UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

GABRIEL FREYTAG

Improving Performance of Iterative
Applications through Interleaved Execution
of Approximated CUDA Kernels

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Adpvisor: Prof. Dr. Philippe O. A. Navaux
Coadvisor: Prof. Dr. Paolo Rech

Porto Alegre
April 2023

CIP — CATALOGING-IN-PUBLICATION

Freytag, Gabriel

Improving Performance of Iterative Applications through In-
terleaved Execution of Approximated CUDA Kernels / Gabriel
Freytag. — Porto Alegre: PPGC da UFRGS, 2023.

166 f.: il.

Thesis (Ph.D.) — Universidade Federal do Rio Grande do Sul.
Programa de P6s-Graduagdo em Computacao, Porto Alegre, BR—
RS, 2023. Advisor: Philippe O. A. Navaux; Coadvisor: Paolo
Rech.

1. Approximate computing. 2. Mixed-precision. 3. Half-
precision. 4. Accuracy loss profile. 5. Energy efficiency.
I. Navaux, Philippe O. A.. II. Rech, Paolo. III. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhdes

Vice-Reitora: Prof*. Patricia Pranke

Pré-Reitor de Pos-Graduagido: Prof. Julio Otdavio Jardim Barcellos
Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Alberto Egon Schaeffer Filho

Bibliotecdria-chefe do Instituto de Informatica: Alexsander Borges Ribeiro

ACKNOWLEDGMENTS

First and foremost, I would like to express my utmost gratitude to my beloved
wife, Andréia Luisa Friske, for her unwavering support throughout this insane and tumul-
tuous thesis. Secondly, I would like to thank my parents, Rosane and Silvério Freytag, for
instilling in me early on the importance of education and striving for better opportunities.
I would also like to thank my advisor, Philippe Navaux, for agreeing to guide me and
always steering me in the right direction during this madness. I would also like to thank
my co-advisor, Paolo Rech, for his assistance in researching an area outside my comfort
zone, approximate computing. In addition, I would like to thank my in-laws, Ivanir and
Arteno, for their support and partnership. Finally, I would like to thank my colleagues in
the research group "Grupo de Processamento Paralelo e Distribuido" (GPPD). Thank you

all for your help and support.

ABSTRACT

Approximate computing techniques, particularly those involving reduced and mixed pre-
cision, are widely studied in literature to accelerate applications and reduce energy con-
sumption. Although many researchers analyze the performance, accuracy loss, and energy
consumption of a wide range of application domains, few evaluate approximate comput-
ing techniques in iterative applications. These applications rely on the result of the com-
putations of previous iterations to perform subsequent iterations, making them sensitive to
precision errors that can propagate and magnify throughout the execution. Additionally,
monitoring the accuracy loss of the execution in large datasets is challenging. Calculating
accuracy loss at runtime is computationally expensive and becomes infeasible in applica-
tions with a considerable volume of data. This thesis presents a methodology for generat-
ing interleaved execution configurations of multiple kernel versions for iterative applica-
tions on GPUs. The methodology involves sampling the accuracy loss profile, extracting
performance and accuracy loss statistics, and offline generating interleaved execution con-
figurations of kernel versions for different thresholds of accuracy loss. The experiments
conducted on three iterative applications of physical simulation in three-dimensional data
domains demonstrated the capability of the methodology to extract performance and ac-
curacy loss statistics and generate interleaved execution configurations of kernel versions
with speedups up to 2 and reduction of energy consumption up to 60%. For future work,
we suggest studying different optimization strategies for generating interleaved execution

configurations of kernel versions, such as using neural networks and machine learning.

Keywords: Approximate computing. Mixed-precision. Half-precision. Accuracy loss

profile. Energy efficiency.

Melhorando o Desempenho de Aplicacoes Iterativas por meio da Execucao

Intercalada de Kernels CUDA Aproximados

RESUMO

As técnicas de computacio aproximada, particularmente aquelas envolvendo precisao re-
duzida e mista, sao amplamente estudadas na literatura para acelerar aplicag¢des e reduzir
o consumo de energia. Embora muitos pesquisadores analisem o desempenho, perda de
precisdo e consumo de energia de uma ampla gama de dominios de aplicacio, poucos
avaliam técnicas de computacido aproximada em aplicagdes iterativas. Essas aplicacdes
dependem do resultado dos célculos das iteracdes anteriores para realizar iteragdes sub-
sequentes, tornando-as sensiveis a erros de precisdo que podem se propagar e amplificar
durante a execucdo. Além disso, monitorar a perda de precisdo da execucdo em grandes
conjuntos de dados é desafiador. Calcular a perda de precisao em tempo de execucdo €
computacionalmente caro e se torna invidvel em aplicagdes com um volume considera-
vel de dados. Esta tese apresenta uma metodologia para gerar configuracdes de execugao
entrelacadas de multiplas versdes de kernel para aplicagdes iterativas em GPUs. A meto-
dologia envolve amostrar o perfil de perda de precisdo, extrair estatisticas de desempenho
e perda de precisdo, e gerar offline configuracdes de execugdo entrelacadas de versdes
de kernel para diferentes limiares de perda de precisd@o. Os experimentos realizados em
trés aplicacoes iterativas de simulagdo fisica em dominios de dados tridimensionais de-
monstraram a capacidade da metodologia de extrair estatisticas de desempenho e perda
de precisdo e gerar configuragdes de execugdo entrelacadas de versdes de kernel com
speedups de até 2 e reducdo do consumo de energia de até 60%. Para trabalhos futuros,
sugerimos estudar diferentes estratégias de otimizacao para gerar configuracdes de exe-
cucdo entrelacadas de versdes de kernel, como o uso de redes neurais e aprendizado de

maquina.

Palavras-chave: Computacdo aproximada. Precisdo mista. Meia precisdo. Perfil de

perda de acurdcia. Eficiéncia energética..

