered without exterior lid having the

die exposed, for instance to allow improved heat transfer solutions, as seen in Fig. 7.2c

and 7.2d.

The flip-chip die assembly is more convenient for laser fault injection from back-

side (die bulk) but manufacturer markings on the die and the die thickness introduce new

challenges. The die on Xilinx Zynq-7000 and 7 Series devices have a thickness around

700 µm (POUGET et al., 2017) and the absorption coefficient becomes an import param-

83

Figure 7.2 – FPGA dies frontside and backside assembly

(a) Actel SmartFusion A2F200 decapped (b) Xilinx Artix-7 XC7A35 decapped

(c) Zynq-7000 XC7Z030 delidded flip-chip
(d) Zynq UltraScale+ ZU3EG delidded

flip-chip

Source: The Author

eter in selecting the wavelength for laser fault injection. Some researchers also reduce

the thickness of the die to around 100 µm or below using combinations of mechanical die

backgrinding, laser and chemical processes for thinning and polishing.

While laser in the region of near-infrared (NIR) have better penetration in silicon,

the photons have lower energy and the success in the generation of electron-hole pairs

depends on the combined absorption of two photons (GÖPPERT-MAYER, 2009) and on

the laser focusing at the depth of the transistors active region (Section 2.6), increasing

the complexity and cost of laser facilities. Conversely, high-energy photons have a higher

absorption coefficient.

Data used in this thesis was collected in the facilities of the Institut d’Électronique

et des Systèmes (IES) at the Université de Montpellier using laser at two wavelengths.

A laser with 1.064 nm wavelength was used in a single-photon absorption (SPA) process

with pulses of 250 pJ, 275 pJ and 300 pJ. Another laser with 1.550 nm wavelength was

used in a process of two-photon absorption (TPA) with pulses of 220 pJ and 330 pJ.

The experimental dataset consists of just over 130 hours of experiment but the

84

data collected specifically to this thesis, discussed in the following, only add up to about

4 hours.

To a preliminary analysis of the bit density and memory organization of the con-

figuration (CRAM) and data (BRAM) memories, two circuits were implemented in the

Xilinx Zynq-7000 XC7Z030 used in the laser experiments initializing bits in particular

regions of the device with values zero (0) and one (1). This initialization was applied to

the LUT contents at the CRAM, as in the example of Fig. 7.3, and to the contents of the

block memory, as in the example of Fig. 7.4.

Figure 7.3 – Code fragment initializing LUT6 primitive with 1’s
l i b r a r y UNISIM ;
use UNISIM .VCOMPONENTS.ALL ;

e n t i t y LUT6_ones i s
end LUT6_ones ;

a r c h i t e c t u r e dummy of LUT6_ones i s
a t t r i b u t e DONT_TOUCH : s t r i n g ;
a t t r i b u t e DONT_TOUCH of LUT6_ones_ ins t : l a b e l i s "TRUE" ;

begin
LUT6_ones_ ins t : LUT6
g e n e r i c map (

−− I n i t i a l c o n t e n t o f LUT e q u a t i o n / t r u t h t a b l e
INIT => X" FFFFFFFFFFFFFFFF ")

. . .
end dummy ;

Source: The Author

The whole BRAM capacity in the Xilinx Zynq-7000 XC7Z030 was instantiated

while LUTs were instantiated to only two rows of the floorplan as presented in Fig. 7.5

and Fig. 7.6 e Fig. 7.7

The procedure for static test was implemented as two independent processes of

laser control and bitstream readback, as summarized in Fig. 7.8.

All the tests were executed at the IES by the team of IES with support of re-

searchers from UFRGS present at the IES. The FPGA experimental board and all the

routines for the laser control station were provided by the IES. The experimental board is

a PicoZed module featuring the Xilinx Zynq-7000 XC7Z030 device assembled on a FMC

PicoZed Carrier Card (Fig. 7.9).

The routines for the readback control computer were developed at UFRGS in the

scope of this thesis.

The pulse period of laser was adjusted to 4 seconds and each cycle of readback and

comparison of the bitstream file took 16 seconds. There is no synchronization between the

85

Figure 7.4 – Code fragment initializing RAMB36E1 primitive with 1’s
l i b r a r y UNISIM ;
use UNISIM .VCOMPONENTS.ALL ;

e n t i t y BRAM4K_ones i s
end BRAM4K_ones ;

a r c h i t e c t u r e dummy of BRAM4K_ones i s
a t t r i b u t e DONT_TOUCH : s t r i n g ;
a t t r i b u t e DONT_TOUCH of BRAM4K_ones_inst : l a b e l i s "TRUE" ;

begin
BRAM4K_ones_inst : RAMB36E1
g e n e r i c map (

−− I n i t i a l c o n t e n t o f memory p a r i t y da ta
INITP_00 => X" FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF " ,
. . .

INITP_0F => X" FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF " ,

−− I n i t i a l c o n t e n t o f memory u s e r da ta
INIT_00 => X" FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF " ,
. . .

INIT_7F => X" FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF " ,

. . .
)

. . .
end dummy ;

Source: The Author

Figure 7.5 – Code fragment instantiating static elements
a r c h i t e c t u r e a r c h of z030_ top i s
. . .

LUT6_ones_many : f o r i in 0 to 959 g e n e r a t e
begin

LUT6_ones_ ins t_ i : LUT6_ones ;
end g e n e r a t e LUT6_ones_many ;

BRAM4K_ones_many : f o r j in 0 to 264 g e n e r a t e
begin

BRAM4K_ones_inst_j : BRAM4K_ones ;
end g e n e r a t e BRAM4K_ones_many ;

end a r c h ;

Source: The Author

two processes of laser control and readback, therefore the number of pulses accumulated

between each readback will not be necessarily the same. There is the chance of the laser

pulse occur during the readback operation of during the comparison of the files.

Four runs of test were executed, as summarized in Table 7.2. All tests used an

nominal horizontal step of 1 μm between laser shots and vertical step of 5 μm between

86

Figure 7.6 – Placement constraints for static elements
c r e a t e _ p b l o c k p b l o c k _ l u t _ o n e s
a d d _ c e l l s _ t o _ p b l o c k [g e t _ p b l o c k s p b l o c k _ l u t _ o n e s] \

[g e t _ c e l l s − q u i e t − h i e r a r c h i c a l \
− f i l t e r { REF_NAME =~ *LUT6_ones* }

]
r e s i z e _ p b l o c k [g e t _ p b l o c k s p b l o c k _ l u t _ o n e s] \

−add {SLICE_X0Y50:SLICE_X119Y51}

Source: The Author

Figure 7.7 – Placement of static elements in the floorplan

Instantiated BRAMs

Instantiated LUTs

Source: The Author

Figure 7.8 – Static test procedure with laser fault injection
At the laser control station At the readback control computer

1. Define pulse period, energy, displacement
speed, vertical and horizontal steps

2. Define region of interest for laser fault in-
jection

3. Start line scan
4. Advance to next line
5. Repeat steps 3 and 4 until coverage of re-

gion of interest

1. Load bitstream with xsdb orxmd
2. Read back bitstream with Vivado batch

mode
3. Compare bitstream files with

readback_compare and report
bit-flip locations

4. Repeat steps 2 and 3 continuously

Source: The Author

horizontal lines.

In later analysis it was observed that the high number of changes in BRAM for

the bitstream files at the second run, which targeted the CLB, were caused by hits of the

laser beam in a BRAM configuration bit that reset a to zero value large portions of BRAM

filled with ones.

Figure 7.10 presents some sample artifacts, seen in the readback file as clusters of

bit-flips, produced by the laser fault injection at the Xilinx Zynq-7000 XC7Z030 device.

87

Figure 7.9 – Laser test facility

(a) TPA laser facility at IES
(b) Detail of the PicoZed module and

FMC Carrier

Source: Images courtesy of Fernanda Lima Kastensmidt

Table 7.2 – Laser cartography static test runs

Run Target
region

Laser mode and
pulse energy

Readback
files

Total test
duration

Faults on
CRAM

Faults on
BRAM

1 CLB TPA 220 pJ 441 120 min 2138 –

2 CLB TPA 300 pJ 385 108 min 2377 1408

3 BRAM TPA 300 pJ 52 15 min – 290

4 BRAM TPA 220 pJ 62 16 min – 252

Source: The Author

As there are multiple laser shots between readbacks, these bit-flips are cumulative from

all the shots until the readback.

Figure 7.10 – Sample laser artifacts
static CLB, 220
pJ, 1µm hor., 5µm
vert.

static CLB, 300
pJ, 1µm hor., 5µm
vert.

static BRAM, 300
pJ, 1µm hor., 5µm
vert.

static BRAM, 220
pJ, 1µm hor., 5µm
vert.

Source: The Author

88

The region of interest in the device covered by the static tests using laser fault

injection is shown in Fig. 7.11, corresponding to approximately 0.01% of the total die

area of 9.1mm × 9.7mm (XILINX, 2021g).

Figure 7.11 – Laser scan regions of interest for static tests
9.1 mm

9
.7

 m
m

BRAM Region

CLB Region

A
rm

 C
o
rt

e
x
-A

9
P

ro
c
e
s
s
in

g
S

y
s
te

m
 (

P
S

)

7 Series FPGA
(PL)

Source: Die infrared images courtesy IES

The bitstream files collected during the experiment were preserved for post-processing

and detailed analysis.

7.3 Analysis of physical arrangement of configuration memory

Aligning at the time the bit-flips caused by laser fault injection, extracted from the

readback files, it was identified that the physical memory columns have different direc-

tions. Different directions were already present at the logical floorplan provided by the

Xilinx Vivado synthesis tool, as in the example of Fig. 6.5, and suggested by the back-

to-back interconnect shown in Fig. 6.4, but the laser experiments demonstrated that the

different directions occurs also in the physical layout.

Without this direction adjustments the laser scan appears as a discontinuous tra-

jectory (Fig. 7.12a) over the die, which is incorrect. After adjusting the frame addressing

considering the column direction we can align the frame address with the laser trajec-

tory (Fig. 7.12b). In some columns the memory frames are arranged from left to right,

as in columns CLBLM_L and BRAM_L in Fig. 6.5, while in other columns the frames

are physically arranged from right to left, as in columns CLBLM_R and BRAM_R in

Fig. 6.5. Conveniently this information is already available at the Xilinx Vivado synthe-

sis tool not requiring further laser scanning in the whole die width to determine columns

89

directions.

Figure 7.12 – Laser trajectory time and frame number (trajectory x axis)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

350

400

450

Fr
a
m

e
 n

u
m

b
e
r

Time (s)
0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

200

250

300

350

400

450

Fr
a
m

e
 n

u
m

b
e
r

Time (s)
(a) No adjustment in column direction (b) Adjusted column direction

Source: The Author

It was also observed that the column of BRAM frames for BRAM (frames as-

sociated with the parity and user data in memory blocks) is physically beside the cor-

responding column of CRAM frames for BRAM (frames associated with routing and

configuration of memory blocks). The direction of these frames also follows the afore-

mentioned direction of the column. The main consequence for the fault injector is that the

column direction must be taken into account, both in CRAM and BRAM, to determine

bits neighborhood when analyzing the occurrence of multiple-bit memory upsets (MBU).

Using these findings from the laser tests, the descriptive model of the devices

discussed in Section 7.1 was extended with the column directions to compute correctly

the reverse map from bitstream file offset to die location.

Other relevant aspect, already documented by the manufacturer (XILINX, 2015a;

CHAPMAN, 2015) and other researchers (WIRTHLIN, M. J. et al., 2014; HARDING et

al., 2014; STODDARD, 2015), is that the configuration memory is interleaved such that

bit-flips in physically adjacent memory cells, for instance due to MBU, are not adjacent

in the logical map of memory frames.

This laser cartography experiment was not reproduced with the Xilinx Zynq-7000

XC7Z020 device but a similar experiment using bitstream readback was executed with a

43.2MeV 16O heavy ion beam at the Nuclear Physics Open Laboratory at University of

Sâo Paulo (LAFN) using a moving collimating target (pinhole) coupled to a motorized

stepper. Although the beam spot diameter in this heavy ion setup is one order of magni-

tude larger than the spot diameter of the laser beam (compare Fig. 7.13 with Fig. 7.10),

the trajectory of the heavy ions microbeam indicated that the geometric model built for

XC7Z020 is consistent.

The microbeam experiment also give insights about the aspect ratio of the mem-

ory array but the die surface covered and the number of bitstream readback collected with

90

Figure 7.13 – Sample heavy ions microbeam artifacts

Source: The Author

microbeam is not enough to build a metric model of the configuration memory. Notwith-

standing, these are promising results and the heavy ion microbeam may become as useful

as laser for this kind of experiment.

91

8 STATIC TESTS AND MULTIPLE-BIT UPSETS INVENTORY

8.1 Static tests of Xilinx 7 Series under proton, alpha and heavy ions

Multiple-bit memory upset (MBU) in Xilinx SRAM-Based FPGAs are studied by

Quinn et al. (2005) and Manuzzato et al. (2008) covering several device generations from

Xilinx Virtex to Xilinx Virtex-4, from 220 nm to 90 nm technology.

M. Wirthlin et al. (2014) analyze of MBU in Xilinx 7 Series Kintex-7 devices un-

der heavy ions and provides the frequency of occurrence of MBUs with different number

of bit-flips for LET from 1.5MeVmg−1cm−2 to 126MeVmg−1cm−2, but without distin-

guishing the behavior of configuration (CRAM) and user data (BRAM) memories. An

important contribution of M. Wirthlin et al. (2014) is on the statistical methodology to

identify MBUs in the memory array.

Du et al. (2019) also analyze MBUs in the same class of Xilinx Kintex-7 devices

under heavy ions with LET of 3.7MeVmg−1cm−2. The clustering method adopted by Du

et al. (2019) groups in the same MBUs bit-flips occurring in the same FPGA column and

with distance up to
√
2.

Tonfat et al. (2017) analyze the occurrence of MBU in Xilinx 7 Series Artix-7

under heavy ions, varying the angle of incidence in an attempt to cover a larger range

of LET, but do not provide detailed information about occurrence of different MBU arti-

fact geometries of different sizes of bit-flip clusters. Moreover, the analysis focus in the

occurrence of MBUs inside a single configuration memory (CRAM) frame, which hin-

ders the efficacy of Xilinx native memory scrubber, or MBUs inside a single user data

(BRAM) word, which hinders the efficacy of Xilinx native block memory error detection

and correction codes.

The device of interest in this thesis is the Xilinx Zynq-7000 XC7Z020, which

features an FPGA equivalent to the Xilinx Artix-7 (XILINX, 2021h), hence results from

M. Wirthlin et al. (2014) and Du et al. (2019) may not be directly comparable.

This study of multiple bit upsets in Xilinx 7 Series SRAM-based FPGA under

protons and heavy ions was based on a dataset of readback files shared by Aguiar et al.

(2020) as part of the cooperation in the development of the SAFIIRA (Sistema de Feixes

Iônicos para IRradiações e Aplicações, ion beam system for irradiation and applications)

facility at the LAFN (AGUIAR, 2019). Figure 8.1 shows an example of experimental

setup in SAFIIRA facility with a ZedBoard development board featuring a decapped Xil-

92

inx Zynq-7000 XC7Z020 device installed inside the experimental chamber.

Figure 8.1 – SAFIIRA facility at the LAFN 0◦ beamline

Chamber

Chamber DUT Control Computer

Beam Line

Source: The Author

The dataset from Aguiar et al. (2020) was collected with a PYNQ-Z1 development

board featuring a Xilinx Zynq-7000 XC7Z020 device decapped at the Electronic Products

Qualification and Analysis Center (NAPE) facilities of the Centro de Tecnologia da Infor-

mação Renato Archer (CTI, Center for Information Technology Renato Archer), Camp-

inas. The device was irradiated with protons at 12MeV and heavier ions ranging from
7Li to 63Cu with energies from 13.1MeV to 87.5MeV. Figure 8.2 shows LET estimated

using SRIM/TRIM software tool (ZIEGLER et al., 2010) for these ions and energies.

The device manufacturer indicates the use of high-k dielectric at the passive lay-

ers, which is expected to be porous composite such as SiCO(H) (BAO et al., 2009; TSMC,

2011). S.H. Yang et al. (2011), for instance, suggests and all the TSMC 28 nm processes

share a common back-end of the line (BEOL) and documents that the TSMC HPM pro-

cess uses a extreme high-k (ELK) inter-metal dielectric with k=2.5, which is consistent

with data from TSMC (2011) and TSMC (2015). Simulations with SRIM/TRIM sug-

gested increased penetration range of the particles with a porous dielectric but with small

variation of the LET at the depth of the transistor active regions. Hence, the model from

the literature (TAMBARA et al., 2016; YANG, W. et al., 2019; YANG, W.-T. et al., 2019;

AGUIAR, 2019) with SiO2 (k=4) as dielectric and the worst case scenario of maximum

Cu layers the was adopted in the estimates of Fig. 8.2.

The dataset was extended with additional experiments with a 241Am radioactive

source of α particles (5.5MeV), 16O (38.4MeV and 43.2MeV) and 28Si (73.5MeV)

heavy ions also performed at the SAFIIRA facility at the LAFN by researchers of UFRGS

with cooperation of researchers from IF-USP.

Data for 12MeV protons extracted from the Aguiar et al. (2020) dataset must be

analyzed with caution as energy in this range is scarcely approached in the literature and is

93

Figure 8.2 – Estimated LET for LAFN beam

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Depth (m)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Io
n
iz

a
ti

o
n
 E

n
e
rg

y
 L

o
ss

 (
M
e
V

/m
g
/c
m

2
)

Ionization by ions

10B

12C

14N

16O

19F

1H

28Si

35Cl

48Ti

56Fe

63Cu

7Li

Simulated
dielectric

Simulated
metal (Cu)(SiO2)

Source: The Author

not expected to have a significant contribution to the occurrence of SEUs (SIERAWSKI et

al., 2009). P. Maillard et al. (2015), Tambara et al. (2016) and W.-T. Yang et al. (2019), for

instance, use proton with energies higher than 60MeV. Notwithstanding, Y. Zhang et al.

(2016) also use protons at lower energies of 3MeV, 5MeV and 10MeV. More recently,

Azimi et al. (2022) used protons in the range of 16MeV to 150MeV for comparative static

tests of Xilinx Zynq-7000 XC7Z020 device against Xilinx UltraScale+ Zynq MPSoC

XCZU7EV, with results discussed briefly in Section 4.3.

Figure 8.3 show a preliminary estimate of static cross-section over estimated LET

at the surface of the device, which as estimated by SRIM/TRIM. For comparison, the

static cross section curve for Xilinx Kintex-7 parameterized by Lee et al. (2014) is shown

as a dashed line. The decay observed in the plot static cross-section for higher surface

LET can be considered situations where the particle depth does not always reach the

transistor active area with the SEUs observed being due to occasional lower number of

metal layers. For comparison, Figure 8.4 shows cross-section over the estimated LET at

the depth of the transistor with the worst case of maximum number of metal layers.

This indicate that some beam configurations at the SAFIIRA facility should no be

used in irradiation test in this device because they do not reach uniformly the transistors

94

Figure 8.3 – Heavy ions cross section considering LET at surface

Source: The Author

active area. Figure 8.5 show the beams and energy range available at the SAFIIRA facility

classified in configurations that should not be used in irradiation tests for Xilinx 7 Series

because they do not reach uniformly the transistors, configurations that is expected to

always reach the transistors but are below the saturation level of the cross-section curve,

and configurations that are safer to use.

The most frequent SEU geometries and MBU cluster sizes observed in the read-

back files, covering more than 95% of the cases, are presented in Fig. 8.6 for SEUs at the

configuration memory (CRAM) and user data memory (BRAM), under heavy ions and α

particles. Figure 8.7 shows examples of fitted cross-section curves for some of the most

frequent SEU cluster sizes up to two bit-flips. Curve fitting was based on all SEUs (in

green) but plots in Fig.8.7 also distinguishes bit-flips where the original bit value was one

that flipped to zero (in red) and value zero that flipped to one (in blue) but there is no

significant deviation in the static cross-section associated with the bit value.

95

Figure 8.4 – Heavy ions cross section considering LET at active region

Source: The Author

Figure 8.5 – Nuclides and energies at the SAFIIRA facility

Source: The Author

96

Figure 8.6 – Most frequent heavy ions and alpha particles SEUs
Type of Type of Examples Frequency
memory SEU Heavy ions α Particles

BRAM SBU 1-1-1 82.0% 100.0%

MBU 2-1-2 16.2% —

MBU 1-2-2 — —

Others 1.8% —

CRAM SBU 1-1-1 38.1% 97.6%

MBU 2-2-2 41.9% 2.4%

MBU 2-1-2 4.4% 0.0%

MBU 1-2-2 — —

MBU 2-2-3 3.0% —

MBU 2-2-4 0.2% —

MBU 2-3-4 8.3% —

MBU 2-3-5 0.6% —

Others 3.4% —

Source: The Author

8.2 Static tests of Xilinx 7 Series under fast neutrons

Static cross section of Xilinx 7 Series devices have already been studied by other

researchers. Xilinx (2021b) reports static cross section for many Xilinx 7 Series at wide

spectrum spallation neutron beam source from Los Alamos Neutron Science Center (LAN-

SCE) but does not provide detailed information about multiple-bit upsets.

Tsiligiannis et al. (2018) report static cross for configuration (CRAM) and user

data (BRAM) memory for a Xilinx 7 Series Artix-7 device at 14MeV neutron but also do

not provide detailed information about multiple-bit upsets. The authors use two technical

approaches for data collection. The first one is using Xilinx Vivado tool and JTAG test in-

terface to read back the bitstream file, which is the same procedure adopted in this thesis.

The second approach is using the native memory scrubbing hardware present in Xilinx 7

Series devices that allows to report the position of bit-flips only in CRAM. The scrubber

method was also used by Aguiar et al. (2019) to study static cross-section for thermal neu-

trons in a Xilinx Zynq-7000 XC7Z020 device in a facility with very low flow flux. Early

97

Figure 8.7 – Heavy ions cross-section for most frequent SEU geometries

LET (MeV/mg/cm²)

σ
 (
cm

²/
b
it

)

80 4 12
10

-15

10
-13

10
-11

10
-9

LET (MeV/mg/cm²)

σ
 (
cm

²/
b
it

)

80 4 12
10

-15

10
-13

10
-11

10
-9

LET (MeV/mg/cm²)

σ
 (
cm

²/
b
it

)

80 4 12
10

-15

10
-13

10
-11

10
-9

(a) CRAM SBU (1-1-1) (b) CRAM MBU (2-1-2) (c) CRAM MBU (2-2-2)

LET (MeV/mg/cm²)

σ
 (
cm

²/
b
it

)

80 4 12
10

-15

10
-13

10
-11

10
-9

LET (MeV/mg/cm²)

σ
 (
cm

²/
b
it

)

80 4 12
10

-15

10
-13

10
-11

10
-9

Weibull fitting

Bit-flip 0→1
Bit-flip 1→0

All bit-flips

(d) BRAM SBU (1-1-1) (e) BRAM MBU(2-1-2)

Source: The Author

experiments with heavy ions in Aguiar et al. (2020) also used the scrubber method but

this approach was abandoned because did not operate correctly at higher particle fluxes,

a problem also reported by Tsiligiannis et al. (2018).

Fabero et al. (2020) uses 14.2MeV neutrons to study MBUs in a Xilinx 7 Series

Artix-7 device, which is the same technology of the Xilinx 7 Series Zynq-7000 XC7Z020

tested here. The clustering method adopted by Fabero et al. (2020) is based on the works

of Clemente et al. (2016) and Franco et al. (2017), although the authors also compare

results with Du et al. (2019) that used the Euclidean distance up to
√
2 rule. Fabero et al.

(2020) reports statistics about the occurrence of SEUs with different number of bit-flips at

the configuration memory (CRAM) and frequency of different geometric shapes in MBU

clusters but did not report SEUs in user data memory (BRAM) and argued that static

cross-section for BRAM should be similar to the static cross-section in CRAM. Instead

of using Xilinx tools and test cables to interface with the experimental board collect the

bitstream readback files, the authors used a microprocessor implementing JTAG interface

to read back the FPGA memory and analyze and report bit-flips. This approach is similar

to the readback procedure implemented at UFRGS for the Xilinx Artix-7 XC7A100T

inside the NanosatC-BR2 small satellite (BENEVENUTI et al., 2019b).

The static cross-section and MBU analysis in this thesis is based on irradiation ex-

98

periments performed at the Labotatório de Radiações Ionizantes (LRI, Ionizing Radiation

Laboratory) at the Instituto de Estudos Avançados (IEAv, Institute for Advanced Studies),

São José dos Campos, a research unit under the Aeronautics Science and Technology

Department of the Brazilian Air Force. Tambara et al. (2014) studied SEUs in a Xilinx

Spartan-6 device in this same laboratory but using different instrument with fast neutrons

at a lower energy.

Readback files were collected from a Xilinx Zynq-7000 XC7Z020 device while

irradiated using a deuterium-tritium (D-T) 14.1MeV neutron generator (Fig. 8.8). During

the experiments, the FPGA board was protected with 0.5mm cadmium sheet to avoid the

influence of thermal neutrons. Instrumentation was shielded with borated polyethylene to

avoid interference.

Figure 8.8 – IEAv 14.1MeV D-T neutron generator facility

Device
under test

Source: Image courtesy IEAv

The static tests were performed with the experimental board in two orientations

for frontal irradiation (0◦) and backside irradiation (180◦). Figure 8.9 summarizes static

cross section at 0◦ and 180◦ incidence angles with different numbers of bit-flips per SEU

at the configuration memory (CRAM) and user data memory (BRAM).

The most frequent SEU geometries and MBU cluster sizes observed in the read-

back files for 14.1MeV neutron are presented in Fig. 8.10 for SEUs at the configuration

memory (CRAM) and user data memory (BRAM), at 0◦ and 180◦ incidence angles.

99

Figure 8.9 – Static cross-section in different irradiation angles

0 1 2 3 4 5 6 7
1E-20

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

CRAM 0° BRAM 0°
CRAM 180° BRAM 180°

SBU/MBU cluster size (bit-flips per SEU)

S
ta

tic
cr

o
ss

-s
e

ct
io

n
(c

m
²/

b
it)

Source: The Author

Figure 8.10 – Most frequent 14.1MeV neutron SEUs
Type of Type of Examples Frequency
memory SEU 0° 180°

BRAM SBU 1-1-1 93.4% 97.1%

MBU 2-1-2 4.7% 2.9%

MBU 1-2-2 — —

Others 1.9% —

CRAM SBU 1-1-1 76.7% 79.9%

MBU 2 bits (2×2) 16.9% 15.5%

MBU 2 bits (2×1) 3.5% 2.1%

MBU 2 bits (1×2) 0.3% 1.5%

MBU 3 bits (2×2) 1.3% 0.5%

MBU 4 bits (2×2) — 0.5%

MBU 4 bits (2×3) 0.6% —

MBU 5 bits (2×3) 0.3% —

Others 0.3% —

Source: The Author

100

8.3 Static tests of Xilinx 7 Series under thermal neutrons

As in the case of fast neutrons, Xilinx (2021b) and Tsiligiannis et al. (2018) report

static cross section for configuration (CRAM) and user data (BRAM) memory for a Xilinx

7 Series Artix-7 under thermal neutrons, but do not provide detailed information about

multiple-bit upsets.

Aguiar et al. (2019) tested a Xilinx Zynq-7000 XC7Z020 device under thermal

neutrons using the memory scrubbing hardware present in Xilinx 7 Series devices to re-

port bit-flips in CRAM. The method was used to report and count bit-flips detected at in

CRAM frames and no data was reported about the address of those bit-flips. Therefore,

this experiment did not produce detailed information about multiple-bit upsets.

Experiments for analysis of multiple-bit upsets under thermal neutrons were per-

formed at the Thermal and Epi-thermal Neutron irradiation Station (TENIS) of the In-

stitute Laue–Langevin (ILL), Grenoble, in collaboration with the Université Grenoble

Alpes (UGA). The beam presents a fission spectrum with maximum thermal neutron flux

of 3× 109 cm−2s−1 and thermal to epithermal ratio around 18.6.

To minimize interference of radiation on other electronic components, the board

was covered with a boron carbide (B4C) shielding with a hole over the Xilinx Zynq-7000

SoC FPGA device (Fig. 8.11).

Figure 8.11 – Board shielding for thermal neutrons experiments.

Source: Image courtesy ILL

The most frequent SEU geometries and MBU cluster sizes observed in the read-

back files for thermal neutron are presented in Fig. 8.12 for SEUs at the configuration

101

memory (CRAM) and user data memory (BRAM).

Figure 8.12 – Most frequent thermal and epithermal neutron SEUs
Type of Type of Examples Frequency
memory SEU

BRAM SBU 1-1-1 95.4%

MBU 2-1-2 —

MBU 1-2-2 4.5%

Others 0.1%

CRAM SBU 1-1-1 78.1%

MBU 2-2-2 0.0%

MBU 2-1-2 0.0%

MBU 1-2-2 17.8%

MBU 2-2-3 0.0%

MBU 2-2-4 —

MBU 2-3-4 0.0%

MBU 2-3-5 0.0%

Others 4.1%

Source: The Author

8.4 Summary of multiple-bit upsets profile on Xilinx 7 Series FPGA

A summary of most frequent cluster sizes is presented in Fig. 8.13 and Fig. 8.14,

for SEUs in configuration memory (CRAM) and user data memory (BRAM), respectively.

The support for emulation of multiple-bit upsets in the fault injector should take

into account the proportion of SBU and the different sizes of MBU and the different

MBU artifacts geometry that occurs with irradiation. Moreover, as different particles and

energies have shown different profiles of multiple-bit upsets, the fault injection campaigns

must also use the proper profile for the targeted environment of application of the design

under test.

102

Figure 8.13 – Frequency of SEU cluster sizes in configuration memory (CRAM)

1 bit-flip 2 bit-flips 3 bit-flips 4 bit-flips >4 bit-flips
Single-bit SEU Multiple-bit SEU

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

α Particles
LAFN USP
241Am

Heavy Ions
LAFN USP
13.1 to 87.5 MeV
7Li to 63Cu

Neutron 14.1 MeV
LRI IEAv
Front-side (0°)

Neutron 14.1 MeV
LRI IEAv
Back-side (180°)

Neutron (Epi-)Thermal
TENIS ILL
2021 July

Source: The Author

Figure 8.14 – Frequency of SEU cluster sizes in user data memory (BRAM)

1 bit-flip 2 bit-flips 3 bit-flips 4 bit-flips >4 bit-flips
Single-bit SEU Multiple-bit SEU

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

α Particles
LAFN USP
241Am

Heavy Ions
LAFN USP
13.1 to 87.5 MeV
7Li to 63Cu

Neutron 14.1 MeV
LRI IEAv
Front-side (0°)

Neutron 14.1 MeV
LRI IEAv
Back-side (180°)

Neutron (Epi-)Thermal
TENIS ILL
2021 July

Source: The Author

103

Part III

Enhancements on Fault Injector and

Methodology

104

9 MANY-BITS FAULT INJECTION

9.1 Motivation

A first improvement on the UFRGS fault injection tool for Xilinx 7 Series (TON-

FAT et al., 2016), discussed briefly in Section 5.3, was to emulate arbitrary shapes and

sizes of bit-flip clusters in the configuration memory (CRAM) of the FPGA.

This feature was originally motivated by the potential use of the fault injector in

the characterization of attack countermeasures for active laser fault attacks in security

sensitive applications of SRAM-based FPGAs.

Laser fault attacks can target malicious access to embedded circuit design or soft-

ware, private user data or cryptographic information such as shared keys installed by the

device managing authority or user private keys.

The attack potential can be graded according to a threat model, which includes the

attacker profile, such as a vandal kid, a trespasser, a thief or a nation supported spy, and

the level of sophistication of the tools and technologies the attacker has access to.

In the case of laser, that level of sophistication can also be graded in terms of

the diameter of the laser spot that can be focused on the circuit under attack. Vandals

motivated by curiosity or fame may have access to low-end or homemade laser equipment,

possibly scrapping near-infrared laser heads from old CD writers, achieving a focused

laser spot diameter and XY stepper resolution in the scale millimeters. At the other end of

the spectrum, highly skilled spies targeting a military communication equipment powered

by software-defined radio (SDR) implemented on SRAM-based FPGA may have access

to high-end state supported laser facilities achieving a focused laser spot diameter in the

order of micrometers.

Fault artifacts induced by laser may have several shapes, as seen in Fig. 7.10.

Other examples of artifact shapes can be found in Canivet et al. (2009), Darracq et al.

(2009), Sterpone et al. (2011) e Castro et al. (2015).

A laser fault attack detection circuit implemented in the FPGA may be easily

triggered by a laser spot in the scale of millimeters but may overlook smaller laser spots.

Hence, an interframe many-bits fault injection methodology was conceived to grow the

fault artifact in the memory starting from a single bit-flip and adding more bits following

an arbitrary shape model for the fault.

105

9.2 Implementation

The decisions made for the implementation of the many-bits fault injection was

strongly influenced by the main mode of operation of the fault injector, which was the

sequential-exhaustive scanning the region of interest where the DUT was placed.

The UFRGS fault injection for Xilinx 7 Series as implemented by Tonfat et al.

(2016) can be organized in four layers. We have the campaign scripting (Fig. 9.1a)

that coordinates the sequential-exhaustive fault injection, a serial communication module

(Fig. 9.1b) interfacing with the campaign script, a command interpreter finite state ma-

chine (FSM) (Fig. 9.1c) which also coordinates the fault injection and DUT diagnosis

and, finally, a fault injection finite state machine (FSM) (Fig. 9.1d) which transmits the

required commands for the Xilinx ICAP hardware to read and write CRAM frames. In

that setup the FPGA was usually programmed through JTAG interface.

Figure 9.1 – Legacy fault injector setup

Fault injection and
diagnosis serial
communication

DUT copy or
precomputed

result database
(golden)

Xilinx Zynq-7000 / 7 Series FPGA

Fault Injector (FI)

Checker/exerciser
module

Campaign control
Python script

DUT

Configuration
Access Port

(ICAPE2
hardware block)

Fault Injection
FSM

Command
Protocol

FSM

Serial
Communication

(a)

(b)

(c) (d)

JTAG bitstream
loading

Source: The Author

As the serial communication is time consuming, it was considered to forward to

the fault injector modules inside the FPGA the range of frame and bit addresses where

faults should be injected sequentially, instead of issuing each command to inject fault in-

dividually. This approach would have little effect to the laser attack emulation but could

improve the speed in the sequential-exhaustive fault injection. To implement this modifi-

cation, the command FSM (Fig. 9.1c) was replaced by a Xilinx MicroBlaze ™ allowing

more flexible protocol and DUT diagnosis routines to be implemented in software (Fig.

9.2c). Another modification consisted in replacing the FPGA programming through JTAG

interface by power-cycling and loading the bitstream from on-board non-volatile memory

(Flash), further improving the campaign speed.

106

Figure 9.2 – Modified setup for many-bits fault injection

Fault injection and
diagnosis serial
communication

DUT copy or
precomputed

result database
(golden)

Checker/exerciser
module

Campaign control
Python script

DUT

(a)

On-board
bitstream Flash

Power switch

Xilinx Zynq-7000 / 7 Series FPGA

Fault Injector (FI)
Configuration
Access Port

(ICAPE2
hardware block)

Fault Injection
FSM

Command
Protocol

Software

Serial
Communication

Peripheral

(b)

(c) (d)

MicroBlaze

Source: The Author

9.3 Methodology and scripting

At the experimental implementation of the methodology for laser attack emula-

tion, the FPGA memory array was modeled as a rectangular structure and the fault was

modeled by a bivariate normal distribution random pattern as in the example of Fig. 9.3a.

The process starts with a determined location for the fault in the die surface, in this

case the location of the emulated laser spot. Then the position for a bit-flip is random-

ized around that fault location following the fault artifact geometric model, the bit-flip

is injected at that position, the design under test (DUT) is stimulated for one or more

processing cycles and the diagnosis is collected. The outcomes can be that the DUT is

faulty or operates correctly, with or without triggering the fault attack detection mech-

anism implemented. Depending on the diagnosis, a new bit-flip is added to the same

fault location at another randomized position, again following the fault artifact geometric

model, growing the fault cluster of bit-flips and enlarging the spot diameter. This process

is repeated until fault is detected, the DUT fails or the maximum spot diameter is reached.

The bit-flips cluster is checked on each step to avoid repeating bit-flip positions so that

each bit is hit only once and bit-flips are not reversed. Figure 9.3b shows an example of

the realization of the fault artifact in the CRAM array.

If gradually increasing the emulated laser spot diameter is related to increasing the

fault attack potential, then the size of the spot when the fault detection mechanism is trig-

gered can be associated with the security assurance levels where that detection mechanism

can be applied.

107

Figure 9.3 – An example of fault artifact geometric model

(a) Bivariate normal distribution (b) Randomized pattern on CRAM

Source: The Author

9.4 Study case and results

This interframe many-bits fault injection methodology was applied to evaluate a

fault attack detection mechanism permeating a cryptographic module implemented on a

Xilinx 7 Series FPGA (BENEVENUTI et al., 2017). The design under test is the substi-

tution box (S-box) from Rijndael symmetric cryptography and the Advanced Encryption

Standard (AES). The attack detection mechanism is based on functional redundancy.

Example of Fig. 9.4a shows a situation where, at a given emulated laser spot

size, the DUT starts to show functional failure (upon injecting bit-flips at the positions

marked in red). In the example of Fig. 9.4b, at a certain emulated spot size, the detection

mechanism is triggered by a bit-flip (at the position marked in blue) before the DUT starts

to malfunction.

Figure 9.4 – Example of diagnosis of the design under test

(a) DUT functional failure with
attack undetected

(b) Fault detected before DUT
functional failure

Source: The Author

108

10 ACCUMULATED FAULT INJECTION

10.1 Motivation

The result from the exhaustive-sequential fault injection methodology proposed by

Tonfat et al. (2016) (Section 5.3) is a list of addresses for each critical bit in the CRAM.

The number of critical bits can be used for direct comparison between alternative design

implementations, with different levels of fault mitigation. By adequate design floorplan-

ning or the reverse mapping of addresses to design modules, the list of critical bits can

also be used to identify modules in the design where additional fault mitigation techniques

can be introduced to improve the design reliability.

While the sequential-exhaustive method provides a detailed inventory with posi-

tions of each critical bit in the DUT, the reverse mapping from these positions to high-level

design modules is cumbersome and the critical bits positions are prone to change every

time the design is modified or synthesize with a new starting condition to the place and

route step.

One limitation of this exhaustive-sequential methodology is that it is not compara-

ble with the results from irradiation tests because it does not reflect the cumulative effect

of the faults over time.

Based on the results of the many-bits fault injection presented previously, it was

proposed to inject faults in CRAM in a randomized-accumulated process.

Different from the test methodology in Chapter 9, where bit-flips were injected

randomly following a bivariate normal distribution growing a cluster around a focused

location, in the random-accumulated methodology bit-flips are injected in positions ran-

domized uniformly over the whole FPGA or over a constrained region of interest at the

FPGA floorplan where the DUT was implemented.

The randomized-accumulated methodology does not provide an exhaustive list

of critical bits, but it can still provide an estimate of the number of critical bits and,

with adequate design floorplanning, it can indicate modules deserving additional fault

mitigation techniques. The results from randomized-accumulated methodology can be

used to build a reliability curve in the form of the empirical cumulative probability density

function (CDF), using the same methods adopted for irradiation tests.

109

10.2 Implementation

The target of the fault injection was still only the configuration memory (CRAM)

and required only minimal modifications in the fault injection module implemented by

Tonfat et al. (2016), mostly to improve serial communication speed. On the other hand,

the fault injection campaign scripting was intensively modified to implement the new

methodology.

