UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL FACULDADE DE ODONTOLOGIA

MARTINA HITOMI NAGANO

GENES E FUNÇÕES POTENCIALMENTE RESPONSÁVEIS PELA ACIDURICIDADE DE LACTOBACILLUS SPP PRESENTES EM SUPERFICÍES RADICULARES

MARTINA HITOMI NAGANO

GENES E FUNÇÕES POTENCIALMENTE RESPONSÁVEIS PELA ACIDURICIDADE DE LACTOBACILLUS SPP PRESENTES EM SUPERFICÍES RADICULARES

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Odontologia da Universidade Federal do Rio Grande do Sul, como requisito parcial para obtenção do Título de Cirurgiã-Dentista.

Orientador: Prof. Dr. Rodrigo Alex Arthur

MARTINA HITOMI NAGANO

GENES E FUNÇÕES POTENCIALMENTE RESPONSÁVEIS PELA ACIDURI	CIDADE
DE LACTOBACILLUS SPP PRESENTES EM SUPERFICÍES RADICULA	RES

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Odontologia da Universidade Federal do Rio Grande do Sul, como requisito parcial para obtenção do Título de Cirurgiã-Dentista.

Rodrigo Alex Arthur

Doutor em Odontologia. Universidade Federal do Rio Grande do Sul

Lina Naomi Hashizume

Doutora em Odontologia. Universidade Federal do Rio Grande do Sul

Sandra Liana Henz

Doutora em Odontologia. Universidade Federal do Rio Grande do Sul

AGRADECIMENTOS

Agradeço a minha família por estar sempre presente me apoiando e me dando todo o suporte para que eu conseguisse chegar nesse momento tão importante. Minha eterna gratidão por tudo que sempre fizeram e fazem para que eu consiga alcançar todos os meus objetivos. Muito obrigada por acreditarem em mim, vocês são o que eu tenho de melhor.

Agradeço ao meu orientador, Prof. Dr. Rodrigo Alex Arthur, por todo ensinamento, dedicação e paciência durante esses últimos anos da minha graduação. Agradeço ao doutorando Heitor Sales de Barros Santos, pelos conhecimentos, conselhos e incentivos. Vocês são meus exemplos na profissão que escolhemos seguir.

Aos amigos que fiz durante a graduação, meus agradecimentos por todas trocas, risadas, conselhos e angústias que passamos juntos durante esses pouco mais que cinco anos.

Agradeço ao CNPq/Propesq e a Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) pela bolsa de iniciação científica concedida.

Meus agradecimentos a todos que participaram, de uma forma ou de outra, dessa caminhada comigo. Muito obrigada.

RESUMO

Introdução: Os Lactobacillus spp são bactérias acidogênicas e acidúricas e estão dentre as principais bactérias cariogênicas associados ao avanço do processo carioso. Muito do que se sabe sobre a aciduricidade de *Lactobacillus* spp deve-se aos estudos *in vitro* sendo escassos dados obtidos sob condições clinicamente relevantes. Objetivo: Identificar genes envolvidos na aciduricidade de *Lactobacillus* spp e potenciais funções atribuídas a esses genes por meio da análise do metranscriptoma de biofilme coletado de superfícies radiculares hígidas (SRS) ou de biofilme/dentina coletados de superfícies radiculares com lesão de cárie (RC). Metodologia: Bibliotecas genômicas foram construídas a partir do sequenciamento de RNA mensageiro isolado das amostras de biofilme (10 de SRS e 9 de RC utilizando Illumina HiSeq 2500). Os reads gerados pelo sequenciamento foram mapeados em relação aos 162 genomas encontrados nas amostras e o genoma do L. paracasei ATCC 334 foi utilizado como referência para identificação dos genes de tolerância ácida. O algoritmo DESEq2 foi utilizado para calcular o nível de expressão gênica diferencial entre as condições SRS e RC. Resultados: 15 genomas de Lactobacillus spp foram identificados sendo eles: L. acidophilus, L. brevis, L. buchneri, L. crispatus, L. curvatus, L. casei L. delbrueckii, L. fermentum, L. gasseri, L. jensenii, L. johnsonii, L. paracasei, L. plantarum, L. rhamnosus e L. salivarius. Os Lactobacillus foram identificados em apenas 1 amostra de SRS (*L. fermentum*, *L. gasseri* e *L. paracasei*). Já para RC, em apenas 1 delas os Lactobacillus não foram identificados. Genes de tolerância ácida foram identificados em todos os genomas, variando de 87 (L. plantarum) até 180 (L. paracasei). A análise dos genomas mostrou um total de 653 genes de tolerância ácida diferencialmente expressos em RC. Tradução, estrutura ribossômica e biogênese, transporte de nucleotídeos e de aminoácidos foram as funções mais associadas a esses genes super-expressos. Conclusão: Apesar de uma grande quantidade de genes de tolerância ácida estar presente nos Lactobacillus spp, uma pequena porcentagem parece estar super-expressa em RC. Múltiplas funções estão envolvidas na tolerância ao ácido em *Lactobacillus* spp e funções espécie-especificas parecem também estar relacionadas com a sobrevivência de *Lactobacillus* spp em ambientes acidificados como o do biofilme cariogênico associado as superfícies radiculares com cárie.

Palavras-chave: Lactobacillus. Expressão gênica. Genoma. RNA mensageiro. Cárie radicular.

ABSTRACT

Introduction: Lactobacillus spp are acidogenic and aciduric bacteria and are among the main cariogenic bacteria associated with the advance of the carious process. Much of what is known about the aciduricity of Lactobacillus spp is due to in vitro studies, with little data obtained under clinically relevant conditions. **Objective:** Identify genes involved in the aciduricity of Lactobacillus spp and potential functions attributed to these genes by analyzing the biofilm metranscriptome collected from healthy root surfaces (SRS) or biofilm/dentin collected from root surfaces with caries lesions (RC). Methods: Genomic libraries were built from the sequencing of mRNA isolated from the biofilm samples (10 from SRS and 9 from RC using Illumina HiSeq 2500). The reads generated by the sequencing were mapped in relation to the 162 genomes found in the samples and the genome of L. paracasei ATCC 334 was used as a reference for the identification of acid tolerance genes. The DESEq2 algorithm was used to calculate the level of differential gene expression between the SRS and RC conditions. **Results:** 15 genomes of Lactobacillus spp were identified: L. acidophilus, L. brevis, L. buchneri, L. crispatus, L. curvatus, L. casei L. delbrueckii, L. fermentum, L. gasseri, L. jensenii , L. johnsonii, L. paracasei, L. plantarum, L. rhamnosus and L. salivarius. Lactobacillus were identified in only 1 sample of SRS (L. fermentum, L. gasseri and L. paracasei). As for RC, in only 1 of them the Lactobacillus were not identified. Acid tolerance genes were identified in all genomes, ranging from 87 (*L. plantarum*) to 180 (*L. paracasei*). The analysis of the genomes showed a total of 653 acid tolerance genes differentially expressed in RC. Translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids are the most associated with these overexpressed genes. Conclusion: Although a large number of acid tolerance genes are present in Lactobacillus spp, a small percentage appears to be overexpressed in CR. Multiple functions are involved in acid tolerance in Lactobacillus spp and speciesspecific functions also seem to be related to the survival of Lactobacillus spp in acidified environments such as that of the cariogenic biofilm associated with root surfaces with caries.

Keywords: Lactobacillus. Gene Expression. Genome. RNA Messenger. Root caries.

SUMÁRIO

1	INTRODUÇÃO0	8
1.1	MECANISMOS DE TOLERÂNCIA ÁCIDA EM LACTOBACILLUS spp 1	1
2	OBJETIVO 1	7
3	METODOLOGIA1	8
3.1	SELEÇÃO DOS PACIENTES E COLETA DAS AMOSTRAS 1	8
3.2	CONSIDERAÇÕES ÉTICAS	8
3.3	PREPARO DAS AMOSTRAS	9
3.4	GENOMA E ANÁLISE DE LACTOBACILLUS1	9
3.5	ANÁLISE DE DADOS2	0
4	RESULTADOS2	1
5	DISCUSSÃO3	1
6	CONCLUSÃO	4
	REFERÊNCIAS	5
	APÊNDICE A - GENES DE TOLERÂNCIA ÁCIDA DIFERENCIALMENT	Ε
	EXPRESSOS POR GENOMA DE LACTOBACILLUS SPP E FUNÇÕE	S
	ASSOCIADAS4	0
	APÊNDICE B - ROTAS METABÓLICAS ASSOCIADAS AOS GENES D	Ε
	TOLERÂNCIA AO ÁCIDO (SEGUNDO O BANCO DE DADOS KEGG) 6	7

1 INTRODUÇÃO

A cárie dentária é uma doença multifatorial que é caracterizada por um desequilíbrio físico-químico entre dente e saliva que é induzido pelo metabolismo do biofilme dental frequentemente exposto a carboidratos fermentáveis (PITTS; ZERO, 2016). O biofilme dental é um ecossistema formado por uma grande variedade bacteriana, sendo que algumas dessas bactérias possuem a capacidade de produzir ácidos em decorrência do metabolismo dos açúcares oriundos da dieta do hospedeiro. São esses ácidos os responsáveis pela queda do pH na interface entre biofilme e superfície dental e consequente desmineralização dessa superfície, que pode progredir para formação de lesões cariosas clinicamente detectáveis (TAKAHASHI; NYVAD, 2008). Esse processo é dinâmico e envolve alternância de períodos de perda de minerais e de ganho de minerais, sendo esse último promovido pela saliva. Porém, o processo carioso progride quando há uma frequência maior de períodos de desmineralização (PITTS et al., 2017).

Além de induzir o desequilíbrio mineral, o baixo pH induz alteração da composição bacteriana do biofilme. Essa modificação da composição da microbiota é chamada de disbiose sendo um processo no qual ocorre a seleção de microrganismos potencialmente cariogênicos em detrimento daqueles microrganismos encontrados em ambientes de neutralidade (TAKAHASHI; NYVAD, 2016). Características comuns entre esses microrganismos cariogênicos são a acidogenicidade e a aciduricidade. A acidogenicidade refere-se à capacidade de produzir ácidos e a aciduricidade refere-se à capacidade de sobreviver em meios de pH reduzido. *Streptococcus mutans, Streptococcus sobrinus* e *Lactobacillus* estão dentre alguns dos microrganismos acidúricos e acidogênicos frequentemente associados ao desenvolvimento e progressão das lesões de cárie (TANNER *et al.*, 2018; ZHENG *et al.*, 2019).

A cavidade oral abriga uma comunidade microbiana numerosa e diversa, sendo o biofilme parte desse complexo ecossistema (BADET; THEBAUD, 2008). Os primeiros microrganismos relacionados ao desenvolvimento da cárie dentária foram os *Lactobacillus* spp.. Em 1899, a associação entre *Lactobacillus* e a cárie dentária foi notada por Goadby. Contudo, apenas em 1942 através do estudo de Becks, que coletou amostras de saliva foi estabelecida uma relação definitiva entre a presença de *Lactobacillus* e a atividade de cárie (OWEN; CHARLOTTE, 1949). Chokshi *et al.* (2016) conclui em seu estudo que os *Lactobacillus* spp. desempenham um papel importante na patogênese da cárie, visto que o aumento no número desse microrganismo em níveis salivares é associado a maior frequência de cárie. A colonização da cavidade bucal por *Lactobacillus* ocorre durante os primeiros anos

de vida da criança. Esses microrganismos são frequentemente encontrados na saliva, no dorso da língua, nas mucosas, no palato duro, e, em menor proporção, no biofilme associado às superfícies dos dentes (BADET; THEBAUD, 2008). Os *Lactobacillus* podem levar a uma grande diminuição no pH ambiental, chegando a valores inferiores a 4,5. Além disso, são capazes de sobreviver em um pH de até 2,2. Essas bactérias variam o metabolismo fermentativo de acordo com a espécie. Algumas são homofermentativas, produzindo apenas ácido lático, englobando *L. johnsonii, L. gasseri, L. delbruekii, L. crispatus e L. acidophilus*. Já outras são heterofermentativas, podendo produzir, além do ácido lático, dióxido de carbono, ácido acético ou etanol. Dentre os *Lactobacillus* heterofermentativos obrigatórios destacam-se *L. buchneri* e *L. fermentum* já entre aos heterofermentativos facultativos estão *L. casei, L. plantarum, L. salivarius, L. rhamnosus, L. jensenii, L. curvatus* e *L. paracasei* BADET; RICHARD; DORIGNAC, 2001).

O papel destas bactérias na etiologia da cárie é objeto de muito estudo. De forma geral, Lactobacillus são predominantemente encontrados nas lesões cariosas profundas e apresentam reduzida contagem no biofilme microbiano associado às lesões cariosas iniciais e não-cavitadas (SMITH et al., 2001). Ainda neste sentido, o estudo de Neves et al. (2018) identificou raramente ou não identificou Lactobacillus na maioria das amostras de biofilme coletado de superfícies com lesão cariosa não-cavitada. Dessa forma, parece que esses microrganismos são mais abundantes em áreas retentivas como aquelas representadas pelas cavidades de cárie, o que sugere que Lactobacillus não são fator inicial da cárie dentária, mas estão envolvidos na sua progressão (ZHENG et al., 2019). A presença de Lactobacillus na cavidade oral pode existir sem ocorrência de cárie, como em recém-nascido por parto vaginal, em bebês em período de amamentação e por meio da colonização de sítios retentivos como fóssulas e fissuras oclusais. No entanto, o determinante ecológico chave para a sustentação da colonização desses microrganismos na boca parece ser a presença de cavidade de cárie (CAUFIEL et al., 2007). No estudo de Caufield et al., (2015), foram detectados Lactobacillus nas amostras de placa dental de algumas crianças livres de cárie, sugerindo que essa bactéria pode estar presente na cavidade oral, mas em condições de saúde (ausência de cárie) os níveis encontrados são muito baixos. Geralmente, os Lactobacillus spp. têm baixa afinidade com a superfície dentária e estão em baixo número em amostras de biofilme associadas a essas superfícies, embora possam ser encontrados na saliva (PIWAT et al., 2010). O estudo de Sounah e Madfa (2020) identificou a presença destas bactérias na saliva de paciente com cárie e sem cárie, no entanto, os níveis pareciam ser maiores em indivíduos com cárie. Além disso, os níveis de Lactobacillus pareciam ser maiores em cavidades de cárie do que na saliva sugerindo, mais uma vez, sua relação com a progressão da cárie. Quando comparamos lesões ativas e inativas, parece que os *Lactobacillus* estão mais abundantes em lesões ativas. As lesões inativas exibem um pH não muito ácido, o que pode ser um fator relacionado às menores quantidades de *Lactobacillus* nessas lesões (REIS et al., 2021).

Existe uma grande diversidade de espécies de *Lactobacillus* encontrada na cavidade bucal. Uma revisão crítica mostrou que as espécies de *Lactobacillus* mais frequentemente isoladas de saliva, biofilme e dentina cariada da cavidade bucal de indivíduos com cárie dentária incluíram os *L. fermentum*, *L. rhamnosus*, *L. gasseri*, *L. casei/paracasei*, *L. salivarius* e *L. plantarum* (CAUFIELD *et al.*, 2015). Já no estudo de Piwat *et al.*, (2010) *L. fermentum* e *L. salivarius* foram encontrados na saliva de indivíduos independente da presença de cárie, porém os *L. salivarius* foram encontrados em números significativamente maiores em amostras de cárie. Contudo, no estudo de Byun *et al.*, (2004), os *L. gasseri*, *L. rhamnosus*, *L. casei* e *L. acidophilus* foram mais frequentemente isolados na dentina cariada. Já no estudo de Reis *et al.*, (2021), os *L. paracasei*, os *L. rhamnosus* e os *L. casei* foram os mais abundantes nas lesões dentinárias ativas, fazendo parte das bactérias metabolicamente ativas na cárie.

É importante ressaltar que além de estarem presentes em lesões cavitadas coronárias, os Lactobacillus também estão presentes em cavidades de cárie radicular. A cárie radicular ocorre quando a dentina radicular é exposta à cavidade bucal como consequência de recessão gengival (CHEN et al., 2015). Segundo investigações epidemiológicas a prevalência de cárie radicular deve aumentar nos próximos anos, visto que as populações envelhecem e retêm um maior número de dentes em boca com recessão gengival (TAKAHASHI; NYVAD, 2016). Essa recessão expõe a superfície da raiz, que pode ser, então, colonizada por bactérias grampositivas, como os Lactobacillus. Contudo, a má higiene oral combinada com a alta ingestão de açúcar e fluxo salivar reduzido pode causar acúmulo e amadurecimento do biofilme, resultando na acidificação do microambiente e seleção de bactérias acidogênicas e acidúricas (DO et al., 2017).

A cárie radicular envolve tanto a desmineralização quanto a degradação do colágeno (TAKAHASHI; NYVAD, 2007). Esse colágeno serve de suporte para a colonização de bactérias, e, em estágios mais avançados, o colágeno é decomposto por enzimas proteolíticas perdendo sua característica estrutural. A acidificação induzida pelo metabolismo do biofilme induz a exposição de matriz orgânica e a ativação de proteases que iniciam a degradação do material orgânico, principalmente do colágeno tipo I (TAKAHASHI; NYVAD, 2016). Diversas espécies de *Lactobacillus* demonstraram atividade de ligação ao colágeno tipo I, uma característica que os auxilia na colonização das lesões com envolvimento dentinário. Além

disso, já foi encontrado proteínas de ligação ao colágeno nos genomas de várias espécies de Lactobacillus, dentre elas os L. casei/paracasei, os L. gasseri, os L. rhamnosus e L. fermentum. Contudo, sugere-se que essas bactérias são mais propensas a ligar-se ao colágeno do que a degradá-lo (CAUFIELD et al., 2015). Nesse sentido, estudos têm demonstrado presença de Lactobacillus na cavidade bucal de pacientes que apresentam cárie radicular. O estudo de Beighton et al. (1991) relacionou os níveis salivares de Lactobacillus ao número de superfícies radiculares cariadas e demonstrou uma forte correlação entre a sua contagem e a presença desse tipo de lesão. Em conformidade, o estudo de Brailsford et al. (2001) demonstrou que os Lactobacillus foram as bactérias acidúricas predominantes nas amostras de dentina coletadas de superfícies radiculares cariada. Além disso, foi descrito que os L. casei, L. paracasei e L. rhamnosus foram algumas das espécies mais encontradas no biofilme na presença de cárie radicular (PREZA et al., 2009).

Como discutido acima, a colonização da cavidade bucal pelos *Lactobacillus* requer a presença de nichos retentivos, um ambiente de pH reduzido e acesso a fonte de carboidratos (CAUFIEL *et al.*, 2015). De forma geral, parece que a acidogenicidade e a aciduricidade acabam sendo mais importantes para a cariogenicidade dos *Lactobacillus* do que sua capacidade de adesão à superfície dental (VADILLO-RODRIGUEZ *et al.*, 2005). Considerando a importância atribuída à aciduricidade como característica dos microrganismos cariogênicos e diretamente relacionada ao processo de seleção microbiana induzida pelas frequentes quedas de pH na cavidade bucal, torna-se necessário discutir quais são os mecanismos utilizados pelos *Lactobacillus* para crescerem adequadamente nesses ambientes acidificados.

1.1 MECANISMOS DE TOLERÂNCIA ÁCIDA EM *LACTOBACILLUS spp*

Como discutido anteriormente, as bactérias presentes no biofilme dental são submetidas a ciclos contínuos de quedas de pH em decorrência da metabolização de açúcares da dieta do hospedeiro, que resulta na formação de produtos finais ácidos (MARSH, 2003). Essas bactérias presentes na cavidade bucal tem seu ambiente acidificado à medida que ocorre o crescimento do biofilme (FOZO; KAJIFASZ; QUIVEY JR, 2004). Quando ocorre aumento na concentração de carboidratos na cavidade bucal, o pH do biofilme dental atinge valores próximos e, até mesmo, inferiores a 4,0 (QUIVEY JR.; KUHNERT; HAHN, 2001). Conforme esse pH ambiental diminui, os microrganismos expressam diferentes mecanismos de "defesa" que conjuntamente recebem o nome de "Resposta indutora de tolerância ácida" (RTA). Dessa forma, os microrganismos têm desenvolvido diversos sistemas de defesa com mecanismos

sofisticados a nível fisiológico e molecular para sobreviver ao estresse ácido (GUAN; LIU, 2020).

