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ABSTRACT

Contrast enhancement and exposure correction are useful in domestic and technical
applications, the latter as a preprocessing step for other techniques or for aiding human
observation. Often, a locally adaptive transformation is more suitable for the task than a
global transformation. For example, objects and regions may have very different levels
of illumination, physical phenomena may compromise the contrast at some regions but
not at others, or it may be desired to have high visibility of details in all parts of the im-
age. For such cases, local image enhancement methods are preferable. Although there are
many contrast enhancement and exposure correction methods available in the literature,
there is no definitive solution that provides a satisfactory result in all situations, and new
methods emerge each year. In special, traditional adaptive histogram equalization-based
methods suffer from checkerboard and staircase effects and from over enhancement. This
dissertation proposes a method for contrast enhancement and exposure correction in im-
ages named Structure-Aware Distribution Stretching (SADS). The method fits a paramet-
ric model of probability distribution to the image regionally while respecting the image
structure and edges between regions. This is done using regional versions of the clas-
sical expressions for estimating the parameters of the distribution, which are obtained
by replacing the sample mean present in the original expressions by an edge-preserving
smoothing filter. After fitting the distribution, the cumulative distribution function (CDF)
of the adjusted model and the inverse of the CDF of the desired distribution are applied.
A structure-aware heuristic to indicate smooth regions is proposed and used to attenuate
the transformations in flat regions. SADS was compared with other methods from the
literature using objective no-reference and full-reference image quality assessment (IQA)
metrics in the tasks of simultaneous contrast enhancement and exposure correction and in
the task of defogging/dehazing. The experiments indicate a superior overall performance
of SADS with respect to the compared methods for the image sets used, according to the
IQA metrics adopted.

Keywords: Contrast enhancement, exposure correction, local histogram equaliza-
tion, beta distribution.



RESUMO

Realce de contraste e correção de exposição são úteis em aplicações domésticas e téc-
nicas, no segundo caso como uma etapa de pré-processamento para outras técnicas ou para
ajudar a observação humana. Frequentemente, uma transformação localmente adaptativa
é mais adequada para a tarefa do que uma transformação global. Por exemplo, objetos e
regiões podem ter níveis de iluminação muito diferentes, fenômenos físicos podem com-
prometer o contraste em algumas regiões mas não em outras, ou pode ser desejável ter alta
visibilidade de detalhes em todas as partes da imagem. Para esses casos, métodos de re-
alce de imagem locais são preferíveis. Embora existam muitos métodos de realce de con-
traste e correção de exposição disponíveis na literatura, não há uma solução definitiva que
forneça um resultado satisfatório em todas as situações, e novos métodos surgem a cada
ano. Em especial, os métodos tradicionais baseados em equalização adaptativa de histo-
grama sofrem dos efeitos checkerboard e staircase e de excesso de realce. Esta dissertação
propõe um método para realce de contraste e correção de exposição em imagens chamado
Structure-Aware Distribution Stretching (SADS). O método ajusta regionalmente à ima-
gem um modelo paramétrico de distribuição de probabilidade, respeitando a estrutura da
imagem e as bordas entre as regiões. Isso é feito usando versões regionais das expressões
clássicas de estimativa dos parâmetros da distribuição, que são obtidas substituindo a mé-
dia amostral presente nas expressões originais por um filtro de suavização que preserva as
bordas. Após ajustar a distribuição, a função de distribuição acumulada (CDF) do modelo
ajustado e a inversa da CDF da distribuição desejada são aplicadas. Uma heurística ciente
de estrutura que detecta regiões suaves é proposta e usada para atenuar as transformações
em regiões planas. SADS foi comparado a outros métodos da literatura usando métricas
objetivas de avaliação de qualidade de imagem (IQA) sem referência e com referência
completa nas tarefas de realce de contraste e correção de exposição simultâneos e na ta-
refa de defogging/dehazing. Os experimentos indicam um desempenho geral superior
do SADS em relação aos métodos comparados para os conjuntos de imagens usados, de
acordo com as métricas IQA adotadas.

Palavras-chave: Realce de contraste, correção de exposição, processamento local de
histogram, distribuição beta.
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1 INTRODUCTION

Contrast enhancement and exposure correction are useful in domestic and technical
applications, the latter as a preprocessing step for other technique (e.g., segmentation,
object recognition, object tracking etc.) or helping human observations (e.g., medical im-
ages, satellite photographs, micrographs etc.) (VIJAYALAKSHMI; NATH; ACHARYA,
2020). For some tasks, a global transformation is sufficient for a satisfactory enhance-
ment. More often, however, a locally adaptive transformation suits better for the task.
For example, objects and regions may have very different levels of illumination, physical
phenomena may compromise the contrast at some regions but not at others, or it may be
desired to have a high detail visibility in all parts of the image. For such cases, local image
enhancement methods are preferable.

Although there are many contrast enhancement and exposure correction methods avail-
able in the literature, there is no definitive solution to provide a satisfactory result in all
situations, and new methods emerge each year. In special, traditional adaptive histogram
equalization based methods suffer from checkerboard and staircase effects and from over
enhancement.

This dissertation proposes a regional algorithm for contrast enhancement and expo-
sure correction, named Structure-Aware Distribution Stretching (SADS). SADS obtains
smooth transformations adapted to the segments in a structure-aware way. Similarly to
histogram equalization or histogram specification algorithms, SADS is based on the idea
of spreading the distribution of an image channel through the application of an estimate
of the cumulative distribution function (CDF) of the channel, followed by the application
of the inverse of the CDF of the desired distribution. The central difference from conven-
tional algorithms such as Contrast Limited Adaptive Histogram Equalization (CLAHE)
(PIZER et al., 1990) lies in replacing the histogram with a distribution model, namely the
beta distribution, and in fitting the model parameters regionally in a structure-aware way
using an edge-preserving smoothing (EPS) filter, instead of subdividing the image into
tiles and using bilinear interpolation (approach that produces the checkerboard effect).

An advantage of this proposed strategy is that the transformation obtained for a pixel
of a given segment depends mostly on the distribution of pixels of that segment, with little
influence from neighboring segments, and thus the transformations are better adapted to
each segment. Another advantage is the absence of the checkerboard effect resulting
from the subdivision into tiles adopted in traditional methods. Yet another advantage
is that the transformations obtained are continuous and smooth, avoiding the staircase
effect. Figure 1.1 shows the outputs of CLAHE and SADS, demonstrating the presence
and absence of checkerboard effect for CLAHE and SADS, respectively.

EPS filters have already been used in methods to correct under exposure (GUO; LI;
LING, 2016; YING et al., 2017) and under exposure mixed with over exposure (ZHANG;
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Figure 1.1: Outputs of CLAHE and SADS, demonstrating the presence and absence of
checkerboard effect for CLAHE and SADS, respectively.

(a) Input (b) CLAHE (c) SADS

Source: TM-DIED dataset (VONIKAKIS, 2021) (1.1a) and author (other images).

NIE; ZHENG, 2019), through the estimation of illumination maps. The proposed method
differs from them in the use of the EPS filter to estimate parameter maps of a distribu-
tion model, generating a transformation that corrects under and over exposure and/or low
contrast.

SADS was experimentally compared with relevant methods from the literature using
objective no-reference (NR) and full-reference (FR) image quality assessment (IQA) met-
rics in the task of simultaneous contrast enhancement and exposure correction and in the
task of defogging/dehazing. The experiments indicate a superior overall performance of
SADS with respect to the compared methods for the image sets used, according to the
IQA metrics adopted.

