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ABSTRACT

Approximate computing techniques, particularly those involving reduced and mixed pre-

cision, are widely studied in literature to accelerate applications and reduce energy con-

sumption. Although many researchers analyze the performance, accuracy loss, and energy

consumption of a wide range of application domains, few evaluate approximate comput-

ing techniques in iterative applications. These applications rely on the result of the com-

putations of previous iterations to perform subsequent iterations, making them sensitive to

precision errors that can propagate and magnify throughout the execution. Additionally,

monitoring the accuracy loss of the execution in large datasets is challenging. Calculating

accuracy loss at runtime is computationally expensive and becomes infeasible in applica-

tions with a considerable volume of data. This thesis presents a methodology for generat-

ing interleaved execution configurations of multiple kernel versions for iterative applica-

tions on GPUs. The methodology involves sampling the accuracy loss profile, extracting

performance and accuracy loss statistics, and offline generating interleaved execution con-

figurations of kernel versions for different thresholds of accuracy loss. The experiments

conducted on three iterative applications of physical simulation in three-dimensional data

domains demonstrated the capability of the methodology to extract performance and ac-

curacy loss statistics and generate interleaved execution configurations of kernel versions

with speedups up to 2 and reduction of energy consumption up to 60%. For future work,

we suggest studying different optimization strategies for generating interleaved execution

configurations of kernel versions, such as using neural networks and machine learning.

Keywords: Approximate computing. Mixed-precision. Half-precision. Accuracy loss

profile. Energy efficiency.





Melhorando o Desempenho de Aplicações Iterativas por meio da Execução

Intercalada de Kernels CUDA Aproximados

RESUMO

As técnicas de computação aproximada, particularmente aquelas envolvendo precisão re-

duzida e mista, são amplamente estudadas na literatura para acelerar aplicações e reduzir

o consumo de energia. Embora muitos pesquisadores analisem o desempenho, perda de

precisão e consumo de energia de uma ampla gama de domínios de aplicação, poucos

avaliam técnicas de computação aproximada em aplicações iterativas. Essas aplicações

dependem do resultado dos cálculos das iterações anteriores para realizar iterações sub-

sequentes, tornando-as sensíveis a erros de precisão que podem se propagar e amplificar

durante a execução. Além disso, monitorar a perda de precisão da execução em grandes

conjuntos de dados é desafiador. Calcular a perda de precisão em tempo de execução é

computacionalmente caro e se torna inviável em aplicações com um volume considerá-

vel de dados. Esta tese apresenta uma metodologia para gerar configurações de execução

entrelaçadas de múltiplas versões de kernel para aplicações iterativas em GPUs. A meto-

dologia envolve amostrar o perfil de perda de precisão, extrair estatísticas de desempenho

e perda de precisão, e gerar offline configurações de execução entrelaçadas de versões

de kernel para diferentes limiares de perda de precisão. Os experimentos realizados em

três aplicações iterativas de simulação física em domínios de dados tridimensionais de-

monstraram a capacidade da metodologia de extrair estatísticas de desempenho e perda

de precisão e gerar configurações de execução entrelaçadas de versões de kernel com

speedups de até 2 e redução do consumo de energia de até 60%. Para trabalhos futuros,

sugerimos estudar diferentes estratégias de otimização para gerar configurações de exe-

cução entrelaçadas de versões de kernel, como o uso de redes neurais e aprendizado de

máquina.

Palavras-chave: Computação aproximada. Precisão mista. Meia precisão. Perfil de

perda de acurácia. Eficiência energética..
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1 INTRODUCTION

It’s no secret that the demand for computing power is rapidly increasing. As hu-

manity moves towards digitization and interconnected intelligent systems, the need for

storage, processing, and data analysis continues to grow significantly. Despite signifi-

cant improvements in computational power and storage capacity generation after gener-

ation, the demand for storage and computing capacity still vastly exceeds the available

resources, including budget resources (MITTAL, 2016). Moreover, existing and new ap-

plication areas will require computation with energy efficiency orders of magnitude higher

than the current state of the art (SHALF, 2020). Therefore, achieving higher computa-

tional power benchmarks economically will require more efficient hardware, algorithms,

and methods (THOMPSON et al., 2020).

In recent years, approximate computing has become a popular and promising ap-

proach for improving the efficiency and performance of computer systems (XU; MYTKOW-

ICZ; KIM, 2015). The basic idea is to trade off computational accuracy for better system

performance and reduced power consumption (MITTAL, 2016). By designing hardware

and software to tolerate errors and allowing minor errors or variations in the output of

computations, approximate computing can reduce computational power requirements.

This approach can achieve faster computing times and lower energy consumption than

traditional methods, resulting in cost savings.

Reduced precision and mixed precision are among the most popular approximate

computing techniques. These techniques involve using fewer bits to represent floating-

point numerical values. For example, instead of using 64 bits to represent a number, we

can use only 32 bits. By doing so, we can reduce the amount of memory needed to store

a value and the amount of data that needs to be transferred and processed. This can lead

to reductions in both computation time and energy consumption (JIN et al., 2017).

To prevent compatibility issues and calculation inaccuracies, IEEE standardized

the representation of floating-point numbers in binary in computer hardware and soft-

ware. The IEEE 754 (IEEE. . . , 1985) standard defines a consistent and universally rec-

ognized format for representing floating-point numbers. This allows for accurate and

reliable calculations across different systems and programming languages. The revisions

of the IEEE 754-2008 (IEEE. . . , 2008) specify several floating-point formats, including

the half-precision, single-precision, double-precision, and quadruple-precision formats.

These formats use 16, 32, 64, and 128 bits to represent floating-point numbers in binary.
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The main difference between the floating-point formats is the number of bits used

to represent the number, which influences the precision and range of numbers that can

be represented. For example, the single-precision format uses 32 bits to represent a

floating-point number. It has a precision of about seven decimal digits, while the double-

precision format uses 64 bits and has a precision of about 15 decimal digits. The more

bits allocated to the mantissa, the more precise the number can be represented. How-

ever, the decimal value of 0.1 cannot be represented precisely in binary using any finite

number of bits (GOLDBERG, 1991). Therefore, any binary representation of 0.1 will

be an approximation. For instance, in single-precision format, 0.1 is approximated as

0.100000001490116119384765625, while in double-precision format, it is approximated

as 0.1000000000000000055511151231257827021181583404541015625.

When working with lower-precision floating-point formats, such as in reduced and

mixed-precision approximate computing techniques, errors can occur due to the represen-

tation of decimal numbers in binary and casting between different floating-point formats.

Casting a number to a lower-precision format can result in rounding or truncation, leading

to the loss of some digits. Conversely, casting to a higher-precision format may add addi-

tional zeros, but the precision of the original number remains unchanged. As a result, the

accuracy of application execution is directly impacted by the number of castings between

different floating-point formats.

Another factor affecting the accuracy of floating-point calculations is the differ-

ence in error introduced by different arithmetic operations. For example, subtracting two

numbers that are very close in value can result in a loss of precision due to the limited

number of significant digits in the floating-point format. Multiplying two numbers with

very different magnitudes can also result in inaccurate results due to overflow or under-

flow. In general, addition and subtraction are less prone to errors than multiplication and

division because addition and subtraction do not amplify errors to the same extent as

multiplication and division (GOLDBERG, 1991).

Therefore, controlling and limiting errors when working with floating-point num-

bers and approximations is crucial because they can lead to inaccurate results and signif-

icantly impact the overall accuracy of application execution. Consequently, it is essential

to carefully consider the precision and accuracy requirements of the specific application

and use appropriate techniques to minimize the introduction and accumulation of errors.

This may involve using higher precision formats, proper arithmetic operations, and error

correction and compensation techniques. Doing so makes improving the accuracy and re-
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liability of floating-point computations possible, which is essential for many applications

in science, engineering, and other domains.

1.1 Motivation

Despite being widely explored in the literature, techniques and tools for fine-

tuning the precision of floating-point operations are primarily focused on non-iterative ap-

plications. The main application domains are computer graphics, machine learning, signal

processing, finance and numerical computing (BAEK; CHILIMBI, 2010; RUBIO-GONZ

et al., 2013; RUBIO-GONZALEZ et al., 2016; KHUDIA et al., 2015; CHERUBIN et al.,

2020; ROY et al., 2014), robotics, compression (KHUDIA et al., 2015), clustering and

classification, time series, regression problems (ZHANG et al., 2014). The selection of

these applications is typically based on their real-world workload representativeness and

their notable resilience to floating-point errors (MITTAL, 2016).

Although some works explore iterative scientific applications that are equally rep-

resentative, such as the CG (Conjugate Gradient), EP (Embarrassingly Parallel), and FP

(Fourier Transform) kernels and the SP (Scalar Penta-diagonal) and LU (Lower-Upper

Gauss-Seidel) pseudo-applications of the suite of NAS parallel benchmarks (RUBIO-

GONZ et al., 2013; RUBIO-GONZALEZ et al., 2016; SAMPSON et al., 2011; GRAIL-

LAT et al., 2019), jetEngine and turbine (CHIANG et al., 2017; MENON; LAM, 2019),

Lattice Boltzmann Method (LBM) (HO et al., 2017), iterative applications are signifi-

cantly more sensitive to floating-point errors, making it considerably more challenging to

tune the precision of floating-point operations.

Iterative applications are algorithms that repeat a specific set of instructions mul-

tiple times until a particular condition is met (BU et al., 2010). This technique is used for

problems that cannot be solved analytically or when the complexity of the solution to a

problem makes it unfeasible to compute in a single step (CARSON; STRAKOŠ, 2020).

In this technique, the output of one iteration becomes the input for the next. While this

makes the applications more efficient, it also means that any approximations made in one

iteration are carried over to the next. These errors can then be amplified, leading to inac-

curacies in the final result. Therefore, it is essential to carefully monitor and validate the

output of the iterations to ensure the accuracy of the final result (ZHANG et al., 2014).

Ensuring output quality in iterative applications can be challenging due to their

repetitive nature and typical use of multidimensional data domains. To control output
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quality using approximation techniques, a standard method is monitoring accuracy loss

during runtime (MITTAL, 2016). However, monitoring accuracy loss during runtime in

iterative applications may be impractical due to the volume of data involved. In scientific

simulation applications, for example, to calculate accuracy loss in each iteration on a 2D

data domain with 512 cells on the x-axis and y-axis, 262144 values must be compared

against the correct values. Using a 3D data domain with 512 cells on each side increases

the number of cells to 134217728. Since iterative scientific simulation applications can

have significantly larger data domains, the computational cost of checking for accuracy

loss at runtime can easily exceed the application’s running cost.

1.2 Objectives

Our research focuses on developing an efficient method of accelerating the ex-

ecution of applications using approximate computing techniques. We are interested in

iterative applications, where a given set of operations is applied recurrently over a large

dataset. The execution of iterative applications demands great computational power due

to the number of operations and the volume of data on which the operations are per-

formed (BU et al., 2010; CARSON; STRAKOŠ, 2020). However, these characteristics

make GPUs ideal for accelerating the execution of iterative applications since their archi-

tecture allows the simultaneous execution of operations on an extensive dataset. There-

fore, our work will focus on studying further application acceleration through approxi-

mate computing techniques on GPUs.

In general, approximations of applications on GPU devices are achieved by fine-

tuning the floating-point precision of operations or by using less precise architecture-

specific methods (SAMADI et al., 2014a; SAMADI et al., 2014b; LAGUNA et al., 2019).

The aggressiveness of the approximations is relative to the user-determined Target Out-

put Quality (TOQ). For each new TOQ, a new analysis is performed to determine which

less accurate methods or floating-point precisions will be used in each operation to en-

sure that the TOQ is respected. Although this approach enables significant performance

improvements, the tuning search space grows significantly as larger and more complex

applications are used. One way to avoid the cost of recurrent tuning is to use multiple

code versions with different accuracies, varying the selection or execution order of the

kernel versions at runtime according to how close the execution accuracy is to the TOQ.

This research explores the hypothesis that the interleaved execution of multiple
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approximated kernel versions, based on their accuracy loss profile, can improve the per-

formance of iterative applications. The accuracy loss profile refers to the variation of loss

along the execution of the application. Typically, multiple versions of kernels with dif-

ferent accuracies are scaled based on measurements of accuracy loss at runtime or kernel

calibrations performed before or during execution (LAGUNA et al., 2019; KOTIPALLI et

al., 2019; HO; SILVA; WONG, 2021). However, checking accuracy at runtime in larger

applications, such as scientific simulations that use 2D or 3D data domains, can be imprac-

tical. Our proposed solution is to analyze the accuracy loss profiles of running multiple

CUDA kernel versions with different accuracies to generate an execution configuration

that alternates the execution of different kernel versions. This configuration prioritizes

the execution of the fastest version respecting the user-defined TOQ.

This work’s main contributions are:

1. A new methodology for approximate computing in iterative applications in GPU

architectures is proposed. Based on the accuracy profile of multiple approximated

kernel versions, an interleaving execution configuration of the kernels can be gen-

erated entirely offline. This can be done for an arbitrary number of TOQs if the set

of kernels and data inputs is the same, without additional measurements.

2. The evaluation of the performance and energy efficiency of the proposed method-

ology on three well-known iterative applications of physical simulation in three-

dimensional domains.

3. The main insight from the thesis: interleaved execution of multiple approximated

kernel versions based on their accuracy loss profile can improve the performance

and energy efficiency of iterative applications.

1.3 Document Organization

The remaining thesis is organized as follows. Chapter 2 provides a solid under-

standing of state-of-the-art techniques in approximate computing. We differentiate be-

tween the different levels of existing approximate computing techniques and dissect the

approaches used in the literature for using approximate computing techniques at the ap-

plication level on GPU architectures. Chapter 3 introduces the concept of interleaved

execution of multiple versions of approximate kernels in GPU architectures. Chapter 4

presents the methodology developed in this thesis for extracting the accuracy loss profile
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of multiple approximate kernel versions and generating execution configurations based on

accuracy loss and performance statistics. This is done in a fully offline manner. Chapter 5

presents the experimental results of execution configurations generated from the method-

ology presented in Chapter 4 for different iterative physical simulation applications using

different problem sizes and accuracy loss thresholds. Chapter 6 analyzes and discusses

the performance and energy efficiency of the results presented in Chapter 5. Finally, in

Chapter 7, we offer the final considerations of our work and suggestions for future work.
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2 BACKGROUND AND STATE OF THE ART

Approximate Computing (AC) refers to a range of techniques that trade off the

precision of results for improvements in application performance and reduced energy

consumption (MITTAL, 2016). By omitting specific calculations, reducing hardware re-

source usage, using faster but less accurate hardware, or optimizing computational meth-

ods, these techniques considerably reduce the computational power required to run appli-

cations. This, in turn, enhances application performance and reduces energy consumption.

However, omitting or approximating certain operations during execution can lead to inac-

curate results and, in some cases, completely corrupt the final output of the application.

Approximate computing techniques are tools and methods that explore the in-

trinsic resilience of applications to numerical errors. However, the influence of a given

technique on the final result can vary significantly from one application to another due

to the inherent characteristics of each application. While a particular technique may only

minimally change the result of one application, it could result in a significant divergence

between the expected value and the value obtained in another application. Intrinsic re-

siliency refers to an application’s ability to produce acceptable output despite some of its

underlying calculations being incorrect or approximate (CHIPPA et al., 2013).

However, an application’s resilience to errors does not guarantee an acceptable

result when using any applicable AC technique. Though such resilience can naturally

reduce the impact of approximations introduced by these techniques, the final result with

specific techniques may still be unacceptable (CHIPPA et al., 2013). This is due to the

variation in the approximation level introduced by each technique in an application’s oper-

ations, which can even vary from one application to another (XU; MYTKOWICZ; KIM,

2015). Despite the negative impact of AC techniques on an application’s final result,

there are established ways to explore the potential for improving performance and energy

consumption while minimizing impacts on result accuracy.

Computing has entered an era of complex systems that requires sophisticated al-

gorithms to deliver good enough answers quickly, at scale, and with energy efficiency,

and approximation is often the only way to meet these goals (Xu, 2016). This Chapter

will detail the different levels of Approximate Computing techniques, with a particular

focus on the more general application-level techniques and AC in GPU architectures.
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2.1 Circuit-Level Approximation

The circuit-level approximation is a technique for designing circuits that perform

approximate computations instead of exact computations. This is achieved by introducing

approximations into the circuit design, which reduces the computations’ accuracy and

the energy consumed by the circuits (MITTAL, 2016). Most proposals for approximate

circuits modify the original function of circuits to balance accuracy and energy (XU;

MYTKOWICZ; KIM, 2015). Since addition and multiplication are critical arithmetic

operations, most research has focused on approximating adder and multiplier circuits.

Gupta et al. (2011) propose reducing logic complexity as an alternative to volt-

age scaling to maximize the relaxation of numerical accuracy. The authors suggest us-

ing various imprecise or approximate Full Adder (FA) cells with reduced complexity at

the transistor level to design approximate multi-bit adders. Their technique results in

significantly shorter critical paths, enabling voltage scaling. The proposed approximate

arithmetic units are then used to design architectures for video and image compression

algorithms. The authors evaluate these designs and demonstrate their efficacy through

simulations, which show significant power and area savings and an insignificant loss in

output quality compared to other implementations.

Kim, Zhang and Li (2013) propose an adder with a carry skip scheme that achieves

higher carry prediction accuracy, enabling faster addition operations or reduced energy

dissipation by lowering the supply level. This technique leverages information from less

significant input bits in a parallel through-carrying prediction, significantly improving

error rate and critical path delay. The authors claim that their adder design is flexible,

allowing low-overhead error correction logic to be included for error-free operations at

the cost of one more clock cycle. The proposed design is faster and more energy-efficient

than traditional adders and has minor approximation errors in the training processes of a

neuromorphic character recognition chip using unsupervised learning.

Liu, Han and Lombardi (2014) proposed a multiplier design for high-performance

Digital Signal Processing (DSP) applications with lower power consumption and a shorter

critical path than traditional multipliers. This design uses an approximate adder with lim-

ited carry propagation to the nearest neighbors for fast partial product accumulation. The

design also achieves different levels of accuracy through a configurable error recovery

using different numbers of Most Significant Bits (MSBs) for error reduction. Although

there are errors in the multiplier, most of them are not significant in magnitude. By imple-
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menting the multipliers, the authors showed that an appropriate error recovery results in

the proposed approximate multiplier achieving processing accuracy similar to traditional

exact multipliers but with significantly improved power and performance.

2.2 Architecture-Level Approximation

In addition to approximating circuit designs, researchers have explored approx-

imation in essential components of computer systems such as processors, memory, and

storage. Computer architects aim to balance performance and energy efficiency under var-

ious constraints imposed by a given technology, such as chip area and processors’ power,

balance density (cost per bit), and performance on memory and storage (XU; MYTKOW-

ICZ; KIM, 2015; MITTAL, 2016). However, simultaneously improving these compo-

nents’ performance, energy efficiency, and density is challenging because improving one

often sacrifices the others (XU; MYTKOWICZ; KIM, 2015).

Venkataramani et al. (2013) propose a quality programmable processor that cod-

ifies the notion of quality in the Instruction Set Architecture (ISA). The ISA contains

instructions associated with quality fields that specify the accuracy level required during

the execution of the instructions. This approach allows the control of instruction execu-

tion accuracy and dramatically enhances the scope of approximate computing, making

it applicable to more significant portions of programs. While the micro-architecture of a

quality programmable processor contains hardware mechanisms that translate instruction-

level quality specifications into energy savings, it can also expose the actual error incurred

during the execution of each instruction back to the software. Results show that using

instruction-level quality specifications can lead to significant energy savings with virtu-

ally no loss in application output quality and only a modest impact on output quality.

Esmaeilzadeh et al. (2012) propose a learning-based approach for accelerating

approximate programs through the Parrot transformation. This program transformation

selects and trains a neural network to mimic a region of imperative code. During the

learning phase, the compiler replaces the original code with an invocation to a Neural Pro-

cessing Unit (NPU), a low-power accelerator that speeds up machine learning algorithms.

The NPU is tightly coupled to the processor pipeline to accelerate small code regions.

The authors define a neural network programming model that allows programmers to

identify code that can produce imprecise but acceptable results. The approximable code

regions can then be offloaded to NPUs, executing it faster and more energy-efficiently
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than the original code. This approach can significantly improve performance and energy

consumption with an acceptable quality loss.

Palframan, Kim and Lipasti (2014) presented a precision-aware soft error pro-

tection scheme for the GPU execution logic and register file. The system combines se-

lective gate hardening, an inexpensive checker circuit, and precision-aware encoding to

improve soft-error resilience with low overhead. The authors extended this approach to

integer (INT) computations by modifying the architecture and treating integers similarly

to floating-point numbers. They showed that precision-aware protection has low overhead

and minor error magnitudes in the event of a soft error compared to approaches that do

not target error magnitudes. The technique significantly reduces errors while maintaining

a low area overhead compared to a traditional approach with the same area overhead.

Sampson et al. (2014) propose a mechanism for storing data approximately in

applications, demonstrating that it can improve the performance, lifetime, or density of

solid-state memories. The authors suggest two mechanisms. The first mechanism allows

errors in multilevel cells by reducing the number of programming pulses used to write the

cells. The second mechanism mitigates wear-out failures by mapping approximate data to

blocks that have exhausted their hardware error correction resources, thus extending the

memory’s endurance. Simulations show that writes with reduced precision in multilevel

phase-change memory cells are faster, and using failed blocks improves the array lifetime

with an acceptable quality loss.

2.3 Application-Level Approximation

Several software-level techniques and approaches have been explored to improve

various applications’ performance and energy efficiency (XU; MYTKOWICZ; KIM, 2015).

These techniques include approximate languages, approximate compilers, and optimiza-

tion strategies for reducing computational work. By decreasing the precision of compu-

tations, application-level approximations can significantly improve the runtime and lower

power consumption without the need for specialized hardware, albeit at the cost of some

accuracy loss in the output of applications (MITTAL, 2016).
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2.3.1 Popular Techniques

The most widely used approximate computing techniques for improving applica-

tion performance and reducing energy consumption aim to efficiently exploit resources

available in modern computing systems (MITTAL, 2016). These techniques involve re-

ducing system resource usage or minimizing high computational cost tasks for executing

applications. Other techniques diversify the use of available computational resources,

using those with lower computational costs or distributing the workload among a more

significant number of resources.

One of the most popular approximate computing techniques focused on reducing

system resource usage is loop perforation. This general application-level approximation

technique trades the accuracy of the output for performance by transforming loops to ex-

ecute only a subset of their iterations (HOFFMANN et al., 2009). This technique aims

to reduce the computational work of applications by filtering out loops whose perfora-

tion produces unacceptable behaviors and identifying loops where the perforation makes

more efficient yet accurate computations (SIDIROGLOU-DOUSKOS et al., 2011). The

perforation of loops is usually conducted through space exploration algorithms, statistical

analysis, perforation at regular intervals, or even randomly.