10.3 Methodology and scripting

Since faults in CRAM are mostly persistent in the absence of memory scrubbing,

the fault injection operated synchronously with the DUT execution. The DUT is stimu-

lated for one or more processing cycles to collect diagnosis after each fault is injected,

as occurs in the method of Chapter 9 and in the original implementation of Tonfat et al.

(2016).

In the random-accumulated method, faults in CRAM are accumulated over time,

as occurs in radiation-induced SEUs, representing a better approximation of the physi-

cal phenomena compared to the exhaustive-sequential test methodology of Tonfat et al.

(2016) present in the original implementation of the fault injector. Figure 10.1 shows the

main procedure of the two fault injection processes.

One important difference between the two methodologies is that in the sequential-

exhaustive methodology every fault injected must be cleaned after the DUT diagnosis.

It is done mainly by injecting fault again in the same address, thus reversing the bit-

flip. After the fault is cleaned, the DUT diagnosis must be run again to confirm that it

is working properly. However, in some situations, injecting fault again in the same place

cannot revert the effect of the bit-flip. One example of such situation is when the fault is

injected in the control bits for the shift register over LUT in the CLB. In those cases, the

FPGA must be reprogrammed to fully revert the fault injected.

10.4 Study case and results

This random-accumulated methodology was applied to investigate fault tolerance

and reliability in several types of designs, including computing accelerators (SANTOS

110

Figure 10.1 – Two fault injection test approaches

Fault injection
campaign setup

Inject fault on
current address

Execute a
complete DUT

processing cycle

[RESULT INCORRECT
OR TIMEOUT]

Record failure
type and address

Cleanup injected
fault

[RESULT
CORRECT]

Increment
bit addres

Begin

End
[LAST ADDRESS]

Fault injection
campaign setup

Inject fault on
random address

Execute a
complete DUT

processing cycle

[RESULT INCORRECT
OR TIMEOUT]

Record failure
type and #faults

Cleanup injected
faults

[RESULT
CORRECT]

Increment
#failures

Begin

End

[#FAILURES=
FAILURE LIMIT]

Randomize
bit address

Increment
#faults

[#FAULTS=
TRUNCATE LIMIT]

(a) Sequential-exhaustive fault injection (b) Random-accumulated fault injection

Source: The Author

et al., 2017; BENEVENUTI et al., 2019b; RODRIGUES et al., 2019), communication in-

frastructures (BENEVENUTI et al., 2018b,a), softcore microprocessors (GONCALVES

et al., 2020; BRAGA et al., 2021) and machine learning inference engines (BENEVENUTI

et al., 2018c; LOPES et al., 2018; TRINDADE et al., 2021).

Two main advantages of the randomized-accumulated methodology are the better

comparability with irradiation tests by the use of the reliability curves and the aggressive

reduction of fault injection campaign time.

The random-accumulated method does not provide the positions of every critical

bit, but it provides an estimate of the number of such bits that may be enough to steer the

fault tolerance and reliability engineering process. Moreover, and of special interest in

the scope of this thesis, random-accumulated fault injection is significantly faster than the

sequential-exhaustive approach.

A study case design of neural network (NN) (BENEVENUTI et al., 2018c, 2019a)

was used to compare results from irradiation, sequential-exhaustive methodology and the

new randomized-accumulated methodology.

As faults are injected twice on each address, once to test and again to clean up the

fault, and the DUT must be executed twice, once to collect diagnosis and again to verify

111

the fault clean-up, the rate of fault injection is naturally lower in sequential-exhaustive

methodology than in the randomized-accumulated methodology.

For the study case design, a rate of 12 faults injected per second was obtained for

the sequential-exhaustive methodology while the randomized-accumulated methodology

reached a rate of 36 faults injected per second.

However, what makes the test campaign time for sequential-exhaustive exceed-

ingly longer compared to randomized-accumulated is its exhaustive nature where every

bit in the region of interest must be tested. In the randomized-accumulated, conversely,

a randomized sampling of the region of interest requires only a fraction of the time. Ad-

ditionally, upon discretion of the engineer, more sampling can be added gradually in the

randomized-accumulated methodology until the adequate level of uncertainty is obtained

in the reliability curve.

For the study case design, the investigation of reliability of the four main design

modules in five different design floorplans took 142 hours of fault injection campaign

while the randomized-accumulated methodology took less than 4 hours, being over 36

times faster than the previous methodology. Table 10.1 summarizes the information gath-

ered with the fault injection campaigns for the study case design. The difference between

the number of faults injected and the estimated number of bits on the design is related

to different heights of the physical block and the configuration memory frame. While in

exhaustive campaigns we injected a total of 1.5× 107 faults, in the random campaigns we

injected a total of 5× 105 faults.

The study case design was also tested under a spallation neutron source at the Los

Alamos Neutron Science Center (LANSCE) ICE House facility (BENEVENUTI et al.,

2018c) under an average flux of 6.2×109 N/cm2/h in 13 hours of neutron irradiation cam-

paign. After discarding occasional time periods where beam was off and other spurious

data, we obtained NSEU=52 failure events.

From the fluence for each individual failure event we can obtain the empirical

reliability curve presented on Fig. 10.2a. In a similar process, from the number of ac-

cumulated faults for each individual failure event under fault injection we can obtain he

reliability curve on Fig. 10.2b

For this specific design, with no significant presence of redundancy, the reliability

can be modeled by an exponential distribution described by a constant failure rate λ that,

when considering no relevant reposition time, can be obtained directly from mean time to

failure (MTTF) as λ = 1/MTTF . In this case, the cumulative failure can be expressed as

112

Figure 10.2 – Reliability curves for study case design

1,0E+7 1,0E+8 1,0E+9 1,0E+10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fluence (N/cm²)

R
e

lia
b

ili
ty

1,0E+0 1,0E+1 1,0E+2
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Accumulated bit-flips

R
e

lia
b

ili
ty

(a) Neutron irradiation (LANSCE) (b) Fault injection (randomized)

Source: The Author

F (t) = 1− e−λt. The reliability can be computed as its complement as R(t) = 1− F (t).

Using the number of accumulated faults as a time dimension, we can compute MTTF

as total number of accumulated injected bit-flips τ over the number of functional failure

events N observed during each campaign.

No advanced curve fitting tool is required for an exponential distribution. To other

designs, however, the exponential distribution may not be the best choice for modeling

the system reliability. Alternatively, metrics can be extracted directly from the empirical

reliability curve (CDF).

Using the obtained parameters for the statistical distribution, we can take the fail-

ure rate at exactly one fault accumulated F (t = 1) to estimate the probability of critical

bits. This can, in turn, be multiplied by the total number of bits on the target area of the

random fault injection to estimate the number of critical bits, as seen in Table 10.1.

As presented in Table 10.1 and Fig. 10.3, the estimated number of critical bits,

using results from random-accumulated fault injection, is consistent with the number of

critical bits obtained from exhaustive-sequential fault injection.

As the estimation of the number of critical bits using results random fault injection

are based on the statistical distribution parameters and the system behavior on the high

reliability region only, for reliability engineering processes based on critical bits only,

further acceleration can be obtained with experiment censoring (truncation), which does

not prevent extraction of the relevant statistical parameters for the estimates.

We also compared the exhaustive and random fault injection in terms of the qual-

itative result of the study case design represented by the type of error observed. Fig. 10.4

show that the two methodologies present very similar profiles of error type in the study

case design.

113

Table 10.1 – Design Area Assessment and Fault Injection Results
Design Module Whole

C2 P2 C3 P3 Design
Resources Usage

Essential bits – – – – 2,567,227c

Estim. phys. block bitsa 889,446 1,791,821 667,085 2,785,984 5,014,771c

Occupancyb 52% 98% 56% 92% 98%c

SLICEs 331 1,233 267 1,831 3,543c

LUTs 1,192 3,735 918 5,428 11,274
FFs – 64 – 96 160
DSPs 32 – 24 – 56

Exhaustive Fault Injection
Faults injected 1,104,744 1,977,145 1,103,985 5,498,826 –
Campaign time (hours) 19 41 17 65 –
Critical bits 23.328 59.818 15.979 49.756 148.881
% of Critical bitsd 2.6% 3.3% 2.4% 1.8% 3.0%

Random Fault Injection
Faults injected (τ) 211,125 33,287 112,314 126,947 17,585
Failures observed (N) 1,011 367 400 1,150 500
MTTF (fault,τ/N) 208.8 90.7 280.8 110.4 35.2
Failure rate (λ) 0.0048 0.011 0.0036 0.0091 0.028
Failure rate (F (t = 1)) 0.5% 1.1% 0.4% 0.9% 2.8%
Estim. critical bitse 27.272 62.595 20.295 51.481 160.032
% of Critical bitsd 3.1% 3.5% 3.0% 1.8% 3.2%
aEstimated CRAM bits on the floorplan physical block containing the layer. bSlices occupancy for the
physical block. cWhole neural network implemented on a single physical block.dRelative to the estimated
CRAM bits.eComputed from 5,708,732 bits on FI target area from where λ was extracted.

Source: The Author

Figure 10.3 – Critical bits comparison.
Planilha1

Página 1

C2 P2 C3 P3 Whole MLP
0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

Observed critical bits from exhaustive FI (5.9 days)
Estimated critical bits from random FI (3.7 hours)

Source: The Author

114

Figure 10.4 – Comparative failure distribution by neural network layer and failure criticality.

C2 P2 C3 P3
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

TO Timeout
D4 Multiple Critical

D3 Single Critical
D2 Multiple Tolerable

D1 Single Tolerable

30%

9%

34%

15%

67%

85%

66%

84%

C2 P2 C3 P3
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

TO Timeout
D4 Multiple Critical

D3 Single Critical
D2 Multiple Tolerable

D1 Single Tolerable

31%

12%

35%

15%

65%

82%

64%

84%

(a) Failures from exhaustive-sequential FI

C2 P2 C3 P3
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

TO Timeout
D4 Multiple Critical

D3 Single Critical
D2 Multiple Tolerable

D1 Single Tolerable

30%

9%

34%

15%

67%

85%

66%

84%

C2 P2 C3 P3
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

TO Timeout
D4 Multiple Critical

D3 Single Critical
D2 Multiple Tolerable

D1 Single Tolerable

31%

12%

35%

15%

65%

82%

64%

84%

(b) Failures from random-accumulated FI

Source: The Author

115

11 ASYNCHRONOUS FAULT INJECTION

11.1 Motivation

As mentioned previously, an assumption in the original implementation of the

UFRGS fault injector for Xilinx 7 Series was that faults in CRAM are persistent and,

consequently, the fault injector could operated synchronously starting the DUT processing

cycles and diagnosis after each fault is injected.

What happens in the presence of the memory scrubber hardware native to the

Xilinx 7 Series devices is that faults can be corrected at any moment in time because the

memory scrubber operates autonomously and asynchronous with the DUT.

Even if a bit in CRAM is a critical bit, a fault in that bit will remain latent until

the point in time inside the DUT processing cycle when that part of the circuit contributes

to the DUT result. If the scrubber has the chance to correct the fault during that period in

which it is latent, then the malfunction will be avoided.

The Xilinx memory scrubber operates over the memory frames in the CRAM,

starting from the first frame address and scanning continuously until the end of the mem-

ory or a fault is found. Figure 11.1 shows an example of the operating cycle of the Xilinx

scrubber in a Xilinx Zynq-7000 XC7Z020 device with approximate time it takes to scan

each clock region with the scrubbing clock at 100 MHz, adding up to about 8 ms to scan

the whole device in the absence of faults.

Figure 11.1 – Example of scrubber scan cycle

X0Y2
~1.2 ms

X1Y2
~1.4 ms

X0Y1
~1.2 ms

X1Y1
~1.4 ms

X0Y0
~1.2 ms

X1Y0
~1.4 ms

~0.2 ms

Source: The Author

116

If a fault is found and the scrubber succeed in correcting it, the scrubber does

not continue to the next frame address but, instead, rewind to the first frame address and

restart the scrubbing from the beginning.

The Xilinx memory scrubber hardware automatically suspends its operations when

the UFRGS fault injector activates the ICAP hardware to inject a fault. The scrubber

automatically restarts its operation once the fault injection is completed and the ICAP

hardware is deactivated. However, the scrubber always restarts its operation from the first

frame address, independent of the frame address were it was working in the moment is

was suspended.

With the synchronous operation in the original implementation of the UFRGS

fault injector, the fault would always be corrected in the time window of the scan cycle

of the scrubber starting from the point in time when the fault injector released the ICAP

hardware and started the DUT processing cycle. Consequently, if the point in time when

the latent fault would cause an error is after that time, the fault will always be corrected.

11.2 Implementation

The modular organization of the UFRGS fault injector is shown in Fig. 11.2 with

a common handshake interface between the fault injector and the DUT exerciser, which is

used to start the DUT processing and collect diagnostic data every time a fault is injected

as a consequence of commands issued by the campaign workstation.

Figure 11.2 – Fault injector operating in synchronous mode

DUT

application
specific

user defined
interface

ICAP
hardware

FPGA

Exerciser/
Tester

REQ
ACK
DIAG

common
fault injector

interface

 fault injector
serial

protocol



Campaign
Workstation

DIAG

UFRGS
Fault
Injector

COMMAND

Source: The Author

As the synchronous operation of the fault injector is faster and still useful in sce-

narios where memory scrubber is not used, it was opted to do only minor changes in the

fault injector maintaining the functionalities of the common handshake interface and se-

117

rial protocol. It was accomplished by using a dummy exerciser interfacing with the fault

injector that responds instantly to requests with a null diagnosis. A side channel is used

to collect the diagnostic data from the real DUT exerciser that operates independently.

Figure 11.3 shows a fault injection setup for asynchronous fault injection. This approach

allows the reuse of a same fault injector source code in different modes of operation.

Figure 11.3 – Fault injector operating in asynchronous mode

ICAP
hardware

FPGA

Dummy
Exerciser

REQ
ACK
DIAG

common
fault injector

interface

 fault injector
serial

protocol

DIAG

COMMAND

DUMMY

UFRGS
Fault

Injector

DUT

application
specific

user defined
interface

Exerciser/
Tester

Campaign
Workstation

out-of-band
DUT

interface

Source: The Author

11.3 Methodology and scripting

With the asynchronous fault injection, the campaign script injecting faults to em-

ulate radiation and the script monitoring the DUT diagnosis can work as two completely

independent processes, occasionally in different campaign workstations.

The fault injection script operates with a given targeted rate of faults that must

take into account the scrubbing period and the DUT processing time. As faults are in-

jected now asynchronously, the interval time between faults must be larger than the DUT

processing cycle time to ensure that there is no more than one fault per processing cycle.

The interval time between faults must also be larger than the scrubbing period.

It is important that the interval time between faults has a random component to

ensure that faults will be inject, and corrected, at any point in time during the processing

cycle. As a general rule one can use a fixed parcel of interval that is larger than both the

DUT processing time and the scrubber period plus another parcel that is a random fraction

of that time. More sophisticated fault rates can be implemented, for instance modeling

the interval between faults as a Poisson distribution.

118

11.4 Study case and results

A random-accumulated and asynchronous fault injection methodology was ap-

plied in the study of fault tolerance and reliability of designs where memory scrubbing

was used in conjunction of fault mitigation techniques than can mask temporarily faults

in CRAM, such as triple modular redundancy (TMR). Designs under analysis included

the Arm Cortex-M0 softcore microprocessor (BENITES et al., 2019) and convolutional

neural networks for image classification (BENEVENUTI et al., 2019c, 2021).

Asynchronous fault injection, operating isolated as an irradiation facility simula-

tor, was also used successfully to verify and validate design instrumentation, hardware

setup and radiation test scripts before sending to the radiation facility.

The asynchronous fault injection was essential at the analysis of the study case

design of softcore microprocessors by Benites et al. (2019) because it required the com-

parison of the mitigation strategies based on memory scrubbing associated with different

levels of modular redundancy, ranging from coarse-grain TMR (CGTMR) to fine-grain

distributed TMR (FGDTMR).

The software tasks in the softcore microprocessor had an execution period of ap-

proximately 60ms. For the FPGA device present in the experimental board, at the given

configuration clock, the memory scrubbing period was approximately 8ms in the absence

of bit-flips in CRAM. It was adopted an interval of 150ms between faults injected, be-

ing a non-integer multiple of the DUT processing cycle time. Figure 11.4a presents the

reliability curves obtained from fault injection for each DUT configuration.

The study case design was also tested with heavy ions at the SAFIIRA facil-

ity from the tandem electrostatic 8UD Pelletron accelerator at the LAFN-USP, Brazil

(AGUIAR et al., 2020). The experimental board was irradiated in-vacuum using a 39MeV

16O beam at 0◦ normal incidence. By preliminary static tests, the beam flux was adjusted

to produce a bit-flips rate around 5 s−1 in the entire FPGA. During the tests, the regular

beam flux was from 2.3× 102 cm−2s−1 to 3.2× 102 cm−2s−1.

The study case design was tested under radiation with different levels of modular

redundancy, with and without memory scrubbing. These different DUT configurations

were irradiated accumulating a total of approximately 6 hours of beam time, during which

it was acquired at least 50 failure events for each DUT configuration. For comparison,

Fig. 11.4b presents the reliability curves obtained from heavy ions irradiation for each

DUT configuration.

119

Figure 11.4 – Observed reliability under fault injection and radiation

1 10 100 1000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Unmit g–No scrub.
CGTMR–No scrub.
FGDTMR–No scrub.
Unmit g.–Scrub.
CGTMR–Scrub.
FGDTMR–Scrub.

Accumulated faults injected (normalized per #frames x1000)

R
e

li
ab

il
it

y

(a) Fault injection

200 2000 20000 200000 2000000
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Unmit g.–No scrub.
CGTMR–No scrub.
FGDTMR–No scrub.
Unmit g.–Scrub.
CGTMR–Scrub.
FGDTMR–Scrub.

Fluence (p/cm²)

R
e

li
ab

il
it

y

(b) Heavy ions

Source: The Author

From Fig. 11.4, it is noteworthy that, for some configurations, the effect of mem-

ory scrubbing was relatively less expressive under radiation when compared to emulated

fault injection results. A reliability metric relevant for analysis in this context is the er-

ror rate from fault injection τfailure (Eq. 4.10), which is presented in Fig. 11.5a, and its

relation to the dynamic cross section σfailure (Eq. 4.1), which is presented in Fig. 11.5b.

The three quantities for static cross section σSEU , dynamic cross section σfailure

and error rate from fault injection τfailure all convey a sense of probability. The inverse of

the static cross section gives how many particles are required to obtain an SEU, whereas

the inverse of the dynamic cross section provides the number of particles to occur a func-

tional failure. Finally, the inverse of the fault injection error rate gives how many injected

120

faults (i.e., emulated SEUs) are required to obtain a functional failure.

Given that the same device and similar irradiation conditions were used on all

heavy ions’ experiments presented above, we can consider the static cross section σSEU as

a constant. Also, for all fault injection campaigns, bit-flips were injected on the same fault

density for all design variants. It would be expected, then, that σfailure and τfailure could

be related by a proportionality constant κ as seen in Eq. 4.11, which can be simplified as

in Eq. 11.1 given that σSEU here is also a constant.

κ =
σfailure

τfailure
. (11.1)

Considering the existence of such scale factors between σfailure and τfailure, it is

straightforward to identify and understand the similarities between charts in Fig. 11.5a

and Fig. 11.5b. However, comparing these charts, one can also observe a greater discrep-

ancy in the case of the configuration FGDTMR with scrubbing, as seen in Fig. 11.5c.

The observed dynamic cross section for FGDTMR with scrubbing is higher than

the expected considering the results of fault injection. The causes of this discrepancy

are yet to be confirmed, but it can be conjectured that the mitigation with FGDTMR and

scrubbing raised the design reliability such that the FPGA configuration memory ceased

to be the weakest link on the system.

In this case, the upper bound for reliability would now be defined by other block

components inside the FPGA that was not targeted by this implementation of fault injec-

tion, such as clock tree, power-on-reset, configuration blocks, scrubbing engine, or even

user data on block memory and flip-flops.

Is is also noteworthy that this implementation of the fault injector emulated only

single-bit upsets (SBU) while the occurrence of multiple-bit upsets (MBU), specially

when the bit-flips occur in the same CRAM frame, have a great impact over the mem-

ory scrubber. Multiple-bit upsets also have the potential to disrupt TMR in the cases

where the redundant modules are not physically isolated in the FPGA floorplan, which is

impracticable for FGDTMR.

These results suggests further improvements in the fault injector, first extending

the reach of fault injection to other FPGA resources, notably memory blocks, and then

emulating multiple-bit upsets.

121

Figure 11.5 – Observed reliability under fault injection and radiation

Unmit g.
No scrub.

CGTMR
No scrub.

FGDTMR
No scrub.

Unmit g.
Scrub.

CGTMR
Scrub.

FGDTMR
Scrub.

E
rr
o
r
ra
te
τ

0x100

2.0x10-3

4.0x10-3

6.0x10-3

8.0x10-3

1.0x10-2

1.2x10-2

(a) Error rate from fault injection

Unmit g.
No scrub.

CGTMR
No scrub.

FGDTMR
No scrub.

Unmit g.
Scrub.

CGTMR
Scrub.

FGDTMR
Scrub.

D
yn
a
m
ic
cr
o
ss
se
ct
io
n
σ
(c
m
²)

fo
r
L
E
T
~
5
.5
M
e
V
/m
g
/c
m
²

2.0x10-5

0x100

4.0x10-5

6.0x10-5

8.0x10-5

1.0x10-4

1.2x10-4

1.4x10-4

(b) Dynamic cross section for heavy ions

Unmit g.
No scrub.

CGTMR
No scrub.

FGDTMR
No scrub.

Unmit g.
Scrub.

CGTMR
Scrub.

FGDTMR
Scrub.

σ
/τ
ra
tio

0x100

1.0x10-2

2.0x10-2

3.0x10-2

4.0x10-2

5.0x10-2

6.0x10-2

7.0x10-2

8.0x10-2

9.0x10-2

(c) Ratio between dynamic cross section and fault injection error rate

Source: The Author

122

12 FAULT INJECTION ON MEMORY BLOCKS

12.1 Motivation

Different from the contents of the configuration memory (CRAM), which is typ-

ically persistent, the contents of block memory (BRAM) holding user data is produced

and updated dynamically at runtime.

As faults in user data are subject to temporal masking, fault injection on BRAM

frames should also be asynchronous so that it can occur at any point in time during the

DUT processing cycle, as already seen in Chapter 11.

Fault injection on BRAM can occur concomitantly or not with fault injection on

CRAM, depending on what the engineer wants to analyze in the DUT. To emulate the

radiation process, the random position of faults should be distributed uniformly over the

BRAM bits in the region of interest. The same must occurs with CRAM bits. However,

if BRAM and CRAM have different static cross sections for the targeted radiation envi-

ronment, then the cross-section must be taken into account in the randomization process.

In static tests it was also observed that the geometry of MBU clusters in BRAM have a

different distribution from CRAM, possibly due to interleaving and higher density in the

memory array for BRAM blocks.

12.2 Implementation

In the implementation of the fault injection in BRAM frames, one first modifi-

cation on the fault injector code is related to the BRAM flags that are set in the frame

readback process (Fig. 12.1) and must be masked before writing the frame with bit-flip

into the BRAM. This is a characteristic already documented in the literature, for instance

by Gomez-Cornejo et al. (2017), and does not characterize reverse engineering violating

the licensing and use terms of Xilinx products.

If these flags (Fig. 12.2) are not masked the frame is not accepted and the fault

is not injected. The masking does not apply to CRAM frames, but BRAM and CRAM

can be easily distinguished by the type of block field in the frame address as described in

Table 6.1.

Another aspect that must be taken into account is the interference of the frame

manipulation in the interface of the block memory hardware as seen by the design at the

123

Figure 12.1 – Examples of BRAM frame bits set during readback

Source: The Author

logical level. To the design the memory block typically operates with an input address,

input data and output data port (Fig. 3.3). Values seen at the output data port is the logical

content of the memory at the given address. However, when the ICAP hardware accesses

a frame inside the BRAM, this interferes with the normal operation of the memory block

hardware changing the form how the address port is seen or the form how the output port

is populated, causing an incorrect value to be seen by the application and, ultimately, a

functional failure.

To cope with this behavior of the memory blocks, we considered the use of the

mechanism of capturing and restoring registers in the region of interest must be used

during the fault injection. In Xilinx 7 Series, the BRAM blocks have internal registers

which can optionally be enabled. It was conjectured that the capture operation could

copy the contents of such registers to the bitstream image, before the fault injection, to be

copied back into the BRAM by a restore operation, after the fault injection.

To check the validity of this assumption, first we implemented several test designs

with instances of BRAM with placement constrained to physical blocks marked with

the attribute RESET_AFTER_RECONFIG (RAR). By moving BRAM instances along he

FPGA floorplan it was possible to devise the values in the global reset mask associated

with each BRAM column. In the following this reset mask was used before the restore

124

Figure 12.2 – Masking of BRAM bits set on frame readback for Xilinx 7 Series
. . .

c o n s t a n t MAGIC_BIT_HIGH_MASK : s t d _ l o g i c _ v e c t o r (31 downto 0) := X" 00020000 " ;

. . .

f r a m e _ i s _ b r a m _ s <=
t r u e when ((f a d d r _ t o _ i c a p _ r e g and BLOCK_TYPE_BRAM_MASK) = BLOCK_TYPE_BRAM_MASK) e l s e
f a l s e ;

w o r d _ a d d r _ i s _ m a g i c _ s <=
t r u e when ((frame_mem_addr = X" 04 ") and

(b i t _ p o s >= 0) and (b i t _ p o s <= 319)) e l s e
t r u e when ((frame_mem_addr = X" 0E") and

(b i t _ p o s >= 320) and (b i t _ p o s <= 639)) e l s e
t r u e when ((frame_mem_addr = X" 18 ") and

(b i t _ p o s >= 640) and (b i t _ p o s <= 959)) e l s e
t r u e when ((frame_mem_addr = X" 22 ") and

(b i t _ p o s >= 960) and (b i t _ p o s <= 1279)) e l s e
t r u e when ((frame_mem_addr = X" 2C") and

(b i t _ p o s >= 1280) and (b i t _ p o s <= 1599)) e l s e
t r u e when ((frame_mem_addr = X" 37 ") and

(b i t _ p o s >= 1632) and (b i t _ p o s <= 1951)) e l s e
t r u e when ((frame_mem_addr = X" 41 ") and

(b i t _ p o s >= 1952) and (b i t _ p o s <= 2271)) e l s e
t r u e when ((frame_mem_addr = X" 4B") and

(b i t _ p o s >= 2272) and (b i t _ p o s <= 2591)) e l s e
t r u e when ((frame_mem_addr = X" 55 ") and

(b i t _ p o s >= 2592) and (b i t _ p o s <= 2911)) e l s e
t r u e when ((frame_mem_addr = X" 5F") and

(b i t _ p o s >= 2912) and (b i t _ p o s <= 3231)) e l s e
f a l s e ;

. . .

Source: The Author

operation to avoid interference with the fault injection itself.

Unfortunately, experiments evidenced that the capture and restore mechanism had

no effect on the registers inside the BRAM block. In fact, Xilinx technical documentation

(XILINX, 2019) indicates that BRAM blocks have configuration for initial values and

reset values for registers, but those reset values are loaded upon BRAM specific reset

signal (RSTRAM/RSTREG) while BRAM block has no connection to the global restore

signal. However, the manipulation of the BRAM specific reset signal also could not solve

the problem as the configured values does not seem to be affected by the capture operation.

More recently, a similar strategy of BRAM manipulation was presented by Gomez-

Cornejo et al. (2022) in an implementation of memory scrubbing for BRAM blocks, again

suggesting the feasibility of reading and writing BRAM frames without disrupting the de-

sign in execution. The authors have indicated, however, that they have not analyzed the

content of the BRAM output ports during the manipulation of the memory contents (BAR-

RENA, 2022), suggesting that their BRAM scrubbing mechanism was tested only with

persistent data stored inside BRAM, such as constant data tables or firmware object code.

Notwithstanding, out implementation of fault injection in BRAM block can still

125

be used with such persistent data, although its usefulness is very limited and does not

contribute to the emulation of radiation effects on BRAM for data subject to temporal

masking.

12.3 Methodology and scripting

The fault injection emulating persistent faults on BRAM works similar to the fault

injection methodology presented on Chapter 10. The main difference is that it must invoke

an specific command of the fault injector because it uses a different frame type for BRAM

(Table 6.1) and the BRAM control bits must be masked (Fig. 12.2).

Other BRAM fault injection methodologies can be tailored to evaluate error de-

tection and correction codes as well as policies for data scrambling and data interleaving.

12.4 Study case and results

As study case design for fault injection on BRAM we adopted the investigation of

the effects of software implemented hardware fault tolerance (SIHFT) in the benchmark

application embedded on the INPE-SMDH/UFSM-UFRGS payload board for NanosatC-

BR2 CubeSat mission described briefly in Appendix C.

The design implemented in the SRAM-based FPGA comprises seven main mod-

ules, being one supervisory and six versions of the benchmark application.

In Benevenuti et al. (2019b) we investigated the hardening of the supervisory mod-

ule by the use of triple modular redundancy (TMR) with different granularities. For that,

we used randomized-cumulative fault injection (Chapter 10) over each of the seven mod-

ules, individually, as well as over the whole FPGA design. The focus was then on the

supervisory module but we also collected diagnosis data about the benchmark applica-

tion. During these experiments it was collected more 250 failure events in the set of

applications.

A similar experiment was performed by heavy ions irradiation at the SAFIIRA

facility from the tandem electrostatic 8UD Pelletron accelerator at the LAFN-USP, Brazil

(AGUIAR et al., 2020). We ported the NanosatC-BR2 design from Xilinx Artix-7 floor-

plan (Fig. 12.3a) to fit the Xilinx Zynq-7000 used in the radiation experiment (Fig. 12.3b).

The input pins selecting the active applications (APP_EN_*) were configured for pull-up

126

at the Xilinx device input/output block (IOB), hence all the applications were active. The

clear to send (CTS) signal is active low, hence the input pin was configured for pull-down.

Figure 12.3 – Floorplan of NanosatC-BR2 benchmark application

(a) Xilinx Artix 7 A100T FPGA (b) Xilinx Zynq-7000 Z020

Source: The Author

The FPGA was irradiated in-vacuum using a 73.5MeV 28Si and 43.2MeV 16O

beams, amounting to a total fluence of 7.8 × 106 cm−2. During these experiments it was

collected more 100 failure events in the set of applications.

As the soft-core microprocessors state is stored into flip-flops on the FPGA CLB

while machine code is stored into BRAM, neither covered by the fault injector presented

in (Chapter 10), it was not surprising that there was no occurrences of status message for

MIPSH_DUE or the MBH_DUE (Table C.1) during fault injection.

The use of hardening techniques originally designed for hard-core microproces-

sors does not always produces relevant effects when applied to soft-core microprocessors

because the higher volume of CRAM, and its susceptibility, masks the effects of the tech-

niques or disrupt the circuit before any benefit from the hardening is accrued.

Notwithstanding, the use of soft-core microprocessors in FPGA allows the con-

struction of a large library of microprocessors architectures that can be used to evaluate

and steer the development of hardening techniques targeting the equivalent hard-core mi-

croprocessors. In this sense, BRAM fault injection in FPGA can still be used, for instance,

in focused fault injection only for data elements equivalent to that existing hard-core mi-

croprocessors.

To illustrate this approach, we implemented the BRAM fault injection in the

NanosatC-BR2 design with the exclusive purpose of evaluating the impact of the SIHFT

127

techniques in regard to the persistent object code stored in BRAM.

Two fault injection campaigns were performed, each targeting one of the soft-

core microprocessors executing hardened software. Faults were injected in randomized

positions inside the BRAM memory matrices using mechanisms described in Section

12.2.

For these fault injection campaigns the NanosatC-BR2 supervisory, depicted in-

side Fig. C.6f, was replaced by a test driver for tighter control of soft-core and software

execution life-cycle and to collect additional diagnosis information. The software ex-

ecuting in the microprocessors is exactly the same on-board NanosatC-BR2, only the

supervisory being replaced. In both the microprocessors under test the software is the

SIHFT-hardened version of the code on Fig. C.7. Under this set-up the microproces-

sors are most of the time in busy-wait idle state or busy-wait spin-lock after the end of a

computation, lbl_wait_start and lbl_wait_forever, respectively, in Fig. C.7.

The fault injection sequence consists of injecting a fault in BRAM while the mi-

croprocessor is running but in one of the idle or lock states and then invoking the test

driver to collect diagnosis. The test-driver starts by issuing a logical reset that causes the

initialization and software boot-up of the microprocessor. The test-driver then coordinates

the execution of microprocessor while monitoring the execution time.

The outcome may be (1) a timer run-out after the logical reset and boot-up, mean-

ing that the software did not wrote IDLE in the memory, (2) a timer run-out during the

computation, meaning that the software did not wrote DONE in the memory, (3) a detected

improper execution flow, signaled on SYNC_RESULT_DUE memory address, (4) an un-

detected incorrect computation, detected by the test driver as an incorrect checksum value

on SYNC_RESULT_CHECKSUM memory address, or, finally, (5) a correct computation

matching the known golden value. During fault injection, if a correct computation is

obtained then another fault is injected and the process is repeat until a failure is observed.

Table 12.1 summarizes the results of fault injection on BRAM. Results from

MicroBlaze and miniMIPS are not directly comparable because the memory volume is

slightly different in the two microprocessors and the software uses different runtime li-

braries and compilation flow. Notwithstanding, the classification of the type of failure

observed follows a very similar distribution, with most of the failures seen as execution

time exceeded. It is noteworthy that the timer run-out during the processor boot-up rou-

tine is the more frequent event. All the timer run-out events amounts up to 85% of the

functional failures, as depicted on Fig. 12.4. However, when we take into account only

128

the software executions that ended in an incorrect computed result, the SIHFT technique

was capable of detecting 95% of the cases.

Table 12.1 – Results from fault injection on BRAM
Failure

type MicroBlaze miniMIPS

Failure type

Detected unrecoverable error (DUE) 99 97

Silent data corruption (SDC) 5 5

Compute timer run-out 13 12

Boot-up timer run-out 520 401

Reliability metrics

Faults injected 1,528 4,283

BRAM volume (bits) 204,800 163,840

Mean faults to failure (MFTF) 2.4 8.3
Source: The Author

Figure 12.4 – Type of software failure under BRAM fault injection

MicroBlaze miniMIPS
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compute timeout

Boot timeout

SDC

DUE

Source: The Author

129

13 FAULT INJECTION ON FLIP-FLOPS

13.1 Motivation

The flip-flops (FF) inside logical blocks (CLB) represents a very small portion

of the designs essential bits. Each CLB column has 36 frames of CRAM, amounting

to 116,352, while the configuration of flip-flops in a CLB column takes only 800 bits, a

ratio of 145 to 1. Using as example the design in Table 10.1, we have a ratio of 930 to

1 between critical bits and flip-flops, and a ratio 16045 to 1 between essential bits and

flip-flops. Data stored on flip-flops in a CLB columns are also eminently volatile and,

consequently, susceptible to temporal masking.

These aspects make fault injection on flip-flops in SRAM-based FPGAs a low

priority task compared to the persistent configuration stored in CRAM in general.

Notwithstanding, as we discussed for the case of BRAM fault injection in the

previous Chapter 12, emulation-based fault injection on flip-flops in FPGAs can also be

used as test methodology in the development of fault tolerance techniques for ASICs,

replacing the use of simulation-based methods that are slower.

Some examples of fault tolerance development that can use emulation-based fault

injection on flip-flops in test circuits implemented in FPGAs include development of

software implemented hardware fault tolerance (SIHFT) (CHIELLE et al., 2015, 2016;

CHIELLE, 2016) and modular redundancy by the use of fine-grain local TMR (FGLTMR)

(BENITES et al., 2018, 2019).

13.2 Implementation

The implementation of fault injection on flip-flops follows a procedures similar to

the RESET_AFTER_RECONFIG (RAR) discussed briefly in Section 12.2. The Xilinx 7

Series FPGA can be seen as three planes of configuration data (CRAM), volatile user data

and FPGA circuitry, as depicted in Fig. 13.1.

In Xilinx 7 Series FPGAs there is a global capture (GCAPTURE) hardware opera-

tion that can copy data from the user plane to the configuration plane, for instance before

a bitstream readback. Equivalently, there is a global restore (GRESTORE) operation than

copy data from the configuration plane to the user plane. This restore operation occurs

when a bitstream is loaded into the FPGA and the initial value of the flip-flops must be

130

Figure 13.1 – Capture and restore operations

GRESTORE

GCAPTURE

Source: The Author

loaded.

However, the global restore operation does not need to be really global. In dy-

namic partial reconfiguration, for instance, only the partition of the FPGA that was re-

configured should be subject to the restore operation preventing interference with other

partitions that were continuously in operation. The effect of the global restore signal can

be constrained to a selected region of the FPGA, which is done by programming a global

restore mask in the special CLB configuration frames (type of block 010b in Table 6.1).

This mask inhibits the effect of global restore, except in the region of interest.

The programming of a global restore mask in inserted automatically in the bit-

stream by the Xilinx Vivado Synthesis tool when the physical block containing dynamic

partial reconfiguration module is configured with the attribute RESET_AFTER_RECON-

FIG (RAR).

In our case, the configuration of the restore mask was implemented inside the fault

injection module in the FPGA. New a fault injection commands were implemented to

support fault injection with clock gating, global capture and restore. When the command

for fault injection with capture and restore is issued, the fault injection module determines

the CLB column from the frame address provided by the campaign script and configures

the global restore mask for that single column only.

This fault injection operation would be typically associated with clock gating be-

cause the whole sequence of global capture, reading of CRAM frame, insertion of the

bit-flip, writing back the CRAM frame, programming of the restore mask and, finally,

masked global restore, takes several clock cycles. The clock gating of the design under

test assure the consistency of the the state that will restored at the end of the sequence.

131

13.3 Methodology and scripting

The fault injection on flip-flops can be performed together with the general CRAM

fault injection, with the main difference being the clock gating, capture and restore op-

erations that would have no effect for CRAM bits that are not mirrored to the user data

plane.

More specifically, for Xilinx 7 Series, in tests in real environment or under accel-

erated irradiation, SEUs can occur both in the CRAM plane and in the user data plane.

If the SEU is on user data plane, the effect may be immediately seen as an error in the

computed result of the design. Conversely, a SEU may also be masked if the value is not

propagated after the SEU or a new value is stored by the design. However, if the SEU

is on the CRAM plane, for instance in the flip-flop reset value it may stay latent until a

logical reset in the circuit loads a corrupted value in the storage element in the user data

plane. Conversely, a SEU in the CRAM plane changing the flip-flip operation mode from

synchronous to asynchronous may also cause a functional failure immediately.

Flip-flop storage elements in a Xilinx 7 Series FPGA CLB column can operate

either as latches or as flip-flop proper. The number of relevant configuration bits varies

with the type of storage element used by the design, being latches or complete flip-flops,

and also the mode of operation of the storage element, for instance if it has synchronous

or asynchronous reset. Each storage element have also two configuration bits for its initial

(INIT) value, loaded upon global restore, and its set-reset value (SRVAL), loaded upon

the local logical set-reset signal.

As an experimental fault injection methodology for flip-flops we injected faults in

selected relevant bits for the storage elements, amounting to 800 target bits in each CLB

column. Faults are injected with the design clock on hold and the capture and restore

operations are used to load any eventually changed data into the user plane. Faults are

injected in random times during the design execution, as seem in Chapter 11.

Other flip-flop fault injection methodologies can be tailored to fault tolerant tech-

nique under analysis and the target of the development, if a SRAM-based FPGA or an

ASIC. For instance, for a stricter emulation of SEUs in the user data plane, which would

be of interest to the development of ASICs, fault should be injected only in the CRAM

bits relative to the INIT value.