LIST OF ABBREVIATIONS AND ACRONYMS

AC Approximate Computing

Al Artificial Inteligence

AVX Advanced Vector Extensions
CFD Computational Fluid Dynamics
CG Conjugate Gradient

CpPU Central Processing Unit

CSV Comma-Separated Values
CUDA Compute Unified Device Architecture
DNN Deep Neural Network

DSP Digital Signal Processors

EP Embarrassingly Parallel

FA Full Adder

FMA Fused Multiply-Add

FP Floating-Point

FPU Floating-Point Unit

GB Gigabyte

GCC GNU Compiler Collection
GNU GNU’s Not Unix

GPU Graphics Processing Unit
HPC High Performance Computing
INT Integer

ISA Instruction Set Architecture

J Joules

LBM Lattice Boltzmann Method

LU Lower-Upper Decomposition
LULESHLivermore Unstructured Lagrangian Explicit Shock Hydrodynamics
MAE Mean Absolute Error

MIMD Multiple Instruction Multiple Data
MSE Mean Squared Error

NPU Neural Processing Unit

NUMA Non-Uniform Memory Access
NVCC Nvidia CUDA Compiler

SIMD Single Instruction Multiple Data
SM Streaming Multiprocessors

SMP Symmetric Multiprocessing

SP Scalar Penta-diagonal

SSE Streaming SIMD Extensions

TOQ Target Of Quality

w Watts

LIST OF FIGURES

Figure 3.1 Code example for computing the accuracy loss using the Frobenius norm. .38

Figure 3.2 Difference between CPU and GPU architectures.cccceevveerieeenireennnenne 39
Figure 3.3 NVIDIA’s A100 GPU Streaming Multiprocessor (SM).........ccecceevueenvennenne. 41
Figure 3.4 Evolution of NVIDIA’s GPU half-precision FPUs.........ccccccoceiviiniiniennenne 42
Figure 3.5 HotSpot3D accuracy loss using FP16 (half), FP16+FP32 (mixed) and
loop perforation (I0OPPETT)........eeeriiiiiiiiiiieeie e 45
Figure 3.6 HotSpot3D accuracy loss using FP16 (half) and FP16 up to 0.7%, then
switching to FP32 for the rest of the iterations (half-float).............ccoccooniiniennn 46

Figure 3.7 HotSpot3D accuracy loss using FP16+FP32 (mixed) and FP16+FP32

up to 0.16%, then switching to FP32 for the rest of the iterations (mixed-float)...47
Figure 3.8 HotSpot3D accuracy loss using FP16+FP32 (mixed) and FP16+FP32

up to 0.16%, then switching to FP32 for the rest of the iterations (mixed-float)...48
Figure 3.9 HotSpot3D accuracy loss using FP16 and switching to FP32 each time

the accuracy loss threshold of 0.22% is reached (half-float) compared to the

accuracy loss of full FP16 execution (half)..........ccccccoviiiiiiiiniiiiiiieeeee 49
Figure 3.10 HotSpot3D accuracy loss using FP16 and switching to FP32 each time

the accuracy loss threshold of 0.44% is reached (half-float) compared to the

accuracy loss of full FP16 execution (half)..........cccccoriiiiiiiiniiiiiiceeee 49
Figure 3.11 HotSpot3D accuracy loss using FP16 and switching to FP32 each time

the accuracy loss threshold of 0.68% is reached (half-float) compared to the

accuracy loss of full FP16 execution (half)..........cccooviiiiiiniiiiiniieeeeee 50

Figure 4.1 HotSpot3D accuracy loss profile of the interleaved execution of FP16
and FP32 kernel versions with accuracy thresholds of 0.22%, 0.44%, and 0.68%.52

Figure 4.2 Flowchart of our methodology...........coocuiieiiiiriiiiiiiiiiieeeee e 54
Figure 4.3 Code instrumentation to perform accuracy loss profiling..............ccccceeenneenn. 55
Figure 4.4 Profiling output file format.ccceeviiiieiiiiniiiieiieee e 55
Figure 4.5 Illustration of the main steps of our methodology.cccccceeviiiniiiniienncen. 57
Figure 4.6 Phase 1 accuracy loss profiling code instrumentation.cceccueeeruveennennn. 59
Figure 4.7 Phase 2 accuracy loss profiling code instrumentation.cceecueeeveeennenn. 60
Figure 4.8 Phase 3 accuracy loss profiling code instrumentation.ceccueeeruveennennne 63
Figure 4.9 Execution configuration code inStrumentation.ccceeeeveercveenneeneennennn. 69
Figure 5.1 LBM3D application pseudo-code.ccooueeriiianiiiniieenieieiieeniee e 73
Figure 5.2 Euler3D application pseudo-Code.ccevuieriiieniieniiieeniieeiieesieeeiee e 74
Figure 5.3 HotSpot3D application pseudo-code.eovuiieniiiniiiiiniieiniieenieeeieeeieene 75
Figure 5.4 LBM3D accuracy loss profile using a problem size of 64, 200 iterations,

and an accuracy loss threshold of 1.5%.ccocvveviiiniiiiiniieeeeee e 77
Figure 5.5 LBM3D accuracy loss profile using a problem size of 64, 200 iterations,

and an accuracy loss threshold of 3.1%.ccocveriiriiiiiiniinicecccceece 78
Figure 5.6 LBM3D accuracy loss profile using a problem size of 64, 200 iterations,

and an accuracy loss threshold of 4.6%.ccccccooiiiiniiiiiiiiiieee 79
Figure 5.7 LBM3D accuracy loss profile using a problem size of 64, 400 iterations,

and an accuracy loss threshold 0f 3%.ccccoevviiiiiiiniiiiee e, 80
Figure 5.8 LBM3D accuracy loss profile using a problem size of 128, 200 itera-

tions, and an accuracy loss threshold of 1.5%.ccccovieriiiiiiniiniiiiiececee, 82

Figure 5.9 LBM3D accuracy loss profile using a problem size of 128, 400 itera-
tions, and an accuracy loss threshold of 3.3%.c.ccccoviiiiiiiiniiiiiee, 83