This dissertation is organized as follows. Chapter 2 (page 17) presents a review of
related works. Chapter 3 (page 21) covers necessary theoretical background for this work.
Chapter 4 (page 25) describes the proposed method. Chapter 5 (page 47) presents and
discusses the experimental results. Chapter 6 (page 58) contains the conclusions and
directions for future works. Finally, Appendix A (page 63) states the credits of all input
images used in the experiments.

1.1 Objectives

The general objective of this work is to propose a structure-aware image enhancement
algorithm based on the distribution of the image values. The specific objectives are:

• propose a method to fit the beta distribution to an image in a structure-aware way;

• propose an algorithm to enhance contrast and correct exposure locally based on
such distribution fitting method;

• propose a heuristic to detect smooth or flat segments, which is used in a method to
reduce enhancement in such regions;

• propose a color extension method that avoids loss of perceptual colorfulness.
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1.2 Notations and Definitions

Bold Latin or bold Greek letters denote matrices. Calligraphic characters denote three-
dimensional tensors or sets. Regular characters denote scalars. The elements of a matrix
X are denoted byXi,j , where i is the row and j is the column. The frontal (mode-1) slices
of a three-dimensional tensor X are denoted by X(c), where c is the label of the slice (e.g.,
r, g and b for an RGB image). The elements of the tensor X are denoted by X(c)

i,j , where
c is the label of the slice and i and j are the row and column, respectively.

Besides denoting tensor slices, a superscript inside parenthesis, as c in X(c), is also
used to label different but related matrices or scalars.

A single subscript, as i in xi, may be used to denote ordered variables (e.g., a sequence
of samples from a random variable). In this case, the subscript is an index which assumes
numeric values. When discussing color systems, XY denotes the channel Y of a given
color. In this case, the subscript is a non-numeric symbol equal to the label of a channel
from a given color system (e.g., B for the blue channel from RGB color system).

In this work, a matrix correspond to a single channel image or to a channel from a
multiple-channel image. Tensors correspond to multiple-channel images. H and W are
used as the height and width of images, respectively, except when referring to downscaled
images in Section 4.8 (page 39). To illustrate, if F is an RGB image, F(r), F(g) and F(b)

are its RGB channels, each channel having height H and width W .
Additionally, an equation containing i, j subscripts denotes a set of H×W equations,

one for each combination of i and j, with i ∈ {1, . . . , H} and j ∈ {1, . . . ,W}, unless
specified otherwise. For example, due to this convention, the equation Xi,j = Yi,j means
that the matrix X is equal to the matrix Y.
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2 RELATED WORKS

This section presents a short review of the state of the art of contrast enhancement
and exposure correction on images. The methods have been organized in three categories,
namely (1) histogram based methods, (2) learning based methods and (3) other methods,
presented next.

2.1 Histogram Based Methods

The level of contrast of a given region of an image is related to the histogram of the
intensities of the pixels within this region. If the histogram is narrow, then there is little
variability and the contrast is low. If the histogram spreads well over the full intensity
range, then the contrast is high. Hence, by stretching the histogram of an image, the
contrast is expected to improve. The most “spread” configuration that the histogram can
have, which by the principle above would correspond to an excellent contrast, is a uniform
(flat) shape, where all levels occur with the same frequency. It can be shown that this is
the configuration with maximum entropy of the image levels (WANG; CHEN; ZHANG,
1999). Entropy here means the quantity−

∑NL

k=1 pk log2(pk), where pk is the ratio between
the frequency of occurrence of the discrete level k in the image and the number of pixels
of the image, and NL is the number of discrete image levels.

Viewing the image intensities as samples of a random variable, the normalized his-
togram of intensities of an image gives the discrete probability density function (PDF) of
the intensities. The cumulative sum of the normalized histogram gives the discrete cumu-
lative distribution function (CDF) of the intensities. From statistics theory, applying the
CDF of a continuous random variable to the random variable will map it into a new vari-
able with uniform distribution. This is approximately true for the discrete case. Hence,
applying to the image the CDF of its intensities (obtained from its histogram) will spread
the histogram of the image across the full pixel value range, thus increasing contrast.
This method is known as Global Histogram Equalization (GHE), or simply Histogram
Equalization (HE).

GHE is able to improve contrast adequately for some images, but it has some limita-
tions. First, the transformation does not adapt to the needs of each region; it is the same
for every pixel. Second, the output image histogram will not be exactly uniform, con-
taining in many cases a “spiky” aspect that is accompanied by the production of artificial
edges (staircase effect). Third, uniform is not necessarily the best target shape for the
histogram of an image, and force it frequently will over enhance the contrast. Despite
these limitations, GHE has a very low cost and is fully automatic, not requiring parameter
adjustments. Besides, it is the starting point for more sophisticated algorithms.

Local Histogram Equalization (LHE) attempts to overcome the first limitation of GHE
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mentioned above. This method moves a window through the image and executes his-
togram equalization for each position, using in the calculation only the pixels inside the
window, and updating only the central pixel (LEE; PANT; LEE, 2015).

Since a histogram equalization is performed for each pixel, LHE is very costly. Adap-
tive Histogram Equalization (AHE), another local version of GHE, avoids this cost by
dividing the image into rectangular tiles, obtaining the HE transformation for each tile
separately and computing the output values with a bilinear interpolation of the values
resulting from the transformation functions obtained for the neighbor tiles.

One of the main drawbacks of LHE and AHE is that they over enhance the contrast,
specially in regions that naturally have little contrast (e.g., a clean sky region). Pizer
(PIZER et al., 1987) proposed to overcome this problem for the AHE case by clipping
the obtained histograms, which limits the maximum slope of the transformations com-
puted for each tile, originating the method named Contrast Limited Adaptive Histogram
Equalization (CLAHE).

The idea of histogram equalization leads to the idea of histogram specification. His-
togram specification is a technique for changing the original distribution of an image to
a desired distribution by mapping its original pixel values to new values. This is done
by applying the CDF of the original distribution and then applying the inverse CDF of
the target distribution. The first transformation uniformize the histogram, and the second
transformation converts the uniform histogram into the target distribution.

Huang, Cheng and Chiu (2012) proposed to enhance the image in the following way.
The histogram of the image is computed and normalized to obtain the discrete PDF f :
{0, 1, . . . , 255} → [0,∞). A smoothed CDF ρs is used as an estimate for the CDF of the
pixel values; it is defined by

ρs : {0, 1, . . . , 255} → [0, 1], ρs(n) =
1

S

n∑
k=0

(f(k))a, S =
255∑
k=0

(f(k))a, (2.1)

where a ∈ (0, 1) is a user-defined parameter. The power transformation applied to the
PDF values f(k) reduces the impact of small fluctuations of the PDF in the smoothed
CDF, thereby improving the stability and accuracy of this CDF estimate. Let Xi,j ∈
{0, 1, . . . , 255} be the integer pixel values of the image and xi,j the normalized values
xi,j = Xi,j/255. The output normalized image values yi,j are given by

yi,j = x
γ(Xi,j)
i,j , γ(Xi,j) = 1− ρs(Xi,j). (2.2)

The results from the work show a smaller degree of over enhancement compared to pre-
vious image enhancement algorithms.

J. Lee, Pant and H. Lee (2015) combined CLAHE method with dynamic range com-
pression (MONOBE et al., 2005) and used the local edge density to control the contrast
gain. The strategy to control locally the contrast gain provides a significant improvement
in comparison to standard CLAHE, avoiding over and under enhancement. The method
was also able to boost detail information more than standard CLAHE for medical images.