132

13.4 Study case and results

As study case design we adopted the same design from Section 12.4, consisting

of the soft-core microprocessors execution benchmark applications with software imple-

mented hardware fault tolerance (SIHFT) embedded on the INPE-SMDH/UFSM-UFRGS

payload board for NanosatC-BR2 CubeSat mission.

The two softcore microprocessors under test, MicroBlaze and miniMIPS, have

an very important different in the allocation of the register file. While the miniMIPS

implements its entire register bank using flip-flops from CLB column, the MicroBlaze

implements the register bank using LUTRAM, also from the CLB column as seem briefly

in Section 3.3. This is relevant in this context because some of the SIHFT techniques

present in the benchmark application includes redundancy of registers.

The diagnostic information was extended to present occurrences of machine re-

boot during the software execution, which may be caused by unhandled exceptions. This

condition is detected by the presence of a IDLE value in the SYNC control memory ad-

dress after the test driver have written START and exited with timer run-out without a

DONE response from the application.

The results from fault-injection are summarized in Table 13.1. Overall, miniMIPS

processor core used over three times more flip-flops than MicroBlaze and presented a

mean-fault to failure (MFTF) also three times lower. The different distribution of failure

type, also seen in Fig. 13.2, may be related both to the different number of pipeline stages

and to the fact the MicroBlaze register file is not on CLB flip-flops. For instance, as

the miniMIPS program counter register (PC) is implemented with flip-flips from CLB, it

is plausible that fault injection in flip-flips increase the occurrence of machine reboot in

miniMIPS due to exception caused by corrupted PC.

Figure 13.2 – Type of software failure under FF fault injection

MicroBlaze miniMIPS
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Reboot

Compute timeout

Boot timeout

SDC

DUE

Source: The Author

133

Table 13.1 – Results from fault injection on flip-flop
Failure

type MicroBlaze miniMIPS

Failure type

Detected unrecoverable error (DUE) 284 316

Silent data corruption (SDC) 36 2

Compute timer run-out 30 1

Machine reboot 13 75

Boot-up timer run-out 8 –

Reliability metrics

Faults injected 1,785 617

CRAM volume (flip-flop bits) 6,400 6,400

Mean faults to failure (MFTF) 4.8 1.6

Flip-flops instantiated by the design 496 1,676
Source: The Author

134

14 FAULT INJECTION EMULATING MULTIPLE-BIT UPSETS

14.1 Motivation

As discussed in Section 11.4, the emulated fault injection tends to present a larger

discrepancy from irradiation tests as the reliability of the design under test increases.

In the study case application of Arm Cortex-M0 softcore microprocessor, that

discrepancy was larger for designs with memory scrubbing enabled, as seen in design

with the FGDTMR and scrubbing on Fig. 11.4. A similar effect was observed in the

design for image classification using convolutional neural network (CNN) presented in

Section B.6 (BENEVENUTI et al., 2019c, 2021).

The cumulative effect of SEUs in CRAM can disrupt mitigation techniques such

as modular redundancy. The effect of multiple-bit upsets (MBU) can disrupt both mod-

ular redundancy and memory scrubbing. The impact on modular redundancy is higher

when the redundant modules are collocated (STERPONE et al., 2017). In the case of

native memory scrubbing available on Xilinx 7 Series hardware, the error detection and

correction codes tolerates only a single bit-flip on each CRAM frame.

It is expected that the emulation of multiple-bit upsets in fault injection may de-

crease the discrepancy between emulated fault injection and radiation experiments, spe-

cially in designs using modular redundancy and memory scrubbing.

14.2 Implementation

The statistical profiles of single-bit (SBU) and multiple-bit upsets collected from

static tests in Chapter 8 play a central role in the emulation of multiple-bit upsets.

When the target of the fault injection campaign is persistent configuration data

stored in CRAM, in design without the use of memory scrubbing, the multiple-bit upsets

can be emulated by the simple injection of many bit-flips is neighboring locations follow-

ing the profiles as presented in Fig. 8.6, Fig. 8.10 or Fig. 8.12. To some degree, it would

be similar to the emulation of arbitrary artifact shapes seen in Chapter 9.

This approach of building the MBU artifact by injection of multiple SBU was

applied in preliminary fault injection campaigns over a convolutional neural network for

aerial image classification described in Section B.7 (BENEVENUTI et al., 2022).

The challenge is different when memory scrubbing is involved. In this case, the

135

fault injection method presented in Chapter 11 is not enough to inject multiple-bit upsets

because the scrubber would be activated during the injection of the MBU. Also, as the

fault injection takes several clock cycles, the bit-flips may not be seen by the design in

CRAM as a single MBU.

To cope with these challenges, two main modifications were performed in the

fault injector. First, the memory scrubber is disabled before the injection of the bit-flips

composing the MBU and enabled again at the end of the injection. Second, clock gating

must be applied to the design under test, as seen in the case of flip-flop fault injection in

Chapter 13.

To sustain the productivity of the fault injection, considering the relatively low

speed of serial communication, all the operations over memory scrubber, clock gating

and injection of multiple bit-flips were embedded in a single command.

The basic operations of the fault injection presented in previous chapters, and the

main fault injector modules seem in Fig. 9.1, can be seen as building blocks for the

different fault injection commands. Each fault injection command indicates if memory

scrubber should be put on hold or not, if the clock gate should be put on hold or not, if the

capture and restore should be applied of not, and, finally, the shape of the SBU or MBU

artifact to the injected.

An example of embodiment of the fault injector module is presented in Fig. 14.1.

The fault injector receives commands (1) from the campaign script, which are handled by

the protocol FSM. The protocol FSM was dismembered from the fault injection control

logic from the original fault injection tool for Xilinx 7 Series (TONFAT et al., 2016) for

easier maintenance of the protocol and injection logic independently. Whenever the com-

mand involves clock gating, the fault injector first commands the clock gate (2) to suspend

the DUT clock (3). The implementation of the clock gate module is external to the fault

injection enabling the user to define how many clock signals are relevant and which de-

sign modules should be coordinated with the DUT gating. The interpreted command is

issued to the fault injector (4). However, a single command from the campaign script may

result in many commands to the fault injector. For instance, one command to the fault

injector may be to use the ICAP interface (6) to write a new value to the FPGA control

register to temporarily shutdown or re-enable the Xilinx native memory scrubber. Several

commands may also be send to the fault injector to inject the many bit-flips according to

the given fault shape (5) selected by the script. If the fault injection also involves cap-

ture and restore of data on the user plane, the fault injector should first capture data and

136

program the restore mask (7) except in the column where the fault is injected. To inject

a bit-flip, the fault injector module reads the whole frame using the ICAP interface (6),

storing temporarily in an auxiliary memory, flips a single bit in the frame by an XOR op-

eration, and then write back the frame using the ICAP interface (6). This is repeated until

all the bit-flips for the SBU or MBU were injected (7). Again, if the fault injection also

involves capture and restore, the fault injector should now restore data to the user data

plane. If the scrubber was shutdown, it should then be enabled again in the control regis-

ter (6) while the DUT clock is also enabled (2)(3). The fault injector then can command

the execution (8) and collection of diagnostic information (9). This information is send

back the to campaign script (1). The DUT exerciser/checker can also collect diagnostic

information independently before, during or after the fault injection, except during the

time interval when the DUT clock is suspended (3). While a brief diagnostic word is sent

through the interface with the fault injector (9), more comprehensive diagnose data can

be transmitted by the exerciser/checker through a secondary channel (10).

Figure 14.1 – Fault injector modules

Top design on FPGA

DUT
Exerciser/Checker

DUT
Exerciser

I/O

Golden

DUT Clock
Gate

BUFGCE
Hardware

Zynq7000
Arm Cortex-A9

MMCM/PLL BUFG
Hardware

Fault Injector Module

Serial port
UART

Fault injector controller
ICAP

Hardware

Serial protocol
FSM

ICAP
Injection

FSM

Auxiliary
memory
(1 frame)

Capture /
restore (RAR)

mask table

(1)

(4)

(2)

(3)

(8)(9)

(10)

(6)

(7)

SBU / MBU
artifact shapes

table

(5)

Source: The Author

Each SBU or MBU artifact is represented in relation to rectangular matrix. Given

the most frequent MBU shapes observed in static tests from Chapter 8, it was observed

that a matrix of six rows and three column would suffice to represent all the relevant

shapes. The command from the campaign script to the fault injector always inform the

position relative to the lower-left corner of the reference frame. Each shape has a well-

known identifier shared shared with the campaign script and the fault injection module.

The reference frame and some examples of SBU and MBU shapes are presented in Fig.

137

Figure 14.2 – Reference frame and examples of SBU and MBU shapes

(a) Reference (b) #1 (c) #2 (d) #3 (e) #5 (f) #40

Source: The Author

14.2. The shape for the MBU has the identifier #1 (Fig. 14.2b). Hence, using the new

command for injecting the fault artifact with identifier #1 is equivalent to the legacy

command that injects a single bit-flip at the given CRAM position.

Inside the fault injection module, as well as in the campaign script, the fault artifact

shape can the represented in a compact form of a bitmap with 18 bits, as in the example

of Table 14.1.

Table 14.1 – Examples of SBU and MBU shapes encoding bitmaps

Identifier Bitmap

#1 100 000 000 000 000 000 000

#2 010 100 000 000 000 000 000

#3 110 000 000 000 000 000 000

#5 010 110 100 000 000 000 000

#40 010 110 110 110 110 110 100

Source: The Author

Given the higher complexity of this fault injection module implemented inside

the FPGA, the the higher complexity of the coordination of the different building blocks

of the fault injector along its finite-state machines, additional simulation testbenchs were

implemented to validate its correct operation in different fault injection scenarios.

14.3 Methodology and scripting

Despite the complexity of the fault injector, the fault injection methodology is

not very different from the presented in Section 10.3 or in Section 11.3. Overall, the fault

injection procedure will always follow a process similar to the presented in Fig. 10.1b, the

main difference being that delays may are introduced between faults injected, to emulate a

desired flux and adjust to the memory scrubbing period, and the shape of the fault injected

138

should follow a desired statistical profile of SBU and MBU.

14.4 Study case and results

Two different designs were used as study case during the implementation and

validation of fault injection supporting multiple-bit upsets. The first design is a simple

matrix multiplication benchmark generated by high level synthesis (MXM HLS). The

smaller area and simpler interface and operation of this design allow for easier execution

of regression tests in the fault injector. Another design used as study case is the Arm

Cortex-M0 softcore microprocessor with different levels of mitigation from Section 11.4.

The benchmark application was implemented without mitigations, with coarse-

grain triple modular redundancy (CGTMR) coded manually, and with fine-grain dis-

tributed triple modular redundancy (FGDTMR) generated automatically by the TMRi tool

(BENITES et al., 2018, 2019). The three mitigation levels were tested with and without

memory scrubbing. Consequently, we have different levels of fault masking, which may

sustain the reliability for a short period of time, and the healing by memory scrubbing,

which clean up faults periodically and prevents its accumulation.

The fault injection campaigns were performed emulating single-bit upsets only,

which is the legacy method presented in previous chapters, and emulating both single-bit

and multiple-bit upsets following the statistical profile from fast neutrons at IEAv LRI

facilities and heavy ions from USP LAFN SAFIIRA with beams of 16O and 28Si.

Figure 14.3 presents reliability metrics for the matrix multiplication benchmark

used for regression testes along the several stages of development of the multiple-bit up-

sets emulation. From the charts we can observe how excessively optimistic the fault

injection can be in relation to the memory scrubbing when we inject only single-bit up-

sets.

In reality, occurrences of multiple-bit upsets in the same frame (intraframe MBU)

prevents the memory scrubbing at that frame. The memory scrubbing is not interrupted,

but the scrubber will skip frames with multiple bit-flips and continue the periodic CRAM

scan correcting only frames with one bit-flip. For instance, the faults from Fig. 14.2b, Fig.

14.2c and Fig. 14.2d can be correct by the scrubber, while the examples from Fig. 14.2e

and Fig. 14.2f can not be corrected and would accumulate over time, potentially causing

a functional failure once the masking capability of the modular redundancy is exceeded.

As discussed in Chapter 8, the proportion of single-bit upsets and multiple-bit

139

Figure 14.3 – Reliability metrics for MXM HLS benchmark application

Unhard CGTMR FGDTMR Unhard CGTMR FGDTMR
No scrubber Scrubber active

0

100

200

300

400

55
.1

52
.5

10
4.

2

52
.4

32
9.

1 37
8.

9

47
.3

41
.5 85

.3

40
.4

11
7.

3 16
7.

9

38
.6

34
.7 66

.7

31
.2 53

.7 84
.1

32
.0

31
.0 56

.3

30
.4 44
.8 63

.6

SBU Only SBU+MBU (IEAv) SBU+MBU (16O 38.4 MeV) SBU+MBU (28Si 73.5 MeV)

(a) Mean faults to failure (MFTF)

Unhard CGTMR FGDTMR Unhard CGTMR FGDTMR
No scrubber Scrubber active

0

5

10

15

20

25

3.
0

8.
1

15
.2

3.
2

18
.5

22
.5

2.
7

5.
9

12
.3

2.
9

10
.4

15
.4

2.
8 4.

5

10
.8

2.
0

5.
4

10
.0

1.
6

4.
3

8.
3

2.
1

5.
4

8.
1

SBU Only SBU+MBU (IEAv) SBU+MBU (16O 38.4 MeV) SBU+MBU (28Si 73.5 MeV)

(b) Estimated mission time for 95% reliability (MT, in accumulated faults, R≥95%)

Source: The Author

upsets varies according to the particle and energy. However, the proportion between up-

sets with a single bit-flip and with multiple bit-flips per frame also varies greatly. For

instance, the heavy ions beams of 16O at 38.4MeV and 28Si at 73.5MeV produce, re-

spectively, 4.7× and 6.8× more intraframe MBUs than fast neutrons. With this in mind,

we can see from Fig. 14.3 how the contribution of the memory scrubber in improving

reliability is less and less significant as we increase the occurrence of intraframe MBU.

The Arm Cortex-M0 softcore microprocessor was tested under heavy ions with a
16O beam at 39MeV (BENITES et al., 2019). For comparison, Fig. 14.4 shows the reli-

ability curves obtained from heavy ions irradiation with 16O beam at 39MeV, from fault

injection emulating only SBU and from fault injection emulating both SBU and MBU us-

ing the statistical profile from 16O beam at 38.4MeV. Figure 14.5 shows the ratio between

dynamic cross section (σ) and fault injection error rate (τ), as already discussed in Sec-

tion 11.4, to illustrate the improvement in the consistency between irradiation tests and

emulated fault injection with MBU. The ratio obtained with MBU is not yet a constant,

140

Figure 14.4 – Reliability curves from radiation and fault injection

100 1000 10000 100000 1000000 10000000
0%

20%

40%

60%

80%

100%

Unmit. No Scrub. Unmit. Scrub.
CGTMR No Scrub. CGTMR Scrub.
FGDTMR No Scrub. FGDTMR Scrub.

Fluence (16O 39 MeV)

R
e

lia
b

ili
ty

(a) Heavy ions 16O 39 MeV

1 10 100 1000
0%

20%

40%

60%

80%

100%

Unmit. No Scrub. Unmit. Scrub.
CGTMR No Scrub. CGTMR Scrub.
FGDTMR No Scrub. FGDTMR Scrub.

Accumulated faults injected (F/kf)

R
e

lia
b

ili
ty

1 10 100 1000
0%

20%

40%

60%

80%

100%

Unmit. No Scrub. Unmit. Scrub.
CGTMR No Scrub. CGTMR Scrub.
FGDTMR No Scrub. FGDTMR Scrub.

Accumulated faults injected (F/kf)

R
e

lia
b

ili
ty

(b) SBU and MBU (16O 38.4MeV) (c) SBU Only

Source: The Author

suggesting that there are still elements not covered by fault injection, but the discrepancy

is significantly smaller.

Figure 14.5 – Ratio between dynamic cross section and fault injection error rate

Unmit g.
No scrub.

CGTMR No
scrub.

FGDTMR
No scrub.

Unmit g.
Scrub.

CGTMR
Scrub.

FGDTMR
Scrub.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

σ/τ SBU σ/τ 16O 38.4 MeV σ/τ 16O 43.2 MeV

σ
/τ

ra
tio

Source: The Author

141

15 PORT OF THE UFRGS FAULT INJECTOR TO ULTRASCALE+

15.1 Motivation

The UltraScale device family using 20 nm planar technology was launched by

Xilinx by the end of 2013 following its 7 Series family from mid 2010 that used planar 28

nm technology. UltraScale introduced architectural improvements in the FPGA logic and

in the configuration memory array, for instance with a higher bit interleaving to further

reduce the occurrence of intraframe MBU. The same UltraScale FPGA architecture is

present in the UltraScale+ device family, the main difference being the use of 16 nm

FinFET technology. The Versal device family was launched commercially in 2019 and

uses 7 nm FinFET technology.

With the launch of low cost UltraScale+ devices, this family becomes a candidate

to replace the 7 Series in general purpose applications, considering the lower maturity of

the Versal family in the market, the higher cost of the new technology and the positioning

of the Versal brand in niches of high performance such as 5G mobile networks and AI/ML

in datacenters.

15.2 Implementation

The main characteristics of Xilinx UltraScale+, compared to Xilinx 7 Series, af-

fecting the UFRGS fault injector are:

• The number of bits in the frame is different (93 words of 32 bits).

• The ICAP hardware block has new ports in its interface (Table 15.1).

• The interconnect frames are now addressed independently from the other columns.

• The numbering of rows changed and there is no more the concept of TOP and

BOTTOM rows.

• The number of bits and organization of the fields in the frame address was adapted

to the new memory organization.

• There are changes in the FPGA configuration registers and commands.

• The BRAM flag bits are in new positions in UltraScale+ (Fig. 15.1).

142

Table 15.1 – Differences in ICAP hardware interface
Xilinx Virtex-5 Xilinx 7 Series Xilinx Ultrascale+

Primitive ICAP_VIRTEX5 ICAPE2 ICAPE3

Generics

ICAP_WIDTH => "X32" Specifies the input and
output data width.

Yes Yes No

DEVICE_ID =>
X"03628093"

Specifies the pre-
programmed Device ID
value to be used for
simulation purposes.

No Yes Yes

SIM_CFG_FILE_NAME =>
"NONE"

Specifies the Raw
Bitstream (RBT) file to be
parsed by the simulation
model.

No Yes Yes

ICAP_AUTO_SWITCH =>
"DISABLE"

Enable switch ICAP using
sync word

No No Yes

Ports

O : out
STD_LOGIC_VECTOR (31
downto 0)

32-bit output:
Configuration data
output bus

Yes Yes Yes

I : in STD_LOGIC_VECTOR
(31 downto 0)

32-bit input:
Configuration data input
bus

Yes

CLK : in STD_LOGIC 1-bit input: Clock Input Yes Yes Yes

WRITE : in STD_LOGIC 0 = write, 1 = read
(RDWR_B for SelectMAP)

Yes No No

RDWRB 1-bit input: Read/Write
Select input

No Yes Yes

CE : in STD_LOGIC clock enable (active low)
(CS_B for SelectMAP)

Yes No No

CSIB 1-bit input: Active-Low
ICAP Enable

No Yes Yes

BUSY : out STD_LOGIC active high, only used
during read

Yes No No

AVAIL 1-bit output: Availability
status of ICAP

No No Yes

PRDONE 1-bit output: Indicates
completion of Partial
Reconfiguration

No No Yes

PRERROR 1-bit output: Indicates
Error during Partial
Reconfiguration

No No Yes

Source: The Author

Figure 15.1 – Masking of BRAM bits set on frame readback for Xilinx UltraScale+
py thon 08 _ c h e c k _ f i _ t o g g l e _ b r a m . py
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 0 b i t mask 108 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 240 b i t mask 348 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 480 b i t mask 588 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 720 b i t mask 828 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 960 b i t mask 1068 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 1200 b i t mask 1308 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 1536 b i t mask 1644 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 1776 b i t mask 1884 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 2016 b i t mask 2124 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 2256 b i t mask 2364 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 2496 b i t mask 2604 r e s p o n s e : 000000
[INFO] d o _ i n j e c t _ b r a m a t 01040000 b i t 2736 b i t mask 2844 r e s p o n s e : 000000

Source: The Author

143

Due to the number of changes in the code, it was opted for maintaining two in-

dependent sets of the VHDL source code for the fault injector to Xilinx 7 Series and to

Xilinx UltraScale+.

15.3 Methodology and scripting

As little modifications were introduced in the command and control protocol at

the serial communication interface between the campaign scripting and the fault injector

module inside the FPGA, many of the campaign scripts development of methodologies

applied to the 7 Series FPGA can be adapted with little effort to the UltraScale+ devices.

The main aspect that must be changed in the campaign scripting is the inventory

of rows, columns and frames on each column, for each device model. However, this is

a modification that is necessary even when using different devices from 7 Series family

such as the Artix-7 A100T onboard NanosatC-BR2 and the Zynq-7000 Z020 on ZedBoard

development board.

Overall, there is no new test methodology specific to the UltraScale+ devices, the

test approaches being the same applicable to 7 Series. However, not all test approaches

implemented to the 7 Series family are fully functional in UltraScale+ and even those that

are functional were not yet cross validated with data from radiation tests.

15.4 Study case and results

The port of the fault injection in configuration memory (CRAM) for UltraScale+

was implemented and tested with a small benchmark design.

Xilinx High-Level Synthesis (HLS) was used to generate VHDL implementation

of a matrix multiplication benchmark and respective exerciser/tester. The TMRi tool de-

scribed in Benites et al. (2018, 2019) was ported to Xilinx Vivado Tcl and used in hard-

ening the VHDL code of the benchmark application, generating two new variants for

coarse-grain TMR (CGTMR) and fine-grain distributed TMR (FGDTMR).

Each of the three variants of the benchmark application was implemented in a

Xilinx Zynq-7000 XC7Z030 device and in a Xilinx UltraScale+ Zynq ZU3EG device.

Table 15.2 shows resources usage on both FPGA architectures. The number of flip-flops,

DSP and BRAM blocks is exactly the same in both devices. The carry hardware in Xilinx

144

UltraScale+ has twice the size of Xilinx 7 Series. Considering this proportion the carry

usage on both devices is similar. The number of LUTs is also similar. The variation on

the usage of these resources may be explained by the new architecture of Xilinx Ultra-

Scale+ where the two slices of Xilinx 7 Series was fused into a single one opening new

opportunities for circuit optimizations inside the slice.

Table 15.2 – Resources utilization by the benchmark application
Matrix Multiplication Benchmark Application

7 Series – Zynq-7000 SoC (Z030) Ultrascale+ – Zynq Ultrascale+ MPSoC (ZU3EG)

Clock: 100 MHz
WNS (FGDTMR): 0.7 ns

Clock: 100 MHz
WNS (FGDTMR): 3.1 ns

Unhardened:
LUT 487
FF 564
CARRY4 59
BRAM 3
DSP 7

Unhardened:
LUT 430
FF 564
CARRY8 28
BRAM 3
DSP 7

CGTMR:
LUT 1691
FF 1692
CARRY4 177
BRAM 9
DSP 21

CGTMR:
LUT 1536
FF 1692
CARRY8 75
BRAM 9
DSP 21

FGDTMR:
LUT 8383
FF 3276
CARRY4 132
BRAM 9
DSP 18

FGDTMR:
LUT 8381
FF 3276
CARRY8 66
BRAM 9
DSP 18

FI pblock 1166 frames x 101 words = 3768512 bits FI pblock 1330 frames x 93 words = 3958080 bits

Source: The Author

Random-accumulated fault injection on configuration memory (CRAM) was per-

formed for each variant of the benchmark on each device. Reliability curves obtained

from fault injection on the two target devices are shown in Fig. 15.2a and Fig.15.2b.

Due to different device architecture and different geometries of the configuration memory

array, the number of bits in the region of interest for fault injection is different on each

device, as indicated in Table 15.2. For better comparability, Fig. 15.2c and Fig.15.2d

shows the reliability curves normalized to a common fault density scale of injected fault

per bit.

Despite having different reliability on different devices, notably in the case of

CGTMR, we can observe in Fig. 15.2 that:

• The reliability curves (continuous lines) present good fitting to the expected behav-

ior of exponential and Weibull probability distribution (dashed lines), for unhard-

ened and TMR variants respectively.

145

Figure 15.2 – Benchmark application reliability curves

(a) Reliability on Xilinx 7 Series (b) Reliability Xilinx UltraScale+

(c) Scaled reliability on Xilinx 7 Series (d) Scaled reliability on Xilinx UltraScale+

Source: The Author

• The reliability curves show great similarities in both devices.

• The unhardened, CGTMR and FGDTMR variants follows the same ranking in

terms of reliability.

This demonstrates that the fault injection on Xilinx UltraScale+ is working prop-

erly and the port of the fault injection to this platform was successful.

Some support for fault injection on user data memory (BRAM) was ported pro-

visionally. The basic fault injection CRAM and BRAM, emulating single-bit upset, is

currently working in Xilinx UltraScale+ at the same extension of the fault injection for

Xilinx 7 Series.

146

16 CONCLUSIONS AND FURTHER DEVELOPMENTS

Improvements in the fault injector for Xilinx 7 Series devices and the implementa-

tion of the random-accumulated test methodology reduced significantly the fault injection

campaign time obtaining results similar to the exhaustive-accumulated fault injection test

methodology used by Tonfat et al. (2016) for this fault injector.

Additional improvements in the fault injector for 7 Series enabling asynchronous

fault injection allowed the use of the fault injection with the memory scrubbing native to

the Xilinx 7 Series devices.

Radiation experiments of a CNN using different levels of fault mitigation demon-

strated that the original implementation of the fault injector lacked fidelity in scenarios

of higher reliability. A higher discrepancy was observed in the design where mitigation

techniques such as modular redundancy were associated with healing by memory scrub-

ber. Improvements in the fault injector, notably by the emulation of multiple-bit upsets,

reduced this discrepancy increasing the fidelity against radiation tests.

Fault injector implemented for Xilinx 7 Series supporting fault injection only on

the configuration memory (CRAM) was modified to inject faults in the user data memory

(BRAM) but preliminary results demonstrated that BRAM fault injection through ICAP

interface has limited use. The fault injector was also extended to support fault injection

on flip-flops in the user data plane on Xilinx 7 Series CLB columns.

The construction of a cartography model of the configuration memory, using read-

back, laser and heavy-ions microbeam, provided critical information about memory cells

neighborhood and important insights for improvement of the fault injector.

Laser cartography experiments were not originally planned for Xilinx UltraScale+

devices. Heavy ions microbeam cartography, heavy ions characterization of static cross

section and multiple-bits upsets and irradiation tests of benchmark applications in Xilinx

UltraScale+ devices also were not originally planned to this thesis because those tests

are not feasible in the SAFIIRA facility at LAFN. However, neutron irradiation tests on

Xilinx UltraScale+ that were originally planned, either in LRI at IEAv or at TENIS at

ILL, could not be performed due to laboratories being inoperative, lack of personnel or

failure to schedule the experiments with the collaborating institutions.

Meanwhile, the fault injector implemented for Xilinx 7 Series was modified to

work with Xilinx UltraScale+ devices and the reliability curves obtained by random-

accumulated fault injection in the configuration memory for a benchmark design are con-

147

sistent with reliability curves obtained for Xilinx 7 Series devices.

Static tests on Xilinx 7 Series with protons, alpha particles, heavy ions, ther-

mal neutrons and fast neutrons provided statistical information about the occurrence of

multiple-bit upsets in the different types of memory, with different particles and ener-

gies. This information was used with random-accumulated test methodology to emulate

multiple-bit upsets using the fault injector.

Extensive databases of multiple-bit upsets on Xilinx 7 Series under fast neutrons,

from IEAv LRI facility, thermal and epithermal neutrons, from ILL TENIS facility, and

heavy ions, from USP LAFN SAFIIRA facility, were used to build statistical profiles of

multiple-bit upsets, which were integrated in the fault injection methodology.

The fault injection module supporting multiple-bit upset emulation can be promptly

ported to Xilinx UltraScale+, but the use of the methodology still requires a statistical pro-

file of multiple-bit upsets for the technology in a targeted environment, which could be

obtained from static tests. Results from static tests on the Xilinx UltraScale+ published

by Lee et al. (2018) e Zhaoqun Chen et al. (2021) allow the comparative analysis of static

cross section with the previous Xilinx 7 Series family, but does not provide enough infor-

mation regarding the relative occurrence of single-bit upsets and multiple-bit upsets with

different cluster sizes.

Table 16.1 summarizes the maturity level of the new implementations of the fault

injector module and the fault injection methodology scripting.

The next development steps in this line of research should aim in increasing the

maturity level of the fault injection on Xilinx UltraScale+, primarily by profiling multiple-

bit upsets with static tests and cross-validation with benchmark applications tested under

accelerated irradiation. The development should also aim in porting the fault injector from

Xilinx UltraScale+ family of 16 nm FinFET devices, to the newer Xilinx Versal family

of 7 nm FinFET devices. Preliminary assessment of the CRAM on Xilinx Versal family

under radiation are already available at the literature (CHEN, Y. P. et al., 2022), including

the analysis of occurrences of intraframe MBU.

148

Table 16.1 – Development maturity level of fault injector implementations

Technique and methodology
Maturity level

7 Series UltraScale+

Exhaustive-sequential
(TONFAT et al., 2016)

High. Validated in laboratory
and qualified against
accelerated irradiation.

Medium. Proof-of-concept.
Concept and application
formulated.

Many-bits fault injection
(Chap. 9)

Medium. Demonstrated
implementation. Concept and
application implemented.

Low. Untested concept.

Randomized-accumulated
fault injection (Chap. 10)

High. Validated in laboratory
and qualified against
accelerated irradiation.

Medium. Demonstrated
implementation. Concept and
application implemented.

Scrubbing compliant
(asynchronous) fault
injection (Chap. 11)

High. Validated in laboratory
and qualified against
accelerated irradiation.

Low. Untested concept.
Some development effort
required to adapt to new
softcore scrubber.

Memory blocks (BRAM)
fault injection (Chap. 12)

Medium. Demonstrated
implementation. Feasibility
or boundary conditions
identified. Concept and
application implemented.
Potentially limited
usefulness.

Medium. Proof-of-concept.
Concept and application
implemented. Potentially
limited usefulness.

Flip-flop (CLB) fault
injection (Chap. 13)

Medium. Demonstrated
implementation. Feasibility
or boundary conditions
identified. Concept and
application implemented.
Potentially limited
usefulness.

Low. Untested concept.
Some development effort
required to adapt to new
reconfiguration strategy.

Multiple-bit upsets (MBU)
emulation (Chap. 14)

Medium. Demonstrated
implementation.

Low. Untested concept.
Minor development effort
required. Static tests
database required.

Source: The Author

149

REFERÊNCIAS

ABDELOUAHAB, K. et al. Tactics to Directly Map CNN Graphs on Embedded FPGAs.

IEEE Embedded Systems Letters, IEEE, v. 9, n. 4, p. 113–116, dez. 2017. Disponível

em: <https://doi.org/10.1109/LES.2017.2743247>.

ACTEL CORPORATION. ProASIC 500K Family: Data Sheet. Sunnyvale, USA, fev.

2002. v. 3.0. Disponível em: <https://www.microsemi.com/document-

portal/doc_download/130709-proasic-datasheet>. Acesso em: 27 out.

2021.

ACTEL CORPORATION. SX-A Family FPGAs: Data Sheet. Mountain View, USA,

fev. 2007. v. 5.3. Disponível em: <https://www.microsemi.com/document-

portal/doc_download/130722-sx-a-family-fpgas-datasheet>.

Acesso em: 27 out. 2021.

AGUIAR, V. A. P. Desenvolvimento de um sistema de medidas para estudos de

efeitos de radiação em dispositivos eletrônicos: metodologias e estudos de casos. 6

jun. 2019. Doctor of Science Thesis – Instituto de Física, Universidade de São Paulo,

São Paulo, Brazil. Disponível em:

<https://doi.org/10.11606/T.43.2019.tde-18072019-151550>.

AGUIAR, V. A. P. et al. SAFIIRA: A heavy-ion multi-purpose irradiation facility in

Brazil. Review of Scientific Instruments, v. 91, n. 5, p. 053301, 2020. Disponível em:

<https://doi.org/10.1063/1.5138644>.

AGUIAR, V. A. P. et al. Thermal neutron induced upsets in 28nm SRAM. Journal of

Physics: Conference Series, IOP, v. 1291, p. 012025, jul. 2019. Disponível em:

<https://doi.org/10.1088/1742-6596/1291/1/012025>.

AKKERMAN, A.; BARAK, J.; YITZHAK, N. M. Role of elastic scattering of protons,

muons, and electrons in inducing single-event upsets. IEEE Transactions on Nuclear

Science, v. 64, n. 10, p. 2648–2660, 2017. Disponível em:

<https://doi.org/10.1109/TNS.2017.2747658>.

AL KADI, M. et al. General-Purpose Computing with Soft GPUs on FPGAs. ACM

Transactions on Reconfigurable Technology and Systems, ACM, v. 11, n. 1, p. 1–22,

mar. 2018. Disponível em: <https://doi.org/10.1145/3173548>.

https://doi.org/10.1109/LES.2017.2743247
https://www.microsemi.com/document-portal/doc_download/130709-proasic-datasheet
https://www.microsemi.com/document-portal/doc_download/130709-proasic-datasheet
https://www.microsemi.com/document-portal/doc_download/130722-sx-a-family-fpgas-datasheet
https://www.microsemi.com/document-portal/doc_download/130722-sx-a-family-fpgas-datasheet
https://doi.org/10.11606/T.43.2019.tde-18072019-151550
https://doi.org/10.1063/1.5138644
https://doi.org/10.1088/1742-6596/1291/1/012025
https://doi.org/10.1109/TNS.2017.2747658
https://doi.org/10.1145/3173548

150

ALANIS, A. Y.; ARANA-DANIEL, N.; LÓPEZ-FRANCO, C. Bio-inspired algorithms

for engineering. [S.l.]: Elsevier, 2018. Disponível em:

<https://doi.org/10.1016/C2017-0-00350-6>.

ALDERIGHI, M. et al. Evaluation of Single Event Upset Mitigation Schemes for SRAM

based FPGAs using the FLIPPER Fault Injection Platform. In: 22ND IEEE International

Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007). Rome, Italy:

IEEE, set. 2007. Disponível em: <https://doi.org/10.1109/DFT.2007.45>.

ALTERA CORPORATION. FLEX 8000 Programmable Logic Device Family: Data

Sheet. San Jose, USA, jan. 2003. DS-F8000, v. 11.1. Disponível em:

<https://www.intel.com/content/dam/www/programmable/us/en/

pdfs/literature/ds/archives/dsf8k.pdf>. Acesso em: 27 out. 2021.

ANDREOU, A. G. et al. Bio-inspired system architecture for energy efficient, BIGDATA

computing with application to wide area motion imagery. In: 2016 IEEE 7th Latin

American Symposium on Circuits Systems (LASCAS). Florianopolis, Brazil: IEEE,

2016. Disponível em:

<https://doi.org/10.1109/LASCAS.2016.7450995>.

ANTONI, L.; LEVEUGLE, R.; FEHER, B. Using run-time reconfiguration for fault

injection in hardware prototypes. In: PROCEEDINGS IEEE International Symposium

on Defect and Fault Tolerance in VLSI Systems. Yamanashi, Japan: IEEE Computer

Society, out. 2000. Disponível em:

<https://doi.org/10.1109/DFTVS.2000.887181>.

EL-ARABY, E. et al. Reconfigurable processing for satellite on-board automatic cloud

cover assessment. Journal of Real-Time Image Processing, Springer, v. 4, n. 3,

p. 245–259, jan. 2009. Disponível em:

<https://doi.org/10.1007/s11554-008-0107-8>.

ARECHIGA, A. P.; MICHAELS, A. J.; BLACK, J. T. Onboard Image Processing for

Small Satellites. In: NAECON 2018 - IEEE National Aerospace and Electronics

Conference. Dayton, USA: IEEE, jul. 2018. Disponível em:

<https://doi.org/10.1109/NAECON.2018.8556744>.

AZIMI, S. et al. A comparative radiation analysis of reconfigurable memory

technologies: FinFET versus bulk CMOS. Microelectronics Reliability, Elsevier BV,

v. 138, p. 114733, nov. 2022. Disponível em:

<https://doi.org/10.1016/j.microrel.2022.114733>.

https://doi.org/10.1016/C2017-0-00350-6
https://doi.org/10.1109/DFT.2007.45
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/archives/dsf8k.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ds/archives/dsf8k.pdf
https://doi.org/10.1109/LASCAS.2016.7450995
https://doi.org/10.1109/DFTVS.2000.887181
https://doi.org/10.1007/s11554-008-0107-8
https://doi.org/10.1109/NAECON.2018.8556744
https://doi.org/10.1016/j.microrel.2022.114733

151

BAO, T.I. et al. Challenges of Low Effective-K approaches for future Cu interconnect.

In: 2009 IEEE International Interconnect Technology Conference. Sapporo, Japan:

IEEE, jun. 2009. Disponível em:

<https://doi.org/10.1109/IITC.2009.5090329>.

BARNABY, H. J. et al. Modeling ionizing radiation effects in solid state materials and

CMOS devices. In: 2008 IEEE Custom Integrated Circuits Conference. San Jose, USA:

IEEE, 2008. P. 273–280. Disponível em:

<https://doi.org/10.1109/CICC.2008.4672075>.

BARRENA, Julen Gomez-Cornejo. Access to Xilinx BRAM columns through PCAP:

To: Fabio Benevenuti. E-mail, Message-ID: <20220809141255.Horde.-FVZSBpgZsP2

Eqa9sXTkCvp@webposta.ehu.eus>. Bilbao, Spain, 9 ago. 2022.

BASU, S. et al. DeepSat: a learning framework for satellite imagery. In:

PROCEEDINGS of the 23rd SIGSPATIAL International Conference on Advances in

Geographic Information Systems. Seattle, USA: ACM, nov. 2015. Disponível em:

<http://dx.doi.org/10.1145/2820783.2820816>.

BAUMANN, R. et al. Boron compounds as a dominant source of alpha particles in

semiconductor devices. In: PROCEEDINGS of 1995 IEEE International Reliability

Physics Symposium. Las Vegas, USA: IEEE, 1995. P. 297–302. Disponível em:

<https://doi.org/10.1109/RELPHY.1995.513695>.

BEHRENDT, K.; NOVAK, L.; BOTROS, R. A deep learning approach to traffic lights:

Detection, tracking, and classification. In: 2017 IEEE International Conference on

Robotics and Automation (ICRA). Singapore: IEEE, mai. 2017. Disponível em:

<https://doi.org/10.1109/ICRA.2017.7989163>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Analyzing AXI Streaming interface for

hardware acceleration in AP-SoC under soft errors. In: VOROS, N. et al. (Ed.). Applied

Reconfigurable Computing. Architectures, Tools, and Applications. Cham: Springer,

2018. P. 243–254. ISBN 978-3-319-78890-6. Disponível em:

<https://doi.org/10.1007/978-3-319-78890-6_20>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Comparing exhaustive and random fault

injection methods for configuration memory on SRAM-based FPGAs. In: 2019 IEEE

20th Latin-American Test Symposium (LATS). Santiago, Chile: IEEE, mar. 2019.

P. 87–92. Disponível em:

<https://doi.org/10.1109/LATW.2019.8704647>.

https://doi.org/10.1109/IITC.2009.5090329
https://doi.org/10.1109/CICC.2008.4672075
http://dx.doi.org/10.1145/2820783.2820816
https://doi.org/10.1109/RELPHY.1995.513695
https://doi.org/10.1109/ICRA.2017.7989163
https://doi.org/10.1007/978-3-319-78890-6_20
https://doi.org/10.1109/LATW.2019.8704647

152

BENEVENUTI, F.; KASTENSMIDT, F. L. Evaluation of fault attack detection on

SRAM-based FPGAs. In: 2017 18th IEEE Latin American Test Symposium (LATS).