Other techniques, such as memoization, load value approximation, task skipping,

and memory access reduction, also aim to reduce the use of system resources (MITTAL,

2016; XU; MYTKOWICZ; KIM, 2015). Like loop perforation, skipping task execu-

tion and memory access reduces the number of operations performed by applications.

However, instead of proceeding with subsequent operations, these techniques replace the

results of skipped computations with previously computed or stored data. For example,

memoization stores the result of functions so they can be reused later by other simi-

lar functions or functions with identical input data (RAHIMI; BENINI; GUPTA, 2013;

KERAMIDAS; KOKKALA; STAMOULIS, 2015). On the other hand, the load value ap-

proximation technique estimates the load value in cases of cache loading failure, which

avoids searching in different levels of cache or main memory and reduces significant la-

tency (MIGUEL; BADR; JERGER, 2014; SUTHERLAND; MIGUEL; JERGER, 2015).

These techniques do not require additional or specialized resources, making them

applicable to various computing systems. Their implementation is relatively simple, usu-

ally involving the omission of specific procedures or the storage and approximation of val-

ues. However, modern computing systems consist of a heterogeneous mix of components
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and resources with different purposes and utilities that can also be exploited to optimize

application performance and energy consumption (MITTAL, 2016; XU; MYTKOWICZ;

KIM, 2015).

One example is the different floating-point representation formats present in mod-

ern systems. The most popular are the half, single, and double-precision binary for-

mats (IEEE. . . , 2008). While larger formats offer more precise representations of floating-

point values (with more decimal digits), larger representation sizes require more space in

system memory. The information about each value increases with larger sizes, making

reading and transferring the data more time-consuming. For instance, a value in single-

precision floating-point format uses 32 bits of memory. In contrast, in double-precision

format, it uses twice as much space (64 bits) and twice as much memory bandwidth during

transfers compared to the single-precision representation.

During the development process of most applications, it is common practice to use

a floating-point representation format with higher precision than what is minimally nec-

essary to represent the data (RUBIO-GONZ et al., 2013). This is because correctly sizing

the minimum format needed to represent each variable in an application accurately can be

complex, and using a larger, more accurate format for the application as a whole becomes

the more viable choice (MITTAL, 2016; XU; MYTKOWICZ; KIM, 2015). However,

while larger floating-point formats can provide a margin of safety in executing floating-

point operations, they can significantly degrade performance and energy consumption,

especially in compute- and memory-intensive applications (RUBIO-GONZ et al., 2013).

Reduced and mixed precision is one of the most popular techniques used to re-

duce the amount of data in computations and increase the performance and efficiency of

computations in applications. Based on the observation that the use of higher precision

floating-point formats than necessary is a common practice in application development,

the idea of reduced and mixed precision techniques is to use floating-point representations

with smaller sizes for variables and arithmetic operations, trading off the accuracy of the

output for improved performance and energy efficiency (RUBIO-GONZ et al., 2013).

Due to the complexity of existing numerical programs, manually tuning their

floating-point precision may be prohibitively expensive or even impossible (RUBIO-GONZ

et al., 2013). To overcome this, precision tuning tools were developed to automate the

process of precision tuning in applications.



31

2.3.2 Popular Automated Tools for Precision Tuning

Sampson et al. (2011) propose using type qualifiers to declare data that may be

subject to approximate computation, isolating them from the parts that must be precise.

Using these types, the system can automatically map approximate variables to low-power

storage, use low-power operations, and apply more energy-efficient algorithms provided

by the programmer. This approach statically guarantees the isolation of the precise parts

from the approximate ones, allowing programmers to explicitly control the flow of infor-

mation from approximate to accurate data. This eliminates the need for dynamic checks

and further improves energy savings. The authors developed an extension to Java that

adds approximate data types named EnerJ. They show that the extension is expressive

and compelling, as a small number of annotations can lead to significant energy savings

with an acceptable accuracy loss.

Rubio-gonz et al. (2013) present Precimonious, a dynamic program analysis tool

designed to assist in tuning the precision of floating-point programs. The tool searches

for floating-point program variables and attempts to lower their precision based on accu-

racy constraints and performance goals. It recommends a type of instantiation that uses

lower precision while producing an accurate enough result. The authors evaluated Prec-

imonious on several widely used functions from the GNU Scientific Library, two NAS

Parallel Benchmarks, and three other numerical programs. The experimental results for

these functions and applications demonstrate that the tool can reduce precision, leading

to significant performance improvements.

Schkufza, Sharma and Aiken (2014) present a method for overcoming the com-

plicated semantics of floating-point instruction sets. Compilers often treat floating-point

optimization as a stochastic search problem, which forces them to preserve programs as

written. The authors show that it is possible to produce high-performance optimizations

specialized to the range of live inputs of a code sequence and the desired precision of

its live outputs by repeatedly applying random transformations to floating-point binaries

produced by a production compiler or by hand. Furthermore, they demonstrate that the

combined result of tens of millions of arbitrary transformations is sufficient to create

novel and often non-obvious optimizations that could otherwise be missed. Experiments

show that the method can generate reduced-precision implementations with significant

performance improvements.

Chiang et al. (2017) developed an automated tool called FPTuner, which rigor-



32

ously allocates precision based on formal analysis via Symbolic Taylor Expansions and

error analysis based on interval functions. This tool generates and solves a quadrati-

cally constrained program to obtain a precision-annotated version of a given expression,

automatically introducing all the required precision casting operations. FPTuner also of-

fers flexible control over precision allocation using constraints to restrict the number of

high-precision operators and group operators to allocate the same precision to facilitate

vectorization. To evaluate the tool, the authors tuned several benchmarks. They measured

the proportion of lower-precision operators assigned for increased error thresholds and

energy consumption reduction from executing mixed-precision tuned code. The results

showed significant energy savings using mixed-precision tuning.

2.4 State of the Art

Kotipalli et al. (2019) present AMPT-GA, an automated mixed-precision floating-

point tuning framework for GPU applications. The framework selects application-level

data precisions to maximize performance while adhering to user-defined accuracy con-

straints. It combines static analysis for casting-aware performance modeling and dynamic

analysis for modeling and enforcing precision constraints. The authors further improve

the optimizations performed by the framework with application-aware mutations using

a genetic algorithm-based search function. Experimental results indicate that the frame-

work improves the performance efficiency of a LULESH application implementation by

14-63% more than the prior state-of-the-art approach called Precimonious.

Laguna et al. (2019) have presented GPUMixer, a tool for tuning mixed-precision

floating-point calculations on scientific applications running on GPU architectures. The

tool utilizes performance-driven approximations and introduces a new static analysis method

that identifies sets of operations that minimize the conversion between floating-point

types. Additionally, the authors propose shadow computation analysis to estimate the rel-

ative error introduced by using mixed precision on GPUs. Experimental results indicate

that the tool can improve the performance of GPU-based applications by up to 46.4%.

Samadi et al. (2014b) present a framework, SAGE, which uses an automated ap-

proach to generate a set of CUDA kernels with varying levels of approximation. The

framework iteratively selects the kernels that provide the best performance while adhering

to a user-defined output quality target. SAGE consists of two main steps: an offline com-

pilation step and a runtime kernel management step. During the offline compilation step,
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the input code is analyzed to identify opportunities to trade accuracy for performance.

This analysis automatically generates approximate CUDA kernel versions using three

GPU-specific optimizations. These optimizations systematically detect and skip expen-

sive GPU operations. Each optimization has its tuning parameters, which the framework

uses to manage the performance-accuracy trade-off.

The runtime management step dynamically selects the approximate kernel. It con-

sists of three parts: tuning, preprocessing, and optimization calibration. Tuning uses a

greedy algorithm to find the fastest kernel with better quality than the target output qual-

ity defined by the user. Preprocessing ensures that the data needed by the approximate

kernels are ready before execution. During calibration, the framework monitors the ac-

curacy and performance dynamically. If the output quality does not meet the target, it

chooses a less aggressive approximate kernel to improve the output quality. The results

demonstrate that the framework improved performance by up to 2.5x on average with less

than 10% quality loss in ten machine learning and image processing applications on an

NVIDIA GTX 560 GPU.

Samadi et al. (2014a) introduce Paraprox, a pattern-based approximation frame-

work for data-parallel applications. The framework transparently approximates data-

parallel patterns on OpenCL or CUDA kernels by creating a parameterized approximate

kernel tuned at runtime to maximize performance while adhering to a target output quality

specified by the user. The approximations are made by identifying common computation

idioms found in data-parallel programs (such as Map, Scatter/Gather, Reduction, Scan,

Stencil, and Partition) and replacing them with approximations.

Once the approximated kernels are generated, the framework tunes a set of vari-

ables to control the accuracy and performance of the approximations. If the target output

quality specified by the user is not met, the framework performs a new parameter tuning

or uses a less aggressive approximated kernel for subsequent executions. Experimen-

tal results indicate that the framework improves the performance of 13 soft data-parallel

applications by up to 2.7x on an NVIDIA GTX 560 GPU and 2.5x on an Intel Core i7

quad-core processor compared to accurate execution, with an accuracy loss of no more

than 10%.

Ho, Silva and Wong (2021) present a framework for dynamically mixing floating-

point precision in GPU applications. The framework consists of two steps. The first

step generates three kernel versions of a given CUDA application with different levels

of approximation using FP32 and FP16. Based on a user-defined target output quality,
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Table 2.1 – Applications used by previous works and their respective domains.

Application Domain

Histogram, Image Binarization, Dynamic Range
Compreesion, Mean Filter, Gaussian Smoothing, Gamma
Correction, Gaussian Filter, Image Denoising, Billateral

Filter, MRI-q

Image Processing

Kmeans, Naive Bayes, SVM, Fuzzy Kmeans, Means Shift,
Kernel Density Estimation, Back Propagation

Machine Learning

Matrix Multiply, Newtonraph, Arclength Numerical Analysis

LavaMD, CoMD, CP Molecular Dynamics

LULESH, CFD Fluid Dynamics

Quasirandom Generator, BoxMuller Statistics

Blackscholes / Cumulative Frequency Histograms / Nbody
/ Inversek2j

Financial / Signal
Processing / Physics /

3D Gaming

the framework selects only two kernels for execution, one with higher and one with lower

accuracy, to ensure that neither exceeds the target output quality. The second step consists

of merging the two versions into one and finding the degree of approximation needed to

maintain the target output quality.

The approach proposed by the authors differs from most state-of-the-art methods

in how the approximation is performed. Instead of searching for a subset of variables

where the precision of the floating-point representation can be lowered, the authors try

to change the precision of a subset of data elements of the application at runtime. To do

this, they assign groups of threads to perform the computations using the higher-precision

version of the kernel or the lower-precision one. Experimental results show that this

approach can improve performance by up to 2 times with an accuracy loss of up to 10%.

Table 2.1 shows that most applications used in these works are non-iterative. Al-

though some iterative applications and applications that use multidimensional data do-

mains are used, most applications iterate only once over the data domain and do not

represent applications with significant computational demand. There may be several rea-

sons for this, including the complexity involved in tuning the precision and monitoring

the accuracy loss, especially during runtime, in iterative applications.

All works follow a two-stage approach, where the first offline approach generates

different approximated kernel versions or performs different approximations for every

new TOQ. The second stage involves online calibration and accuracy loss monitoring.
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Using these approaches in iterative applications can result in significant overhead during

execution. However, our approach is fully offline and uses multiple static approximation

versions of CUDA kernels for different TOQs defined by users. By extracting the kernel

versions’ accuracy loss profile, we can generate interleaved execution configurations for

arbitrary TOQs as long as the same input data is used. This way, we can remove the

overhead of calibration and accuracy loss monitoring, which can introduce a significant

overhead for the execution, especially in iterative applications.
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3 INTERLEAVED EXECUTION OF APPROXIMATED CUDA KERNELS

In this Chapter, we introduce the concept of executing multiple approximate ver-

sions of CUDA kernels in an interleaved manner to enhance the performance of interactive

applications. We begin by discussing how to measure and manage the accuracy loss of

approximations, especially in iterative applications with multidimensional data domains.

Next, we explore modern heterogeneous GPU architectures with hardware support for ap-

proximate computing. We also discuss applying application-level approximate computing

techniques to create multiple approximate kernel versions with different levels of accu-

racy. By executing these versions in a way that respects the Target Output Quality (TOQ)

and maximizes the execution of faster kernel versions, we can improve the performance

of iterative applications.

3.1 Measuring Accuracy Loss

There are several metrics to measure the error of approximate computations. The

most commonly used metrics for numerical problems are Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Relative Error (MITTAL, 2016). MAE measures the ab-

solute difference between the approximate and exact results, MSE measures the squared

difference, and Relative Error measures the difference between the approximate and exact

results relative to the exact computation as a percentage. These metrics are used to quan-

tify the loss of accuracy in approximate computing, and the choice of metric depends on

the specific application.

The Frobenius norm is a method for measuring accuracy loss in approximate com-

puting. It is a matrix norm that measures the difference between a matrix computed using

exact arithmetic and a matrix computed using approximate arithmetic. The Frobenius

norm is defined as the square root of the sum of the absolute squares of the matrix’s

elements. For a matrix A, the Frobenius norm is given by the following formula:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij|2

Here, aij denotes the element in the ith row, jth column of A, and m and n are

the number of rows and columns in A, respectively. The Frobenius norm is a measure

of a matrix’s "size". It is a valuable tool for quantifying the magnitude of a matrix and
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Figure 3.1 – Code example for computing the accuracy loss using the Frobenius norm.

1 double sumSqC , sumSqA ;
2
3 f o r ( i n t i = 0 ; i < N; i ++)
4 sumSqC += pow ( Aapprox [ i ] − A[ i ] , 2 ) ;
5 sumSqA += pow (A[ i ] , 2 ) ;
6
7 double r e s = s q r t ( sumSqC ) / s q r t ( sumSqA ) ;

Source: The Authors

has a wide range of applications in various fields of mathematics and science. As our

primary focus is on iterative scientific applications that typically involve multidimensional

matrices, we will use the Frobenius norm to measure accuracy loss in our work.

Figure 3.1 provides an example of using the Frobenius norm to calculate accuracy

loss in a vector. The process involves first calculating the sum of the differences between

the approximate computation and the exact computation for each element in the vector

(i.e., the absolute error) and the sum of the exact vector. With these sums, the square root

of the sum of the absolute error (i.e., the sum of the difference between the elements in the

approximate vector and the elements in the exact vector) and the sum of the exact vector

is calculated. The resulting value is then divided by the square root of the sum of the exact

vector to obtain the relative error (or relative accuracy loss). This yields a value between

0 and 1, where 0 indicates no accuracy loss, and 1 indicates the complete dissimilarity

between the approximate and exact computations.

3.2 Management of Accuracy Loss

Managing loss of accuracy is a crucial step in developing approximate applica-

tions. While some techniques may have acceptable accuracy loss in specific applications,

others may exceed the limit and invalidate the final result. However, this does not neces-

sarily mean the technique cannot be used in these applications. By incorporating a loss

management method, the loss can be prevented from exceeding an acceptable threshold.

One popular approach is to set predetermined loss of accuracy limits during the

development of the approximate application. The method or technique adjusts itself based

on the predetermined loss limit, ensuring the final result is within the acceptable loss limit.

The aggressiveness of the approximation is relative to the limit: wider limits allow for a

more aggressive approach, while fairer limits allow only milder approaches.

It is also possible to use a predetermined loss of accuracy threshold as a barrier be-
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yond which no approximation is performed. In this case, the approximations are executed

only while the application’s loss of accuracy is below this limit. Operations are executed

without approximation when the limit is reached to prevent further loss of accuracy.

Correction and compensation methods are other popular approaches. Mathemati-

cal methods are usually employed to correct or compensate for the loss of accuracy intro-

duced by approximation techniques.

3.3 Heterogeneous Architectures

Modern computing systems comprise various architectures developed to perform

specific tasks optimally. One example of such an architecture is the Graphics Processing

Unit (GPU), initially designed to process and render images. Today, GPUs are used in

computationally demanding tasks, such as executing physical and mathematical simula-

tion models (e.g., climate prediction and fluid dynamics) and training and inference of

Artificial Intelligence (AI) algorithms.

Despite being capable of being used in various applications, GPUs were designed

to perform specific tasks efficiently. Therefore, they cannot perform all computable tasks

independently, requiring a central agency responsible for the control and management of

execution - the CPUs.

Figure 3.2 – Difference between CPU and GPU architectures.

Source: NVIDIA

The main difference between a CPU and a GPU is the number of cores and the

size of each core’s instruction set, as shown in Figure 3.2. CPUs typically have between 2
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and 128 cores per chip, while GPUs can have tens of thousands of cores on a single chip.

This difference in core count is due to the difference in the instruction set size of their

cores. CPUs are designed to handle various tasks quickly but are limited in the number

of concurrent tasks they can perform. Conversely, GPUs are designed to take a small and

specific number of tasks with a lower speed but massive parallelism in execution.

Additionally, CPUs are MIMD (Multiple Instruction, Multiple Data) architectures,

while GPUs are SIMD architectures. On a CPU, each core can execute different instruc-

tions on different data sets simultaneously. Each CPU core can execute its instruction

on multiple data sets in parallel (SIMD) thanks to vector instruction sets. However, on a

GPU, all cores run the same instruction over various data sets. Therefore, GPUs are best

suited for repetitive and highly parallel tasks where instructions must be executed over a

large dataset.

Advancements in semiconductor lithography technologies have enabled the man-

ufacture of faster and more powerful CPUs and GPUs than ever before. With each new

iteration of the technology, the number of circuits that can be added to the same silicon

area has increased considerably. While CPU developers used the space to increase the

amount of cache memory, add new instructions and more complex instructions, and in-

crease the number of cores, GPU developers used the additional space mainly to increase

the number of cores. These cores are specialized in rendering and floating-point calcula-

tion, as well as new cores specialized in specific tasks. For example, NVIDIA GPUs have

seen a significant increase in cores on a single chip in recent years, including reduced pre-

cision cores (FP16) and cores specialized in computing Fused Multiply-Add operations

(FMA), which are widely used in HPC and AI.

Figure 3.3 illustrates the structure of a Streaming Multiprocessor (SM) from NVIDIA

Ampere architecture. Each SM consists of 4 warps, with eight double floating-point cores,

16 single floating-point cores, 16 integer cores, and one tensor core. There are 32 FP64

cores, 64 FP32 cores, 64 INT32 cores, and 4 Tensor cores. A complete chip can contain

up to 128 SMs, providing 4096 FP64 cores, 8192 FP32 cores, and 512 Tensor cores per

chip. Despite the significantly lower number of tensor cores, each can perform 256 mixed-

precision FP16/FP32 FMA operations per clock. This amounts to 1024 FMA operations

per clock per SM, totaling 131,072 operations in an entire chip with 128 SMs.

The Ampere architecture supports half-precision (FP16) floating-point operations,

where each FP32 core can perform FP32 and FP16 operations. Furthermore, each FP32

core can perform two FP16 operations simultaneously, which results in twice as many
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Figure 3.3 – NVIDIA’s A100 GPU Streaming Multiprocessor (SM).

Source: NVIDIA

FP16 operations compared to FP32, as shown in Figure 3.4. Therefore, each warp can

perform 32 FP16 operations, up to 128 operations per SM, for 16384 FP16 operations on

an entire chip with 128 SMs. The Pascal architecture introduced support for running two

simultaneous operations in FP16 on an FP32 core, found in GPUs such as NVIDIA P100,

V100, and A100.

Although the tensor cores are optimized to compute only FMA operations, the

ability to perform operations at reduced precision (FP16) and high throughput makes
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Figure 3.4 – Evolution of NVIDIA’s GPU half-precision FPUs.

Source: (HO; WONG, 2017)

it possible to speed up the execution of other arithmetic operations in applications that

rely heavily on other arithmetic operations. Therefore, AC techniques such as reduced

precision and mixed precision can benefit from the high parallelism present in GPUs, es-

pecially the native support of FP16 reduced precision. These techniques reduce the size of

the floating-point representation format in applications, in addition to reducing memory

pressure and increasing parallelism in the execution of arithmetic operations. The reduc-

tion from FP32 to FP16 on modern NVIDIA GPUs represents a two-fold increase in the

total number of operations that can be performed in the same period. Therefore, optimiz-

ing the use of FP16 operations in reduced-precision and mixed-precision techniques on

GPU devices can significantly leverage the performance gains of these AC techniques.

3.4 Execution of Approximated Kernel Versions in Iterative Applications

GPUs are massively parallel devices that enable the execution of thousands of

operations simultaneously on large data sets. Applications that benefit most from this

parallelism are scientific, numerical analysis, neural networks, and machine learning ap-

plications.
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In particular, scientific and numerical analysis applications require significant com-

putational power, as they usually perform complex calculations on large data sets. Exam-

ples of applications such as fluid dynamics simulation, seismic analysis, heat transfer

simulation, and weather prediction demand high computational power and benefit from

the high parallelism available in GPUs.

These applications are iterative, meaning they perform operations repeatedly on a

data set until an acceptable result is obtained or until the desired number of repetitions is

reached. Due to the repetitive execution of operations on large datasets, AC techniques

that reduce the size of the floating-point representation format in these applications can

significantly optimize performance on GPUs that have native support for smaller formats,

such as FP16.

However, incorporating reduced and mixed precision techniques can be labor-

intensive, especially in iterative applications. Although the reduced precision technique

usually requires only tiny modifications to the types of application variables and, in the

case of NVIDIA GPUs, adjustments in vector and matrix indexing, in many cases, the

loss of accuracy in the final result of the application exceeds the maximum acceptable

limit. In these cases, using the mixed-precision technique allows the loss of precision

to be controlled by tuning the variables that will or will not have their floating-point

representation size reduced (or increased). This tuning becomes extremely costly in larger

applications, such as numerous iterative applications.

Moreover, refining and tuning the variables and operations that should or should

not have reduced representation size is necessary at each newly defined accuracy loss

limit. While higher loss limits allow more operations to be performed at lower accura-

cies, tighter limits restrict this amount due to their more significant impact on accuracy.

Additionally, new input data may require re-tuning tuning to ensure the loss of accuracy

limit is respected.

Due to the repetitive nature of iterative applications, combining reduced or mixed

precision techniques with executing multiple inexact programs can be an alternative. In-

stead of developing an approximate implementation based on the loss of accuracy limit

by adjusting the size of the representation format of floating-point variables individually,

two or more approximate implementations with different loss of accuracy rates are devel-

oped. One of the faster versions is executed until the loss of accuracy limit is reached.

Then the rest of the iterations are performed in the exact version to avoid exceeding the

loss of accuracy limit. This approach allows the same implementations to be used for new
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thresholds of loss of accuracy or different data sets, eliminating the need to refactor the

application code for new thresholds or data.

As a case study, we will use the HotSpot3D simulation application from the well-

known Rodinia benchmark suite (CHE et al., 2009). This application estimates the tem-

perature of processors based on an architectural blueprint and simulated power measure-

ments. Thermal simulations are performed where differential equations are iteratively

computed per block. The resulting matrix represents the average temperature value for

each cell in the area corresponding to the processor chip.