Chang et al. (2018) combined CLAHE with a dual gamma transformation in order
to enhance both contrast and luminance. The authors proposed a heuristic to estimate
the optimal CLAHE clipping point based on textureness and dynamic range information,
thus avoiding under and over enhancement by CLAHE. The algorithm first redistributes
the block histogram in CLAHE using the clip limit points. Then, it enlarges the luminance
of image blocks by applying the first gamma correction. Finally, when the image block
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contains a large dynamic range, a second gamma correction is applied to compensate for
dark regions and avoid over enhancement at bright regions. The results show that, in
comparison with CLAHE and others algorithms, the method is more apt to lit up dark
regions while preserving naturalness. However, we can observe that some of the results
have too little contrast. This can be due to the fact that their algorithm lights up all the
dark tones, including those inside reasonably exposed segments, or due to small results
for the clipping points provided by their heuristic (if this is the case, however, the clipping
points can be increased by changing the parameters of their heuristic).

2.2 Learning Based Methods

Supervised machine learning techniques can be used to learn complex nonlinear trans-
formations in image enhancement algorithms. In this category of methods, the models are
usually trained using datasets with examples of non-enhanced images and their enhanced
counterparts (QI et al., 2021). Examples of supervised image enhancement methods that
emerged in recent years are methods based on fully convolutional networks (FCN), rein-
forcement learning and U-Net (QI et al., 2021).

Eilertsen et al. (2017) designed a deep convolutional neural network (CNN) model to
predict a high dynamic range (HDR) image corresponding to a low dynamic range (LDR)
image. Their model is able to recover details missing due to the saturation of camera
sensors. Promising results for a wide range of images were achieved. While the objective
of their method is to predict HDR images that can be viewed in HDR displays, when the
HDR output is tone mapped to a LDR image to be used in regular LDR displays, the
resulting LDR image can be seen as an enhanced version of the input image.

Yang et al. (2018) proposed a method named Deep Reciprocating HDR Transforma-
tion (DRHT) to enhance images. Their method uses a system with two fully convolutional
encoder-decoder networks. The first network receives the LDR image to be enhanced and
predicts an HDR image, recovering missing details due to camera saturation in this pro-
cess (similarly as made in (EILERTSEN et al., 2017)). The second network executes a
tone mapping of the HDR output of the first network. The two networks are integrated
end-to-end for joint training and prediction. Experiments on standard benchmarks sug-
gest that their method tends to perform favorably against state-of-the-art image correction
methods.

Liu et al. (2020) also proposed a supervised system to reconstruct an HDR image
from a LDR input. Differently from previous learning based methods, their system uses
domain knowledge of the LDR image formation process. More specifically, the authors
modeled the HDR to LDR image formation process as (1) clipping, (2) nonlinear mapping
from a camera response function and (3) quantization, and designed three specialized
CNNs to reverse these steps. They also jointly fine-tuned the entire model end-to-end to
reduce error accumulation. They reported that their method obtained satisfactory results
in comparison with other state-of-the-art single image HDR reconstruction algorithms.

Wang, Xu and Lau (2022) exploits the local color distributions (LCD) as a prior for
locating and enhancing under and over exposed regions. The LCD are used to represent
these regions, and a local color distribution embedded module is used to formulate LCD
in multi-scales and model the correlations across different regions. A dual-illumination
learning mechanism is proposed to enhance the under and over exposed regions.

Unsupervised learning techniques were also used for image enhancement. For ex-
ample, Chen et al. (2018) proposed an unpaired learning method for image enhancement
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based on the two-way generative adversarial networks (GANs) framework. Given a set
of images with the desired characteristics, their method learns a photo enhancer which
transforms an input image into an enhanced image with those characteristics.

2.3 Other Methods

Yuan and Sun (2012) proposed a method to correct exposure in images. Their al-
gorithm obtains S-shaped transformations adapted to the image needs. They proposed
a zone-based region-level optimal exposure evaluation and a method to compensate for
the compression of details in the middle tones potentially produced when dark or bright
ares are stretched. Their results indicated that their method tends to obtain better perfor-
mance than popular image editing tools and other previous automatic exposure correction
methods.

Guo, Li and Ling (2016) proposed a method based on retinex theory to correct low-
light images named Low-Light Image Enhancement (LIME). LIME estimates an illumi-
nation map by applying an edge-preserving smoothing filter to the maximum of the R, G
and B channels. The algorithm then applies a gamma transformation with γ ∈ (0, 1) to the
estimated illumination map, and divides the original image by the result. The algorithm
may be interpreted as a multiplication of the original image by a factor that is considerably
larger than 1 for dark regions and slightly larger than or equal to 1 for adequately illumi-
nated regions. The gamma transformation controls the degree of enhancement. LIME is
very effective at correcting low-light images. Limitations of LIME are the fact that it can
not correct over exposure and the fact that the output image can surpass the maximum
image level, needing to be clipped, which causes loss of some details.

Ying et al. (2017) proposed a method to correct low-light images with less color and
lightness distortion compared to previous methods. Their method uses a camera response
model and an estimated exposure map to transform the input image in a retinex theory
based way. In the results displayed in their paper, we can observe that their method
indeed produced more natural results than the other methods from the comparison.

Zhang, Nie and Zheng (2019) observed that LIME can also be used to correct over
exposed images by simply inverting the input image (i.e., applying f(x) = 1− x to each
channel), applying LIME to the inverted image and inverting back the result. The authors
then proposed to apply (separately) both original and inverted LIME to an input image,
and fuse the results and the input image with an algorithm that detects which image is
more appropriate in each location. This way, their method corrects under and over ex-
posure. Their method often generates well-balanced images with corrected exposure, but
we can observe that in some situations their fusion method may not select the image cor-
rected for under exposure in locations where it should. Another limitation is the potential
image level violation problem, inherited from LIME.
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3 THEORETICAL BACKGROUND

The proposed Structure-Aware Distribution Stretching (SADS) method uses the beta
distribution and the Weighted Least Squares (WLS) filter. Thus, these two subjects are
briefly presented in this chapter. Posteriorly, after the full explanation of SADS method
on Chapter 4 (page 25), section 4.11 (page 43) explains why the beta distribution was
chosen for SADS. When presenting the SADS color image extension methods, a knowl-
edge of the HSV color system and a definition of it are required, and therefore this topic
is covered on section 3.3 (page 24). Additionally, section 3.3 (page 24) defines a color
system called iHSV which will also be important in the presentation of the color image
extension methods.

3.1 Beta Distribution

The beta distribution is a flexible family of distributions bounded in the interval [0, 1],
parameterized by the positive parameters α and β. The PDF of this distribution (family)
is

ϕ(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, (3.1)

while its CDF is

Φ(x;α, β) = Ix(α, β), (3.2)

where B is the beta function, defined as

B(a, b) =

∫ 1

0

ta−1(1− t)b−1 dt, a, b ∈ R, a, b > 0, (3.3)

and Ix is the regularized incomplete beta function (GUPTA; NADARAJAH, 2004), de-
fined as

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1 dt, x ∈ [0, 1], a, b ∈ R, a, b > 0. (3.4)

Figure 3.1 shows graphics of the CDF Φ(x;α, β) for different combinations of α, β. It can
be observed that the beta distribution CDF is equal to the identity function for α = β = 1
and assumes several nonlinear shapes for other combinations.