Os *Lactobacillus* representam o gênero mais abundante dentro do grupo de bactérias produtoras de ácido-láctico (BAL). Esses microrganismos são expostos a vários estresses ambientais como pH, pressão osmótica e tensão de oxigênio que podem afetar o estado fisiológico e as propriedades das células (ANGELIS; GOBBETTI, 2004). Dentre esses vários estresses ambientais, o estresse ácido induzido pelo baixo pH é um dos desafios importantes para a sobrevivência, por isso é essencial saber quais mecanismos e atividades metabólicas permitem que esses microrganismos se adaptem e sobrevivam nessas condições de acidificação (WU *et al.*, 2013). O mecanismo de RTA é muito utilizado pelas bactérias ácido-láticas. De forma geral, uma breve exposição a um pH sub-letal resulta na alteração de expressão de determinadas proteínas e mudanças fisiológicas que possibilitam a sobrevivência celular a ambientes ainda mais acidificados, caracterizando, assim, um aumento da resistência ao meio ácido ou tolerância ácida. (BROADBENT *et al.*, 2010). Os mecanismos de RTA já foram detectados em diversas bactérias incluindo *L. casei, L delbrueckii e L. acidophilus* (BROADBENT *et al.*, 2010; ANGELIS; GOBBETTI, 2004).

A resistência a ácidos é um atributo fisiológico de vital importância para diversas espécies de *Lactobacillus* sobreviverem em ambientes acidificados como o do biofilme dental. Quando ocorre a fermentação do açúcar, o ácido láctico produzido pelos Lactobacillus é transportado ao meio externo como íon lactato. À medida que o pH do meio diminui ou que a concentração de lactato aumenta, a forma não dissociada do ácido lático aumenta. Essa forma consegue atravessar a membrana por difusão simples e liberar próton e ânions dentro da célula. Se a taxa de prótons exceder a capacidade de tamponamento e atingir um ponto crítico de pH as funções celulares serão prejudicadas. Diante disso, são necessários sistemas com capacidade de controlar e prevenir a acidificação intracelular a fim de manter o pH interno em condições adequadas (BROADBENT et al., 2010). Microrganismos tolerantes a ácidos geralmente apresentam uma membrana menos permeável para reduzir a entrada de prótons nas células. Fatores como a modulação no tamanho dos canais da membrana e na estrutura da bicamada lipídica são estratégias para manter a homeostase do pH (GUAN; LIU, 2020). A membrana citoplasmática de *Lactobacillus* apresenta uma permeabilidade capaz de regular o pH interno. Já foi registrado que L. casei e L. plantarum tem uma permeabilidade mínima em pH 4,0, permitindo que esse Lactobacillus não regulem o pH intracelular até o pH extracelular chegar em um valor muito baixo. Dessa forma, não precisando ocorrer gasto energético para manter o pH interno mais perto da neutralidade. Essa situação favorece o crescimento desse microrganismo frente a outros ácido-sensíveis (ANGELIS; GOBBETTI, 2004).

As membranas citoplasmáticas conferem tolerância ácida através da manutenção da sua fluidez. Aumentar a taxa de insaturações pela síntese de ácidos graxos é um mecanismo empregado para controlar a fluidez e contribuir para a sobrevivência celular em baixo pH. Além disso, o comprimento alongado da cadeia de ácido graxo também desempenha um papel vital na redução de danos causados pelo estresse ácido (WU et al., 2012). Fozo et al. (2004) descreveu em seu estudo alterações no conteúdo de ácido graxo em resposta a acidificação em L. casei. Houve aumento na proporção C18:1, sugerindo que ácidos graxos de cadeia longa monoinsaturados são importantes para a sobrevivência em pH reduzido. Estudos já mostraram que a presença de ácido graxo ciclopropano pode aumentar a tolerância ao ácido em Lactobacillus spp., embora isso ainda precise ser melhor determinado (SHAW; HEATHERINGTON; BADDILEY, 1968). Contudo no mesmo estudo de Fozo et al. (2004) foi observado aumento na proporção de ácido graxo C19:0 e diminuição nos níveis de C16:0 e C17:0, demonstrando a importância de um aumento no comprimento da cadeia de ácidos graxos para a sobrevivência em ambientes ácidos. Entretanto, o estudo de Angelis e Gobbetti (2004) em L. casei obteve resultados diferentes. Foi observado um pequeno aumento de C16:0 e uma diminuição drástica de C18:1 em células adaptadas ao ácido.

A alteração da composição dos ácidos graxos da membrana ocorre, provavelmente, pela síntese de novos ácidos graxos ou pela modificação de fosfolipídeos já existentes. A maioria das mudanças na composição da membrana de *L. casei* parece ser dependente da síntese de novos lipídeos que demanda significativos recursos de energia. Os genes fab (*LSEI_2107* a *LSEI_2121*) estão envolvidos nessa biossíntese em *L. casei* (FOZO *et al.*, 2004; ANGELIS; GOBBETTI, 2014).

Dentre os vários mecanismos que regulam a homeostase do pH interno, a bomba de translocação de prótons ATPase-dependente (bomba H+ ATPase) é uma das mais importantes em bactérias fermentativas. Sua atividade foi considerada ótima em valores de baixo pH em *L. casei* e *L. plantarum* (ANGELIS; GOBBETTI, 2014). A bomba H+ATPase promove a saída de prótons da célula em um processo que consome ATP. Consequentemente, na presença de energia sua atividade é mais alta, aumentando a capacidade de regular o pH interno (GUAN; LIU, 2020). A diferença na aciduricidade entre as várias espécies de *Lactobacillus* foi diretamente relacionada a atividade e ao pH ótimo da H+ATPase. O aumento na atividade dessa bomba foi relacionado aos operons *atp* (BROADBENT *et al.*, 2010). Esses genes também regulam o aumento na síntese de um ou mais componentes da ATP sintase em *Lactobacillus*

sob condições ácidas. A bomba de prótons F1F0ATPase é uma enzima reversível que além de conseguir sintetizar ATP usando os prótons que fluem do ambiente para a célula, em condições ácidas, mantem a homeostase do pH interno pela expulsão de prótons com gasto de energia (PAPADIMITRIOU *et al.*, 2016; VAN DE GUCHTE *et al.*, 2002). Contudo, o estudo de Heunis *et al.* (2014) em *L. plantarum* demonstrou que a F1F0ATPase pode apresentar um papel limitado em condições ácidas extremas quando uma abordagem mais severa é necessária para neutralizar o pH.

As bactérias utilizam sensores de mudanças ambientais para monitorar e regular a fisiologia celular. Dessa forma, o sistema de dois componentes são vias de transdução de sinal com um sensor de histidina quinase na membrana. A detecção do estímulo por essa proteína desencadeia a sua autofosforilação e a transferência subsequente do grupo fosfato para uma proteína reguladora de resposta citoplasmática (PAPADIMITRIOU *et al.*, 2016). No estudo de Broadbend *et al.* (2010) o estresse ácido afetou os níveis de expressão de genes associados a esse sistema regulatório. Acredita-se que o genoma do *L. casei* codifique mais sistema de dois componentes que qualquer outro *Lactobacillus*. Também foi demonstrado, nesse mesmo estudo, que a inativação da histidina quinase aumentou drasticamente a sensibilidade ao ácido em *L. acidophilus*.

O sistema arginina deiminase (SAD) é, também, um importante mecanismo presente nas bactérias contra o dano ácido. A arginina entra no citoplasma por meio do sistema antiporter arginina/ornitina e conforme ocorre o estresse ácido essa via é induzida. O aumento na resistência aos ácidos em Lactobacillus spp. é devido a restauração do pH interno pelo catabolismo da arginina e produção de amônia que alcaliniza o citoplasma. Além disso, ocorre formação de ATP que fica disponível para a expulsão de prótons através da H+ATPase (GUAN; LIU, 2020; ANGELIS; GOBBETTI, 2004; WU et al., 2013). Fatores envolvidos na regulação do SAD parecem ser a combinação da disponibilidade de arginina, esgotamento de energia e baixo pH. Apesar do SAD já ter sido detectado em *Lactobacillus* spp., seu envolvimento direto na tolerância ácida não foi sempre demonstrado. Portanto, embora a atividade do SAD alcalinize o meio ambiente, sua importância para a aciduricidade pode variar entre as espécies (VAN DE GUCHTE et al., 2002). Esse sistema é formado por três enzima e uma proteína de transporte de membrana que são codificadas pelos genes arcA, arcB, arcC e arcD. Analogamente ao SAD, a via agmatina deiminase permite a hidrólise da agmatina em putrescina, amônia e dióxido de carbono. É um mecanismo de resposta ao estresse ácido que também gera ATP. Essa via agmatina deiminase é codifidicada por um único operon aguRBDAC estudada em L. brevis e L. curvatus (PAPADIMITRIOU et al., 2016).

A produção de proteínas de choque ácido também é uma estratégia essencial para as células adquirirem tolerância ácida. São proteínas envolvidas nas funções de amplificação, transcrição, tradução e síntese de proteínas do DNA (WU *et al.*, 2012). O estudo de Wu, He e Zhang (2014) identificou algumas dessas proteínas após a adaptação ácida. Uma delas denominada GroEL tem capacidade de capturar e redobrar proteínas de substratos não nativos. Além disso, quando combinado com a proteina GrpE conseguem aumentar a estabilidade das proteínas durante um desafio ácido. Já a Dnak desempenha um papel fundamental na maturação de proteínas sintetizadas e na degradação e reparo de proteínas. Nesse mesmo estudo de Wu, He e Zhang (2014) foi observado um aumento na expressão de GroEL e GroER em *L. paracasei*. Já no estudo de Angelis e Gobbetti (2004) foi demonstrado que essas proteínas foram superexpressas durante a adaptação ácida em *L. delbrueckii e L. acidophilus*.

Já foi demonstrado que o estresse ácido leva ao acúmulo de aspartato e a regulação positiva no seu metabolismo em *L. casei* (WU *et al.*, 2012). Dessa forma, o estudo de Wu *et al.* (2013), além de observar que a concentração de aspartato aumentou à medida que o pH diminui, adicionou aspartato em *L. casei* para observar seus efeitos. Com a adição de aspartato houve aumento na produção de amônia que neutralizou os prótons intracelulares e protegeu contra o estresse ácido. Além disso, o aspartato forneceu mais energia para as células, aumentando a atividade da H+ATPase. Ocorreu, também, aumento na proporção de ácidos graxos insaturados na membrana plasmática e os genes *argG* e *argH* importantes no metabolismo do aspartato tiveram expressão aumentada decorrente do estresse ácido.

O sistema de tolerância dependente de glutamato também é reconhecido como crítico para a sobrevivência em ambiente ácido. Nessa via, a enzima glutamato descarboxilase (GAD) catalisa a descarboxilação do glutamato e produz ácido aminobutírico (GABA), dióxido de carbono e prótons. O pH citoplasmático, então, aumenta devido a remoção dos íons H+ (GUAN; LIU, 2020). Estresses ambientais como os causados pelos ácidos induzem essa via em *L. delbrueckii, L brevis, L. buchneri, L. plantarum* e *L. paracasei*. A via GAD demonstrou ser codificada pelos genes *gabB* e *gadC* (PAPADIMITRIOU *et al.*, 2016; JEONG; CHUNG; OH, 2019).

O sistema de urease ajuda as bactérias a regularem o pH citoplasmático, visto que conseguem neutralizar o H+ pela hidrólise da ureia em amônia. Entre as BAL esse sistema foi muito estudado em *Lactobacillus fermentum*. Além disso, já foi demonstrado em outras bactérias que esse sistema é induzido quando ocorre crescimento bacteriano no biofilme dental, ajudando a modular o pH do biofilme. O sistema da urease é bastante complexo, pois é

codificada por genes estruturais (ureABC) e acessórios (ureEFGD) (GUAN; LIU, 2020; PAPADIMITRIOU *et al.*, 2016).

A enzima histidina descarboxilase também tem papel na proteção celular contra o estresse ácido. Ela catalisa a histidina em histamina e dióxido de carbono e é regulada por meio do pH citosólico, sendo ativada quando o pH está baixo. Os genes (hdcAB) que codificam essa enzima já foram caracterizadas em *L. buchneri* (PAPADIMITRIOU *et al.*, 2016). Já foi relatado através de estudo que o estresse ácido levou ao acumulo intracelular de histidina em *L. casei*. Além disso, a histidina ajudou o *L. casei* a resistir o dano por ácido (BROADBENT *et al.*, 2010).

A capacidade de sobreviver em ambientes ácidos é fundamental para os *Lactobacillus* spp.. Embora a aciduricidade seja considerada uma característica inata dessas bactérias, a base molecular dessa capacidade é apenas parcialmente definida. *Lactobacillus casei*, por exemplo, já mostraram exibir um mecanismo de resposta e tolerância ácida, mas pouco estudos abordaram seu efeito na fisiologia celular (ANGELIS; GOBBETTI, 2004). Apesar de muitos mecanismos responsáveis pela tolerância ácida em *Lactobacillus* já serem amplamente descritos, ainda há a necessidade de um melhor entendimento de como esses mecanismos atuam em condições reais, visto que a grande parcela dos estudos disponíveis é *in vitro*.

2 OBJETIVO

Dessa forma, o presente estudo visa identificar os genes envolvidos na aciduricidade de *Lactobacillus* spp e as potenciais funções atribuídas a esses genes por meio da análise do metatranscriptoma de biofilmes ou de biofilme/dentina coletados de superfícies radiculares.

3 METODOLOGIA

A partir de um estudo prévio denominado "Metatranscriptoma de cárie radicular" desenvolvido pela Universidade Federal do Rio Grande do Sul juntamente com a Universidade de Leeds do Reino Unido foi criado uma biblioteca genômica de domínio público. Esses dados depositados no Centro Nacional de Informação Biotecnologia (NCBI) (SRS779973 e SRS796739) foram utilizados no presente estudo.

3.1 SELEÇÃO DOS PACIENTES E COLETA DAS AMOSTRAS

A seleção dos pacientes e a coleta das amostras foram realizadas conforme descrito no estudo de Dame-Teixeira *et al.* (2016). Os participantes foram alocados no grupo sem lesão de cárie radicular (SRS; n = 10) se tivessem uma superfície radicular exposta em pelo menos um dente e nenhuma lesão de cárie radicular. Biofilmes dentais foram coletados com cureta Gracey esterilizada de todas as superfícies radiculares expostas disponíveis. O número de superfícies radiculares expostas variou entre os indivíduos. Os participantes recrutados para o grupo de cárie radicular (RC; n = 30) tinham uma lesão cavitada na raiz que precisava de tratamento restaurador. Todas as lesões apresentaram características de atividade presente (dentina mole e amarela) (NYVAD; FEJERSKOV, 1982). Amostras de biofilme e dentina cariada foram coletadas de pacientes durante o tratamento restaurador. Todos os participantes tinham idade média de 60,1 ± 11,6 anos, com variação de 40-90 anos. Foram solicitados a se abster de escovar os dentes por pelo menos 12 horas antes das coletas, para permitir o acúmulo de biofilme dentário, e também foram solicitados a se abster de comer e beber por pelo menos 1 hora antes da coleta.

3.2 CONSIDERAÇÕES ÉTICAS

O estudo de Dame-Teixeira *et al.* (2016) utilizado nessa pesquisa foi aprovado pelo Comitê de Ética em Pesquisa em Seres Humanos da Universidade Federal do Rio Grande do Sul (processo n° 427.168) e pelo Comitê de Ética do Comitê Nacional de Serviços de Ética em Pesquisa Yorkshire & The Humber – Leeds West (protocolo n° 2012002DD). Os participantes do estudo foram pacientes que frequentavam as clínicas para qualquer tratamento odontológico em dois centros: Faculdade de Odontologia da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil e Faculdade de Odontologia de Leeds da Universidade de Leeds, Leeds,

Reino Unido. Após receberem as informações sobre o estudo, todos participantes assinaram um Termo de Consentimento Livre e Esclarecido antes de iniciar o estudo.

3.3 PREPARO DAS AMOSTRAS

Após a coleta clínica de biofilme das superfícies hígidas e de biofilme e dentina das superfícies cariadas, as amostras foram imediatamente colocadas em um microtubo livre de nuclease contendo 1 mL do reagente RNAprotect (QIAGEN, Inc., Venlo, Holanda) e transferidas para o laboratório, sendo centrifugadas a 10.000x g por 30 s. Até o momento do processamento as amostras foram armazenadas a -80°C. Foi extraído o RNA total de todas amostras usando um Kit de Isolamento de RNA Microbial UltraClean † (Mo-BIO Laboratories, Inc., SanDiego, CA), em coluna para a degradação com DNase (QIAGEN, Inc., Venlo, Holanda). Essas amostras de RNA extraídas foram quantificadas usando o kit Quant-iTTM RiboGreen † RNA Assay (Invitrogen, Inc., Waltham, Massachusetts, EUA), e as amostras com concentração total de RNA <30 ng / RNA foram agrupadas, resultando em uma contagem de amostra final de 10 SRS e 9 RC.

O kit Meta-Bacterias Ribo-Zero ™ (Epicenter, Illumina, Inc., San Diego, CA) foi utilizado para enriquecimento de mRNA, e os protocolos de preparação da biblioteca Illumina®TruSeq™ (Illumina, Inc.) foram usados para a preparação da biblioteca e o sequenciamento da biblioteca foi realizado em um sequenciador Illumina HiSeq2500 (Illumina, Inc., San Diego, CA). Os dados de sequenciamento de RNA-seq estão disponíveis no arquivo de leitura de sequências do Centro Nacional de Informação Biotecnologia (NCBI), com os números de acesso SRS779973 e SRS796739. Os arquivos FASTQ foram obtidos para cada amostra e importados para o software CLC GenomicsWorkbench 7.5.1 (CLCBio, QIAGEN) para o mapeamento contra 162 genomas microbianos orais que podem ser verificados no estudo de Dame-Teixeira *et al.* (2016). A data da contagem de leitura determinou o número de leituras de sequenciamento que foram atribuídas a cada gene.

3.4 GENOMA E ANÁLISE DE *LACTOBACILLUS*

O *L. paracasei* ATCC 334 foi utilizado como genoma de referência para identificar os genomas de *Lactobacillus* presentes nesse estudo. Primeiramente, as informações associadas aos 162 genomas microbianos orais foram obtidas a partir do Banco de Dados de DNA do Japão, NCIB, Instituto Broad e HOMD (Banco de Dados de Microbiomas Humanos – domínio

público). Os genes de todos os *Lactobacillus* foram então manualmente extraídos dos 162 genomas presentes nas amostras analisadas. A presença putativa dos genomas de *Lactobacillus* nas amostras foi determinada dividindo-se o número total de reads de cada amostra pelo número total de genes do genoma de interesse. Os valores inferiores a 1 foram considerados como ausência do microrganismo na amostra. Os genes (180 genes) potencialmente relacionados à tolerância ácida de *L. paracasei* ATCC 344 obtidos a partir de Broadbent et al. (2010) foram então manualmente extraídos dos genomas de *Lactobacillus* identificados nas amostras.