Bogota, Colombia: IEEE, 2017. Disponível em:

<https://doi.org/10.1109/LATW.2017.7906747>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Reliability evaluation on interfacing with

AXI and AXI-S on Xilinx Zynq-7000 AP-SoC. In: 2018 IEEE 19th Latin-American Test

Symposium (LATS). São Paulo, Brazil: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/LATW.2018.8347233>.

BENEVENUTI, F. et al. Comparative analysis of inference errors in a neural network

implemented in SRAM-based FPGA induced by neutron irradiation and fault injection

methods. In: 2018 31st Symposium on Integrated Circuits and Systems Design (SBCCI).

Bento Gonçalves, Brazil: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/SBCCI.2018.8533235>.

BENEVENUTI, F. et al. Experimental applications on SRAM-based FPGA for the

NanosatC-BR2 scientific mission. In: 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). Rio de Janeiro, Brazil: IEEE, 2019.

P. 140–146. Disponível em:

<https://doi.org/10.1109/IPDPSW.2019.00032>.

BENEVENUTI, F. et al. Heavy ions testing of an all-convolutional neural network for

image classification evolved by genetic algorithms and implemented on SRAM-based

FPGA. In: 2019 European Conference on Radiation and Its Effects on Components and

Systems (RADECS). Montpellier, France: IEEE, 2019. Disponível em:

<https://doi.org/10.1109/RADECS47380.2019.9745650>.

BENEVENUTI, F. et al. Investigating the Reliability Impacts of Neutron-induced Soft

Errors in Aerial Image Classification CNNs Implemented in a Softcore SRAM-based

FPGA GPU. Microelectronics Reliability, Elsevier, Berlin, Germany, v. 138,

p. 114738, 2022. 33rd European Symposium on Reliability of Electron Devices, Failure

Physics and Analysis. ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2022.114738>.

BENEVENUTI, F. et al. Robust Convolutional Neural Networks in SRAM-based

FPGAs: a Case Study in Image Classification. Journal of Integrated Circuits and

Systems, v. 16, n. 2, p. 504, 19 ago. 2021. Disponível em:

<https://doi.org/10.29292/jics.v16i2.504>.

https://doi.org/10.1109/LATW.2017.7906747
https://doi.org/10.1109/LATW.2018.8347233
https://doi.org/10.1109/SBCCI.2018.8533235
https://doi.org/10.1109/IPDPSW.2019.00032
https://doi.org/10.1109/RADECS47380.2019.9745650
https://doi.org/10.1016/j.microrel.2022.114738
https://doi.org/10.29292/jics.v16i2.504

153

BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, Now Publishers, v. 2, n. 1, p. 1–127, 2009. Disponível em:

<http://dx.doi.org/10.1561/2200000006>.

BENGIO, Y.; LECUN, Y.; HINTON, G. Deep learning for AI. Communications of the

ACM, ACM, v. 64, n. 7, p. 58–65, jul. 2021. Disponível em:

<https://doi.org/10.1145/3448250>.

BENITES, L. A. C.; KASTENSMIDT, F. L. Automated design flow for applying Triple

Modular Redundancy (TMR) in complex digital circuits. In: 2018 IEEE 19th

Latin-American Test Symposium (LATS). Sao Paulo, Brazil: IEEE, mar. 2018.

Disponível em: <https://doi.org/10.1109/LATW.2018.8349668>.

BENITES, L. A. C. et al. Reliability calculation with respect to functional failures

induced by radiation in TMR Arm Cortex-M0 soft-core embedded into SRAM-based

FPGA. IEEE Transactions on Nuclear Science, v. 66, n. 7, p. 1433–1440, 2019.

Disponível em: <https://doi.org/10.1109/TNS.2019.2921796>.

BENSANA, E.; LEMAITRE, M.; VERFAILLIE, G. Earth Observation Satellite

Management. Constraints, Springer, v. 4, n. 3, p. 293–299, 1999. Disponível em:

<https://doi.org/10.1023/A:1026488509554>.

BETZ, V.; ROSE, J.; MARQUARDT, A. Architecture and CAD for Deep-Submicron

FPGAS. [S.l.]: Springer, 1999. Disponível em:

<https://doi.org/10.1007/978-1-4615-5145-4>.

BHUVA, B. Soft Error Trends in Advanced Silicon Technology Nodes. In: 2018 IEEE

International Electron Devices Meeting (IEDM). [S.l.]: IEEE, dez. 2018. Disponível em:

<https://doi.org/10.1109/IEDM.2018.8614526>.

BLACKETT, P. M. S.; OCCHIALINI, G. P. S. Some photographs of the tracks of

penetrating radiation. Proceedings of the Royal Society A: Mathematical, Physical

and Engineering Sciences, Royal Society, v. 139, n. 839, p. 699–726, mar. 1933.

Disponível em: <https://doi.org/10.1098/rspa.1933.0048>.

BLANCO, A. et al. Forecast Overview: Semiconductors,Worldwide, 2017 Update.

Stamford, USA, 28 jul. 2017.

BLUM, E. K.; LI, L. K. Approximation theory and feedforward networks. Neural

Networks, Elsevier, v. 4, n. 4, p. 511–515, jan. 1991. Disponível em:

<https://doi.org/10.1016/0893-6080(91)90047-9>.

http://dx.doi.org/10.1561/2200000006
https://doi.org/10.1145/3448250
https://doi.org/10.1109/LATW.2018.8349668
https://doi.org/10.1109/TNS.2019.2921796
https://doi.org/10.1023/A:1026488509554
https://doi.org/10.1007/978-1-4615-5145-4
https://doi.org/10.1109/IEDM.2018.8614526
https://doi.org/10.1098/rspa.1933.0048
https://doi.org/10.1016/0893-6080(91)90047-9

154

BOCQUILLON, A. et al. Highlights of laser testing capabilities regarding the

understanding of SEE in SRAM based FPGAs. In: 2007 9th European Conference on

Radiation and Its Effects on Components and Systems. Deauville, France: IEEE, 2007.

Disponível em: <https://doi.org/10.1109/RADECS.2007.5205500>.

BORGEAUD, M. et al. SwissCube: The First Entirely-Built Swiss Student Satellite with

an Earth Observation Payload. In: SMALL Satellite Missions for Earth Observation.

[S.l.]: Springer, 2010. P. 207–213. Disponível em:

<https://doi.org/10.1007/978-3-642-03501-2_19>.

BOUDENOT, J.-C. Radiation space environment. In: VELAZCO, R.; FOUILLAT, P.;

REIS, R. (Ed.). Radiation Effects on Embedded Systems. Dordrecht: Springer, 2007.

P. 1–9. ISBN 978-1-4020-5646-8. Disponível em:

<https://doi.org/10.1007/978-1-4020-5646-8_1>.

BOZZOLI, L.; STERPONE, L. Self rerouting of dynamically reconfigurable

SRAM-based FPGAs. In. Disponível em:

<https://doi.org/10.1109/AHS.2017.8046362>.

BRAGA, G. et al. Evaluating softcore GPU in SRAM-based FPGA under

radiation-induced effects. In: 2021 European Symposium on Reliability of Electron

Devices, Failure Physics and Analysis (ESREF). Bordeaux, France: Elsevier, nov. 2021.

v. 126. Disponível em:

<https://doi.org/10.1016/j.microrel.2021.114348>.

BRÄUNIG, D.; WULF, F. Atomic displacement and total ionizing dose damage in

semiconductors. Radiation Physics and Chemistry, v. 43, n. 1, p. 105–127, 1994. ISSN

0969-806X. Disponível em:

<https://doi.org/10.1016/0969-806X(94)90205-4>.

BRZOZOWSKI, W. et al. CubeSat Camera: A Low Cost Imaging System for CubeSat

Platforms. In: INTERPLANETARY CubeSat Workshop. Paris, France: iCubeSat, mai.

2018. (iCubeSat 2018). Disponível em: <https:

//icubesat.org/archive/2018-2/icubesat-program-2018/>.

BUCHNER, S. P. et al. Laser simulation of single event upsets. IEEE Transactions on

Nuclear Science, v. 34, n. 6, p. 1227–1233, 1987. Disponível em:

<https://doi.org/10.1109/TNS.1987.4337457>.

https://doi.org/10.1109/RADECS.2007.5205500
https://doi.org/10.1007/978-3-642-03501-2_19
https://doi.org/10.1007/978-1-4020-5646-8_1
https://doi.org/10.1109/AHS.2017.8046362
https://doi.org/10.1016/j.microrel.2021.114348
https://doi.org/10.1016/0969-806X(94)90205-4
https://icubesat.org/archive/2018-2/icubesat-program-2018/
https://icubesat.org/archive/2018-2/icubesat-program-2018/
https://doi.org/10.1109/TNS.1987.4337457

155

CAI, Chang et al. SEE Sensitivity Evaluation for Commercial 16 nm SRAM-FPGA.

Electronics, MDPI AG, v. 8, n. 12, p. 1531, dez. 2019. Disponível em:

<https://doi.org/10.3390/electronics8121531>.

CAI, X. et al. Low-Power SDR Design on an FPGA for Intersatellite Communications.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, IEEE, v. 26,

n. 11, p. 2419–2430, nov. 2018. Disponível em:

<https://doi.org/10.1109/TVLSI.2018.2850746>.

CALIFORNIA POLYTECHNIC STATE UNIVERSITY. CubeSat Design Specification

(CDS). San Luis Obispo, USA: [s.n.], abr. 2015. Revision 13, Updated 6 April 2015.

Disponível em: <http://www.cubesat.org/s/cds_rev13_final2.pdf>.

Acesso em: 30 jul. 2021.

CANIVET, G. et al. Characterization of Effective Laser Spots during Attacks in the

Configuration of a Virtex-II FPGA. In: 2009 27th IEEE VLSI Test Symposium. Santa

Cruz, USA: IEEE, mai. 2009. Disponível em:

<https://doi.org/10.1109/VTS.2009.19>.

CANIVET, G. et al. Detailed analyses of single laser shot effects in the configuration of

a Virtex-II FPGA. In: 2008 14th IEEE International On-Line Testing Symposium.

Rhodes, Greece: IEEE, 2008. P. 289–294. Disponível em:

<https://doi.org/10.1109/IOLTS.2008.41>.

CASTRO, S. de et al. Figure of Merits of 28nm Si Technologies for Implementing Laser

Attack Resistant Security Dedicated Circuits. In: 2015 IEEE Computer Society Annual

Symposium on VLSI. Montpellier, France: IEEE, jul. 2015. Disponível em:

<https://doi.org/10.1109/ISVLSI.2015.76>.

CHAPMAN, K. SEU Mitigation Techniques for SRAM based FPGAs. In: TWEPP 2015

- Topical Workshop on Electronics for Particle Physics. [S.l.: s.n.], 2015. Invited Plenary,

Contribution ID 240. Disponível em:

<https://indico.cern.ch/event/357738/contribution/848841/

attachments/1161500/1675459/Chapman_ID240.pptx>. Acesso em: 30

jul. 2021.

CHARETTE, R. de; NASHASHIBI, F. Traffic light recognition using image processing

compared to learning processes. In: 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems. St. Louis, USA: IEEE, out. 2009. Disponível em:

<https://doi.org/10.1109/IROS.2009.5353941>.

https://doi.org/10.3390/electronics8121531
https://doi.org/10.1109/TVLSI.2018.2850746
http://www.cubesat.org/s/cds_rev13_final2.pdf
https://doi.org/10.1109/VTS.2009.19
https://doi.org/10.1109/IOLTS.2008.41
https://doi.org/10.1109/ISVLSI.2015.76
https://indico.cern.ch/event/357738/contribution/848841/attachments/1161500/1675459/Chapman_ID240.pptx
https://indico.cern.ch/event/357738/contribution/848841/attachments/1161500/1675459/Chapman_ID240.pptx
https://doi.org/10.1109/IROS.2009.5353941

156

CHEN, S.-J.; LI, Z.; HU, M. Research Progress on Requirements Integrated

Preprocessing and Mission Planning for Earth Observation Satellites. IOP Conference

Series: Materials Science and Engineering, IOP, v. 608, p. 012030, ago. 2019.

Disponível em: <https://doi.org/10.1088/1757-899X/608/1/012030>.

CHEN, Yanran Paula et al. 64MeV Proton single-event evaluation of Xilinx Single Event

Mitigation (XilSEM) firmware on 7nm Versal™ ACAP devices. In: 2022 IEEE

Radiation Effects Data Workshop (REDW) (in conjunction with 2022 NSREC). Provo,

USA: IEEE, jul. 2022. Disponível em:

<https://doi.org/10.1109/REDW56037.2022.9921508>.

CHEN, Z.; HUANG, X. Pedestrian Detection for Autonomous Vehicle Using

Multi-Spectral Cameras. IEEE Transactions on Intelligent Vehicles, IEEE, v. 4, n. 2,

p. 211–219, jun. 2019. Disponível em:

<https://doi.org/10.1109/TIV.2019.2904389>.

CHEN, Zhaoqun et al. New method for predicting heavy ion-induced SEE cross-section

based on proton experimental data. Nuclear Instruments and Methods in Physics

Research Section B: Beam Interactions with Materials and Atoms, Elsevier BV,

v. 509, p. 27–33, dez. 2021. Disponível em:

<https://doi.org/10.1016/j.nimb.2021.08.014>.

CHIELLE, Eduardo. Selective software-implemented hardware fault tolerance

tecnhiques to detect soft errors in processors with reduced overhead. 2016. Doctor

Thesis – Universidade Federal do Rio Grande do Sul. Instituto de Informática. Programa

de Pós-Graduação em Microeletrônica. Disponível em:

<http://hdl.handle.net/10183/142568>.

CHIELLE, Eduardo et al. Reliability on ARM Processors Against Soft Errors Through

SIHFT Techniques. IEEE Transactions on Nuclear Science, Institute of Electrical e

Electronics Engineers (IEEE), p. 1–9, 2016. Disponível em:

<https://doi.org/10.1109/TNS.2016.2525735>.

CHIELLE, Eduardo et al. S-SETA: Selective Software-Only Error-Detection Technique

Using Assertions. IEEE Transactions on Nuclear Science, Institute of Electrical e

Electronics Engineers (IEEE), v. 62, n. 6, p. 3088–3095, dez. 2015. Disponível em:

<https://doi.org/10.1109/TNS.2015.2484842>.

https://doi.org/10.1088/1757-899X/608/1/012030
https://doi.org/10.1109/REDW56037.2022.9921508
https://doi.org/10.1109/TIV.2019.2904389
https://doi.org/10.1016/j.nimb.2021.08.014
http://hdl.handle.net/10183/142568
https://doi.org/10.1109/TNS.2016.2525735
https://doi.org/10.1109/TNS.2015.2484842

157

CHIEN, S. et al. Onboard Autonomy on the Intelligent Payload EXperiment (IPEX)

Cubesat Mission – A pathfinder for the proposed HyspIRI Mission Intelligent Payload

Module. In: PROC. Intl Symposium on Artificial Intelligence, Robotics, and Automation

for Space. Montreal, Canada: European Space Agency, 2014. Disponível em:

<http://robotics.estec.esa.int/i-SAIRAS/isairas2014/Data/

Session%207c/ISAIRAS_FinalPaper_0013.pdf>.

CHO, D.-. et al. Optimization-Based Scheduling Method for Agile Earth-Observing

Satellite Constellation. Journal of Aerospace Information Systems, American Institute

of Aeronautics e Astronautics (AIAA), v. 15, n. 11, p. 611–626, nov. 2018. Disponível

em: <https://doi.org/10.2514/1.I010620>.

CHO, D.-H. et al. High-Resolution Image and Video CubeSat (HiREV): Development of

Space Technology Test Platform Using a Low-Cost CubeSat Platform. International

Journal of Aerospace Engineering, Hindawi Limited, v. 2019, p. 1–17, mai. 2019.

Disponível em: <https://doi.org/10.1155/2019/8916416>.

CHRISTIE, G. et al. Functional Map of the World. In: CVPR. Salt Lake City, USA:

[s.n.], jun. 2018. Disponível em:

<https://doi.org/10.1109/CVPR.2018.00646>.

CLAEYS, C.; SIMOEN, E. Radiation environments and component selection strategy.

In: RADIATION Effects in Advanced Semiconductor Materials and Devices. [S.l.]:

Springer, 2002. Disponível em:

<https://doi.org/10.1007/978-3-662-04974-7_1>.

CLEMENTE, J. A. et al. Statistical Anomalies of Bitflips in SRAMs to Discriminate

SBUs From MCUs. IEEE Transactions on Nuclear Science, IEEE, v. 63, n. 4,

p. 2087–2094, ago. 2016. Disponível em:

<https://doi.org/10.1109/TNS.2016.2551263>.

CRYSTALSPACE OÜ. Crystalspace CAM1U CubeSat Camera. Tartu, Estonia, 29

mai. 2016. Disponível em:

<https://crystalspace.eu/products/crystalspace-c1u-cubesat-

camera>.

CYBENKO, G. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals, and Systems, Springer, v. 2, n. 4, p. 303–314, dez. 1989.

Disponível em: <https://doi.org/10.1007/BF02551274>.

http://robotics.estec.esa.int/i-SAIRAS/isairas2014/Data/Session%207c/ISAIRAS_FinalPaper_0013.pdf
http://robotics.estec.esa.int/i-SAIRAS/isairas2014/Data/Session%207c/ISAIRAS_FinalPaper_0013.pdf
https://doi.org/10.2514/1.I010620
https://doi.org/10.1155/2019/8916416
https://doi.org/10.1109/CVPR.2018.00646
https://doi.org/10.1007/978-3-662-04974-7_1
https://doi.org/10.1109/TNS.2016.2551263
https://crystalspace.eu/products/crystalspace-c1u-cubesat-camera
https://crystalspace.eu/products/crystalspace-c1u-cubesat-camera
https://doi.org/10.1007/BF02551274

158

DARRACQ, F. et al. Investigation of single event burnout sensitive depth in power

MOSFETS. In: 2009 European Conference on Radiation and Its Effects on Components

and Systems. Brugge, Belgium: IEEE, set. 2009. Disponível em:

<https://doi.org/10.1109/RADECS.2009.5994563>.

DAVIS, Philip et al. Single-Event Characterization of the 16 nm FinFET Xilinx

UltraScale RFSoC Field-Programmable Gate Array under Proton Irradiation. In: 2019

IEEE Radiation Effects Data Workshop. [S.l.]: IEEE, jul. 2019. Disponível em:

<https://doi.org/10.1109/REDW.2019.8906566>.

DAWOOD, A. S.; VISSER, S. J.; WILLIAMS, J. A. Reconfigurable FPGAS for real

time image processing in space. In: 2002 14th International Conference on Digital Signal

Processing Proceedings. DSP 2002 (Cat. No.02TH8628). Santorini, Greece: IEEE, 2002.

Disponível em: <https://doi.org/10.1109/ICDSP.2002.1028222>.

DIXON-WARREN, S. A review of TSMC 28 nm process technology. Ottawa, Canada:

Tech Insights, dez. 2012. Disponível em:

<https://www.techinsights.com/blog/review-tsmc-28-nm-

process-technology>. Acesso em: 28 jan. 2018.

DODD, P. E. et al. Production and propagation of single-event transients in high-speed

digital logic ICs. IEEE Transactions on Nuclear Science, v. 51, n. 6, p. 3278–3284,

2004. Disponível em: <https://doi.org/10.1109/TNS.2004.839172>.

DU, B. et al. Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-7 SRAM-Based

FPGA. IEEE Transactions on Nuclear Science, IEEE, v. 66, n. 7, p. 1813–1819, jul.

2019. Disponível em: <https://doi.org/10.1109/TNS.2019.2915207>.

DUNAI, T. J. Cosmogenic nuclides: principles, concepts and applications in the

earth surface sciences. Cambridge: Cambridge University Press, 2010. ISBN

978-0-511-67752-6.

ECOFFET, R. In-flight anomalies on electronic devices. In: VELAZCO, R.;

FOUILLAT, P.; REIS, R. (Ed.). Radiation Effects on Embedded Systems. Dordrecht:

Springer, 2007. P. 31–68. ISBN 978-1-4020-5646-8. Disponível em:

<https://doi.org/10.1007/978-1-4020-5646-8_3>.

FABERO, J. C. et al. Single Event Upsets Under 14-MeV Neutrons in a 28-nm

SRAM-Based FPGA in Static Mode. IEEE Transactions on Nuclear Science, IEEE,

v. 67, n. 7, p. 1461–1469, jul. 2020. Disponível em:

<https://doi.org/10.1109/TNS.2020.2977874>.

https://doi.org/10.1109/RADECS.2009.5994563
https://doi.org/10.1109/REDW.2019.8906566
https://doi.org/10.1109/ICDSP.2002.1028222
https://www.techinsights.com/blog/review-tsmc-28-nm-process-technology
https://www.techinsights.com/blog/review-tsmc-28-nm-process-technology
https://doi.org/10.1109/TNS.2004.839172
https://doi.org/10.1109/TNS.2019.2915207
https://doi.org/10.1007/978-1-4020-5646-8_3
https://doi.org/10.1109/TNS.2020.2977874

159

FANG, Yi-Pin; OATES, Anthony S. Characterization of Single Bit and Multiple Cell

Soft Error Events in Planar and FinFET SRAMs. IEEE Transactions on Device and

Materials Reliability, Institute of Electrical e Electronics Engineers (IEEE), v. 16, n. 2,

p. 132–137, jun. 2016. Disponível em:

<http://dx.doi.org/10.1109/TDMR.2016.2535663>.

FANG, Yi-Pin; OATES, Anthony S. Neutron-Induced Charge Collection Simulation of

Bulk FinFET SRAMs Compared With Conventional Planar SRAMs. IEEE

Transactions on Device and Materials Reliability, Institute of Electrical e Electronics

Engineers (IEEE), v. 11, n. 4, p. 551–554, dez. 2011. Disponível em:

<https://doi.org/10.1109/TDMR.2011.2168959>.

FARRAG, A. et al. Satellite swarm survey and new conceptual design for Earth

observation applications. The Egyptian Journal of Remote Sensing and Space

Science, Elsevier, v. 24, n. 1, p. 47–54, fev. 2021. Disponível em:

<https://doi.org/10.1016/j.ejrs.2019.12.003>.

FEDERAL AVIATION ADMINISTRATION’S OFFICE OF COMMERCIAL SPACE

TRANSPORTATION. The Annual Compendium of Commercial Space

Transportation: 2018. [S.l.: s.n.], jan. 2018. Disponível em:

<https://www.faa.gov/about/office_org/headquarters_offices/

ast/media/2018_ast_compendium.pdf>.

FRANCO, F. J. et al. Statistical Deviations from the Theoretical only-SBU Model to

Estimate MCU rates in SRAMs. IEEE Transactions on Nuclear Science, IEEE, p. 1–1,

2017. Disponível em: <https://doi.org/10.1109/TNS.2017.2726938>.

GAO, Y. et al. Remote sensing scene classification based on high-order graph

convolutional network. European Journal of Remote Sensing, Informa UK Limited,

v. 54, sup1, p. 141–155, jan. 2021. Disponível em:

<https://doi.org/10.1080/22797254.2020.1868273>.

GARRANZO, D. et al. APIS: the miniaturized Earth observation camera on-board

OPTOS CubeSat. Journal of Applied Remote Sensing, SPIE-Intl Soc Optical Eng,

v. 13, n. 03, p. 1, mai. 2019. Disponível em:

<https://doi.org/10.1117/1.JRS.13.032502>.

GEIGER, A. et al. 3D Traffic Scene Understanding From Movable Platforms. IEEE

Transactions on Pattern Analysis and Machine Intelligence, IEEE, v. 36, n. 5,

http://dx.doi.org/10.1109/TDMR.2016.2535663
https://doi.org/10.1109/TDMR.2011.2168959
https://doi.org/10.1016/j.ejrs.2019.12.003
https://www.faa.gov/about/office_org/headquarters_offices/ast/media/2018_ast_compendium.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ast/media/2018_ast_compendium.pdf
https://doi.org/10.1109/TNS.2017.2726938
https://doi.org/10.1080/22797254.2020.1868273
https://doi.org/10.1117/1.JRS.13.032502

160

p. 1012–1025, mai. 2014. Disponível em:

<https://doi.org/10.1109/TPAMI.2013.185>.

GEORGE, V.; RABAEY, J. M. Low-Energy FPGAs — Architecture and Design.

[S.l.]: Springer, 2001. Disponível em:

<https://doi.org/10.1007/978-1-4615-1421-3>.

GIM, Y. et al. Three-dimensional particle tracking velocimetry using shallow neural

network for real-time analysis. Experiments in Fluids, Springer, v. 61, n. 2, jan. 2020.

Disponível em: <https://doi.org/10.1007/s00348-019-2861-8>.

GLORIEUX, Maximilien et al. Single-Event Characterization of Xilinx UltraScale+

MPSOC under Standard and Ultra-High Energy Heavy-Ion Irradiation. In: 2018 IEEE

Nuclear and Space Radiation Effects Conference (NSREC 2018). [S.l.]: IEEE, jul. 2018.

Disponível em: <https://doi.org/10.1109/NSREC.2018.8584296>.

GLOROT, X.; BORDES, A.; BENGIO, Y. Deep sparse rectifier neural networks. In:

GORDON, G.; DUNSON, D.; DUDÍK, M. (Ed.). Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics. Fort Lauderdale,

USA: PMLR, abr. 2011. v. 15. (Proceedings of Machine Learning Research),

p. 315–323. Disponível em:

<http://proceedings.mlr.press/v15/glorot11a.html>.

GOMEZ-CORNEJO, J. et al. A novel BRAM content accessing and processing method

based on FPGA configuration bitstream. Microprocessors and Microsystems, Elsevier,

v. 49, p. 64–76, mar. 2017. Disponível em:

<http://dx.doi.org/10.1016/j.micpro.2017.01.009>.

GOMEZ-CORNEJO, J. et al. Data content scrubbing approach for SRAM based FPGA

designs. In: 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE).

[S.l.]: IEEE, jun. 2022. Disponível em:

<https://doi.org/10.1109/ISIE51582.2022.9831467>.

GONCALVES, M. M. et al. Investigating floating-point implementations in a softcore

GPU under radiation-induced faults. In: 2020 27th IEEE International Conference on

Electronics, Circuits and Systems (ICECS). Glasgow, UK: IEEE, 2020. Disponível em:

<https://doi.org/10.1109/ICECS49266.2020.9294939>.

https://doi.org/10.1109/TPAMI.2013.185
https://doi.org/10.1007/978-1-4615-1421-3
https://doi.org/10.1007/s00348-019-2861-8
https://doi.org/10.1109/NSREC.2018.8584296
http://proceedings.mlr.press/v15/glorot11a.html
http://dx.doi.org/10.1016/j.micpro.2017.01.009
https://doi.org/10.1109/ISIE51582.2022.9831467
https://doi.org/10.1109/ICECS49266.2020.9294939

161

GÖPPERT-MAYER, M. Elementary processes with two quantum transitions. Annalen

der Physik, v. 18, n. 7-8, p. 466–479, 2009. Reprint of “Über Elementarakte mit zwei

Quantensprüngen”, Translation by Daniel C. Koepke, Montana State University.

Disponível em: <https://doi.org/10.1002/andp.200910358>.

GRAZIANI, A.; MELEGA, N.; TORTORA, P. A Low-Cost Microsatellite Platform for

Multispectral Earth Observation. In: SMALL Satellites for Earth Observation. [S.l.]:

Springer, 2008. P. 309–318. Disponível em:

<https://doi.org/10.1007/978-1-4020-6943-7_29>.

GSCHWEND, D. Zynq Net: An FPGA-accelerated embedded convolutional neural

network. Ago. 2016. Master Thesis – ETHZürich, Department of Information

Technology e Electrical Engineering, Zürich, Switzerland. Disponível em:

<https://github.com/dgschwend/zynqnet>. Acesso em: 27 out. 2021.

GUARESCHI, W. et al. Configurable test bed design for nanosats to qualify commercial

and customized integrated circuits. In: 2013 IEEE Aerospace Conference. [S.l.: s.n.],

mar. 2013. Disponível em:

<https://doi.org/10.1109/AERO.2013.6497170>.

HABINC, S. (Ed.). Suitability of reprogrammable FPGAs in space applications.

Paris, France, set. 2002. version 0.4. Disponível em: <http:

//microelectronics.esa.int/techno/fpga_002_01-0-4.pdf>.

Acesso em: 1 mai. 2021.

HABING, D. H. The use of lasers to simulate radiation-induced transients in

semiconductor devices and circuits. IEEE Transactions on Nuclear Science, v. 12, n. 5,

p. 91–100, 1965. Disponível em:

<https://doi.org/10.1109/TNS.1965.4323904>.

HAN, J.; GUO, G. Characteristics of energy deposition from 1-1000 MeV proton and

neutron induced nuclear reactions in silicon. AIP Advances, v. 7, n. 11, p. 115220, nov.

2017. Disponível em: <https://doi.org/10.1063/1.4995529>.

HANDS, A. et al. New data and modelling for single event effects in the stratospheric

radiation environment. IEEE Transactions on Nuclear Science, v. 64, n. 1, p. 587–595,

2017. Disponível em: <https://doi.org/10.1109/TNS.2016.2612000>.

https://doi.org/10.1002/andp.200910358
https://doi.org/10.1007/978-1-4020-6943-7_29
https://github.com/dgschwend/zynqnet
https://doi.org/10.1109/AERO.2013.6497170
http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
http://microelectronics.esa.int/techno/fpga_002_01-0-4.pdf
https://doi.org/10.1109/TNS.1965.4323904
https://doi.org/10.1063/1.4995529
https://doi.org/10.1109/TNS.2016.2612000

162

HAO, J.-B.; LIU, Y.; WANG, Z.-J. Research of transient radiation effects on FinFET

SRAMs compared with planar SRAMs. In: 2016 13th IEEE International Conference on

Solid-State and Integrated Circuit Technology (ICSICT). Hangzhou, China: IEEE, 2016.

P. 1005–1007. Disponível em:

<https://doi.org/10.1109/ICSICT.2016.7998633>.

HARADA, R. et al. Angular dependency of neutron-induced multiple cell upsets in

65-nm 10T subthreshold SRAM. IEEE Transactions on Nuclear Science, v. 59, n. 6,

p. 2791–2795, 2012. Disponível em:

<https://doi.org/10.1109/TNS.2012.2224373>.

HARDING, A.; WIRTHLIN, M. Improving the Reliability of Xilinx 7 Series FPGAs

through Configuration Scrubbing, jun. 2014. Utah Space Grant Consortium Conference.

Disponível em:

<http://digitalcommons.usu.edu/spacegrant/2014/Session4/1>.

HARWARD, N. A. et al. Estimating Soft Processor Soft Error Sensitivity through Fault

Injection. In: 2015 IEEE 23rd Annual International Symposium on Field-Programmable

Custom Computing Machines. Vancouver, Canada: IEEE, mai. 2015. Disponível em:

<https://doi.org/10.1109/FCCM.2015.61>.

HEBB, D. O. The organization of behavior: A neuropsychological theory. New York,

USA: John Wiley & Sons, 1949.

HEIDEL, D. F. et al. Low energy proton single-event-upset test results on 65 nm SOI

SRAM. IEEE Transactions on Nuclear Science, v. 55, n. 6, p. 3394–3400, 2008.

Disponível em: <https://doi.org/10.1109/TNS.2008.2005499>.

HEIDT, H. et al. CubeSat: A new Generation of Picosatellite for Education and Industry

Low-Cost Space Experimentation. In: PROCEEDINGS of the 14th AIAA/USU

Conference on Small Satellites. [S.l.: s.n.], 2000. Technical Session V: Lessons Learned

- In Success and Failure, Paper 32. Disponível em:

<https://digitalcommons.usu.edu/smallsat/2000/All2000/32>.

HERNANDEZ, H. G. M. et al. A Modular Software Library for Effective High Level

Synthesis of Convolutional Neural Networks. In: APPLIED Reconfigurable Computing.

Architectures, Tools, and Applications. [S.l.]: Springer, 2020. P. 211–220. Disponível

em: <https://doi.org/10.1007/978-3-030-44534-8_16>.

https://doi.org/10.1109/ICSICT.2016.7998633
https://doi.org/10.1109/TNS.2012.2224373
http://digitalcommons.usu.edu/spacegrant/2014/Session4/1
https://doi.org/10.1109/FCCM.2015.61
https://doi.org/10.1109/TNS.2008.2005499
https://digitalcommons.usu.edu/smallsat/2000/All2000/32
https://doi.org/10.1007/978-3-030-44534-8_16

163

HERNANDEZ, H. G. M. et al. Accelerating Convolutional Neural Networks in

FPGA-based SoCs using a Soft-Core GPU. In: APPLIED Reconfigurable Computing.

Architectures, Tools, and Applications. [S.l.]: Springer, 2021. P. 275–284. Disponível

em: <https://doi.org/10.1007/978-3-030-79025-7_20>.

HOELSCHER, I. G. Detecção e classificação de sinalização vertical de trânsito em

cenários complexos. 2017. Master Dissertation – Programa de Pós-Graduação em

Engenharia Elétrica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Disponível em: <http://hdl.handle.net/10183/163777>.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multilayer feedforward networks are

universal approximators. Neural Networks, Elsevier, v. 2, n. 5, p. 359–366, jan. 1989.

Disponível em: <https://doi.org/10.1016/0893-6080(89)90020-8>.

HOUBEN, S. et al. Detection of traffic signs in real-world images: The German traffic

sign detection benchmark. In: THE 2013 International Joint Conference on Neural

Networks (IJCNN). Dallas, USA: IEEE, ago. 2013. Disponível em:

<https://doi.org/10.1109/IJCNN.2013.6706807>.

HSIEH, H.-C. et al. Third-generation architecture boosts speed and density of

field-programmable gate arrays. In: IEEE Proceedings of the Custom Integrated Circuits

Conference. Boston, USA: IEEE, 16 mai. 1990. Disponível em:

<https://doi.org/10.1109/CICC.1990.124841>.

HUGHES, H. et al. Total ionizing dose radiation effects on 14 nm FinFET and SOI

UTBB technologies. In: 2015 IEEE Radiation Effects Data Workshop (REDW). Boston,

USA: IEEE, 2015. Disponível em:

<https://doi.org/10.1109/REDW.2015.7336740>.

IANDOLA, F. N. et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and <1MB model size. arXiv:1602.07360, 2016. arXiv: 1602.07360.

IBE, E. H. Terrestrial radiation effects in ULSI devices and electronic systems.

Singapore: Wiley, 2015. (Wiley-IEEE). ISBN 978-1-118-47929-2. Disponível em:

<https://www.wiley.com/en-us/9781118479322>.

IEREMEIEV, O. et al. Full-Reference Quality Metric Based on Neural Network to

Assess the Visual Quality of Remote Sensing Images. Remote Sensing, MDPI, v. 12,

n. 15, p. 2349, jul. 2020. Disponível em:

<https://doi.org/10.3390/rs12152349>.

https://doi.org/10.1007/978-3-030-79025-7_20
http://hdl.handle.net/10183/163777
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1109/IJCNN.2013.6706807
https://doi.org/10.1109/CICC.1990.124841
https://doi.org/10.1109/REDW.2015.7336740
https://arxiv.org/abs/1602.07360
https://www.wiley.com/en-us/9781118479322
https://doi.org/10.3390/rs12152349

164

INTERNATIONAL ELECTROTECHNICAL COMMISSION. IEC 61508: Functional

safety of electrical/electronic/programmable electronic safety related systems. Geneva,

Switzerland, 30 abr. 2010.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 26262-11:

Road Vehicles – Functional Safety – Part 11 – Guidelines on application of ISO 26262 to

semiconductors. Geneva, Switzerland, 2018.

IRIE, B.; MIYAKE, S. Capabilities of three-layered perceptrons. In: IEEE International

Conference on Neural Networks. San Diego, USA: IEEE, 1988. Disponível em:

<https://doi.org/10.1109/ICNN.1988.23901>.

ISLAM, M. Md. et al. Towards Benchmarking of Functional Safety in the Automotive

Industry. In: LECTURE Notes in Computer Science. [S.l.]: Springer, 2013. P. 111–125.

Disponível em: <https://doi.org/10.1007/978-3-642-38789-0_10>.

JAMES, D. High-k/metal gates in leading edge silicon devices. In: 2012 SEMI

Advanced Semiconductor Manufacturing Conference. Saratoga Springs, USA: IEEE,

2012. P. 346–353. Disponível em:

<https://doi.org/10.1109/ASMC.2012.6212925>.

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. JESD89A: Measurement and

Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in

Semiconductor Devices. Arlington, USA, out. 2006. Disponível em: <https:

//www.jedec.org/sites/default/files/docs/jesd89a.pdf>.

JOHNSON, E.; WIRTHLIN, M. J.; CAFFREY, M. Single-Event Upset Simulation on

an FPGA. Los Alamos, USA, 2002. Disponível em: <http:

//www.ericjohnsonweb.net/papers/BYU_ERSA_2002_1017er.pdf>.

Acesso em: 1 mai. 2021.

JOHNSON, E. et al. Accelerator validation of an FPGA SEU simulator. IEEE

Transactions on Nuclear Science, IEEE, v. 50, n. 6, p. 2147–2157, dez. 2003.

Disponível em: <https://doi.org/10.1109/TNS.2003.821791>.

KAK, A. et al. Performance Evaluation of SDN-Based Internet of Space Things. In:

2018 IEEE Globecom Workshops (GC Wkshps). Abu Dhabi, United Arab Emirates:

IEEE, dez. 2018. Disponível em:

<https://doi.org/10.1109/GLOCOMW.2018.8644237>.

https://doi.org/10.1109/ICNN.1988.23901
https://doi.org/10.1007/978-3-642-38789-0_10
https://doi.org/10.1109/ASMC.2012.6212925
https://www.jedec.org/sites/default/files/docs/jesd89a.pdf
https://www.jedec.org/sites/default/files/docs/jesd89a.pdf
http://www.ericjohnsonweb.net/papers/BYU_ERSA_2002_1017er.pdf
http://www.ericjohnsonweb.net/papers/BYU_ERSA_2002_1017er.pdf
https://doi.org/10.1109/TNS.2003.821791
https://doi.org/10.1109/GLOCOMW.2018.8644237

165

KAMPERT, K.-H.; WATSON, A. A. Extensive air showers and ultra high-energy cosmic

rays: a historical review. The European Physical Journal H, Royal Society, v. 37, n. 3,

p. 359–412, ago. 2012. Disponível em:

<https://doi.org/10.1140/epjh/e2012-30013-x>.

KANO, K. Semiconductor devices. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

ISBN 0-02-361938-4.

KASTENSMIDT, F. L. et al. Designing and Testing Fault-tolerant Techniques for

SRAM-based FPGAs. In: PROCEEDINGS of the 1st Conference on Computing

Frontiers. Ischia, Italy: ACM, 2004. (CF ’04), p. 419–432. ISBN 1-58113-741-9.

Disponível em: <http://doi.acm.org/10.1145/977091.977150>.

KASTENSMIDT, F. L. et al. Laser testing methodology for diagnosing diverse soft

errors in a nanoscale SRAM-based FPGA. IEEE Transactions on Nuclear Science,

v. 61, n. 6, p. 3130–3137, 2014. Disponível em:

<https://doi.org/10.1109/TNS.2014.2369008>.

KATO, T. et al. Neutron-induced multiple-cell upsets in 20-nm bulk SRAM: Angular

sensitivity and impact of multiwell potential perturbation. IEEE Transactions on

Nuclear Science, v. 66, n. 7, p. 1381–1389, 2019. Disponível em:

<https://doi.org/10.1109/TNS.2019.2900629>.

KORKIAN, G. et al. Experimental and analytical study of the responses of nanoscale

devices to neutrons impinging at various incident angles. IEEE Transactions on

Nuclear Science, v. 67, n. 11, p. 2345–2352, 2020. Disponível em:

<https://doi.org/10.1109/TNS.2020.3025104>.