Figure 5.10 Euler3D accuracy loss profile using a problem size of 97152, 1000

iterations, and an accuracy loss threshold of 1.4%.ccccevvvieriiieniiiiniieeeene, 85
Figure 5.11 Euler3D accuracy loss profile using a problem size of 97152, 1000
iterations, and an accuracy loss threshold of 2.8%.ccocoveeviiiiiiiiniiiiiieneee 86
Figure 5.12 Euler3D accuracy loss profile using a problem size of 97152, 1000
iterations, and an accuracy loss threshold of 4.2%.cccccceevviiiiiiiniiiinieenien, 87
Figure 5.13 Euler3D accuracy loss profile using a problem size of 97152, 2000
iterations, and an accuracy loss threshold of 1.4%.cccceevvieiciieniiiiniieeeeene, 88
Figure 5.14 Euler3D accuracy loss profile using a problem size of 193536, 1000
iterations, and an accuracy loss threshold of 1.4%.cccccoceeviinieniiniiiniinene. 89
Figure 5.15 Euler3D accuracy loss profile using a problem size of 193536, 1000
iterations, and an accuracy loss threshold of 2.8%.ccoovveeviiiiiiiiniiiiieenie, 90
Figure 5.16 Euler3D accuracy loss profile using a problem size of 193536, 1000
iterations, and an accuracy loss threshold of 4.2%.ccccccevvviiiiiiiiieeiniieeeee 91
Figure 5.17 HotSpot3D accuracy loss profile using a problem size of 512, 500 it-
erations, and an accuracy loss threshold of 1.1%.cccccocevieniiiiiniiniiiieens 93
Figure 5.18 HotSpot3D accuracy loss profile using a problem size of 512, 500 it-
erations, and an accuracy loss threshold of 2.2%.cccccevviiiiiiiiniiiiiniieeeee, 94
Figure 5.19 HotSpot3D accuracy loss profile using a problem size of 512, 500 it-
erations, and an accuracy loss threshold of 3.3%.ccccceeviiiiiiiniiiiniiiieee 95
Figure 5.20 HotSpot3D accuracy loss profile using a problem size of 512, 1000
iterations, and an accuracy loss threshold of 1.8%.cccccooeeviiiniiniiniinniceee. 96

Figure 6.1 LBM3D runtime using a problem size of 64 and 200 iterations for dif-

ferent accuracy 10ss thresholds.c..oooiiiiiiiiiiiiiie e, 98
Figure 6.2 LBM3D energy consumption using a problem size of 64 and 200 itera-

tions for different accuracy loss thresholds...........cccueeviiieniiiiniiiiniiiiicceeees 100
Figure 6.3 LBM3D runtime using a problem size of 64 and 400 iterations for dif-

ferent accuracy 10ss thresholds.occveiiiiiiiiiiiiiiie e 101
Figure 6.4 LBM3D energy consumption using a problem size of 64 and 400 itera-

tions for different accuracy loss thresholds...........cocoeoiiiiiniiiiiininiiiieceee 102
Figure 6.5 LBM3D runtime using a problem size of 128 and 200 iterations for

different accuracy 10ss thresholds.cccueeviiiiiiiiniiiiice e 104
Figure 6.6 LBM3D energy consumption using a problem size of 128 and 200 iter-

ations for different accuracy loss thresholds.ccooeeniiiiiiiniiinnicee 105
Figure 6.7 LBM3D runtime using a problem size of 128 and 400 iterations for

different accuracy 10ss thresholds.ccooviiiiiiiiiiiiniiee e 106
Figure 6.8 LBM3D energy consumption using a problem size of 128 and 400 iter-

ations for different accuracy loss thresholds.ccccoevveeviiiiniiencieiniecieeee 107
Figure 6.9 Euler3D runtime using a problem size of 97152 and 1000 iterations for

different accuracy 10ss thresholds.c...oocveeiiiiiiiiiniiiie 109
Figure 6.10 Euler3D energy consumption using a problem size of 97152 and 1000

iterations for different accuracy loss thresholds...........ccccceeeviieniiiniiiiniienieeen, 110
Figure 6.11 Euler3D runtime using a problem size of 97152 and 2000 iterations

for different accuracy loss thresholds.c.coovviiiiiiiiiiiiinii e 111
Figure 6.12 Euler3D energy consumption using a problem size of 97152 and 2000

iterations for different accuracy loss thresholds..........ccocceoveiniiinniiniiiininne. 112
Figure 6.13 Euler3D runtime using a problem size of 193536 and 1000 iterations

for different accuracy loss thresholds.ccceeviiiiiiiiiniiiiniee e, 113

Figure 6.14 Euler3D energy consumption using a problem size of 193536 and 1000
iterations for different accuracy loss thresholds..........ccoccooieiniiiniiniiinnnnne. 115

Figure 6.15 Euler3D runtime using a problem size of 193536 and 2000 iterations

for different accuracy loss thresholds.cccoeviiiiiiiieiiiiinieeee e, 116
Figure 6.16 Euler3D energy consumption using a problem size of 193536 and 2000

iterations for different accuracy loss thresholds..........ccocccoovieiniiiniiniiiinnnne. 117
Figure 6.17 HotSpot3D runtime using a problem size of 512 and 500 iterations for

different accuracy 10ss thresholds.ccoooiiiiiiiiiiiiniiie e, 118
Figure 6.18 HotSpot3D energy consumption using a problem size of 512 and 500

iterations for different accuracy loss thresholds..........cccceeveiiiniieniiiinieecieee. 120
Figure 6.19 HotSpot3D runtime using a problem size of 512 and 1000 iterations

for different accuracy loss thresholds.cccooiiiiiiiiniiiiiee, 121
Figure 6.20 HotSpot3D energy consumption using a problem size of 512 and 1000

iterations for different accuracy loss thresholds...........cccceeeviiiniiiiniiiniiiinieeen, 122
Figure 6.21 HotSpot3D runtime using a problem size of 1024 and 500 iterations

for different accuracy 10ss thresholds.cccoeevvieriiiiniiieniiicece e 123
Figure 6.22 HotSpot3D energy consumption using a problem size of 1024 and 500

iterations for different accuracy loss thresholds..........cc.cccoovieiniiiiniiiniiinnnne. 124
Figure 6.23 HotSpot3D runtime using a problem size of 1024 and 1000 iterations

for different accuracy loss thresholds.cccooviiiiiiiiniiiineeee e, 125
Figure 6.24 HotSpot3D energy consumption using a problem size of 1024 and