3.5 ANÁLISE DE DADOS

A análise estatística para inferir a expressão diferencial de genes de tolerância ácida entre os grupos SRS e RC foi realizada usando o pacote R DESeq2 (LOVE; HUBER; ANDERS, 2014). O ponto de corte para considerar um gene como sendo expresso diferencialmente foi uma alteração nos níveis de transcrição de pelos menos 1 log2fold change (valores negativos considerados super-expressos em SRS e valores positivos super-expressos em RC) e Benjamini-Hochberg, no qual o valor de p ajustado (padj) foi considerado menos que 0,001. Esse alto ponto de corte foi escolhido para evitar resultados falso-positivos e identificar com maior precisão apenas as diferenças entre os grupos. As vias metabólicas foram obtidas através da plataforma KEGG (Kyoto enciclopédia de genes e genomas) e informações gênicas foram obtidas da plataforma UniProt com intuito de uma melhor compreensão da função de cada gene que apresentou expressão diferencial.

4 RESULTADOS

Quinze genomas de *Lactobacillus* spp foram identificados nas amostras, sendo as seguintes espécies encontradas: *L. acidophillus*, *L. brevis*, *L. buchneri*, *L. casei*, *L. crispatus*, *L. curvatus*, *L. delbrueckii*, *L. fermentum*, *L. gasseri*, *L. jensenii*, *L. johnsonii*, *L. paracasei*, *L. plantarum*, *L. rhamnosus* e *L. salivarius*. Presença putativa de *Lactobacillus* spp foi encontrada em apenas uma amostra do grupo SRS (SRS_12), sendo *L. fermentum*, *L. gasseri* e *L. paracasei* as espécies encontradas, cujos números de reads variaram de 1,67 a 8,26 (Tabela 1). Já em amostras do grupo RC, com exceção da amostra RC_8, *Lactobacillus* spp estiveram putativamente presentes em todas as amostras, cujos números de reads variaram de 1,22 a 3582,72 (Tabela 2). Dessa forma, observamos presença putativa e majoritária desse microrganismo em superfícies radiculares com lesão de cárie.

Tabela 1 - Presença putativa dos genomas de Lactobacillus spp nas amostras do grupo SRS

Genomas	Amostras									
	SRS_	SRS_	SRS_	SRS_	SRS_	SRS_	SRS_	SRS_	SRS_	SRS_
	8	9	10	12	15	16	19	20	21	22
L.	0	0	0	0	0	0	0	0	0	0
acidophilus										
L. brevis	0	0	0	0	0	0	0	0	0	0
L. buchneri	0	0	0	0	0	0	0	0	0	0
L. casei	0	0	0	0	0	0	0	0	0	0
L. crispatus	0	0	0	0	0	0	0	0	0	0
L. curvatus	0	0	0	0	0	0	0	0	0	0
L. delbrueckii	0	0	0	0	0	0	0	0	0	0
L. fermentum	0	0	0	7,48	0	0	0	0	0	0
L. gasseri	0	0	0	8,26	0	0	0	0	0	0
L. jensenii	0	0	0	0	0	0	0	0	0	0
L. johnsonii	0	0	0	0	0	0	0	0	0	0
L. paracasei	0	0	0	1,67	0	0	0	0	0	0
L. plantarum	0	0	0	0	0	0	0	0	0	0
L. rhamnosus	0	0	0	0	0	0	0	0	0	0
L. salivarius	0	0	0	0	0	0	0	0	0	0

Tabela 2 - Presença putativa dos genomas de Lactobacillus spp nas amostras do grupo RC

Genomas	Amostras								
	RC_7	RC_8	RC_A	RC_B	RC_D	RC_E	RC_F	RC_G	RC_H
L. acidophilus	0	0	1,78	308,77	3,13	0	4,73	529,72	3,28
L. brevis	0	0	2,10	5,02	1,23	0	0	2,41	2,91
L. buchneri	0	0	48,41	5,10	10,08	4,23	1,13	0	4,95
L. casei	0	0	23,45	2,11	6,86	0	0	0	4,99
L. crispatus	0	0	6,97	226,55	120,56	0	153,44	466,70	75,02
L. curvatus	3,56	0	13,75	9,35	6,73	0	1,22	0	38,03
L. delbrueckii	0	0	3582,72	4,51	0	0	53,89	2,06	9,13
L. fermentum	51,29	0	1664,80	310,76	282,33	8,18	5,79	5,85	258,08
L. gasseri	1,63	0	1166,59	135,77	70,52	7,57	142,89	33,04	474,36
L. jensenii	0	0	6,00	7,69	0	0	0	6,73	0
L. johnsonii	0	0	133,04	21,5	2,68	0	7,49	15,98	5,08
L. paracasei	0	0	17,73	4,00	64,06	6,08	0	0	6,61
L. plantarum	0	0	2,78	0	0	6,64	0	0	0
L. rhamnosus	0	0	600,01	0	139,55	0	7,88	0	203,08
L. salivarius	39,42	0	50,72	50,72	34,33	0	17,69	17,07	162,72

Um total de 32.062 genes foram identificados e potencialmente atribuídos aos genomas de *Lactobacillus*. O maior número de genes foi identificado em *L. plantarum* (2883 genes) e o menor número foi identificado em *L. jensenii* (1405 genes). De forma geral, foram identificados uma média de 2137,46±457,85 genes por genoma (média±dp). Do número total de genes, 1737 foram identificados como potencialmente relacionados à tolerância ácida (Tabela 3). Dentre todos os genomas, o maior número de genes potencialmente relacionados à tolerância ácida foi encontrado em *L. paracasei* (180 genes) e o menor número foi encontrado em *L. plantarum* (87 genes) (Tabela 3). Em média, foram encontrados 115,8±23,26 genes potencialmente relacioados à tolerância ácida por genoma (média±dp). Quando consideramos a porcentagem dos genes associados a tolerância ácida entre o número total de genes em cada genoma, a maior porcentagem foi identificada em *L. jensenii* (6,76%) e a menor porcentagem em *L. plantarum* (3,01%).

Tabela 3 - Número total de genes identificados nos genomas de *Lactobacillus* spp (utilizando o *L. casei* ATCC 344 como referência), número de genes potencialmente associados a tolerância ácida e porcentagens dos genes de tolerância ácido no número total de genes.

Genoma	Número total de	Número de genes	Genes de tolerância
	genes	associados à	ácida (%)
		tolerância ácida	
L. acidophilus	1832	116	6,33%
L. brevis	2185	103	4,71%
L. buchneri	2383	117	4,9%
L. casei	2765	142	5,13%
L. crispatus	1934	96	4,96%
L. curvatus	1960	107	5,45%
L. delbrueckii	1808	110	6,08%
L. fermentum	1946	125	6,42%
L. gasseri	1772	108	6,09%
L. jensenii	1405	95	6,76%
L. johnsonii	1804	96	5,32%
L. paracasei	2764	180	6,51%
L. plantarum	2883	87	3,01%
L. rhamnosus	2745	131	4,77%
L. salivarius	1876	124	6,6%

Fonte: dados extraídos de Broadbent et al. (2010)

Desses 1737 genes potencialmente relacionados à tolerância ácida, um total de 653 genes estiveram diferencialmente expressos (Quadro 1). O maior número de genes de tolerância ácida diferencialmente expressos foi encontrado no genoma de *L. salivarius* (116 genes) correspondendo à 93,5% do total dos genes de tolerância ácida identificados nesse genoma, e o menor número de genes foi encontrado em *L. casei* (1 gene diferencialmente expresso), correspondendo à 0,7% do total dos genes de tolerância ácida identificados nesse genoma (Quadro 1). Todos os genes diferencialmente expressos apresentaram valores de log2fold change positivos, demonstrando super-expressão em amostras de RC. O Apêndice 1 apresenta a descrição de todos os genes de tolerância ácida diferencialmente expressos por genoma, bem como valores de log2fold change, p value e funções associadas.

Quadro 1 - Número de genes de tolerância ácida diferencialmente expressos (% em relação ao número total de genes de tolerância ácida identificados no genoma), funções associadas aos genes diferencialmente expressos (% em cada genoma), gene com maior valor de Log2fold change e função associada

(continua)

Genoma	Número	Funções associadas	Gene (Log2fold change)
	de		e função associada
	genes*		-
	(%)		
L.	33	Tradução, estrutura ribossômica e	<i>LBA0774</i> (atpF) (11,59)
acidophilus	(28,44%)	biogênese (51,5%);Produção de	Produção de energia e
		energia e conversão (21,2%);	conversão (subunidade B
		Transporte de aminoácidos e	<u>da ATP sintase)</u>
		metabolismo (9,1%); Transporte de	
		nucleotídeos e metabolismo (9,1%);	
		Elementos de DNA (6,06%); Proteínas	
		de reparo (3,03%)	
L. brevis	11	Tradução, estrutura ribossômica e	LVIS_RS14560 (groEL)
	(10,69%)	biogênese (54,5%); Produção de	(8,67)
		energia e conversão (18,18%); Reparo	Proteínas de reparo
		de proteínas (18,18%); Divisão celular	
		(9,09%)	
L. buchneri	16	Tradução, estrutura ribossômica e	LBUCD034_RS02605
	(13,67%)	biogênese (43,7%); Proteínas de reparo	(purB) (7,61)
		(25%); Transporte de nucleotídeos e	Transporte de
		metabolismo (12,5%); Produção de	nucleotídeos e
		energia e conversão (12,5%);	metabolismo (proteína
		Transporte de aminoácidos e	adenil succeinato lisase)
L. casei	1	metabolismo (6,25%) Tradução, estrutura ribossômica e	I DC7 DS05790 (mgD)
L. casei	(0,70%)	Tradução, estrutura ribossômica e biogênese (100%)	LBCZ_RS05780 (rpsD) (6,73)
	(0,70%)	biogenese (100%)	Tradução, estrutura
			ribossômica e biogênese
			(proteína ribossomal)
L.	91	Tradução, estrutura ribossômica e	LCRIS_RS01510 (rplC)
crispatus	(94,79%)	biogênese (57,1%); Transporte de	(12,54)
T State	. ,,,,,,,	nucleotídeos e metabolismo (9,89%);	Tradução, estrutura
		Proteínas de reparo (9,89%); Produção	ribossômica e biogênese
		de energia e conversão (6,59%);	(proteína ribossomal)
		Divisão celular (5,49%); Transporte de	
		aminoácidos e metabolismo (4,39%);	
		Biogênese do envelope celular	
		(3,29%); Elementos de DNA (2,19%);	
		Transporte de carboidratos e	
		metabolismo (1,09%)	

Quadro 1 - Número de genes de tolerância ácida diferencialmente expressos (% em relação ao número total de genes de tolerância ácida identificados no genoma), funções associadas aos genes diferencialmente expressos (% em cada genoma), gene com maior valor de Log2fold change e função associada

(continuação)

Genoma	Número	Funções associadas	Gene (Log2fold change)
Genoma	de	runções associadas	e função associada
	genes*		e iunçav associatia
	(%)		
L. curvatus	3 (2,8%)	Transporte de nucleotídeo e	OA78_RS05010 (8,10)
2. 000 7000	3 (2,070)	metabolismo (33,3%); Elementos de	Elementos de DNA
		DNA (33,3%); Transdução de sinal	
		(33,3%)	
L.	12	Tradução, estrutura ribossômica e	LDB_RS07740 (7,61)
delbrueckii	(10,9%)	biogênese (33,3%); Transporte de	Elementos de DNA
		aminoácidos e metabolismo (25%);	(transposase)
		Transporte de nucleotídeos e	-
		metabolismo (25%); Biogênese do	
		envelope celular (8,3%); Elementos de	
		DNA (8,3%)	
L.	98	Tradução, estrutura ribossômica e	<i>LAF_RS01020</i> (12,06)
fermentum	(78,4%)	biogênese (42,8%); Elementos de DNA	Elementos de DNA
		(15,3%); Transporte de nucleotídeos e	<u>(transposase)</u>
		metabolismo (13,2%); Transporte de	
		aminoácidos e metabolismo (12,2%);	
		Produção de energia e conversão	
		(6,12%); Proteínas de reparo (5,10%);	
		Divisão celular (4,08%); Biogênese do	
		envelope celular (1,02%)	
L. gasseri	92	Tradução, estrutura ribossômica e	<i>LGAS_RS05580</i> (rfbB)
	(85,18%)	biogênese (44,5%); Transporte de	(11,31)
		nucleotídeos e metabolismo (15,2%);	Biogênese do envelope
		Biogênese do envelope celular	celular
		(8,69%); Proteínas de reparo (8,69%);	(transportador ABC-2)
		Transporte de aminoácidos e	
		metabolismo (7,60%); Elementos de	
		DNA (7,60%); Produção de energia e	
		conversão (6,52%); Divisão celular	
<i>I</i> .:	4	(1,08%)	IIMPDEE0526 PG06110
L. jensenii	(4.500/)	Tradução, estrutura ribossômica e	HMPREF0526_RS06110
	(4,59%)	biogênese (50%); Transporte de	(7,66)
		aminoácidos e metabolismo (25%);	Transporte de aminoácido e
		Produção de energia e conversão (25%)	metabolismo
			(transportador ABC)

Quadro 1 - Número de genes de tolerância ácida diferencialmente expressos (% em relação ao número total de genes de tolerância ácida identificados no genoma), funções associadas aos genes diferencialmente expressos (% em cada genoma), gene com maior valor de Log2fold change e função associada

(continuação)

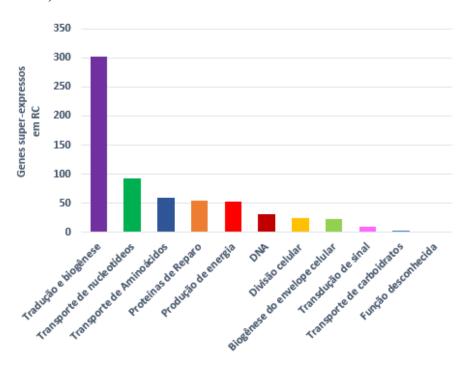
Genoma	Número de	Funções associadas	Gene (Log2fold change) e função associada
	genes* (%)		
L. johnsonii	41 (42,7%)	Tradução, estrutura ribossômica e biogênese (65,8%); Proteínas de reparo (14,6%); Transporte de aminoácidos e metabolismo (4,87%); Produção de energia e conversão (4,87%); Biogênese do envelope celular (4,87%); Transporte de nucleotídeos e metabolismo (2,43%); Transporte de carboidratos e metabolismo (2,43%)	LJ_RS01875 (rpsE) (10,26) Tradução, estrutura ribossômica e biogênese (proteína ribossomal)
L. paracasei	17 (9,44%)	Tradução, estrutura ribossômica e biogênese (23,5%); Transporte de nucleotídeo e metabolismo (23,5%); Produção de energia e conversão (17,6%); Transporte de aminoácidos e metabolismo (17,4%); Proteínas de reparo (11,7%); Função desconhecida (5,88%)	LSEI_1868 (6,98) Proteína aciltransferase
L. plantarum	4 (4,59%)	Transporte de nucleotídeos e metabolismo (50%); Tradução, estrutura ribossômica e biogênese (25%); Divisão celular (25%)	JDM1_RS04365 (7,31) Tradução, estrutura ribossômica e biogênese
L. rhamnosus	114 (87,02%)	Tradução, estrutura ribossômica e biogênese (42,1%); Transporte de nucleotídeos e metabolismo (16,6%); Transporte de aminoácidos e metabolismo (14,9%); Produção de energia e conversão (7,89%); Proteínas de reparo (7,01%); Divisão celular (7,01%); Biogênese do envelope celular (2,63%); Elementos de DNA (0,87%); Transporte de carboidratos e metabolismo (0,87%)	LGG_RS11910 (fusA) (11,21) Tradução, estrutura ribossômica e biogênese (fator de elongamento G)

Quadro 1 - Número de genes de tolerância ácida diferencialmente expressos (% em relação ao número total de genes de tolerância ácida identificados no genoma), funções associadas aos genes diferencialmente expressos (% em cada genoma), gene com maior valor de Log2fold change e função associada

(conclusão)

Genoma	Número	Funções associadas	Gene (Log2fold change)
	de		e função associada
	genes*		
	(%)		
L.	116	Tradução, estrutura ribossômica e	HMPREF0545_RS03630
salivarius	(93,54%)	biogênese (43,1%); Transporte de	(10,77)
		nucleotídeos e metabolismo (18,1%);	Proteínas de reparo
		Produção de energia e conversão	
		(7,75%); Proteínas de reparo (7,75%);	
		Sinal de transdução (7,75%);	
		Transporte de aminoácidos e	
		metabolismo (5,17%); Biogênese do	
		envelope celular (4,3%); Divisão	
		celular (4,3%); Elemento de DNA	
		(1,72%)	

Legenda:

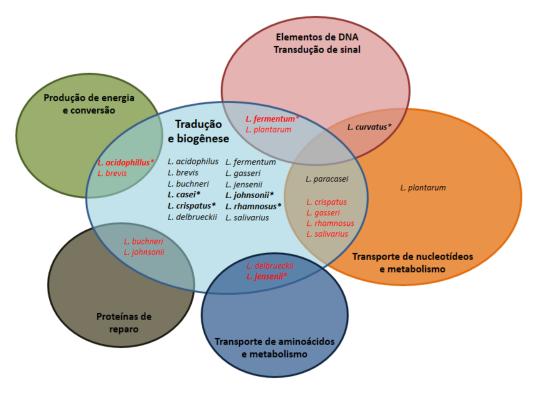

De forma geral, 42,24% dos genes de tolerância ácida diferencialmente expressos estão relacionados com a função de tradução e biogênese, 14,08% estão relacionados com transporte de nucleotídeos, 9,03% com transporte de aminoácidos, 8,26% dos genes estão relacionados com proteínas de reparo, 8,11% com produção de energia, 4,74% com elementos do DNA, 3,82% com divisão celular, 3,52% com biogênese do envelope celular, 1,53% com transdução de sinal. Transporte de carboidratos e função desconhecida estiveram relacionadas a menos de 1% dos genes diferencialmente expressos (Figura 1).

Avaliando funções atribuídas aos genes diferencialmente expressos em cada um dos genomas, observamos que tradução, estrutura ribossômica e biogênese foram as funções mais presentes em *L. acidophilus, L. brevis, L. buchneri, L. casei, L. crispatus, L. delbrueckii, L. fermentum, L. gasseri, L. jensenii, L. johnsonii, L. rhamnosus e L. salivarius* (correspondendo de 33,3% a 65,8% dos genes diferencialmente expressos em cada genoma). Já as funções de transporte de nucleotídeos e metabolismo foram as mais presente em *L. plantarum* (50% dos genes diferencialmente expressos). Para *L. curvatus* três funções foram igualmente as mais presentes, sendo elas: transporte de nucleotídeos e metabolismo, elementos de DNA e transdução de sinal. Para *L. paracasei*, duas funções foram igualmente mais presentes, sendo

^{*}Genes diferencialmente expressos apresentaram Log2fold change >1 (super-expressão em RC) Sublinhado: Determinada pelo UniProt

elas tradução, estrutura ribossômica e biogênese e transporte de nucleotídeos e metabolismo (com 23,5% cada uma). A função de transporte de nucleotídeos e metabolismo foi, na sequência, a segunda mais abundante em *L. crispatus*, *L. gasseri*, *L. rhamnosus* e *L. salivarius* (correspondendo de 9,89 a 18,1% dos genes diferencialmente expressos). Já em *L. acidophillus* e *L. brevis* as funções de produção de energia e conversão foram as segundas funções mais presentes (de 18,1 a 21,2% dos genes diferenciamente expressos). Em *L. buchneri* e *L. johnsonii* as segundas funções mais abundantes foram de proteínas de reparo (de 14,6 a 25% dos genes diferencialmente expressos) e em *L. delbrueckii* e *L. jensenii* foram as funções de transporte de aminoácidos e metabolismo (em ambos os genomas correspondendo a 25% dos genes diferenciamente expressos). Para *L. fermentum* e *L. plantarum* as funções de elementos de DNA e tradução e estrutura ribossômica e biogênese foram as segundas funções mais abundantes, respectivamente (Quadro 1). A Figura 2 resume as principais funções associadas à tolerância ácida em cada genoma de *Lactobacillus* spp.

Figura 1 - Principais funções atribuídas aos genes diferencialmente expressos (de acordo com a fonte abaixo).