To evaluate the performance of reduced precision, mixed precision, and multiple

inexact programs, we will use a system equipped with 4 NVIDIA P100 GPUs natively

supporting two-way FP16 precision operations on a 32-bit FPU. Each GPU has 1792

FP64 cores and 3584 FP32 cores, totaling 7168 FP16 cores and 16 GB of global memory.

The system also has 2 POWER8NVL 1.0 CPUs, each with ten physical cores and 80

threads (a total of 160 threads) running at a base frequency of 2394 MHz and a maximum

frequency of 4023 MHz, and 128 GB of main memory. Although we have multiple GPUs,

we will only use one in our experiments.

For the experiments, we will use a 3D input dataset of 512x512x8, which means

512 cells on the X axis, 512 cells on the Y axis, and eight cells on the Z axis, respectively,

making a total of 2,097,152 cells. We will use 100 application iterations; the presented

results are the average of 10 executions of each experiment.

Figure 3.5 illustrates the evolution of accuracy loss about exact execution in FP32

over 100 iterations of applying three approximate implementations, using the techniques

of loop perforation (loopperf), reduced precision FP16 (half), and mixed precision FP32 /

FP16 (mixed). The loss of accuracy is expressed as a percentage, with 0% indicating that

the result in each cell of the approximate implementation result matrix is identical to the

result of the corresponding cell in the exact implementation and 100% indicating that the

result in each cell of the approximate implementation is entirely different from the result

of the corresponding cells in the exact implementation.

As the execution progresses, each implementation’s accuracy loss profile differs.

In the loopperf implementation, there is a more significant loss right at the beginning,

which retracts and increases from the second half of the iterations to the end. In the

mixed precision implementation, the loss of accuracy is continuous during the execution

of the application and reaches a final loss of accuracy, like the loopperf implementation,

close to 0.25%. On the other hand, the half implementation presents a high accuracy loss
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Figure 3.5 – HotSpot3D accuracy loss using FP16 (half), FP16+FP32 (mixed) and loop
perforation (loopperf).

Source: The Authors

right at the beginning of the execution, which continues to increase, but at a lower rate,

until the end of the execution, reaching a loss of 0.91%.

Despite the significantly more significant loss of accuracy, half implementation

has the lowest runtime. While the exact implementation runtime in FP32 is 6.91 millisec-

onds (ms), the implementation runtime is only 4.05 ms. Loopperf got the second-best

time, 5.54 ms, while mixed had a running time close to the exact implementation, 6.87

ms.

Comparing the runtime of the three approximate implementations, it is possible to

observe that the mixed implementation did not significantly improve in runtime compared

to the exact implementation in FP32 despite performing some of its arithmetic operations

in FP16. This implementation stores all information in structures with FP32 precision.

Therefore, when arithmetic operations are performed in FP16, they depend on the con-

version of data referring to the computation from FP32 to FP16, which introduces an

overhead in the execution. As only a few operations are performed in FP16, the use of

FP16x2 incurs more overhead, which ends up harming the execution furthermore, result-

ing in a performance very close to the exact implementation.

On the other hand, despite the implementation taking good advantage of the par-

allelism available in FP16x2 operations of the architecture, the storage, and computation

of all operations in FP16 compromise the result more. Despite having an accuracy loss
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of less than 1%, which in most cases is acceptable, if the accuracy loss limit were 0.7%,

for example, this implementation would have exceeded the limit, and therefore the final

result would not be considered acceptable. However, a solution to continue using this

implementation would be to execute the initial iterations until reaching the loss limit of

0.7%, and from then on, execute the rest in float (exact implementation in FP32), thus

avoiding exceeding the limit of loss.

Figure 3.6 presents the result of an execution where the accuracy loss limit is

0.7% with the replacement of implementations when the limit is reached. This image

shows the loss of accuracy profile of the half application (in red) where all iterations

are executed in FP16 and the profile of the loss of accuracy of the execution of the half

implementation until reaching the loss limit and, from then on, the execution using the

float implementation of the rest of the iterations. As the float implementation replaces

the half implementation, the loss of accuracy starts to decrease, retracting from 0.7% to

just 0.18%. Despite the reduction in accuracy loss, the runtime increased from 4.06 ms to

5.51 ms.

Figure 3.6 – HotSpot3D accuracy loss using FP16 (half) and FP16 up to 0.7%, then switching to
FP32 for the rest of the iterations (half-float).

Source: The Authors

Suppose we perform the same experiment with the mixed and loopperf implemen-

tations. In that case, we observe that the loss of accuracy profile behaves quite differently

from that of the half implementation, as shown in Figures 3.7 and 3.8. Using an accuracy

loss limit of 0.16% for the mixed implementation and 0.14% for the loopperf implemen-
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tation and replacing these implementations with the float implementation when this limit

is reached, we see that the accuracy loss stabilizes around these limits until the end of the

execution, with a slight decrease in the loopperf implementation. These results suggest

that replacing FP16 implementations with higher-precision implementations can reduce

precision loss introduced by the FP16 implementation due to accumulation.

Figure 3.7 – HotSpot3D accuracy loss using FP16+FP32 (mixed) and FP16+FP32 up to 0.16%,
then switching to FP32 for the rest of the iterations (mixed-float).

Source: The Authors

Replacing the mixed and loopperf implementations with the float implementation

increases their running time. In the mixed implementation, the time increases from 6.87

ms to 6.89 ms. In the loopperf implementation, the replacement causes the time to rise

from 5.54 ms to 6.16 ms.

Although the final result is significantly smaller than the 0.7% loss of accuracy

threshold that triggered the replacement of the half implementation with the float imple-

mentation, it does not necessarily mean that the same run is valid in a case where the loss

of accuracy limit is 0.2%, for example. Despite the final result being less than 0.2%, the

loss of accuracy during execution was significantly higher. Therefore, it cannot be guar-

anteed that this result is correct. However, exploiting this feature can result in significant

performance gains.

To evaluate the potential performance gain in interleaving the half and float im-

plementations so that the accuracy loss limit is not exceeded during the entire execution,

we will use three different limits. Figure 3.9 presents the profile of the loss of accuracy of
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Figure 3.8 – HotSpot3D accuracy loss using FP16+FP32 (mixed) and FP16+FP32 up to 0.16%,
then switching to FP32 for the rest of the iterations (mixed-float).

Source: The Authors

the interleaving of the half and float implementations in a loss limit of around 0.22%. We

start the execution with the half implementation and reach the accuracy loss limit already

in the third iteration, at which point we replace the half implementation with the float.

After a few iterations, we rerun the half implementation, successively interspersing them

until the execution is finished. This way, it was possible not only to respect the limit of

loss of accuracy but also to achieve a relatively lower runtime than the exact execution,

6.44 ms.

By setting a higher accuracy loss limit, precisely 0.44%, we can observe that the

interleaving between half and float implementations decreases. However, the half im-

plementation requires considerably more iterations, as shown in Figure 3.10. With more

iterations running in FP16x2, the runtime is significantly reduced compared to the previ-

ous loss limit of 0.22%, dropping from 6.44ms to 5.53ms.

Consequently, by increasing the precision loss limit to 0.68%, we observe that the

float implementation performs only a tiny fraction of iterations, as shown in Figure 3.11.

This results in a runtime that is very close to using only half implementation, with only

4.3ms compared to 4.03ms.

The interleaved execution of the exact and approximate implementations allows

code reuse without requiring changes for different accuracy loss configurations. Using

a predetermined accuracy loss limit as the basis for interleaving between the two imple-



49

Figure 3.9 – HotSpot3D accuracy loss using FP16 and switching to FP32 each time the accuracy
loss threshold of 0.22% is reached (half-float) compared to the accuracy loss of full FP16

execution (half).

Source: The Authors

Figure 3.10 – HotSpot3D accuracy loss using FP16 and switching to FP32 each time the
accuracy loss threshold of 0.44% is reached (half-float) compared to the accuracy loss of full

FP16 execution (half).

Source: The Authors

mentations maximizes the use of the faster but less accurate implementation, resulting in

a considerable acceleration of the application’s execution within the accuracy loss limit.

This approach allows optimal utilization of the FP16x2 architecture while respecting de-
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Figure 3.11 – HotSpot3D accuracy loss using FP16 and switching to FP32 each time the
accuracy loss threshold of 0.68% is reached (half-float) compared to the accuracy loss of full

FP16 execution (half).

Source: The Authors

sired precision loss limits.

During execution, a considerable variation in the accuracy loss evolution profile

can be observed as intercalations occur. With a limit of 0.22%, Figure 3.9 shows that the

rate of accuracy loss differs in the first two parts where the half implementation is used

compared to the third part. In the first two parts, the loss of accuracy goes from 0% to

0.22% and from 0.09% to 0.22%, respectively, in just 2 and 4 iterations. However, the

third execution of the half implementation experiences a loss of accuracy from 0.11%

to 0.22% over a range of 11 iterations. Finally, in the fourth and fifth executions of the

half implementation, the loss rate increases again, reaching 0.22% in smaller intervals of

iterations, only 4 and 3 iterations, respectively.
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4 A METHODOLOGY FOR INTERLEAVED EXECUTION OF APPROXIMATED

CUDA KERNELS BASED ON ACCURACY LOSS PROFILES

This Chapter discusses the challenges related to the interleaving of multiple ker-

nel versions and presents the proposed methodology in this thesis. The methodology is

discussed in detail, including the steps of defining measurement points, generating per-

formance statistics and accuracy loss of subsections, and generating the execution config-

uration based on the statistics for a specific accuracy loss limit defined by the user.

4.1 Challenges in Interleaved Execution of Kernel Versions

In Section 3.4, we analyzed the impact of three of the most popular approximate

computing techniques on the accuracy loss of the HotSpot3D heat transfer simulation ap-

plication from the Rodinia benchmark suite. Additionally, we showed how it is possible to

accelerate application execution within predetermined accuracy loss thresholds by using

multiple kernel versions with different accuracy loss and performance profiles. For this

purpose, we used a kernel implemented in FP16 (called "half") developed to efficiently

utilize modern NVIDIA GPU architectures, where the same FP32 FPU can perform two

FP16 operations simultaneously. We also used an exact kernel implemented in FP32

("float").

However, as mentioned in Section 3.4, the accuracy loss profile varies consid-

erably during execution. Figure 4.1 shows the accuracy loss profiles of the half kernel

implementation and the interleaved execution of the half and float kernel implementation

with accuracy loss thresholds of 0.22%, 0.44%, and 0.68%. If we compare the behavior

of the accuracy loss when the half kernel implementation is executed, we see that the loss

rate differs in every execution. The same occurs when the exact kernel implementation is

executed, which can quickly reduce in just a few iterations or slowly reduce over a few

dozen iterations. This behavior shows that the initial state of the data (i.e., the value) at the

time the kernel implementations start their execution significantly impacts the accuracy

loss rate throughout the interleaved execution of the implementations. Thus, a loss rate

measured at the beginning of execution may not accurately represent the accuracy loss

rate throughout the remainder of the application’s execution.

To improve the method’s accuracy in generating execution configurations, it is
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Figure 4.1 – HotSpot3D accuracy loss profile of the interleaved execution of FP16 and FP32
kernel versions with accuracy thresholds of 0.22%, 0.44%, and 0.68%.

Source: The Authors

crucial to consider the difference in accuracy loss behavior at various points during ex-

ecution. One way to achieve a more accurate measurement of accuracy loss at different

moments of execution is to use the accuracy loss profile of the execution of the approxi-

mate kernel version with the highest accuracy loss as a basis. Divide the cartesian plane

represented by the total number of iterations and the maximum accuracy loss of the execu-

tion into N subsections. In Figure 4.1, for example, there are a total of 100 iterations and

a maximum loss of 0.91%. This will obtain the average accuracy loss rate for each kernel

version in each subsection, allowing for more precise accuracy loss estimates throughout

application execution.

To measure the accuracy loss profile, it is not necessary to measure all subsections

resulting from dividing the area related to the total number of iterations and the maximum

accuracy loss value. Typically, the accuracy loss profile expands upward to the right of the

Cartesian plane, represented by the total number of iterations and the maximum accuracy

loss (as shown in Figure 4.1). In practice, some subsections are not intercepted by the base

accuracy loss profile (i.e., the profile of the kernel version with the highest accuracy loss)

or by the subsequent measurements taken. Therefore, measuring only the subsections

intercepted by one accuracy loss profile is sufficient.

Although measuring the accuracy loss rate in multiple subsections requires signifi-

cant additional work, these measurements are necessary only once for the same input data
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set and kernel versions. Performance and accuracy loss statistics can then be extracted for

a data set and kernel versions. With these statistics, the method can generate execution

configurations for any desired accuracy loss limit without requiring new measurements.

This eliminates the need to alter the kernel version code for different accuracy loss limits.

In this work, we will use only two versions of the kernel of applications: the

exact version and an approximate version with reduced floating-point precision or loop

perforation technique. This choice was made for simplification since our work aims to

evaluate measurements in multiple subsection configurations and accuracy loss limits. To

achieve this goal, we will use only the exact version and an approximate version that

offers a significant gain in runtime since the idea is to interleave multiple versions with

different runtimes and seek to maximize the utilization of the kernel version with the

best performance to reduce the application’s runtime as much as possible. Following

this line, our method of generating execution configurations will always start with using

the approximate kernel version to maximize the execution of the kernel with the lowest

runtime within the specified accuracy loss limit.

4.2 Our Methodology

Figure 4.2 shows a flow diagram of the entire process, which includes measur-

ing performance and loss of accuracy and generating the execution configuration of our

method. There are six main steps:

1. Generating Accuracy Loss Profiles

2. Generating Subsections Configuration

3. Measuring Performance and Accuracy Loss per Subsections

4. Generating Accuracy Loss Statistics

5. Generating Performance Statistics

6. Generating Execution Configurations

4.2.1 Step 1 - Generating Accuracy Loss Profiles

The first step is to measure the loss of accuracy and runtime of each iteration of the

application for both kernel versions. To do this, you must first instrument the application
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Figure 4.2 – Flowchart of our methodology.

Source: The Authors

with a loss of accuracy measurement function to compute the Frobenious norm defined

in Section 3.1 of Chapter 3 and duplicate the primary data structures. These are the

structures that contain the input and output data modified during the execution of the

application. The data duplication is necessary to perform the control computation and the

approximate computation of the application side by side. This enables you to compute

the loss of accuracy of the computation as the execution progresses.

The pseudo-code in Figure 4.3 illustrates the instrumentation process. In lines 1

and 2, the code duplicates all necessary data structures modified during execution, iso-

lating the data for control execution (line 5) and approximate execution (line 6). Within

the application’s main loop, after each iteration’s control and approximate execution, the
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Figure 4.3 – Code instrumentation to perform accuracy loss profiling.

1 r e f e r e n c e _ d a t a
2 a p p r o x i m a t e _ d a t a
3
4 main i t e r a t i v e loop :
5 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a )
6 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a )
7
8 w a i t ( )
9 c o p y _ d a t a _ f r o m _ d e v i c e _ t o _ h o s t ( )

10
11 c o m p u t e _ a c c u r a c y _ l o s s ( r e f e r e n c e _ d a t a , a p p r o x i m a t e _ d a t a )
12
13 s t o r e _ p r o f i l e ( )

Source: The Authors

Figure 4.4 – Profiling output file format.

1 k e r n e l , i t e r a t i o n , s t a r t _ t i m e s t a m p , end_t imes tamp , run t ime ,
a c c u r a c y _ l o s s

2 h a l f , 1 , 1675188784836839782 , 1675188784837324423 , 0 .480255991220474 ,
0 .001458076294512

Source: The Authors

computation results are copied from the GPU’s global memory to the host’s main memory

(lines 8 and 9). Once the results are copied to the host’s main memory, the loss of accu-

racy of the execution up to that point is calculated (line 11), and the information is stored

in a file (line 13). The process then continues with the execution of the next iteration and

repeats the cycle.

The data is stored in a CSV (Comma-Separated Values) file at each iteration of the

application. Before the execution starts, any loss of accuracy is recorded to track losses

arising from conversions between different floating-point data types. Data conversion is

only required when different floating-point representation formats are used, since different

approximate computing strategies can be used with the same floating-point format. In

addition to the loss of accuracy, the kernel name, the iteration, and the start and end

timestamps of each iteration’s execution are also stored. The file format is shown in

Figure 4.4.

Instrumentation can be performed on each kernel version individually or in a sin-

gle application. If the application has kernel version control, we can perform instrumenta-

tion on only one application instance. We can then generate the accuracy profile for each

kernel version in two runs, using only one of the versions in each run. If the application

does not have kernel version control, we need to perform instrumentation for each kernel

version in a different application instance. This will allow us to extract the accuracy loss
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profile for each kernel version.

4.2.2 Step 2 - Generating Subsections Configuration

In step 2, we divided the area corresponding to the display into a graph that shows

the loss of accuracy throughout the execution of the application. As mentioned earlier,

to obtain a more accurate estimate of the loss of accuracy as the execution progresses,

we will measure the loss of accuracy profile of multiple interleaves of the kernel versions

at different stages of the execution. This is necessary because the behavior of the loss

of accuracy changes throughout the execution. To accomplish this, we use the loss of

accuracy profile of the kernel version with the highest loss to create subsections in the

area corresponding to the loss of accuracy profile when displayed on a Cartesian plane.

We extract the total number of iterations and the maximum loss of accuracy reached

during the execution of the application from the approximate kernel’s loss of accuracy

profile (represented by the “Approximate Kernel Profile” object in the flow diagram of

Figure 4.2). Then, we divide these values by the number of subsections per axis the user

enters. Using this information, we generate a CSV file containing the subsection identi-

fier, start and end points for both axes, and the center of each subsection. By default, we

use the X axis for the number of iterations and the Y axis for the loss of accuracy.

Figure 4.5 illustrates the accuracy loss profile in the "Approximate + Sections"

facet and the corresponding subsections generated from this profile. The X-axis displays

the iterations, while the Y-axis displays the accuracy loss (measured using the Frobenius

norm). In this instance, each axis was split into two subsections, resulting in four subsec-

tions.

4.2.3 Step 3 - Measuring Performance and Accuracy Loss per Subsections

In step 3, we collected samples of the accuracy loss at different stages of the appli-

cation’s execution and with different interleaving of kernel versions. These measurements

were performed in three phases, based on the subsections generated in step 2. However,

before starting the measurements, we must decide where and when to take them.

The first phase involves measuring the accuracy loss that results from interleaving

the approximate kernel with the exact kernel. To do this, we use the loss of accuracy
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Figure 4.5 – Illustration of the main steps of our methodology.

Source: The Authors

profile of the approximate version and the subsection information to identify which sub-

sections are intercepted by the profile. This allows us to determine which iterations of

the approximate kernel version’s loss of accuracy profile belong to each subsection (as

seen in the “Approximated + Sections” facet of Figure 4.5) and then define from which

iteration to switch to the exact kernel version for execution.

Our goal is to find a more accurate estimate of the loss of accuracy in each sub-

section. We chose the average iteration among the iterations intersecting each subsection

for the first phase measurements to achieve this. This strategy avoids measuring iterations

near section boundaries. After deciding on the iterations of the approximate version from
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which the measurements of the loss of accuracy of the float version will be carried out,

we store these points (iterations) in a text file. This is represented by the "Generate Phase

1 Test Points" object in Figure 4.2.

Figure 4.6 illustrates the instrumentation required to conduct interleaving loss-of-

accuracy measurements of the approximate kernel version against the exact version. In

lines 1-3, we read the iterations stored in a file and insert them into a vector. In lines 5-6,

we duplicate the data structures used by the kernels to allow separate execution of the

control (from now on called the “reference” execution) and approximate executions, en-

abling loss-of-accuracy measurement at each iteration. The computation of the exact and

approximate execution using the approximate kernel is performed in lines 9-10, continu-

ing until the current iteration is present in the vector, which signals the need to interleave

the two kernel versions in the approximate execution.

After identifying the current iteration in the vector, we copy the updated execution

data to new data structures. Then, a new execution starts on line 16 from the following

iteration. Instead of the approximate kernel version used in the earlier computation, we

use the exact kernel version (lines 17 and 18) with the data from the approximate execu-

tion of the loop in line 8. This way, we can measure the loss of accuracy starting from

the iteration that generated the interleaving of the two kernel versions until the end of the

execution of the loop of line 8.

We repeat this process for each iteration present in the vector. At the end of each

iteration of the loop in line 16, we calculate and store the loss of accuracy (line 20). This

is represented by the "Generate Phase 1 Profile" object in Figure 4.2. In the end, we will

have the accuracy loss profile of the interleaving of the approximate kernel version with

the exact one in the different subsections, which is intercepted by the loss profile of the

approximate version used as the baseline. You can observe the result in the "Phase 1 +

Sections" facet of Figure 4.5.

In phase one, we duplicate the data in lines 13 and 14 by copying the data from

the current execution to new data structures. This second duplication is necessary because

we are performing a fork of execution. When an iteration is present in the vector, the

execution of the loop in line 8 is paused, and the loop in line 16 runs from that iteration

up to the total number of iterations of the execution. Once the loop in line 16 is finished,

the loop in line 8 resumes execution. Therefore, it is essential to preserve the data in the

structures of lines 9 and 10 for the correct continuity of the execution of the loop in line

8.
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Figure 4.6 – Phase 1 accuracy loss profiling code instrumentation.

1 s t d : : i f s t r e a m t p f i l e ( f i l e n a m e )
2 s t d : : i s t r e a m _ i t e r a t o r < i n t > s t a r t ( t p f i l e ) , end
3 s t d : : v e c t o r < i n t > t e s t _ p o i n t s ( s t a r t , end )
4
5 r e f e r e n c e _ d a t a
6 a p p r o x i m a t e _ d a t a
7
8 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
9 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a )

10 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a )
11
12 i f ( s t d : : c o u n t ( t e s t _ p o i n t s . b e g i n ( ) , t e s t _ p o i n t s . end ( ) , i ) )
13 r e f e r e n c e _ d a t a _ p h a s e 1 = r e f e r e n c e _ d a t a
14 a p p r o x i m a t e _ d a t a _ p h a s e 1 = a p p r o x i m a t e _ d a t a
15
16 f o r ( i n t j = i +1 ; j < n u m i t e r ; j ++)
17 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 1 )
18 c o m p u t e _ e x a c t _ k e r n e l ( a p p r o x i m a t e _ d a t a _ p h a s e 1 )
19
20 c o m p u t e _ a c c u r a c y _ l o s s ( r e f e r e n c e _ d a t a _ p h a s e 1 ,

a p p r o x i m a t e _ d a t a _ p h a s e 1 )

Source: The Authors

Phase two involves measuring the loss of accuracy when interleaving the exact

kernel version by the approximate kernel version. We use the loss of accuracy informa-

tion collected in phase one to determine which subsections and iterations to collect this

information from. Similar to phase one, we identify the subsections intersected by the

different loss of accuracy profiles measured in phase one. If multiple profiles intersect

the same subsection, we use the proximity of the profile to the center of the intercepted

subsection as a criterion. This enables us to choose a profile that intersects the subsection

more evenly instead of only at the boundaries of the subsection.