α and β can be estimated using method of moments (MoM) or maximum likelihood
estimation (MLE). Let {xi}ni=1 be n observations of a random variable X . The MoM
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Figure 3.1: CDF of members of the beta distribution family.
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expressions for the parameters are (OWEN, 2008)

α =

[
µ(1− µ)

s
− 1

]
µ,

β =

[
µ(1− µ)

s
− 1

]
(1− µ),

(3.5)

where µ =
∑n

i=1 xi/n is the sample mean and s =
∑n

i=1(xi − µ)2/n is the sample
variance. The MLE method estimates α and β by solving the system (GNANADESIKAN;
PINKHAM; HUGHES, 1967){

ψ(α)− ψ(α + β) = log(G),

ψ(β)− ψ(α + β) = log(Ḡ),
(3.6)

where log is the natural logarithm, ψ is the digamma function and

log(G) =
1

n

n∑
i=1

log(xi), log(Ḡ) =
1

n

n∑
i=1

log(1− xi). (3.7)

The digamma function is defined as the logarithmic derivative of the gamma function. It
is given by:

ψ(x) =
d

dx
log(Γ(x)), x ∈ U , (3.8)

where U is the set of the reals less the non-positive integers and Γ(x) is the gamma func-
tion, defined as

Γ(x) =

∫ ∞

0

tx−1e−t dt, x ∈ U . (3.9)
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3.2 Weighted Least Squares (WLS) Filter

Let F be a single channel image. The Weighted Least Squares (WLS) (FARBMAN
et al., 2008) filter is an EPS technique defined by

WLS(F,W) = argmin
U

J(F,U,W), (3.10)

where

J(F,U,W) =
∑
i,j

{(Ui,j − Fi,j)
2 + λ[W

(x)
i,j (∂xU)2i,j +W

(y)
i,j (∂yU)2i,j]} (3.11)

andW is the weights tensor, whose slices are W(x) and W(y), formed by the horizontal
weights W (x)

i,j and the vertical weights W (y)
i,j , respectively. In (3.10) and (3.11), U is

the dummy variable from the minimization operation. ∂x and ∂y are the horizontal and
vertical difference operators, respectively, defined by

(∂xF)i,j =

{
Fi,j+1 − Fi,j, i ∈ {1, . . . , H}; j ∈ {1, . . . ,W − 1},
0, i ∈ {1, . . . , H}; j = H,

(∂yF)i,j =

{
Fi+1,j − Fi,j, i ∈ {1, . . . , H − 1}; j ∈ {1, . . . ,W},
0, i = H; j ∈ {1, . . . ,W}.

(3.12)

To act as an EPS filter, the weights W (d)
i,j are designed to be small in edges and large in

other regions, making use of the gradients of the input image F. The smoothness degree
is controlled globally by the factor λ and locally by the weights W (d)

i,j .
The objective function (3.11) is convex and has a global minimum, defining a unique

solution O = WLS(F,W). Let o and f be the column vectors resulting from stacking
the columns of O and F, respectively. o is the solution to the system (FARBMAN et al.,
2008)

Ao = f , (3.13)
A = I+ λLLL , (3.14)

where I is an N ×N identity matrix.
LLL is the five-point spatially inhomogeneous Laplacian matrix from the WLS weights,

defined by

LLL p,q =


∑

k∈N (p)w(p, k), p = q,

−w(p, q), q ∈ N (p),

0, otherwise.
(3.15)

In (3.15), N (p) is the set of indexes of the 4-neighborhood of pixel p and w(p, q) is the
WLS weight from pixel p to pixel q. w(p, q) satisfies w(p, q) = w(q, p) and is defined
only for q ∈ N (p) (or, equivalently, p ∈ N (q)). Here, “pixel p” means the pixel with row
pi and column pj given by

pi = [(p− 1) mod H] + 1,

pj = ⌊(p− 1)/H⌋+ 1,
(3.16)

where, as stated before, H is the image height. If pi < H , then w(p, p + 1) = W
(y)
pi,pj ; if

pj < W , then w(p, p+H) = W
(x)
pi,pj . Therefore, LLL is a symmetric sparse matrix formed

by five diagonals, with an upper bandwidth of H .
Since A is sparse, the system in (3.13) is solved using methods for solving sparse

systems, such as preconditioned conjugate gradient (PCG).
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3.3 The HSV and iHSV Color Systems

HSV is a color system that represents a color in terms of three channels, namely hue,
saturation and value. It is useful in many applications that require the manipulation of
qualities of a color that are more aligned to human perception, compared to RGB channels
(although HSV is not a perceptually uniform color system).

Let XR, XG and XB be the RGB channels of a given color. Let XM , Xm and XC be
the maximum, minimum and color range channels, defined as

XM = max(XR, XG, XB), (3.17)
Xm = min(XR, XG, XB), (3.18)
XC = XM −Xm. (3.19)

Then, the hue XH , saturation XS and value XV of the color are defined by

XV = XM , (3.20)

XS =

{
0, XM = 0,
XC

XM
= 1− Xm

XM
, otherwise,

(3.21)

XH =


undefined, if XC = 0,
XG−XB

XC
mod 6, if XM = XR,

XB−XR

XC
+ 2, if XM = XG,

XR−XG

XC
+ 4, if XM = XB.

(3.22)

The inverted HSV (iHSV) is defined here as the HSV representation of the inverted
color. More precisely, let XH , XS and XV be the iHSV channels of the color whose RGB
channels are XR, XG and XB. Then, XH , XS and XV are the HSV channels of the color
with RGB channels 1−XR, 1−XG and 1−XB. Let XM , Xm and XC be

XM = max(1−XR, 1−XG, 1−XB), (3.23)
Xm = min(1−XR, 1−XG, 1−XB), (3.24)
XC = XM −Xm. (3.25)

The following relations hold:

XV = XM = max
u∈{R,G,B}

{1−Xu} = 1−Xm, (3.26)

Xm = min
u∈{R,G,B}

{1−Xu} = 1−XM , (3.27)

XC = XM −Xm = XM −Xm = XC , (3.28)

XS =

{
0, Xm = 1,

XC/XM = XC/(1−Xm), otherwise,
(3.29)

XH = XH . (3.30)
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4 PROPOSED METHOD

In this chapter we describe the proposed Structure-Aware Distribution Stretching (SADS)
in detail. The central idea of SADS is to fit the beta distribution to image channels and use
the fitted distribution to transform the image in a way inspired by the well known theory
of histogram specification. Figure 4.1 shows a block diagram for SADS algorithm. The
variables and steps present in the diagram will be described throughout the chapter.

The distribution parameters are estimated for the processed channels in a regional
structure-aware way. After the estimation, each pixel of each processed channel is as-
signed to a pair of parameters of the beta distribution. An image or matrix containing the
parameters calculated for all pixels is called a parameter map. Here, “regional structure-
aware” means that the distribution parameters at a given pixel depend mostly on the con-
tent of the segment or region in which the pixel is located, where the segments and regions
are separated by the image edges. This regional structure-aware adjust is made by replac-
ing each sample mean in the expressions for the beta distribution parameters estimation
with a WLS filter, which operates as a regional structure-aware mean.

As WLS is a global smoothing technique based on the minimization of an objective
function, mathematically the estimated parameters at a given pixel depends on the values
of the channel for the entire image. However, the term “regional” is justified by the fact
that the estimated parameters at a given pixel are more strongly influenced by the content
of the segment or region of the pixel, having little or computationally negligible influence
from the content of other segments.