Fonte: dados extraídos de Broadbent et al. (2010)

Os genes diferencialmente expressos e que apresentaram os maiores valores de log2fold change em cada genoma estão descritos no Quadro 1. O maior valor de log2fold change foi

encontrado em *L. crispatus* (12,54) e referente ao gene *LCRIS_RS01510* e o menor valor esteve presente em *L. casei* (6,73) e referente ao gene *LBCZ_RS05780*. Dentre esses genes com maiores valores de log2fold change, 5 estiveram associados à função de tradução, estrutura ribossômica e biogênese (genes *LBCZ_RS05780* de *L. casei, LCRIS_RS01510* de *L. crispatus, LJ_RS01875* de *L. johnsonii, JDM1_RS04365* de *L. plantarum* e gene *LGG_RS11910* de *L. rhamnosus*), 3 genes relacionados a elementos de DNA (gene *OA78_RS05010* de *L. curvatus, LDB_RS07740* de *L. delbrueckii* e gene *LAF_RS01020* de *L. fermentum*), 2 genes relacionados a proteínas de reparo (gene *LVIS_RS14560* de *L. brevis* e gene *HMPREF0545_RS03630* de *L. salivarius*), 1 gene relacionado a produção de energia e conversão (gene *LBA0774* de *L. acidophilus*), 1 gene relacionado a transporte de nucleotídeo e metabolismo (gene *LBUCD034_RS02605* de *L. buchneri*), 1 gene relacionado a biogênese do envelope celular (gene *LGAS_RS05580* do *L. gasseri*), 1 gene relacionado a transporte de aminoácido e metabolismo (gene *HMPREF0526_RS06110* do *L. jensenii*) e 1 gene relacionado a função da proteína aciltransferase (gene *LSEI_1868* do *L. paracasei*) (Quadro 1).

Figura 2 – Principais funções associadas a tolerância ácida em cada genoma de *Lactobacilllus* spp.

Legenda:

Genomas escritos em cor preta: funções mais abundantes

Genomas escritos em cor vermelho: segundas funções mais abundantes

Genomas escrito em negrito*: genomas que apresentaram maior log2fold change relacionada a função em questão

Com a finalidade de realizar as análises das rotas metabólicas e obter as informações gênicas, esses genes com maior valor de log2fold change de cada genoma foram buscados nas plataformas KEGG e UniProt. Dos 15 genes com maior valor de log2fold change de cada genoma, estavam disponíveis as rotas metabólicas de apenas 3 destes genes (gene *atp*F; *LBA0774 – L. acidophilus*, gene *rplC*; *LCRIS_RS01510 – L. crispatus*, gene *rfbB*; *LGAS_RS05580 – L. gasseri*) (Apêndice 2). O gene *atp*F está relacionado à síntese da subunidade B da proteína ATPsintase que está envolvida na função da bomba F1F₀ ATP sintase (produção de energia), o gene *rplC* codifica uma proteína L3 da estrutura ribossomal e o gene *rfbB* parece estar relacionado à rota de transportador de membrana ABC. Já em relação a busca pelas informações gênicas dos mesmos 15 genes anteriormente citados, estavam disponíveis informações somente de 12 deles (Quadro 1).

5 DISCUSSÃO

Devido ao grande número de genes identificados, optamos por discutir as funções a eles atribuídas (as mais abundantes) de forma a compreender, de forma mais geral, como se dá o processo de tolerância ao ácido em *Lactobacillus*. Levamos em consideração também os genes que apresentaram os maiores valores de log2fold change em cada genoma. Dentre os genes diferencialmente expressos, a maioria esteve relacionada a função de tradução e biogênese, representando um total 302 genes, que envolvem o processamento da informação celular e o aparato de tradução celular (Figura 1). As análises demonstraram que diversas proteínas ribossomais, tanto da unidade 30S quanto da 50S estavam incluídas nessa função, como representado pelos genes *rps*D do *L. casei, rpl*C do *L. crispatus, rps*E do *L. johnsonii* e *JDM1_RS04365 do L. plantarum* (Quadro 1). Além disso, os fatores de alongamento que facilitam a síntese proteica, como o gene fusA do *L. rhamnosus* também foram muito presentes neste estudo.

Na função de transporte e metabolismo de aminoácidos foram contabilizados 59 genes diferencialmente expressos. Um deles é o gene *HMPREF0526_RS06110* do *L. jensenii* (Quadro 1). O trabalho de Broadbent *et al.* (2010) demonstra a importância do transporte e metabolismo de aminoácidos para a tolerância ácida. Naquele estudo, foram observados aumento da expressão de genes relacionados a tais funções em *L. casei* cultivado durante 20 minutos em pH 4,5. O transporte aumentado de aminoácidos pode estar diretamente relacionado à um aumento na função de tradução e de biogênese acima relatada.

O transporte e metabolismo de nucleotídeos contou com 92 genes com expressão diferencial. Esse é o caso do gene *pur*B do *L. buchneri* (Quadro 1) relacionado a biossíntese de purinas. Hipotetizamos que a síntese de adenina, um tipo de purina, está relacionada à geração de ATP que seria utilizado para extrusão de prótons (via mecanismo F-ATPase) como também observado para *S. mutans* (BROADBENT *et al.*, 2010; BAKER; FAUSTOFERRI; QUIVEY JR, 2017). A função de produção de energia apresentou 53 genes expressos diferencialmente e foi relacionada a componentes da ATP sintase, como o gene *atp*F do *L. acidophilus*. O gradiente de íons hidrogênio entre os meios intra e extracelulares possibilita que sejam sintetizadas moléculas de ATP no momento em que esses íons são assimilados para o meio intracelular. Parte dessa energia é utilizada no bombeamento desses íons para o meio extracelular a fim de controlar o pH intracelular. Tem sido ainda reportado que esse mecanismo pode ser favorecido pela fermentação malolática, na qual a descarboxilação do malato permite a geração de ATP também através da F1F0ATPase (BROADBENT et al., 2010).

A função de proteínas de reparo demonstrou 54 genes diferencialmente expressos englobando as chaperonas e as proteases, como os genes *gro*EL do *L. brevis* e o gene *HMPREF0545_RS03630* do *L. salivarius* (Quadro 1). Enquanto as chaperonas são responsáveis por redobrar proteínas mal dobradas devido possíveis alterações conformacionais decorrentes de um meio intracelular mais acidificado, as proteases removem irreversivelmente as proteínas danificadas (PAPADIMITRIOU et al., 2016). Esse mecanismo permite que ocorra uma proteção contra alterações estruturais nas proteínas ou que aquelas proteínas alteradas sejam eliminadas de forma a não comprometer o metabolismo bacteriano. Superexpressão das proteínas *Gro*EL e *Gro*ER também foi observada em *L. paracasei, L. delbrueckii, L. acidophilus* e em *L. plantarum* durante adaptação ácida (ANGELIS; GOBETTI, 2004; FALENTIN *et al.*, 2010; WU; HE; ZHANG, 2014; ZHANG *et al.*, 2020).

A função de elementos do DNA obteve 31 genes diferencialmente expressos, alguns deles relacionados a proteínas do tipo transposase, como nos genes *OA78_RS05010 do L. curvatus*, *LDB_RS07740* do *L. delbrueckii e LAF_RS01020* do *L. fermentum* (Quadro 1). Esse mesmo mecanismo foi observado por Broadbent *et al.* (2010) que hipotetiza que esses elementos de DNA móveis que se inserem em diferentes locais do genoma em função de diferentes condições ambientais podem ser considerados como um importante mecanismo evolutivo e de adaptação aos microrganismos. No nosso estudo, fica também sugerida a participação desses elementos móveis na resposta ao ambiente acidificado.

Ressaltamos ainda que não foram encontradas na literatura informações específicas a respeito de muitos dos genes diferencialmente expressos ou daqueles que apresentaram os maiores valores de log2fold change em cada um dos genomas analisados. De qualquer forma, em termos funcionais, parece que a resposta à tolerância ao ácido em *Lactobacillus* spp envolve múltiplas funções, sendo a mais abundante (em termos de número de genes superexpressos em RC) a função de tradução e de biogênese. Essa função é compartilhada por quase todos os genomas avaliados (Figura 2), sugerindo um importante papel da tradução de proteínas na adaptação ao ambiente acidificado. Cindo dos genomas avaliados (*L. casei, L. crispatus, L. johnsonii, L. plantarum* e *L. rhamnosus*) inclusive apresentaram maiores valores de log2fold change para os genes associados à tal função. Transporte de nucleotídeos e metabolismo foi uma das mais abundantes em sete dos genomas analisados (*L. curvatus, L. plantarum, L. paracasei, L. crispatus, L. gasseri, L. rhamnosus e <i>L. salivarius*) (Figura 2). Isso significa que processos metabólicos básicos como síntese protéica e metabolismo de ácidos nucléicos são as principais funções desempenhadas pelos genes superexpressos em RC.

Apesar dessa observação, também é possível notar que a resposta ao ambiente acidificado é espécie-específica. *L. plantarum* e *L. curvatus* não apresentam a função de tradução e biogênese como a mais abundante, mas sim, transporte de nucleotídeos e metabolismo (*L. plantarum*) ou mesmo uma equidade entre as funções de transporte de nucleotídeos e metabolismo, elementos de DNA e transdução de sinal (*L. curvatus*). Além disso, a função de transporte de aminoácidos e metabolismo parece estar também relacionada à tolerância ao ácido em *L. delbrueckii* e *L. jensenii*, função de proteína de reparo em *L. buchneri* e *L. johnsonii*, enquanto que a função de produção de energia e conversão parecem estar mais relacionadas à tolerância ao ácido em *L. acidophillus* e *L. brevis*.

Não é possível compreendermos em detalhes de que forma essas diferentes funções contribuem para a aciduricidade dos genomas avaliados nesse estudo. Porém, esses resultados indicam prováveis vias necessárias para tolerância ao ácido e que viabilizam o crescimento dos *Lactobacillus* em biofilmes cariogênicos associados às superfícies radiculares com lesão cariosa. Enquanto que esses dados nos ajudam a compreender as modificações fisiológicas e adaptativas em *Lactobacillus* decorrentes do processo saúde-doença, estudos mecanísticos devem ser conduzidos para validar os genes aqui identificados. De qualquer forma, os resultados desse estudo demonstram que a resposta de *Lactobacillus* ao ambiente acidificado é complexa e multifuncional e indicam possíveis caminhos para uma maior compreensão sobre esses mecanismos adaptativos.

6 CONCLUSÃO

Avaliando todos os genomas de *Lactobacillus* spp. encontramos que um total de 653 genes potencialmente associados a tolerância ao ácido estiveram diferencialmente expressos. Apesar de uma grande quantidade de genes de tolerância ácida estar presente nos *Lactobacillus* spp, uma pequena porcentagem parece estar super-expressa em RC sugerindo que esses genes desempenham um papel importante para a manutenção da viabilidade celular nas comunidades microbianas associadas à RC. Múltiplas funções estão envolvidas na tolerância ao ácido em *Lactobacillus* spp e funções espécie-especificas parecem também estar relacionadas com a sobrevivência de *Lactobacillus* spp em ambientes acidificados como o do biofilme cariogênico associado às superfícies radiculares com lesão de cárie.

REFERÊNCIAS

- ANGELIS M.; GOBBETTI, M. Environmental stress responses in *Lactobacillus:* a review. **Proteomics**, Weinheim, v. 4, n. 1, p. 106-122, Jan. 2004. DOI: 10.1002/pmic.200300497. Disponível em: https://pubmed.ncbi.nlm.nih.gov/14730676/. Acesso em: 13 out. 2020.
- BADET, C.; THEBAUD, N. B. Ecology of *Lactobacilli* in the oral cavity: a review of literature. **The Open microbiology jornal**, Hilversum, v. 2, p. 38-48, 2008. DOI: 10.2174/1874285800802010038. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19088910/. Acesso em: 24 set. 2020.
- BADET, M. C.; RICHARD, B.; DORIGNAC, G. An in vitro study of the pH-lowering potential of salivary *lactobacilli* associated with dental caries. **Journal of Applied Microbiology**, Oxford, v. 90, n. 6, p. 1015-1018, Jun. 2001. DOI: 10.1046/j.1365-2672.2001.01340.x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11412333/. Acesso em: 24 set. 2020.
- BAKER, J. L.; FAUSTOFERRI, R. C.; QUIEVEY JR, R. G.J.L. Acid-adaptive mechanisms of Streptococcus mutans—the more we know, the more we don't. Molecular oral Microbiology, Compenhage, v. 32, n. 2, p. 107-117, 2017. DOI: 10.1111/omi.12162. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27115703/. Acesso em: 05 abr.2021.
- BEIGHTON, D. *et al.* Salivary levels of *mutans streptococci, lactobacilli*, yeasts, and root caries prevalence in non-institutionalized elderly dental patients. **Community Dentistry and Oral Epidemiology**, Compenhage, v. 19, n. 5, p. 302-307, Out. 1991. DOI: 10.1111/j.1600-0528.1991.tb00172.x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/1742998/. Acesso em: 23 set. 2020.
- BRAILSFORD, S. R. *et al.* The predominant aciduric microflora of root-caries lesions. **Journal of Dental Research**, Washington, v. 80, n. 9, p. 1828-1833, Set. 2001. DOI: 10.1177/00220345010800091101. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11926242/. Acesso em: 09 out. 2020.
- BROADBENT, J. R. *et al.* Physiological and transcriptional response of *Lactobacillus casei* ATCC 334 to acid stress. **Journal of Bacteriology**, Washington, v. 192, n. 9, p. 2445-2458, Maio 2010. DOI: 10.1128/JB.01618-09. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20207759/. Acesso em: 12 out. 2020.
- BYUN, R. *et al.* Quantitative analysis of diverse *Lactobacillus* species present in advanced dental caries. **Journal of Clinical Microbiology,** Washington, v. 42, n. 7, p. 3128-3136, Jul. 2004. DOI: 10.1128/JCM.42.7.3128-3136.2004. Disponível em: https://pubmed.ncbi.nlm.nih.gov/15243071/. Acesso em: 15 set. 2020.
- CAUFIELD, P. W. *et al.* Diversity of *Lactobacilli* in the oral cavities of young women with dental caries. **Caries Research**, Basileia, v. 41, n. 1, p. 2-8, 2007. DOI: 10.1159/000096099. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17167253/. Acesso em: 23 set. 2020.
- CAUFIELD, P. W. *et al.* Oral *Lactobacilli* and dental caries: a model for niche adaptation in humans. **Jdr Clinical Research supplement**, Chicago, v. 94, n. 9, p. 110-118, Mar. 2015. DOI: 10.1177/0022034515576052. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25758458/. Acesso em: 14 set. 2020.

CHEN, L. *et al.* Extensive description and comparison of human supra-gingival microbiome in root caries and health. **Plos One,** São Francisco, v. 10, n. 2, [artigo]e0117064 (15p.), Fev. 2015. DOI: 10.1371/journal.pone.0117064. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25658087/. Acesso em: 19 set. 2020.

CHOKSHI, A. *et al.* A correlative study of the levels of salivary *Streptococcus mutans*, *Lactobacilli* and *Actinomyces* with dental caries experience in subjects with mixed and permanent dentition. **Journal of Oral and Maxillofacial Pathology**, Ernakulam, v. 20, n. 1, p. 25-28, Abr. 2016. DOI: 10.4103/0973-029X.180916. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27194858/. Acesso em: 09 out. 2020.

DAME-TEIXEIRA, N. *et al. Actinomyces spp.* gene expression in root caries lesions. **Journal of Oral Microbiology**, Filadélfia, v. 8, n. 6, [artigo] 32383 (13p.), Set. 2016. DOI: 10.3402/jom.v8.32383. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27640531/. Acesso em 26 out. 2020.

DO, T. *et al.* Root surface biofilms and caries. **Monographs in Oral Science**, Basileia, v. 26, p. 26-34, 2017. DOI: 10.1159/000479304. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29050018/. Acesso em: 16 mar. 2020.

FALENTIN, H. *et al.* Specific metabolic activity of ripening bacteria quantified by real-time reverse transcription PCR throughout Emmental cheese manufacture. **International jornal of food microbiology**, Amsterdam, v. 144, n. 1, p. 10-19, 2010. DOI: 10.1016/j.ijfoodmicro.2010.06.003. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20630608/. Acesso em: 08 mar. 2021.

FOZO, E. M.; KAJIFASZ, J. K.; QUIVEY JR, R. G. Low pH-induced membrane fatty acid alterations in oral bacteria. **FEMS Microbiology Letters**, Amsterdam, v. 238, n. 2, p. 191-295, Set. 2004. DOI: 10.1016/j.femsle.2004.07.047. Disponível em: https://pubmed.ncbi.nlm.nih.gov/15358413/. Acesso em: 13 out. 2020.

GUAN, N.; LIU, L. Microbial response to acid stress: mechanisms and applications. **Applied Microbiology and Bioltechnology**, Berlim, v. 104, n. 1, p. 51-65, Jan. 2020. DOI: 10.1007/s00253-019-10226-1. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/31773206/. Acesso em: 13 out. 2020.

HEUNIS, T. *et al.* Proteomic profiling of the acid stress response in *Lactobacillus plantarum* 423. **Journal of Proteome Research**, Washington, v. 13, n. 9, p. 4028-4039, Set. 2014. DOI: 10.1021/pr500353x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25068841/. Acesso em: 24 out. 2020.

JONG, A.; CHUNG, C.; OH, S. Bioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by *Lactobacillus brevis* Bmb5. **Journal of Microbiology and Biotechnology**, Seul, v. 29, n. 11, p. 1745-1748, Nov. 2019. DOI: 10.4014/jmb.1907.07004. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31434366/. Acesso em: 24 out. 2020.

LOVE, M. I.; HUBER, W; ANDERS, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. **Genome Biology**, Londres, v. 15, n. 12, p. 550-558, 2014.

- DOI: 10.1186/s13059-014-0550-8. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25516281/. Acesso em 25 out 2020.
- MARSH, P. D. Are dental diseases examples of ecological catastrophes?. **Microbiology**, Reading, v.149, n. 2, p. 279-294, Fev. 2003. DOI: 10.1099/mic.0.26082-0. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12624191/. Acesso em: 07 nov. 2020.
- NEVES, B. G. *et al.* Quantitative analysis of biofilm bacteria according to different stages of early childhood caries. **Archives of Oral Biology**, Oxford, v. 96, p. 155-161, Dez. 2018. DOI: 10.1016/j.archoralbio.2018.09.007. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30261443/. Acesso em: 16 set. 2020.
- NYVAD, B.; FEJERSKOV, O. Root surface caries: clinical, histopathological and microbiological features and clinical implications. **International Dental Journal**, Londres, v. 32, n. 4, p. 311-326, Dez. 1982.
- OWEN, O. W; CHARLOTTE, N. C. A study of bacterial counts (*Lactobacilli*) in saliva related to orthodontic appliances; a preliminary report. **American Journal of Orthodontics**, San Luis, v. 35, n. 9, p. 672-678, Set. 1949.
- PAPADIMITRIOU, K. *et al.* Stress physiology of lactic acid bacteria. **Microbiology and Molecular Biology Reviews,** Washington, v. 80, n. 3, p. 837-890, Jul. 2016. DOI: 10.1128/MMBR.00076-15. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27466284/. Acesso em: 21 out. 2020.
- PITTS, N. B.; ZERO, D. White Paper on Dental Caries Prevention and Management: A summary of the current evidence and the key issues in controlling this preventable disease. Genebra: Word Dental Federation, 2016. E-book. Disponível em: https://www.fdiworlddental.org/resources/white-papers/white-paper-on-dental-caries-prevention-and-management. Acesso em: 07 out. 2020.
- PITTS, N. B. *et al.* Dental caries. **Nature Reviews Disease Primers**, Londres, v. 3, [artigo] 17030 (33p.), Maio 2017. DOI: 10.1038/nrdp.2017.30. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28540937/. Acesso em: 15 set. 2020.
- PIWAT, S. *et al.* Lactobacillus species and genotypes associated with dental caries in Thai preschool children. **Molecular Oral Microbiology**, Compenhage, v. 25, n. 2, p. 157-164, Abr. 2010. DOI: 10.1111/j.2041-1014.2009.00556.x. Disponível em: https://pubmed.ncbi.nlm.nih.gov/20331803/. Acesso em: 15 set. 2020.
- PREZA, D. *et al.* Microarray analysis of the microflora of root caries in elderly. **European Journal of Clinical Microbiology and Infectious Diseases,** Berlim, v. 28, n. 5, p. 509-517, Maio 2009. DOI: 10.1007/s10096-008-0662-8. Disponível em: https://pubmed.ncbi.nlm.nih.gov/19039610/. Acesso em: 09 out. 2020.
- QUIVEY JR, R. G.; KUHNERT, W. L.; HAHN, K. Genetics of acid adaptation in oral streptococci. **Critical Reviews in Oral Biology and Medicine**, Boca Raton, v. 12, n. 4, p. 301-314, 2001. DOI: 10.1177/10454411010120040201. Disponível em: https://journals.sagepub.com/doi/abs/10.1177/10454411010120040201. Acesso em: 07 nov. 2020.