After identifying the subsections intercepted by each phase one profile and choos-

ing the profile closest to the center of the subsection in case of multiple intercepts, we

need to determine from which iteration to perform measurements on each intercepted

subsection. Similar to phase one, we choose the average iteration of the set of iterations

of the profile that intersects the subsection.

Finally, we create a file that includes the iterations chosen for phase one and the

iterations chosen to carry out the measurements of phase two. This allows for reproducing

the measurements of phase one and new measurements to be carried out. The "Generate

Phase 2 Test Points" object in Figure 4.2 represents this stage.

Figure 4.7 depicts the instrumentation for phase two. We begin by reading the file

that contains the iterations in which the new measurements of phase two will be carried
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out. This file consists of two columns. The first column lists the iterations of phase

one corresponding to the chosen profiles, and the second column lists the iterations from

which the measurements of phase two will be conducted. This information is stored in a

vector where column one represents the index of the vector, and column two represents

the values of the respective indexes.

Figure 4.7 – Phase 2 accuracy loss profiling code instrumentation.

1 s t d : : v e c t o r < i n t > t e s t _ p o i n t s [ n u m i t e r ]
2 s t d : : i f s t r e a m t p f i l e ( f i l e n a m e )
3 s t d : : s t r i n g l i n e
4
5 whi le ( s t d : : g e t l i n e ( t p f i l e , l i n e ) )
6
7 s t d : : s t r i n g s t r e a m l i n e s t r e a m ( l i n e )
8 i n t va l1 , v a l 2
9

10 l i n e s t r e a m >> v a l 1 >> v a l 2
11
12 t e s t _ p o i n t s [ v a l 1 ] . push_back ( v a l 2 )
13
14 r e f e r e n c e _ d a t a
15 a p p r o x i m a t e _ d a t a
16
17 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
18 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a )
19 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a )
20
21 i f ( ! t e s t _ p o i n t s [ i ] . empty ( ) )
22 r e f e r e n c e _ d a t a _ p h a s e 1 = r e f e r e n c e _ d a t a
23 a p p r o x i m a t e _ d a t a _ p h a s e 1 = a p p r o x i m a t e _ d a t a
24
25 f o r ( i n t j = i +1 ; j < n u m i t e r ; j ++)
26 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 1 )
27 c o m p u t e _ e x a c t _ k e r n e l ( a p p r o x i m a t e _ d a t a _ p h a s e 1 )
28
29 i f ( s t d : : c o u n t ( t e s t _ p o i n t s [ i ] . b e g i n ( ) , t e s t _ p o i n t s [ i ] . end ( )

, j ) )
30 r e f e r e n c e _ d a t a _ p h a s e 2 = r e f e r e n c e _ d a t a _ p h a s e 1
31 a p p r o x i m a t e _ d a t a _ p h a s e 2 = a p p r o x i m a t e _ d a t a _ p h a s e 1
32
33 f o r ( i n t k = j +1; k < n u m i t e r ; k ++)
34 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 2 )
35 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a _ p h a s e 2 )
36
37 c o m p u t e _ a c c u r a c y _ l o s s ( r e f e r e n c e _ d a t a _ p h a s e 2 ,

a p p r o x i m a t e _ d a t a _ p h a s e 2 )

Source: The Authors

The iterations in the first column only include the iterations of the profiles from

which new measurements will be performed in phase two. Therefore, not all iterations

tested in phase one will be included. Additionally, if a loss profile extracted from a given
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iteration in phase one intersects multiple subsections and more than one measurement in

phase two is conducted from that iteration, the iteration of phase one is repeated in the

first column with the respective iteration of phase two from which measurements will be

taken.

From lines 14 to 27, we repeat the same steps as in phase one. The objective of

phase two is to measure the loss of accuracy when interleaving the exact kernel version

with the approximate version from certain iterations of the loss of accuracy profiles of

phase one. To achieve this, we need to reproduce the execution of these profiles until

these iterations to have updated data referring to the execution of the phase one profiles.

After duplicating data to isolate the reference execution and the approximate exe-

cution in lines 14 and 15, the main loop begins in line 17. In lines 18 and 19, we perform

the reference execution always using the exact kernel version and the approximate execu-

tion using the approximate kernel version until the index vector equals the current iteration

of the execution, signalling the need to perform the interleave of the approximate kernel

version with the exact version (only in the approximate execution). From then on, we

duplicate the data again (lines 22 and 23), copying the current state of the data structures

used thus far to new structures. A new loop starts in line 25, executing from the itera-

tion that generated the interleaving of the kernels to the total number of iterations of the

execution.

If the current iteration of the loop in line 25 exists in the vector with an index equal

to the iteration of the loop in line 17 that caused the interleaving of the approximate kernel

version with the exact version, a new interleave of the versions will be necessary (line 29).

Afterwards, we perform a new measurement of the accuracy loss by interleaving the exact

kernel version with the approximate kernel version. This starts with duplicating the data

structures in lines 30 and 31. Once the data structures have been copied to new instances,

a new loop is started in line 33 from the iteration that caused the second kernel interleave

in line 19, using the approximated kernel version in the approximate execution (line 35).

At the end of each iteration, the loss of accuracy is calculated, and the results are stored in

a file on line 37. The "Generate Phase 2 Profile" object in Figure 4.2 represents this stage.

The results of the measurements are shown in the "Phase 2 + Sections" facet of

Figure 5.4. The graph presents the loss of accuracy profiles of the approximate version

(represented by the red line), phase one (represented by the green lines), and phase two

(represented by the cyan lines). As shown in the lower right subsection (between iterations

100 and 200 and loss of accuracy 0 and 0.31), two phase one loss of accuracy profiles
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intersect the subsection, but only the one closest to the center was used to measure the loss

of accuracy in phase two. Furthermore, the graph illustrates how the behavior changes for

the same kernel version between different subsections.

Phase three involves measuring the loss of accuracy resulting from interleaving

the approximate kernel version with the exact kernel version. In phase one, the loss

of accuracy resulting from interleaving the approximate kernel version with the exact

version is also measured. However, this is based only on the loss of accuracy profile of

the approximate kernel version execution, which may cover only some of the subsections.

By introducing the third phase, we can increase the coverage of measurements for the loss

of accuracy resulting from interleaving the approximate and exact versions. Although the

main objective of phase three is to measure the loss of accuracy in subsections not covered

in phase one, we will measure all subsections intercepted by the profiles of phase two to

improve the results.

In phase two, we collect information on the loss of accuracy for different kernel

versions. Based on this information, we determine the subsections and iterations from

which to collect loss of accuracy information in phase three. If multiple loss of accuracy

profiles intersect the same subsection, we use the proximity of the profile to the center of

the subsection as a selection criterion, as we did in phase two.

After identifying the subsections intercepted by each phase two profile and choos-

ing the profile closest to the center of the subsection in case of multiple intercepts, we

determine from which iteration to perform measurements on each intercepted subsection.

We select the mean iteration of the set of profile iterations that intersect the subsection.

Finally, we generate a file based on the measurement iterations of phase one and two and

the iterations chosen to carry out the measurements of phase three to enable the reproduc-

tion of the measurements of phase one and Two from which the new measurements will

be carried out. This stage is represented by the "Generate Phase 3 Test Points" object in

Figure 4.2.

Figure 4.8 illustrates the instrumentation for phase three. The file containing the it-

erations in which the new measurements of phase three will be carried out is read between

the lines 1 and 14. This file has three columns: the first column contains the iterations of

the respective phase one profiles, the second column contains the iterations of the phase

two profiles, and the third column contains the iterations of the phase two profiles from

which the measurements of phase three will be performed.

This information is stored associatively in a map structure. The first column cor-
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Figure 4.8 – Phase 3 accuracy loss profiling code instrumentation.

1 s t d : : map< i n t , s t d : : map< i n t , s t d : : v e c t o r < i n t >>> t e s t _ p o i n t s
2 s t d : : i f s t r e a m t p f i l e ( f i l e n a m e )
3 s t d : : s t r i n g l i n e
4
5 whi le ( s t d : : g e t l i n e ( t p f i l e , l i n e ) )
6 s t d : : s t r i n g s t r e a m l i n e s t r e a m ( l i n e )
7 i n t va l1 , va l2 , v a l 3
8
9 l i n e s t r e a m >> v a l 1 >> v a l 2 >> v a l 3

10
11 i f ( t e s t _ p o i n t s [ v a l 1 ] [ v a l 2 ] . empty ( ) )
12 t e s t _ p o i n t s [ v a l 1 ] [ v a l 2 ] = s t d : : v e c t o r < i n t > { v a l 3 }
13 e l s e
14 t e s t _ p o i n t s [ v a l 1 ] [ v a l 2 ] . push_back ( v a l 3 )
15
16 r e f e r e n c e _ d a t a
17 a p p r o x i m a t e _ d a t a
18
19 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
20 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a )
21 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a )
22
23 i f ( t e s t _ p o i n t s . c o u n t ( i ) )
24 r e f e r e n c e _ d a t a _ p h a s e 1 = r e f e r e n c e _ d a t a
25 a p p r o x i m a t e _ d a t a _ p h a s e 1 = a p p r o x i m a t e _ d a t a
26
27 f o r ( i n t j = i +1 ; j < n u m i t e r ; j ++)
28 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 1 )
29 c o m p u t e _ e x a c t _ k e r n e l ( a p p r o x i m a t e _ d a t a _ p h a s e 1 )
30
31 i f ( t e s t _ p o i n t s [ i ] . c o u n t ( j ) )
32 r e f e r e n c e _ d a t a _ p h a s e 2 = r e f e r e n c e _ d a t a _ p h a s e 1
33 a p p r o x i m a t e _ d a t a _ p h a s e 2 = a p p r o x i m a t e _ d a t a _ p h a s e 1
34
35 f o r ( i n t k = j +1; k < n u m i t e r ; k ++)
36 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 2 )
37 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( a p p r o x i m a t e _ d a t a _ p h a s e 2 )
38
39 i f ( s t d : : c o u n t ( t e s t _ p o i n t s [ i ] [ j ] . b e g i n ( ) ,

t e s t _ p o i n t s [ i ] [ j ] . end ( ) , k ) )
40 r e f e r e n c e _ d a t a _ p h a s e 3 = r e f e r e n c e _ d a t a _ p h a s e 2 ;
41 a p p r o x i m a t e _ d a t a _ p h a s e 3 =

a p p r o x i m a t e _ d a t a _ p h a s e 2
42
43 f o r ( i n t l = k +1; l < n u m i t e r ; l ++)
44 c o m p u t e _ e x a c t _ k e r n e l ( r e f e r e n c e _ d a t a _ p h a s e 3 )
45 c o m p u t e _ e x a c t _ k e r n e l (

a p p r o x i m a t e _ d a t a _ p h a s e 3 )
46
47 c o m p u t e _ a c c u r a c y _ l o s s ( r e f e r e n c e _ d a t a _ p h a s e 3

, a p p r o x i m a t e _ d a t a _ p h a s e 3 )

Source: The Authors
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responds to the iteration of phase one and is the index of a second map structure. This

second map structure has an index corresponding to the iteration of phase two stored in

the second column of the file. The index of the second map structure contains a vector

with the iterations of the third column of the file. These iterations will be used to carry

out the measurements of phase three.

From lines 16 to 37, we repeat the same steps as in phase two. The objective of

phase three is to measure the loss of accuracy resulting from the interleaving of approx-

imate and exact kernel versions at certain iterations of the loss of accuracy profiles from

phase two. Thus, as in phase two, we need to repeat the execution of the profiles from

phases one and two up to these iterations to obtain updated data regarding the profile

executions.

After duplicating the data to isolate the reference execution and the approximate

execution on lines 16 and 17, the executions begin on lines 20 and 21 within the main

loop of line 19. The approximate execution, using the approximate kernel version, pro-

gresses until the current iteration is found at the index of the first map structure (line 23),

indicating the first interleave of kernel versions from the approximate kernel version to

the exact version (in the approximate execution only). From there, we duplicate the data

again in lines 24 and 25, copying the current state of the data structures to new structures,

and begin executing a new loop in line 27. In lines 28 and 29, we carry out the reference

execution and the approximate execution with the exact kernel version (lines 28 and 29)

from the iteration that generated the kernel’s interleave up to the total number of iterations

of the execution.

The loop on line 27 continues until the current iteration is found in the index of the

second map structure on line 31. At this point, the second interleave of the kernel versions

begins. This involves duplicating the data structures on lines 32 and 33 and executing the

reference and approximate computations (now with the approximate kernel version) on

lines 36 and 37 within the loop on line 35. This loop starts from the iteration on line

27 that produced the interleaving of the kernels, and continues for the total number of

iterations of the execution.

As the loop on line 35 progresses, and the current iteration is present in the index

vector equal to the iterations of the loops on lines 27 and 35, the measurements of phase

three begin. A new duplication of the data in lines 41 and 42 is then carried out, followed

by the start of the loop execution on line 43 and the reference and approximate executions

on lines 44 and 45. In the third step, the approximate computation on line 45 is performed
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in the exact kernel version. After each iteration, the loss of accuracy and other profile

information from step three are calculated and stored on line 47. This cycle is repeated

until all measurements are completed. The "Generate Phase 3 Profile" object in Figure 4.2

represents this stage.

The results of the measurements are displayed in the “Phase 3 + Sections” facet

of Figure 4.5. The graph depicts the loss of accuracy profile for the approximate version

(red line), as well as those for phase one (green lines), phase two (cyan lines), and phase

three (purple lines). An additional measurement is taken in each section where the phase

two loss of accuracy profiles intersect, allowing a measurement to be taken for the lower

right section where there was no measurement in phase one. Furthermore, the signifi-

cant difference in behavior between executions of the phase three exact kernel version in

different subsections is observable.

4.2.4 Step 4 - Generating Accuracy Loss Statistics

The fourth step involves generating statistics on accuracy loss for each kernel

version in the different measurement subsections. These statistics are derived from mea-

surements taken in the three phases of the step three and from the approximate kernel

version loss of accuracy profile that we used as baseline to perform the measurements in

step three. The results are stored in a CSV file containing each subsection’s information,

such as its identifier, start, end, and center on runtime of the iterations for the baseline ex-

ecution (approximate kernel version loss of accuracy profile), for the approximate kernel

version based on measurements taken in phase two of step three, and for the exact kernel

version based on measurements taken in phases one and three of step three.

To calculate the loss of accuracy statistics, the first step is to identify which pro-

files intersect each subsection. Then, for each subsection, we can identify the loss of

accuracy profiles whose measurements in step three started in that subsection and calcu-

late the average loss of accuracy for each kernel version. The average loss of accuracy

(or rate of loss of accuracy) is calculated for the set of iterations intersecting a subsection.

If more than one measurement started in the same subsection, an average of the average

loss of accuracy of iterations of each measurement is performed. This calculation is also

performed for the baseline execution of the approximate kernel version. For each subsec-

tion intercepted by the baseline loss of accuracy profile, the average loss of accuracy is

calculated.
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In addition to calculating the rate of accuracy loss for each kernel version in the

measurements performed in step three and the baseline execution, we also calculated the

average runtime in each subsection. This average is calculated using only the iterations

of the execution that originated in the subsection. If there is more than one measure-

ment starting from the same subsection, we calculate the average of the runtime of each

measurement. For the baseline execution, however, the average is calculated for each

subsection intercepted by the loss of accuracy profile. This step is represented by the

"Generate Accuracy Statistics" object in Figure 4.2.

4.2.5 Step 5 - Generating Performance Statistics

The fifth step involves generating performance statistics for the two kernel ver-

sions. These statistics are derived from each kernel version’s accuracy loss profiles, rep-

resented by the "Exact Kernel Profile" and "Approximate Kernel Profile" objects in Figure

5.1. For each kernel version, we calculate the cumulative runtime of iterations in the ac-

curacy loss profile and four runtime targets based on the difference in runtime between

the two kernel versions. The results are stored in a CSV file containing the iteration,

approximate kernel version and exact kernel version cumulative runtime, and the four

targets.

These targets will later be used to generate an interleaved execution configuration

of kernel versions in step six. They serve as reference points to minimize the impact on

the runtime of interleaving the approximated kernel version with the exact kernel version,

which has a higher runtime than the approximate version. The targets are calculated

by adding a quarter of the difference in the runtime of the two kernel versions to the

accumulated runtime of the iterations of the approximated kernel version.

The first target is the sum of the cumulative runtime of the previous iterations of

the approximate version with a quarter of the difference between the cumulative runtime

of the exact version. The second target is the sum of two quarters, the third of three

quarters, and the fourth target is the sum of the cumulative runtime of the approximate

version with the total difference between the two versions (which, in turn, is equal to the

cumulative runtime of the exact version). This approach provides a four-level estimate

of the potential impact of interleaving the execution of the exact kernel version with the

approximate kernel version. The "Generate Performance Statistics" object in Figure 4.2

represents this step.
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4.2.6 Step 6 - Generating Execution Configurations

In the sixth and final step, represented by the “Generate Execution Configuration”

object in Figure 4.2, we generate the execution configuration based on the performance

and accuracy loss statistics generated in steps four and five, respectively. Using this in-

formation, we conduct a simulation starting with the approximate kernel version and the

statistics generated for the first subsection, which is always located at the bottom left by

definition, as shown in Figure 4.5.

The simulation involves iterating over the total number of iterations of the execu-

tion and, at each iteration, add the subsection loss rate to the simulation’s accuracy loss

and the subsection’s execution average to the simulation’s runtime. As the simulation pro-

gresses, if the iteration or loss of accuracy (or both) exceeds the boundaries of the current

subsection, we identify the next subsection to which the iteration and loss of accuracy

values belong. Then we use the statistics of this next subsection.

If the accuracy loss reaches or exceeds the limit established for the simulation, a

new interleaving of kernel versions is performed. After starting the simulation, executing

the approximate kernel version is interleaved with the exact version when the loss limit

is reached. The exact version will run until it reaches the first goal of step four or the

simulation’s accuracy loss has retracted more than 50% of the established limit.

If the first target of step four is reached and the loss of accuracy has not decreased,

the exact version will continue to be executed until the next target is reached. If the loss of

accuracy has not decreased after reaching the second target, the execution will continue

until the third target is reached. If the loss of accuracy has not decreased after reaching

the third target, the execution will continue until the fourth target or until the end of the

execution if the loss of accuracy does not decrease after reaching the fourth target of step

four.

If the simulation of the exact version’s execution results in a retraction greater than

or equal to 50% of the established limit, a new interleave of kernel versions is performed,

regardless of whether any targets of step four have been reached. We established this 50%

retraction limit to prevent the exact version from running an extended period when it only

minimally impacts the simulated runtime and does not reach the first objective of step

four even after having retracted significantly. This way, we can prioritize the execution of

the approximate version, which offers a reduced runtime compared to the exact version’s

runtime.
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This process continues until the total number of iterations of the execution is

reached. In the end, we will have a set of iterations in which the simulation performed

interleaves between kernel versions based on the performance statistics and loss of accu-

racy of the measurements performed in step three. This set of iterations and the respective

kernel versions that started to be used in these iterations is stored in a text file. The file

contains in the first line the total number of iterations of the application’s execution, in the

second line, the iteration number 0, indicating the kernel version with which the execu-

tion will start. On the remaining lines will be the iteration number and the kernel version

into which the previous version should be interleaved. This step is represented by the

“Generate Final Execution Configuration” object in Figure 4.2.

Figure 4.9 illustrates the instrumentation of the application for reading and exe-

cuting interleaves according to the file generated in this step. Lines 1 to 8 read the file

with the execution configuration information. The first line, containing the total number

of iterations of the application’s execution, is stored in a variable of type integer (line

6). The remaining lines are stored in a vector, where the index represents the iteration in

which an interleaving of kernel versions will be necessary, and the value represents the

kernel version that should be used from that iteration on (line 17).

The execution of the application’s main loop begins on line 19. From then on, we

check if the current loop iteration is in the vector index and if data conversion is necessary

in case a new kernel version interleave occurs. Between lines 20 and 34, we check if the

current loop iteration is in the vector index. If the iteration is present and the version to

be used from that point on differs from the one used until then, we update the control

variable of the current kernel version and convert data from the floating-point precision

used in the previous kernel version to the floating-point precision used in the new kernel

version. This conversion is only necessary if the precision used in the two kernels is

different. From then on, the application continues executing (lines 36 to 39) using the

current kernel version until a new interleaving is necessary.
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Figure 4.9 – Execution configuration code instrumentation.

1 s t d : : i f s t r e a m e c f i l e ( f i l e n a m e )
2 s t d : : s t r i n g l i n e
3
4 s t d : : g e t l i n e ( e c f i l e , l i n e )
5 s t d : : s t r i n g s t r e a m l i n e s t r e a m ( l i n e )
6 l i n e s t r e a m >> i t e r a t i o n s
7
8 s t d : : v e c t o r < s t d : : s t r i n g > e x e c _ c o n f i g [ i t e r a t i o n s ]
9

10 whi le ( s t d : : g e t l i n e ( e c f i l e , l i n e ) )
11 s t d : : s t r i n g s t r e a m l i n e s t r e a m ( l i n e )
12 i n t v a l 1
13 s t d : : s t r i n g v a l 2
14
15 l i n e s t r e a m >> v a l 1 >> v a l 2
16
17 e x e c _ c o n f i g [ v a l 1 ] . push_back ( v a l 2 )
18
19 c u r r e n t K e r n e l = " a p p r o x i m a t e "
20
21 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
22 i f ( ! e x e c _ c o n f i g [ i ] . empty ( ) &&
23 s t d : : f i n d ( e x e c _ c o n f i g [ i ] . b e g i n ( ) , e x e c _ c o n f i g [ i ] . end ( ) ,
24 " a p p r o x i m a t e " ) != e x e c _ c o n f i g [ i ] . end ( ) )
25
26 p r e v i o u s K e r n e l = c u r r e n t K e r n e l
27 c u r r e n t K e r n e l = " a p p r o x i m a t e "
28 c o n v e r t _ d a t a _ f r o m _ a p p r o x i m a t e _ t o _ e x a c t _ f p ( )
29
30 e l s e i f ( ! e x e c _ c o n f i g [ i ] . empty ( ) &&
31 s t d : : f i n d ( e x e c _ c o n f i g [ i ] . b e g i n ( ) , e x e c _ c o n f i g [ i ] . end ( ) ,
32 " e x a c t " ) != e x e c _ c o n f i g [ i ] . end ( ) )
33
34 p r e v i o u s K e r n e l = c u r r e n t K e r n e l
35 c u r r e n t K e r n e l = " e x a c t "
36 c o n v e r t _ d a t a _ f r o m _ e x a c t _ t o _ a p p r o x i m a t e _ f p ( )
37
38 i f ( c u r r e n t K e r n e l == " a p p r o x i m a t e " )
39 c o m p u t e _ a p p r o x i m a t e _ k e r n e l ( )
40 e l s e
41 c o m p u t e _ e x a c t _ k e r n e l ( )

Source: The Authors
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5 EXPERIMENTS

This Chapter presents the results of the experiments conducted using our method-

ology. We provide a detailed description of the experimental configurations and the appli-

cations used in the experiments. We then show the interleaved execution configurations

of multiple kernel versions generated by our methodology for different problem sizes and

accuracy loss limits.