KRIZHEVSKY, A. Learning Multiple Layers of Features from Tiny Images. 18 abr.

2009. Master Thesis – University of Toronto, Department of Computer Science, Toronto,

Canada. Disponível em:

<http://www.cs.toronto.edu/~kriz/cifar.html>.

LAUFER, R.; PELTON, J. N. The Smallest Classes of Small Satellites Including

Femtosats, Picosats, Nanosats, and CubeSats. In: HANDBOOK of Small Satellites.

[S.l.]: Springer, 2020. P. 87–101. Disponível em:

<https://doi.org/10.1007/978-3-030-36308-6_5>.

LE CUN, Y. et al. Handwritten digit recognition: applications of neural network chips

and automatic learning. IEEE Communications Magazine, IEEE, v. 27, n. 11,

p. 41–46, nov. 1989. Disponível em: <https://doi.org/10.1109/35.41400>.

https://doi.org/10.1140/epjh/e2012-30013-x
http://doi.acm.org/10.1145/977091.977150
https://doi.org/10.1109/TNS.2014.2369008
https://doi.org/10.1109/TNS.2019.2900629
https://doi.org/10.1109/TNS.2020.3025104
http://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1007/978-3-030-36308-6_5
https://doi.org/10.1109/35.41400

166

LEE, D. S. et al. Single-Event Characterization of 16 nm FinFET Xilinx UltraScale+

Devices with Heavy Ion and Neutron Irradiation. In: 2018 IEEE Nuclearand Space

Radiation Effects Conference (NSREC 2018). Waikoloa, USA: IEEE, jul. 2018.

Disponível em: <https://doi.org/10.1109/NSREC.2018.8584313>.

LEE, D. S. et al. Single-Event Characterization of the 28 nm Xilinx Kintex-7

Field-Programmable Gate Array under Heavy Ion Irradiation. In: 2014 IEEE Radiation

Effects Data Workshop (REDW). Paris, France: IEEE, jul. 2014. Disponível em:

<https://doi.org/10.1109/REDW.2014.7004595>.

LEIPNITZ, M. T.; GEFERSON, L. H.; NAZAR, G. L. A fault injection platform for

FPGA-based communication systems. In: 2016 IEEE 7th Latin American Symposium

on Circuits Systems (LASCAS). Florianópolis, Brazil: IEEE, 2016. P. 59–62. Disponível

em: <https://doi.org/10.1109/LASCAS.2016.7451009>.

LEMIEUX, G. et al. Directional and single-driver wires in FPGA interconnect. In:

PROCEEDINGS of 2004 IEEE International Conference on Field- Programmable

Technology (FPT2004). Brisbane, Australia: IEEE, 2004. Disponível em:

<https://doi.org/10.1109/FPT.2004.1393249>.

LEWIS, D. et al. The Stratix routing and logic architecture. In. Disponível em:

<https://doi.org/10.1145/611817.611821>.

LIBANO, F. et al. On the Reliability of Linear Regression and Pattern Recognition

Feedforward Artificial Neural Networks in FPGAs. IEEE Transactions on Nuclear

Science, IEEE, v. 65, n. 1, p. 288–295, jan. 2018. Disponível em:

<https://doi.org/10.1109/TNS.2017.2784367>.

LIMA, F. et al. A fault injection analysis of Virtex FPGA TMR design methodology. In:

RADECS 2001. 2001 6th European Conference on Radiation and Its Effects on

Components and Systems (Cat. No.01TH8605). Grenoble, France: IEEE, 2001.

Disponível em: <https://doi.org/10.1109/RADECS.2001.1159293>.

LIN, M.; CHEN, Q.; YAN, S. Network In Network. In: BENGIO, Y.; LE CUN, Y. (Ed.).

2nd International Conference on Learning Representations (ICLR 2014). Banff,

Canada: ICLR, abr. 2014. (ICLR 2014). Disponível em: <https://iclr.cc>.

LIU, Q. et al. DeepSat V2: feature augmented convolutional neural nets for satellite

image classification. Remote Sensing Letters, Informa UK Limited, v. 11, n. 2,

p. 156–165, nov. 2019. Disponível em:

<https://doi.org/10.1080/2150704X.2019.1693071>.

https://doi.org/10.1109/NSREC.2018.8584313
https://doi.org/10.1109/REDW.2014.7004595
https://doi.org/10.1109/LASCAS.2016.7451009
https://doi.org/10.1109/FPT.2004.1393249
https://doi.org/10.1145/611817.611821
https://doi.org/10.1109/TNS.2017.2784367
https://doi.org/10.1109/RADECS.2001.1159293
https://iclr.cc
https://doi.org/10.1080/2150704X.2019.1693071

167

LOPES, I. C. et al. Reliability analysis on case-study traffic sign convolutional neural

network on APSoC. In: 2018 IEEE 19th Latin-American Test Symposium (LATS). São

Paulo, Brazil: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/LATW.2018.8347234>.

LOPES, I. da C. Convolutional neural network reliability on an APSoC platform a

traffic-sign recognition case study. 2017. Master Dissertation – Programa de

Pós-Graduação em Microeletrônica, Universidade Federal do Rio Grande do Sul, Porto

Alegre, Brazil. Disponível em: <http://hdl.handle.net/10183/171094>.

LOPEZ-MARTIN, M. et al. Shallow neural network with kernel approximation for

prediction problems in highly demanding data networks. Expert Systems with

Applications, Elsevier, v. 124, p. 196–208, jun. 2019. Disponível em:

<https://doi.org/10.1016/j.eswa.2019.01.063>.

LUTZ, G. Semiconductor radiation detectors: Device physics. Berlin, Heidelberg:

Springer, 2007. ISBN 978-3-540-71679-2.

MA, Y. et al. End-to-end scalable FPGA accelerator for deep residual networks. In: 2017

IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, USA:

IEEE, mai. 2017. Disponível em:

<https://doi.org/10.1109/ISCAS.2017.8050344>.

MAASS, W. Networks of spiking neurons: The third generation of neural network

models. Neural Networks, Elsevier, v. 10, n. 9, p. 1659–1671, dez. 1997. Disponível

em: <https://doi.org/10.1016/S0893-6080(97)00011-7>.

MADRY, S.; PELTON, J. N. Historical Perspectives on the Evolution of Small

Satellites. In: HANDBOOK of Small Satellites. [S.l.]: Springer, 2020. P. 33–48.

Disponível em: <https://doi.org/10.1007/978-3-030-36308-6_2>.

MAILLARD, P. et al. Neutron, 64 MeV Proton, Thermal Neutron and Alpha

Single-Event Upset Characterization of Xilinx 20nm UltraScale Kintex FPGA. In: 2015

IEEE Radiation Effects Data Workshop (REDW). Boston, USA: IEEE, jul. 2015.

Disponível em: <https://doi.org/10.1109/REDW.2015.7336723>.

MAILLARD, Pierre et al. Neutron, 64 MeV Proton and Alpha Single-event

Characterization of Xilinx 16nm FinFET Zynq UltraScale+ MPSoC. In: 2017 IEEE

Radiation Effects Data Workshop (REDW). [S.l.]: IEEE, jul. 2017. Disponível em:

<https://doi.org/10.1109/NSREC.2017.8115449>.

https://doi.org/10.1109/LATW.2018.8347234
http://hdl.handle.net/10183/171094
https://doi.org/10.1016/j.eswa.2019.01.063
https://doi.org/10.1109/ISCAS.2017.8050344
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/978-3-030-36308-6_2
https://doi.org/10.1109/REDW.2015.7336723
https://doi.org/10.1109/NSREC.2017.8115449

168

MAILLARD, Pierre et al. Radiation Tolerant Deep Learning Processor Unit (DPU)

based platform using Xilinx 20nm Kintex UltraScale FPGA. IEEE Transactions on

Nuclear Science, Institute of Electrical e Electronics Engineers (IEEE), p. 1–1, 2022.

Disponível em: <https://doi.org/10.1109/TNS.2022.3216360>.

MÂNICA, Thales Ramos. Missão NanoSatC-BR1 - análise de telemetria e resultados

em órbita. 18 dez. 2018. Trabalho de Conclusão de Curso (Graduação) – Universidade

Federal de Santa Maria, Centro de Tecnologia. Disponível em:

<http://repositorio.ufsm.br/handle/1/15423>.

MANNING, J. et al. Machine-Learning Space Applications on SmallSat Platforms with

TensorFlow. In: PROCEEDINGS of the 32nd AIAA/USU Conference on Small

Satellites. [S.l.: s.n.], 2018. Technical Session 7: Advanced Concepts II. Disponível em:

<https:

//digitalcommons.usu.edu/smallsat/2018/all2018/458/>.

MANUZZATO, A. et al. On the Static Cross Section of SRAM-Based FPGAs. In: 2008

IEEE Radiation Effects Data Workshop. Tucson, USA: IEEE, jul. 2008. Disponível em:

<https://doi.org/10.1109/REDW.2008.24>.

MARAIS, I. van Z.; STEYN, W. H.; PREEZ, J. A. du. Construction of an Image Quality

Assessment Model for Use on Board an LEO Satellite. In: IGARSS 2008 - 2008 IEEE

International Geoscience and Remote Sensing Symposium. Boston, USA: IEEE, 2008.

Disponível em: <https://doi.org/10.1109/IGARSS.2008.4779183>.

MASUD, M. I.; WILTON, S. J. E. A New Switch Block for Segmented FPGAs. In:

FIELD Programmable Logic and Applications. [S.l.]: Springer, 1999. P. 274–281.

Disponível em: <https://doi.org/10.1007/978-3-540-48302-1_28>.

MAY, T. C.; WOODS, M. H. Alpha-particle-induced soft errors in dynamic memories.

IEEE Transactions on Electron Devices, v. 26, n. 1, p. 2–9, 1979. Disponível em:

<https://doi.org/10.1109/T-ED.1979.19370>.

MCCABE, M. F. et al. The future of Earth observation in hydrology. Hydrology and

Earth System Sciences, v. 21, n. 7, p. 3879–3914, 2017. Disponível em:

<https://doi.org/10.5194/hess-21-3879-2017>.

MCCULLOCH, W. S.; PITTS, W. A logical calculus of the ideas immanent in nervous

activity. The bulletin of mathematical biophysics, v. 5, n. 4, p. 115–133, dez. 1943.

ISSN 1522-9602. Disponível em: <https://doi.org/10.1007/BF02478259>.

https://doi.org/10.1109/TNS.2022.3216360
http://repositorio.ufsm.br/handle/1/15423
https://digitalcommons.usu.edu/smallsat/2018/all2018/458/
https://digitalcommons.usu.edu/smallsat/2018/all2018/458/
https://doi.org/10.1109/REDW.2008.24
https://doi.org/10.1109/IGARSS.2008.4779183
https://doi.org/10.1007/978-3-540-48302-1_28
https://doi.org/10.1109/T-ED.1979.19370
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.1007/BF02478259

169

MCDONNELL, M. D. et al. Fast, simple and accurate handwritten digit classification by

training shallow neural network classifiers with the ‘Extreme Learning Machine’

algorithm. Edição: F. Schwenker. PLOS ONE, Public Library of Science (PLoS), v. 10,

n. 8, e0134254, ago. 2015. Disponível em:

<https://doi.org/10.1371/journal.pone.0134254>.

MCMORROW, D. et al. Single-event upsets in substrate-etched CMOS SOI SRAMs

using ultraviolet optical pulses with sub-micrometer spot size. IEEE Transactions on

Nuclear Science, v. 60, n. 6, p. 4184–4191, 2013. Disponível em:

<https://doi.org/10.1109/TNS.2013.2290307>.

MCMORROW, D. et al. Subbandgap laser-induced single event effects: carrier

generation via two-photon absorption. IEEE Transactions on Nuclear Science, v. 49,

n. 6, p. 3002–3008, 2002. Disponível em:

<https://doi.org/10.1109/TNS.2002.805337>.

MENCER, O. et al. The history, status, and future of FPGAs. Communications of the

ACM, ACM, v. 63, n. 10, p. 36–39, set. 2020. Disponível em:

<https://doi.org/10.1145/3410669>.

MICROSEMI CORPORATION. ProASIC3 FPGA Fabric: User’s Guide. Aliso Viejo,

USA, set. 2012. rev. 4. Disponível em:

<http://www.actel.com/documents/PA3_UG.pdf>. Acesso em: 27 out.

2021.

MILLER, F. et al. Investigation of 14 MeV neutron capabilities for SEU hardness

evaluation. IEEE Transactions on Nuclear Science, v. 60, n. 4, p. 2789–2796, 2013.

Disponível em: <https://doi.org/10.1109/TNS.2013.2241078>.

MINETTO, R.; PAMPLONA SEGUNDO, M.; SARKAR, S. Hydra: An Ensemble of

Convolutional Neural Networks for Geospatial Land Classification. IEEE Transactions

on Geoscience and Remote Sensing, IEEE, v. 57, n. 9, p. 6530–6541, set. 2019.

Disponível em: <https://doi.org/10.1109/TGRS.2019.2906883>.

MOGOLLON, J. M. et al. FTUNSHADES2: A novel platform for early evaluation of

robustness against SEE. In: 2011 12th European Conference on Radiation and Its Effects

on Components and Systems. Seville, Spain: IEEE, set. 2011. Disponível em:

<https://doi.org/10.1109/RADECS.2011.6131392>.

https://doi.org/10.1371/journal.pone.0134254
https://doi.org/10.1109/TNS.2013.2290307
https://doi.org/10.1109/TNS.2002.805337
https://doi.org/10.1145/3410669
http://www.actel.com/documents/PA3_UG.pdf
https://doi.org/10.1109/TNS.2013.2241078
https://doi.org/10.1109/TGRS.2019.2906883
https://doi.org/10.1109/RADECS.2011.6131392

170

MORCEL, R. et al. FeatherNet. ACM Transactions on Reconfigurable Technology

and Systems, ACM, v. 12, n. 2, p. 1–27, jun. 2019. Disponível em:

<https://doi.org/10.1145/3306202>.

NAGEL, G. W.; M. NOVO, E. M. L. de; KAMPEL, M. Nanosatellites applied to optical

Earth observation: a review. Ambiente e Agua - An Interdisciplinary Journal of

Applied Science, Instituto de Pesquisas Ambientais em Bacias Hidrograficas (IPABHi),

v. 15, n. 3, p. 1, jun. 2020. Disponível em:

<http://doi.org/10.4136/ambi-agua.2513>.

NANNIPIERI, P. et al. Introduction to Satellite on-Board Data-Handling. In:

NEXT-GENERATION High-Speed Satellite Interconnect. [S.l.]: Springer, 2021. P. 1–21.

Disponível em: <https://doi.org/10.1007/978-3-030-77044-0_1>.

NAPOLES, J. et al. A Complete Emulation System for Single Event Effects Analysis.

In: 2008 4th Southern Conference on Programmable Logic. Bariloche, Argentina: IEEE,

mar. 2008. Disponível em:

<https://doi.org/10.1109/SPL.2008.4547760>.

NAPOLES, J. et al. Radiation Environment Emulation for VLSI Designs: A Low Cost

Platform based on Xilinx FPGA’s. In: 2007 IEEE International Symposium on Industrial

Electronics. Vigo, Spain: IEEE, jun. 2007. Disponível em:

<https://doi.org/10.1109/ISIE.2007.4375150>.

NARASIMHAM, Balaji et al. Scaling trends and bias dependence of the soft error rate

of 16 nm and 7 nm FinFET SRAMs. In: 2018 IEEE International Reliability Physics

Symposium (IRPS). [S.l.]: IEEE, mar. 2018. Disponível em:

<https://doi.org/10.1109/IRPS.2018.8353583>.

NAZAR, G. L.; CARRO, L. Fast single-FPGA fault injection platform. In: 2012 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT). Austin, USA: IEEE, 2012. P. 152–157. Disponível em:

<https://doi.org/10.1109/DFT.2012.6378216>.

NEWHAUSER, W. D.; ZHANG, R. The physics of proton therapy. Physics in Medicine

and Biology, IOP, v. 60, n. 8, r155–r209, mar. 2015. Disponível em:

<https://doi.org/10.1088/0031-9155/60/8/r155>.

NISHIDA, K.; KURITA, T. Boosting Soft-Margin SVM with Feature Selection for

Pedestrian Detection. In: MULTIPLE Classifier Systems. [S.l.]: Springer, 2005.

P. 22–31. Disponível em: <https://doi.org/10.1007/11494683_3>.

https://doi.org/10.1145/3306202
http://doi.org/10.4136/ambi-agua.2513
https://doi.org/10.1007/978-3-030-77044-0_1
https://doi.org/10.1109/SPL.2008.4547760
https://doi.org/10.1109/ISIE.2007.4375150
https://doi.org/10.1109/IRPS.2018.8353583
https://doi.org/10.1109/DFT.2012.6378216
https://doi.org/10.1088/0031-9155/60/8/r155
https://doi.org/10.1007/11494683_3

171

NOH, Jinhyun et al. Study of Neutron Soft Error Rate (SER) Sensitivity: Investigation of

Upset Mechanisms by Comparative Simulation of FinFET and Planar MOSFET

SRAMs. IEEE Transactions on Nuclear Science, Institute of Electrical e Electronics

Engineers (IEEE), v. 62, n. 4, p. 1642–1649, ago. 2015. Disponível em:

<https://doi.org/10.1109/TNS.2015.2450997>.

NORMAND, E. Single event upset at ground level. IEEE Transactions on Nuclear

Science, v. 43, n. 6, p. 2742–2750, 1996. Disponível em:

<https://doi.org/10.1109/23.556861>.

NSENGIYUMVA, Patrick et al. A Comparison of the SEU Response of Planar and

FinFET D Flip-Flops at Advanced Technology Nodes. IEEE Transactions on Nuclear

Science, Institute of Electrical e Electronics Engineers (IEEE), v. 63, n. 1, p. 266–272,

fev. 2016. Disponível em:

<https://doi.org/10.1109/TNS.2015.2508981>.

O’GORMAN, T. J. The effect of cosmic rays on the soft error rate of a DRAM at ground

level. IEEE Transactions on Electron Devices, v. 41, n. 4, p. 553–557, 1994.

Disponível em: <https://doi.org/10.1109/16.278509>.

OGAWA, T.; HINES, J. F. Market Insight – Prepare for Surging Semiconductor

Business Opportunities Driven by Autonomous Vehicles. Stamford, USA, 12 mai.

2017.

OLIVEIRA, D. et al. Thermal neutrons: a possible threat for supercomputers and safety

critical applications. In: 2020 IEEE European Test Symposium (ETS). Tallinn, Estonia:

IEEE, 2020. Disponível em:

<https://doi.org/10.1109/ETS48528.2020.9131597>.

PACINI, A. A. Cosmic rays: bringing messages from the sky to the Earth’s surface.

Revista Brasileira de Ensino de Física, SciELO, São Paulo, v. 39, 2017. ISSN

1806-1117. Disponível em:

<https://doi.org/10.1590/1806-9126-rbef-2016-0168>.

PAIKOWSKY, D. What Is New Space? The Changing Ecosystem of Global Space

Activity. New Space, Mary Ann Liebert Inc, v. 5, n. 2, p. 84–88, jun. 2017. Disponível

em: <https://doi.org/10.1089/space.2016.0027>.

https://doi.org/10.1109/TNS.2015.2450997
https://doi.org/10.1109/23.556861
https://doi.org/10.1109/TNS.2015.2508981
https://doi.org/10.1109/16.278509
https://doi.org/10.1109/ETS48528.2020.9131597
https://doi.org/10.1590/1806-9126-rbef-2016-0168
https://doi.org/10.1089/space.2016.0027

172

PAN, X. et al. Spatial as Deep: Spatial CNN for Traffic Scene Understanding. In:

PROCEEDINGS of the Thirty-Second AAAI Conference on Artificial Intelligence. New

Orleans, USA: AAAI Press, fev. 2018. (AAAI’18), p. 7276–7283. Disponível em:

<https://aaai.org/Conferences/AAAI-18/>.

PARK, Y.; BAEK, S.; PAIK, S.-B. A brain-inspired network architecture for

cost-efficient object recognition in shallow hierarchical neural networks. Neural

Networks, Elsevier, v. 134, p. 76–85, fev. 2021. Disponível em:

<https://doi.org/10.1016/j.neunet.2020.11.013>.

PARK, Y.; CHOI, W.; PAIK, S.-B. Symmetry of learning rate in synaptic plasticity

modulates formation of flexible and stable memories. Scientific Reports, Springer, v. 7,

n. 1, mai. 2017. Disponível em:

<https://doi.org/10.1038/s41598-017-05929-2>.

PETERSEN, E. Soft errors due to protons in the radiation belt. IEEE Transactions on

Nuclear Science, v. 28, n. 6, p. 3981–3986, 1981. Disponível em:

<https://doi.org/10.1109/TNS.1981.4335659>.

PLANET LABS INC. Planet imagery: product specification. [S.l.], jan. 2018.

Disponível em:

<https://www.planet.com/products/satellite-imagery/files/

Planet_Combined_Imagery_Product_Specs_December2017.pdf>.

Acesso em: 27 out. 2021.

POIVEY, C. TNID total non ionizing dose or DD displacement damage. Geneva:

[s.n.], 10 mai. 2017. ESA-CERN-SCC Workshop, Session TNID effect, mechanisms and

testing. Disponível em: <https://indico.cern.ch/event/635099/>.

Acesso em: 1 jun. 2021.

POPOWICZ, A. Image processing in the BRITE nano-satellite mission. In:

MACEWEN, H. A. et al. (Ed.). Space Telescopes and Instrumentation 2016: Optical,

Infrared, and Millimeter Wave. Edinburgh, UK: SPIE, jul. 2016. Disponível em:

<https://doi.org/10.1117/12.2229141>.

POUGET, V. et al. Structural pattern extraction from asynchronous two-photon laser

fault injection using spectral analysis. Microelectronics Reliability, v. 76-77,

p. 650–654, 2017. ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2017.07.028>.

https://aaai.org/Conferences/AAAI-18/
https://doi.org/10.1016/j.neunet.2020.11.013
https://doi.org/10.1038/s41598-017-05929-2
https://doi.org/10.1109/TNS.1981.4335659
https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf
https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf
https://indico.cern.ch/event/635099/
https://doi.org/10.1117/12.2229141
https://doi.org/10.1016/j.microrel.2017.07.028

173

POUGET, V. et al. Tools and methodology development for pulsed laser fault injection

in SRAM-based FPGAs. In: 8TH LATIN-AMERICAN TEST WORKSHOP

(LATW’07). Cuzco, Peru: IEEE Computer Society, 2007. Session 8. Disponível em:

<https://hal.archives-ouvertes.fr/hal-00156318>.

QUINN, H.; WIRTHLIN, M. Validation Techniques for Fault Emulation of

SRAM-based FPGAs. IEEE Transactions on Nuclear Science, IEEE, v. 62, n. 4,

p. 1487–1500, ago. 2015. Disponível em:

<https://doi.org/10.1109/TNS.2015.2456101>.

QUINN, H. et al. Radiation-induced multi-bit upsets in SRAM-based FPGAs. IEEE

Transactions on Nuclear Science, IEEE, v. 52, n. 6, p. 2455–2461, dez. 2005.

Disponível em: <https://doi.org/10.1109/TNS.2005.860742>.

RASHEVSKY, N. Outline of a physico-mathematical theory of excitation and

inhibition. Protoplasma, Springer, v. 20, n. 1, p. 42–56, out. 1933. Disponível em:

<https://doi.org/10.1007/BF02674811>.

RECH, P. et al. Impact of GPUs Parallelism Management on Safety-Critical and HPC

Applications Reliability. In: 2014 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks. [S.l.]: IEEE, jun. 2014. Disponível em:

<https://doi.org/10.1109/DSN.2014.49>.

REED, R. A. et al. Evidence for angular effects in proton-induced single-event upsets.

IEEE Transactions on Nuclear Science, v. 49, n. 6, p. 3038–3044, 2002. Disponível

em: <https://doi.org/10.1109/TNS.2002.805446>.

RODBELL, K. P. et al. Low-energy proton-induced single-event-upsets in 65 nm node,

silicon-on-insulator, latches and memory cells. IEEE Transactions on Nuclear

Science, v. 54, n. 6, p. 2474–2479, 2007. Disponível em:

<https://doi.org/10.1109/TNS.2007.909845>.

RODRIGUES, G. S. et al. Exploiting approximate computing for low-cost fault tolerant

architectures. In: PROCEEDINGS of the 32nd Symposium on Integrated Circuits and

Systems Design. São Paulo, Brazil: ACM, 2019. (SBCCI ’19). ISBN 9781450368445.

Disponível em: <https://doi.org/10.1145/3338852.3339875>.

ROSENBLATT, F. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, American Psychological Association

(APA), v. 65, n. 6, p. 386–408, 1958. Disponível em:

<https://doi.org/10.1037/h0042519>.

https://hal.archives-ouvertes.fr/hal-00156318
https://doi.org/10.1109/TNS.2015.2456101
https://doi.org/10.1109/TNS.2005.860742
https://doi.org/10.1007/BF02674811
https://doi.org/10.1109/DSN.2014.49
https://doi.org/10.1109/TNS.2002.805446
https://doi.org/10.1109/TNS.2007.909845
https://doi.org/10.1145/3338852.3339875
https://doi.org/10.1037/h0042519

174

RUMELHART, D. E.; HINTON, G. E.; WILLIAMS, R. J. Learning representations by

back-propagating errors. Nature, Springer, v. 323, n. 6088, p. 533–536, out. 1986.

Disponível em: <https://doi.org/10.1038/323533a0>.

RUSSAKOVSKY, O. et al. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), v. 115, n. 3, p. 211–252, 2015.

Disponível em: <https://doi.org/10.1007/s11263-015-0816-y>.

S. CURIEL, A. da; CAWTHORNE, A.; SWEETING, M. Progress in small satellite

technology for Earth obsevation missions. In: SMALL Satellites for Earth Observation.

[S.l.]: De Gruyter, dez. 2005. P. 50–63. Disponível em:

<https://doi.org/10.1515/9783110919806.50>.

SADEH, Y. et al. Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m

surface reflectance and wheat LAI monitoring. International Journal of Applied Earth

Observation and Geoinformation, Elsevier, v. 96, p. 102260, abr. 2021. Disponível

em: <https://doi.org/10.1016/j.jag.2020.102260>.

SAE INTERNATIONAL. SAE J3016 – Taxonomy and definitions for terms related

to driving automation systems for on-road motor vehicles. Warrendale, USA, abr.

2021. Also published as ISO/SAE PAS 22736. Disponível em:

<https://www.sae.org/standards/content/j3016_202104/>.

SAMU, D.; SETH, A. K.; NOWOTNY, T. Influence of wiring cost on the large-scale

architecture of human cortical connectivity. Edição: O. Sporns. PLoS Computational

Biology, PLoS, v. 10, n. 4, e1003557, abr. 2014. Disponível em:

<https://doi.org/10.1371/journal.pcbi.1003557>.

SANTOS, A. F. dos et al. Applying TMR in hardware accelerators generated by

High-Level Synthesis design flow for mitigating multiple bit upsets in SRAM-based

FPGAs. In: WONG, S. et al. (Ed.). Applied Reconfigurable Computing: 13th

International Symposium, ARC 2017, Delft, The Netherlands, April 3-7, 2017,

Proceedings. Cham: Springer, 2017. P. 202–213. ISBN 978-3-319-56258-2. Disponível

em: <https://doi.org/10.1007/978-3-319-56258-2_18>.

SCHRIMPF, R. D. Radiation effects in microelectronics. In: VELAZCO, R.;

FOUILLAT, P.; REIS, R. (Ed.). Radiation Effects on Embedded Systems. Dordrecht:

Springer, 2007. P. 11–29. ISBN 978-1-4020-5646-8. Disponível em:

<https://doi.org/10.1007/978-1-4020-5646-8_2>.

https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1515/9783110919806.50
https://doi.org/10.1016/j.jag.2020.102260
https://www.sae.org/standards/content/j3016_202104/
https://doi.org/10.1371/journal.pcbi.1003557
https://doi.org/10.1007/978-3-319-56258-2_18
https://doi.org/10.1007/978-1-4020-5646-8_2

175

SCHUCH, Nelson J. et al. The NanosatC-BR, CubeSat Development Program - A joing

CubeSat program developed by UFSM and INPE/MCTIC - Space geophysics mission

payloads and first results. Brazilian Journal of Geophysics, Sociedade Brasileira de

Geofisica, v. 37, n. 1, p. 95, mar. 2019. Disponível em:

<http://dx.doi.org/10.22564/rbgf.v37i1.1992>.

SCHUCH, Nelson Jorge; DURÃO, Otávio Cupertino. The Brazilian INPE-UFSM

NANOSATC-BR CubeSat Program. In: PROCEEDINGS of the 2nd IAA Conference on

University Satellites Missions and the CubeSat Winter Workshop. [S.l.]: International

Academy of Astronautics, fev. 2013. Technical Session VII: CubeSat Missions, Paper

IAA-CU-13-09-02.

SELVA, D.; KREJCI, D. A survey and assessment of the capabilities of Cubesats for

Earth observation. Acta Astronautica, Elsevier, v. 74, p. 50–68, mai. 2012. Disponível

em: <https://doi.org/10.1016/j.actaastro.2011.12.014>.

SERNA, C. G.; RUICHEK, Y. Classification of Traffic Signs: The European Dataset.

IEEE Access, IEEE, v. 6, p. 78136–78148, 2018. Disponível em:

<https://doi.org/10.1109/ACCESS.2018.2884826>.

SIERAWSKI, B. D. et al. Impact of low-energy proton induced upsets on test methods

and rate predictions. IEEE Transactions on Nuclear Science, v. 56, n. 6, p. 3085–3092,

2009. Disponível em: <https://doi.org/10.1109/TNS.2009.2032545>.

SKOROBOGATOV, S. P.; ANDERSON, R. J. Optical fault induction attacks. In:

KALISKI, B. S.; KOÇ, Ç. K.; PAAR, C. (Ed.). Cryptographic Hardware and

Embedded Systems - CHES 2002. Berlin, Heidelberg: Springer, 2003. P. 2–12. ISBN

978-3-540-36400-9. Disponível em:

<https://doi.org/10.1007/3-540-36400-5_2>.

SPRINGENBERG, J. T. et al. Striving for Simplicity: The All Convolutional Net. In:

BENGIO, Y.; LE CUN, Y. (Ed.). 3rd International Conference on Learning

Representations (ICLR 2015). San Diego, USA: ICLR, mai. 2015. (ICLR 2015).

Disponível em: <https://iclr.cc>.

STALLKAMP, J. et al. Man vs. computer: Benchmarking machine learning algorithms

for traffic sign recognition. Neural Networks, Elsevier, v. 32, p. 323–332, ago. 2012.

Disponível em: <https://doi.org/10.1016/j.neunet.2012.02.016>.

http://dx.doi.org/10.22564/rbgf.v37i1.1992
https://doi.org/10.1016/j.actaastro.2011.12.014
https://doi.org/10.1109/ACCESS.2018.2884826
https://doi.org/10.1109/TNS.2009.2032545
https://doi.org/10.1007/3-540-36400-5_2
https://iclr.cc
https://doi.org/10.1016/j.neunet.2012.02.016

176

STASSINOPOULOS, E. G.; RAYMOND, J. P. The space radiation environment for

electronics. Proceedings of the IEEE, v. 76, n. 11, p. 1423–1442, 1988. Disponível em:

<https://doi.org/10.1109/5.90113>.

STERPONE, L.; BORAGNO, L. Analysis of radiation-induced cross domain errors in

TMR architectures on SRAM-based FPGAs. In: 2017 IEEE 23rd International

Symposium on On-Line Testing and Robust System Design (IOLTS). Thessaloniki,

Greece: IEEE, jul. 2017. Disponível em:

<https://doi.org/10.1109/IOLTS.2017.8046214>.

STERPONE, L.; VIOLANTE, M. A New Partial Reconfiguration-Based Fault-Injection

System to Evaluate SEU Effects in SRAM-Based FPGAs. IEEE Transactions on

Nuclear Science, IEEE, v. 54, n. 4, p. 965–970, ago. 2007. Disponível em:

<https://doi.org/10.1109/TNS.2007.904080>.

STERPONE, L. et al. Layout-Aware Multi-Cell Upsets Effects Analysis on TMR

Circuits Implemented on SRAM-Based FPGAs. IEEE Transactions on Nuclear

Science, IEEE, v. 58, n. 5, p. 2325–2332, out. 2011. Disponível em:

<https://doi.org/10.1109/TNS.2011.2161887>.

STODDARD, A. G. Configuration Scrubbing Architectures for High Reliability

FPGA Systems. Dez. 2015. Master of Science Thesis – Brigham Young University,

Provo, USA. Disponível em:

<https://scholarsarchive.byu.edu/etd/5704>.

SWARTWOUT, M. University-Class Satellites: From Marginal Utility to ’Disruptive’

Research Platforms. In: PROCEEDINGS of the 18th AIAA/USU Conference on Small

Satellites. [S.l.: s.n.], 2004. Technical Session II: Measuring Small Satellite Utility, Paper

12. Disponível em:

<https://digitalcommons.usu.edu/smallsat/2004/All2004/12/>.

SZE, S. M.; NG, K. K. Physics of semiconductor devices. 3. ed. New Delhi, India:

Wiley, 2007. ISBN 978-81-265-1702-2.

TAIWAN SEMICONDUCTOR MANUFACTURING CO.,LTD. 28nm Technology.

Hsinchu, Taiwan: TSMC, 2018. Disponível em: <http://www.tsmc.com/

english/dedicatedFoundry/technology/28nm.htm>. Acesso em: 28 jan.

2018.

https://doi.org/10.1109/5.90113
https://doi.org/10.1109/IOLTS.2017.8046214
https://doi.org/10.1109/TNS.2007.904080
https://doi.org/10.1109/TNS.2011.2161887
https://scholarsarchive.byu.edu/etd/5704
https://digitalcommons.usu.edu/smallsat/2004/All2004/12/
http://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm
http://www.tsmc.com/english/dedicatedFoundry/technology/28nm.htm

177

TAIWAN SEMICONDUCTOR MANUFACTURING CO.,LTD. Fang-Wen Tsai et al.

Extreme low-K dielectric film scheme for advanced interconnects. 5 jul. 2011. US n.

RE42,514 E, Jan. 2, 2008, Jul. 5, 2011. Disponível em: <https://patentscope.

wipo.int/search/en/detail.jsf?docId=US73761086>.

TAIWAN SEMICONDUCTOR MANUFACTURING CO.,LTD. Shiauhan Wu;

Joung-Wei Liou; Han-Ti Hsiaw. Method of back-end-of-line (BEOL) fabrication, and

devices formed by the method. 8 set. 2015. US 9,130,022 B2, May 9, 2013, Sep. 8,

2015. Disponível em: <https://patentscope.wipo.int/search/en/

detail.jsf?docId=US107408853>.

TAMBARA, L. A. et al. Analyzing the Impact of Radiation-Induced Failures in

Programmable SoCs. IEEE Transactions on Nuclear Science, IEEE, v. 63, n. 4,

p. 2217–2224, ago. 2016. Disponível em:

<https://doi.org/10.1109/TNS.2016.2522508>.

TAMBARA, L. A. et al. Heavy Ions Induced Single Event Upsets Testing of the 28 nm

Xilinx Zynq-7000 All Programmable SoC. In: 2015 IEEE Radiation Effects Data

Workshop (REDW). [S.l.]: IEEE, jul. 2015. Disponível em:

<https://doi.org/10.1109/REDW.2015.7336716>.

TAMBARA, L. A. et al. On the Characterization of Embedded Memories of Zynq-7000

All Programmable SoC under Single Event Upsets Induced by Heavy Ions and Protons.

In: 2015 15th European Conference on Radiation and Its Effects on Components and

Systems (RADECS). Moscow, Russia: IEEE, set. 2015. Disponível em:

<https://doi.org/10.1109/RADECS.2015.7365643>.

TAMBARA, L. A. et al. Soft error rate in SRAM-based FPGAs under neutron-induced

and TID effects. In: 2014 15th Latin American Test Workshop - LATW. Fortaleza,

Brazil: IEEE, mar. 2014. Disponível em:

<https://doi.org/10.1109/LATW.2014.6841920>.

TARRILLO, J. et al. Multiple fault injection platform for SRAM-based FPGA based on

ground-level radiation experiments. In: 2015 16th Latin-American Test Symposium

(LATS). Puerto Vallarta: IEEE, 2015. Disponível em:

<https://doi.org/10.1109/LATW.2015.7102494>.

TARRILLO, J. et al. Neutron Cross-Section of N-Modular Redundancy Technique in

SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, IEEE, v. 61, n. 4,

https://patentscope.wipo.int/search/en/detail.jsf?docId=US73761086
https://patentscope.wipo.int/search/en/detail.jsf?docId=US73761086
https://patentscope.wipo.int/search/en/detail.jsf?docId=US107408853
https://patentscope.wipo.int/search/en/detail.jsf?docId=US107408853
https://doi.org/10.1109/TNS.2016.2522508
https://doi.org/10.1109/REDW.2015.7336716
https://doi.org/10.1109/RADECS.2015.7365643
https://doi.org/10.1109/LATW.2014.6841920
https://doi.org/10.1109/LATW.2015.7102494

178

p. 1558–1566, ago. 2014. Disponível em:

<https://doi.org/10.1109/TNS.2014.2343259>.

THURLOW, C.; ROWBERRY, H.; WIRTHLIN, M. TURTLE: A Low-Cost Fault

Injection Platform for SRAM-based FPGAs. In: 2019 International Conference on

ReConFigurable Computing and FPGAs (ReConFig). Cancun, Mexico: IEEE, dez.

2019. Disponível em:

<https://doi.org/10.1109/ReConFig48160.2019.8994782>.

TONFAT, J. et al. Analyzing the Influence of the Angles of Incidence and Rotation on

MBU Events Induced by Low LET Heavy Ions in a 28-nm SRAM-Based FPGA. IEEE

Transactions on Nuclear Science, IEEE, v. 64, n. 8, p. 2161–2168, ago. 2017.

Disponível em: <https://doi.org/10.1109/TNS.2017.2727479>.

TONFAT, J. et al. Method to analyze the susceptibility of HLS designs in SRAM-based

FPGAs under soft errors. In: BONATO, V.; BOUGANIS, C.; GORGON, M. (Ed.).

Applied Reconfigurable Computing. Mangaratiba, Brazil: Springer, 2016. P. 132–143.

ISBN 978-3-319-30481-6. Disponível em:

<https://doi.org/10.1007/978-3-319-30481-6_11>.

TRINDADE, M. G. et al. Effects of thermal neutron radiation on a

hardware-implemented machine learning algorithm. Microelectronics Reliability,

v. 116, p. 114022, jan. 2021. ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2020.114022>.

TRIPPE, J. M. et al. Electron-induced single event upsets in 28 nm and 45 nm bulk

SRAMs. IEEE Transactions on Nuclear Science, v. 62, n. 6, p. 2709–2716, 2015.

Disponível em: <https://doi.org/10.1109/TNS.2015.2496967>.

TSAO, C. H.; SILBERBERG, R.; LETAW, J. R. Cosmic-ray heavy ions at and above

40,000 feet. IEEE Transactions on Nuclear Science, v. 31, n. 6, p. 1066–1068, 1984.

Disponível em: <https://doi.org/10.1109/TNS.1984.4333456>.

TSILIGIANNIS, G. et al. Radiation Effects on Deep Submicrometer SRAM-Based

FPGAs Under the CERN Mixed-Field Radiation Environment. IEEE Transactions on

Nuclear Science, IEEE, v. 65, n. 8, p. 1511–1518, ago. 2018.