1000 iterations for different accuracy loss thresholds...........cccccooiiiiinnnnncn. 126
Figure A.1 LBM3D accuracy loss profile using a problem size of 64, 400 itera-

tions, and an accuracy loss threshold of 6%.cccceeeiienvieeiieeniecieeeee e, 135
Figure A.2 LBM3D accuracy loss profile using a problem size of 64, 400 itera-

tions, and an accuracy loss threshold of 9%.c.cccccieviiniiiiiininee 136
Figure A.3 LBM3D accuracy loss profile using a problem size of 128, 200 itera-

tions, and an accuracy loss threshold of 3.1%.ccocceeeviiiniiiiniiiiiiieiieeeee 137
Figure A.4 LBM3D accuracy loss profile using a problem size of 128, 200 itera-

tions, and an accuracy loss threshold of 4.6%.cccccveeeviiiiiiniiiieieieeeeieee 138
Figure A.5 LBM3D accuracy loss profile using a problem size of 128, 400 itera-

tions, and an accuracy loss threshold of 6.6%.ccccoccveniiiiinnienicniiiiceee 139
Figure A.6 LBM3D accuracy loss profile using a problem size of 128, 400 itera-

tions, and an accuracy loss threshold of 9.9%.cccccovviiiiniiniiiiiiiieeee 140
Figure A.7 Euler3D accuracy loss profile using a problem size of 97152, 2000 it-

erations, and an accuracy loss threshold of 2.8%.ccocccevviiniiiiiiiniicinnen. 141
Figure A.8 Euler3D accuracy loss profile using a problem size of 97152, 2000 it-

erations, and an accuracy loss threshold of 4.2%.ccccevviiiiiiiniiiiniiineen, 142
Figure A.9 Euler3D accuracy loss profile using a problem size of 193536, 2000

iterations, and an accuracy loss threshold of 1.4%.ccccccevvvveeviiiinieeniieenne. 143
Figure A.10 Euler3D accuracy loss profile using a problem size of 193536, 2000

iterations, and an accuracy loss threshold of 2.8%.cccccoceeciiiiininciiniennens 144
Figure A.11 Euler3D accuracy loss profile using a problem size of 193536, 2000

iterations, and an accuracy loss threshold of 4.2%.ccccceevviiniiiiniiienieeen. 145
Figure A.12 HotSpot3D accuracy loss profile using a problem size of 512, 1000

iterations, and an accuracy loss threshold of 3.7%.cccoeeveeiiviiiiiiniiieieieee 146
Figure A.13 HotSpot3D accuracy loss profile using a problem size of 512, 1000

iterations, and an accuracy loss threshold of 5.6%.cc.ccoceeciiniinicniiinieneens 147
Figure A.14 HotSpot3D accuracy loss profile using a problem size of 1024, 500

iterations, and an accuracy loss threshold of 5.3%.cccccevvvieiviiiiniciniieee. 148

Figure A.15 HotSpot3D accuracy loss profile using a problem size of 1024, 500
iterations, and an accuracy loss threshold of 10.6%.cccccooviiiniiinicinnienne. 149

Figure A.16 HotSpot3D accuracy loss profile using a problem size of 1024, 500

iterations, and an accuracy loss threshold of 16%.cccccevvveevciiirceeniieene. 150
Figure A.17 HotSpot3D accuracy loss profile using a problem size of 1024, 1000

iterations, and an accuracy loss threshold of 10%.ccoceeriiiiniiiniiiiniiene. 151
Figure A.18 HotSpot3D accuracy loss profile using a problem size of 1024, 1000

iterations, and an accuracy loss threshold of 20%.ccoocveeviiiiniiiiiieinienee. 152

Figure A.19 HotSpot3D accuracy loss profile using a problem size of 1024, 1000
iterations, and an accuracy loss threshold of 30%.ccccceevvveevcieincieenieee. 153

LIST OF TABLES

Table 2.1 Applications used by previous works and their respective domains. 34
Table A.1 LBM3D with a 3D problem size of 64 and 200 iterations.c.ccecueenneene 154
Table A.2 LBM3D with a 3D problem size of 64 and 400 iterations.c...ccccceeeeneen. 155
Table A.3 LBM3D with a 3D problem size of 128 and 200 iterations.c..ccceeeunee 155
Table A.4 LBM3D with a 3D problem size of 128 and 400 iterations.c..cceeu..... 156
Table A.5 Euler3D with a 3D problem size of 97152 and 1000 iterations. 157
Table A.6 Euler3D with a 3D problem size of 97152 and 2000 iterations. 157
Table A.7 Euler3D with a 3D problem size of 193536 and 1000 iterations. 158
Table A.8 Euler3D with a 3D problem size of 193536 and 2000 iterations. 158
Table A.9 HotSpot3D with a 3D problem size of 512 and 500 iterations. 159
Table A.10 HotSpot3D with a 3D problem size of 512 and 1000 iterations. 159
Table A.11 HotSpot3D with a 3D problem size of 1024 and 500 iterations. 160

Table A.12 HotSpot3D with a 3D problem size of 1024 and 1000 iterations. 160

CONTENTS

1 INTRODUCTION..... ..19
1.1 Motivation... 21
1.2 Objectives.... w22
1.3 Document Organization .. .23
2 BACKGROUND AND STATE OF THE ART. .25
2.1 Circuit-Level Approximation..... .26
2.2 Architecture-Level Approximation w27
2.3 Application-Level Approximation........ .28
2.3.1 Popular TEChNIQUESceevuiieeiieeiiieeiee ettt ettt e et e e e e esnee e 29
2.3.2 Popular Automated Tools for Precision Tuning............ccceeveevieeinieenieennieennieennn 31
2.4 State of the Art...... 32
3 INTERLEAVED EXECUTION OF APPROXIMATED CUDA KERNELS........ 37
3.1 Measuring Accuracy Loss 37
3.2 Management of Accuracy Loss.. .38
3.3 Heterogeneous Architectures 39
3.4 Execution of Approximated Kernel Versions in Iterative Applications............. 42
4 A METHODOLOGY FOR INTERLEAVED EXECUTION OF APPROXI-
MATED CUDA KERNELS BASED ON ACCURACY LOSS PROFILES...51
4.1 Challenges in Interleaved Execution of Kernel Versions... S
4.2 Our Methodology .. 53
4.2.1 Step 1 - Generating Accuracy Loss Profilesc.cccooviiiniiiniiiniiniiiiceeee 53
4.2.2 Step 2 - Generating Subsections Configurationcceeeveeerueerriieeriieesneeenneens 56
4.2.3 Step 3 - Measuring Performance and Accuracy Loss per Subsections.................. 56
4.2.4 Step 4 - Generating Accuracy LosS StatiStiCScuueevvieervieriiieeniieeiieerieeeiee e 65
4.2.5 Step 5 - Generating Performance StatiStiCscoecueieniiiniiiiniiiiiieeniee e 66
4.2.6 Step 6 - Generating Execution Configurationscccceevveeerieenniieeniieesneeenieenne 67
5 EXPERIMENTS .71
5.1 Experiment Setup.. 71
5.2 Applications73
S.2.1 IBMB3BD .t 73
5.2.2 BUICI3D ..ttt 74
5.2.3 HOESPOIBD ..ttt et et ettt s 75
5.3 Results and Analysis76
5.3.1 LBMBD .ttt et ettt ettt e ateeneas 76
5.3.2 BUIEIBD ..ottt 84
5.3.3 HOESPOIBD ...ttt ettt 92
6 PERFORMANCE ANALYSIS AND DISCUSSION .. .97
6.1 LBM3D 97
6.2 Euler3D .108
6.3 HotSpot3D .. 117
7 CONCLUSIONS 127
7.1 Publications 129
REFERENCES.. 131
APPENDIX A — EXPERIMENT RESULTS..... 135
A.1 Accuracy Loss Profiles.... 135
ALTT LBMBD ottt ettt ettt sttt n 135
ALT2 BUIEIBD . 141
ALT3 HOESPOL3D ..ttt et ettt et b e s 146