- REIS, A. C. M. *et al.* Quantification and gene expression of *Lactobacillus casei* group species associated with dentinal lesionsin early childhood caries. **The Saudi Dental Journal,** Riade, v. 33, n. 2, p 69-77, 2021. DOI: 10.1016/j.sdentj.2020.01.006. Disponível em: https://www.sciencedirect.com/science/article/pii/S1013905219309381. Acesso em: 08 abr. 2021.
- SHAW, N.; HEATHERINGTON, K.; BADDILEY, J. The glycolipids of *Lactobacillus casei* A.T.C.C. 7469. **The Biochemical Journal**, Londres, v. 107, n. 4, p. 491-496, Abr. 1968. DOI: 10.1042/bj1070491. Disponível em: https://pubmed.ncbi.nlm.nih.gov/5660629/. Acesso em: 15 out. 2020.
- SMITH, S. I. *et al. Lactobacilli* in human dental caries and saliva. **Microbios**, Cambridge, v. 105, n. 411, p. 77-85, 2001.
- SOUNAH, S. A.; MADFA, A. A. Correlation between dental caries experience and the level of *Streptococcus mutans* and *lactobacilli* in saliva and carious teeth in a Yemeni adult population. **Bmc Research Notes**, Londres, v. 13, n. 1, [artigo] 112 (6p.), Fev. 2020. DOI: 10.1186/s13104-020-04960-3. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32103773/. Acesso em: 16 set. 2020.
- TAKAHASHI, N.; NYVAD, B. Caries ecology revisited: microbial dynamics and the caries process. **Caries Research**, Basileia, v. 42, n. 6, p. 409-418, Out. 2008. DOI: 10.1159/000159604. Disponível em: https://pubmed.ncbi.nlm.nih.gov/18832827/. Acesso em: 21 set. 2020.
- TAKAHASHI, N.; NYVAD, B. Ecological hypothesis of dentin and root caries. **Caries Research**, Basileia, v. 50, n 4, p. 422-431, Mar. 2016. DOI: 10.1159/000447309. Disponível em: https://pubmed.ncbi.nlm.nih.gov/27458979/. Acesso em: 19 set. 2020.
- TANNER, A. C. R. *et al.* The Caries Microbiome: Implications for Reversing Dysbiosis. **Advances in Dental Research**, Washington, v. 29, n. 1, p. 78-85, Fev. 2018. DOI: 10.1177/0022034517736496. Disponível em: https://pubmed.ncbi.nlm.nih.gov/29355414/. Acesso em: 19 set. 2020.
- VADILLO-RODRÍGUEZ, V. *et al.* Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. **Colloids and Surfaces**, Amsterdam, v. 41, n. 1, p. 33-41, Mar. 2005. DOI: 10.1016/j.colsurfb.2004.10.028. Disponível em: https://pubmed.ncbi.nlm.nih.gov/15698754/. Acesso em: 24 set. 2020.
- VAN DE GUCHTE, M. *et al.* Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, Amsterdam, v. 82, n. 1-4, p. 187-216, Ago. 2002.
- WU, C. *et al.* A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in *Lactobacillus casei* Zhang and its mutant with enhanced lactic acid tolerance. **Applied Microbiology and Bioltechnology**, Berlim, v. 93, n. 2, p. 707-722, Jan. 2012. DOI: 10.1007/s00253-011-3757-6. Disponível em: https://pubmed.ncbi.nlm.nih.gov/22159611/. Acesso em: 24 out. 2020.

- WU, C. *et al.* Aspartate protects Lactobacillus casei against acid stress. **Applied Microbiology and Bioltechnology,** Berlim, v. 97, n. 9, p. 4083-4093, Maio 2013. DOI: 10.1007/s00253-012-4647-2. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23292549/. Acesso em: 12 out. 2020.
- WU, C.; HE, G.; ZHANG, J. Physiological and proteomic analysis of *Lactobacillus casei* in response to acid adaptation. **Journal of Industrial Microbiology and Biotechnology**, Houndmills, v. 41, n. 10, p. 1533-1540, Out. 2014. DOI: 10.1007/s10295-014-1487-3. Disponível em: https://pubmed.ncbi.nlm.nih.gov/25062817/. Acesso em: 13 out. 2020.
- ZHANG, J. *et al.* Effects of Fructose and Overexpression of Shock-Related Gene groLon Plantaricin Q7 Production. **Probiotics and antimicrobial proteins,** [S.l.], v. 12, n. 1, p. 32-38, 2020. DOI: 10.1007/s12602-019-09537-6. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30887309/. Acesso em 08 mar.2021.
- ZHENG, J. *et al.* Microbiome of deep dentinal caries from reversible pulpitis to irreversible pulpitis. **Journal of Endodontics,** Baltimore, v. 45, n. 3, p. 302-309, Mar. 2019. DOI: 10.1016/j.joen.2018.11.017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30803537/. Acesso em: 17 set. 2020.

${\bf APÊNDICE~A~-~GENES~DE~TOLERÂNCIA~ÁCIDA~DIFERENCIALMENTE}$ EXPRESSOS POR GENOMA DE $LACTOBACILLUS~{\rm SPP~E~FUNÇÕES~ASSOCIADAS}.$

Lactobacillus acidophillus = 33 genes com expressão diferencial (28,44% em relação ao total 116)

Função	Gene	Log2FoldChange	Pvalue
Produção de energia e conversão	LBA0778	7,232770934	1,37E-21
Produção de energia e conversão	LBA0776	5,481536272	5,44E-16
Produção de energia e conversão	LBA0774	11,59327722	3,55E-13
Produção de energia e conversão	LBA0775	8,940023289	4,54E-08
Produção de energia e conversão	<i>LBA0772</i>	8,568343514	2,51E-07
Produção de energia e conversão	<i>LBA0773</i>	8,668235531	1,82E-06
Produção de energia e conversão	<i>LBA0777</i>	7,425556047	2,30E-05
Tradução, estrutura ribossômica e biogênese	LBA0533 (gatB)	10,2056225	1,19E-08
Tradução, estrutura ribossômica e biogênese	LBA1536(rplT)	9,889959075	2,10E-08
Tradução, estrutura ribossômica e biogênese	LBA0316	9,546881668	6,27E-08
Tradução, estrutura ribossômica e biogênese	LBA0292(rplD)	9,481601224	3,72E-07
Tradução, estrutura ribossômica e biogênese	LBA0318(rplQ)	9,409505962	4,03E-07
Tradução, estrutura ribossômica e biogênese	LBA0007(rpsF)	7,936494209	1,57E-05
Tradução, estrutura ribossômica e biogênese	LBA0532(gatA)	7,810815359	0,000160913
Tradução, estrutura ribossômica e biogênese	LBA1270(rpsB)	7,76443828	0,000166823
Tradução, estrutura ribossômica e biogênese	LBA0309(rplO)	7,62114806	0,000172551
Tradução, estrutura ribossômica e biogênese	LBA0297(rpsC)	7,611082466	0,000220711
Tradução, estrutura ribossômica e biogênese	LBA0293(rplW)	7,551716114	0,000231986
Tradução, estrutura ribossômica e biogênese	LBA1543(thrS)	6,718270142	0,000267076
Tradução, estrutura ribossômica e biogênese	LBA0288	7,257537526	0,000403157
Tradução, estrutura ribossômica e biogênese	LBA0289(fusA)	4,029555929	0,000413431
Tradução, estrutura ribossômica e biogênese	LBA0304(rpsH)	7,201167816	0,000445611

Tradução, estrutura ribossômica e biogênese	LBA0300(rpsQ)	7,129851944	0,000506138
Tradução, estrutura ribossômica e biogênese	LBA1337(rpmA)	6,647686972	0,000803383
Transporte de aminoácidos e metabolismo	LBA1665(oppA)	7,999031314	1,48E-05
Transporte de aminoácidos e metabolismo	LBA0851(lysA)	7,010301572	0,000611498
Transporte de aminoácidos e metabolismo	LBA1961	6,789317834	0,000915592
Elementos de DNA	LBA1420	8,188159754	1,82E-05
Elementos de DNA	LBA1722	7,57694187	2,50E-05
Transporte de nucleotídeos e metabolismo	LBA1952	7,58356377	6,12E-05
Transporte de nucleotídeos e metabolismo	LBA0245 (guaA)	7,334978464	7,87E-05
Transporte de nucleotídeos e metabolismo	LBA1242 (aprT)	7,188327307	0,000178745
Reparo de proteínas	LBA0846 (tig)	7,743687716	0,000204119

Lactobacillus brevis = 11 genes com expressão diferencial (10,69% em relação ao total 103)

Função	Gene	log2FoldChange	Pvalue
Produção de energia e	LVIS_RS17770	6,0924208	6,05E-08
conversão			
Produção de energia e conversão	LVIS_RS17780	7,380105779	4,90E-05
Reparo de Proteínas	LVIS_RS14560	8,675653477	6,06E-07
Reparo de Proteínas	LVIS_RS18005	6,796463562	0,000353795
Divisão celular e particionamento cromossômico	LVIS_RS18590	6,269031146	2,55E-05
Tradução, estrutura ribossômica e biogênese	LVIS_RS19755	5,630108002	3,32E-05
Tradução, estrutura ribossômica e biogênese	LVIS_RS18035	7,059553986	0,000185206
Tradução, estrutura ribossômica e biogênese	LVIS_RS19715	5,833354103	0,000276804
Tradução, estrutura ribossômica e biogênese	LVIS_RS19725	5,576816586	0,000288109
Tradução, estrutura ribossômica e biogênese	LVIS_RS16335	6,802369687	0,000593158
Tradução, estrutura ribossômica e biogênese	LVIS_RS19770	6,442778516	0,001023012

 $Lactobacillus\ buchneri=16\ genes\ com\ expressão\ diferencial\ (13,67\ \%\ em\ relação\ ao\ total\ 117)$

Função	Gene	log2FoldChange	Pvalue	

	LBUCD034 RS07265		
Reparo de Proteínas	(groL)	6,148872761	3,25E-06
Reparo de Proteínas	LBUCD034_RS07270	6,967613807	0,000290465
Reparo de Proteínas	LBUCD034_RS07085	6,800511522	0,000406936
Reparo de Proteínas	LBUCD034_RS05485	4,845666891	0,000443047
Transporte de nucleotídeos e metabolismo	LBUCD034_RS02605	7,611761335	4,45E-05
Transporte de nucleotídeos e	LBUCD034_RS04825	7,303814092	0,000104515
metabolismo	LDU CD034_R304023	7,303814092	0,000104313
Tradução, estrutura	LBUCD034 RS08760	4,681663602	9,47E-05
ribossômica e biogênese	LD0 CD034_R300700	4,001003002),+1L-03
Tradução, estrutura	LBUCD034_RS03880	4,418008441	0,000114594
ribossômica e biogênese	LDC CD03+_N503000	4,410000441	0,000114394
Tradução, estrutura	LBUCD034_RS08765	7,004027965	0,000132755
ribossômica e biogênese	LDC CD03+_N500703	7,004027703	0,000132133
Tradução, estrutura	LBUCD034_RS08735	6,933796389	0,000200828
ribossômica e biogênese	EDC CD 03 1_N5007 33	0,733170307	0,000200020
Tradução, estrutura	LBUCD034_RS08645	6,753531045	0,000490468
ribossômica e biogênese	EDC CD 03 1_113000 13	,	0,000 170 100
Tradução, estrutura	LBUCD034_RS08010	6,585056362	0,000864813
ribossômica e biogênese	EDC CD031_N300010		0,000001013
Tradução, estrutura	LBUCD034 RS05740	6,568779029	0,000898543
ribossômica e biogênese	LDC CD03+_N5037+0	0,300117027	0,000070545
Produção de energia e	LBUCD034 RS04855	4,971309731	0,00020969
conversão	LD0 CD03+_N30+033	4,7/1307/31	0,00020707
Produção de energia e	LBUCD034_RS04860	4,673476424	0,000315687
conversão	(atpD)	4,073470424	0,000313007
Transporte de aminoácidos e metabolismo	LBUCD034_RS01290	6,643986208	0,001116648

Lactobacillus casei = 1 gene com expressão diferencial (0,70% em relação ao total 142)

Função	Gene	log2FoldChange	Pvalue
Tradução, estrutura ribossômica e biogênese	LBCZ_RS05780	6,733846849	0,000489338

Lactobacillus crispatus = 91 genes com expressão diferencial (94,79% em relação ao total 96)

Função	Gene	log2FoldChange	pvalue
Tradução, estrutura ribossômica e biogênese	LCRIS_RS00035	7,777264909	2,10439E-05
Tradução, estrutura ribossômica e biogênese	LCRIS_RS00290	6,521221476	0,000979367
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01335	8,976483125	5,66477E-07

Tradução, estrutura ribossômica e biogênese	LCRIS_RS01495	9,453611881	3,47668E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01500	9,075225045	5,57671E-40
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01510	12,54822353	5,98575E-16
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01515	10,49259993	8,71808E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01520	9,020850491	3,08473E-08
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01525	10,43720703	1,23458E-11
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01530	11,42813511	7,32801E-13
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01540	12,14087986	8,8341E-15
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01545	10,08636773	1,0305E-10
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01550	7,239394408	8,758E-05
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01555	11,13567129	3,39336E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01560	11,42200956	6,20181E-13
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01565	10,2024127	1,68259E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01570	8,65329235	2,58802E-14
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01580	11,62534123	2,63983E-13
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01585	11,07503202	2,18895E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01590	11,43064184	6,01042E-13
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01595	11,63273657	8,91751E-18
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01600	8,303123991	5,38686E-06
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01605	9,800692986	5,29857E-10
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01620	6,485716997	1,19374E-05
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01625	8,930783751	1,06852E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01630	9,903817833	7,01288E-14
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01635	9,837368927	2,96887E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01645	10,11924909	7,33703E-10

Tradução, estrutura ribossômica e biogênese	LCRIS_RS01855	9,656456882	4,73694E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01860	7,583401857	5,1007E-08
Tradução, estrutura ribossômica e biogênese	LCRIS_RS02390	7,070622771	0,000214774
Tradução, estrutura ribossômica e biogênese	LCRIS_RS02805	10,33329609	1,08641E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS02815	10,79503671	8,2305E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS04050	10,7399473	2,88931E-11
Tradução, estrutura ribossômica e biogênese	LCRIS_RS04345	7,854938922	2,5942E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS04435	8,186428867	5,54793E-06
Tradução, estrutura ribossômica e biogênese	LCRIS_RS04440	7,857795348	2,78174E-05
Tradução, estrutura ribossômica e biogênese	LCRIS_RS04455	7,297570035	2,15335E-43
Tradução, estrutura ribossômica e biogênese	LCRIS_RS05185	10,48813371	8,96771E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06335	8,70203946	6,81912E-07
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06340	6,717274862	9,09363E-16
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06355	10,24817631	6,85664E-10
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06390	9,841245462	3,9601E-09
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06400	9,1708187	1,47125E-08
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06405	7,562468164	2,49622E-11
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06485	8,603867585	1,66906E-06
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06695	10,41466522	2,80888E-10
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06705	10,02976939	9,06327E-10
Tradução, estrutura ribossômica e biogênese	LCRIS_RS06715	8,532725962	1,63834E-06
Tradução, estrutura ribossômica e biogênese	LCRIS_RS07545	7,989746197	1,72507E-05
Tradução, estrutura ribossômica e biogênese	LCRIS_RS02810 (gatA)	10,94267788	6,32548E-12
Tradução, estrutura ribossômica e biogênese	LCRIS_RS01575 (rpsN)	11,71207594	8,05981E-14
Transporte de aminoácidos e metabolismo	LCRIS_RS02150	9,470305828	9,61302E-09

Transporte de aminoácidos e	LCRIS RS04490	9,387800224	6,34207E-08
metabolismo	LCR15_R504490	9,38/800224	0,3420/E-08
Transporte de aminoácidos e	LCRIS RS06710	9,069406685	9,4674E-08
metabolismo	Leftis_R500710	2,002100003), 107 IL 00
Transporte de aminoácidos e	LCRIS_RS07425	6,503410385	0,001004968
metabolismo	_	,	,
Transporte de carboidratos e	LCRIS_RS07015	8,233813363	4,81762E-06
metabolismo Transporte de nucleotídeos e			
metabolismo	LCRIS_RS01205	10,14698209	5,15505E-10
Transporte de nucleotídeos e			
metabolismo	LCRIS_RS01615	7,334414487	3,25584E-05
Transporte de nucleotídeos e	- GD-1G - DG04	0. 40. 40. 41. 40	- 10011 - 00
metabolismo	LCRIS_RS02745	9,602607158	5,19011E-09
Transporte de nucleotídeos e	LCDIC DC02075	0.205200647	2 440105 06
metabolismo	LCRIS_RS03075	8,385208647	2,44018E-06
Transporte de nucleotídeos e	LCRIS_RS03965	10,67819411	6,04287E-11
metabolismo	LCMS_KS03903	10,07619411	0,04267E-11
Transporte de nucleotídeos e	LCRIS_RS04320	9,968406623	2,48462E-09
metabolismo	Lems_nso+320),700 + 00023	2,404021 07
Transporte de nucleotídeos e	LCRIS_RS06280	8,60306973	1,06793E-06
metabolismo	_	,	,
Transporte de nucleotídeos e	LCRIS_RS06865	7,344012077	0,000161734
metabolismo			
Transporte de nucleotídeos e metabolismo	LCRIS_RS09595	9,686057617	8,03381E-09
Reparo de proteínas	LCRIS_RS02015	9,000284706	1,27063E-07
Reparo de proteínas Reparo de proteínas	LCRIS_RS02013	9,761859947	1,04276E-18
Reparo de proteínas	LCRIS_RS04315	7,234776361	0,000133462
Reparo de proteínas	LCRIS_RS04460	10,6127203	4,0673E-12
Reparo de proteínas	LCRIS_RS04465	9,442025007	1,91997E-08
Reparo de proteínas	LCRIS_RS06305	9,789037712	2,08066E-09
Reparo de proteínas	LCRIS RS06310	8,300851084	1,43332E-21
Reparo de proteínas	LCRIS_RS06315	10,31637793	2,51159E-10
Reparo de proteínas	LCRIS_RS06320	9,991748798	7,81574E-10
Produção de energia e		,	
conversão	LCRIS_RS03970	7,130986502	6,20654E-05
Produção de energia e	- ana - aaaaaa		0.00000404
conversão	LCRIS_RS03985	6,849957308	0,000836316
Produção de energia e	LCDIG DG02000	11 2671 1200	1 650215 12
conversão	LCRIS_RS03990	11,36714208	1,65931E-12
Produção de energia e	LCDIC DC02005	10 07054261	2 61504E 11
conversão	LCRIS_RS03995	10,87054361	2,61594E-11
Produção de energia e	LCRIS_RS04000	11,94316751	1,2944E-13
conversão	LCMS_KS04000	11,94510751	1,29 44 L-13
Produção de energia e	LCRIS_RS04005	9,88555311	1,856E-09
conversão		,	
Elementos de DNA	LCRIS_RS07195	8,130004524	0,000426093
Elementos de DNA	LCRIS_RS07950	7,928956185	1,21883E-06