5.1 Experiment Setup

We run all experiments on a compute node of the Grid5000 (BOLZE et al., 2006)

grid computing infrastructure. The node, named Grouille-2, comprises two AMD EPYC

7452 CPUs, each with 32 cores and 64 threads, for a total of 128 threads. These CPUs

run at a base frequency of 2.35GHz and maximum boost frequency of 3.35GHz and have

a cache memory of 128MB each.

Additionally, the node comprises two NVIDIA A100 GPUs, each with 40GB of

HBM2 global memory and a memory bandwidth of 1,555GB/s. Each GPU has 3456

FP64, 6912 FP32, and 13824 FP16 cores, i.e., a ratio of FP64, FP32, and FP16 cores of

1:2:4. Moreover, each GPU has a total of 432 tensor cores, which are cores specialized in

performing FP16/FP32 mixed-precision Fused Multiply-Add (FMA) operations. Lastly,

the CUDA computing capability of these GPUs is 8.0.

The node has as its operating system a Debian GNU/Linux version 11 (Bullseye)

with kernel version 5.10.0-20 and a main memory of 128GB. In addition, it uses the GCC

C/C++ compiler version 10.2.1 and NVIDIA CUDA NVCC compiler version 11.2.152.

To evaluate the performance and effectiveness of the method proposed in this

work, we performed experiments using two different problem sizes and two configura-

tions of the number of iterations for the execution of the main loop for each application,

as well as three different thresholds of loss of accuracy. While we defined the problem

sizes based on the availability of data sets, the number of iterations was determined based

on the default number adding a second run with twice as many iterations. Finally, we

defined the three thresholds of loss of accuracy based on the maximum loss of accuracy

of the approximate (less precise) kernel version. We divide this value into four parts and

use the three initial ones (e.g., for a loss of accuracy of 8%, we would use as accuracy

loss thresholds 2%, 4%, and 6%, since 0% corresponds to an exact execution and 8%
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corresponds to the execution of the approximate kernel itself).

Finally, to divide the area corresponding to the number of iterations and the loss of

accuracy of the approximate kernel version (or the version with the most significant loss

of accuracy in case of using two approximate kernel versions), we use five configurations

of subsections. To obtain the subsections, we divide the number of iterations and the

loss of accuracy of the kernel version with the highest loss into 2, 3, 4, 5, and 6 parts,

resulting in 4 (2x2), 9 (3x3), 16 (4x4), 25 (5x5) and 36 (6x6) subsections. In this way,

we can evaluate the efficiency of generating the execution configurations of our method

with different amounts of measurements since as the number of subsections increases,

the greater the number of measurements on which the method will generate the execution

configurations.

The runtime of each application is measured using the gettimeofday function from

the sys/time.h library of the C++ programming language. To achieve this, we record

the timestamp at the start of the main loop of the iterative application and immediately

after the completion of the main loop execution. We then calculate the execution time in

milliseconds for each execution from this information.

For measuring energy consumption during application execution, we utilize the

NVProf tool. NVIDIA developed this profiling tool for analyzing the performance of

CUDA applications. It provides detailed information about GPU activities, such as mem-

ory transfers, kernel launches, and energy consumption, allowing developers to measure

the performance of their CUDA code. The tool intercepts CUDA API calls and instru-

ments the CUDA runtime and driver libraries to collect detailed information about GPU

activities.

Our experiments collect information such as memory usage and bandwidth, com-

pute capability utilization, and energy consumption. We instruct the tool to collect data

as quickly as possible, every 1 ms, and also collect the timestamp of the collection. This

way, we obtain the subsection of measurements corresponding to the start and end interval

of the main loop execution of the running application through the respective timestamps.

We can then accurately calculate the resource utilization and energy consumption of the

application execution.
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5.2 Applications

We will conduct experiments using three different physical simulation applica-

tions to assess the effectiveness of the methodology proposed in this work. These appli-

cations are all iterative but execute a fixed number of iterations instead of running until a

set of conditions is met. Additionally, they rely on computations performed on the GPU

using three-dimensional data domains. By testing the methodology in multiple applica-

tions, we can better understand its generalizability and applicability to various scenarios.

We will also carefully analyze our experimental results to identify potential areas for im-

provement and optimization.

5.2.1 LBM3D

The Lattice Boltzmann Method (LBM) is a powerful Computational Fluid Dy-

namics (CFD) simulation technique that models fluid flows in three-dimensional domains.

The method uses a grid-based approach to simulate fluid flow, dividing the fluid into a lat-

tice of discrete points. Mathematical models describe how fluid particles interact and

accurately simulate their behavior under various conditions. Each particle has properties

that describe the fluid’s state at a particular point in time, including density, velocity, and

temperature. Figure 5.1 shows the pseudo-code of the application’s main loop and kernels

instrumented to run execution configurations of our methodology.

Figure 5.1 – LBM3D application pseudo-code.

1 i n i t i a l i z e _ d a t a ( )
2
3 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
4 i f ( c u r r e n t _ k e r n e l == " h a l f " )
5 r e d i s t r i b u t i o n _ k e r n e l _ h a l f ( )
6 p r o p a g a t i o n _ k e r n e l _ h a l f ( )
7 b o u n c e b a c k _ k e r n e l _ h a l f ( )
8 r e l a x a t i o n _ k e r n e l _ h a l f ( )
9 e l s e

10 r e d i s t r i b u t i o n _ k e r n e l _ f l o a t ( )
11 p r o p a g a t i o n _ k e r n e l _ f l o a t ( )
12 b o u n c e b a c k _ k e r n e l _ f l o a t ( )
13 r e l a x a t i o n _ k e r n e l _ f l o a t ( )

Source: The Authors

The LBM3D application consists of four kernels, as seen in the pseudo-code.

While the bounceback and propagation kernels handle the propagation of forces and col-
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lisions with obstacles, respectively, without performing arithmetic operations, the redis-

tribution and relaxation kernels perform a significant amount of arithmetic operations.

For our experiments, we used two kernel versions: an approximate version using 16-bit

floating-point arithmetic operations (half) (lines 5 to 8) and an exact version in 32 bits

(lines 10 to 13). The interleaving between the two kernel versions is performed simply by

identifying the moment of interleaving and the kernel version to be executed from then on

through the execution configurations generated by our method and read before the main

loop execution of the application on line 3.

5.2.2 Euler3D

Euler3D is a Computational Fluid Dynamics (CFD) solver that uses an unstruc-

tured grid to compute Euler equations for compressible flow for the three-dimensional

domains. The method is used by researchers to simulate fluid flow in applications such

as aircraft design, wind turbines, and astrophysics. It uses numerical methods and high-

order accurate schemes for the spatial and temporal discretization to solve the equations

on a grid of points in three-dimensional space. Figure 5.2 shows the pseudo-code of the

application’s main loop and kernels instrumented to run execution configurations of our

methodology.

Figure 5.2 – Euler3D application pseudo-code.
Source: The Authors

1 i n i t i a l i z e _ d a t a ( )
2
3 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
4 i f ( c u r r e n t _ k e r n e l == " l o o p p e r f " )
5 i f (5 == c o u n t )
6 c o u n t = 0
7 e l s e
8 c o m p u t e _ s t e p _ f a c t o r _ k e r n e l _ f l o a t ( )
9 c o m p u t e _ f l u x _ k e r n e l _ f l o a t ( )

10 t i m e _ s t e p _ k e r n e l _ f l o a t ( )
11 c o u n t ++
12 e l s e
13 c o m p u t e _ s t e p _ f a c t o r _ k e r n e l _ f l o a t ( )
14 c o m p u t e _ f l u x _ k e r n e l _ f l o a t ( )
15 t i m e _ s t e p _ k e r n e l _ f l o a t ( )

Source: The Authors

he Euler3D application consists of three kernels, as shown in the pseudocode. The

first kernel performs data associations and preparations, while the second kernel com-



75

putes the method’s equations and incurs a significant computational load of arithmetic

operations. The third kernel manages the simulation’s time advancement. For our work’s

experiments, we used two kernel versions: an approximate version that uses the loop

perforation technique to skip one iteration of the main loop every five iterations (lines 5

to 11) and an exact version in 32 bits (lines 13 to 15). Our method generates execution

configurations that are read before the main loop execution of the application on line 3.

The interleaves between the two kernel versions are performed simply by identifying the

moment of interleaving and the kernel version to be executed.

5.2.3 HotSpot3D

HotSpot3D is a benchmark that simulates heat propagation in a three-dimensional

space. It estimates processor temperature based on an architectural floor plan and sim-

ulated power measurements. The HotSpot3D application calculates a chip’s or circuit

board’s temperature profile, considering power dissipation, thermal conductivity, and

other parameters. It generates output data that can be used to analyze thermal perfor-

mance and optimize system design. Each output cell in the computational grid represents

the average temperature value of the corresponding area of the chip. Figure 5.3 shows

the pseudo-code of the application’s main loop and kernels instrumented to run execution

configurations of our methodology.

Figure 5.3 – HotSpot3D application pseudo-code.
Source: The Authors

1 i n i t i a l i z e _ d a t a ( )
2
3 f o r ( i n t i = 0 ; i < n u m i t e r ; i ++)
4 i f ( c u r r e n t _ k e r n e l == " h a l f " )
5 c o m p u t e _ h o t s p o t _ k e r n e l _ h a l f ( )
6 e l s e
7 c o m p u t e _ h o t s p o t _ k e r n e l _ f l o a t ( )

Source: The Authors

The HotSpot3D application consists of only one kernel, as the pseudo-code shows.

This kernel is responsible for all of the simulation’s computation, requiring a significant

computational load of arithmetic operations. For our experiments, we used two versions

of the kernel: an approximate version using 16-bit floating-point arithmetic operations

(half) (lines 5) and an exact version using 32-bit floating-point arithmetic (lines 7). Our

method generates execution configurations, which are read before the start of the main
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application loop on line 3. The interleaves between the two kernel versions are performed

simply by identifying the moment of interleaving and the kernel version to be executed.

5.3 Results and Analysis

5.3.1 LBM3D

Figure 5.4 shows the loss of accuracy profile of the LBM3D application for the

execution configuration generated by our method using 1.5% as a loss of accuracy thresh-

old. The size of the problem used was a 3D data domain of dimensions 64x64x64 and a

quantity of 200 iterations. The figure shows, on the X axis, the evolution of the execution

over time (iterations) and the respective loss of accuracy of the progress of the execution

on the Y axis on each of the five subsection configurations (2x2, 3x3, 4x4, 5x5 and 6x6).

By using an accuracy loss threshold of 1.5% for the execution with 200 itera-

tions, it is possible to observe that the execution configuration produced by the method is

identical using both subsections, 3x3, 4x4, 5x5, and 6x6. Despite slightly exceeding the

defined threshold of accuracy loss, in both cases, the execution configuration produced

by the method consists of executing approximately 80 iterations using the half version of

the kernel and, from then until the end of the execution, using the float version (exact)

of the kernel. In the 2x2 subsections configuration, the method produced an execution

configuration that interleaves the half and float kernels multiple times. Furthermore, this

configuration kept the accuracy loss at approximately 1.1%, below the established thresh-

old.

While the execution configuration generated with the 2x2 subsections configura-

tion had room to run a few additional iterations before reaching the 1.5% threshold, in

the remaining subsections, there are no multiple interleaves of the two kernel versions to

increase the execution of the fastest half kernel version. The execution configuration gen-

erated by the method could have interleaved the half and float kernel versions more times

to take advantage of the retraction in the loss of accuracy after the initial change from the

half version to the float version. Similar to subsection 2x2, where after the first interleave

in iteration 67, there are multiple subsequent interleaves between both kernel versions.

Figure 5.5 shows the loss of accuracy profile for a 3.1% loss of precision threshold

for the same problem size and number of iterations of the LBM3D application. Contrary

to the previous limit of 1.5%, in both configurations of subsections, the method generated
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Figure 5.4 – LBM3D accuracy loss profile using a problem size of 64, 200 iterations, and an
accuracy loss threshold of 1.5%.

Source: The Authors

an execution configuration with two or more interleaves of the two versions of kennels.

Although the configuration of 4x4 subsections (16 measurement subsections) exceeds the

determined accuracy loss threshold, in the other configurations of subsections, there are

only minor deviations from the threshold.

Because it is a higher threshold, it allows the execution of a more significant num-

ber of iterations using the half kernel version at the start, reaching the determined thresh-

old only after surpassing 100 iterations. From then on, the method creates an execution

with interleaves between the half and float versions of the kernel to accelerate the execu-
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Figure 5.5 – LBM3D accuracy loss profile using a problem size of 64, 200 iterations, and an
accuracy loss threshold of 3.1%.

Source: The Authors

tion through a higher use of the half version. However, due to the slow retraction of the

loss of accuracy during periods of execution of the float version of the kernel, subsequent

executions of the half version occur during only a few iterations, quickly returning to the

float execution.

With a threshold of 4.6% for the same problem size and number of iterations, the

same is achieved only after the initial run using the half kernel version for more than

three-quarters of iterations, as shown in Figure 5.6. Although the method generates an

execution configuration that respects the given threshold and interleaves the two kernel
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versions, there is little room for executing a significant number of iterations in half before

reaching the threshold again.

Figure 5.6 – LBM3D accuracy loss profile using a problem size of 64, 200 iterations, and an
accuracy loss threshold of 4.6%.

Source: The Authors

Figure 5.7 presents the loss of accuracy profile for the problem size 64x64x64,

now with 400 iterations for the application execution and a threshold of loss of accuracy

of 3%. In a similar way to the execution with only 200 iterations in Figure 5.4, in the

2x2 subsections configuration, the execution configuration generated by the method in-

terleaves both kernels more than once. In the other subsections configurations, as soon as

the execution reaches the threshold, the rest of the iterations are performed only on the
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float kernel version. Furthermore, in the 2x2 subsection configuration, the generated con-

figuration stays below the loss threshold with a significant distance where the faster kernel

version half could run a more significant number of iterations to improve the execution.

Figure 5.7 – LBM3D accuracy loss profile using a problem size of 64, 400 iterations, and an
accuracy loss threshold of 3%.

Source: The Authors

Figures A.1 and A.2 show the loss of accuracy profile for the thresholds of loss

of accuracy 6% and 9% with 400 iterations for the execution of the application. As can

be seen, in both cases, there is only one interleave of the two kernel versions when the

accuracy loss reaches the determined thresholds in both five measurement configurations.

From that moment on, the rest of the execution is performed using only the float kernel
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version. While in the 6% threshold, there is space to perform at least one more interleave,

in the threshold of 9%, the half version executes practically three-quarters of the execu-

tion, and the low retraction in the rest of the execution with the float version limits the

performance of more interleaves.

Now, using a larger problem size, 128x128x128, and 200 iterations to run the ap-

plication, the behavior of the loss of accuracy profile changes considerably. By using a

1.5% loss of accuracy threshold, the method generated an execution configuration with

a single interleave of the two kernel versions for the five configurations of measurement

subsections, as shown in Figure 5.8. In both cases, as the loss of accuracy approaches

or reaches the threshold, the half kernel version is replaced by the float version for the

remainder of the execution. In this case, although there is a relative space for more in-

terleaving, the loss of accuracy of the float implementation itself starts to increase after

some iterations, making it challenging to include more interleaving between the half and

float kernel versions.

With 400 iterations to run the application and an accuracy loss threshold of 3.3%,

the results, shown in Figure 5.9, are similar to problem size 64 with 400 iterations in

Figure 5.7. However, in the case of size 128 and 400 iterations, there are two interleaves

of the kernel versions in the 5x5 and 6x6 configurations and three interleaves in the 2x2

measurement subsections configuration. Although interleaving does not take advantage

of the available space for executing a more significant number of iterations when the float

kernel version is replaced by the half version in 5x5 and 6x6 configurations, in the 2x2

configuration, there is a good use of space after the first interleave of the half by the float.

When using the threshold of loss of accuracy 3.1% and 4.6% with 200 iterations

for the execution of the application (Figures A.3 and A.4) and 6.6% and 9.9% with 400

iterations (Figures A.5 and A.6) in problem size 128, in almost all five subsections con-

figurations there is only one interleaving of kernel versions. Except for the configurations

of subsections 3x3 of Figures A.3 and A.4, the execution configuration generated by the

method was not able to interleave the two kernel versions more often to aim to optimize

the application execution. The lack of further interleaves is due to the low retraction with

a threshold of 4.6% and 9.9% in runs with 200 and 400 iterations, respectively. However,

this is not the case at the thresholds of 3.1% and 6.6% with 200 and 400 iterations, respec-

tively, where there is notable room for performing at least one more interleave to increase

the number of iterations executed in the half version.
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Figure 5.8 – LBM3D accuracy loss profile using a problem size of 128, 200 iterations, and an
accuracy loss threshold of 1.5%.

Source: The Authors
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Figure 5.9 – LBM3D accuracy loss profile using a problem size of 128, 400 iterations, and an
accuracy loss threshold of 3.3%.

Source: The Authors
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5.3.2 Euler3D

Figure 5.10 presents the loss of accuracy profile of the execution configurations

generated by our method for the Euler3D application in a problem size of 97152 elements,

1000 iterations, and a loss of accuracy threshold of 1.4%. One of the first observations

is that in the five measurement subsection configurations, the execution configuration

generated by the method exceeds the defined accuracy loss threshold. While in the 5x5

subsection configuration, the threshold is exceeded by approximately 1.5%, in the rest of

the subsection configurations, it is approximately 0.5% or less.

By analyzing the interleaves of the loopperf and float kernel versions, it is possible

to observe that the method generated execution configurations with multiple interleaves

in the five configurations of measurement subsections. Except for the 5x5 configuration,

with only three interleaves of the kernels, in the other configurations, there are five inter-

leaves of the two kernels with a considerable balance of the execution peaks in the looperf

kernel, despite this balance being slightly above the established threshold. The highlight

is the execution configuration generated with the data collected in the configuration of

6x6 subsections, where there is the slightest deviation from the determined threshold with

peaks and valleys of kernel interleaves at similar levels.

Figure 5.11 shows the loss of accuracy profiles of the run configurations for the

2.8% loss of accuracy limit in problem size 97152 and 1000 iterations. Again, as with

the 1.4% loss of accuracy limit in Figure 5.10, the configuration of 5x5 measurement

subsections was the greatest due to the determined limit, approximately 1.1% higher.

However, in the other configurations of subsections, the dues of the loss of accuracy limit

were light. Moreover, the method generated runtime configurations with multiple merges

of the loopperf and float kernel versions, emphasizing the 3x3 configuration with good

use of space, significantly respecting the established limit.

With an accuracy loss threshold of 4.2%, however, in the measurement config-

urations subsections of 2x2 and 3x3, the threshold is exceeded by approximately 1.5%,

as shown in Figure 5.12. In contrast, in the remaining ones, the execution configuration

considerably respects the threshold. In this case, there is limited space for performing

multiple interleaves. However, the method generated configurations for the 4x4, 5x5, and

6x6 subsection configurations with high utilization of the faster loopperf kernel version,

especially for the 5x5, where the generated execution configuration does not exceed the

threshold and runs as many iterations as possible with the loopperf kernel version.
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Figure 5.10 – Euler3D accuracy loss profile using a problem size of 97152, 1000 iterations, and
an accuracy loss threshold of 1.4%.

Source: The Authors

Figure 5.13 presents the profile of loss of accuracy in a problem size of 97152

elements, 2000 iterations for the application run, and a threshold of loss of accuracy of

1.4%. As in Figure 5.10 with 1000 iterations, the accuracy loss threshold is considerably

exceeded in the five measurement sections configuration, especially in the 3x3 configura-

tion, where the deviation above the threshold exceeds 0.5%.

However, in this case, the behavior of executing the two kernel versions at the

end of the execution changes slightly. Whereas with 1000 iterations running in most

subsection configurations, the interleaves have balanced tops and valleys at similar levels,
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Figure 5.11 – Euler3D accuracy loss profile using a problem size of 97152, 1000 iterations, and
an accuracy loss threshold of 2.8%.

Source: The Authors

this is not the case with 2000 iterations. If we look at the execution after half of the

iterations, in configurations of subsections such as 2x2, 4x4, and 6x6, the trend of loss of

accuracy is to recede. In the case of the 4x4 configuration, from iteration 1100 onwards,

the rest of the execution uses the loopperf kernel version. The loss of accuracy oscillates

within the same range and does not approximate the thresholds.

The same occurs with an accuracy loss threshold of 2.8%, as shown in Figure A.7,

where the execution configuration generated by the method and the behavior of the loop-

perf kernel version are similar to the ones for threshold 1.4% in Figure 5.13.
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Figure 5.12 – Euler3D accuracy loss profile using a problem size of 97152, 1000 iterations, and
an accuracy loss threshold of 4.2%.

Source: The Authors

With an accuracy loss threshold of 4.2%, the loopperf kernel’s execution behavior

changes even more toward the end of execution. In the configurations of 2x2, 3x3, and 6x6

subsections, for example, despite the iterations from 1200 running in the loopperf version,

the loss of accuracy recedes, contrary to what happens at the beginning of the execution,

as can be seen in Figure A.8. Thus, although the method performs some interleaving at

the beginning of the execution configuration, it is not necessary for the rest due to the

characteristic accumulation of roundings of the loopperf kernel version toward the end of

the execution.
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Figure 5.13 – Euler3D accuracy loss profile using a problem size of 97152, 2000 iterations, and
an accuracy loss threshold of 1.4%.

Source: The Authors

Figure 5.14 presents the loss of accuracy profile for a problem size of 193536

elements, 1000 iterations, and a loss of accuracy threshold of 1.4%. The execution con-

figurations generated by the method are similar to those generated for the 97152 element

size in Figure 5.10. However, in this case, the 5x5 measurement subsection configura-

tion was not off the loss of accuracy limit by more than two times. On the contrary, the

configuration generated for the configuration of 5x5 subsections is the one with the finest

balance between peaks and valleys in the interleaving of kernels and even the lowest de-

viation from the determined loss of accuracy threshold. In contrast, the configuration 2x2
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and 3x3 have the most significant deviation, reaching close to 1%.

Figure 5.14 – Euler3D accuracy loss profile using a problem size of 193536, 1000 iterations, and
an accuracy loss threshold of 1.4%.

Source: The Authors

Again, with execution configurations identical to those with a problem size of

97152 elements in Figure 5.11, Figure 5.15 shows the loss of accuracy profile of the ex-

ecution configurations generated by the method for a problem size of 193536 elements,

1000 iterations and an accuracy loss threshold of 2.8%. However, in this case, the only

configuration that significantly exceeds the loss of accuracy threshold is the execution

configuration for the 4x4 subsections configuration. In the other subsection configura-

tions, the execution configurations generated by the method make reasonable use of the
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space provided by the retractions of executions in the float kernel version, with multiple

kernel interleavings and, consequently, a significant number of iterations executed in the

faster kernel version loopperf.