A.2 Performance Statistics.... 154

AL2.T LBMB3BD .ttt sttt eaeen 154
AL2.2 BUICI3D ..ottt sttt st enean 157
AL2.3 HOESPOL3D ..ottt ettt sttt et nae s 158
APPENDIX B — RESUMO EXPANDIDO 161
B.1 Melhorando o Desempenho de Aplicacoes Iterativas por meio da Exe-
cucao Intercalada de Kernels CUDA Aproximados 161
B.1.T MOUIVAGAO ...ueiiiiieeiieeeiie ettt ette ettt e s tee e e e st e e sateessteeenseeensaeennseesnseesnnseens 163

B.1.2 ODBJEUVOS ..evvieeiiiiieeeiiiee ettt e ettt e ettt e e et e e e eata e e s e nbeeeesnaaeeeestaeeeennne 164

19

1 INTRODUCTION

It’s no secret that the demand for computing power is rapidly increasing. As hu-
manity moves towards digitization and interconnected intelligent systems, the need for
storage, processing, and data analysis continues to grow significantly. Despite signifi-
cant improvements in computational power and storage capacity generation after gener-
ation, the demand for storage and computing capacity still vastly exceeds the available
resources, including budget resources (MITTAL, 2016). Moreover, existing and new ap-
plication areas will require computation with energy efficiency orders of magnitude higher
than the current state of the art (SHALF, 2020). Therefore, achieving higher computa-
tional power benchmarks economically will require more efficient hardware, algorithms,
and methods (THOMPSON et al., 2020).

In recent years, approximate computing has become a popular and promising ap-
proach for improving the efficiency and performance of computer systems (XU; MYTKOW-
ICZ; KIM, 2015). The basic idea is to trade off computational accuracy for better system
performance and reduced power consumption (MITTAL, 2016). By designing hardware
and software to tolerate errors and allowing minor errors or variations in the output of
computations, approximate computing can reduce computational power requirements.
This approach can achieve faster computing times and lower energy consumption than
traditional methods, resulting in cost savings.

Reduced precision and mixed precision are among the most popular approximate
computing techniques. These techniques involve using fewer bits to represent floating-
point numerical values. For example, instead of using 64 bits to represent a number, we
can use only 32 bits. By doing so, we can reduce the amount of memory needed to store
a value and the amount of data that needs to be transferred and processed. This can lead
to reductions in both computation time and energy consumption (JIN et al., 2017).

To prevent compatibility issues and calculation inaccuracies, IEEE standardized
the representation of floating-point numbers in binary in computer hardware and soft-
ware. The IEEE 754 (IEEE..., 1985) standard defines a consistent and universally rec-
ognized format for representing floating-point numbers. This allows for accurate and
reliable calculations across different systems and programming languages. The revisions
of the IEEE 754-2008 (IEEE..., 2008) specify several floating-point formats, including
the half-precision, single-precision, double-precision, and quadruple-precision formats.

These formats use 16, 32, 64, and 128 bits to represent floating-point numbers in binary.

20

The main difference between the floating-point formats is the number of bits used
to represent the number, which influences the precision and range of numbers that can
be represented. For example, the single-precision format uses 32 bits to represent a
floating-point number. It has a precision of about seven decimal digits, while the double-
precision format uses 64 bits and has a precision of about 15 decimal digits. The more
bits allocated to the mantissa, the more precise the number can be represented. How-
ever, the decimal value of 0.1 cannot be represented precisely in binary using any finite
number of bits (GOLDBERG, 1991). Therefore, any binary representation of 0.1 will
be an approximation. For instance, in single-precision format, 0.1 is approximated as
0.100000001490116119384765625, while in double-precision format, it is approximated
as 0.1000000000000000055511151231257827021181583404541015625.

When working with lower-precision floating-point formats, such as in reduced and
mixed-precision approximate computing techniques, errors can occur due to the represen-
tation of decimal numbers in binary and casting between different floating-point formats.
Casting a number to a lower-precision format can result in rounding or truncation, leading
to the loss of some digits. Conversely, casting to a higher-precision format may add addi-
tional zeros, but the precision of the original number remains unchanged. As a result, the
accuracy of application execution is directly impacted by the number of castings between
different floating-point formats.

Another factor affecting the accuracy of floating-point calculations is the differ-
ence in error introduced by different arithmetic operations. For example, subtracting two
numbers that are very close in value can result in a loss of precision due to the limited
number of significant digits in the floating-point format. Multiplying two numbers with
very different magnitudes can also result in inaccurate results due to overflow or under-
flow. In general, addition and subtraction are less prone to errors than multiplication and
division because addition and subtraction do not amplify errors to the same extent as
multiplication and division (GOLDBERG, 1991).

Therefore, controlling and limiting errors when working with floating-point num-
bers and approximations is crucial because they can lead to inaccurate results and signif-
icantly impact the overall accuracy of application execution. Consequently, it is essential
to carefully consider the precision and accuracy requirements of the specific application
and use appropriate techniques to minimize the introduction and accumulation of errors.
This may involve using higher precision formats, proper arithmetic operations, and error

correction and compensation techniques. Doing so makes improving the accuracy and re-

21

liability of floating-point computations possible, which is essential for many applications

in science, engineering, and other domains.