When naming variables obtained from regional structure-aware processes, we will use
the term “regional” to indicate this property. For example, “regional variance” (which will
be proposed later) is a variance obtained from a regional structure-aware process.

4.1 Designed Weighted Least Squares Filter

If the input image is a single channel grayscale image F, the WLS weights W (d)
i,j are

computed with

W
(x)
i,j =

1

max(| [K ∗ (∂xF)]i,j (∂xF)i,j |, ϵ)
,

W
(y)
i,j =

1

max(| [K ∗ (∂yF)]i,j (∂yF)i,j |, ϵ)
.

(4.1)

In (4.1), K denotes a 2-d Gaussian kernel and ∗ denotes a convolution. ϵ is a small (set
to 1 · 10−6 in our experiments) tolerance term used to prevent division by zero. This
formula is similar to the one used in (ZHANG; NIE; ZHENG, 2019), except that we have
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Figure 4.1: Block diagram for SADS algorithm.
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removed the outer convolution and used a different strategy for handling the division by
zero (in (ZHANG; NIE; ZHENG, 2019) and other works, the denominator of the factors
are summed with the tolerance term). The scale parameter σ of the Gaussian kernel K is a
parameter that can be chosen by the user; this parameter controls the degree of smoothing
of textures within segments.

If the input image is an RGB color image F , the WLS weights are computed with

W
(d)
i,j =

1

max(
√
C1C2/2, ϵ)

,

C1 = [K ∗ (∂jM)]2i,j + [K ∗ (∂jm)]2i,j,

C2 = (∂jM)2i,j + (∂jm)2i,j,

d = {x, y},

(4.2)

where M and m are the maximum and minimum channels, given by

Mi,j = max
c∈{r,g,b}

{
F

(c)
i,j

}
, mi,j = min

c∈{r,g,b}

{
F

(c)
i,j

}
. (4.3)

The factors
√
C1/2,

√
C2/2 from (4.2) are extensions of the factors |[K ∗ (∂jF)]i,j| and

|(∂jF)i,j| from (4.1) that jointly consider the variations along the channels M and m (note
the use of the properties

√
ab =

√
a
√
b and |ab| = |a||b| to separate the factors from (4.2)

and (4.1)). The intention in jointly using the variations of M and m, instead of using the
variations of a single channel extracted from the image, is to improve the capability of the
filter to discriminate where it should and should not smooth.

In the implementation, we can replace the division of
√
C1C2 by 2 in (4.2) with a

multiplication of ϵ and λ by 2, which will give the same result and will avoid the 2N
divisions (one for each pixel and weight direction).

As in (GUO; LI; LING, 2016) and (ZHANG; NIE; ZHENG, 2019), the designed
weights tend to be large inside segments and small along the edges between segments.
The result of the WLS is thus a smoothed version of the filtered image, where the smooth-
ing across the structural image edges is avoided.
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4.2 Regionally Fitting the Beta Distribution to an Image

It is well known that the sample mean µ =
∑n

i=1 xi/n satisfies

µ = argmin
µ∗

n∑
i=1

(xi − µ∗)2, (4.4)

where µ∗ is the dummy variable from the minimization operation (similar to a dummy
index in a summation notated with the

∑
operator). By replacing xi in (4.4) with the

pixel values of a grayscale image F, allowing the mean to change from pixel to pixel and
adding certain smoothness constraints in this variable mean, one arrives at an expression
in the form of (3.10) (page 23). This suggests that the WLS filter is a species of regional
structure-aware mean, at least in a heuristic sense. This motivates the definition of a
(heuristic) regional mean µ and a regional variance s by

µ = WLS(F,W), s = WLS((F− µ)2,W), (4.5)

where the square in the expression for µ is applied element by element. Note that µ and
s given by (4.5) are images or matrices with the size of the input image F. As described
before, the weights tensor W is computed with (4.1) (page 25), and is the same for the
calculation of µ and s.

Expressions in (3.5) (page 22) can be converted into regional expressions by replacing
the mean and variance with its regional versions, giving

αi,j =

[
µi,j(1− µi,j)

si,j
− 1

]
µi,j,

βi,j =

[
µi,j(1− µi,j)

si,j
− 1

]
(1− µi,j).

(4.6)

This provides a regional, structure-aware, method of moments (MoM) based estimate of
α and β.

The maximum likelihood estimation (MLE) method can also be converted into a re-
gional form. For convenience, consider the modification of the system in (3.6) (page 22)
by applying an exponential on each side, written as{

exp(ψ(α)− ψ(α + β)) = G = exp( 1
n

∑n
i=1 log(xi)),

exp(ψ(β)− ψ(α + β)) = Ḡ = exp( 1
n

∑n
i=1 log(1− xi)).

(4.7)

Using again the idea of replacing the sample mean with a WLS filter, we obtain the
regional version of this system{

exp(ψ(αi,j)− ψ(αi,j + βi,j)) = Gi,j,

exp(ψ(βi,j)− ψ(αi,j + βi,j)) = Ḡi,j,
(4.8)

where

G = exp(WLS(log(F),W)),

Ḡ = exp(WLS(log(1− F),W)),
(4.9)

being 1 a H ×W matrix of 1s. As G and Ḡ in (3.6) (page 22) and (4.7) are the sample
geometric mean of samples {xi}ni=1 and {1−xi}ni=1, respectively, G and Ḡ will be called
the regional geometric mean of F and 1− F, respectively.
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The solution to the systems (3.6) (page 22) or (4.7) for α and β requires a numerical
method, e.g., Newton–Raphson method. To remove the need to use one of such methods
for each pixel in (4.8), a look-up table (LUT) was built having G and Ḡ as inputs and α as
output. This was facilitated by the fact that G, Ḡ ∈ [0, 1] (it would be less viable if G, Ḡ
were unbounded). The entries of the LUT were computed with Newton–Raphson method
and saved to be loaded by the proposed algorithm. The chosen grid size of the LUT was
1024 × 1024, where only the entries at the triangular region G + Ḡ ≤ 1, G, Ḡ > 0 are
calculated (becauseG+Ḡ ≤ 1 is always valid). For the application of the LUT, its entries
are interpolated with spline 2-d interpolation.

Having a LUT for α, there is no need to build one for β, for the following reason.
If α and β are interchanged in (4.7), then the new system is equivalent to the original,
except that G and Ḡ switch places. As a consequence, if α = LUT(G, Ḡ), then β =
LUT(Ḡ, G), where LUT denotes the LUT mapping, and a LUT designed to compute one
of the parameter can compute the other by switching its indexes. The explicit expressions
for the parameter maps are

α = LUT(G, Ḡ), β = LUT(Ḡ,G). (4.10)

It is also possible to improve the results given by the LUT by using an iterative method
to solve the MLE equations (4.8) for each pixel, having the LUT results as starting points.
However, the approximation given by the designed LUT with spline interpolation is al-
ready sufficiently accurate for the algorithm.

Figure 4.2 shows results of fitting the beta distribution by using the proposed regional
MoM and MLE techniques for a grayscale image. Figure 4.2a shows the graphics of the
CDF at selected points. Figure 4.2b shows the full parameter maps in the same experi-
ment, for the MLE case.