Figure 5.15 – Euler3D accuracy loss profile using a problem size of 193536, 1000 iterations, and
an accuracy loss threshold of 2.8%.

Source: The Authors

Figure 5.16 presents the loss of accuracy profile for a problem size of 193536

elements, 1000 iterations, and a loss of accuracy threshold of 4.2%. As in Figure 5.12

with 97152 elements, the configurations of 2x2 and 3x3 measurement subsections present

a significant deviation from the determined loss of accuracy threshold, getting close to 2%.

In the rest of the subsections, as with 97152 elements, only two kernel interleaves resulted



91

in running as many iterations as possible in the loopperf kernel version. Furthermore,

these configurations did not have considerable deviations from the determined loss of

accuracy threshold.

Figure 5.16 – Euler3D accuracy loss profile using a problem size of 193536, 1000 iterations, and
an accuracy loss threshold of 4.2%.

Source: The Authors

With a size of 193536 elements and 2000 iterations for the execution of the ap-

plication, the execution configurations of the five subsection configurations are similar

to those with only 1000 iterations, as can be seen in Figures A.9, A.10, and A.11 for

the thresholds of loss of accuracy of 1.4%, 2.8%, and 4.2%, respectively. While with

1.4%, there is a more significant number of interleaving between the loopperf and float
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kernel versions and a more substantial deviation from the loss of accuracy threshold in

the 2x2 and 3x3 subsection configurations, with a threshold of 2.8%, there are minimal

deviations, with multiple interleaves and most of the iterations performed in the loopperf

kernel version. With a threshold of 4.2%, there is a significant deviation in the 2x2 and

3x3 subsection configurations, with the rest of the configurations respecting the threshold

but with the opportunity of executing a higher number of iterations using the faster kernel

version loopperf.

5.3.3 HotSpot3D

Figure 5.17 shows the loss of accuracy profile of the HotSpot3D application using

a three-dimensional problem size of 512x512x8, 500 iterations to run the application, and

a threshold of loss of accuracy of 1.1%. Unlike the execution configurations of previous

applications, where there were usually multiple interleavings of the two kernel versions in

most configurations of measurement subsections, in this application, there are only three

interleaves in the 2x2 and 6x6 subsections. However, even though there are two instances

where the execution configuration generated by the method for these two subsections uses

the fastest half kernel version, the amount of additional iterations the kernel performs is

reduced. Furthermore, in the 2x2 subsection configuration, there is a deviation from the

determined accuracy loss threshold of approximately 0.2%, while for the 6x6 subsection,

the generated execution configuration does not exceed the threshold.

With a loss of accuracy threshold of 2.2% and 3.3%, shown in Figures 5.18

and 5.19, respectively, the method could not generate an execution configuration with

multiple interleaving between half and float kernel versions. Much of this inability is due

to the limited retraction in the loss of accuracy provided by the float version after the first

moment in which the half execution reached the specified threshold (approximately at it-

eration 250), and there was, then, the interleaving between the two kernels. While with a

threshold of 3.3% (Figure 5.19), there is no room to perform more half iterations after a

period of execution of the float version, with a threshold of 2.2% (Figure 5.18), although

reduced, there is a space with potential for running a few more iterations with the half

kernel version.

Now with 1000 iterations to run the application on the same problem size of

512x512x8 and an accuracy loss threshold of 1.8%, there is more room for the method to

interleave the two kernel versions multiple times. However, from the execution configu-
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Figure 5.17 – HotSpot3D accuracy loss profile using a problem size of 512, 500 iterations, and an
accuracy loss threshold of 1.1%.

Source: The Authors

rations generated by the method for the five configurations of measurement subsections,

the method interleaves more than once the two kernels only in the 2x2 subsection, as seen

in Figure 5.20. After interleaving the half kernel version with the float version at itera-

tion 208, running on the float version up to iteration 798, and then interleaving the two

versions again and running another 33 iterations on the half version, the method was able

to create an execution configuration that maximizes the execution of iterations in the half

version. Despite slightly exceeding the determined threshold, the method’s estimate came

very close to the actual value.
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Figure 5.18 – HotSpot3D accuracy loss profile using a problem size of 512, 500 iterations, and an
accuracy loss threshold of 2.2%.

Source: The Authors

Although the method generates an execution configuration that maximizes the

number of iterations executed in the fastest half version in the configuration of 2x2 mea-

surement subsections, in the other subsections, there were no more intercalations after

reaching the determined loss threshold. Despite identical space to the 2x2 subsection

configuration, the method could not seek to add more interleaving between the two kernel

versions in these configurations.

The same occurred in the execution configurations generated by the method with

a 3.7% and 5.6% threshold, shown in Figures A.12 and A.13. Although the space pro-
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Figure 5.19 – HotSpot3D accuracy loss profile using a problem size of 512, 500 iterations, and an
accuracy loss threshold of 3.3%.

Source: The Authors

vided by running the float version is smaller, with a 3.7% threshold compared to the 1.8%

threshold, there is potential to run a few more iterations with the half kernel version.

With an accuracy loss threshold of 5.6%, the retraction space provided by executing the

float version is even smaller, limiting the inclusion of an additional execution of the half

version.

With a problem size of 1024x1024x8, the behavior of the loss of accuracy profile

of the float kernel version makes further attempts to execute iterations in the half kernel

version unfeasible. As soon as the execution reaches the thresholds of loss of accuracy of
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Figure 5.20 – HotSpot3D accuracy loss profile using a problem size of 512, 1000 iterations, and
an accuracy loss threshold of 1.8%.

Source: The Authors

5.3%, 10.6%, and 16% with 500 iterations (Figures A.14, A.15, and A.16, respectively)

and 10%, 20%, and 30% with 1000 iterations (Figures A.17, A.18 and A.19, respectively),

the generated execution configuration interleaves the half and float kernel versions. From

then on, the rest of the execution shows minimal or no retraction of the loss of accuracy.

Despite this, the execution configurations generated by the method present a reasonable

estimate for when the loss of accuracy of the actual execution approaches or reaches the

determined threshold.
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6 PERFORMANCE ANALYSIS AND DISCUSSION

In this Chapter, we provide an analysis of the performance and energy consump-

tion of the runtime configurations generated by our method for different thresholds of loss

of accuracy in three iterative computing applications: LBM3D, Euler3D, and HotSpot3D.

6.1 LBM3D

Figure 6.1 presents the runtime of the two kernel versions (half and float) and

the execution configurations generated by the method for the three thresholds of loss of

accuracy in each of the five configurations of measurement subsections (2x2, 3x3, 4x4,

5x5, and 6x6). On the graph’s Y axis, we have the runtime in milliseconds (ms), and

on the X axis, the execution configuration used (percentage of loss of accuracy). The

orange bar in each graph bar corresponds to each experiment’s standard deviation of 10

repetitions.

To present the individual performance results of the two kernels, we used index 0

for the execution of the float kernel since there is no loss of accuracy and index 6 for the

results of the half kernel version. This value corresponds to the loss of accuracy of the

kernel. Although we present the values for these two indices in the five configurations of

subsections, the values are the same and were replicated only to facilitate analysis. The

intermediate values correspond to the thresholds of loss of accuracy for which our method

generated the respective execution configurations presented in Chapter 5.

Let’s start our analysis by comparing the runtime of the two kernel versions in

a three-dimensional problem of size 64x64x64 and 200 iterations, shown in Figure 7.1.

As mentioned earlier, indices 0 and 6 correspond to float, and half kernel versions, re-

spectively, and are replicated in the five subsection configurations as they correspond to

individual kernel execution values. As can be seen, the difference in runtime between the

float kernel version and the half version is significant. Comparing the average runtime of

each version presented in Table A.1, while the float version has an average time of 103.84

(first line), the half version has an average time of only 61.28 milliseconds (second line

of the table). That’s a speedup of approximately 1.69.

Now, let’s compare the runtimes of the execution configurations generated by the

method for the three thresholds of loss of accuracy (1.5%, 3.1%, and 4.6%). We will see

that they are closer to the runtime of the kernel half. While the 1.5% threshold has the
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Figure 6.1 – LBM3D runtime using a problem size of 64 and 200 iterations for different accuracy
loss thresholds.

Source: The Authors

highest runtime of the three thresholds in all five subsection configurations, the runtime

of the 3.1% and 4.6% thresholds varies depending on the subsections, with the 3.1%

threshold time in most cases being just above the 4.6% threshold runtime. Despite the

close runtimes, especially of the 3.1% and 4.6% thresholds, the standard deviation in

most subsections is relatively high.

Analyzing in more detail the performance of the execution configuration for the

1.5% loss of accuracy threshold, we will see that the lowest average runtime happens in

the 4x4 measurement subsections configuration, 69.43 milliseconds. When analyzing the
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loss of accuracy profiles of the execution configurations of this threshold in Figure 5.4,

we will see that subsections 3x3, 4x4, 5x5, and 6x6 present practically the same profile.

However, the configuration of subsection 4x4 is the one that obtained the lowest runtime.

Since the problem size and the number of iterations are relatively low for the execution

capability of the GPU, there is a significant standard deviation between the ten repetitions

of the performed experiments. Thus, it is inconceivable to state that this was the execution

configuration with the finest performance.

With a threshold of 3.1%, it is possible to observe that the execution configuration

in the 4x4 subsection is the one that obtained the fastest runtime, 61.27 milliseconds. De-

spite coinciding with a higher number of iterations executed in the half kernel version, it

is not clear that this is the reason for the performance gain in this execution configuration.

The same applies to the 4.6% threshold, where the fastest runtime occurs in the 5x5 sub-

section, 60.18 milliseconds. However, when comparing the runtimes of the float kernel

(index 0) and the half kernel (index 6), it is possible to observe that the runtime for the

three thresholds reduces as the number of possible iterations to execute with the fastest

half kernel version is more significant with larger thresholds.

Figure 6.2 shows the energy consumption in Joules for a problem of size 64x64x64

and 200 iterations. As we can see, the difference in consumption between the float kernel

version (index 0) and the half kernel version (index 6) is substantial. While the float ver-

sion consumes 5.8 J, the half version only consumes 2.91 J, a reduction of approximately

50%. Furthermore, Table A.1 shows that the average energy consumption significantly

decreases between the 1.5%, 3.1%, and 4.6% thresholds, as higher thresholds allow the

execution of a more significant number of iterations in the more efficient half kernel ver-

sion. Despite the considerable standard deviation between the experiments, it is possible

to observe that, except for the configuration of 6x6 subsections, the highest deviation

value lowers as the accuracy loss threshold increases.

Figure 6.3 shows the runtime at a size of 64x64x64 with 400 iterations. The first

observation is that the standard deviation is practically zero in both execution configura-

tions and configurations of measurement subsections due to the higher number of itera-

tions compared to the previous results presented in Figure 6.1 with 200 iterations. In this

case, while the runtime of the float kernel version was 165.69 ms, that of the half version

was only 98.81 ms, a speedup of 1.67.

Moreover, it is possible to observe, in Figure 7.3, a gradual reduction in the run-

time as the loss threshold increases. When observing the runtimes of each threshold in
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Figure 6.2 – LBM3D energy consumption using a problem size of 64 and 200 iterations for
different accuracy loss thresholds.

Source: The Authors

the five configurations of measurement subsections in Table A.2, it is possible to see that

each threshold’s times in different subsections are very close. With a threshold of 3%, the

execution configuration of the 2x2 subsection had the lowest runtime, 142.44 ms. Com-

pared to the runtime of the following fastest execution configuration, 144.67ms of the 5x5

subsection, it is a difference of only 1.54%.

However, the execution configuration generated for the two subsections is sub-

stantially different. While in subsection 2x2, there is the execution of 98 iterations in

the float version and interleaving of the float kernel version by the half version later in
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Figure 6.3 – LBM3D runtime using a problem size of 64 and 400 iterations for different accuracy
loss thresholds.

Source: The Authors

iteration 253 with an additional execution of 38 iterations in the half version for a total

of 136 iterations, in subsection 5x5 there is the execution of just 119 iterations in the half

version at the start of the execution. Even with an additional interleave of the two kernel

versions, which involves converting the whole data domain from 32-bit to 16-bit floating-

point, executing just 17 additional iterations in the generated execution configuration for

the 2x2 subsection resulted in a slight performance gain.

Figure 6.4 presents the energy consumption for a problem size of 64x64x64 and

400 iterations. As with the runtime, it is possible to observe a gradual reduction in energy
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consumption starting from the execution only in the float kernel version (index 0), passing

through the execution configurations for the thresholds of loss of accuracy of 3%, 6% and

9% up to the energy consumption of running only the half kernel version (index 12).

While the float version consumes 14.88 J, the half version only consumes 7.17 J, less than

half of the float version, as seen in Table A.2.

Figure 6.4 – LBM3D energy consumption using a problem size of 64 and 400 iterations for
different accuracy loss thresholds.

Source: The Authors

Now, we will compare the runtime and energy consumption of the execution con-

figuration with the lowest runtime among the five subsection configurations for the lowest

loss of accuracy threshold (3%) with the exact execution, with no loss of accuracy (float).
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At the cost of only a 3% loss of accuracy, the execution configuration generated for the

2x2 subsection reduced the runtime by almost 14%, from 165.59 ms to 142.44 ms. In

addition, the generated execution configuration reduced the energy consumption by ap-

proximately 20%, from 14.88 J to 11.9 J.

Figure 6.5 shows the runtime for a problem size of 128x128x128 and 200 itera-

tions. While the float kernel version had an average runtime of 619.63 ms, the half version

had a runtime of only 404.88 ms, a speedup of 1.53. Due to this significant performance

gain presented by the half version, there was a gradual reduction in the runtime in the

three thresholds of loss of accuracy.

Moreover, it is possible to observe that, for the accuracy loss threshold of 1.5%, the

execution configuration generated by the method for the 2x2 configuration of subsections

has the highest runtime, as seen in Table A.3. When analyzing the loss of accuracy profiles

for each of the five subsection configurations in Figure 5.8, it is possible to observe that,

while in the other subsections, the execution configurations generated by the method are

identical, in the 2x2 subsection there is low use of the space available for the execution

of a more significant number of iterations in the faster half version. Thus, while in the

other configurations, the runtimes are similar, in the configuration of subsections 2x2, the

runtime is about 1.9% higher than in the other execution configurations.

Figure 6.6 presents the energy consumption for the problem size 128x128x128 and

200 iterations. In this case, the energy consumption of the float kernel version was 72.01

J, while the energy consumption of the half kernel version was only 41.58 J, a reduction

of over 42%. In addition, for the 1.5% loss of accuracy threshold, through interleaved

execution between the two kernels, it was possible to reduce the runtime from 619.63 ms

to 515.82 ms in the 5x5 subsection and the energy consumption from 72.01 J to 57.35 J,

a reduction of more than 16% in runtime and more than 20% in energy consumption.

Figure 6.7 shows the runtimes for a problem size of 128x128x128 and 400 itera-

tions. In this case, the runtime of the float kernel version was 1235.83 ms, and the half

kernel version was only 787.84 ms, a speedup of 1.56. Furthermore, as seen in Figure 6.8,

energy consumption was 154.05 J in the float version and just 91.38 J in the half version,

a more than 40% reduction, as seen in Table A.4.

With an accuracy loss threshold of 3.3%, we see that the two execution configura-

tions generated by the method with the lowest runtime are the 2x2 and 5x5 measurement

subsection configurations. If we analyze the loss of accuracy profiles for the problem size

128x128x128 and 400 iterations in Figure 5.9, we will see that the execution configu-
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Figure 6.5 – LBM3D runtime using a problem size of 128 and 200 iterations for different
accuracy loss thresholds.

Source: The Authors

rations generated by the method for these two subsections are precisely those that have

the highest number of iterations executed in the fastest version half. The runtime of the

execution configuration with the lowest runtime (5x5 subsection) was 1059.31 ms with

an energy consumption of just 127.94 J, a more than 14% reduction in the runtime, and a

reduction of almost 17% in energy consumption.
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Figure 6.6 – LBM3D energy consumption using a problem size of 128 and 200 iterations for
different accuracy loss thresholds.

Source: The Authors



106

Figure 6.7 – LBM3D runtime using a problem size of 128 and 400 iterations for different
accuracy loss thresholds.

Source: The Authors
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Figure 6.8 – LBM3D energy consumption using a problem size of 128 and 400 iterations for
different accuracy loss thresholds.

Source: The Authors
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6.2 Euler3D

Figure 6.9 presents the runtime of the Euler3D application for a problem with

97152 elements and 1000 iterations for the execution of the application. Again, on the

Y axis, we have the runtime in milliseconds (ms). On the X axis, the three thresholds of

loss of accuracy (in percentage) used for the generation of execution configurations in our

method in five configurations of measurement subsections, where index 0 corresponds

to running only the float kernel and index 5.6 corresponds to running only the loopperf

kernel version. Despite having a high standard deviation, it is possible to observe that

the average runtime of the loopperf kernel version is lower than the runtime of the float

kernel version, taking an average of 92.41 ms compared to 118.4 ms of the float version,

a speedup of 1.28.

Now, when we analyze the runtimes of the execution configurations generated by

the method for the three thresholds of loss of accuracy, we will see that in both cases,

the runtime is lower than the runtime of the float version. Furthermore, it is possible

to observe that the times vary considerably for the execution configurations generated

in each of the five configurations of measurement subsections, despite the profile of the

execution configurations being similar (except for the configuration generated for the 5x5

subsection and 1.4% threshold), as can be seen in Figures 5.10, 5.11, and 5.12.

Figure 6.10 presents the energy consumption for a problem size with 97152 el-

ements and 1000 iterations. When comparing the total energy consumption of the float

and loopperf versions, it is possible to observe that the loopperf version consumes 22%

less energy than the float version, 4.21 J compared to 5.41 J, as can be seen in Table A.5.

Furthermore, it is possible to observe that the execution of a set of iterations in the loop-

perf kernel version contributes to a reduction in energy consumption in the configurations

generated by the method for the three thresholds of loss of accuracy, compared to the float

version.

In both runtime and energy consumption we see a significant standard deviation.

This variation in values from one repetition of the experiments to the following is due

to the similarity in the execution configurations generated by the method for the three

thresholds of loss of accuracy and the relatively smaller size and number of iterations.

Analyzing the computational capacity utilization in the "GPU Util" column and the mem-

ory bandwidth utilization in the "Memory Util" column of Table A.5, we observe that this

problem size does not exert pressure on the memory and results in a GPU computational
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Figure 6.9 – Euler3D runtime using a problem size of 97152 and 1000 iterations for different
accuracy loss thresholds.

Source: The Authors

capacity utilization of less than 7%.

Figure 6.11 presents the runtime in the same problem size of 97152 but with 2000

iterations for the application execution. Now, with twice as many iterations in the ex-

ecution of the application, we see that the difference between the runtime of the kernel

version loopperf and float had a relative reduction. While execution in the float version

finished after an average of 156.42 ms, the loopperf version finished after 140.82 ms, a

speedup of 1.11.

Analyzing the runtime of the execution configurations generated by the method for
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Figure 6.10 – Euler3D energy consumption using a problem size of 97152 and 1000 iterations for
different accuracy loss thresholds.

Source: The Authors

the 1.4% threshold in the five configurations of measurement subsections in Table A.6, we

see that the configuration generated for the 6x6 subsection achieved the lowest runtime,

132.65 ms. The second configuration with the lowest runtime for the 1.4% configuration

is the 3x3 subsection, with 138.61 ms.

When analyzing the loss of accuracy profiles for the 1.4% threshold in Figure 5.13,

we see that while the execution configuration for the 6x6 subsection has the highest pro-

portion of iterations executed in the loopperf version, in the 3x3 subsection, it is just the

opposite, with one of the highest proportions of executing iterations in the float imple-
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Figure 6.11 – Euler3D runtime using a problem size of 97152 and 2000 iterations for different
accuracy loss thresholds.

Source: The Authors

mentation. In both cases, the runtimes are lower, with practically zero standard deviation

compared to running only the loopperf version. As such, we will have to analyze a more

considerable problem size to understand better the impact of the execution configuration

on improving the performance of executions.

Before that, let us look at the energy consumption in the problem size 97152 and

2000 iterations shown in Figure 6.12. Contrary to the results with only 1000 iterations

presented in Figure 6.10, it is possible to observe a gradual reduction as a higher threshold

of loss of accuracy allows the execution of more iterations in the loopperf kernel version,
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which in turn presents one of the lowest energy consumptions. While the float version

consumes 11.85 J, the loopperf version consumes 9.2 J, a reduction of over 22%.

Figure 6.12 – Euler3D energy consumption using a problem size of 97152 and 2000 iterations for
different accuracy loss thresholds.

Source: The Authors

However, just as the execution configuration achieves the lowest runtime (only

122.43 ms) for the 4.2% loss threshold in the 6x6 subsection, it also achieves the lowest

energy consumption, 8.77 J. When analyzing the profile of loss of accuracy of the exe-

cution configuration for the loss threshold of 4.2% in subsection 6x6 of Figure A.8, we

see that it is the configuration with the fewest number of iterations executed in the float

version. Due to the significant variations, it is inconceivable to state the fastest and most
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efficient execution configurations generated.

Figure 6.13 presents the runtimes for a problem size of 193536 elements and 1000

iterations for the execution of the application. As can be seen, the standard deviation re-

duced considerably with more significant problem size. Moreover, it is possible to observe

a gradual reduction of the runtime from the float version to the execution configurations

with an increasing loss threshold until the loopperf kernel version. While executions of

the float kernel version took an average of 200.46 ms, the loopperf version’s average

runtime was only 168.07 ms, a speedup of 1.19.

Figure 6.13 – Euler3D runtime using a problem size of 193536 and 1000 iterations for different
accuracy loss thresholds.

Source: The Authors
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Now, let us compare the runtime of the execution configurations generated by the

method for the three loss of accuracy thresholds in the five configurations of measurement

subsections. We will see a clear impact on the difference in the number of iterations exe-

cuted in the loopperf and float versions. While the configurations generated for the 1.4%

threshold are significantly similar with close runtimes, with a loss threshold of 2.8%, it

is possible to observe that the execution configuration with the highest number of itera-

tions executed in the loopperf version (subsection 5x5) obtained the lowest runtime. The

one with the highest number of iterations executed in the float version (subsection 3x3)

obtained the highest runtime, 184.37 ms against 197.1 ms, respectively.

Furthermore, it is possible to observe the same in the 4.2% loss of accuracy thresh-

old. While the execution configuration with the highest number of iterations executed in

the loopperf version (subsection 6x6) obtained the lowest runtime, and the one with the

highest number of iterations executed in the float version (subsection 2x2) obtained the

highest runtime, 175.92 ms against 184.64 ms, respectively, as can be seen in Table A.7.