1.1 Motivation

Despite being widely explored in the literature, techniques and tools for fine-
tuning the precision of floating-point operations are primarily focused on non-iterative ap-
plications. The main application domains are computer graphics, machine learning, signal
processing, finance and numerical computing (BAEK; CHILIMBI, 2010; RUBIO-GONZ
et al., 2013; RUBIO-GONZALEZ et al., 2016; KHUDIA et al., 2015; CHERUBIN et al.,
2020; ROY et al., 2014), robotics, compression (KHUDIA et al., 2015), clustering and
classification, time series, regression problems (ZHANG et al., 2014). The selection of
these applications is typically based on their real-world workload representativeness and
their notable resilience to floating-point errors (MITTAL, 2016).

Although some works explore iterative scientific applications that are equally rep-
resentative, such as the CG (Conjugate Gradient), EP (Embarrassingly Parallel), and FP
(Fourier Transform) kernels and the SP (Scalar Penta-diagonal) and LU (Lower-Upper
Gauss-Seidel) pseudo-applications of the suite of NAS parallel benchmarks (RUBIO-
GONZ et al., 2013; RUBIO-GONZALEZ et al., 2016; SAMPSON et al., 2011; GRAIL-
LAT et al., 2019), jetEngine and turbine (CHIANG et al., 2017; MENON; LAM, 2019),
Lattice Boltzmann Method (LBM) (HO et al., 2017), iterative applications are signifi-
cantly more sensitive to floating-point errors, making it considerably more challenging to
tune the precision of floating-point operations.

Iterative applications are algorithms that repeat a specific set of instructions mul-
tiple times until a particular condition is met (BU et al., 2010). This technique is used for
problems that cannot be solved analytically or when the complexity of the solution to a
problem makes it unfeasible to compute in a single step (CARSON; STRAKOS, 2020).
In this technique, the output of one iteration becomes the input for the next. While this
makes the applications more efficient, it also means that any approximations made in one
iteration are carried over to the next. These errors can then be amplified, leading to inac-
curacies in the final result. Therefore, it is essential to carefully monitor and validate the
output of the iterations to ensure the accuracy of the final result (ZHANG et al., 2014).

Ensuring output quality in iterative applications can be challenging due to their

repetitive nature and typical use of multidimensional data domains. To control output

22

quality using approximation techniques, a standard method is monitoring accuracy loss
during runtime (MITTAL, 2016). However, monitoring accuracy loss during runtime in
iterative applications may be impractical due to the volume of data involved. In scientific
simulation applications, for example, to calculate accuracy loss in each iteration on a 2D
data domain with 512 cells on the x-axis and y-axis, 262144 values must be compared
against the correct values. Using a 3D data domain with 512 cells on each side increases
the number of cells to 134217728. Since iterative scientific simulation applications can
have significantly larger data domains, the computational cost of checking for accuracy

loss at runtime can easily exceed the application’s running cost.

1.2 Objectives

Our research focuses on developing an efficient method of accelerating the ex-
ecution of applications using approximate computing techniques. We are interested in
iterative applications, where a given set of operations is applied recurrently over a large
dataset. The execution of iterative applications demands great computational power due
to the number of operations and the volume of data on which the operations are per-
formed (BU et al., 2010; CARSON; STRAKOg, 2020). However, these characteristics
make GPUs ideal for accelerating the execution of iterative applications since their archi-
tecture allows the simultaneous execution of operations on an extensive dataset. There-
fore, our work will focus on studying further application acceleration through approxi-
mate computing techniques on GPUs.

In general, approximations of applications on GPU devices are achieved by fine-
tuning the floating-point precision of operations or by using less precise architecture-
specific methods (SAMADI et al., 2014a; SAMADI et al., 2014b; LAGUNA et al., 2019).
The aggressiveness of the approximations is relative to the user-determined Target Out-
put Quality (TOQ). For each new TOQ, a new analysis is performed to determine which
less accurate methods or floating-point precisions will be used in each operation to en-
sure that the TOQ is respected. Although this approach enables significant performance
improvements, the tuning search space grows significantly as larger and more complex
applications are used. One way to avoid the cost of recurrent tuning is to use multiple
code versions with different accuracies, varying the selection or execution order of the
kernel versions at runtime according to how close the execution accuracy is to the TOQ.

This research explores the hypothesis that the interleaved execution of multiple

23

approximated kernel versions, based on their accuracy loss profile, can improve the per-
formance of iterative applications. The accuracy loss profile refers to the variation of loss
along the execution of the application. Typically, multiple versions of kernels with dif-
ferent accuracies are scaled based on measurements of accuracy loss at runtime or kernel
calibrations performed before or during execution (LAGUNA et al., 2019; KOTIPALLI et
al., 2019; HO; SILVA; WONG, 2021). However, checking accuracy at runtime in larger
applications, such as scientific simulations that use 2D or 3D data domains, can be imprac-
tical. Our proposed solution is to analyze the accuracy loss profiles of running multiple
CUDA kernel versions with different accuracies to generate an execution configuration
that alternates the execution of different kernel versions. This configuration prioritizes
the execution of the fastest version respecting the user-defined TOQ.

This work’s main contributions are:

1. A new methodology for approximate computing in iterative applications in GPU
architectures is proposed. Based on the accuracy profile of multiple approximated
kernel versions, an interleaving execution configuration of the kernels can be gen-
erated entirely offline. This can be done for an arbitrary number of TOQs if the set

of kernels and data inputs is the same, without additional measurements.

2. The evaluation of the performance and energy efficiency of the proposed method-
ology on three well-known iterative applications of physical simulation in three-

dimensional domains.

3. The main insight from the thesis: interleaved execution of multiple approximated
kernel versions based on their accuracy loss profile can improve the performance

and energy efficiency of iterative applications.

1.3 Document Organization

The remaining thesis is organized as follows. Chapter 2 provides a solid under-
standing of state-of-the-art techniques in approximate computing. We differentiate be-
tween the different levels of existing approximate computing techniques and dissect the
approaches used in the literature for using approximate computing techniques at the ap-
plication level on GPU architectures. Chapter 3 introduces the concept of interleaved
execution of multiple versions of approximate kernels in GPU architectures. Chapter 4

presents the methodology developed in this thesis for extracting the accuracy loss profile

24

of multiple approximate kernel versions and generating execution configurations based on
accuracy loss and performance statistics. This is done in a fully offline manner. Chapter 5
presents the experimental results of execution configurations generated from the method-
ology presented in Chapter 4 for different iterative physical simulation applications using
different problem sizes and accuracy loss thresholds. Chapter 6 analyzes and discusses
the performance and energy efficiency of the results presented in Chapter 5. Finally, in

Chapter 7, we offer the final considerations of our work and suggestions for future work.