Divisão celular e particionamento cromossómico	LCRIS_RS01130	10,40736081	1,48114E-10
Divisão celular e			
particionamento cromossómico	LCRIS_RS04250	9,207705211	1,08164E-07
Divisão celular e			
particionamento cromossómico	LCRIS_RS04280	9,661940474	7,32146E-09
Divisão celular e			
particionamento	LCRIS_RS04285	10,99586829	4,68729E-12
cromossómico			
Divisão celular e			
particionamento	LCRIS_RS04290	8,747610262	5,9172E-07
cromossómico			
Biogênese do envelope	LCRIS RS01195	8,130004524	5,784E-06
celular	Leids_Rso1175	0,13000 132 1	3,70 IL 00
Biogênese do envelope	LCRIS RS08610	7,928956185	1,73548E-05
celular	Lems_ms00010	7,720730103	1,755 102 05
Biogênese do envelope celular	LCRIS_RS09770	10,05609399	1,59163E-09

Lactobacillus curvatus = 3 genes com expressão diferencial (2,80% em relação ao total 107)

Função	Gene	log2FoldChange	Pvalue
Elementos de DNA	OA78_RS05010	8,100657226	1,20E-05
Transdução de sinal	OA78_RS01765	6,752719155	0,000345214
Transporte de nucleotídeos	OA78_RS04325	4,957771956	0,001105841
e metabolismo	(pyrH)	4,731111930	0,001103641

 $\label{eq:lactobacillus delbrueckii} Lactobacillus \ delbrueckii = 12 \ {\rm genes} \ {\rm com} \ {\rm express\~ao} \ {\rm diferencial} \ (10{,}90\% \ {\rm em} \ {\rm rela\~a\~ao} \ {\rm ao} \ {\rm total} \ 110)$

Função	Gene	log2FoldChange	pvalue
Transporte de nucleotídeos e	<i>purH</i> _25_	5,574036914	1,21E-05
metabolismo			
Transporte de nucleotídeos e	LDB_RS01225	6,739027036	0,000213102
metabolismo			
Transporte de nucleotídeos e	LDB_RS05590	6,850110286	0,000860917
metabolismo			
Biogênese do envelope	LDB_RS08585	7,392356378	4,93E-05
celular			
Elementos de DNA	LDB_RS07740	7,613718981	6,11E-05
Tradução, estrutura	LDB_RS05885	7,362508187	0,000189969
ribossômica e biogênese			
Tradução, estrutura	LDB_RS01680	4,944343204	0,000254831
ribossômica e biogênese			
Tradução, estrutura	LDB_RS03410	7,123965165	0,000480022
ribossômica e biogênese			

Tradução, estrutura	LDB_RS03405	6,843612878	0,000824961
ribossômica e biogênese			
Transporte de aminoácidos e	LDB_RS01055	7,062128639	0,000308264
metabolismo			
Transporte de aminoácidos e	LDB_RS01050	6,953255775	0,000439962
metabolismo			
Transporte de aminoácidos e	LDB_RS01045	6,624757075	0,001171172
metabolismo			

Lactobacillus fermentum = 98 genes com expressão diferencial (78,4% em relação ao total 125)

Função	Gene	log2FoldChange	pvalue
Biogênese do envelope	LAF_RS08425	8,883281536	9,34549E-14
celular	LAI _K300423	0,003201330	7,34347L-14
Divisão celular e			
particionamento	<i>LAF_RS03375</i>	6,990117726	6,87601E-09
cromossômico			
Divisão celular e	1 A E DC02405	7 100000506	4 41074E 00
particionamento cromossômico	<i>LAF_RS03405</i>	7,182928536	4,41074E-09
Divisão celular e			
particionamento	LAF_RS03415	6,768054254	1,96276E-09
cromossômico	LAI _K303413	0,700034234	1,90270E-09
Divisão celular e			
particionamento	<i>LAF RS06765</i>	8,724957545	8,04914E-14
cromossômico	<u> </u>	3,72 136 76 16	0,0 1,7 1 12 1 1
Elementos de DNA	LAF_RS00385	9,526136994	7,45241E-09
Elementos de DNA		12,06482187	4,03327E-15
Elementos de DNA		7,681828259	4,47686E-05
Elementos de DNA	LAF_RS05775	6,552114951	0,000769987
Elementos de DNA	LAF_RS06050	7,281011343	6,74373E-10
Elementos de DNA	LAF_RS06280	8,936130598	2,19063E-07
Elementos de DNA	LAF_RS06635	7,471391661	5,02379E-07
Elementos de DNA	LAF_RS06945	8,042878319	7,58571E-10
Elementos de DNA	LAF_RS08040	7,861954992	1,55396E-05
Elementos de DNA	LAF_RS08045	7,893477297	1,37604E-05
Elementos de DNA	LAF_RS08360	8,60831377	7,46576E-14
Elementos de DNA	LAF_RS08930	6,859795903	5,09739E-07
Elementos de DNA	LAF_RS09810	10,99697645	4,88807E-12
Elementos de DNA	LAF_RS10150	8,694692085	2,85775E-18
Elementos de DNA	LAF_RS10205	7,938509768	2,39157E-05
Produção de energia e	LAF_RS02495	4,654532079	0,000636813
conversão	LAF_K302493	4,034332079	0,000030813
Produção de energia e	LAF_RS02500	7,082979742	1,75127E-08
conversão	LIII _NS02500	1,002717172	1,7312712-00
Produção de energia e	LAF RS02505	4,4618083	0,000987124
conversão		.,	-,

Produção de energia e conversão	LAF_RS02510	4,875476294	0,000289364
Produção de energia e conversão	LAF_RS02530	5,387020134	7,50102E-06
Produção de energia e conversão	<i>LAF_RS05590</i>	7,224151864	0,00040152
Reparo de proteínas	<i>LAF_RS01900</i>	9,067061233	5,77358E-12
Reparo de proteínas	LAF_RS01905	4,85785953	0,000997764
Reparo de proteínas	LAF_RS04420	7,561977814	4,56055E-12
Reparo de proteínas	LAF_RS04425	4,228517974	1,12243E-05
Reparo de proteínas	 LAF_RS04430	8,876873159	9,21038E-15
Tradução, estrutura			
ribossômica e biogênese	<i>LAF_RS00035</i>	7,564338138	4,55592E-14
Tradução, estrutura	LAE DG01/05	C 500500200	1 1 (2 12 0 0
ribossômica e biogênese	<i>LAF_RS01625</i>	6,580508309	1,16243E-09
Tradução, estrutura	LAE DC01620	0.05502741	2 92621E 12
ribossômica e biogênese	<i>LAF_RS01630</i>	9,05592741	3,82621E-12
Tradução, estrutura	IAE DS02125	8,500147794	7.05055E 10
ribossômica e biogênese	<i>LAF_RS02135</i>	8,300147794	7,95955E-10
Tradução, estrutura	LAF_RS02830	9,760658597	9,67473E-15
ribossômica e biogênese	LAT_K302030	9,700036397	9,07473E-13
Tradução, estrutura	LAF_RS03465	8,552216781	3,59725E-13
ribossômica e biogênese	Li L	0,552210701	3,37123E 13
Tradução, estrutura	LAF_RS03590	8,69103254	3,11387E-12
ribossômica e biogênese	<u> </u>	0,00100201	5,115072 12
Tradução, estrutura	LAF_RS03595	7,871177375	5,50235E-11
ribossômica e biogênese		.,	- ,
Tradução, estrutura	<i>LAF_RS04205</i>	6,612086198	3,79067E-10
ribossômica e biogênese			
Tradução, estrutura	<i>LAF_RS04210</i>	7,262347547	3,86038E-10
ribossômica e biogênese Tradução, estrutura			
ribossômica e biogênese	<i>LAF_RS04220</i>	6,922412407	9,00957E-10
Tradução, estrutura			
ribossômica e biogênese	<i>LAF_RS04285</i>	8,012814305	4,70848E-14
Tradução, estrutura			
ribossômica e biogênese	<i>LAF_RS04300</i>	5,914128509	1,4874E-13
Tradução, estrutura	T. I. T. DG0.600.5	0.500.404.050	4.5.40.20E 4.5
ribossômica e biogênese	<i>LAF_RS06985</i>	8,738491853	4,74939E-15
Tradução, estrutura	1.4E DG07105	0.50460644	4.075.46F 10
ribossômica e biogênese	<i>LAF_RS07185</i>	8,50468644	4,27546E-12
Tradução, estrutura	LAE DC07300	0.450017225	1.00C41E 10
ribossômica e biogênese	<i>LAF_RS07200</i>	8,459917335	1,29641E-10
Tradução, estrutura	LAF_RS07340	8,93188427	4,43112E-07
ribossômica e biogênese	LAT_K30/340	0,93100427	4,43112E-07
Tradução, estrutura	LAF_RS07415	7,59991576	8,86815E-11
ribossômica e biogênese	LII _N30/413	1,37771310	0,0001312-11
Tradução, estrutura	LAF_RS08250	9,924030337	5,69524E-09
ribossômica e biogênese	<u></u>	7,72 1030331	2,0702 111 07

Tradução, estrutura ribossômica e biogênese	LAF_RS08390	6,705738776	7,10522E-09
Tradução, estrutura ribossômica e biogênese	LAF_RS08400	9,100288746	1,63826E-11
Tradução, estrutura ribossômica e biogênese	LAF_RS08475	6,650060327	1,44947E-08
Tradução, estrutura ribossômica e biogênese	LAF_RS08510	6,742487119	1,36636E-08
Tradução, estrutura ribossômica e biogênese	LAF_RS08515	5,632487917	1,06625E-05
Tradução, estrutura ribossômica e biogênese	LAF_RS08520	6,364607083	2,1021E-07
Tradução, estrutura ribossômica e biogênese	LAF_RS08525	5,66179771	1,48011E-06
Tradução, estrutura ribossômica e biogênese	LAF_RS08530	4,596321035	0,000945235
Tradução, estrutura ribossômica e biogênese	LAF_RS08535	4,584026975	0,000691753
Tradução, estrutura ribossômica e biogênese	LAF_RS08550	5,864117343	1,48942E-06
Tradução, estrutura ribossômica e biogênese	LAF_RS08560	6,357452968	5,3676E-07
Tradução, estrutura ribossômica e biogênese	LAF_RS08565	6,754921331	6,79107E-08
Tradução, estrutura ribossômica e biogênese	LAF_RS08570	6,481339318	5,06243E-08
Tradução, estrutura ribossômica e biogênese	LAF_RS08575	4,335228568	0,000785601
Tradução, estrutura	LAF_RS08580	6,171571094	5,91999E-07
ribossômica e biogênese Tradução, estrutura	LAF_RS08585	6,742375716	1,25913E-08
ribossômica e biogênese Tradução, estrutura	LAF_RS08595	5,143445503	3,54399E-07
ribossômica e biogênese Tradução, estrutura		4,701622429	0,000485099
ribossômica e biogênese Tradução, estrutura	_ LAF_RS08610	7,8804556	5,36963E-13
ribossômica e biogênese Tradução, estrutura	LAF_RS08620	5,210574876	2,6262E-08
ribossômica e biogênese Tradução, estrutura	LAF_RS10355	7,561502465	1,70296E-11
ribossômica e biogênese Tradução, estrutura	LAF_RS08395	8,065757485	1,22432E-11
ribossômica e biogênese Tradução, estrutura	(gatA) LAF_RS08540	6,058851642	1,26883E-06
ribossômica e biogênese Transporte de aminoácido e	(rpsN) LAF_RS03095	8,303547535	1,19735E-11
metabolismo	LIII _NOOJO/J	0,505571555	1,17/33L-11
Transporte de aminoácido e metabolismo	<i>LAF_RS04445</i>	10,4330592	1,82565E-10

Transporte de aminoácido e metabolismo LAF_RS04455 9,634441253 1,78619E-0 Transporte de aminoácido e metabolismo LAF_RS04460 10,46586948 1,83903E-1 Transporte de aminoácido e metabolismo LAF_RS04470 9,638166692 1,08293E-0 Transporte de aminoácido e metabolismo LAF_RS04475 9,95256598 2,48323E-0 Transporte de aminoácido e metabolismo LAF_RS04480 9,694847171 8,92036E-0 Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 7,32715E-1	
metabolismo LAF_RS04460 10,46386948 1,83903E-1 Transporte de aminoácido e metabolismo LAF_RS04470 9,638166692 1,08293E-0 Transporte de aminoácido e metabolismo LAF_RS04475 9,95256598 2,48323E-0 Transporte de aminoácido e metabolismo LAF_RS04480 9,694847171 8,92036E-0 Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS10265 8,467837988 7,32715E-1	08
Transporte de aminoácido e metabolismo LAF_RS04470 9,638166692 1,08293E-0 Transporte de aminoácido e metabolismo LAF_RS04475 9,95256598 2,48323E-0 Transporte de aminoácido e metabolismo LAF_RS04480 9,694847171 8,92036E-0 Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS10265 8,467837988 7,32715E-1	10
Transporte de aminoácido e metabolismo LAF_RS04475 9,95256598 2,48323E-0 Transporte de aminoácido e metabolismo LAF_RS04480 9,694847171 8,92036E-0 Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS07265 8,467837988 7,32715E-1	08
Transporte de aminoácido e metabolismo LAF_RS04480 9,694847171 8,92036E-0 Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS07265 8,467837988 7,32715E-1	09
Transporte de aminoácido e metabolismo LAF_RS04490 6,59698227 1,68109E-0 Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e metabolismo LAF_RS10265 8,467837988 7,32715E-1	09
Transporte de aminoácido e metabolismo LAF_RS05000 7,835421589 1,07327E-1 Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e LAF_RS10265 8,467837988 7,32715E-1	07
Transporte de aminoácido e metabolismo LAF_RS07195 9,040701693 2,98185E-1 Transporte de aminoácido e LAF_RS10265 8,467837988 7,32715E-1	11
Transporte de aminoácido e 14F RS10265 8 467837988 7 32715F-1	13
motobolismo –	14
metabolismo Transporte de aminoácido e metabolismo LAF_RS04465 (hisB) 9,298585711 1,368E-07	7
Transporte de nucleotídeos e metabolismo LAF_RS00240 8,869163952 3,15493E-1	11
Transporte de nucleotídeos	14
e metabolismo Transporte de nucleotídeos LAF_RS00675 8,774014331 1,7141321 5,362E-07	7
e metabolismo Transporte de nucleotídeos LAF_RS00705 7,81918805 4,09604E-1	11
e metabolismo Transporte de nucleotídeos LAF_RS00710 9,322018958 9,89801E-1	14
e metabolismo 7,322018336 7,83601E-18 Transporte de nucleotídeos	13
Transporte de nucleotídeos LAF RS02475 9 039349867 1 97932F-1	13
e metabolismo – Transporte de nucleotídeos LAE RS03445 8 527355245 6 21963E-1	
Transporte de nucleotídeos LAF RS03670 8 546230377 6 47749F-1	
Transporte de nucleotídeos LAF RS07300 9 921978252 2 83422F-0	
Transporte de nucleotídeos LAE RS07735 11 00263300 2 74601E-1	
Transporte de nucleotídeos LAF RS08500 6 985199978 8 67248F-1	
e metabonsmo Transporte de nucleotídeos	
e metabolismo	

Lactobacillus gasseri = 92 genes com expressão diferencial (85,18% em relação ao total 108)

Função	Gene	log2FoldChange	pvalue
i unção	Gene	10g21 old Change	pvarue

Biogênese do envelope celular	LGAS_RS05565	10,37588618	1,7949E-17
Biogênese do envelope celular	LGAS_RS05570	10,06657684	6,85563E-10
Biogênese do envelope celular	LGAS_RS05580	11,31390049	2,19008E-13
Biogênese do envelope celular	LGAS_RS08925	5,258834652	0,000291422
Biogênese do envelope celular	LGAS_RS08930	7,309632356	1,41164E-09
Biogênese do envelope celular	LGAS_RS08935	7,832179994	1,47184E-11
Biogênese do envelope celular	LGAS_RS08940	6,045782432	2,2417E-12
Biogênese do envelope celular	LGAS_RS08945	7,665147497	3,22925E-05
Divisão celular e particionamento	LGAS_RS03550	7,736543445	7,47064E-08
cromossômico Elementos do DNA	LGAS_RS02030	8,23049139	8,72603E-11
Elementos do DNA	LGAS RS02035	8,552803641	8,52194E-13
Elementos do DNA	LGAS_RS02625	9,036200469	1,26699E-07
Elementos do DNA	-	*	,
	LGAS_RS04585	8,980222831	2,9667E-07
Elementos do DNA	LGAS_RS07060	8,511673842	1,5323E-06
Elementos do DNA	LGAS_RS07625	9,012244549	1,65522E-07
Elementos do DNA	LGAS_RS08155	7,535695398	3,22668E-05
Produção de energia e			
conversão	LGAS_RS06080	6,508278601	8,65046E-09
Produção de energia e			
conversão	LGAS_RS06095	4,661865461	0,000195067
Produção de energia e			
conversão	LGAS_RS06100	5,131824115	0,000204194
Produção de energia e	- G. I.G B.G. C. I.O	4 0 0 0 7 4 0 7 4 4	0.00000000
conversão	LGAS_RS06105	4,998710546	0,000295207
Produção de energia e	1.G1.G DG0(110	7.05.650.60.66	5 51001F 00
conversão	LGAS_RS06110	7,356526366	5,51801E-09
Produção de energia e	1.CAG DG0C115	((705 (2007	0.17015E.00
conversão	LGAS_RS06115	6,670562897	8,17815E-08
Reparo de proteínas	LGAS_RS02000	7,816155818	1,18699E-10
Reparo de proteínas	LGAS_RS02005	6,624564801	4,16284E-20
Reparo de proteínas	LGAS_RS04040	8,335793148	4,3127E-14
Reparo de proteínas	LGAS_RS04045	5,429315722	4,41876E-13
Reparo de proteínas	LGAS_RS04050	10,30379137	3,72675E-17
Reparo de proteínas	LGAS_RS05735	6,242600659	7,71451E-08
Reparo de proteínas	LGAS_RS05875	7,125825197	4,04878E-09
Reparo de proteínas		7,851594205	2,51923E-09
Tradução, estrutura		·	
ribossômica e biogênese	LGAS_RS00035	9,652912737	7,57793E-09
_			

Tradução, estrutura ribossômica e biogênese	LGAS_RS01285	8,035526735	1,46389E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS01425	6,661468808	1,77792E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS01430	6,523793891	1,31739E-10
Tradução, estrutura ribossômica e biogênese	LGAS_RS01435	6,9220131	8,03973E-11
Tradução, estrutura ribossômica e biogênese	LGAS_RS01445	6,319951473	8,68475E-10
Tradução, estrutura ribossômica e biogênese	LGAS_RS01450	4,734982889	2,34176E-06
Tradução, estrutura ribossômica e biogênese	LGAS_RS01460	6,978408381	2,56176E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01470	7,220682841	2,60285E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01475	4,551253006	1,00617E-06
Tradução, estrutura ribossômica e biogênese	LGAS_RS01480	6,929592969	1,74293E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01485	6,549250761	6,659E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS01495	6,180671229	1,16811E-06
Tradução, estrutura ribossômica e biogênese	LGAS_RS01500	6,415755689	3,45833E-07
Tradução, estrutura ribossômica e biogênese	LGAS_RS01505	6,83738754	9,83529E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01510	6,479089339	2,64074E-07
Tradução, estrutura ribossômica e biogênese	LGAS_RS01515	6,433661879	5,00295E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS01520	6,073982201	9,29945E-07
Tradução, estrutura ribossômica e biogênese	LGAS_RS01535	6,65702812	5,02968E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01540	6,963394608	1,64258E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS01545	6,585736584	3,33407E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS01555	6,470789382	1,46885E-07
Tradução, estrutura ribossômica e biogênese	LGAS_RS01770	6,7818427	5,95503E-10
Tradução, estrutura ribossômica e biogênese	LGAS_RS01860	8,968086235	6,38226E-14
Tradução, estrutura ribossômica e biogênese	LGAS_RS01870	7,967510187	2,08484E-14
Tradução, estrutura ribossômica e biogênese	LGAS_RS03660	7,783978916	2,95446E-11