Figure 6.14 presents the energy consumption for a problem size of 193536 ele-

ments and 1000 iterations. Again, the impact of running a more significant number of

iterations in the loopperf version on energy consumption is evident with the use of higher

accuracy loss thresholds, allowing the execution of more iterations in the more efficient

loopperf version. While the float version consumes 10.86 J, the loopperf version only

consumes 8.79 J, a reduction of 19%, as seen in Table A.7. In addition, the consumption

is also lower in the execution configurations for the 2.8% loss of accuracy threshold in

the 5x5 and 3x3 subsections mentioned above, 10.01 J against 10.49, and for the 4.2%

threshold in the 6x6 and 2x2 subsections, 9.32 J against 9.77 J.

The results are similar with a problem size of 193536 elements and 2000 iterations,

as shown in Figure 6.15. While the float kernel version has an average runtime of 327.2

ms, the loopperf kernel version has a runtime of just 271.24 ms, a speedup of 1.20, as

seen in Table A.8. Furthermore, the energy consumption of the float version was 22.66

J. In contrast, the loopperf version was only 18.35 J, a reduction of 19%, as shown in

Figure 6.16.

Furthermore, for the 1.4% loss of accuracy threshold, the lowest runtime was

achieved by the execution configuration generated for the configuration of 2x2 measure-

ment subsections and the highest runtime in the 4x4 subsection. If we analyze the loss

of accuracy profile of the execution configurations generated in these subsections in Fig-

ure A.9, it is possible to observe that, apart from the fact that the execution configuration
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Figure 6.14 – Euler3D energy consumption using a problem size of 193536 and 1000 iterations
for different accuracy loss thresholds.

Source: The Authors

exceeded the loss of accuracy threshold significantly, the number of iterations executed in

the fastest and most efficient kernel version loopperf is the largest in the 2x2 subsection,

while the number of iterations performed in the float version is the largest among the five

subsections in the 4x4 subsection.

While in the 2x2 subsection, the average runtime was 303.99 ms with consumption

of 20.23 J, in the 4x4 subsection, it was 340.26 ms and 21.36 J. Likewise, at the threshold

of loss of accuracy of 2.8%, the execution configurations with the highest number of

executions in the loopperf version were those with the lowest runtime, 4x4 and 5x5, as
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Figure 6.15 – Euler3D runtime using a problem size of 193536 and 2000 iterations for different
accuracy loss thresholds.

Source: The Authors

seen in Figure A.10. In the threshold of loss of accuracy of 4.2%, the subsection with the

highest number of iterations executed in the loopperf version, 4x4 as seen in Figure A.11,

achieved the lowest runtime, as seen in Table A.8.
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Figure 6.16 – Euler3D energy consumption using a problem size of 193536 and 2000 iterations
for different accuracy loss thresholds.

Source: The Authors

6.3 HotSpot3D

Figure 6.17 shows the runtimes of the HotSpot3D application for a three-dimensional

problem of size 512x512x8 and 500 iterations for the execution of the application. On the

Y axis, we have the runtime in milliseconds (ms). On the X axis, the three thresholds

of loss of accuracy (in percentage) used for the generation of execution configurations

in our method in the five configurations of measurement subsections, where the index 0

corresponds to running only the float kernel and index 4.4 corresponds to running only
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the half kernel version. Comparing the runtime of the float and half kernel versions, it is

possible to observe a significant difference. While the float version had an average run-

time of 12.05 ms, the half version had an average runtime of just 7.33 ms, a speedup of

1.64.

Figure 6.17 – HotSpot3D runtime using a problem size of 512 and 500 iterations for different
accuracy loss thresholds.

Source: The Authors

When analyzing the runtime of the three accuracy loss thresholds (1.1%, 2.2%,

and 3.3%), the impact of the possibility of executing a more significant number of iter-

ations in the half version provided by higher loss thresholds is evident. Let us compare

the runtimes of the execution configurations generated for the 1.1% threshold in each of
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the five measurement subsection configurations in Table A.9. We see that the execution

configuration of the 2x2 subsection achieved the lowest runtime, 10.18 ms. Now, if we

analyze the loss of accuracy profile for the 1.1% loss threshold in the 2x2 subsection of

Figure 5.17, we will see that the execution configuration generated for the 2x2 section

was the one with the highest number of iterations executed in the half version.

Likewise, let us look at the number of iterations performed on the half kernel ver-

sions in the generated configuration for the 1.1% limit in subsection 6x6. We see that it is

the second highest. Comparing the runtimes, we see that this execution configuration had

the second lowest runtime, 10.53 ms. In both cases, even including the computational cost

to convert 32bit to 16bit floating-point data and vice versa, performing a more significant

number of iterations in the faster half version compensates for this cost and is still capable

of speeding up execution.

Figure 6.18 presents the energy consumption in a problem size of 512x512x8 and

500 iterations. When comparing the energy consumption of the execution configurations

generated for the three thresholds of loss of accuracy and of the float and half kernel

versions, it is possible to observe a gradual reduction in consumption as the number of

iterations executed in the half version increases. As seen in Table A.9, while the float

kernel version consumes 0.41 J, the half version consumes 0.25 J, a 39% reduction.

Furthermore, let us compare the energy consumption of the execution configu-

rations to the 1.1% loss threshold of the 2x2 and 6x6 subsections, which had the lowest

runtimes. It is possible to observe a significantly lower consumption than in the other sub-

sections. While in the 2x2 subsection, the consumption was 0.35 J, in the 6x6 subsection,

it was 0.36 J. In the 3x3, 4x4, and 5x5 configurations, the consumption was 0.37 J, 0.38

J, and 0.37 J, respectively, as seen in Table A.9. However, because these are significantly

low values for runtime and energy consumption, we need to analyze the results with a

more significant number of iterations and a more extensive problem size to better under-

stand the impact on the performance of running a more significant number of iterations in

the half version.

Figure 6.19 presents the running time for a problem of size 512x512x8 and 1000

iterations. As we can see, the gradual reduction in runtime repeats as the half kernel

version performs a more significant number of iterations, just as with just 500 iterations

at the same problem size in Figure 6.17. While the float kernel version takes an average

of 24.52 ms, the half version takes just 15.33 ms, as shown in Table A.10, a speedup of

approximately 1.60.
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Figure 6.18 – HotSpot3D energy consumption using a problem size of 512 and 500 iterations for
different accuracy loss thresholds.

Source: The Authors

By analyzing the loss of accuracy profile generated by the method for the 1.8%

threshold in Figure 5.20, we will see that the only subsection where there was a sec-

ond interleave of the kernels to increase the number of iterations executed in the faster

half version was the 2x2 subsection. Comparing the runtime of the 2x2 subsection with

the other configurations of measurement subsections, we see that it obtained the lowest

runtime, 21.44 ms, against more than 22.66 ms of the others.

Figure 6.20 presents the energy consumption for the problem of size 512x512x8

and 1000 iterations. While the kernel version consumes 0.92 J, the half version only
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Figure 6.19 – HotSpot3D runtime using a problem size of 512 and 1000 iterations for different
accuracy loss thresholds.

Source: The Authors

consumes 0.54 J, a reduction of over 41%. Furthermore, let us analyze the energy con-

sumption of the execution configuration generated for the 2x2 subsection. We will see

that the consumption was 0.77 J compared to more than 0.79 of the other subsections.

Although small, it is possible to notice the difference in runtime and energy consumption

with multiple interleaving kernel versions. Even with the cost of converting data from

32bit floating-point to 16bit and vice versa included in the time and energy consumption,

it can reduce both time and energy.

Figures 6.21 and 6.22 present the runtime and energy consumption for a prob-
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Figure 6.20 – HotSpot3D energy consumption using a problem size of 512 and 1000 iterations
for different accuracy loss thresholds.

Source: The Authors

lem of size 1024x1024x8 and 500 iterations. Again, it is possible to observe a gradual

reduction in runtime and energy consumption as the half kernel version executes more

iterations. Comparing the runtime and energy consumption of the float and half kernel

versions in Table A.11, it is possible to observe a speedup of 1.98 and an energy con-

sumption reduction of 59% from the float version to the half version. While the float

version takes 48.98 ms and consumes 2.32 J, the half version only takes 24.69 ms and

consumes only 0.94 J.

The same happens in Figures 6.23 and 6.24, where the runtime and energy con-
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Figure 6.21 – HotSpot3D runtime using a problem size of 1024 and 500 iterations for different
accuracy loss thresholds.

Source: The Authors

sumption are presented for a problem of size 1024x1024x8 and 1000 iterations. While the

float kernel version takes an average of 100.65 ms to complete execution and consumes

5.65 J, the half version takes only 50.53 ms and consumes just 2.15 J. It corresponds to a

speedup of almost 2.00 and a more than 61% energy consumption reduction.

In both cases, with 500 and 1000 iterations, there was no retraction of the loss

of accuracy after interleaving the float kernel version by the half version when reaching

the established loss threshold. Although, in this case, it is inconceivable to perform more

interleaves, and the method generates consistent configurations based on this, it is possi-
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Figure 6.22 – HotSpot3D energy consumption using a problem size of 1024 and 500 iterations
for different accuracy loss thresholds.

Source: The Authors

ble to observe the effect on the performance of executions of a more significant number

of iterations as the loss threshold increases. While with a stricter threshold of 10% and,

therefore, the possibility of executing a lower number of iterations in the faster and more

efficient half version, the runtime is approximately 88 ms with an approximate consump-

tion of 4.5 J. With a threshold of 20%, the runtime is approximately 76.5 ms with an

approximate consumption of 4 J. With a threshold of 30%, the runtime is approximately

64 ms and consumption of approximately 3 J.
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Figure 6.23 – HotSpot3D runtime using a problem size of 1024 and 1000 iterations for different
accuracy loss thresholds.

Source: The Authors
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Figure 6.24 – HotSpot3D energy consumption using a problem size of 1024 and 1000 iterations
for different accuracy loss thresholds.

Source: The Authors
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7 CONCLUSIONS

Approximate computing techniques, particularly those involving reduced and mixed

precision, are widely studied in the literature as a means of accelerating application exe-

cution and reducing energy consumption. While many studies have analyzed the impact

of these techniques on the performance and accuracy of a wide range of application do-

mains, most focus on serial and non-iterative applications. Although some studies have

explored various approximate computing techniques for iterative applications, one of the

biggest challenges of using approximation in this context is its sensitivity to errors, partic-

ularly in the use of reduced-precision floating-point formats. Iterative applications rely on

the results of previous computations, which are then used to perform subsequent compu-

tations on the application’s dataset in the next iteration. Therefore, introducing precision

errors in the execution of an iterative application can propagate and magnify significantly

throughout the execution, making error control extremely important.

Iterative applications often operate on large datasets, which presents an additional

challenge to approximate computing: monitoring the loss of execution accuracy. The

most popular way to manage applications’ accuracy loss is through runtime loss moni-

toring. While this is a simple and effective way to monitor accuracy loss in applications

with small data domains, it becomes unfeasible in applications with a large volume of

data, such as physical simulation applications where the data domains are usually multi-

dimensional. Calculating the loss of accuracy at runtime is computationally expensive,

and this problem is exacerbated in iterative applications where computations are typically

repeated numerous times. Therefore, it is not feasible to monitor the loss of accuracy at

each iteration of the execution without significantly increasing the computational cost.

One of the most popular techniques for approximate computing in GPUs is Pre-

cision Scaling. This technique involves changing the floating-point precision of a set

of variables or arithmetic operations. Precision Scaling seeks to find the most suitable

floating-point representation format for each variable or arithmetic operation based on a

previously established limit for loss of accuracy. The goal is to reduce the size of the

floating-point representation format for operations while ensuring that the error intro-

duced by the reduction does not exceed the established limit for loss of accuracy.

Although Precision Scaling can significantly improve performance and energy ef-

ficiency in applications with a relatively small number of variables and arithmetic opera-

tions, it becomes increasingly difficult to optimize larger and more complex applications
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due to the growing search space for optimizations. Furthermore, when optimizing itera-

tive applications, the propagation and amplification of loss of accuracy between iterations

makes it challenging to estimate the impact of changes in the floating-point representa-

tion on the variables and application operations. Using a new limit for loss of accuracy

requires a new optimization of the application.

This thesis presents a methodology for sampling the loss of accuracy profile, ex-

tracting performance statistics and loss of accuracy, and generating interleaved execution

configurations of multiple kernel versions of iterative applications on GPUs. To collect

samples of the loss of accuracy profile of iterative applications throughout their execu-

tion, we divide the space represented by the number of iterations and the total loss of

accuracy of the kernel version with the most significant loss into subsections. From these

subsections, we collect samples of the loss of accuracy profile of multiple kernel versions

in different execution configurations so that each version is included in the most extensive

number of subsections. After collecting all the samples, we extract performance statistics

and loss of accuracy for each kernel version at different stages of application execution

through the subsections. From these statistics, we generate execution configurations that

exploit the interleaved execution of multiple kernel versions according to a previously

established limit for loss of accuracy.

We demonstrate that our methodology can generate interleaved execution config-

urations of kernel versions for different limits of accuracy loss in iterative applications in

an offline manner. In addition, a single run of our methodology can collect samples of the

accuracy loss profile of kernel versions at different stages of application execution. From

these samples, performance and accuracy loss statistics can be extracted. This allows for

generating numerous execution configurations with different limits of accuracy loss sim-

ply and practically, without requiring new measurements for the same kernel versions and

problem size.

The experiments conducted in three iterative applications of physical simulation

in three-dimensional data domains demonstrated the capability of the methodology to re-

duce runtime and energy consumption by interleaving kernel versions. While the method

responsible for generating interleaved execution configurations of the kernel versions de-

livered an average performance, with some cases where it was unable to explore the inter-

leaving of kernel versions to reduce runtime and potentially energy consumption, in the

cases where it was successful, the results showed significant improvements, particularly

in energy consumption: speedups up to 2 and up to 60% energy consumption reduction.
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Moreover, although some results violated the loss of accuracy limits, only a minority

significantly exceeded them.

Due to the various execution ramifications that occur during the collection of sam-

ples, our methodology requires a significant amount of GPU memory. As we only run our

methodology on GPUs, we simplify our approach by disregarding cases where available

memory is insufficient. In such cases, a simple solution would be to store the states of the

data structures (which are otherwise duplicated) in the main system memory or on disk

in case system memory is insufficient. This would eliminate the need to duplicate the

structures and allow the same structures to be used. At the end of each phase, the states

of the respective structures can be recovered from main memory or disk.

For simplicity, we only use two kernel versions - one exact and one approximate -

in this work. Although different versions with a gradient of accuracy could be used, inter-

leaving with a sequence of versions with increasing or decreasing accuracy, the purpose

of this work is to demonstrate that it is possible to generate an execution configuration in a

automated, simple and fast way based on the measurements of the loss of accuracy profile

and the extraction of statistics from these measurements. Therefore, we decided to use

only two versions: the exact version and an approximate, faster version. This approach

shows that interleaving kernel versions with different levels of accuracy reduces not only

runtime but also energy consumption.

As a future work, we suggest studying different optimization strategies for the

method that generates interleaved execution configurations of kernel versions. Specifi-

cally, we recommend analyzing the use of neural networks and machine learning as an

alternative to the strategy presented in this work for interleaving kernel versions. By

using neural networks and machine learning, it would be possible to introduce a third

intermediate kernel version or an arbitrary number of kernel versions with an accuracy

gradient. This would allow leveraging the interleaving of different kernel versions, using

versions with varying accuracy depending on the exact version’s retraction conditions (or

of versions with greater precision).

7.1 Publications

The following publications were made during the thesis:

• FREYTAG, Gabriel et al. Impact of Reduced and Mixed-Precision on the Efficiency
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of a Multi-GPU Platform on CFD Applications. In: International Conference on

Computational Science and Its Applications. Springer, Cham, 2022. p. 570-587.

• FREYTAG, Gabriel et al. Collaborative execution of fluid flow simulation using

non-uniform decomposition on heterogeneous architectures. Journal of Parallel

and Distributed Computing, v. 152, p. 11-20, 2021.

• FREYTAG, Gabriel et al. Impacto da Precisão Reduzida e Mista na Computação

do Método de Lattice-Boltzmann em Multiplas GPUs. In: Anais da XX Escola

Regional de Alto Desempenho da Região Sul. SBC, 2020. p. 177-178.

• FREYTAG, Gabriel et al. Non-uniform partitioning for collaborative execution on

heterogeneous architectures. In: 2019 31st International Symposium on Com-

puter Architecture and High Performance Computing (SBAC-PAD). IEEE, 2019.

p. 128-135.

• LIMA, João VF et al. A dynamic task-based d3q19 lattice-boltzmann method for

heterogeneous architectures. In: 2019 27th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2019. p.

108-115.

• FREYTAG, Gabriel et al. Non-uniform domain decomposition for heterogeneous

accelerated processing units. In: International Conference on Vector and Paral-

lel Processing. Springer, Cham, 2018. p. 105-118.
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APPENDIX A — EXPERIMENT RESULTS

A.1 Accuracy Loss Profiles

A.1.1 LBM3D

Figure A.1 – LBM3D accuracy loss profile using a problem size of 64, 400 iterations, and an
accuracy loss threshold of 6%.

Source: The Authors
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Figure A.2 – LBM3D accuracy loss profile using a problem size of 64, 400 iterations, and an
accuracy loss threshold of 9%.

Source: The Authors
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Figure A.3 – LBM3D accuracy loss profile using a problem size of 128, 200 iterations, and an
accuracy loss threshold of 3.1%.

Source: The Authors
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Figure A.4 – LBM3D accuracy loss profile using a problem size of 128, 200 iterations, and an
accuracy loss threshold of 4.6%.

Source: The Authors
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Figure A.5 – LBM3D accuracy loss profile using a problem size of 128, 400 iterations, and an
accuracy loss threshold of 6.6%.

Source: The Authors
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Figure A.6 – LBM3D accuracy loss profile using a problem size of 128, 400 iterations, and an
accuracy loss threshold of 9.9%.

Source: The Authors
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A.1.2 Euler3D

Figure A.7 – Euler3D accuracy loss profile using a problem size of 97152, 2000 iterations, and an
accuracy loss threshold of 2.8%.

Source: The Authors
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Figure A.8 – Euler3D accuracy loss profile using a problem size of 97152, 2000 iterations, and an
accuracy loss threshold of 4.2%.

Source: The Authors
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Figure A.9 – Euler3D accuracy loss profile using a problem size of 193536, 2000 iterations, and
an accuracy loss threshold of 1.4%.

Source: The Authors
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Figure A.10 – Euler3D accuracy loss profile using a problem size of 193536, 2000 iterations, and
an accuracy loss threshold of 2.8%.

Source: The Authors
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Figure A.11 – Euler3D accuracy loss profile using a problem size of 193536, 2000 iterations, and
an accuracy loss threshold of 4.2%.

Source: The Authors
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A.1.3 HotSpot3D

Figure A.12 – HotSpot3D accuracy loss profile using a problem size of 512, 1000 iterations, and
an accuracy loss threshold of 3.7%.

Source: The Authors
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Figure A.13 – HotSpot3D accuracy loss profile using a problem size of 512, 1000 iterations, and
an accuracy loss threshold of 5.6%.

Source: The Authors
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Figure A.14 – HotSpot3D accuracy loss profile using a problem size of 1024, 500 iterations, and
an accuracy loss threshold of 5.3%.

Source: The Authors
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Figure A.15 – HotSpot3D accuracy loss profile using a problem size of 1024, 500 iterations, and
an accuracy loss threshold of 10.6%.

Source: The Authors
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Figure A.16 – HotSpot3D accuracy loss profile using a problem size of 1024, 500 iterations, and
an accuracy loss threshold of 16%.

Source: The Authors
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Figure A.17 – HotSpot3D accuracy loss profile using a problem size of 1024, 1000 iterations, and
an accuracy loss threshold of 10%.

Source: The Authors
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Figure A.18 – HotSpot3D accuracy loss profile using a problem size of 1024, 1000 iterations, and
an accuracy loss threshold of 20%.

Source: The Authors
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Figure A.19 – HotSpot3D accuracy loss profile using a problem size of 1024, 1000 iterations, and
an accuracy loss threshold of 30%.