25

2 BACKGROUND AND STATE OF THE ART

Approximate Computing (AC) refers to a range of techniques that trade off the
precision of results for improvements in application performance and reduced energy
consumption (MITTAL, 2016). By omitting specific calculations, reducing hardware re-
source usage, using faster but less accurate hardware, or optimizing computational meth-
ods, these techniques considerably reduce the computational power required to run appli-
cations. This, in turn, enhances application performance and reduces energy consumption.
However, omitting or approximating certain operations during execution can lead to inac-
curate results and, in some cases, completely corrupt the final output of the application.

Approximate computing techniques are tools and methods that explore the in-
trinsic resilience of applications to numerical errors. However, the influence of a given
technique on the final result can vary significantly from one application to another due
to the inherent characteristics of each application. While a particular technique may only
minimally change the result of one application, it could result in a significant divergence
between the expected value and the value obtained in another application. Intrinsic re-
siliency refers to an application’s ability to produce acceptable output despite some of its
underlying calculations being incorrect or approximate (CHIPPA et al., 2013).

However, an application’s resilience to errors does not guarantee an acceptable
result when using any applicable AC technique. Though such resilience can naturally
reduce the impact of approximations introduced by these techniques, the final result with
specific techniques may still be unacceptable (CHIPPA et al., 2013). This is due to the
variation in the approximation level introduced by each technique in an application’s oper-
ations, which can even vary from one application to another (XU; MYTKOWICZ; KIM,
2015). Despite the negative impact of AC techniques on an application’s final result,
there are established ways to explore the potential for improving performance and energy
consumption while minimizing impacts on result accuracy.

Computing has entered an era of complex systems that requires sophisticated al-
gorithms to deliver good enough answers quickly, at scale, and with energy efficiency,
and approximation is often the only way to meet these goals (Xu, 2016). This Chapter
will detail the different levels of Approximate Computing techniques, with a particular

focus on the more general application-level techniques and AC in GPU architectures.

26

2.1 Circuit-Level Approximation

The circuit-level approximation is a technique for designing circuits that perform
approximate computations instead of exact computations. This is achieved by introducing
approximations into the circuit design, which reduces the computations’ accuracy and
the energy consumed by the circuits (MITTAL, 2016). Most proposals for approximate
circuits modify the original function of circuits to balance accuracy and energy (XU;
MYTKOWICZ; KIM, 2015). Since addition and multiplication are critical arithmetic
operations, most research has focused on approximating adder and multiplier circuits.

Gupta et al. (2011) propose reducing logic complexity as an alternative to volt-
age scaling to maximize the relaxation of numerical accuracy. The authors suggest us-
ing various imprecise or approximate Full Adder (FA) cells with reduced complexity at
the transistor level to design approximate multi-bit adders. Their technique results in
significantly shorter critical paths, enabling voltage scaling. The proposed approximate
arithmetic units are then used to design architectures for video and image compression
algorithms. The authors evaluate these designs and demonstrate their efficacy through
simulations, which show significant power and area savings and an insignificant loss in
output quality compared to other implementations.

Kim, Zhang and Li (2013) propose an adder with a carry skip scheme that achieves
higher carry prediction accuracy, enabling faster addition operations or reduced energy
dissipation by lowering the supply level. This technique leverages information from less
significant input bits in a parallel through-carrying prediction, significantly improving
error rate and critical path delay. The authors claim that their adder design is flexible,
allowing low-overhead error correction logic to be included for error-free operations at
the cost of one more clock cycle. The proposed design is faster and more energy-efficient
than traditional adders and has minor approximation errors in the training processes of a
neuromorphic character recognition chip using unsupervised learning.

Liu, Han and Lombardi (2014) proposed a multiplier design for high-performance
Digital Signal Processing (DSP) applications with lower power consumption and a shorter
critical path than traditional multipliers. This design uses an approximate adder with lim-
ited carry propagation to the nearest neighbors for fast partial product accumulation. The
design also achieves different levels of accuracy through a configurable error recovery
using different numbers of Most Significant Bits (MSBs) for error reduction. Although

there are errors in the multiplier, most of them are not significant in magnitude. By imple-

27

menting the multipliers, the authors showed that an appropriate error recovery results in
the proposed approximate multiplier achieving processing accuracy similar to traditional

exact multipliers but with significantly improved power and performance.

2.2 Architecture-Level Approximation

In addition to approximating circuit designs, researchers have explored approx-
imation in essential components of computer systems such as processors, memory, and
storage. Computer architects aim to balance performance and energy efficiency under var-
ious constraints imposed by a given technology, such as chip area and processors’ power,
balance density (cost per bit), and performance on memory and storage (XU; MYTKOW-
ICZ; KIM, 2015; MITTAL, 2016). However, simultaneously improving these compo-
nents’ performance, energy efficiency, and density is challenging because improving one
often sacrifices the others (XU; MYTKOWICZ; KIM, 2015).

Venkataramani et al. (2013) propose a quality programmable processor that cod-
ifies the notion of quality in the Instruction Set Architecture (ISA). The ISA contains
instructions associated with quality fields that specify the accuracy level required during
the execution of the instructions. This approach allows the control of instruction execu-
tion accuracy and dramatically enhances the scope of approximate computing, making
it applicable to more significant portions of programs. While the micro-architecture of a
quality programmable processor contains hardware mechanisms that translate instruction-
level quality specifications into energy savings, it can also expose the actual error incurred
during the execution of each instruction back to the software. Results show that using
instruction-level quality specifications can lead to significant energy savings with virtu-
ally no loss in application output quality and only a modest impact on output quality.

Esmaeilzadeh et al. (2012) propose a learning-based approach for accelerating
approximate programs through the Parrot transformation. This program transformation
selects and trains a neural network to mimic a region of imperative code. During the
learning phase, the compiler replaces the original code with an invocation to a Neural Pro-
cessing Unit (NPU), a low-power accelerator that speeds up machine learning algorithms.
The NPU is tightly coupled to the processor pipeline to accelerate small code regions.
The authors define a neural network programming model that allows programmers to
identify code that can produce imprecise but acceptable results. The approximable code

regions can then be offloaded to NPUs, executing it faster and more energy-efficiently

28

than the original code. This approach can significantly improve performance and energy
consumption with an acceptable quality loss.