4.3 Transforming the Image

SADS is based on the well known histogram specification principle, which consists
into apply the estimated CDF to spread the PDF and then apply the inverse of the CDF of
the target (desired) distribution. First, consider the case in which the target distribution is
the uniform distribution in the interval [0, 1] U(0, 1) (for which the second transformation
is simply the identity function, that we do not need to apply). By the principle, the trans-
formation would be simply Fi,j 7→ Φ(Fi,j;αi,j, βi,j) (see (3.2) (page 21)), where αi,j, βi,j
are the parameters estimated using the regional MoM or MLE described in the previous
section. However, in order to provide a control over the degree of transformation, we
propose the following modification. The output image F́ is calculated with

F́i,j = Φ(Fi,j; α̃i,j, β̃i,j), (4.11)

where α̃i,j, β̃i,j , called attenuated parameters, are defined by

α̃i,j = α
li,j
i,j , β̃i,j = β

li,j
i,j . (4.12)

Following the conventions in this work, the matrices with elements αi,j, βi,j are denoted
by α̃, β̃. li,j ∈ [0, 1] in (4.12) is the local transformation level at pixel (i, j), which will
be described in section 4.5 (page 32). By raising the beta distribution parameters to li,j ,
they are compressed in direction to 1. This reduces the degree of transformation, because
the beta distribution CDF gets closer to the identity function if its parameters become
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Figure 4.2: Results of fitting the beta distribution by using the proposed regional MoM
and MLE techniques for a grayscale image.
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closer to 1. If li,j = 0, the parameters are equal to 1 and the transformation is an identity
function. The closer li,j is to 1 inside ∈ [0, 1], the higher is the degree of transformation.
This motivates the name used for li,j .

Now consider the case in which the target distribution is not U(0, 1). We will restrict
ourselves to the case in which the target distribution is a member of the beta distribution
family (which is probably wide enough for most applications). Let ᾰ, β̆ be the parameters
of the target beta distribution. Again, let F́ denote the output image. For this case, we
propose to map the image by the transformations

F̄i,j = Φ(Fi,j; α̃i,j, β̃i,j), (4.13)

F́i,j = Φ−1(F̄i,j; ᾰ, β̆), (4.14)

where
α̃i,j = (αi,j/ᾰ)

li,j ᾰ, β̃i,j = (βi,j/β̆)
li,j β̆. (4.15)

Again, li,j is used to control the transformation degree. The working principle of (4.15)
is the following. If li,j = 1, then (α̃i,j, β̃i,j) = (αi,j, βi,j) and the transformation has
full degree. If li,j = 0, then (α̃i,j, β̃i,j) = (ᾰ, β̆) and the transformation in (4.14) is
the inverse of the transformation in (4.13), and hence the transformation has zero degree
(F́i,j = Fi,j). If li,j ∈ (0, 1), then the resulting transformation is between these two
extremes, which corresponds to an attenuated transformation (with respect to the full
degree transformation). F́ given by the transformations (4.13) and (4.14) is equivalent to
F́ given by (4.11) (page 28) if ᾰ = β̆ = 1.

The transformation (4.14) requires the calculation of Φ−1, which is made with numer-
ical methods and is more computationally intensive than the calculation of Φ. However,
as in (4.14) ᾰ, β̆ do not vary with i, we can build an 1-d LUT having x as input and
Φ−1(x; ᾰ, β̆) as output and apply this LUT to the values F̄i,j .

4.4 Smoothness Map

The smoothness map S is an image with values in the interval [0, 1] set to have a
large value at smooth regions in the image and low value at non-smooth regions. For a
grayscale input F, S is defined as

S = exp(−D/z),
D = WLS(Tp,W)1/p,

(4.16)

where Ti,j is the squared magnitude of the gradient of F γ at pixel i and p, z and γ are
user-defined parameters. p, z and γ are positive. In our experiments, p is set to 0.025 and
z is set to 1 · 10−5 for defogging/dehazing and to 8 · 10−4 for the other tasks (except in
the calculation of Figure 4.3b, in which z = 1.5 · 10−3 was adopted). The powers and
the exponential are applied element by element. T can be computed using standard well
known gradient operators; the chosen one was the Sobel operator, because of its simplicity
and effectiveness. The idea behind (4.16) is the following. D is a regional version of the
generalized or power mean, defined as

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xpi

)1/p

. (4.17)
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Figure 4.3: Smoothness map S for a color image.

(a) Input (b) Smoothness map

Source: pexels.com (4.3a) and author (4.3b).

As Mp satisfy Mp < Mq ⇐⇒ p < q, M1 is the arithmetic mean and limt→0Mt is the
geometric mean, if p is very small and positive, then Mp will be between the arithmetic
and geometric means, and close to the geometric mean. With such choice, the smallest
gradients will have a larger influence on D. The practical consequence is that D will be
very small for a smooth segment, even if it contains large isolated gradient perturbations
(e.g., a bird flying in the sky). p < 0 or the limit case p → 0 would not be suited for
the heuristic, because in these cases a single sample equal to zero makes Mp be zero,
and D would inherit this characteristic. The exponential that maps D into S is a fuzzy
indicator of how small is D. F is raised to the power γ before the gradient calculation for
the following reason. If γ ∈ (0, 1), the gradients in the dark (bright) areas become larger
(smaller); this is useful to avoid a large smoothness map S at areas in the image that are
not flat but are so underexposed that its gradients are small. If γ > 1, the gradients in
the bright (dark) areas become larger (smaller); this is useful to avoid a large smoothness
map S at areas in the image that are not flat but are so overexposed that its gradients are
small.

For a color input image F , the smoothness map S is still computed using (4.16),
except that the Ti,j in now given by

Ti,j = (T
(r)
i,j + T

(g)
i,j + T

(b)
i,j )/3, (4.18)

where T (c)
i,j is the squared magnitude of the gradient of the channel c of Fγ at pixel (i, j).

If we divide and multiply Ti,j by an arbitrary number x in the expression for D in (4.16),
we obtain

D = WLS((xT/x)p,W)1/p

= WLS((xT)p/xp,W)1/p

= [WLS((xT)p,W)/xp]1/p

= WLS((xT)p,W)1/p/x.

(4.19)

As a consequence, the division by 3 in (4.18) can be replaced with a multiplication of the
scale parameter z with 3, which is more efficient, because a single multiplication will be
made instead of N divisions (one for each pixel). Figure 4.3 shows the smoothness map
obtained for a color image with the described method.
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The smoothness map is used to control the enhancement level according to the smooth-
ness level. The higher the smoothness map, the higher the reduction of the local enhance-
ment level relative to the non attenuated enhancement level. In practice, very dark regions
may produce high values in the smoothness map, which would undesirably reduce the
correction degree at such regions if the smoothness map was directly used to attenuate
the transformation. To solve this conflict, the influence of the smoothness map is reduced
at dark regions. This is made by using a factor called local smoothness influence, with
symbol Q. Q is given by

Q = WLS(Q′,W),

Q′
i,j =

{
1, if Li,j = ϵl or Li,j = ϵh,

1
1+exp(−10(Li,j−0.5))

, otherwise,

i = 1, . . . , H, j = 1, . . . ,W,

(4.20)

where L is the gray level if the SADS input is a grayscale image and the lightness channel,
defined by L = (M + m)/2 (see (4.3) (page 26)), if the input is a color image. ϵl and
ϵh are the lowest and highest gray level, respectively, which are the values to which the
image levels 0 and 255 (or 65535, for images with 16 bit by channel) are mapped when the
image values are converted from integers to decimals in the interval [0, 1]. The expression
that results in Q′ is a logistic function on the lightness that results in low values (near 0)
for dark pixels and high values (near 1) for bright pixels, except when the lightness has the
lower or higher level possible, case in which Q′ is 1. The exception is made to ensure that
the local smoothness influence Q do not reduce the influence of the smoothness map in
flat black or white areas. While the Q′ design presented was the used in the experiments
in this work, other designs of Q′ are possible; the design must produce a predominantly
low Q′ (high Q′) in the regions where it is desirable to reduce (keep) the influence from
the smoothness map.