Source: The Authors
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A.2 Performance Statistics

A.2.1 LBM3D

Table A.1 – LBM3D with a 3D problem size of 64 and 200 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 103.84 0.52 3.38 57.16 5.80

6.1 61.28 0.05 2.19 48.98 2.91

2x2
1.5 80.65 0.14 1.81 62.66 5.02
3.1 65.97 0.18 1.71 57.53 3.77
4.6 65.14 0.03 0.75 52.60 3.30

3x3
1.5 76.31 0.10 1.33 60.04 4.51
3.1 64.26 0.08 1.15 59.89 3.81
4.6 65.00 0.03 1.53 51.88 3.33

4x4
1.5 69.43 0.09 1.46 57.76 4.01
3.1 61.27 0.34 4.04 60.14 3.67
4.6 67.71 0.06 1.36 50.52 3.37

5x5
1.5 79.98 0.00 1.17 51.00 4.05
3.1 65.55 0.14 2.17 56.36 3.68
4.6 60.18 0.07 1.45 51.45 3.10

6x6
1.5 75.09 0.07 2.07 53.53 3.98
3.1 63.68 0.04 0.71 63.67 4.05
4.6 60.89 0.07 0.83 53.84 3.22
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Table A.2 – LBM3D with a 3D problem size of 64 and 400 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 165.59 1.39 6.86 89.84 14.88

12 98.81 0.09 2.93 72.54 7.17

2x2
3 142.44 0.90 6.77 83.51 11.90
6 132.44 0.41 4.80 83.60 11.07
9 115.96 0.14 2.88 74.93 8.69

3x3
3 146.29 0.63 5.07 83.22 12.18
6 131.32 0.30 5.45 81.44 10.70
9 116.18 0.17 4.00 74.11 8.61

4x4
3 144.72 0.96 7.01 86.50 12.52
6 132.36 0.30 3.08 79.37 10.51
9 115.85 0.06 3.63 74.91 8.68

5x5
3 144.67 0.21 2.64 83.53 12.09
6 131.87 0.28 6.20 84.25 11.11
9 116.00 0.26 4.94 71.48 8.29

6x6
3 144.85 0.88 7.92 82.39 11.93
6 132.40 0.68 5.89 79.32 10.50
9 116.20 0.04 1.26 73.42 8.53

Table A.3 – LBM3D with a 3D problem size of 128 and 200 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 619.63 12.50 33.59 116.21 72.01

6.1 404.88 6.00 28.51 103.35 41.58

2x2
1.5 529.06 9.04 31.11 109.19 57.77
3.1 478.41 7.46 30.20 110.50 52.86
4.6 441.00 6.93 29.98 109.57 48.32

3x3
1.5 519.19 8.99 32.12 111.05 57.65
3.1 479.43 7.75 30.95 108.88 52.20
4.6 439.39 6.75 29.30 109.09 47.93

4x4
1.5 518.04 8.64 30.97 111.66 57.84
3.1 477.32 7.22 29.75 108.94 52.00
4.6 444.32 6.80 29.49 109.44 48.63

5x5
1.5 515.82 8.59 31.06 111.17 57.35
3.1 477.31 7.53 30.97 107.93 51.52
4.6 444.27 6.66 29.10 108.81 48.34

6x6
1.5 515.87 8.48 30.78 111.11 57.32
3.1 477.29 7.57 30.30 109.37 52.20
4.6 444.31 6.70 29.57 108.14 48.05
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Table A.4 – LBM3D with a 3D problem size of 128 and 400 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 1235.83 17.67 43.59 124.65 154.05

13.2 787.84 9.74 39.61 116.02 91.38

2x2
3.3 1066.30 15.45 42.28 120.50 128.49
6.6 1003.81 13.57 41.68 120.46 120.92
9.9 900.09 11.19 40.80 118.27 106.45

3x3
3.3 1093.88 15.48 42.53 121.22 132.60
6.6 1001.45 13.64 41.78 119.88 120.05
9.9 904.59 11.30 40.82 118.50 107.19

4x4
3.3 1087.30 15.30 42.41 121.16 131.74
6.6 1003.55 13.68 41.90 120.07 120.49
9.9 905.61 11.38 41.04 118.86 107.64

5x5
3.3 1059.31 15.14 42.19 120.77 127.94
6.6 1002.61 13.60 41.77 119.68 120.00
9.9 904.48 11.30 40.91 118.52 107.20

6x6
3.3 1082.79 15.25 42.43 122.00 132.10
6.6 1002.44 13.63 41.74 120.78 121.08
9.9 904.59 11.39 41.12 119.56 108.16
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A.2.2 Euler3D

Table A.5 – Euler3D with a 3D problem size of 97152 and 1000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 118.40 0.00 3.06 45.78 5.41

5.6 92.41 0.00 1.59 46.16 4.21

2x2
1.4 94.08 0.00 1.90 45.88 4.28
2.8 108.70 0.00 1.75 46.60 4.98
4.2 101.10 0.00 2.73 47.93 4.75

3x3
1.4 99.50 0.00 2.09 49.90 4.87
2.8 101.23 0.00 2.55 49.52 4.94
4.2 104.10 0.00 2.61 44.21 4.58

4x4
1.4 97.73 0.00 1.32 48.41 4.73
2.8 92.96 0.00 2.95 46.72 4.26
4.2 107.80 0.00 2.40 44.56 4.75

5x5
1.4 96.96 0.00 1.04 49.33 4.74
2.8 93.20 0.00 1.39 44.57 4.09
4.2 99.60 0.00 3.54 42.93 4.28

6x6
1.4 91.14 0.00 1.40 50.65 4.58
2.8 97.31 0.00 1.62 46.91 4.53
4.2 102.89 0.00 2.24 44.52 4.55

Table A.6 – Euler3D with a 3D problem size of 97152 and 2000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum(J)

-
0 156.42 0.00 6.36 77.61 11.85

5.6 140.82 0.00 3.28 68.07 9.20

2x2
1.4 157.67 0.00 4.83 72.25 10.99
2.8 149.48 0.00 4.23 74.97 11.03
4.2 129.41 0.00 3.06 79.07 10.23

3x3
1.4 138.61 0.00 3.05 83.14 11.52
2.8 140.37 0.00 4.37 73.69 10.16
4.2 134.47 0.00 5.53 71.17 9.40

4x4
1.4 147.46 0.00 3.02 75.61 10.75
2.8 129.16 0.00 4.06 76.78 9.92
4.2 144.77 0.00 6.49 72.35 10.12

5x5
1.4 142.55 0.00 2.28 76.05 10.65
2.8 130.30 0.00 3.50 78.73 10.26
4.2 147.87 0.00 5.75 69.32 9.88

6x6
1.4 132.65 0.00 4.77 80.51 10.68
2.8 142.86 0.00 3.80 72.89 10.10
4.2 122.43 0.00 3.57 71.65 8.77
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Table A.7 – Euler3D with a 3D problem size of 193536 and 1000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 200.46 0.30 8.55 54.19 10.86
5.6 168.07 0.20 5.36 52.33 8.79

2x2
1.4 196.95 0.29 8.10 53.97 10.63
2.8 190.69 0.32 8.91 53.72 10.25
4.2 184.64 0.25 6.18 52.89 9.77

3x3
1.4 188.54 0.32 8.09 53.74 10.13
2.8 197.10 0.24 6.37 53.15 10.49
4.2 179.86 0.36 8.49 51.48 9.27

4x4
1.4 189.05 0.20 6.82 53.01 10.04
2.8 185.90 0.15 4.38 52.75 9.81
4.2 179.85 0.29 8.06 54.49 9.80

5x5
1.4 201.88 0.18 6.62 53.95 10.88
2.8 184.37 0.23 7.11 54.28 10.01
4.2 177.28 0.17 5.62 52.34 9.28

6x6
1.4 196.97 0.24 7.33 53.33 10.50
2.8 191.58 0.25 7.46 54.37 10.40
4.2 175.92 0.22 6.83 52.96 9.32

Table A.8 – Euler3D with a 3D problem size of 193536 and 2000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 327.20 0.72 19.56 69.53 22.66

5.6 271.24 0.57 14.76 69.27 18.35

2x2
1.4 303.99 0.61 18.23 66.82 20.23
2.8 318.84 0.65 18.61 66.77 21.21
4.2 300.72 0.63 17.30 65.93 19.75

3x3
1.4 316.69 0.65 18.33 65.70 20.75
2.8 306.42 0.63 18.02 65.69 20.07
4.2 310.40 0.65 18.22 63.98 19.79

4x4
1.4 340.26 0.77 20.06 62.80 21.36
2.8 295.84 0.62 17.75 67.81 20.02
4.2 286.28 0.64 17.29 66.29 18.90

5x5
1.4 315.84 0.67 18.31 66.71 21.01
2.8 300.51 0.66 17.57 64.49 19.33
4.2 310.04 0.66 18.08 64.36 19.89

6x6
1.4 319.53 0.72 19.11 65.31 20.78
2.8 315.66 0.66 17.84 64.29 20.28
4.2 298.42 0.69 17.58 68.53 20.34

A.2.3 HotSpot3D
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Table A.9 – HotSpot3D with a 3D problem size of 512 and 500 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 12.05 0.00 0.80 34.41 0.41

4.4 7.33 0.00 0.73 33.98 0.25

2x2
1.1 10.18 0.00 0.97 34.05 0.35
2.2 9.69 0.00 0.73 34.73 0.34
3.3 8.47 0.00 1.00 37.01 0.31

3x3
1.1 10.84 0.00 1.18 33.89 0.37
2.2 9.68 0.00 1.67 34.21 0.33
3.3 8.49 0.00 0.83 34.12 0.29

4x4
1.1 10.88 0.00 0.57 34.95 0.38
2.2 9.67 0.00 0.30 34.04 0.33
3.3 8.50 0.00 0.60 33.96 0.29

5x5
1.1 10.87 0.00 0.65 33.83 0.37
2.2 9.68 0.00 1.22 34.94 0.34
3.3 8.50 0.00 1.43 33.97 0.29

6x6
1.1 10.53 0.00 1.20 33.96 0.36
2.2 9.70 0.00 1.20 34.56 0.34
3.3 8.52 0.00 1.08 34.91 0.30

Table A.10 – HotSpot3D with a 3D problem size of 512 and 1000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 24.52 0.00 1.13 37.53 0.92

7.5 15.33 0.00 0.89 35.40 0.54

2x2
1.8 21.44 0.00 0.70 35.70 0.77
3.7 20.67 0.00 1.17 35.53 0.73
5.6 18.10 0.00 0.51 34.86 0.63

3x3
1.8 22.66 0.00 0.56 36.21 0.82
3.7 20.63 0.00 1.07 35.54 0.73
5.6 18.22 0.00 1.26 35.35 0.64

4x4
1.8 22.68 0.03 1.37 34.73 0.79
3.7 20.66 0.00 1.24 35.63 0.74
5.6 18.27 0.00 0.85 35.40 0.65

5x5
1.8 22.62 0.00 1.26 36.90 0.84
3.7 20.67 0.00 1.25 35.47 0.73
5.6 18.24 0.00 1.17 35.35 0.64

6x6
1.8 22.68 0.00 0.79 37.34 0.85
3.7 20.65 0.00 1.70 36.32 0.75
5.6 18.24 0.00 1.10 36.01 0.66
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Table A.11 – HotSpot3D with a 3D problem size of 1024 and 500 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 48.98 0.44 1.84 47.27 2.32

21.3 24.69 0.12 1.60 38.16 0.94

2x2
5.3 42.62 0.56 2.33 44.87 1.91

10.6 36.09 0.20 2.63 40.80 1.47
16 30.29 0.56 1.86 37.97 1.15

3x3
5.3 42.47 0.20 1.97 39.23 1.67

10.6 36.30 0.05 1.49 36.25 1.32
16 30.43 0.30 1.80 37.79 1.15

4x4
5.3 42.23 0.12 1.37 44.70 1.89

10.6 35.96 0.00 1.19 37.57 1.35
16 30.33 0.26 1.16 37.37 1.13

5x5
5.3 42.22 0.00 1.13 43.91 1.85

10.6 35.88 0.33 1.54 38.98 1.40
16 30.09 0.34 1.86 38.37 1.16

6x6
5.3 42.33 0.36 1.57 38.60 1.63

10.6 36.11 0.00 1.18 41.95 1.51
16 30.10 0.48 2.30 35.41 1.07

Table A.12 – HotSpot3D with a 3D problem size of 1024 and 1000 iterations.

Sections Threshold (%) Time (ms)
Memory
Util (%)

GPU
Util (%)

Power
Draw (W)

Energy
Consum (J)

-
0 100.65 1.87 3.36 56.17 5.65

40 50.53 0.43 1.68 42.46 2.15

2x2
10 88.76 0.73 1.95 53.18 4.72
20 76.61 0.57 1.69 52.01 3.98
30 64.06 0.61 1.62 40.59 2.60

3x3
10 88.42 1.28 2.25 51.02 4.51
20 76.10 0.53 1.91 53.06 4.04
30 63.64 0.50 2.16 49.58 3.16

4x4
10 88.49 1.40 2.79 51.31 4.54
20 76.56 0.82 1.82 52.22 4.00
30 64.09 0.49 2.25 48.18 3.09

5x5
10 88.35 1.34 2.96 52.36 4.63
20 77.17 1.10 2.38 43.26 3.34
30 64.84 0.50 1.39 52.20 3.38

6x6
10 88.37 0.82 2.61 45.77 4.04
20 76.43 0.86 2.39 51.75 3.96
30 63.81 0.21 1.85 45.92 2.93
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APPENDIX B — RESUMO EXPANDIDO

B.1 Melhorando o Desempenho de Aplicações Iterativas por meio da Execução In-

tercalada de Kernels CUDA Aproximados

Não é segredo que a demanda por poder computacional está aumentando rap-

idamente. À medida que a humanidade avança em direção à digitalização e sistemas

inteligentes interconectados, a necessidade de armazenamento, processamento e análise

de dados continua a crescer significativamente. Apesar de melhorias significativas no

poder computacional e capacidade de armazenamento geração após geração, a demanda

por capacidade de armazenamento e computação ainda excede em muito os recursos

disponíveis, incluindo recursos de orçamento (MITTAL, 2016). Áreas de aplicação exis-

tentes e novas exigirão computação com eficiência energética ordens de magnitude mais

alta do que o estado da arte atual (SHALF, 2020). Portanto, alcançar benchmarks de

poder computacional mais altos economicamente exigirá hardware, algoritmos e métodos

mais eficientes (THOMPSON et al., 2020).

Nos últimos anos, a computação aproximada se tornou uma abordagem popular e

promissora para melhorar a eficiência e o desempenho dos sistemas de computador (XU;

MYTKOWICZ; KIM, 2015). A ideia básica é trocar a precisão computacional por melhor

desempenho do sistema e redução do consumo de energia (MITTAL, 2016). Projetando

hardware e software para tolerar erros e permitir erros menores ou variações na saída de

cálculos, a computação aproximada pode reduzir os requisitos de energia computacional.

Essa abordagem pode alcançar tempos de computação mais rápidos e menor consumo de

energia do que métodos tradicionais, resultando em economia de custos.

Precisão reduzida e precisão mista estão entre as técnicas de computação aprox-

imada mais populares. Essas técnicas envolvem o uso de menos bits para representar

valores numéricos de ponto flutuante. Por exemplo, em vez de usar 64 bits para rep-

resentar um número, podemos usar apenas 32 bits. Ao fazer isso, podemos reduzir a

quantidade de memória necessária para armazenar um valor e a quantidade de dados que

precisa ser transferida e processada. Isso pode levar a reduções no tempo de computação

e no consumo de energia (JIN et al., 2017).

Para evitar problemas de compatibilidade e imprecisões de cálculo, a IEEE padroni-

zou a representação de números de ponto flutuante em binário em hardware e software
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de computador. O padrão IEEE 754 (IEEE. . . , 1985) define um formato consistente e

universalmente reconhecido para representar números de ponto flutuante. Isso permite

cálculos precisos e confiáveis em diferentes sistemas e linguagens de programação. As

revisões da IEEE 754-2008 (IEEE. . . , 2008) especificam vários formatos de ponto flutu-

ante, incluindo os formatos de meia precisão, precisão única, precisão dupla e precisão

quádrupla. Esses formatos usam 16, 32, 64 e 128 bits para representar números de ponto

flutuante em binário.

A principal diferença entre os formatos de ponto flutuante é o número de bits

usados para representar o número, o que influencia a precisão e o intervalo de números

que podem ser representados. Por exemplo, o formato de precisão única usa 32 bits para

representar um número de ponto flutuante. Tem uma precisão de cerca de sete dígitos

decimais, enquanto o formato de precisão dupla usa 64 bits e tem uma precisão de cerca

de 15 dígitos decimais. Quanto mais bits alocados para a mantissa, mais precisa pode ser

a representação do número. No entanto, o valor decimal de 0,1 não pode ser representado

com precisão em binário usando qualquer número finito de bits (GOLDBERG, 1991).

Portanto, qualquer representação binária de 0,1 será uma aproximação. Por exemplo, no

formato de precisão única, 0,1 é aproximado como 0,100000001490116119384765625,

enquanto no formato de precisão dupla, é aproximado como

0,1000000000000000055511151231257827021181583404541015625.

Quando se trabalha com formatos de ponto flutuante de baixa precisão, como em

técnicas de computação aproximada de precisão reduzida e mista, erros podem ocorrer

devido à representação de números decimais em binário e à conversão entre diferentes for-

matos de ponto flutuante. A conversão de um número para um formato de precisão mais

baixa pode resultar em arredondamento ou truncamento, levando à perda de alguns dígi-

tos. Ao contrário, a conversão para um formato de precisão mais alta pode adicionar zeros

adicionais, mas a precisão do número original permanece inalterada. Como resultado, a

precisão da execução da aplicação é diretamente afetada pelo número de conversões entre

diferentes formatos de ponto flutuante.

Outro fator que afeta a precisão dos cálculos de ponto flutuante é a diferença no

erro introduzido por diferentes operações aritméticas. Por exemplo, subtrair dois números

muito próximos em valor pode resultar em perda de precisão devido ao número limitado

de dígitos significativos no formato de ponto flutuante. Multiplicar dois números com

magnitudes muito diferentes também pode resultar em resultados imprecisos devido a

overflow ou underflow. Em geral, adição e subtração são menos propensas a erros do
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que multiplicação e divisão porque adição e subtração não amplificam erros na mesma

extensão que multiplicação e divisão (GOLDBERG, 1991).

Portanto, controlar e limitar erros ao trabalhar com números de ponto flutuante e

aproximações é crucial porque eles podem levar a resultados imprecisos e afetar signi-

ficativamente a precisão geral da execução da aplicação. Consequentemente, é essencial

considerar cuidadosamente os requisitos de precisão e precisão da aplicação específico e

usar técnicas apropriadas para minimizar a introdução e acumulação de erros. Isso pode

envolver o uso de formatos de precisão mais alta, operações aritméticas adequadas e téc-

nicas de correção e compensação de erros. Fazê-lo torna possível melhorar a precisão e

confiabilidade dos cálculos de ponto flutuante, o que é essencial para muitas aplicações

em ciência, engenharia e outros domínios.

B.1.1 Motivação

Apesar de ser amplamente exploradas na literatura, as técnicas e ferramentas para

ajustar a precisão das operações de ponto flutuante são principalmente focadas em apli-

cações não iterativas. Os principais domínios de aplicação são gráficos de computa-

dor, aprendizado de máquina, processamento de sinais, finanças e computação numérica

(BAEK; CHILIMBI, 2010; RUBIO-GONZ et al., 2013; RUBIO-GONZALEZ et al.,

2016; KHUDIA et al., 2015; CHERUBIN et al., 2020; ROY et al., 2014), robótica, com-

pressão (KHUDIA et al., 2015), agrupamento e classificação, séries temporais, problemas

de regressão (ZHANG et al., 2014). A seleção dessas aplicações é tipicamente baseada

em sua representatividade da carga de trabalho do mundo real e sua notável resistência a

erros de ponto flutuante (MITTAL, 2016).

Embora alguns trabalhos explorem aplicações científicas iterativas igualmente rep-

resentativas, como os núcleos CG (Gradiente Conjugado), EP (Embarrassingly Parallel)

e FP (Transformada de Fourier), além das pseudoaplicações SP (Penta-diagonal Escalar)

e LU (Gauss-Seidel Inferior-Superior) da suíte de benchmarks paralelos NAS (RUBIO-

GONZ et al., 2013; RUBIO-GONZALEZ et al., 2016; SAMPSON et al., 2011; GRAIL-

LAT et al., 2019), jetEngine e turbine (CHIANG et al., 2017; MENON; LAM, 2019), e

Método Lattice Boltzmann (LBM) (HO et al., 2017), as aplicações iterativas são signi-

ficativamente mais sensíveis a erros de ponto flutuante, tornando muito mais difícil ajustar

a precisão das operações de ponto flutuante.

As aplicações iterativas são algoritmos que repetem um conjunto específico de
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instruções várias vezes até que uma condição específica seja atendida (BU et al., 2010).

Essa técnica é usada para problemas que não podem ser resolvidos analiticamente ou

quando a complexidade da solução de um problema torna impraticável calcular em um

único passo (CARSON; STRAKOŠ, 2020). Nessa técnica, a saída de uma iteração se

torna a entrada para a próxima. Embora isso torne as aplicações mais eficientes, também

significa que qualquer aproximação feita em uma iteração é transportada para a próxima.

Esses erros podem ser amplificados, levando a imprecisões no resultado final. Portanto, é

essencial monitorar e validar cuidadosamente a saída das iterações para garantir a precisão

do resultado final (ZHANG et al., 2014).

Garantir a qualidade da saída em aplicações iterativas pode ser desafiador devido

à sua natureza repetitiva e ao uso típico de domínios de dados multidimensionais. Para

controlar a qualidade de saída usando técnicas de aproximação, um método padrão é mon-

itorar a perda de precisão durante a execução (MITTAL, 2016). No entanto, monitorar a

perda de precisão durante a execução em aplicações iterativas pode ser impraticável dev-

ido ao volume de dados envolvido. Em aplicações de simulação científica, por exemplo,

para calcular a perda de precisão em cada iteração em um domínio de dados 2D com

512 células no eixo x e no eixo y, 262144 valores devem ser comparados com os valores

corretos. Usando um domínio de dados 3D com 512 células em cada lado, o número de

células aumenta para 134217728. Como as aplicações científicas iterativas de simulação

podem ter domínios de dados significativamente maiores, o custo computacional de veri-

ficar a perda de precisão durante a execução pode facilmente exceder o custo de execução

da aplicação.

B.1.2 Objetivos

Nossa pesquisa concentra-se em desenvolver um método eficiente para acelerar a

execução de aplicações usando técnicas de computação aproximada. Estamos interessa-

dos em aplicações iterativas, onde um conjunto dado de operações é aplicado repetida-

mente a um grande conjunto de dados. A execução de aplicações iterativas exige grande

poder computacional devido ao número de operações e ao volume de dados nos quais as

operações são realizadas (BU et al., 2010; CARSON; STRAKOŠ, 2020). No entanto,

essas características tornam as GPUs ideais para acelerar a execução de aplicações iter-

ativas, pois sua arquitetura permite a execução simultânea de operações em um extenso

conjunto de dados. Portanto, nosso trabalho se concentrará em estudar ainda mais a acel-
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eração de aplicações por meio de técnicas de computação aproximada em GPUs.

Em geral, as aproximações de aplicações em dispositivos GPU são alcançadas

ajustando a precisão de ponto flutuante das operações ou usando métodos menos precisos

específicos da arquitetura (SAMADI et al., 2014b; SAMADI et al., 2014a; LAGUNA et

al., 2019). A agressividade das aproximações é relativa à Qualidade de Saída Alvo (TOQ)

determinada pelo usuário. Para cada nova TOQ, uma nova análise é realizada para deter-

minar quais métodos menos precisos ou precisões de ponto flutuante serão usados em

cada operação para garantir que a TOQ seja respeitada. Embora essa abordagem permita

melhorias significativas de desempenho, o espaço de busca de sintonia cresce significati-

vamente à medida que aplicações maiores e mais complexos são usados. Uma maneira

de evitar o custo de ajuste recorrente é usar várias versões de código com diferentes pre-

cisões, variando a seleção ou a ordem de execução das versões do kernel em tempo de

execução de acordo com a proximidade da precisão de execução à TOQ.

Esta pesquisa explora a hipótese de que a execução intercalada de várias versões

aproximadas de kernel, com base em seu perfil de perda de acurácia, pode melhorar o

desempenho de aplicações iterativas. O perfil de perda de acurácia se refere à variação

da perda ao longo da execução da aplicação. Tipicamente, várias versões de kernels com

diferentes precisões são dimensionadas com base em medições de perda de precisão em

tempo de execução ou calibrações de kernel realizadas antes ou durante a execução (LA-

GUNA et al., 2019; KOTIPALLI et al., 2019; HO; SILVA; WONG, 2021). No entanto,

verificar a precisão em tempo de execução em aplicações maiores, como simulações cien-

tíficas que usam domínios de dados 2D ou 3D, pode ser impraticável. Nossa solução

proposta é analisar os perfis de perda de precisão da execução de várias versões de kernel

CUDA com diferentes precisões para gerar uma configuração de execução que alterna a

execução de diferentes versões de kernel. Essa configuração prioriza a execução da versão

mais rápida, respeitando a TOQ definida pelo usuário.

As principais contribuições deste trabalho são:

1. É proposta uma nova metodologia para computação aproximada em aplicações it-

erativas em arquiteturas GPU. Com base no perfil de acurácia de várias versões de

kernel aproximadas, uma configuração de execução intercalada dos kernels pode

ser gerada inteiramente offline. Isso pode ser feito para um número arbitrário de

TOQs se o conjunto de kernels e entradas de dados for o mesmo, sem medições

adicionais.

2. A avaliação do desempenho e eficiência energética da metodologia proposta em
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três aplicações iterativas bem conhecidas de simulação física em domínios tridi-

mensionais. A principal conclusão da tese: a execução intercalada de múltiplas

versões de kernel aproximadas com base em seu perfil de perda de acurácia pode

melhorar o desempenho e a eficiência energética de aplicações iterativas.
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