UNION OF CONCERNED SCIENTISTS. UCS Satellite Database. Cambridge, USA:

[s.n.], 1 mai. 2021. Microsoft Office Excel Spreadsheet, 2405376 octets. Disponível em:

<https://www.ucsusa.org/resources/satellite-database>. Acesso

em: 30 jul. 2021.

https://doi.org/10.1109/TNS.2014.2343259
https://doi.org/10.1109/ReConFig48160.2019.8994782
https://doi.org/10.1109/TNS.2017.2727479
https://doi.org/10.1007/978-3-319-30481-6_11
https://doi.org/10.1016/j.microrel.2020.114022
https://doi.org/10.1109/TNS.2015.2496967
https://doi.org/10.1109/TNS.1984.4333456
https://www.ucsusa.org/resources/satellite-database

179

VECTORBLOX COMPUTING INC. ORCA FPGA optimized RISC-V. Vancouver,

Canada: Github, 2019. Disponível em:

<https://github.com/VectorBlox/risc-v>. Acesso em: 4 jul. 2019.

VEDDER, B. Testing Safety-Critical Systems using Fault Injection and

Property-Based Testing. 26 mai. 2015. Licenciate Thesis – Halmstad University,

Centre for Research on Embedded Systems (CERES). ISBN 978-91-87045-28-8.

Disponível em: <http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A808260>.

VELAZCO, R.; FOUCARD, G.; PERONNARD, P. Combining Results of Accelerated

Radiation Tests and Fault Injections to Predict the Error Rate of an Application

Implemented in SRAM-Based FPGAs. IEEE Transactions on Nuclear Science, v. 57,

n. 6, p. 3500–3505, dez. 2010. ISSN 0018-9499. Disponível em:

<http://dx.doi.org/10.1109/TNS.2010.2087355>.

VELAZCO, R. et al. Evidences of SEU tolerance for digital implementations of artificial

neural networks: one year MPTB flight results. In: 1999 Fifth European Conference on

Radiation and Its Effects on Components and Systems. RADECS 99 (Cat.

No.99TH8471). Fontevraud, France: IEEE, 1999. Disponível em:

<https://doi.org/10.1109/RADECS.1999.858648>.

VELHO, L.; FRERY, A.; GOMES, J. Image Processing for Computer Graphics and

Vision. [S.l.]: Springer, 2009. Disponível em:

<https://doi.org/10.1007/978-1-84800-193-0>.

VIAL, C. et al. A new approach for the prediction of the neutron-induced SEU rate.

IEEE Transactions on Nuclear Science, v. 45, n. 6, p. 2915–2920, 1998. Disponível

em: <https://doi.org/10.1109/23.736547>.

VILLALTA, I. et al. Fault injection system for SEU emulation in Zynq SoCs. In:

DESIGN of Circuits and Integrated Systems. Madrid, Spain: IEEE, nov. 2014.

Disponível em: <https://doi.org/10.1109/DCIS.2014.7035579>.

VON NEUMANN, J. First draft of a report on the EDVAC. IEEE Annals of the

History of Computing, IEEE, v. 15, n. 4, p. 27–75, 1993. Disponível em:

<https://doi.org/10.1109/85.238389>.

WESTE, N. H. E.; HARRIS, D. M. CMOS VLSI design: A circuits and systems

perspective. 4. ed. Boston, USA: Addison-Wesley, 2010. ISBN 978-0-321-54774-3.

https://github.com/VectorBlox/risc-v
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A808260
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A808260
http://dx.doi.org/10.1109/TNS.2010.2087355
https://doi.org/10.1109/RADECS.1999.858648
https://doi.org/10.1007/978-1-84800-193-0
https://doi.org/10.1109/23.736547
https://doi.org/10.1109/DCIS.2014.7035579
https://doi.org/10.1109/85.238389

180

WIELGOSZ, M.; KARWATOWSKI, M. Mapping Neural Networks to FPGA-Based IoT

Devices for Ultra-Low Latency Processing. Sensors, MDPI, v. 19, n. 13, p. 2981, jul.

2019. Disponível em: <https://doi.org/10.3390/s19132981>.

WINOKUR, P. S. et al. Use of COTS microelectronics in radiation environments. IEEE

Transactions on Nuclear Science, v. 46, n. 6, p. 1494–1503, dez. 1999. ISSN

0018-9499. Disponível em: <https://doi.org/10.1109/23.819113>.

WIRTHLIN, M. et al. A Method and Case Study on Identifying Physically Adjacent

Multiple-Cell Upsets Using 28-nm, Interleaved and SECDED-Protected Arrays. IEEE

Transactions on Nuclear Science, IEEE, v. 61, n. 6, p. 3080–3087, dez. 2014.

Disponível em: <https://doi.org/10.1109/TNS.2014.2366913>.

WIRTHLIN, M. J.; TAKAI, H.; HARDING, A. Soft error rate estimations of the

Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter. Journal of

Instrumentation, v. 9, n. 01, p. c01025, 2014. Disponível em:

<http://stacks.iop.org/1748-0221/9/i=01/a=C01025>.

WONG, S.; AS, T. van; BROWN, G. ρ-VEX: A reconfigurable and extensible softcore

VLIW processor. In: 2008 International Conference on Field-Programmable

Technology. Taipei, Taiwan: IEEE, dez. 2008. Disponível em:

<https://doi.org/10.1109/FPT.2008.4762420>.

WROBEL, F. et al. Contribution of SiO2 in neutron-induced SEU in SRAMs. IEEE

Transactions on Nuclear Science, v. 50, n. 6, p. 2055–2059, 2003. Disponível em:

<https://doi.org/10.1109/TNS.2003.821596>.

XILINX, INC. 7 Series FPGA DSP48E1 Slice: User Guide. San Jose, USA, 27 mar.

2018. UG479 v. 1.10. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug479_7Series_DSP48E1.pdf>. Acesso

em: 27 out. 2021.

XILINX, INC. 7 Series FPGAs Configurable Logic Block: User Guide. San Jose,

USA, 27 set. 2016. UG474 v. 1.8. Disponível em: <https://www.xilinx.com/

support/documentation/user_guides/ug474_7Series_CLB.pdf>.

Acesso em: 27 out. 2021.

XILINX, INC. 7 Series FPGAs Configuration: User Guide. San Jose, USA, 20 ago.

2018. UG470 v. 1.13.1. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug470_7Series_Config.pdf>. Acesso

em: 27 out. 2021.

https://doi.org/10.3390/s19132981
https://doi.org/10.1109/23.819113
https://doi.org/10.1109/TNS.2014.2366913
http://stacks.iop.org/1748-0221/9/i=01/a=C01025
https://doi.org/10.1109/FPT.2008.4762420
https://doi.org/10.1109/TNS.2003.821596
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

181

XILINX, INC. 7 Series FPGAs Memory Resources: User Guide. San Jose, USA, 3

jul. 2019. UG473 v. 1.14. Disponível em:

<https://www.xilinx.com/support/documentation/user_guides/

ug473_7Series_Memory_Resources.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. 7 Series FPGAs Mitigating Single-Event Upsets: White Paper. San

Jose, USA, 19 mai. 2015. WP395 v. 1.1. Disponível em: <https:

//www.xilinx.com/support/documentation/white_papers/wp395-

Mitigating-SEUs.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. 7 Series FPGAs Packaging and Pinout: Product Specification. San

Jose, USA, 7 abr. 2021. UG475 v. 1.19. Disponível em:

<https://www.xilinx.com/support/documentation/user_guides/

ug475_7Series_Pkg_Pinout.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Device Reliability Report: First Half 2021. San Jose, USA, 10 nov.

2021. UG116 v. 10.15. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug116.pdf>. Acesso em: 15 nov. 2021.

XILINX, INC. Isolation Design Flow for Xilinx 7 Series FPGAs or Zynq-7000 AP

SoCs (Vivado Tools): Application Note. San Jose, USA, 17 dez. 2020. XAPP1222 v.

1.4. Disponível em:

<https://www.xilinx.com/support/documentation/application_

notes/xapp1222-idf-for-7s-or-zynq-vivado.pdf>. Acesso em: 27 out.

2021.

XILINX, INC. Soft Error Mitigation Using Prioritized Essential Bits: Application

Note. San Jose, USA, 4 abr. 2012. XAPP538 v.1.0. Disponível em:

<https://www.xilinx.com/support/documentation/application_

notes/xapp538-soft-error-mitigation-essential-bits.pdf>.

Acesso em: 1 fev. 2018.

XILINX, INC. UltraScale Architechture Configuration: User Guide. San Jose, USA,

9 set. 2021. UG570 v. 1.15. Disponível em: <https:

//www.xilinx.com/support/documentation/user_guides/ug570-

ultrascale-configuration.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. UltraScale Architecture Configurable Logic Block: User Guide. San

Jose, USA, 28 fev. 2017. UG574 v. 1.5. Disponível em: <https:

https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf
https://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf
https://www.xilinx.com/support/documentation/white_papers/wp395-Mitigating-SEUs.pdf
https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug475_7Series_Pkg_Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug116.pdf
https://www.xilinx.com/support/documentation/user_guides/ug116.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1222-idf-for-7s-or-zynq-vivado.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1222-idf-for-7s-or-zynq-vivado.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp538-soft-error-mitigation-essential-bits.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp538-soft-error-mitigation-essential-bits.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf

182

//www.xilinx.com/support/documentation/user_guides/ug574-

ultrascale-clb.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. UltraScale Architecture DSP Slice User Guide. San Jose, USA, 30

ago. 2021. UG579 v. 1.11. Disponível em:

<https://www.xilinx.com/support/documentation/user_guides/

ug479_7Series_DSP48E1.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. UltraScale Architecture Memory Resources User Guide. San Jose,

USA, 24 set. 2021. UG573 v. 1.13. Disponível em: <https:

//www.xilinx.com/support/documentation/user_guides/ug573-

ultrascale-memory-resources.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Versal ACAP DSP Engine Architecture Manual. San Jose, USA, 15

jul. 2021. AM004 v. 1.1.2. Disponível em:

<https://www.xilinx.com/support/documentation/architecture-

manuals/am004-versal-dsp-engine.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Versal: The First Adaptive Compute Acceleration Platform (ACAP):

White Paper. San Jose, USA, 29 set. 2020. WP505 v 1.1.1. Disponível em: <https:

//www.xilinx.com/support/documentation/white_papers/wp505-

versal-acap.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Virtex-5 FPGA XtremeDSP Design Considerations: User Guide. San

Jose, USA, 27 jul. 2017. UG193 v. 3.6. Disponível em: <https://www.xilinx.

com/support/documentation/user_guides/ug193.pdf>. Acesso em: 27

out. 2021.

XILINX, INC. Virtex-5 FPGA: User Guide. San Jose, USA, 16 mar. 2012. UG190 v.

5.4. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug190.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Virtex-6 FPGA DSP48E1 Slice: User Guide. San Jose, USA, 14 fev.

2011. UG369 v. 1.3. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug369.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Virtex-II Platform FPGA: User Guide. San Jose, USA, 5 nov. 2007.

UG002 v. 2.2. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug002.pdf>. Acesso em: 27 out. 2021.

https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug574-ultrascale-clb.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am004-versal-dsp-engine.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am004-versal-dsp-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/user_guides/ug193.pdf
https://www.xilinx.com/support/documentation/user_guides/ug193.pdf
https://www.xilinx.com/support/documentation/user_guides/ug190.pdf
https://www.xilinx.com/support/documentation/user_guides/ug190.pdf
https://www.xilinx.com/support/documentation/user_guides/ug369.pdf
https://www.xilinx.com/support/documentation/user_guides/ug369.pdf
https://www.xilinx.com/support/documentation/user_guides/ug002.pdf
https://www.xilinx.com/support/documentation/user_guides/ug002.pdf

183

XILINX, INC. Vivado Design Suite Getting Started: User Guide. San Jose, USA, 18

nov. 2015. UG910 v. 2015.4. Disponível em:

<http://www.xilinx.com/support/documentation/sw_manuals/

xilinx2015_4/ug910-vivado-getting-started.pdf>. Acesso em: 27

out. 2021.

XILINX, INC. Vivado Design Suite Properties Reference Guide: User Guide. San

Jose, USA, 6 jun. 2018. UG912 v. 2018.2. Disponível em:

<https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2018_2/ug912-vivado-properties.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Vixtex Field Programmable Gate Arrays: Product Specification. San

Jose, USA, 1 mar. 2013. DS003 v. 4.0. Disponível em: <https://www.xilinx.

com/support/documentation/data_sheets/ds003.pdf>. Acesso em: 27

out. 2021.

XILINX, INC. XC2064/XC2018 Logic Cell Array: Product Specification. San Jose,

USA, 1988.

XILINX, INC. XC4000E and XC4000X Series Field Programmable Gate Arrays:

Product Specification. San Jose, USA, 14 mai. 1999. v. 1.6. Disponível em:

<https://www.xilinx.com/support/documentation/data_sheets/

4000.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Xilinx Multi-node Technology Leadership Continues with

UltraScale+ Portfolio “3D on 3D” Solutions: White Paper. San Jose, USA, 15 dez.

2015. WP472 v. 1.0. Disponível em: <https:

//www.xilinx.com/support/documentation/white_papers/wp472-

3D-on-3D.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Xilinx Stacked Silicon Interconnect Technology Delivers

Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency: White Paper.

San Jose, USA, 11 dez. 2012. WP380 v. 1.2. Disponível em:

<https://www.xilinx.com/support/documentation/white_papers/

wp380_Stacked_Silicon_Interconnect_Technology.pdf>. Acesso em:

27 out. 2021.

XILINX, INC. Ross H. Freeman. Configurable electrical circuit having configurable

logic elements and configurable interconnects. 19 fev. 1988. US n. 4,870,302, Feb. 19

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_4/ug910-vivado-getting-started.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug912-vivado-properties.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug912-vivado-properties.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds003.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds003.pdf
https://www.xilinx.com/support/documentation/data_sheets/4000.pdf
https://www.xilinx.com/support/documentation/data_sheets/4000.pdf
https://www.xilinx.com/support/documentation/white_papers/wp472-3D-on-3D.pdf
https://www.xilinx.com/support/documentation/white_papers/wp472-3D-on-3D.pdf
https://www.xilinx.com/support/documentation/white_papers/wp472-3D-on-3D.pdf
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf
https://www.xilinx.com/support/documentation/white_papers/wp380_Stacked_Silicon_Interconnect_Technology.pdf

184

1988, Sep. 26 1989. Disponível em: <https://patentscope.wipo.int/

search/en/detail.jsf?docId=US37788936>.

XILINX, INC. XtremeDSP for Virtex-4 FPGAs: User Guide. San Jose, USA, 15 mai.

2008. UG073 v. 2.7. Disponível em: <https://www.xilinx.com/support/

documentation/user_guides/ug073.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Zynq-7000 All Programmable SoC. San Jose, USA, 28 jan. 2018.

Disponível em: <https://www.xilinx.com/products/silicon-

devices/soc/zynq-7000.html>. Acesso em: 28 jan. 2018.

XILINX, INC. Zynq-7000 All Programmable SoC Packaging and Pinout: User

Guide. San Jose, USA, 28 jul. 2021. UG865 v. 1.9. Disponível em: <https:

//www.xilinx.com/support/documentation/user_guides/ug865-

Zynq-7000-Pkg-Pinout.pdf>. Acesso em: 27 out. 2021.

XILINX, INC. Zynq-7000 All Programmable SoC Technical Reference Manual:

User Guide. San Jose, USA, 2 abr. 2021. UG585 v1.13. Disponível em: <https:

//www.xilinx.com/support/documentation/user_guides/ug585-

Zynq-7000-TRM.pdf>. Acesso em: 27 out. 2021.

YANG, S.H. et al. 28nm metal-gate high-K CMOS SoC technology for

high-performance mobile applications. In: 2011 IEEE Custom Integrated Circuits

Conference (CICC). San Jose, USA: IEEE, set. 2011. Disponível em:

<https://doi.org/10.1109/CICC.2011.6055355>.

YANG, W. et al. Atmospheric neutron single event effect test on Xilinx 28 nm system on

chip at CSNS-BL09. Microelectronics Reliability, Elsevier, v. 99, p. 119–124, ago.

2019. Disponível em:

<https://doi.org/10.1016/j.microrel.2019.05.004>.

YANG, W.-T. et al. Single-event effects induced by medium-energy protons in 28 nm

system-on-chip. Nuclear Science and Techniques, Springer, v. 30, n. 10, set. 2019.

Disponível em: <https://doi.org/10.1007/s41365-019-0672-5>.

YANG, Y.; NEWSAM, S. Bag-of-visual-words and spatial extensions for land-use

classification. In: PROCEEDINGS of the 18th SIGSPATIAL International Conference

on Advances in Geographic Information Systems - GIS ’10. San Jose, USA: ACM,

2010. Disponível em: <https://doi.org/10.1145/1869790.1869829>.

https://patentscope.wipo.int/search/en/detail.jsf?docId=US37788936
https://patentscope.wipo.int/search/en/detail.jsf?docId=US37788936
https://www.xilinx.com/support/documentation/user_guides/ug073.pdf
https://www.xilinx.com/support/documentation/user_guides/ug073.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/support/documentation/user_guides/ug865-Zynq-7000-Pkg-Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug865-Zynq-7000-Pkg-Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug865-Zynq-7000-Pkg-Pinout.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://doi.org/10.1109/CICC.2011.6055355
https://doi.org/10.1016/j.microrel.2019.05.004
https://doi.org/10.1007/s41365-019-0672-5
https://doi.org/10.1145/1869790.1869829

185

YUHANIZ, S.; VLADIMIROVA, T.; SWEETING, M. Embedded Intelligent Imaging

On-Board Small Satellites. In: ADVANCES in Computer Systems Architecture. Berlin,

Heidelberg: Springer, 2005. P. 90–103. Disponível em:

<https://doi.org/10.1007/11572961_9>.

ZHANG, C. et al. Caffeine: Towards Uniformed Representation and Acceleration for

Deep Convolutional Neural Networks. In: PROCEEDINGS of the 35th International

Conference on Computer-Aided Design. Austin, USA: ACM, nov. 2016. Disponível em:

<https://doi.org/10.1145/2966986.2967011>.

ZHANG, Y. et al. Primary single event effect studies on Xilinx 28-nm System-on-Chip

(SoC). Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, Elsevier, v. 831,

p. 339–343, set. 2016. Disponível em:

<https://doi.org/10.1016/j.nima.2016.05.120>.

ZHU, Z. et al. Traffic-Sign Detection and Classification in the Wild. In: 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA:

IEEE, jun. 2016. Disponível em:

<https://doi.org/10.1109/CVPR.2016.232>.

ZIEGLER, J. F.; ZIEGLER, M. D.; BIERSACK, J. P. SRIM – The stopping and range of

ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section

B: Beam Interactions with Materials and Atoms, v. 268, n. 11, p. 1818–1823, 2010.

19th International Conference on Ion Beam Analysis. ISSN 0168-583X. Disponível em:

<https://doi.org/10.1016/j.nimb.2010.02.091>.

https://doi.org/10.1007/11572961_9
https://doi.org/10.1145/2966986.2967011
https://doi.org/10.1016/j.nima.2016.05.120
https://doi.org/10.1109/CVPR.2016.232
https://doi.org/10.1016/j.nimb.2010.02.091

186

APPENDIX A — PUBLICATIONS

A.1 On experimental physics

Contributions on observations of radiation phenomena and characterization of

electronic devices.

AGUIAR, V. A. P.; MEDINA, N. H.; ADDED, N.; MACCHIONE, E. L. A.;

ALBERTON, S. G.; RODRIGUES, C. L.; SILVA, T. F.; ZAHN, G. S.;

GENEZINI, F. A.; MORALLES, M.; BENEVENUTI, F.; GUAZZELLI, M. A. Thermal

neutron induced upsets in 28nm SRAM. Journal of Physics: Conference Series, IOP,

v. 1291, p. 012025, jul. 2019. Disponível em:

<https://doi.org/10.1088/1742-6596/1291/1/012025>.

AGUIAR, V. A. P.; MEDINA, N. H.; ADDED, N.; MACCHIONE, E. L. A.;

ALBERTON, S. G.; LEITE, A. R.; AGUIRRE, F. R.; RIBAS, R. V.; PEREGO, C. C.;

FAGUNDES, L. M.; TERASSI, J. C.; BRAGE, J. A. P.; SIMÕES, R. F.;

MORAIS, O. B.; ALMEIDA, E. A.; JOAQUIM, P. M.; SOUZA, M. S.;

CECOTTE, A. F. M.; MARTINS, R.; DUARTE, J. G.; SCARDUELLI, V. B.;

ALLEGRO, P. R. P.; ESCUDEIRO, R.; LEISTENSCHNEIDER, E.;

OLIVEIRA, R. A. N.; SERVELO, W. A.; SILVA, M. T.; SARMENTO, V. E.;

CARREIRA, C. A.; ABREU, J. C.; SILVA, S. C.; SANTOS, H. C.; RODRIGUES, C. L.;

ASSIS, R. F.; SILVA, T. F.; TABACNIKS, M. H.; JOAQUIM, A. S.; MINAS, J. H. P.;

KASHINSKY, D.; GUAZZELLI, M. A.; SEIXAS, L. E.; FINCO, S.;

BENEVENUTTI, F. SAFIIRA: A heavy-ion multi-purpose irradiation facility in Brazil.

Review of Scientific Instruments, v. 91, n. 5, p. 053301, 2020. Disponível em:

<https://doi.org/10.1063/1.5138644>.

A.2 On fault injection methodology

Contributions on emulated fault injection methodologies for laser fault attack and

radiation induced faults.

BENEVENUTI, F.; KASTENSMIDT, F. L. Evaluation of fault attack detection on

SRAM-based FPGAs. In: 2017 18th IEEE Latin American Test Symposium (LATS).

https://doi.org/10.1088/1742-6596/1291/1/012025
https://doi.org/10.1063/1.5138644

187

Bogota, Colombia: IEEE, 2017. Disponível em:

<https://doi.org/10.1109/LATW.2017.7906747>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Reliability Evaluation on Xilinx 7 Series

28nm SRAM-based FPGAs Using Fault Injection Enhanced by Data Collected

from Laser and Heavy Ions Irradiation. São Paulo, Brazil: SBF, 2018. XX Escola de

Ver ao Jorge André Swieca de Física Nuclear Experimental (XX EVJASFNE).

Disponível em: <http://www.sbfisica.org.br/~evjasfne/xx/>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Comparing exhaustive and random fault

injection methods for configuration memory on SRAM-based FPGAs. In: 2019 IEEE

20th Latin-American Test Symposium (LATS). Santiago, Chile: IEEE, mar. 2019.

P. 87–92. Disponível em:

<https://doi.org/10.1109/LATW.2019.8704647>.

BENEVENUTI, F.; LIBANO, F.; POUGET, V.; KASTENSMIDT, F. L.; RECH, P.

Comparative analysis of inference errors in a neural network implemented in

SRAM-based FPGA induced by neutron irradiation and fault injection methods. In: 2018

31st Symposium on Integrated Circuits and Systems Design (SBCCI). Bento Gonçalves,

Brazil: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/SBCCI.2018.8533235>.

SANTOS, F. F. dos; BENEVENUTI, F.; RODRIGUES, G.; KASTENSMIDT, F.;

RECH, P. Physical stress. In: DI NATALE, G.; GIZOPOULOS, D.; DI CARLO, S.;

BOSIO, A.; CANAL, R. (Ed.). Cross-Layer Reliability of Computing Systems.

London: IET, 2020. P. 157–174. ISBN 978-178561-797-3.

A.3 On softcore microprocessors, high-level synthesis and communication buses

Fault injection, radiation experiments and studies on soft core microprocessors

and high-level synthesis as migration path for legacy and vanguard applications into

FPGA; use of ARM AMBA AXI as core interconnection technology as seem on mod-

ern SRAM-based MPSoC and FPGAs from major COTS suppliers.

BENEVENUTI, F.; KASTENSMIDT, F. L. Analyzing AXI Streaming interface for

hardware acceleration in AP-SoC under soft errors. In: VOROS, N.; HUEBNER, M.;

KERAMIDAS, G.; GOEHRINGER, D.; ANTONOPOULOS, C.; DINIZ, P. C. (Ed.).

https://doi.org/10.1109/LATW.2017.7906747
http://www.sbfisica.org.br/~evjasfne/xx/
https://doi.org/10.1109/LATW.2019.8704647
https://doi.org/10.1109/SBCCI.2018.8533235

188

Applied Reconfigurable Computing. Architectures, Tools, and Applications. Cham:

Springer, 2018. P. 243–254. ISBN 978-3-319-78890-6. Disponível em:

<https://doi.org/10.1007/978-3-319-78890-6_20>.

BENEVENUTI, F.; KASTENSMIDT, F. L. Reliability evaluation on interfacing with

AXI and AXI-S on Xilinx Zynq-7000 AP-SoC. In: 2018 IEEE 19th Latin-American Test

Symposium (LATS). São Paulo, Brazil: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/LATW.2018.8347233>.

BENEVENUTI, F.; CHIELLE, E.; TONFAT, J.; TAMBARA, L.;

KASTENSMIDT, F. L.; ZAFFARI, C. A.; MARTINS, J. B. dos S.; DURÃO, O. S. C.

Experimental applications on SRAM-based FPGA for the NanosatC-BR2 scientific

mission. In: 2019 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). Rio de Janeiro, Brazil: IEEE, 2019. P. 140–146. Disponível em:

<https://doi.org/10.1109/IPDPSW.2019.00032>.

BENITES, L. A. C.; BENEVENUTI, F.; OLIVEIRA, Á. B. de; KASTENSMIDT, F. L.;

ADDED, N.; AGUIAR, V. A. P.; MEDINA, N. H.; GUAZZELLI, M. A. Reliability

calculation with respect to functional failures induced by radiation in TMR Arm

Cortex-M0 soft-core embedded into SRAM-based FPGA. IEEE Transactions on

Nuclear Science, v. 66, n. 7, p. 1433–1440, 2019. Disponível em:

<https://doi.org/10.1109/TNS.2019.2921796>.

BRAGA, G.; BENEVENUTI, F.; GONCALVES, M. M.; HERNANDEZ, H. G. M.;

HUBNER, M.; BRANDALERO, M.; KASTENSMIDT, F.; AZAMBUJA, J. R.

Evaluating softcore GPU in SRAM-based FPGA under radiation-induced effects. In:

2021 European Symposium on Reliability of Electron Devices, Failure Physics and

Analysis (ESREF). Bordeaux, France: Elsevier, nov. 2021. v. 126. Disponível em:

<https://doi.org/10.1016/j.microrel.2021.114348>.

GONCALVES, M. M.; BENEVENUTI, F.; MUNOZ, H.; BRANDALERO, M.;

HUBNER, M.; KASTENSMIDT, F.; AZAMBUJA, J. R. Investigating floating-point

implementations in a softcore GPU under radiation-induced faults. In: 2020 27th IEEE

International Conference on Electronics, Circuits and Systems (ICECS). Glasgow, UK:

IEEE, 2020. Disponível em:

<https://doi.org/10.1109/ICECS49266.2020.9294939>.

OLIVEIRA, A.; BENEVENUTI, F.; BENITES, L.; RODRIGUES, G.;

KASTENSMIDT, F.; ADDED, N.; AGUIAR, V.; MEDINA, N.; GUAZZELLI, M.;

https://doi.org/10.1007/978-3-319-78890-6_20
https://doi.org/10.1109/LATW.2018.8347233
https://doi.org/10.1109/IPDPSW.2019.00032
https://doi.org/10.1109/TNS.2019.2921796
https://doi.org/10.1016/j.microrel.2021.114348
https://doi.org/10.1109/ICECS49266.2020.9294939

189

TAMBARA, L. Dynamic heavy ions SEE testing of NanoXplore radiation hardened

SRAM-based FPGA: Reliability-performance analysis. Microelectronics Reliability,

v. 100-101, p. 113437, 2019. 30th European Symposium on Reliability of Electron

Devices, Failure Physics and Analysis. ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2019.113437>.

OLIVEIRA, Á. B. de; BENEVENUTI, F.; BENITES, L. A. C.; RODRIGUES, G. S.;

KASTENSMIDT, F. L.; ADDED, N.; AGUIAR, V. A. P.; MEDINA, N. H.;

SILVEIRA, M. A. G.; DEBARGE, C. Analyzing the influence of using reconfiguration

memory scrubber and hardware redundancy in a radiation hardened FPGA under heavy

ions. In: 2018 18th European Conference on Radiation and Its Effects on Components

and Systems (RADECS). Goteborg, Sweden: IEEE, 2018. Disponível em:

<https://doi.org/10.1109/RADECS45761.2018.9328683>.

OLIVEIRA, Á. B. de; TAMBARA, L. A.; BENEVENUTI, F.; BENITES, L. A. C.;

ADDED, N.; AGUIAR, V. A. P.; MEDINA, N. H.; SILVEIRA, M. A. G.;

KASTENSMIDT, F. L. Evaluating soft core RISC-V processor in SRAM-based FPGA

under radiation effects. IEEE Transactions on Nuclear Science, v. 67, n. 7,

p. 1503–1510, 2020. Disponível em:

<https://doi.org/10.1109/TNS.2020.2995729>.

RODRIGUES, G. S.; FONSECA, J.; BENEVENUTI, F.; KASTENSMIDT, F.;

BOSIO, A. Exploiting approximate computing for low-cost fault tolerant architectures.

In: PROCEEDINGS of the 32nd Symposium on Integrated Circuits and Systems Design.

São Paulo, Brazil: ACM, 2019. (SBCCI ’19). ISBN 9781450368445. Disponível em:

<https://doi.org/10.1145/3338852.3339875>.

SANTOS, A. F. dos; TAMBARA, L. A.; BENEVENUTI, F.; TONFAT, J.;

KASTENSMIDT, F. L. Applying TMR in hardware accelerators generated by

High-Level Synthesis design flow for mitigating multiple bit upsets in SRAM-based

FPGAs. In: WONG, S.; BECK, A. C.; BERTELS, K.; CARRO, L. (Ed.). Applied

Reconfigurable Computing: 13th International Symposium, ARC 2017, Delft, The

Netherlands, April 3-7, 2017, Proceedings. Cham: Springer, 2017. P. 202–213. ISBN

978-3-319-56258-2. Disponível em:

<https://doi.org/10.1007/978-3-319-56258-2_18>.

https://doi.org/10.1016/j.microrel.2019.113437
https://doi.org/10.1109/RADECS45761.2018.9328683
https://doi.org/10.1109/TNS.2020.2995729
https://doi.org/10.1145/3338852.3339875
https://doi.org/10.1007/978-3-319-56258-2_18

190

A.4 On machine learning and embedded inference engines

Basic skills, implementations and radiation experiments on the case study domain.

BENEVENUTI, F. Redes Neurais Convolucionais Embarcadas em FPGA. Porto

Alegre, Brazil: UFRGS, 2021. 23 Escola Sul de Microeletrônica (EMICRO 2021).

Disponível em: <https://www.ufrgs.br/emicro/>.

BENEVENUTI, F.; LOPES, I.; KASTENSMIDT, F. L.; ADDED, N.; AGUIAR, V. P.;

MEDINA, N. H.; GUAZZELLI, M.; POUGET, V.; ROED, K. Heavy ions testing of an

all-convolutional neural network for image classification evolved by genetic algorithms

and implemented on SRAM-based FPGA. In: 2019 European Conference on Radiation

and Its Effects on Components and Systems (RADECS). Montpellier, France: IEEE,

2019. Disponível em:

<https://doi.org/10.1109/RADECS47380.2019.9745650>.

BENEVENUTI, F.; GONCALVES, M. M.; PEREIRA JR, E. C. F.; VAZ, R. G.;

GONÇALEZ, O. L.; AZAMBUJA, J. R.; KASTENSMIDT, F. L. Neutron-induced faults

on CNN for aerial image classification on SRAM-based FPGA using softcore GPU and

HLS. In: 2021 European Conference on Radiation and Its Effects on Components and

Systems (RADECS). Vienna, Austria: IEEE, set. 2021. Disponível em:

<https://doi.org/10.1109/RADECS53308.2021.9954517>.

BENEVENUTI, F.; KASTENSMIDT, F. L.; OLIVEIRA, Á. B. de; ADDED, N.;

AGUIAR, V. Â. P. de; MEDINA, N. H.; GUAZZELLI, M. A. Robust Convolutional

Neural Networks in SRAM-based FPGAs: a Case Study in Image Classification.

Journal of Integrated Circuits and Systems, v. 16, n. 2, p. 504, 19 ago. 2021.

Disponível em: <https://doi.org/10.29292/jics.v16i2.504>.

BENEVENUTI, F.; GONÇALVES, Marcio M.; JR., Evaldo Carlos F. Pereira;

VAZ, Rafael G.; GONÇALEZ, Odair L.; BASTOS, Rodrigo Possamai;

LETICHE, Manon; KASTENSMIDT, Fernanda L.; AZAMBUJA, José Rodrigo.

Investigating the Reliability Impacts of Neutron-induced Soft Errors in Aerial Image

Classification CNNs Implemented in a Softcore SRAM-based FPGA GPU.

Microelectronics Reliability, Elsevier, Berlin, Germany, v. 138, p. 114738, 2022. 33rd

European Symposium on Reliability of Electron Devices, Failure Physics and Analysis.

ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2022.114738>.

https://www.ufrgs.br/emicro/
https://doi.org/10.1109/RADECS47380.2019.9745650
https://doi.org/10.1109/RADECS53308.2021.9954517
https://doi.org/10.29292/jics.v16i2.504
https://doi.org/10.1016/j.microrel.2022.114738

191

LOPES, I. C.; BENEVENUTI, F.; KASTENSMIDT, F. L.; SUSIN, A. A.; RECH, P.

Reliability analysis on case-study traffic sign convolutional neural network on APSoC.

In: 2018 IEEE 19th Latin-American Test Symposium (LATS). São Paulo, Brazil: IEEE,

2018. Disponível em: <https://doi.org/10.1109/LATW.2018.8347234>.

TRINDADE, M. G.; BENEVENUTI, F.; LETICHE, M.; BEAUCOUR, J.;

KASTENSMIDT, F.; BASTOS, R. P. Effects of thermal neutron radiation on a

hardware-implemented machine learning algorithm. Microelectronics Reliability,

v. 116, p. 114022, jan. 2021. ISSN 0026-2714. Disponível em:

<https://doi.org/10.1016/j.microrel.2020.114022>.

https://doi.org/10.1109/LATW.2018.8347234
https://doi.org/10.1016/j.microrel.2020.114022

192

APPENDIX B — STUDY-CASE APPLICATIONS IN IMAGE CLASSIFICATION

There are many safety critical or mission critical tasks of machine learning deserv-

ing attention regarding reliability and fault tolerance, ranging from implantable medical

devices to smart industrial plants, from autonomous cars to unmanned spacecrafts. To use

convolutional neural networks for image classification as a study case, the first question

to answer is about the data that will be fed into the machine learning process to train the

convolutional neural network.

As study-case for this thesis we consider image classification in the context of two

application fields that are driving automation for on-road vehicles and earth observation.

B.1 Driving automation and traffic sign classification

The SAE (2021) defines six levels, or categories, of driving automation ranging

from no automation (Level 0) to full automation (Level 5). Level 1 (driver assistance)

and Level 2 (partial automation) operates as driver support and requires the driver to

perform some of the vehicle driving tasks while in Level 3 (conditional driving), Level 4

(high automation) and Level 5 (full automation) an automated driving system can perform

all the vehicle driving tasks in a sustained basis while the level is engaged. In Level 3

the vehicle operates with a fallback-ready driver, in-vehicle or remote, that is expected

to intervene and resume the driving while in the Level 4 and Level 5 the vehicle can

execute fallback automatically, for instance by flashing hazard lights, pulling onto the

road shoulder and calling roadside assistance.

Market analysis and forecast from Ogawa et al. (2017) suggests an increased num-

ber of image sensors following the implementation of higher automation levels, as pre-

sented in the chart of Figure B.1. These image sensors would be dedicated to the percep-

tion of the vehicle environment with functions like monitoring of the driver’s condition

and recognition of road lanes, recognition of vehicle surrounding for parking assistance,

and recognition of road traffic including pedestrians and others vehicles. Ogawa et al.

(2017) also consider future use of additional information such as weather and road sur-

face conditions.

As part of the study case, we adopted the traffic sign recognition as a representative

of image classification applied to automated driving systems. Traffic sign recognition

could be used, for instance, in warning systems and automatic cruise control at the Level

193

Figure B.1 – Expected trend in electronic sensors count per car

Level 1 Level 2 Level 3 and Greater
0

5

10

15

20

25

30
Image sensors
Others sensors

Levels of Driving Automation

N
u

m
b

e
ro

fI
n

st
a

lle
d

S
e

ns
o

rs

Source: Adapted from Ogawa et al. (2017)

1 of driver assistance. Other example of image classification in automated driving is traffic

light classification (CHARETTE et al., 2009; BEHRENDT et al., 2017). Many computer

vision tasks in automated driving involves also detection of objects, not only traffic sign

and traffic light, but pedestrians (NISHIDA et al., 2005; CHEN, Z. et al., 2019) and other

vehicles, as well as an overall perception of the traffic environment (GEIGER et al., 2014;

PAN et al., 2018).

Some publicly available datasets for traffic sign recognition of interest to this the-

sis include the aforementioned German Traffic Sign Recognition Benchmark (GTSRB)

(STALLKAMP et al., 2012), as well as the Tsinghua-Tencent 100K dataset (TT100K)

(ZHU et al., 2016) and the Brazilian Traffic Sign Database (BRTSD) (HOELSCHER,

2017). Each of these datasets have a different construction. Another dataset for traffic

sign recognition is the European Traffic Sign Dataset (SERNA et al., 2018), composed of

newly collected images merged with other datasets, including the GTSRB.

The GTSRB targets the task of traffic sign classification and consists of sequences

of typically 30 images captured at different distances, consequently at different resolu-

tions. GTSRB contains more than 10,000 images at the unlabeled test set and near 39,000

images at the labeled train set. However, as these 39,000 images consist of sequence of

images with high similarity (Figure B.2), the variability of the dataset is limited with the

number of sequences by traffic sign class ranging from 7 to 75 sequences in a total of only

near 1300 different sequences. The GTSRB also has a companion dataset, the German

Traffic Sign Detection Benchmark (GTSDB) (HOUBEN et al., 2013), dedicated to the

task of detection of traffic sign in the scene.

The TT100K includes images from 100,000 different scenes and can be used both

to traffic sign detection and classification. The accompanying metadata of TT100K have

194

Figure B.2 – Fragment of a sequence from GTSRB

Source: Extracted from GTSRB dataset (STALLKAMP et al., 2012)

detailed position of traffic signs inside the scenes allowing the automated extraction of

traffic signs region of interest when focusing specifically at the classification task (Figure

B.3).

Figure B.3 – Example of a scene from TT100K and extracted traffic signs

Source: Extracted from TT100K dataset (ZHU et al., 2016)

Finally, the BRTSD is similar to TT100K in the sense that it presents traffic sign in

the scene allowing both detection and classification (Figure B.4). However, it is limited to

little more than 2,000 scene images. Some scene images from BRTSD are from sequence

of images with the vehicle in different positions but these occurrences are rather uncom-

mon. Both TT100K and BRTSD datasets were built reusing images already available for

other purposes. BRTSD, specifically, consists of images captured from the Google Street

View service that may not be unencumbered for generation of derivative works. Another

disadvantage of BRTSD is the lack of metadata describing the position and class of each

195

traffic sign at the scene.

Figure B.4 – Example of a scene from BRTSD

Source: Extracted from BRTSD dataset (HOELSCHER, 2017)

B.2 Earth observation and land use classification

Earth observation consists in monitoring and understanding our living planet using

remote sensing and surveying technology, combining tools and methods for collection,

storage and processing of geospatial data. It allows the assessment of the conditions

of the planet, including its physical, chemical and biological systems, and the study of

dynamic changes in its geophysical and ecological features.