4.5 Local Transformation Level

The local transformation level li,j is given by

li,j = K(1− CQi,jSi,j), (4.21)

whereK andC are user-defined parameters. K andC will be called global transformation
level and global smoothness influence, respectively. As the names suggest, K controls
the level of transformation globally, while C controls how much Qi,jSi,j reduces li,j (i.e.,
how much the transformation is reduced in smooth regions with high Q). The higher K
is, the higher the transformation level, and the higher C is, the higher the smoothness
influence. Both K and C are primarily in the interval [0, 1]. However, it is also possible,
and perhaps useful, to use a K larger than 1. If K > 1, then li,j can be larger than 1, and
if so, the transformation is intensified instead of attenuated. Normally, however, the full
degree transformation (corresponding to K = 1, C = 0) is sufficiently enhanced or over
enhanced, and then normally K ∈ (0, 1]. K near 0.8 provides a strong correction and K
near 0.5 provides a lighter correction; the choice depends on the user interests.

4.6 Extension of SADS to Color Images

When the image to be enhanced is a color image F , we must choose a color system
to represent F and choose the channels of this color system that will be enhanced. The
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Figure 4.4: Results of SADS using LCT extension with different color systems and MMT
extension.

(a) Input (b) HSV (c) iHSV (d) HSL (e) CIELAB (f) MMT

Source: TM-DIED dataset (VONIKAKIS, 2021) (4.4a, row 1), pexels.com (4.4a, row 2)
and author (other images).

steps of the grayscale SADS are then made for each channel to be enhanced. As many
color systems and many color image enhancement strategies exist, there are many ways
to extend SADS to color images. Two methods will be presented. The first is a simple
luminance enhancement, and the second is a combination of strategies.

4.6.1 Luminance Channel Transformation (LCT)

The more direct way to extend SADS to color images consists in:

1. represent the image in a color system with a luminance1 channel and two color
channels, such as HSV, HSL or CIELAB;

2. apply to the luminance channel of the color system the steps of the SADS algorithm
proposed for grayscale images;

3. convert back to RGB the image with transformed luminance.

This approach will be referred to as luminance channel transformation (LCT). The only
steps of the grayscale SADS algorithm that are modified in LCT extension are the calcula-
tion of the WLS weights and the smoothness map, which follow the procedures described
before for the calculation ofW and S in the color image case.

Figure 4.4 shows the outputs of SADS for different color extension possibilities. Fig-
ures 4.4b to 4.4e show the outputs for the LCT extension using multiple color systems. It
can be observed that most tested color systems produce a grayish aspect on the enhanced
dark or bright regions of the LCT result. This problem will be expanded on in subsec-
tion 4.6.2. Among the LCT extension possibilities, the HSL-based provided the most
sactisfatory results in these examples. However, as the other color systems, HSL can also
produce grayish tones.

4.6.2 Maximum and Minimum Transformation (MMT)

When SADS or conventional histogram equalization methods are applied to color
images by mapping the value XV of HSV system, the corrected results for overexposed

1Here the term “luminance” is referring to the non-chromatic channel of a color system (HSV value,
HSL lightness etc.), and is not being used with its original physical definition.
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regions tend to have an unsaturated or grayish aspect. Before the explanation for why this
happens, first consider the following lemma and corollary.

Lemma 1. Let XR, XG and XB be the RGB channels of a given color. Let XH , XS and
XV be the HSV channels of the same color. Let X ′

R, X ′
G and X ′

B be the RGB channels
of the color whose HSV channels are XH , XS and X ′

V . Let XM = max(XR, XG, XB),
Xm = min(XR, XG, XB), X ′

M = max(X ′
R, X

′
G, X

′
B) and X ′

m = min(X ′
R, X

′
G, X

′
B). Let

XC = XM −Xm and X ′
C = X ′

M −X ′
m. Then, if XV ̸= 0, it is the case that

X ′
C =

X ′
V

XV

XC . (4.22)

It is also the case that

X ′
m =

X ′
M

XM

Xm. (4.23)

Proof. As the HSV saturation is the same for both colors, by using its definition (see
section 3.3 (page 24)), we obtain

XC

XV

=
X ′

C

X ′
V

, (4.24)

which gives

X ′
C =

X ′
V

XV

XC . (4.25)

As XV = XM and X ′
V = X ′

M (see section 3.3 (page 24)), we obtain

X ′
M −X ′

m =
X ′

M

XM

(XM −Xm)

X ′
M −X ′

m = X ′
M −

X ′
M

XM

Xm

∴ X ′
m =

X ′
M

XM

Xm.

(4.26)

Corollary 1. Let XR, XG and XB be the RGB channels of a given color. Let XH , XS and
XV be the iHSV channels of the same color. Let X ′

R, X ′
G and X ′

B be the RGB channels
of the color whose HSV channels are XH , XS and X ′

V
. Let XM = max(XR, XG, XB),

Xm = min(XR, XG, XB), X ′
M = max(X ′

R, X
′
G, X

′
B) and X ′

m = min(X ′
R, X

′
G, X

′
B).

Then, if Xm ̸= 1, it is the case that

X ′
M = 1− 1−X ′

m

1−Xm

(1−XM). (4.27)

Proof. Let XM = max(1−XR, 1−XG, 1−XB), Xm = min(1−XR, 1−XG, 1−XB),
X ′

M
= max(1 − X ′

R, 1 − X ′
G, 1 − X ′

B) and X ′
m = min(1 − X ′

R, 1 − X ′
G, 1 − X ′

B). As
the iHSV channels are the HSV channels of the inverted color (see section 3.3 (page 24)),
from the corollary statement, XH , XS and XV are the HSV channels of the color with
RGB channels 1 − XR, 1 − XG and 1 − XB. Similarly, XH , XS and X ′

V
are the HSV

channels of the color with RGB channels 1−X ′
R, 1−X ′

G and 1−X ′
B. As only the HSV

value channel is different for the two inverted colors, Lemma 1 can be applied, giving

X ′
m =

X ′
M

XM

Xm. (4.28)
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It is easy to show that

XM = 1−Xm,

Xm = 1−XM ,

X ′
M

= 1−X ′
m,

X ′
m = 1−X ′

M .

(4.29)

Replace (4.29) in (4.28) yields

1−X ′
M =

1−X ′
m

1−Xm

(1−XM)

∴ X ′
M = 1− 1−X ′

m

1−Xm

(1−XM).

(4.30)

The color range XC = XM − Xm is a good measure for the color’s intensity or
colorfulness. This is the case because, when XC is small, the color is close to the gray
axis R = G = B, tending to have a grayish tone. As shown in Lemma 1, when a
transformation is applied to the HSV value while keeping the HSV saturation and hue
unchanged, the color range is multiplied by X ′

V /XV , where XV and X ′
V are the value and

the new value, respectively. Hence, if XV is reduced to correct an overexposed pixel, its
color range is also reduced, which can cause the sensation of lack of colorfulness.