Tradução, estrutura ribossômica e biogênese	LGAS_RS03665	6,327904982	1,62537E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS03865	6,530554395	5,43552E-07
Tradução, estrutura ribossômica e biogênese	LGAS_RS03940	5,951869445	2,51664E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS03945	6,462057582	3,12523E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS03955	7,196997964	8,96E-11
Tradução, estrutura ribossômica e biogênese	LGAS_RS04005	7,956717996	5,30497E-13
Tradução, estrutura ribossômica e biogênese	LGAS_RS04010	7,987104237	1,39797E-10
Tradução, estrutura ribossômica e biogênese	LGAS_RS05755	9,300107505	5,09889E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS05760	6,599375505	5,7804E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS05810	9,213079162	8,73621E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS06025	7,511138631	3,45274E-10
Tradução, estrutura ribossômica e biogênese	LGAS_RS06125	8,379291922	2,29049E-13
Tradução, estrutura ribossômica e biogênese	LGAS_RS06395	6,776922582	7,82835E-08
Tradução, estrutura ribossômica e biogênese	LGAS_RS06825	8,318362637	1,59744E-09
Tradução, estrutura ribossômica e biogênese	LGAS_RS06915	7,30663478	8,02783E-12
Transporte de aminoácido e metabolismo	LGAS_RS01755	8,12392354	7,12649E-09
Transporte de aminoácido e metabolismo	LGAS_RS01760	8,053859569	6,08789E-06
Transporte de aminoácido e metabolismo	LGAS_RS01765	8,066410215	1,17096E-09
Transporte de aminoácido e metabolismo	LGAS_RS02615	7,631965103	6,27301E-11
Transporte de aminoácido e metabolismo	LGAS_RS02620	7,243611909	5,49303E-08
Transporte de aminoácido e metabolismo	LGAS_RS03580	9,108997751	2,3733E-29
Transporte de aminoácido e metabolismo	LGAS_RS03825	8,93976179	1,34949E-16
Transporte de nucleotídeos e metabolismo	LGAS_RS01125	8,749779318	4,31163E-07
Transporte de nucleotídeos e metabolismo	LGAS_RS01530	5,324868307	3,07076E-07
Transporte de nucleotídeos e metabolismo	LGAS_RS01920	6,308585446	3,42108E-08

Transporte de nucleotídeos e metabolismo	LGAS_RS02315	8,515909172	1,21376E-09
Transporte de nucleotídeos e metabolismo	LGAS_RS02650	8,044907385	1,2851E-05
Transporte de nucleotídeos e metabolismo	LGAS_RS04070	9,422998131	1,52304E-08
Transporte de nucleotídeos e metabolismo	LGAS_RS05340	8,72370037	4,07075E-07
Transporte de nucleotídeos e metabolismo	LGAS_RS05365	9,454379743	2,08309E-08
Transporte de nucleotídeos e metabolismo	LGAS_RS05375	10,18892036	2,95917E-10
Transporte de nucleotídeos e metabolismo	LGAS_RS05870	7,634417933	1,44416E-10
Transporte de nucleotídeos e metabolismo	LGAS_RS06120	5,854308535	1,34224E-06
Transporte de nucleotídeos e metabolismo	LGAS_RS06825	8,318362637	1,59744E-09
Transporte de nucleotídeos e metabolismo	LGAS_RS07525	7,227674329	5,36481E-11
Transporte de nucleotídeos e metabolismo	LGAS_RS08385	7,667374601	1,04812E-10

Lactobacillus jensenii = 4 genes com expressão diferencial (4,21% em relação ao total 95)

Função	Gene	log2FoldChange	Pvalue
Transporte de aminoácidos e metabolismo	HMPREF0526_RS06110	7,660340742	5,15E-05
Tradução, estrutura ribossômica e biogênese	HMPREF0526_RS00565	4,485816176	0,000191141
Tradução, estrutura ribossômica e biogênese	HMPREF0526_RS04390	6,466804403	0,001075038
Produção de energia e conversão	HMPREF0526_RS04160	6,748727074	0,000454293

Lactobacillus johnsonii = 41 genes com expressão diferencial (42,70% em relação ao total 96)

Função	Gene	Log2FoldChange	pvalue
Tradução, estrutura	LJ_RS04355	5,843282605	1,23E-13
ribossômica e biogênese			
Tradução, estrutura	LJ_RS01875	10,26237115	3,75E-10
ribossômica e biogênese			
Tradução, estrutura	LJ_RS06455	9,7832647	3,92E-09
ribossômica e biogênese			
Tradução, estrutura	LJ_RS01885	9,634796994	1,07E-08
ribossômica e biogênese			
Tradução, estrutura	LJ_RS01810	9,463117783	7,67E-08
ribossômica e biogênese			

Tradução, estrutura ribossômica e biogênese	LJ_RS03700	9,046295179	1,32E-07
Tradução, estrutura	LJ_RS07625	8,9067258	2,46E-07
ribossômica e biogênese Tradução, estrutura	LJ_RS01910	5,999719492	4,11E-07
ribossômica e biogênese Tradução, estrutura	LJ_RS01840	8,823670469	7,17E-07
ribossômica e biogênese Tradução, estrutura	LJ_RS01790	8,316862816	7,45E-07
ribossômica e biogênese Tradução, estrutura	LJ_RS01795	8,822200634	8,99E-07
ribossômica e biogênese Tradução, estrutura	LJ_RS01825	8,828573261	1,29E-06
ribossômica e biogênese Tradução, estrutura	LJ_RS06515	8,424483905	2,31E-06
ribossômica e biogênese Tradução, estrutura	<i>LJ RS07615</i>	8,082719518	6,48E-06
ribossômica e biogênese Tradução, estrutura		5,858268048	1,22E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS01900	8,012054904	1,23E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS07620 (gatA)	7,984925905	1,44E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS00035	6,288213315	1,53E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS06520	7,67261033	2,45E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS01920	7,706400128	4,21E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS04340	7,38630877	5,33E-05
ribossômica e biogênese Tradução, estrutura	LJ_RS04070	7,387775507	8,14E-05
ribossômica e biogênese Tradução, estrutura ribossômica e biogênese	LJ_RS01865	7,037771233	0,00015219
Tradução, estrutura ribossômica e biogênese	LJ_RS06595	7,004309932	0,000181462
Tradução, estrutura ribossômica e biogênese	LJ_RS06795	6,649054247	0,000604267
Tradução, estrutura ribossômica e biogênese	LJ_RS01780	4,36830276	0,000640282
Tradução, estrutura ribossômica e biogênese	LJ_RS04745	6,581035066	0,000706155
Reparo de Proteínas	LJ_RS06415	5,695404217	2,47E-08
Reparo de Proteínas	LJ_RS02440	7,457701719	2,75E-06
Reparo de Proteínas	LJ_RS02435	7,388885339	4,67E-05
Reparo de Proteínas	LJ_RS06425	6,819868635	0,00028555
Reparo de Proteínas	LJ_RS06420	6,581713369	0,000635544
Reparo de Proteínas	LJ_RS04360	5,315303118	0,000783493
		-,	2,220.00.00

Transporte de aminoácidos e metabolismo	LJ_RS08450	8,99531098	3,48E-08
Transporte de aminoácidos e metabolismo	LJ_RS07095	8,070144887	9,31E-06
Produção de energia e conversão	LJ_RS04010	5,892106988	6,08E-06
Produção de energia e conversão	LJ_RS04000	4,577551884	3,12E-05
Biogênese do envelope celular	LJ_RS04555	8,001517309	1,00E-05
Biogênese do envelope celular	LJ_RS04550	6,820197778	0,000886506
Transporte de nucleotídeos e metabolismo	LJ_RS01175	4,828516727	0,000738935
Transporte de carboidratos e metabolismo	LJ_RS08300	6,55827888	0,000976527

Lactobacillus paracasei = 17 genes com expressão diferencial (9,44% em relação ao total 180)

Função	Gene	log2FoldChange	Pvalue
Produção de energia e	LSEI_1164 -	6,179930083	3,99E-06
conversão	FATPase	,	,
Produção de energia e conversão	LSEI_1166 - FATPase	4,117453984	3,83E-05
Produção de energia e			
conversão	LSEI_0740	5,913854285	0,001077878
Reparo de Proteínas	LSEI_1848	6,948968705	0,001415254
Reparo de Proteínas	<i>LSEI_1762</i>	4,742403692	0,000954799
Função desconhecida	LSEI_1868	6,985732746	0,001627143
Transporte de aminoácidos e metabolismo	LSEI_0098	5,811034785	0,000275416
Transporte de aminoácidos e metabolismo	hisD	6,591400725	0,000900848
Transporte de aminoácidos e metabolismo	LSEI_1288	5,940284077	0,000909064
Tradução, estrutura ribossômica e biogênese	LSEI_1574	6,983195406	0,0004303
Tradução, estrutura ribossômica e biogênese	smpB	6,644509467	0,000603838
Tradução, estrutura ribossômica e biogênese	Def	6,711210169	0,000654583
Tradução, estrutura ribossômica e biogênese	RpsO	6,367612921	0,001060793
Transporte de nucleotídeos e metabolismo	LSEI_1119	6,726873578	0,000662539
Transporte de nucleotídeos e metabolismo	LSEI_1557	6,522018456	0,000772259
Transporte de nucleotídeos e metabolismo	LSEI_1120	6,004135014	0,000867027

Transporte de nucleotídeos			
Transporte de nucleondeos	LSEI 1750	6,519754455	0,001001096
e metabolismo	L3L1_1/30	0,517754455	0,001001070

Lactobacillus plantarum = 4 genes com expressão diferencial (4,59% em relação ao total 87)

<u>Função</u>	Gene	log2FoldChange	Pvalue
Transporte de nucleotídeos e metabolismo	JDM1_RS03800	5,875666821	3,64E-05
Transporte de nucleotídeos e metabolismo	JDM1_RS04355	6,699144031	0,000433682
Tradução, estrutura	JDM1_RS04365	7,313563601	8,79E-05
ribossômica e biogênese			
Divisão celular e particionamento cromossômico	JDM1_RS09135	5,395683275	0,000299926

Lactobacillus rhamnosus= 114 genes com expressão diferencial (87,02% em relação ao total 131)

Função	Gene	Log2FoldChange	pvalue
Biogênese do envelope celular	LGG_RS03675	7,711409179	4,3187E-05
Biogênese do envelope celular	LGG_RS05145	8,008860755	2,52903E-05
Biogênese do envelope celular	LGG_RS08955	9,521006459	5,71088E-08
Divisão celular e			
particionamento cromossômico	LGG_RS03640	6,745774186	0,000605241
Divisão celular e			
particionamento	LGG_RS06140	7,537454238	7,08492E-05
cromossômico			
Divisão celular e			
particionamento	LGG_RS06170	10,22889045	7,2906E-10
cromossômico			
Divisão celular e			
particionamento	LGG_RS06175	10,27925316	9,05545E-10
cromossômico			
Divisão celular e	1 G G D G G (1 G)	0.000005005	< 2.4002F 67
particionamento cromossômico	LGG_RS06180	8,989085982	6,24082E-07
Divisão celular e			
particionamento	LGG_RS07100	8,511674922	4,54829E-06
cromossômico			
Divisão celular e			
particionamento	LGG_RS13655	7,25526543	0,000348038
cromossômico			

Divisão celular e			
particionamento	LGG_RS13660	9,408433458	8,94246E-08
cromossômico			
Elementos de DNA	LGG_RS02100	7,166731348	0,000124858
Produção de energia e conversão	LGG_RS03420	7,650893199	0,000110991
Produção de energia e conversão	LGG_RS05650	9,002312358	3,412E-07
Produção de energia e conversão	LGG_RS05655	7,580990977	6,24216E-05
Produção de energia e conversão	LGG_RS05660	8,294365627	5,44215E-06
Produção de energia e conversão	LGG_RS05665	8,493468759	2,11507E-06
Produção de energia e conversão	LGG_RS05670	10,52430274	7,24372E-11
Produção de energia e conversão	LGG_RS05675	9,918486403	1,33536E-09
Produção de energia e conversão	LGG_RS05680	6,932236104	3,99712E-11
Produção de energia e conversão	LGG_RS05685	9,086358402	2,91307E-07
Reparo de proteínas	LGG_RS06205	7,504553206	7,42219E-05
Reparo de proteínas	LGG_RS06465	9,84980099	4,36841E-09
Reparo de proteínas	LGG_RS07055	7,739025912	3,84245E-05
Reparo de proteínas	$LGG_RS07710$	9,724721823	2,0231E-08
Reparo de proteínas	LGG_RS07715	8,514451701	1,46118E-12
Reparo de proteínas	$LGG_RS07720$	8,850730681	3,9356E-07
Reparo de proteínas	LGG_RS10730	10,88725249	7,04104E-12
Reparo de proteínas	LGG_RS10735	8,482124742	4,82944E-06
Sugar ABC transporter permeasse	LGG_RS13255	8,356758503	1,1607E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS00065	8,695197097	1,51265E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS04515	8,543077148	2,91106E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS04890	7,801277656	3,7146E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS04900	10,30403591	5,36155E-10
Tradução, estrutura ribossômica e biogênese	LGG_RS06030	8,820008737	6,46931E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS06315	8,175677727	1,61568E-05
Tradução, estrutura ribossômica e biogênese Tradução, estrutura	LGG_RS06410	7,400846445	9,54531E-05
ribossômica e biogênese Tradução, estrutura	LGG_RS06415	7,805704362	3,12003E-05
ribossômica e biogênese	LGG_RS06435	7,110303375	3,37858E-16

Tradução, estrutura ribossômica e biogênese	LGG_RS07755	9,92200114	9,34612E-14
Tradução, estrutura ribossômica e biogênese	LGG_RS07770	10,41778294	3,24298E-10
Tradução, estrutura ribossômica e biogênese	LGG_RS07815	7,945447541	2,59873E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS07825	8,528952889	2,07055E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS07830	9,176488922	1,1455E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS08095	7,911852889	2,52949E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS08105	8,627906581	2,02962E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS08115	7,703284759	4,22586E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS08390	8,071018887	1,62765E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS09160	6,918668978	0,000421028
Tradução, estrutura ribossômica e biogênese	LGG_RS10905	9,0847211	4,52035E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS10910	8,591073421	1,42474E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS11760	9,130698862	4,16517E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS11770	9,898654106	6,92797E-09
Tradução, estrutura ribossômica e biogênese	LGG_RS11775	7,299222711	1,85841E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS11780	6,516536223	0,000102422
Tradução, estrutura ribossômica e biogênese Tradução, estrutura	LGG_RS11795	8,958641245	8,32239E-07
ribossômica e biogênese Tradução, estrutura	LGG_RS11800	7,632842631	4,91898E-05
ribossômica e biogênese Tradução, estrutura	LGG_RS11805	9,001888721	6,07923E-07
ribossômica e biogênese Tradução, estrutura	LGG_RS11810	8,033422273	1,68874E-05
ribossômica e biogênese Tradução, estrutura	LGG_RS11815	10,54249619	7,21361E-11
ribossômica e biogênese Tradução, estrutura	LGG_RS11820	6,808130305	8,41838E-06
ribossômica e biogênese Tradução, estrutura	LGG_RS11825	8,962105916	2,72692E-07
ribossômica e biogênese Tradução, estrutura	LGG_RS11830	8,627963038	3,27463E-06
ribossômica e biogênese	LGG_RS11835	9,085769263	4,29191E-07

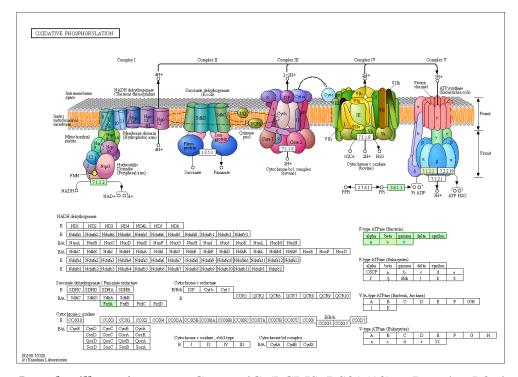
Tradução, estrutura ribossômica e biogênese	LGG_RS11840	7,945438507	2,19008E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS11845	8,532569828	2,78201E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS11850	9,051654005	1,75112E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS11855	7,814407201	8,65803E-08
Tradução, estrutura ribossômica e biogênese	LGG_RS11860	8,278825322	5,85363E-06
Tradução, estrutura ribossômica e biogênese	LGG_RS11865	8,02276822	1,24523E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS11870	8,965099041	4,4251E-11
Tradução, estrutura ribossômica e biogênese	LGG_RS11875	7,571244182	6,07246E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS11880	9,247739067	6,55163E-08
Tradução, estrutura ribossômica e biogênese	LGG_RS11885	8,847783035	5,90155E-07
Tradução, estrutura ribossômica e biogênese	LGG_RS11910	11,21629489	7,91733E-13
Tradução, estrutura ribossômica e biogênese	LGG_RS11915	9,44746361	4,08689E-08
Tradução, estrutura ribossômica e biogênese	LGG_RS12175	8,085714978	1,56527E-05
Tradução, estrutura ribossômica e biogênese	LGG_RS04895 (gatA)	10,3592876	3,12749E-10
Transporte de aminoácidos e metabolismo	LGG_RS00500	8,221674767	1,5786E-05
Transporte de aminoácidos e metabolismo	LGG_RS00555	10,07529108	2,52302E-09
Transporte de aminoácidos e metabolismo	LGG_RS01545	8,957059654	6,83186E-07
Transporte de aminoácidos e metabolismo	LGG_RS06880	7,843950073	7,42664E-05
Transporte de aminoácidos e metabolismo	LGG_RS06900	6,917573627	0,000658505
Transporte de aminoácidos e metabolismo	LGG_RS06905	7,637254812	7,36187E-05
Transporte de aminoácidos e metabolismo	LGG_RS06920	6,952560098	0,000668013
Transporte de aminoácidos e metabolismo	LGG_RS07940	10,77317193	1,89563E-11
Transporte de aminoácidos e metabolismo	LGG_RS07945	8,490598091	3,78499E-06
Transporte de aminoácidos e metabolismo	LGG_RS07950	8,768102477	1,48307E-06
Transporte de aminoácidos e metabolismo	LGG_RS07955	8,644932517	4,00475E-06