Practical uses of Earth observation data include cartography, urban planning, traf-

fic analysis, biomass estimation, definition of agricultural policies, support to sustain-

able development, monitoring of landslide hazard, hydrology studies, monitoring of flood

propagation, monitoring of volcanic eruption, water and air quality monitoring, weather

and climate monitoring, definition of policies and mitigations for climate change, natural

disaster forecast, preparedness and recovery, wildfire detection, among many other uses.

Vehicles for Earth observation include satellites and airplanes, as well as drones,

aerostats and, closer to the surface, tethered balloons. According to (MCCABE et al.,

2017), start-up companies, with less than a decade of existence, operate more satellites

in orbit than any space agency, and at costs that are a mere fraction of traditional satellite

missions. 23% of more of more than 4,000 satellites on orbit reported by the nonprofit

organization UCS (2021) are related to Earth observation. USA is the country of origin

for more than half of the satellites, with Brazil counting with 13 satellites, among them

the NanosatC-BR2 (BENEVENUTI et al., 2019b).

196

Miniaturization of artificial satellites decreased its complexity and cost, both by

the use of commercial launch services and by the use of standard grade components with

lower cost and unencumbered by restrictions seem on military grade components. How-

ever, the use of standard grade, commercially available off-the-shelf (COTS), components

on those low cost satellites requires both qualification of the devices to grade its inher-

ent susceptibility to radiation effects (WINOKUR et al., 1999) and implementation of

mitigations for fault tolerance where required to satisfy the mission requirements.

There is no standardized nomenclature but small artificial satellites can range from

femtosats to minisats. An example of classification given by Laufer et al. (2020) is sum-

marized in Table B.1. The FAA AST (2018) uses a slightly different classification.

Table B.1 – Example of small satellite classes

Class Mass
Femtosatellite (femtosat) up to 100 g

Picosatellite (picosat) 100 g to 1 kg

Nanosatellite (nanosat) 1 kg to 10 kg

Microsatellite (microsat) 10 kg to 100 kg

Minisatellite (minisat) 100 kg to 500 kg

Source: Laufer et al. (2020)

Among the small satellites, the CubeSat class enjoys great popularity. The Cube-

Sat class is more than a weight classification as it include also form factor, constructive

properties and interoperability aspects (CAL POLY, 2015; HEIDT et al., 2000). For in-

stance, a one unit (1U) CubeSat can be at the picosat class while a larger CubeSat can be

at the nanosat class. In fleets of small satellites, for example in a family formation (FAR-

RAG et al., 2021), the use of FPGA in the implementation of integrated image processing,

on-board data-handling (NANNIPIERI et al., 2021), software defined radio (SDR) (CAI,

X. et al., 2018), and software defined network (SDN) (KAK et al., 2018), allows the mo-

bility of roles among the fleet members increasing opportunities for fault tolerance and

soft degradation during the mission lifetime.

In recent years the interest for small satellites increased both in academic re-

search (SWARTWOUT, 2004) and professional use (MADRY et al., 2020). The inter-

est includes also imaging applications (S. CURIEL et al., 2005; GRAZIANI et al., 2008;

BORGEAUD et al., 2010; SELVA et al., 2012; CRYSTALSPACE, 2016; BRZOZOWSKI

et al., 2018; CHO, D.-H. et al., 2019; GARRANZO et al., 2019; NAGEL et al., 2020),

with the notable example of the commercial PlanetScope constellation with over 100

197

CubeSat 3U imaging satellites (PLANET LABS, 2018; SADEH et al., 2021).

Imaging sensors for Earth observation include panchromatic sensors, red-green-

blue (RGB), near-infrared (NIR), multi- and hyperspectral sensors, multi-band thermal,

multi-channel microwave, as as well as radar (radio detection and ranging) and lidar (light

detection and ranging) sensors (MCCABE et al., 2017).

With the increasing volume of images, captured with low cost platforms such as

small satellites or stored in publicly available databases, Earth observation also entered the

field of big data. Of interest to this thesis are the earth observation activities executed at

the aerospace segment, more specifically computer vision and image processing executed

onboard aircrafts and satellites that may be subject to a higher flux of atmospheric and

cosmic radiation rising reliability issues that can compromise its mission.

Scene classification plays an important role in earth observation by labeling a

remote sensing image according to the semantic classes of natural features or land use,

such as water body or parking lots. Other uses of scene classification includes pervasive

surveillance with civilian and defense applications (ANDREOU et al., 2016).

In the context of aircrafts and spacecrafts with constrained resources, either in

terms of storage capacity, energy budget or downlink communication bandwidth, inte-

grated preprocessing, target tracking and scene classification, for instance to assess image

quality of cloud coverage, can support management functions in decisions regarding im-

age preservation and the scheduling of attitude, image acquisition and data transmission

(BENSANA et al., 1999; CHIEN et al., 2014; CHO, D.-. et al., 2018; CHEN, S.-J. et al.,

2019).

Yuhaniz et al. (2005) describes image processing onboard small satellites using

traditional computer vision and summarize image processing functionality present on dif-

ferent satellites. El-Araby et al. (2009) e Chien et al. (2014) consider the use of image

processing onboard satellites also using traditional algorithms of computer vision, El-

Araby et al. (2009), more specifically, using FPGAs. Dawood et al. (2002) also describes

low level image processing onboard satellites using FPGAs. Marais et al. (2008) de-

scribe image processing algorithms for image quality evaluation onboard small satellites.

Popowicz (2016) discusses image classification of stellar objects onboard nanosatellites

including defect detection and rejection of malformed images due to interference of pro-

ton radiation on the image sensor.

Ieremeiev et al. (2020) also deals with image quality evaluation, describes dif-

ferent metrics, and then proposes the use of a fully-connected neural network to emit a

198

quality score. In that work, however, the goal is to process images on the ground.

Velazco et al. (1999) analyzes a space-borne fully-connected neural network trained

to classify 24×24 pixels single channel grayscale satellite images in four texture classes

of ‘industrial area’, ‘residential area’, ‘scrubland’ and ‘sea’. Using CNNs, Arechiga et

al. (2018) describes image processing and object detection onboard satellite using CNN

implemented on a NVIDIA TX2 SoC, an integrated circuit designed for AI computing

on the edge, combining GPU and multicore CPU. Manning et al. (2018) proposes the

use of CNN implemented on a SRAM-based SoC/FPGA for image classification onboard

satellite, in five classes of ‘black’, ‘white’, ‘distorted’, ‘cloud or water’ and ‘land’.

Also dealing with satellite image classification, but at the ground, Basu et al.

(2015) e Liu et al. (2019) used CNN for image classification and compares with other

methods of image classification. Minetto et al. (2019) e Gao et al. (2021) also used CNN

in discriminative labeling of regions inside complex scenes in remote sensing images.

In many of those works we observe the use of commercial or publicly available

satellite imagery datasets to train or validate the image processing.

Here we will adopt the task of land use classification as representative of image

classification in mission critical systems for Earth observation and aerial surveillance. For

this task, some candidate publicly available labeled datasets include UC Merced Land

Use Dataset (YANG, Y. et al., 2010), Functional Map of the World (fMoW) Challenge

(CHRISTIE et al., 2018), SAT-4 and SAT-6 (BASU et al., 2015).

A dataset well known in the literature, the UC Merced Land Use Dataset consists

of a small number of images, only 2100, classified in 21 classes with 100 images per

class. The images were extracted manually from the U.S. Geological Survey’s (USGS)

National Map Urban Area Imagery collection and are available in 256×256 pixels with

visible RGB color and a resolution of approximately 30 cm. A few samples of the dataset

is presented in Figure B.5. The small number of images in this dataset is a disadvantage

for its use in data intensive machine learning strategies such as CNNs.

Figure B.5 – Examples from UC Merced Land Use Dataset in RGB

airplane buildings forest intersection parking lot chaparral
Source: UC Merced Land Use Dataset (YANG, Y. et al., 2010)

The dataset for the Functional Map of the World (fMoW) Challenge (CHRISTIE

199

et al., 2018) consists of geospatial image scenes with multiple labeled regions of interest,

using 63 different classes. The fMoW dataset counts with over 470,000 images available

in multi-spectral 4-band and 8-band in the visible to near-infrared. Illustrative samples of

the dataset are presented in Figure B.6 in visible RGB.

Figure B.6 – Examples from fMoW in RGB

airport gas station flooded road lake or pond interchange dam
Source: Extracted from Christie et al. (2018)

The SAT-4 and SAT-6 datasets also counts with a large number of images, 500,000

and 405,000, respectively. Both datasets were extracted from aerial images of the U.S.

Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) ac-

quired with a ground resolution of 1m. The dataset images are available in 28×28 pixels

with four channel, visible RGB color and near-infrared (NIR). One main difference be-

tween these two datasets is that SAT-4 images are labeled in four classes of ‘barren land’,

‘trees’, ‘grassland’ and ‘others’, while SAT-6 images are labeled in six classes of ‘barren

land’, ‘trees’, ‘grassland’, ‘roads’, ‘buildings’ and ‘water bodies’. Figure B.7 presents

samples of these classes.

Figure B.7 – Examples from SAT-6 dataset in RGB (top) and NIR (bottom)

building barren land trees grassland road water
Source: SAT-6 dataset (BASU et al., 2015)

B.3 Neural networks

Bio-inspired algorithms intent to emulate nature in order to solve real-life complex

problems of classification, approximation, pattern recognition, identification and control,

200

in different fields such as engineering, economics and social sciences (ALANIS et al.,

2018).

The origins of neural networks mingle with the origins of digital computers going

from Rashevsky (1933) to McCulloch et al. (1943) and then to von Neumann (1993).

Being originally inspired by biology, along the decades the most popular imple-

mentations of neural networks have been under a continuous process of approximating

and then loosing biological plausibility. For instance, on the first model from Rashevsky

(1933) the neurons had both excitatory and inhibitory aspects represented explicitly and

on the model of Rosenblatt (1958) the multi-layer neuronal tissue was conceived with

layers of sensory, association the recognition cells invoking synaptic plasticity (HEBB,

1949) in the determination of the neuron weights. However, the perceptron (ROSEN-

BLATT, 1958), the sigmoidal neuron (RUMELHART et al., 1986) and the convolution

with learned shared weights (LE CUN et al., 1989) are at the same time oversimplifica-

tions and overextrapolations of the biological neuron and the neuronal tissue for it does

not capture the spiking nature of biological neurons and the connections on human brain

cannot grow as deep as some popular deep neural networks (MAASS, 1997; SAMU et al.,

2014; PARK et al., 2017).

It was with Rumelhart et al. (1986) that neural networks attained a huge mo-

mentum with the introduction of backpropagation algorithm and the sigmoidal activation

function. Little after, Irie et al. (1988), Cybenko (1989), Hornik et al. (1989) e Blum

et al. (1991) have shown that the feed-forward neural network is a universal approxima-

tor, meaning that it can uniformly approximate any real continuous nonlinear function to

arbitrary degree of accuracy. Another significant improvement on neural networks came

with Le Cun et al. (1989) with the use of learned shared weights that paved the road to the

convolutional neural networks in image classification. Later, the introduction of the rec-

tified linear unit (ReLU) activation function (GLOROT et al., 2011) reduced significantly

the computational effort compared to the use of exponential operator at the sigmoidal

activation function.

For some time, the concept of deep learning blended with the concept of deep

neural networks since they were introduced in around the 2000’s with applications in

different fields and unprecedented performance on big data. This led to the impression that

the neural network alone could solve the machine learning problem and that deep neural

networks were always required to solve complex problems (BENGIO, 2009; BENGIO

et al., 2021).

201

Engineering for execution environments with constrained resources and the need

for optimizations conducted back to solutions of complex problems using shallow neural

networks or multi-stage systems, even if, in some sense, suboptimal, but compliant with

the requirements of the task at hand (MCDONNELL et al., 2015; LOPEZ-MARTIN et al.,

2019; GIM et al., 2020; PARK et al., 2021). Also, there is no definitive rule to determine

when a neural network is deep or shallow.

B.4 Image classification with neural networks

Computer vision is the process of extracting and interpreting information from im-

ages of the three-dimensional world, including physical, geometric, or topological prop-

erties of the objects that appear in the images (VELHO et al., 2009).

This traditional approach to computer vision is quickly challenged as we increase

the number of objects of interest because every object class may require specific filters,

algorithms or property descriptors to make it distinguishable from other objects.

To cope with this increasing complexity, we can take advantage of deep learning

and convolutional neural networks to reduce of human work of devising the medium- and

low-level computer vision processing by allowing the neural network to learn those steps

and blend it seamlessly in the computer vision task.

This was possible due to advances in computing power available at low cost and

also due to the big data phenomena that provided large data sets of labeled images with

the objects of interest observed from different points of view and in different lighting

conditions that can be used to learn the semantic information directly from images without

the need of intermediary representations of the object geometry or topology.

Convolutional neural networks can solve more complex tasks of image classifica-

tion, for instance the challenges and competitions such as GTSRB (STALLKAMP et al.,

2012) with images labeled in 43 classes, CIFAR-100 (KRIZHEVSKY, 2009) where im-

ages are labeled in 100 classes and superclasses, and ILSVRC (RUSSAKOVSKY et al.,

2015) with images labeled in 1000 classes.

The main characteristic of the convolutional neural networks is that the convolu-

tional layers behave similar to the kernel filters used in image processing such as noise

removal and morphological operations. This is accomplished by using the same weights

on some neurons. Also, these neurons are not connected to all inputs or neurons from pre-

vious layers and all neurons on the next layer, as occurred with with the fully connected

202

perceptron neural network. Different from the coefficients of convolution kernel filters

that are determined by the designer, the shared weights of neurons at convolutional layers

are learned in the same way as the weights on any other neural layer. In some sense, this

opens the convolutional layers to also learn the best convolution kernel filters to the task

at hand.

In deep learning, the convolutional layers are usually associated with feature ex-

traction, equivalent to the preprocessing, segmentation and description processes in tradi-

tional computer vision, and its output is multidimensional data usually named as feature

map. The feature maps can use a matrix structure similar to the input image, with a

number of rows, columns and channels, except that in images the channels are usually

associated with colors while on feature maps they carry arbitrary data.

Layers of fully connected neurons can be placed after the convolutional layers to

do the final classification step using the data available on the feature map, what can be

roughly associated with the recognition process.

The dense, fully-connected layers of neurons, bring many scalability challenges

to the implementation of neural networks at embedded devices, notably FPGAs. As each

neuron on fully-connected layers is unique, if each neuron is instantiated explicitly on

hardware, parameterized by its weights and bias, they may occupy a large area, possibly

making the whole neural network unfeasible on the targeted device. Alternatively, if a

small number of generic neurons are instantiated a large memory with high-throughput

may be required to store weights and bias that will be loaded into the reusable neuron

module at run-time.

To cope with these challenges while implementing convolutional neural networks

in FPGAs, some researchers, such as Lopes (2017), opted to divide the problem im-

plementing the convolutional layers as multicycle hardware modules, exploiting the fact

that common weights are shared at the convolutional layer, and implementing the fully-

connected layers as software executing in general purpose microprocessors.

While working with CNNs for image classification, instead of adding fully-con-

nected layers as classifiers, Lin et al. (2014) proposed to average the feature map obtained

from convolutional layer to extract a classification result. With the use of global average

pooling each channel in the output feature map could be directly associated with an output

category, being more natural to the structure of the CNN and allowing the reinterpretation

of the feature map at the output layer as a categories confidence map. Other advantage

indicated by Lin et al. (2014) would be a higher robustness to spatial translations of the

203

object in the input image.

Following the works from Lin et al. (2014), Springenberg et al. (2015) demon-

strated the use of CNNs for image classification with other optimizations such as the use

of small convolutional kernels to reduce the number of network weights and bias, and

the combination of intermediate pooling layers between convolutional layers, originally

designed for dimension reduction, into convolutional layers with stride greater than one.

A consequence, of special interest to this thesis, is a more regular or uniform

structure in the CNN as all layers can now be of the same convolutional nature with

shared weights, making it an all-convolutional neural network.

Despite the engineering advantages of lower complexity and smaller data footprint

while achieving competitive or state of the art accuracy performance, this approach, unfor-

tunately, takes the CNN a step farther from biological plausibility. Yet, all-convolutional

neural networks have been adopted by researchers targeting embedded implementations,

such as Iandola et al. (2016) and Gschwend (2016).

B.5 Convolutional neural networks on FPGA

There are many possible strategies for implementation of CNN in FPGAs. The

first one would be coding the functional modules of the CNN inference engine, such as

neurons and multiplexers, in a hardware description language (HDL), such as VHDL or

Verilog. This approach has the advantage of allowing meticulous optimizations on the

CNN design and can achieve faster processing times or lower resources usage. Libano et

al. (2018) adopted this approach in the optimization of the sigmoidal activation function

for fully-connected MLP where the neural network was assembled by manually coding

the parameterized instantiation of the NN building blocks. In the case of complex CNNs,

however, the manual instantiation of the NN modules becomes repetitive and error prone.

Another strategy for implementation of CNNs takes the basic NN parameterizable

building blocks coded in HDL by a human specialist but automates the repetitive task

of instantiation of these blocks following a machine readable description of the CNN

structure and coefficients obtained at the NN training stage. This approach was adopted

by Abdelouahab et al. (2017), Ma et al. (2017), Lopes (2017) e Morcel et al. (2019).

Up to this point the design on the FPGA was seen as a complete realization of the

CNN or at least of its convolutional layers. A different approach is to implement on the

FPGA only a general purpose and reusable convolution accelerator that can be invoked

204

from a host microprocessor. Is this case, the CNN exists only conceptually and is realized

at run time while the host microprocessor coordinates the configuration and dispatch of

the reusable convolution accelerator for processing of each layer of the CNN.

In another dimension we can consider the level of specification of the CNN com-

ponents. While specification in hardware description language is an alternative for FPGA,

there are other options. At a higher level of specification one can consider to implement

the CNN processing simply as software and then use the FPGA resources to implement a

microprocessor, with a general purpose or a specialized instruction set architecture (ISA),

that can run the CNN software at the targeted performance level. Examples in this case

include and Hernandez et al. (2021) that uses a softcore general-purpose GPU as CNN

accelerator. This approach has the advantage of direct port of newer CNN techniques and

algorithms to the FPGA at a lower cost simply by compiling the well-proven software

source code to execute and the microprocessor on the FPGA. Although an easier path for

migration of the CNN into an FPGA, the software approach hardly achieves higher levels

of performance.

As a balance between high performance and easier port of CNN algorithms we

can exploit high-level synthesis (HLS). In this case, the software source code is used as a

specification of the CNN processing but, instead of compiled into machine code to be run

in a microprocessor, the software is synthesized into circuit logic and becomes a dedicated

hardware block.

HLS can be used by a human specialist to code manually an entire self-contained

CNN, can be used to create base NN building blocks that will be assembled into a CNN

by an automated tool that instantiates those blocks following the description of a trained

CNN, as in Wielgosz et al. (2019) e Hernandez et al. (2020), or can be used to build

a reusable convolution accelerator that will be invoked by a host processor, such as in

C. Zhang et al. (2016), where all CNN processing is transformed into a canonical ma-

trix multiplication form that is then implemented with optimization into the FPGA, and

Gschwend (2016), where a dedicated convolution accelerator is optimized for efficiency

of data movement between the accelerator local storage and the main memory shared with

the host processor.

These different levels of abstraction and integration scope granularity are depicted

in Figure B.8 summarizing some NN implementations reported in the literature or avail-

able as open source.

For comparison, an all-convolutional CNN designed for the image classification

205

Figure B.8 – Strategies for implementation of NN on FPGA

Higher abstraction

Higher performance

In
te

gr
at

io
n

sc
op

e

(MORCEL et al., 2019)

(ABDELOUAHAB et al., 2017)

(MA et al., 2017)

(LOPES, 2017)

Multicycle
out-of-core

NN
accelerator

Automatic
assemble of
NN building

blocks

Handmade
optimized

design of self-
contained

NN

HDL HLS Software

(HERNANDEZ et al., 2021)

(HERNANDEZ et al., 2020)

(WIELGOSZ et al., 2019)

(CHEN et al., 2016)

(GSCHWEND, 2016)

(GUAN et al., 2017)

(ALI et al., 2020)

(LIBANO et al., 2018)

Source: The Author

task in the SAT-6 dataset, presented in Section B.2, was implemented in FPGA using soft-

ware executing on softcore microprocessors and using hardware generated automatically

by HLS. The CNN consists of only three convolutional layers, parameterized by 4,072

coefficients for weights and bias, and requires 368,640 multiply-accumulate (MACC)

operations. The CNN software coded in C language using only fixed-point arithmetics

was executed in two different microprocessors, the Orca (VECTORBLOX, 2019) 32 bits

RISC-V processor, the ρ-VEX VLIW processor (WONG et al., 2008) configured for 2-

way, 4-way and 8-way issues. The same CNN coded in OpenCL language was executed

in the FGPU (AL KADI et al., 2018) general purpose GPU in two configurations for using

floating-point arithmetics and fixed-point arithmetics, both using one compute unit (CU)

with a compute vector (CV) of eight processing elements (PE). Finally, the CNN was ex-

ecuted in the ZynqNet CNN accelerator (GSCHWEND, 2016), also in two configurations

for floating-point arithmetics and fixed-point arithmetics but with different numbers of

two, four and eight processing elements (PE).

The chart at Figure B.9 presents the processing speed for each of these imple-

mentations, given in number of image frames per second where we can observe that the

ZynqNet HLS approach is notably faster. The chart at Figure B.10 shows the power es-

206

timated by the Xilinx Vivado synthesis tool. Although ZynqNet HLS has a higher power

requirement, when we consider its significantly smaller processing time ZynqNet has the

lowest total energy consumption per image among all these implementations as seem in

the chart of Figure B.11.

Figure B.9 – Processing speed for a SAT-6 three layers CNN

0

50

100

150

200

250

300

S
p
e
e
d

(F
P
S
)

Source: The Author

Figure B.10 – Required power for a SAT-6 three layers CNN

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

P
o
w

e
r
(W

)

Source: The Author

Following these results, the ZynqNet CNN accelerator is adopted as the study case

CNN inference engine for this thesis. The choice for ZynqNet resides in the fact that it

was designed as an out-of-core accelerator, it scales well with shallow and deep CNNs

even in small FPGA devices because is does not map the entire CNN topology directly on

the FPGA, and it has fast processing time, low energy consumption and small footprint

on FPGA resources. ZynqNet uses intensively the interface to the DDR memory shared

with the host processor as all the CNN coefficients for weights and bias are read from

DDR memory. In ZynqNet, the DDR memory is also the source for the input image to be

classified and the input and output feature maps for each CNN layer.

207

Figure B.11 – Energy consumption by image for a SAT-6 three layers CNN

0

50

100

150

200

250

300

350

400

E
n
e
rg

y
(m

W
s)

Source: The Author

Several technical characteristics of the ZynqNet inference engine must be taken

into account to build a well-formed CNN compatible with that engine. These characteris-

tics are not necessarily limitations of the inference engine but, on the contrary, optimiza-

tions for FPGA implementation devised by Iandola et al. (2016) and Gschwend (2016).

The characteristics include:

• The convolution kernel size must be 1×1 or 3×3, with stride 1 or 2.

• The activation function is ReLU.

• The number of output channels in the convolutional layer must be multiple of the

number of processing elements (PE).

• The maximum number of output channels in a feature map is 512 and up to 1024

input channels can be obtained by concatenation layers.

• The feature map is square, width equals height, with width and height being a power

of 2.

• Pooling is allowed only in the last layer, and only global pooling is supported.

B.6 Prototype CNN for GTSRB traffic sign classification task

This CNN was designed to work with the GTSRB dataset presented on Section

B.1. The traffic sign classification was the fist image classification task approached due

to the familiarity with the dataset and task requirements acquired while working with

another inference engine (LOPES et al., 2018).

208

This task served and testbed during the implementation of a prototype evolution-

ary flow and four main versions of the CNN were obtained along many runs of the evolu-

tionary process.

The evolutionary process initially targeted the ZynqNet engine operating only with

floating-point numbers. Figure B.12 presents the evolution of the accuracy in the CNN

population. In early generations most individuals performed poorly by the best individuals

were selected the new individuals created showed better performance. Again is must be

noted that the evolutionary process is not about improving the individual but improving

the population as a whole. Notwithstanding, an the end of the process the best of the best

individuals can still be selected to be implemented in the FPGA.

Figure B.12 – CNN accuracy improvement over generations

Individuals

F

S
co

re
 (

M
a
cr

o
)

Generations

1

Source: The Author

Table B.2 summarizes comparative information about the 5 best individuals on

the population of CNNs for GTSRB after the first successful execution of the evolution-

ary flow producing a CNN synthesizable in the FPGA. The best individual, specimen

ace8288cd3a6eda2509a160d9de71a28 (Fig. B.13), have a Top1 Accuracy of

81% and a Top5 Accuracy of 93%. The input to this CNN is a grayscale image scaled

to 32×32 pixels and preprocessed with adaptive histogram equalization (CLAHE). This

CNN has 7 convolutional layers requiring 1,618,432 multiply-accumulate (MACC) oper-

ations in the inference stage.

This evolutionary flow for GTSRB was driven exclusively by the accuracy metrics.

More specifically, the fitness of each individual k in the population is the individual macro

F1 Score as in Eq. B.2. The F1 Score metric was found the be highly correlated to the Top1

Accuracy but, by fusing both precision and recall, it is expect to be safer in preventing

209

Table B.2 – Best fitted individuals in the GTSRB floating-point CNN population
Individual Input Input CNN Inference

Identity Layers Image Image Training MACC F1 Score
Hash Format Processing Iterations Operations

...1a28 7 32×32 CLAHE 2,000 1,618,432 0.536

grayscale

...049c 8 32×32 CLAHE 2,000 17,743,360 0.525

RGB Y (YUV)

...75ae 8 64×64 CLAHE 2,000 5,553,920 0.522

grayscale

...7090 7 64×64 CLAHE 2,000 4,878,336 0.516

grayscale

...0a36 7 64×64 CLAHE 2,000 6,332,672 0.516

grayscale
Source: The Author

Figure B.13 – Structure of a CNN evolved for the GTSRB task

32x32
grayscale

input image

16x16
16 channels
feature map

convolution
 3×3

stride 2

convolution
 1×1

stride 1

16x16
24 channels
feature map

convolution
 3×3

stride 2

8x8
36 channels
feature map

convolution
 1×1

stride 1

8x8
60 channels
feature map

convolution
 3×3

stride 2

4x4
56 channels
feature map

convolution
 3×3

stride 2

convolution
 1×1

stride 1

2x2
160 channels
feature map

2x2
64 channels
feature map 64

outputs

global
pooling

...

Source: The Author

overfitting.

Fitness(k) = F1(k) (B.1)

F1(k) =
2

Precision(k)−1 +Recall(k)−1
(B.2)

Exploring the Ristretto feature, the CNN specimen ...1a28 was also fine-tuned

for different arithmetic representations for fixed-point and floating-point. Based on the

findings at the fine-tune process, the evolutionary flow was also modified to use Ristretto

and different arithmetic representations were introduced as part of the solution space to

be explored.

Other experiments in this task of traffic sign classification included improved bal-

ancing the the GTSRB dataset and the augmentation of this dataset using traffic signs

from TT100K (Section B.1).

210

B.7 Prototype CNN for SAT-6 land cover classification task

This CNN was designed to work with the SAT-6 dataset presented on Section B.2.

The selection of this image classification was motivated by the work of Velazco et al.

(1999) and by its potential use embedded in small satellites in the NanosatC-BR program

(Appendix C).

In this execution of the evolutionary process the metrics for classification accuracy

and computational effort contributed to ranking each individual at the population. The

fitness of each individual k in the population is computed according to Eq. B.3 where

PE(k) is the number of ZynqNet processing elements of the individual, MACC(k) is

the number of multiply-accumulate operations for the CNN inference, κac is a smoothing

factor for accuracy and κef is a smoothing factor computational effort.

Fitness(k) = exp

[
−
(
F1(k)

F1,max

)κac
]
× exp

[
−
(
MACCPE(k)

MACCPE,max

)κef
]

(B.3)

F1,max = max
i∈population

F1(i) (B.4)

MACCPE,max = max
i∈population

MACCPE(i) (B.5)

MACCPE(k) =
MACC(k)

PE(k)
(B.6)

The evolutionary process for this task was repeated twice from scratch, with CNN

processing using floating-point arithmetic native to the Caffe framework and using fixed-

point arithmetic with the help of the Ristretto feature.

In the first execution of the process, aiming at CNN processing with floating-point

arithmetic, the SAT-6 dataset was used with minor modifications to convert the original

28× 28 pixels image to 32× 32 pixels to satisfy ZynqNet engine requirements.

After a few generations of the first execution of the evolutionary process, a CNN

candidate reached 97.6% accuracy requiring 7.7 × 106 MACC operations for inference.

However, another individual of the population was chosen as the top-best, having a slightly

lower accuracy of 97.3% but requiring only 2.3× 105 MACC operations. Table B.3 sum-

marizes the 5 best individuals on the population of CNNs for SAT-6 task operating in

floating-point arithmetics. The best CNN specimen a7a04d42e59a7942972714fd-

61c8090b has only two convolutional layers, as depicted in Fig B.14, described by a set

of 908 weights and bias coefficients. The last CNN layer has eight output elements, sat-

isfying ZynqNet engine requirements, of which six are used to indicate the image classes

211

of the SAT-6 dataset.

Table B.3 – Best fitted individuals in the SAT-6 floating-point CNN population
Individual Input Input CNN Inference

Identity Layers Image Image Training MACC F1 Score
Hash Format Processing Iterations Operations

...090b 2 32×32 None 74,223 225,280 0.954

RGB+NIR

...6163 2 32×32 None 7,596 7,659,520 0.967

RGB+NIR

...6e11 3 32×32 None 7,596 22,560,768 0.950

RGB+NIR

...126d 2 32×32 None 7,596 7,929,856 0.793

RGB+NIR

...9940 2 32×32 None 7,596 8,876,032 0.791

RGB+NIR

Source: The Author

Figure B.14 – Structure of a CNN evolved for the SAT-6 task in floating-point
global

pooling

8 outputs

convolution
3x3 stride 2

16x16
20 channels
feature map

convolution
1x1 stride 1

R
G

B

NIR
16x16

8 channels
feature map

32x32
4 bands image

Source: The Author

For the second execution of the process, two additional modifications were applied

to the images of the SAT-6 dataset: color space conversion from red, green, and blue

(RGB) channels to hue, saturation, and value (HSV) channels and contrast enhancement

with adaptive histogram equalization (CLAHE).

Also, a fractional fixed-point numeric representation (Qm.n) was adopted for in-

put images, feature maps, weights, and bias coefficients. To simplify the fixed-point

multiplication, the input images and feature maps were chosen only to have the signal

and integer parts (Q7.0), while weights and bias coefficients were chosen only to have

the signal and fractional parts (Q0.7). However, the result of the multiplication, as well

as accumulators inside the convolution, were implemented with both the integer and frac-

tional parts (Q7.8), discarding the fractional part by rounding after the activation function

(ReLU). Consequently, inputs and outputs of each convolutional layer fit into an eight-bit

212

signed integer (INT8).

At this second execution, the evolutionary process reached 98.5% accuracy requir-

ing 2.4 × 105 MACC operations for inference with 4,080 weights and bias coefficients.

Table B.4 summarizes the 5 best individuals on the population of CNNs for SAT-6 task op-

erating in fixed-point arithmetics. The best CNN specimen 80550ebda901f577df-

ea7a1147dd28be featuring four convolutional layers is depicted in Fig B.15, again

with eight elements at the output CNN layer, of which six are used to indicate the image

classes of the SAT-6 dataset.

Table B.4 – Best fitted individuals in the SAT-6 fixed-point CNN population
Individual Input Input CNN Inference

Identity Layers Image Image Training MACC F1 Score
Hash Format Processing Iterations Operations

...28be 4 32×32 CLAHE 75,960 244,224 0.976

HSV+NIR V (HSV),NIR

...9c8d 5 32×32 CLAHE 69,630 304,128 0.976

HSV+NIR V (HSV),NIR

...eaf9 3 32×32 CLAHE 82,290 230,400 0.975

HSV+NIR V (HSV),NIR

...8805 5 32×32 CLAHE 75,960 253,440 0.975

HSV+NIR V (HSV),NIR

...8753 5 32×32 CLAHE 164,580 193,536 0.974

HSV+NIR V (HSV),NIR

Source: The Author

Figure B.15 – Structure of a CNN evolved for the SAT-6 task in fixed-point
global

pooling

8 outputs

4x4
16 channels
feature map

2x2
8 channels
feature map

H
S

V

NIR

32x32
4 bands image

convolution
3x3 stride 2

16x16
16 channels
feature map

8x8
8 channels
feature map

convolution
3x3 stride 2

convolution
3x3 stride 2

convolution
3x3 stride 2

Source: The Author

213

APPENDIX C — STUDY-CASE APPLICATION ONBOARD NANOSATC-BR2

C.1 NanosatC-BR2 mission

The NanosatC-BR2 is the second mission in the NanosatC-BR CubeSats Devel-

opment Program led by the Brazilian Institute for Space Research (INPE), a research unit

of the Brazilian Ministry of Science, Technology and Innovations (MCTI).

The INPE’s CubeSats Development Program is in progress since 2006 (SCHUCH,

Nelson Jorge et al., 2013; SCHUCH, Nelson J. et al., 2019) and has among its goals

technology validation, personnel development and capacity building, representing a co-

ordinated supraorganizational effort including stakeholders from governmental agencies,

industry technology developers and academic research.

The NanosatC-BR1 (NCBR1, Fig. C.1a, C.1b and C.2) is a one unit (1U) CubeSat

weighting 0.965 kg launched in June 2014 carrying a single payload board (MÂNICA,

2018).

The payload board for NanosatC-BR1 (Fig. C.3) was developed in partnership

with Santa Maria Design House (SMDH) and Universidade Federal de Santa Maria (UFSM,

Federal University of Santa Maria). The in-orbit experiments include measurements of

Earth magnetic field, test of power switch and devices present in an ASIC test-chip devel-

oped by SMDH and test of a soft-core MIPS microprocessor and benchmark application

implemented by UFRGS in a ProASIC3 Flash-based FPGA from Actel (later Microsemi

and now Microchip).

Built upon the experience on NanosatC-BR1, the NanosatC-BR2 (NCBR2, Fig.

C.1c, C.1d and C.4) is a two unit (2U) CubeSat weighting 1.720 kg launched in March

2021 carrying three payload boards aside additional experiments implemented as software

at the on-board computer (OBC) board.

The INPE-SMDH/UFSM-UFRGS payload board for NanosatC-BR2 (Fig. C.5)

extends the experimental platform (GUARESCHI et al., 2013) of NanosatC-BR1. One

important modification is that it includes two FPGA devices, instead of one. One of these

FPGAs is a Xilinx 7 Series SRAM-based FPGA while the other is a Actel (later Mi-

crosemi and now Microchip) SmartFusion Flash-based FPGA featuring also a hard-core

Arm Cortex-M3 microprocessor in a system-on-chip (SoC). Both are standard commercial-

grade devices.

214

Figure C.1 – NanosatC-BR CubeSats

(a) NCBR1 Engineering Model (b) NCBR1 Flight Model

(c) NCBR2 Engineering Model (d) NCBR2 Flight Model

Source: INPE

Figure C.2 – NanosatC-BR1 Assembly

On-board computer (OBC)

Radio (VHF/UHF)

Power supply

INPE-UFSM/SMDH-UFRGS

Antennas

Payload
board

Service
platform

Source: INPE

215

Figure C.3 – NanosatC-BR1 INPE-SMDH/UFSM-UFRGS payload board

Test drivers and
UFRGS benchmark

Magnetometer

SMDH/UFSM test-chip

Source: INPE

Figure C.4 – NanosatC-BR2 Assembly

On-board computer +
Daughterboard

Radio (VHF/UHF)

Power supply

INPE-UFSM/SMDH-UFRGS

Payload
boards

Service
platform

UFMG-UFABC (SDATF)

Magnetotorquer

INPE (SLP-MB, Interface, ILP)

INPE (SLP-MA, Sensor, SLP)

Antennas

Source: INPE

C.2 NanosatC-BR2 payload overview

The operation mode of the INPE-SMDH/UFSM-UFRGS payload on NanosatC-

BR2 is determined by configuration data stored inside the spacecraft configuration vector

(SCCV) on the OBC. There are a few variables in the SCCV indicating wether the payload

should be powered up and which tests should be run. It includes, for instance, flags

indicating if the single event upsets (SEU) on SRAM-based FPGA should be tracked and

216

Figure C.5 – NanosatC-BR2 INPE-SMDH/UFSM-UFRGS payload board

Test drivers and
UFRGS benchmark

Magnetometer

SMDH/UFSM test-chip

UFRGS bitstream/mask

Test drivers and
UFRGS readback

Source: INPE

which versions of the UFRGS benchmark application should be tested.

An initial value was stored inside the SCCV on ground, before the satellite launch,

which can be modified in-flight by sending telecommands to the OBC flight software

whenever the satellite passes over a ground station.

A software application running at the Arm Cortex-M3 microprocessor (Fig. C.6a)

communicates with OBC answering to telemetry and telecommand messages. Sequences

of payload specific commands were stored inside the OBC flight software to initialize the

payload informing its configuration as stored in SCCV, collect recorded data periodically

and transfer to the OBC data handling (OBDH) storage for later transmission to ground,

and shutdown the payload when the allotted test period is completed.

The INPE-SMDH/UFSM-UFRGS payload on NanosatC-BR2 implements five

main functions:

• Housekeeping telemetry and telecommand, configuring the payload real time clock

(RTC) and collecting information from temperature, current and voltage sensors

(Fig. C.6b);

• Measurement of magnetic field intensity from magnetometer (Fig. C.6c) and, op-

tionally, smoothing data with averaging filter ;

• Testing the circuit blocks inside SMDH custom IC (Fig. C.6d);

• Recording occurrences of single event upsets (SEU) in Xilinx Artix 7 FPGA (Fig.

C.6e); and

217

• Testing benchmark application implemented in Xilinx Artix 7 FPGA using different

processing and mitigation strategies (Fig. C.6f).

Figure C.6 – NanosatC-BR2 INPE-SMDH/UFSM-UFRGS payload overview

(e)Flash Memory IC
(bitstream and mask storage)

Flash-based SoC FPGA IC
Actel SmartFusion

Microprocessor system (hard core)
(based on ARM Cortex®-M3)

Data acquisition,
telemetry and telecommand

software modules

Programmable analog (ACE)

Real-time
clock

(a)

SRAM-based FPGA IC
Xilinx Artix 7

Test and configuration
access ports (TAP/CAP)

Programmable logic (FPGA) (f)

Programmable logic (FPGA)

Interface with
OBC (I2C)

INPE-SMDH/UFSM-UFRGS payload board
(SPI)

(JTAG)

MicroBlaze
Unhardened

Software

APP_EN_MBU
APP_EN_MBH
APP_EN_MIPSU

RXD
TXD

APP_EN_MIPSH
APP_EN_HLSN
APP_EN_HLSO

CTS

High-level
Synthesis
Optimized

miniMIPS
Hardened
Software

MicroBlaze
Hardened
Software

Supervisory

miniMIPS
Unhardened

Software

High-level
Synthesis

No Optimiz.

(UART, GPIO)

Custom IC
SMDH radiation
hardened ASIC

Magnetometer

Current and
voltage
sensors

(analog)
Sensors measurement

Data acquisition and processing

(GPIO)

(SPI)Temperature
sensor (b)

(b)

(b)

(c)

(d)

(e)

(g)

(h)

Source: The Author

C.3 NanosatC-BR2 benchmark applications on Xilinx Artix-7

Two hardened software versions of the application seen on Fig. C.6f, for MicroB-

laze and miniMIPS soft-core microprocessors, consist of software implemented hardware

fault tolerance (SIHFT) (CHIELLE et al., 2015, 2016; CHIELLE, 2016), which are not

intrinsically capable of masking faults or recovering from failures, but only to detect ab-

normal operation decreasing the confidence on the computed results. It is up to the client

module to apply selection or voting mechanisms to extract a correct computation or com-

putation with higher confidence, or to invoke recomputation or the proper system healing

to restore its normal operation. This detection strategy solely, however, already allows for

informed decision making and graceful exit or failsafe operation in safety- or mission-

critical cyber-physical systems.