Palframan, Kim and Lipasti (2014) presented a precision-aware soft error pro-
tection scheme for the GPU execution logic and register file. The system combines se-
lective gate hardening, an inexpensive checker circuit, and precision-aware encoding to
improve soft-error resilience with low overhead. The authors extended this approach to
integer (INT) computations by modifying the architecture and treating integers similarly
to floating-point numbers. They showed that precision-aware protection has low overhead
and minor error magnitudes in the event of a soft error compared to approaches that do
not target error magnitudes. The technique significantly reduces errors while maintaining
a low area overhead compared to a traditional approach with the same area overhead.

Sampson et al. (2014) propose a mechanism for storing data approximately in
applications, demonstrating that it can improve the performance, lifetime, or density of
solid-state memories. The authors suggest two mechanisms. The first mechanism allows
errors in multilevel cells by reducing the number of programming pulses used to write the
cells. The second mechanism mitigates wear-out failures by mapping approximate data to
blocks that have exhausted their hardware error correction resources, thus extending the
memory’s endurance. Simulations show that writes with reduced precision in multilevel
phase-change memory cells are faster, and using failed blocks improves the array lifetime

with an acceptable quality loss.

2.3 Application-Level Approximation

Several software-level techniques and approaches have been explored to improve
various applications’ performance and energy efficiency (XU; MYTKOWICZ; KIM, 2015).
These techniques include approximate languages, approximate compilers, and optimiza-
tion strategies for reducing computational work. By decreasing the precision of compu-
tations, application-level approximations can significantly improve the runtime and lower
power consumption without the need for specialized hardware, albeit at the cost of some

accuracy loss in the output of applications (MITTAL, 2016).

29

2.3.1 Popular Techniques

The most widely used approximate computing techniques for improving applica-
tion performance and reducing energy consumption aim to efficiently exploit resources
available in modern computing systems (MITTAL, 2016). These techniques involve re-
ducing system resource usage or minimizing high computational cost tasks for executing
applications. Other techniques diversify the use of available computational resources,
using those with lower computational costs or distributing the workload among a more
significant number of resources.

One of the most popular approximate computing techniques focused on reducing
system resource usage is loop perforation. This general application-level approximation
technique trades the accuracy of the output for performance by transforming loops to ex-
ecute only a subset of their iterations (HOFFMANN et al., 2009). This technique aims
to reduce the computational work of applications by filtering out loops whose perfora-
tion produces unacceptable behaviors and identifying loops where the perforation makes
more efficient yet accurate computations (SIDIROGLOU-DOUSKOS et al., 2011). The
perforation of loops is usually conducted through space exploration algorithms, statistical
analysis, perforation at regular intervals, or even randomly.

Other techniques, such as memoization, load value approximation, task skipping,
and memory access reduction, also aim to reduce the use of system resources (MITTAL,
2016; XU; MYTKOWICZ; KIM, 2015). Like loop perforation, skipping task execu-
tion and memory access reduces the number of operations performed by applications.
However, instead of proceeding with subsequent operations, these techniques replace the
results of skipped computations with previously computed or stored data. For example,
memoization stores the result of functions so they can be reused later by other simi-
lar functions or functions with identical input data (RAHIMI; BENINI; GUPTA, 2013;
KERAMIDAS; KOKKALA; STAMOULIS, 2015). On the other hand, the load value ap-
proximation technique estimates the load value in cases of cache loading failure, which
avoids searching in different levels of cache or main memory and reduces significant la-
tency (MIGUEL; BADR; JERGER, 2014; SUTHERLAND; MIGUEL; JERGER, 2015).

These techniques do not require additional or specialized resources, making them
applicable to various computing systems. Their implementation is relatively simple, usu-
ally involving the omission of specific procedures or the storage and approximation of val-

ues. However, modern computing systems consist of a heterogeneous mix of components

30

and resources with different purposes and utilities that can also be exploited to optimize
application performance and energy consumption (MITTAL, 2016; XU; MYTKOWICZ;
KIM, 2015).

One example is the different floating-point representation formats present in mod-
ern systems. The most popular are the half, single, and double-precision binary for-
mats (IEEE. .., 2008). While larger formats offer more precise representations of floating-
point values (with more decimal digits), larger representation sizes require more space in
system memory. The information about each value increases with larger sizes, making
reading and transferring the data more time-consuming. For instance, a value in single-
precision floating-point format uses 32 bits of memory. In contrast, in double-precision
format, it uses twice as much space (64 bits) and twice as much memory bandwidth during
transfers compared to the single-precision representation.

During the development process of most applications, it is common practice to use
a floating-point representation format with higher precision than what is minimally nec-
essary to represent the data (RUBIO-GONZ et al., 2013). This is because correctly sizing
the minimum format needed to represent each variable in an application accurately can be
complex, and using a larger, more accurate format for the application as a whole becomes
the more viable choice (MITTAL, 2016; XU; MYTKOWICZ; KIM, 2015). However,
while larger floating-point formats can provide a margin of safety in executing floating-
point operations, they can significantly degrade performance and energy consumption,
especially in compute- and memory-intensive applications (RUBIO-GONZ et al., 2013).

Reduced and mixed precision is one of the most popular techniques used to re-
duce the amount of data in computations and increase the performance and efficiency of
computations in applications. Based on the observation that the use of higher precision
floating-point formats than necessary is a common practice in application development,
the idea of reduced and mixed precision techniques is to use floating-point representations
with smaller sizes for variables and arithmetic operations, trading off the accuracy of the
output for improved performance and energy efficiency (RUBIO-GONZ et al., 2013).

Due to the complexity of existing numerical programs, manually tuning their
floating-point precision may be prohibitively expensive or even impossible (RUBIO-GONZ
et al., 2013). To overcome this, precision tuning tools were developed to automate the

process of precision tuning in applications.

31

2.3.2 Popular Automated Tools for Precision Tuning

Sampson et al. (2011) propose using type qualifiers to declare data that may be
subject to approximate computation, isolating them from the parts that must be precise.
Using these types, the system can automatically map approximate variables to low-power
storage, use low-power operations, and apply more energy-efficient algorithms provided
by the programmer. This approach statically guarantees the isolation of the precise parts
from the approximate ones, allowing program