Transporte de aminoácidos e metabolismo	LGG_RS07960	6,526854636	8,47348E-06
Transporte de aminoácidos e metabolismo	LGG_RS08110	8,948436799	7,00988E-07
Transporte de aminoácidos e metabolismo	LGG_RS09665	7,533092523	0,000119328
Transporte de aminoácidos e metabolismo	LGG_RS09670	8,23833886	1,42434E-05
Transporte de aminoácidos e metabolismo	$LGG_RS10595(deoA)$	8,494820978	8,30275E-06
Transporte de aminoácidos e metabolismo	LGG_RS06910 (histB)	7,703698004	6,04812E-05
Transporte de nucleotídeos e metabolismo	LGG_RS04110	7,143013499	0,000427797
Transporte de nucleotídeos e metabolismo	LGG_RS05145	8,008860755	2,52903E-05
Transporte de nucleotídeos e metabolismo	LGG_RS05160	9,595599576	2,54109E-08
Transporte de nucleotídeos e metabolismo	LGG_RS06230	6,990897742	0,000581046
Transporte de nucleotídeos e metabolismo	LGG_RS06935	6,971945407	0,000402579
Transporte de nucleotídeos e metabolismo	LGG_RS06970	7,690735342	5,42378E-05
Transporte de nucleotídeos e metabolismo	LGG_RS07680	8,692950013	1,54468E-06
Transporte de nucleotídeos e metabolismo	LGG_RS08245	8,407799358	7,70319E-06
Transporte de nucleotídeos e metabolismo	LGG_RS08685	8,922101859	7,86322E-07
Transporte de nucleotídeos e metabolismo	LGG_RS08690	8,483777273	8,52873E-06
Transporte de nucleotídeos e metabolismo	LGG_RS08710	9,678667579	4,07549E-08
Transporte de nucleotídeos e metabolismo	LGG_RS08715	7,720309821	8,80706E-05
Transporte de nucleotídeos e metabolismo	LGG_RS08720	6,661941417	0,00107179
Transporte de nucleotídeos e metabolismo	LGG_RS08945	8,826544412	8,46057E-07
Transporte de nucleotídeos e metabolismo	LGG_RS09485	10,53269446	1,4621E-10
Transporte de nucleotídeos e metabolismo	LGG_RS10275	7,365238621	0,000200687
Transporte de nucleotídeos e metabolismo	LGG_RS11785	8,666163469	7,95572E-09
Transporte de nucleotídeos e metabolismo	LGG_RS13195	7,869374863	5,86389E-05
Transporte de nucleotídeos e metabolismo	LGG_RS13515	7,057643184	0,000509695

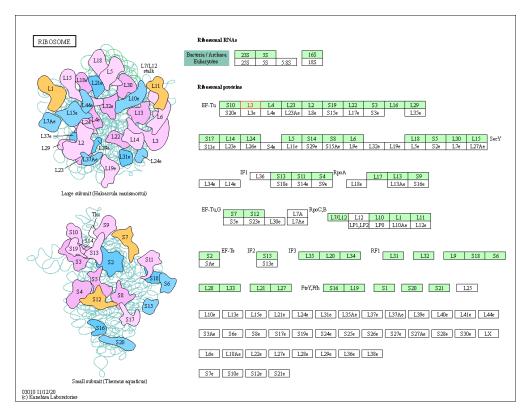
 $\label{eq:Lactobacillus salivarius} \textit{Lactobacillus salivarius} = 116 \ \text{genes com expressão diferencial (93,54\% em relação ao total 124)}$

Função	Gene	log2FoldChange	pvalue
Biogênese do envelope celular	HMPREF0545_RS04540	7,800808586	2,2213E-05
Biogênese do envelope celular	HMPREF0545_RS07695	8,601827663	6,95102E-07
Biogênese do envelope celular	HMPREF0545_RS07700	7,405074331	1,27003E-08
Biogênese do envelope celular	HMPREF0545_RS08235	7,548053226	2,23683E-07
Biogênese do envelope celular	HMPREF0545_RS09340	7,79699951	2,54287E-05
Divisão celular e particionamento cromossômico	HMPREF0545_RS03700	9,976712692	1,70691E-09
Divisão celular e particionamento cromossômico	HMPREF0545_RS04265	9,500025662	1,79025E-08
Divisão celular e particionamento cromossômico	HMPREF0545_RS05280	9,503911775	1,72335E-08
Divisão celular e particionamento cromossômico	HMPREF0545_RS08200	6,910300997	0,000437795
Divisão celular e particionamento cromossômico	HMPREF0545_RS08205	6,614785087	0,000526706
Elementos de DNA Elementos de DNA	<i>HMPREF0545_RS03505 HMPREF0545_RS06465</i>	8,40705425 8,915084188	1,41394E-06 1,14083E-07
Produção e conversão de energia	HMPREF0545_RS03375	8,577566375	2,98593E-10
Produção e conversão de energia	HMPREF0545_RS03380	8,310206117	2,99171E-06
Produção e conversão de energia	HMPREF0545_RS03385	9,710929282	5,78555E-09
Produção e conversão de energia	HMPREF0545_RS03390	9,20194671	6,11617E-08
Produção e conversão de energia	HMPREF0545_RS03395	6,803276958	3,05751E-18
Produção e conversão de energia	HMPREF0545_RS03400	10,04123391	9,29924E-10
Produção e conversão de energia	HMPREF0545_RS03405	7,541455159	1,91951E-17
Produção e conversão de energia	HMPREF0545_RS03410	9,298365049	3,61223E-08
Produção e conversão de energia	HMPREF0545_RS09325	7,863743842	2,28141E-05
Reparo de proteínas	HMPREF0545_RS03295	8,138983854	6,72384E-09

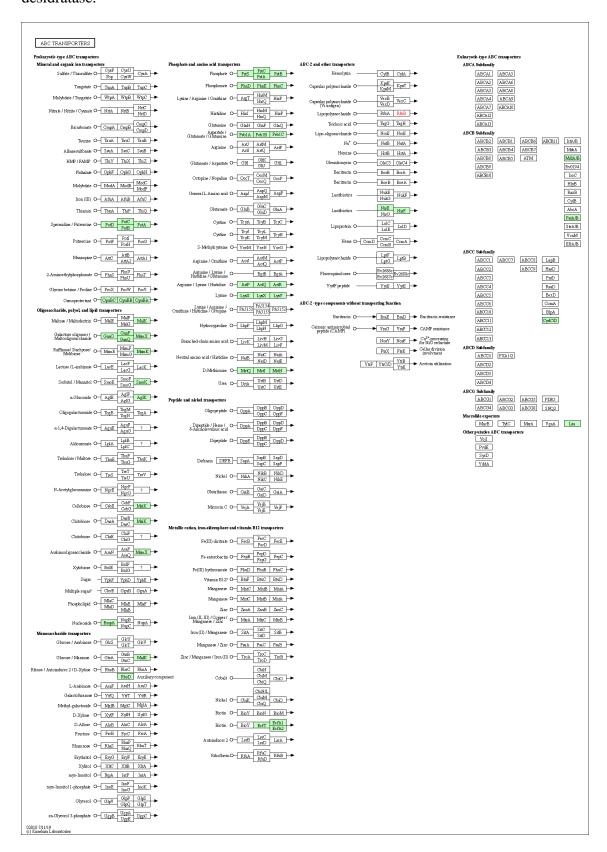
Reparo de proteínas	HMPREF0545_RS03305	8,894158792	1,9723E-10
Reparo de proteínas	HMPREF0545_RS05380	7,513280607	4,48164E-05
Reparo de proteínas	HMPREF0545_RS05890	4,666700245	1,50783E-06
Reparo de proteínas	HMPREF0545_RS06020	8,095031624	5,72839E-06
Reparo de proteínas	HMPREF0545_RS07000	8,18150593	6,83983E-06
Reparo de proteínas	HMPREF0545_RS03300	5,899067459	7,63118E-15
Reparo de protenias	(dnaK)	3,033007433	7,03116E-13
Reparo de proteínas	HMPREF0545_RS06015	4,867280031	2,20548E-08
Reparo de protenias	(groEL)	4,007200031	2,203+0L-00
Reparo de proteínas	HMPREF0545_RS03630	10,77415027	1,14368E-11
1	(tig)	,	,
Sinal de transdução	HMPREF0545_RS00450	8,083627786	7,73038E-06
Sinal de transdução	<i>HMPREF0545_RS01195</i>	7,735028018	4,44446E-05
Sinal de transdução	<i>HMPREF0545_RS01460</i>	8,854707152	2,73991E-07
Sinal de transdução	HMPREF0545_RS02370	8,550841971	6,29143E-10
Sinal de transdução	<i>HMPREF0545_RS03025</i>	9,609644012	1,00516E-08
Sinal de transdução	<i>HMPREF0545_RS05855</i>	8,10333112	6,30501E-06
Sinal de transdução	<i>HMPREF0545_RS05960</i>	8,158443789	9,14832E-06
Sinal de transdução	<i>HMPREF0545_RS06430</i>	9,205472126	5,08636E-08
Sinal de transdução	<i>HMPREF0545_RS08970</i>	8,78348735	3,53319E-07
Tradução, estrutura	HMPREF0545_RS01330	7,093809987	9,56594E-05
ribossômica e biogênese	111/11 KE1 03 13_KS01330	1,073007701),3037 IL 03
Tradução, estrutura	HMPREF0545 RS01335	7,342291333	9,66899E-05
ribossômica e biogênese	11M1 KL1 0343_R501333	7,542271333),000//L 03
Tradução, estrutura	HMPREF0545 RS01915	6,504177252	0,001070539
ribossômica e biogênese	111/11 1121 03 13 <u>-</u> 11301713	0,301177232	0,001070337
Tradução, estrutura	HMPREF0545_RS02390	7,732334442	2,40578E-10
ribossômica e biogênese	111/11 1121 00 10 <u>1</u> 1180 20 00	7,702001112	2,102702 10
Tradução, estrutura	HMPREF0545_RS02910	7,972449881	1,00019E-09
ribossômica e biogênese	11011 1121 00 00 _11302010	7,572115001	1,000172 07
Tradução, estrutura	HMPREF0545 RS02985	6,41656974	1,04331E-10
ribossômica e biogênese	111/11 1121 00 10 _113029 00	0,11000771	1,0 13312 10
Tradução, estrutura	HMPREF0545_RS03150	7,218485239	8,05194E-05
ribossômica e biogênese		,,	5,00 -2 1_ 00
Tradução, estrutura	HMPREF0545 RS03255	10,17148431	6,5707E-10
ribossômica e biogênese	11011 11 <u>21 00 00 <u>1</u>110 00 200</u>	10,17110101	0,0 / 0 / 2 10
Tradução, estrutura	HMPREF0545_RS03270	7,6770553	1,57237E-15
ribossômica e biogênese	11011 1121 00 10 110 00 2, 0	7,0770000	1,0 / 20 / 2 10
Tradução, estrutura	HMPREF0545 RS03275	7,839726934	1,30969E-05
ribossômica e biogênese		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,
Tradução, estrutura	HMPREF0545 RS03600	8,44831939	1,36398E-06
ribossômica e biogênese	11111 11 <u>21 00 10 _</u> 11200 000	0,11001909	1,000,02 00
Tradução, estrutura	HMPREF0545_RS03605	6,420250266	1,79379E-05
ribossômica e biogênese	11111 1121 02 12 <u>1</u> 11302 002	0,120220200	1,775772 05
Tradução, estrutura	HMPREF0545_RS03880	7,66011293	3,82853E-05
ribossômica e biogênese	111/11 1121 05 15 _11505 000	7,00011298	2,020222 02
Tradução, estrutura	HMPREF0545 RS04400	9,333333488	3,06298E-08
ribossômica e biogênese	22/22 222 05 15 _100 1100	,,555555100	5,002/0L 00
Tradução, estrutura	HMPREF0545_RS04525	8,801393911	1,35542E-12
ribossômica e biogênese		-,	,


Tradução, estrutura ribossômica e biogênese	HMPREF0545_RS04815	8,155939645	5,28218E-06
Tradução, estrutura	HMPREF0545_RS05420	9,569841661	1,2159E-08
ribossômica e biogênese	_		,
Tradução, estrutura	HMPREF0545 RS05825	8,553154494	1,16018E-06
ribossômica e biogênese		0,000101171	1,100102 00
Tradução, estrutura	HMPREF0545 RS06150	9,470699858	2,06875E-08
ribossômica e biogênese	11M1 KEF 0343_K300130	9,470099636	2,008/3L-08
Tradução, estrutura	WARRESTAT DG00200	0.400607076	1 (0457) 11
ribossômica e biogênese	HMPREF0545_RS08390	9,400627256	1,68457E-11
Tradução, estrutura			
ribossômica e biogênese	<i>HMPREF0545_RS08395</i>	8,450108254	3,33414E-12
Tradução, estrutura			
	HMPREF0545_RS08400	8,87405885	2,39408E-07
ribossômica e biogênese			
Tradução, estrutura	HMPREF0545_RS08410	6,40960141	5,992E-09
ribossômica e biogênese	_	,	,
Tradução, estrutura	HMPREF0545_RS08415	8,446627884	2,69717E-09
ribossômica e biogênese	111/11 RE1 03 13_R500113	0,110027001	2,0071712 00
Tradução, estrutura	HMPREF0545 RS08420	8,763748101	4,06793E-16
ribossômica e biogênese	11W1 KE1 0343_K300420	0,703740101	4,00793L-10
Tradução, estrutura	HMDDEE0545 DC00425	0.20044760	2.76295E 10
ribossômica e biogênese	HMPREF0545_RS08425	8,30944768	2,76385E-10
Tradução, estrutura		0.440=40400	• 00 11 5
ribossômica e biogênese	<i>HMPREF0545_RS08430</i>	8,418763139	2,09665E-06
Tradução, estrutura			
ribossômica e biogênese	HMPREF0545_RS08435	6,71194085	1,87552E-07
Tradução, estrutura			
ribossômica e biogênese	HMPREF0545_RS08440	8,912094503	1,63042E-10
Tradução, estrutura	HMPREF0545_RS08445	9,990006752	1,04293E-09
ribossômica e biogênese	_	,	,
Tradução, estrutura	HMPREF0545 RS08450	8,320189553	1,51061E-12
ribossômica e biogênese	11111 RE1 03 13 _R500 130	0,32010)333	1,510012 12
Tradução, estrutura	HMPREF0545 RS08460	9,796592371	4,6249E-09
ribossômica e biogênese	11W1 RE1 0343_R300400	7,170372311	+,02+7L-07
Tradução, estrutura	IMADDEEOS AS DEODAGS	10 14071466	0.70500E 10
ribossômica e biogênese	HMPREF0545_RS08465	10,14071466	8,79598E-10
Tradução, estrutura	VII (DDEEDS 15, DG00 150	c coo to t cot	6 5 6 2 2 T 0 0
ribossômica e biogênese	<i>HMPREF0545_RS08470</i>	6,629434671	6,5622E-08
Tradução, estrutura			
ribossômica e biogênese	HMPREF0545_RS08475	7,167297803	3,01329E-08
Tradução, estrutura			
	HMPREF0545_RS08480	5,64732394	8,48071E-05
ribossômica e biogênese			
Tradução, estrutura	HMPREF0545_RS08485	7,132219439	3,30299E-08
ribossômica e biogênese	_	,	,
Tradução, estrutura	HMPREF0545_RS08510	9,548786003	1,27359E-08
ribossômica e biogênese		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,275571 00
Tradução, estrutura	HMPREF0545 RS08515	5,822592397	2,07443E-10
ribossômica e biogênese	HWII KET 0343_K300313	3,044374371	2,07 44 3E-10
Tradução, estrutura	HMDDEENSAS DENOSOS	7 00001751	2 61004E 00
ribossômica e biogênese	HMPREF0545_RS08525	7,98804754	2,61094E-09

T 1 ~			
Tradução, estrutura ribossômica e biogênese	HMPREF0545_RS08785	9,190372204	6,71577E-08
Tradução, estrutura	HMPREF0545_RS03865	8,420993739	1,61297E-10
ribossômica e biogênese	(asnC)	0,720//3/3/	1,01277L-10
Tradução, estrutura ribossômica e biogênese	HMPREF0545_RS03660	7,353310137	0,000109711
	(def)		
Tradução, estrutura ribossômica e biogênese	HMPREF0545_RS09130 (gatA)	9,981159449	1,1538E-09
Tradução, estrutura	HMPREF0545_RS08500		
ribossômica e biogênese	(infA)	8,433281319	3,4686E-06
Tradução, estrutura	HMPREF0545_RS08405		4.00 - 4.4
ribossômica e biogênese	(rplB)	7,760462769	1,83641E-14
Tradução, estrutura	HMPREF0545_RS01995	0.562226222	1 227105 06
ribossômica e biogênese	(rpmE2)	8,563326333	1,23719E-06
Tradução, estrutura	HMPREF0545 RS08505	0.044.500.600	2.2402577.04
ribossômica e biogênese	(rpmJ)	8,341539638	2,34935E-06
Tradução, estrutura	HMPREF0545 RS03565	0 = 0 < 10 0 0 = 0	- 474007 07
ribossômica e biogênese	(rpsP)	8,706692279	7,45498E-07
Tradução, estrutura	HMPREF0545 RS03625		
ribossômica e biogênese	(tuf)	5,97401108	4,05874E-15
Transporte de aminoácidos	• •		
e metabolismo	HMPREF0545_RS01345	8,835264633	2,51141E-07
Transporte de aminoácidos			
e metabolismo	HMPREF0545_RS03195	9,229298887	4,2054E-08
Transporte de aminoácidos	HMPREF0545_RS03200	10,57450929	5,04552E-11
e metabolismo			
Transporte de aminoácidos	HMPREF0545_RS05060	9,569411881	1,49303E-08
e metabolismo			
Transporte de aminoácidos	HMPREF0545 RS05350	6,325074375	8,20833E-05
e metabolismo	_	,	,
Transporte de aminoácidos	HMPREF0545_RS06225	9,942498184	1,85997E-09
e metabolismo	111111111111111111111111111111111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,00>> / 2 0>
Transporte de nucleotídeos	HMPREF0545_RS02030	7,652041051	2,82732E-05
e metabolismo	111/11 1121 00 /0_11302020	7,002011001	2,027322 03
Transporte de nucleotídeos	HMPREF0545_RS03010	6,070716723	1,36146E-06
e metabolismo	11111 KE1 0343_K503010	0,070710723	1,501+0L 00
Transporte de nucleotídeos	HMPREF0545 RS03370	6,805074697	1,37046E-07
e metabolismo	11M1 KE1 0545_K505570	0,003074077	1,570 4 0L-07
Transporte de nucleotídeos	HMPREF0545 RS03735	6,752712687	0,000431967
e metabolismo	HMFKEF0343_K303/33	0,732712087	0,000431907
Transporte de nucleotídeos	IIIADDEE0545 DC02740	0.01/2202/7	0.12725E 06
e metabolismo	HMPREF0545_RS03740	8,016330367	9,13735E-06
Transporte de nucleotídeos	WARDEEOS 45 DG02550	0.10.400.45.41	1.040205.07
e metabolismo	HMPREF0545_RS03770	9,134804541	1,04922E-07
Transporte de nucleotídeos			4 50 45 45 00
e metabolismo	<i>HMPREF0545_RS04145</i>	9,227450742	4,73656E-08
Transporte de nucleotídeos			
e metabolismo	HMPREF0545_RS04210	9,515545214	1,5613E-08
Transporte de nucleotídeos			
e metabolismo	HMPREF0545_RS04590	8,027584666	7,06599E-06
e metabolisillo			


Transporte de nucleotídeos e metabolismo	HMPREF0545_RS04870	7,925114604	1,18706E-05
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS05485	8,275852919	3,66426E-06
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS06125	7,473418959	7,6235E-10
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS06270	9,960542219	1,88051E-09
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS06590	7,52895137	4,77974E-05
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS06820	8,654076229	1,13104E-06
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS08495	6,98523642	6,53953E-09
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS09105	9,166735422	5,7356E-08
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS09295	8,754212376	4,49339E-07
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS09340	7,79699951	2,54287E-05
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS09345	8,97859537	1,82995E-07
Transporte de nucleotídeos e metabolismo	HMPREF0545_RS03215 (pyrH)	7,927764348	1,03613E-08

APÊNDICE B - ROTAS METABÓLICAS ASSOCIADAS AOS GENES DE TOLERÂNCIA AO ÁCIDO (SEGUNDO O BANCO DE DADOS KEGG)


Lactobacillus acidophilus - Gene atpF (LBA0774) - Proteína ATP sinthase subunidade B

Lactobacillus crispatus – Gene rplC (LCRIS_RS01510) – Proteína L3 da subunidade 50S ribossomal.

Lactobacillus gasseri – Gene rfbB (LGAS_RS05580) – Proteína dTDP-glucose 4,6-desidratase.