All the six versions of the benchmark application inside the SRAM-based FPGA

are the same task of multiplication of a 32×32 matrix of unsigned integer 8 bit values

stored in 32 bit words (Fig. C.7). All the six versions also follow a similar interface and

218

control protocol with the test supervisory, which consists of a dual port memory block

(BRAM) shared between supervisory and application, each connected to a different port

and possibly at a different clock, and a set memory addresses and magic values settled

between supervisory and application.

The data acquisition software running on Arm Cortex-M3 (Fig. C.6a) sets the

values for GPIO pins (Fig. C.6g) signaling which applications should be run, according

to the configuration received from OBC, which was, ultimately, stored on SCCV.

The supervisory enables the clock for the enabled application, according to its

designated GPIO pin, and waits until the magic value for IDLE is written at the SYNC

control memory address. After initialization, the application writes IDLE at the SYNC

control memory address and waits until the magic value for START is written at the same

SYNC address.

When the supervisory sees IDLE at the SYNC address, it writes START and waits

until DONE magic value is written at the same SYNC address. When the application sees

START it executes the matrix multiplication task, write the result values at the respective

memory addresses and write DONE at the SYNC control memory address.

A maximum allowed execution time is configured for each application version,

which varies depending on the processor and hardening. The supervisory have a timer

associated with each application and signals failure in the case of timer run-out (timeout).

Upon completion of the application execution, signaled with DONE, the super-

visory collects the result values from memory, compare with golden reference values

configured for the application version, and reports failure in case of divergence.

If there is no divergence in the result, the supervisory issues a logical reset to

the application and initiates the processing cycle again waiting until the magic value for

IDLE is seen at the SYNC control memory address.

The supervisory reports periodically ALIVE messages to the data acquisition soft-

ware through the serial communication port (Fig. C.6h). When one of the enabled appli-

cations fails the supervisory reports the failure of the application using its specific mes-

sage. When all the enable applications have already failed the supervisory reports end of

tests.

The known supervisory messages to the data acquisition software are described in

Table C.1.

The legacy code of the matrix multiplication in Fig. C.7 should be improved at

least by cleaning the result matrix before the computation since it works with constant

219

Figure C.7 – Simplified C source code for benchmark application

d e f i n e SYNC_IDLE 0x00001D1E
d e f i n e SYNC_START 0x0000A5A5
d e f i n e SYNC_DONE 0x0000D9D9

d e f i n e SYNC_CTRL_ADDR 0
d e f i n e SYNC_RESULT_CHECKSUM 1
d e f i n e SYNC_RESULT_DUE 2

d e f i n e MATRIX_SQ_DIM 32
d e f i n e MATRIX_SQ_SIZE (MATRIX_SQ_DIM*MATRIX_SQ_DIM)

d e f i n e MATRIX_A_START 1024
d e f i n e MATRIX_B_START 2048
d e f i n e MATRIX_C_START 3072

vo id m a t r i x _ m u l t (i n t ram [4 0 9 6])
{

u n s i g n e d i n t i = 0 ;
u n s i g n e d i n t j = 0 ;
u n s i g n e d i n t k = 0 ;
u n s i g n e d i n t checksum = 0 ;

/ / m a t r i c e s A, B and C a r e c o n t i g u o u s i n memory
o n c e _ i n i t _ a _ b : f o r (i =MATRIX_A_START ; i <MATRIX_C_START ; i ++) {

ram [i] = 0x55 ; / / c o n s t a n t f i l l e r v a l u e
}

ram [SYNC_CTRL_ADDR] = SYNC_IDLE ;

l b l _ w a i t _ s t a r t : w h i l e (ram [SYNC_CTRL_ADDR] != SYNC_START) ;

ram [SYNC_RESULT_CHECKSUM] = 0x0 ;
ram [SYNC_RESULT_DUE] = 0x0 ;

loop_a_rows : f o r (i =0 ; i <MATRIX_SQ_DIM ; i ++) {
l o o p _ b _ c o l s : f o r (j =0 ; j <MATRIX_SQ_DIM ; j ++) {

u n s i g n e d i n t sum = 0 ;

l o o p _ d o t _ p r o d u c t : f o r (k =0; k<MATRIX_SQ_DIM ; k ++) {
u n s i g n e d i n t a = ram [(i +(MATRIX_SQ_DIM*k)) +MATRIX_A_START] ;
u n s i g n e d i n t b = ram [(k +(MATRIX_SQ_DIM* j)) +MATRIX_B_START] ;

sum = sum + a * b ;
}

ram [(i +(MATRIX_SQ_DIM* j)) +MATRIX_C_START] = sum ;
}

}

loop_check_sum : f o r (i =0 ; i <MATRIX_SQ_SIZE ; i ++) {
u n s i g n e d i n t c = ram [i +MATRIX_C_START] ;
checksum = checksum + c ;

}

ram [SYNC_RESULT_CHECKSUM] = checksum ;
ram [SYNC_RESULT_DUE] = 0x0 ; / / unhardened , w i l l n e v e r t r i g g e r DUE
ram [SYNC_CTRL_ADDR] = SYNC_DONE;

l b l _ w a i t _ f o r e v e r : w h i l e (1) ;
}

Source: The Author

input matrices and abnormal termination of the multiplication loops could leave the result

matrix filled with data from a previous execution. In this situation the checksum could

match the golden value, even in the case of incomplete multiplication loop, leading to an

220

Table C.1 – Benchmark supervisory serial communication messages
Message Value Description

TX_ALIVE 0x3e Supervisory serial communication module is alive, re-
ported nearly every 30 seconds.

FSM_ALIVE: 0x3d Supervisory test driver module is alive, reported
nearly every 1 second.

SYS_FAIL 0x3c End of tests or system failure, communication end.

NONE 0x00 Filler, no relevant event regarding application status.

MIPSU_SEFI_SDC 0x01 Application running as miniMIPS unhardened soft-
ware is dead (either timeout or a computed result mis-
match).

MBU_SEFI_SDC 0x02 Application running as MicroBlaze unhardened soft-
ware is dead (either timeout or a computed result mis-
match).

MIPSH_SEFI_SDC 0x04 Application running as miniMIPS hardened software
is dead (either timeout or an undetected computed re-
sult mismatch).

MIPSH_DUE 0x0c Application running as miniMIPS hardened software
is dead (a detected computed result mismatch).

MBH_SEFI_SDC 0x10 Application running as MicroBlaze hardened soft-
ware is dead (either timeout or an undetected com-
puted result mismatch).

MBH_DUE 0x30 Application running as MicroBlaze hardened soft-
ware is dead (a detected computed result mismatch).

HLSO_SEFI_SDC 0x80 Application running as High-level synthesis with
pipeline optimization is dead (either timeout or a
computed result mismatch).

Source: The Author

undetectable failure. It would also be convenient if the input matrices elements were not

filled with the same constant value because it will not exercise properly the circuits in the

arithmetic logic unit, leading to latent failures. Filling the input matrices with values gen-

erated from a simple pseudo-random number generator, even with a constant seed, would

increase the coverage in the arithmetic logic unit. Alternatively, two or more different

seeds, with well-known checksum values, could be used by the test driver passing the

seed through the memory interface. This would avoid the artificial effort of cleaning up

the result matrix. Finally, the simple sum may be too simple to be used as checksum and

should be replaced by an position-sensitive algorithm.

221

APPENDIX D — RESUMO EXPANDIDO EM PORTUGUÊS

Aperfeiçoamentos em Injeção de Falhas para FPGAs SRAM

Xilinx 7 Series e UltraScale+

D.1 Introdução

Aplicações críticas quanto a segurança e aplicações de missão crítica exploram a

crescente capacidade computacional dos sistemas digitais, incluindo aplicações a bordo

de satélites, aeronaves, ou mesmo aplicações em solo como instalações de computação de

alto desempenho (HPC), assistência ao motorista (ADAS) e veículos autônomos.

Dentre os sistemas digitais que suportam estas aplicações críticas e de missão crí-

tica, os FPGAs baseados em SRAM são de especial interesse devido a alta densidade

computacional e ao custo e tempo de engenharia relativamente menores, quando compa-

rado com o desenvolvimento de ASICs.

O uso de FPGAs de prateleira (COTS) de classe comercial tem as vantagens de

baixo custo e alta disponibilidade por não estarem sujeitos a restrições como International

Traffic in Arms Regulations (ITAR) como os produtos de classe militar ou aeroespacial.

Além disso, o uso da tecnologia SRAM tem as vantagens de permitir uma fácil

reconfiguração do dispositivo sendo de interesse para aplicações onde há chaveamento

de tarefas, ou seja, o mesmo hardware reprogramado para diferentes funções ao longo

da missão, ou onde há necessidade de atualizações para correções ou adaptação a novas

técnicas de processamento ou novas condições do ambiente, favorecendo, por exemplo, a

sobrevida tecnológica em aplicações de aprendizado de máquina (IA/ML).

Uma desvantagem é que as células de memória SRAM em dispositivos COTS de

classe comercial são especialmente suscetíveis a efeitos causados por radiação. Em órbita,

estes efeitos são causados por prótons, ions pesados e elétrons enquanto em altas altitudes

e em solo o efeito predominante tem origem em nêutrons (Fig. D.1). Estes efeitos de radi-

ação podem afetar eletrônica a bordo de satélites artificiais, veículos espaciais, aeronaves,

veículos autônomos, dispositivos médicos implantáveis e instalações de computação de

alto desempenho (HPC).

Os efeitos causados pela incidência de uma única partícula isoladamente são co-

nhecidos como efeitos de eventos singulares (SEE, single-event effect).

222

Figura D.1 – Air shower: radiação secundária de raios cósmicos na atmosfera

NP

n
pP

N

N

P

N
α

n

p

α

p
n

n

p

π

n p

nN

p

π0

π−π�

μ�

e�

n

μ−
N

e+
e−

Primary
cosmic-ray
particle

NucleonicMesonicElectromagnetic

S
o

ft
e

n
in

g
 o

f
e

n
e

rg
y
 s

p
e

ct
ru

m

n

p

Target nucleus

γ
γ

Abbreviations used:

n: neutron
p: proton

(capital letter for particle
carrying the nuclear
cascade)

α: alpha particle
e : electron or positron
γ: gamma-ray photon
π: pion

�

μ: muon

Fonte: Dunai (2010)

O tipo de evento singular relevante para esta tese ocorre quando a interação de

radiação com as células de memória SRAM no FPGA causa a inversão dos valores arma-

zenados na memória, por exemplo invertendo o valor lógico de 0 para 1 ou vice-versa, o

que é conhecido como bit-flip e também como upset de memória (SEU, single-event up-

set). Uma mesma partícula pode ter efeito sobre múltiplas células de memória. Quando

o SEU afeta apenas uma célula de memória ele também é chamado de single-bit upset

(SBU) e quando afeta mais de uma célula de memória ele é chamado de multiple-bit

upset (MBU).

Em FPGA SRAM, a susceptibilidade a radiação, em especial aos upsets de me-

mória (SEUs), afeta não apenas os dados dos usuários, mas também a própria definição

do circuito que é armazenada na memória de configuração (CRAM) (Fig. D.2). O volume

de CRAM é muito maior que os outros tipos de memória e torna-se o foco principal do

problema.

Uso de FPGAs SRAM em aplicações críticas envolve, portanto, a caracterização

dos dispositivos e aplicações, o uso de técnicas de mitigação de falhas para atender requi-

sitos de confiabilidade, e a qualificação das aplicações com tolerância a falha.

223

Figura D.2 – Efeitos de radiação em FPGA SRAM

Fonte: O autor

D.1.1 Motivação

Idealmente, os sistemas digitais e aplicações seriam testados e qualificados em

seu ambiente operacional, onde estariam sujeitos aos efeitos da radiação. A avaliação

de confiabilidade em condições operacionais possui diversas desvantagens, incluindo alto

custo, longo tempo de teste, e execução em estágios mais avançados do desenvolvimento,

o que também aumenta o custo de eventuais correções necessárias. Como alternativa, a

injeção de falhas, em laboratório, permite a avaliação desde os estágios iniciais de prova

de conceito até cenários de uso mais próximos do ambiente real.

Por outro lado, a injeção de falhas é também complexa porque exige um conhe-

cimento aprofundado do dispositivo alvo e do seu comportamento sob radiação, aumen-

tando o esforço em aspectos como:

• Conhecer a arquitetura do dispositivo, incluindo detalhamento dos módulos ou ele-

mentos de interesse dentro do dispositivo;

• Identificar um mecanismo de acesso para o dispositivo e para os elementos internos

de interesse;

• Conhecer os tipos de falhas que podem ocorrer nos diferentes cenários de operação;

• Prover uma cobertura de teste adequada dos pontos de interesse e das funcionalida-

des do sistema;

• Realizar uma validação rigorosa e análise comparativa.

No processo de engenharia, a injeção de falhas pode ser usada não apenas como

método de teste para analisar confiabilidade e verificar a resiliência a erros, mas também

para direcionar a seleção das técnicas de mitigação aplicadas. Porém, maior consistência

224

entre injeção de falhas e radiação é necessária para garantir os testes foram realizados em

condições representativas do ambiente operacional real e também garantir que o processo

de engenharia avance na direção correta. Além disso, a injeção de falhas também precisa

fornecer uma avaliação adequada dentro de um intervalo de tempo razoável para não

comprometer a produtividade do processo de engenharia.

D.1.2 Objetivos

Implementar aperfeiçoamentos no injetor de falhas para FPGAs Xilinx baseados

em SRAM desenvolvido na UFRGS para ampliar a consistência entre injeção de falhas

e testes em radiação, acelerar o processo de injeção de falhas para reduzir o tempo de

campanha, e estender o suporte do injetor para uma nova família de produtos Xilinx.

D.2 Conceitos preliminares

Os FPGAs são circuitos integrados predominantemente digitais de propósito ge-

ral, constituidos de elementos básicos configuráveis, como visto na Fig. D.2, incluindo

lógica combinacional, registradores, blocos lógico-aritméticos (DSP), blocos de memória

(BRAM) e matriz de roteamento de sinais (PIP/INT). Alguns FPGAs incluem também

recursos mais especializados, incluindo conversores analógico-digital (ADC), interfaces

de comunicação de alta velocidade (LVDS de uso geral, DDR, SATA, PCI, USB), micro-

processadores hardcore (RISC, GPU, VLIW), e redes on-chip (NoC).

Os diversos recursos dos FPGA Xilinx são organizados em colunas (Fig. D.3) e

dentro destas colunas existem subcolunas de vetores de memória (frames) que formam a

memória de configuração (CRAM) ou memória de dados (BRAM) do FPGA.

Os vetores de memória CRAM e BRAM podem ser acessados através de diversos

mecanismos, internos ao FPGA, como a Porta Interna de Acesso a Configuração (ICAP)

e a Porta de Processor de Acesso a Configuração (PCAP), ou externos, como a interface

padronizada JTAG ou interface proprietária SelectMAP (Fig. D.4).

Estas diferentes interfaces de configuração e teste que dão acesso as memórias

do FPGA podem ser utilizadas na injeção de falhas emulando os efeitos de radiação. O

injetor de falhas desenvolvido na UFRGS, mais especificamente, utiliza a interface ICAP

para esse fim.

225

Figura D.3 – Visão simplificada dos elementos no FPGA Xilinx

+ –+
×

Gigabit I/O
blocks

I/O blocks

DDR I/O
block

General purpose
and real-time

multicore
microprocessors

AI manycore
VLIW

microprocessors

Memory
blocks

DSP blocks

Configurable
interconnect

NoC

Configurable
logic blocks

Fonte: O autor

Figura D.4 – Acesso de hardware à memoria no FPGA Xilinx

PS

PCAP

JTAG

SelectMAP
(parallel)

PL

ICAP

Serial

CLB
36 frames at CRAM

DSP
28 frames at CRAM

BRAM
28 frames at CRAM
128 frames at BRAM

Fonte: O autor

D.3 Estado-da-arte e trabalho proposto

Diferentes injetores de falha foram desenvolvidos para os produtos Xilinx ao

longo do tempo, utilizando diferentes estratégias para emular os efeitos de radiação (Ta-

bela D.1).

Uma implementação do injetor de falhas UFRGS para Xilinx Virtex-5 é apresen-

226

Tabela D.1 – Injetores de falha para FPGA Xilinx

Injetor de falhas Manipulação da memória Dispositivo alvo

Antoni et al. (2000) Xilinx Virtex

Johnson et al. (2003) Xilinx Virtex

Xilinx Virtex-II n.d.

Xilinx Virtex-II SelectMAP

Xilinx Virtex-5 SelectMAP

Xilinx Virtex-5 SelectMAP

Xilinx 7 Series JTAG

Sterpone et al. (2007) Modifica o bitstream localmente dentro do FPGA. Xilinx Virtex-II ICAP

Villalta et al. (2014) Xilinx Zynq-7000 PCAP

Gomes-Cornejo et al. (2017) Xilinx Zynq-7000 PCAP

Interface de
acesso

Modifica o arquivo de bitstream antes de carregar no
FPGA.
O bitstream pode ser de reconfiguração parcial, por
exemplo apenas 1 frame.

JTAG/
MultiLINX

JTAG/
MultiLINX

Aldeghiri et al. (2007)
ESA FLIPPER

Usa um FPGA para manipular bitstream em um segundo
FPGA.

Napoles et al. (2007)
FT-UNSHADES
Mogollon et al. (2011)
FT-UNSHADES2
Hardward et al. (2015)
BYU XRTC-V5FI
Thurlow et al. (2019)
BYU TURTLE

Modifica o bitstream usando processador Arm Cortex-A
dentro do mesmo dispositivo.
Modifica conteúdo dos blocos de memória (BRAM)
usando processador Arm Cortex-A dentro do mesmo
dispositivo.

Fonte: O autor

tada por Nazar et al. (2012), e tem como características todos os componentes do injetor

de falhas embarcado no FPGA, incluindo os vetores de teste, o módulo de injeção de fa-

lhas, o relatório de diagnóstico e, naturalmente, o circuito a set testado. Outras implemen-

tações de Leipnitz et al. (2016) e de Tarrillo et al. (2015) para o mesmo dispositivo Xilinx

Virtex-5 introduzem pequenas variações nos módulos que são embarcados no FPGA ou

na forma de interconexão do FPGA com o veículo de teste.

Tonfat et al. (2016) implementaram o injetor de falhas UFRGS para a família

Xilinx Artix-7 tendo como principais características o uso de um pequeno módulo de

injeção de falhas que se comunica com o computador de coordenação da campanha atra-

vés de uma interface de comunicação serial. O modelo de uso desse injetor se baseava

pricipalmente na implementação de duas cópias do circuito sob teste dentro do mesmo

FPGA, uma copia alvo da injeção e outra utilizada como resultado verdadeiro, as quais

era comparadas a cada falha injetadas.

O quadro da Fig. D.5 resume as principais características das implementações

anteriores do injetor de falhas UFRGS para FPGA Xilinx, assim como as funcionalidades

propostas como aperfeiçoamentos nesta tese.

Para atingir estes objetivos, foram coletadas informações detalhadas sobre a orga-

nização da matriz de memória, utilizando tanto pesquisa bibliográfica quanto experimen-

tos de cartografia com laser e microfeixe de íons pesados, sobre a ocorrência de eventos

causados por radiação na matriz de memória do FPGA, utilizando testes estáticos com

227

Figura D.5 – Características do injetor de falhas UFRGS para FPGA Xilinx

Implementação CRAM BRAM Virtex-5 7 Series UltraScale+ Bits críticos Efeito

Sim Não
Sim —

—
Amostragem

Não Não

— Sim Lista exaustiva

Objetivos desta tese Sim Sim — Sim Sim Sim Sim

Curva de
confiabilidade

(falhas
acumuladas)

Assíncrono
(dados de
usuário e

scrubbing)

Nazar et al. (2012)

Bit-flips
simples

Leipnitz et al. (2016)

Tarrillo et al. (2015)

Tonfat et al. (2016)

Compabilidade
reversa tanto com

amostragem quanto
varredura exaustiva

Bit-flips
simples e
múltiplos

Fonte: O autor

prótons, partículas alfa, íons pesados, neutrons térmicos e neutrons rápidos, e sobre a

organização do arquivo de programação do FPGA, utilizando operações de readback da

memória do FPGA. Com estas informações foram implementadas modificações na lógica

do módulo injetor de falhas, no protocolo de comunicação serial, e nos scripts de execu-

ção das campanhas de injeção de falhas. O injeção de falhas também foi adaptado para

funcionar com os dispositivos da família Xilinx UltraScale+.

D.4 Resultados experimentais

Os principais resultados experimentais desta tese são resumidos nas próximas se-

ções.

D.4.1 Testes estáticos

A análise de dados coletados em testes estáticos permitiu identificar a ocorrência

de diferentes geometrias de MBU e a proporção entre elas. Alguns exemplos são apresen-

tados no quadro da Fig. D.6, onde se pode observar que a ocorrência de MBU é bastante

sensível ao tipo de partícula.

D.4.2 Injeção de falhas acumuladas

A injeção de falhas acumuladas é, principalmente, uma variação na metodologia

de teste, tendo pouco impacto sobre o módulo de injeção de falhas embarcado no FPGA.

A injeção acumulada foi desenvolvida com dois objetivos, que são acelerar a cam-

228

Figura D.6 – Comparativo entre partículas alfa, íons pesados e nêutros
Tipo de Tipo de

Exemplos Partícula α Íons pesados
Nêutrons

memória SEU 14 MeV 0° (Epi)Térmicos

BRAM SBU 1-1-1 100,0% 82,0% 93,4% 97,1% 95,4%

MBU 2-1-2 — 16,2% 4,7% 2,9% —

MBU 1-2-2 — — — — 4,5%

Outras geometrias — 1,8% 1,9% — 0,1%

CRAM SBU 1-1-1 97,6% 38,1% 76,7% 79,9% 78,1%

MBU 2-2-2 2,4% 41,9% 16,9% 15,5% 0,0%

MBU 2-1-2 0,0% 4,4% 3,5% 2,1% 0,0%

MBU 1-2-2 — — 0,3% 1,5% 17,8%

MBU 2-2-3 — 3,0% 1,3% 0,5% 0,0%

MBU 2-2-4 — 0,2% — 0,5% —

MBU 2-3-4 — 8,3% 0,6% — 0,0%

MBU 2-3-5 — 0,6% 0,3% — 0,0%

Outras geometrias — 3,4% 0,3% — 4,1%

14 MeV 180°

Fonte: O autor

panha de injeção de falhas e permitir a análise da confiabilidade na forma de uma curva

de confiabilidade R(t) do mesmo modo que se realiza a análise nos experimentos em

radiação.

O diagrama da Fig. D.7 mostra as estratégias tipicamente utilizadas nas imple-

mentações anteriores do injetor de falhas e a nova metodologia implementada.

Figura D.7 – Metodologias de injeção de falhas: (a) amostragem aleatória, (b)
exaustiva-sequencial, (c) acumulada-aleatória

Verificar e
relatar
falhas

Limpar
bit-flip

Nazar et al. (2012)
Leipnitz et al. (2016)
Tarrillo et al. (2015)

Virtex-5
Localização
aleatória do

bit-flip

Injetar um
bit-flip
(ICAP)

Verificar e
relatar
falhas

Limpar
bit-flip

Tonfat et al. (2016)
7 Series

Incremen-
tar posição
do bit-flip

Injetar um
bit-flip
(ICAP)

Verificar e
relatar
falhas

Desligar
placa e re-
programar

Processo
implementado

7 Series e UltraScale+

Localização
aleatória do

bit-flip

Injetar um
bit-flip
(ICAP)

OK

Falha

(a) (b) (c)

Fonte: O autor

229

A Fig. D.8 mostra as curvas de confiabilidade obtida pela injeção acumulada e a

curva obtida em ensaios de radiação com o mesmo circuito de teste.

Figura D.8 – Curva de confiabilidade: (a) injeção de falhas, (b) radiação

1E-01 1E+00 1E+01 1E+02 1E+03
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HLS softcore GPU

Accumulated faults injected (F)

R
e

lia
b

ili
ty

1E+06 1E+07 1E+08 1E+09 1E+10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HLS softcore GPU

Neutron fluence (Φ)

R
e

lia
b

ili
ty

Curva de confiabilidade
R(F) da injeção de falhas

Curva de confiabilidade
R(Φ) da radiação

(a) (b)

Fonte: O autor

Além de a nova metodologia permitir melhor comparação com os dados de radia-

ção, ela reduziu o tempo de campanha, para o circuito de teste, de 142 horas no método

de Tonfat et al. (2016) para 3,7 horas.

D.4.3 Injeção de falhas na presença de scrubbing

O mecanismo de scrubbing é um recurso de hardware disponível nos FPGAs Xi-

linx que realiza continuamente varreduras na memória CRAM do FPGA e identifica a

ocorrência de SEUs pela comparação de códigos de deteção e correção de erros (ECC)

inseridos na imagem de memória. No caso dos FPGAs Xilinx 7 Series, o mecanismo de

scrubbing também tem a capacidade de corrigir os SEUs.

Em radiação, os SEUs podem ocorrer a qualquer momento durante o ciclo de

processamento do circuito sob teste. Quando a correção pelo mecanismo de scrubbing

está ativa, estes SEUs podem também serem corrigidos a qualquer momento ao longo do

ciclo de processamento e, portanto, estão sujeitos a mascaramento temporal.

Esta é uma situação diferente da apresentada na Fig. D.7, onde os SEUs são

considerados como persistentes e, portanto, não importa se ocorreram durante um ciclo

de processamento anterior do circuito sob teste.

Para injetar falhas na presença de scrubbing, a principal modificação introduzida

no injetor de falhas foi separar o processo apresentado na Fig. D.7c em dois processos

independentes, como na Fig. D.9.

O subprocesso na Fig. D.9a opera de forma a produzir SEUs em posições ale-

atórias da memória CRAM do FPGA e em momentos aleatórios, a uma taxa média de

230

Figura D.9 – Injeção com scrubbing: (a) emulação de radiação, (b) diagnóstico do circuito em
teste

(a)

(b)

Localização
aleatória do

bit-flip

Injetar um
bit-flip
(ICAP)

Verificar e
relatar
falhas

OK

FalhaDesligar
placa e re-
programar

Fonte: O autor

ocorrência associada a um fluxo de radiação que está sendo emulando. Quando con-

veniente, a ocorrência se SEUs no subprocesso na Fig. D.9a pode ser modelada como

uma distribuição de Poisson. Por sua vez, o subprocesso na Fig. D.9b, que monitora

os resultados do circuito em teste, pode ser exatamente o mesmo processo utilizado nos

experimentos em radiação. Uma vantagem adicional dessa estratégia é que o injetor de

falhas pode ser utilizado também na validação dos scripts de monitoramente da campanha

de radiação.

A Fig. D.10 mostra métricas de confiabilidade obtida para um circuito de teste em

seis configurações diferentes, sob radiação e sob injeção de falhas. Em três destas confi-

gurações do circuito de teste o mecanismo de scrubbing em hardware Xilinx estava ativo

e os resultados obtidos mostram que a ordem (ranking) entre as diferentes configurações,

em termos de confiabilidade, é consistente entre radiação e injeção de falhas.

Figura D.10 – Métricas de confiabilidade obtidas em radiação (a) e em injeção de falhas (b)
Falhas funcionais com íons pesados Falhas funcionais com injeção de falhas

(a) (b)

Fonte: O autor

231

D.4.4 Injeção de falhas com múltiplos bit-flips

Como já citado anteriormente, o efeito dos SEUs na CRAM é o fator dominante

na confiabilidade dos circuitos implementados em FPGA. Diversas técnicas de mitiga-

ção podem ser introduzidas no circuito para mascaras os efeitos dos SEUs a aumentar a

confiabilidade ou o tempo de operação sob radiação.

Na presença destas mitigações, o modelo de falha simples adotado nas implemen-

tações anteriores do injetor de falhas passa a mostrar suas limitações. No exemplo da

Fig. D.10, podemos observar que há maior divergência entre as métricas de confiabili-

dade quando as técnicas de mitigação de redundância modular distribuída (FGDTMR) e

de scrubbing são combinadas. Neste cenário, a injeção de falhas mostra uma expectativa

otimista, que não se concretiza nos ensaios em radiação.

O que ocorre é que em radiação, como já apresentado na Fig. D.6, uma parcela

significativa dos SEUs envolvem múltiplos bit-flips (MBU). Estes MBUs podem facil-

mente prejudicar técnicas como FGDTMR onde os recursos redundantes não podem ser

isolados. Além disso, a ocorrência de MBUs dentro de um mesmo frame de memória

CRAM impede a correção pelo mecanismo de scrubbing que tem capacidade para corri-

gir apenas um bit-flip por frame.

Para ampliar a consistência entre radiação e injeção de falhas, a emulação dos

efeitos de radiação pelo injetor de falhas precisa também emular a ocorrência de MBUs.

O desafio, todavia, é que em radiação os bit-flips associados a um mesmo SEUs

ocorrem simultaneamente, enquanto na injeção de falhas cada um dos bit-flips precisa

ser injetado separadamente para formar o MBU. Estes bit-flips injetados separadamente

precisam ser observados tanto pelo circuito em teste quanto pelo mecanismo de scrubbing

como sendo simultâneaos.

A solução adotada foi modificar o módulo de injeção de falhas para suspender

temperariamente tanto a execução do circuito em teste, através de clock gating, quanto a

execução do scrubber, através dos registradores de configuração do FPGA.

O protocolo de comando entre o script da campanha e o módulo injetor de falhas

também foi modificado, para que se pudesse informar as posições dos diferentes bit-flips

que formam o SEU.

A Fig. D.11 mostra métricas de confiabilidade para um circuito de teste com

diferentes estratégias de mitigação, combinando redundância modular e scrubbing, em

cenários de injeção de falhas emulando apenas SBUs e emulando SBUs e MBUs em geo-

232

metrias e proporções observadas nos testes estáticos com nêutrons rápidos nas instalações

do IEAv e com feixes de íons pesados oxigênio e silício nas instalações do LAFN. Estes

diferentes ambientes de radiação produzem MBUs em diferentes taxas que prejudicam

a eficiência das técnicas de mitigação em diferentes maneiras. Como se observa na Fig.

D.11, a injeção de falhas incluindo a emulação de MBUs produz métricas de confiabili-

dade menos otimistas que a injeção apenas com SBUs, o que diminui a discrepância entre

os resultados de radiação e injeção de falhas.

Figura D.11 – Métricas de confiabilidade obtidas com injeção de falhas

Fa
lh

as
 a

cu
m

ul
ad

as

Tempo de missão para R(f)≥95% sob injeção de falhas

Fonte: O autor

Para o mesmo circuito de teste discutido na Fig. D.10, a Fig. D.12 mostra a razão

entre as métricas de confiabilidade obtidas em radiação e obtidas na injeção de falhas

apenas com a emulação de SBUs e com a emulação de MBUs para feixes de íons pesados

próximos do utilizado nos testes em radiação. Os resultados mostram que o desvio entre

radiação e injeção de falhas para a configuração combinando as técnicas de mitigação é

claramente menor quando se utiliza a injeção de falhas incluindo a emulação de MBUs.

D.5 Conclusão

Os experimentos de cartografia com laser e testes estáticos com radiação permiti-

ram esclarecer aspectos da organização da memória do FPGA e construir modelos estatís-

ticos da ocorrência de múltiplos bit-flips associados a incidência de uma mesma partícula.

Estas informações permitiram reproduzir mais fielmente o comportamenteo de ra-

diação na injeção de falhas, especialmente na presença de técnicas de mitigação de falhas,

que era onde havia maior desvio. Ao mesmo tempo, a injeção de falhas acumulada permi-

tiu acelerar a execução das campanhas de injeção de falhas e produzir dados comparáveis

233

Figura D.12 – Relação entre radiação e injeção de falhas
Relação entre radiação e injeção de falhas

Fonte: O autor

com radiação na forma da curva de confiabilidade.

O quadro da Fig. D.13 apresenta um resumo das funcionalidades e metodologias

implementadas no injetor de falhas UFRGS para as duas famílias de FPGA objeto desta

tese.

Figura D.13 – Maturidade das funcionalidades e metodologias implementadas
Técnica e metodologia Nível de maturidade

7 Series UltraScale+

Alto Médio

Aleatório-acumulada Alto Médio

Alto Baixo

Médio Baixo

Injeção de falhas em BRAM Médio Médio

Injeção de falhas em flip-flop Médio Baixo

Exaustiva-sequencial
(e.g. Tonfat et al. 2016)

Validado em laboratório e
qualificado com experimentos
de radiação

Prova de conceito. A
funcionalidade está
implementada no injetor.

Validado em laboratório e
qualificado com experimentos
de radiação

Implementada no injetor e script
de campanha. Demonstrado com
estudo de caso.

Aleatório-acumulada
+ scrubbing

Validado em laboratório e
qualificado com experimentos
de radiação

Conceito não foi testado
amplamente. Algum esforço
ainda é necessário para ajustar
ao scrubber softcore.

Aleatório-acumulada
+ scrubber
+ MBU

Implementado no injetor e
demonstrado comparando com
dados de radiação.

Conceito não foi testado.
Necessário coletar dados de
testes estáticos.

Implementação demonstrada.
Identificadas limitações de
viabilidade e aplicabilidade.

Prova de conceito. Pouca chance
de o comportamento ser
diferente de 7 Series.

Implementação demonstrada.
Identificadas limitações de
viabilidade e aplicabilidade.

Conceito não foi implementado
ou testado. A reconfiguração
parcial em UltraScale+ é
completamente diferente de 7
Series e o método não pode ser
diretamente portado.

Fonte: O autor

Quanto a futuras investigações e desenvolvimento, cabe observar que algumas

das estratégias de injeção de falhas aplicadas apenas aos FPGAs Xilinx 7 Series ainda

podem ser aplicadas nos FPGAs Xilinx UltraScale+. Novas investigações e testes com

scrubber em UltraScale+ são especialmente importantes pois nesta família de dispositivos

234

o mecanismo de scrubbing em hardware não inclui mais a capacidade de corrigir os bit-

flips, passando a depender de um módulo adicional de correção implementando no próprio

FPGA.

Apesar das mudanças arquiteturais na família UltraScale+ terem reduzido signi-

ficativamente a vulnerabilidade do scrubbing a MBUs, ainda é conveniente investigar o

impacto de MBUs sobre a redundância modular distribuída (FGDTMR), onde não é viá-

vel o partitionamento e isolamento físico dos recursos redundantes.

Finalmente, em desenvolvimentos futuros, todas as técnicas e metodologias de

injeção de falhas implementadas merecem ser investigadas na nova família Xilinx Versal

de FPGAs baseadas na tecnologia FinFET de 7 nm.

	Acknowledgment
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Applications of SRAM-based FPGA in critical systems
	1.2 Motivation and innovative contributions
	1.3 Thesis claim
	1.4 Thesis goals
	1.5 Description and organization of this report

	I SRAM-Based FPGAs and Reliability Under Radiation
	2 Radiation effects and radiation-induced memory upsets
	2.1 Semiconductor devices
	2.2 Radiation effects on electronic devices
	2.3 Sources and characteristics of space radiation environment
	2.4 Interactions of radiation with matter
	2.5 Single-event effects and memory upsets
	2.6 Laser induced memory upsets
	2.7 Protons, alpha particles and heavier ions induced memory upsets
	2.8 Thermal and fast neutrons induced memory upsets
	2.9 Qualification and reliability metrics for radiation
	2.10 Radiation-induced susceptibility to memory upsets in modern devices

	3 Programmable gate arrays
	3.1 Combinational and sequential logic
	3.2 Signal fabric
	3.3 Memory blocks
	3.4 Arithmetic
	3.5 Other features in modern FPGA devices
	3.6 Configuration memory and bitstream

	4 Qualification and reliability in SRAM-based FPGAs
	4.1 Qualification parameters
	4.2 Additional radiation and reliability metrics
	4.3 Single-event memory upsets in SRAM-based FPGAs

	5 Test and fault injection methodology
	5.1 Fault injection as a reliability assessment tool
	5.2 Emulation-based fault injection for SRAM-based FPGAs
	5.3 UFRGS fault injection tool for Xilinx FPGAs

	II Characterization of the Xilinx 7 Series devices
	6 Discovering Xilinx 7 Series SRAM-based FPGA
	6.1 Constructive structure of Xilinx 7 Series devices
	6.2 Logical organization of the device
	6.3 Organization of the configuration and user data memory
	6.4 Programming interfaces and access to configuration data

	7 Detailed device cartography
	7.1 Mapping floorplan to bitstream file
	7.2 Laser cartography on Xilinx 7 Series FPGA
	7.3 Analysis of physical arrangement of configuration memory

	8 Static tests and multiple-bit upsets inventory
	8.1 Static tests of Xilinx 7 Series under proton, alpha and heavy ions
	8.2 Static tests of Xilinx 7 Series under fast neutrons
	8.3 Static tests of Xilinx 7 Series under thermal neutrons
	8.4 Summary of multiple-bit upsets profile on Xilinx 7 Series FPGA

	III Enhancements on Fault Injector and Methodology
	9 Many-bits fault injection
	9.1 Motivation
	9.2 Implementation
	9.3 Methodology and scripting
	9.4 Study case and results

	10 Accumulated fault injection
	10.1 Motivation
	10.2 Implementation
	10.3 Methodology and scripting
	10.4 Study case and results

	11 Asynchronous fault injection
	11.1 Motivation
	11.2 Implementation
	11.3 Methodology and scripting
	11.4 Study case and results

	12 Fault injection on memory blocks
	12.1 Motivation
	12.2 Implementation
	12.3 Methodology and scripting
	12.4 Study case and results

	13 Fault injection on flip-flops
	13.1 Motivation
	13.2 Implementation
	13.3 Methodology and scripting
	13.4 Study case and results

	14 Fault injection emulating multiple-bit upsets
	14.1 Motivation
	14.2 Implementation
	14.3 Methodology and scripting
	14.4 Study case and results

	15 Port of the UFRGS fault injector to UltraScale+
	15.1 Motivation
	15.2 Implementation
	15.3 Methodology and scripting
	15.4 Study case and results

	16 Conclusions and further developments
	Referências
	Appendix A — Publications
	A.1 On experimental physics
	A.2 On fault injection methodology
	A.3 On softcore microprocessors, high-level synthesis and communication buses
	A.4 On machine learning and embedded inference engines

	Appendix B — Study-Case Applications in Image Classification
	B.1 Driving automation and traffic sign classification
	B.2 Earth observation and land use classification
	B.3 Neural networks
	B.4 Image classification with neural networks
	B.5 Convolutional neural networks on FPGA
	B.6 Prototype CNN for GTSRB traffic sign classification task
	B.7 Prototype CNN for SAT-6 land cover classification task

	Appendix C — Study-Case Application onboard NanosatC-BR2
	C.1 NanosatC-BR2 mission
	C.2 NanosatC-BR2 payload overview
	C.3 NanosatC-BR2 benchmark applications on Xilinx Artix-7

	Appendix D — Resumo Expandido em Português
	D.1 Introdução
	D.1.1 Motivação
	D.1.2 Objetivos

	D.2 Conceitos preliminares
	D.3 Estado-da-arte e trabalho proposto
	D.4 Resultados experimentais
	D.4.1 Testes estáticos
	D.4.2 Injeção de falhas acumuladas
	D.4.3 Injeção de falhas na presença de scrubbing
	D.4.4 Injeção de falhas com múltiplos bit-flips

	D.5 Conclusão