This problem of grayish aspect also happens if the transformation is made in the lumi-
nance channel of other conventional color systems, such as CIELAB and HSL, where for
each color system it happens in specific situations. For example, if we use the iHSV color
system described on section 3.3 (page 24), the problem will occur for the enhanced under-
exposed regions, which is the opposite situation with respect to the HSV system. For the
HSL system, the color range is reduced when min(X ′

L, 1−X ′
L)/min(XL, 1−XL) < 1,

where XL and X ′
L are the original and new HSL luminances, and when this happens

blackish or whitish tones may be perceived. The CIELAB color system is approximately
perceptually uniform; as dark and bright areas are perceived as having low colorfulness,
when the CIELAB luminance channel is corrected this perceptual lack of colorfulness
will be conserved, and hence the CIELAB enhancement result tend to look grayish in the
originally dark and bright areas. This phenomenon can be seen in Figure 4.4 (page 33).

The second method of extension of SADS to color images was designed to overcome
this problem. It consists in combining three hue-preserving transformations: the HSV
and iHSV-based transformations and an additional transformation that will be detailed
later. The HSV transformation spreads the distribution of the maximum channel M while
preserving the HSV saturation, the iHSV transformation spreads the distribution of the
minimum channel m while preserving the iHSV saturation and the third transformation
spreads both M and m distributions by using a joint distribution model for these channels.
This approach will be referred to as maximum and minimum transformation (MMT), and
is described next.

First, M and m channels (see (4.3) (page 26)) are extracted fromF . Then, the regional
estimation of the beta distribution parameters is made in parallel for M and m. Let
α(M),β(M) and α(m),β(m) be the parameter maps estimated for M and m, respectively.
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If MoM is chosen, the expressions for the parameters are

αi,j =

[
µi,j(1− µi,j)

si,j
− 1

]
µi,j,

βi,j =

[
µi,j(1− µi,j)

si,j
− 1

]
(1− µi,j),

(4.31)

where

µ(M) = WLS(M,W),

µ(m) = WLS(m,W),

s(M) = WLS((M− µ(M))2,W),

s(m) = WLS((m− µ(m))2,W).

(4.32)

If MLE is chosen, the expressions are

α
(c)
i,j = LUT(G

(c)
i,j , Ḡ

(c)
i,j ),

β
(c)
i,j = LUT(Ḡ

(c)
i,j , G

(c)
i,j ),

c = {M,m},

(4.33)

where

G(M) = exp(WLS(log(M),W)),

Ḡ(M) = exp(WLS(log(1−M),W)),

G(m) = exp(WLS(log(m),W)),

Ḡ(m) = exp(WLS(log(1−m),W)).

(4.34)

The attenuated parameters are

α̃i,j = α
li,j
i,j , β̃i,j = β

li,j
i,j , (4.35)

where li,j is given by (4.21) (page 32).
Now we define the transformation. For compactness, the symbol ΦX,Y

i,j is defined as

ΦX,Y
i,j = Φ(Xi,j, α̃

(Y )
i,j , β̃

(Y )
i,j ), X, Y ∈ {M,m} (4.36)

(see (3.2) (page 21) and (4.11) (page 28)). ΦX,Y
i,j is the result of the application of the beta

CDF to X using the parameters estimated for Y , X, Y ∈ {M,m}.
The results Ḿi,j, ḿi,j of the transformations of Mi,j,mi,j need to satisfy two condi-

tions: (i) Ḿi,j = ḿi,j ⇐⇒ Mi,j = mi,j and (ii) Ḿi,j ≥ ḿi,j . Condition (i) ensures that
a color with nonzero color range is mapped into a color with nonzero color range, while
a color with zero color range is mapped into a pixel with zero color range. Condition
(ii) ensures that the new maximum is larger than the new minimum, which is necessary
for the validity of the new color. A natural pair of transformations to apply would be
Ḿi,j = ΦM,M

i,j and ḿi,j = Φm,m
i,j , which consists in applying the beta CDF toMi,j andmi,j

using the parameters estimated for M and m, respectively. However, this choice would
not meet the conditions (i) and (ii), and therefore cannot be used. Instead, the method
here described combines three transformations satisfying the conditions. The outputs of
these transformations will be denoted by Ḿ (u)

i,j and ḿ(u)
i,j , for u ∈ {1, 2, 3}.
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The first transformation operates in the HSV system. The HSV value, which is equal
to Mi,j , is transformed to ΦM,M

i,j , while the HSV saturation and hue are preserved. Thus,
from Lemma 1 (page 34), Mi,j and mi,j are mapped to

Ḿ
(1)
i,j = ΦM,M

i,j ,

ḿ
(1)
i,j =

ΦM,M
i,j

Mi,j

mi,j.
(4.37)

The second transformation operates in the iHSV system (see section 3.3 (page 24)).
The iHSV value, which is equal to 1−mi,j , is transformed to 1− Φm,m

i,j , while the iHSV
saturation and hue are preserved. From the Lemma 1 (page 34), Mi,j andmi,j are mapped
to

Ḿ
(2)
i,j = 1−

1− Φm,m
i,j

1−mi,j

(1−Mi,j),

ḿ
(2)
i,j = Φm,m

i,j .

(4.38)

The third transformation is based on viewing Mi,j,mi,j as if they were samples of
a single random variable X . The distribution of X is the mixture distribution of the
individual distributions of M and m, with equal mixture weights. Equivalently, the CDF
of X is the mean between the CDF of M and m. A valid model for the CDF of X is then
g(x) = (Φx,M

i,j + Φx,m
i,j )/2. The third transformation consists in applying g to Mi,j and

mi,j , mapping them to

Ḿ
(3)
i,j = (ΦM,M

i,j + ΦM,m
i,j )/2,

ḿ
(3)
i,j = (Φm,M

i,j + Φm,m
i,j )/2.

(4.39)

It is easy to verify that the three proposed transformations satisfy the conditions (i)
and (ii).

As discussed before, the HSV (iHSV) based transformation causes lack of colorful-
ness on overexposed (underexposed) regions. The third transformation (4.39) tends to
increase the colorfulness in all areas, but such increase may be excessive. With this in
mind, the final transformed maximum and minimum channels, denoted by Ḿi,j and ḿi,j ,
are defined as

Ḿi,j = (1− T )[vi,jḾ (1)
i,j + (1− vi,j)Ḿ (2)

i,j ] + TḾ
(3)
i,j ,

ḿi,j = (1− T )[vi,jḿ(1)
i,j + (1− vi,j)ḿ(2)

i,j ] + Tḿ
(3)
i,j ,

(4.40)

where T is a user-defined parameter in the interval [0, 1], vi,j is given by

vi,j =
v
(1)
i,j

v
(1)
i,j + v

(2)
i,j

,

v
(1)
i,j = exp(−h(M2

i,j +m2
i,j)),

v
(2)
i,j = exp(−h[(1−Mi,j)

2 + (1−mi,j)
2])

(4.41)

and h is a scale parameter for the exponential.
It is the case that v(1)i,j , v

(2)
i,j ∈ (0, 1]. Moreover, v(1)i,j is near 1 if the color is dark and near

0 if the pixel is bright. v(2)i,j is near 1 or 0 in the opposite situations. v(1)i,j and v(2)i,j can be
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interpreted as fuzzy indicators that the pixel is dark and bright, respectively. vi,j is defined
in a way that makes the coefficients vi,j, 1− vi,j ∈ (0, 1] from the convex combination in
(4.40) be proportional to the quantities v(1)i,j , v

(2)
i,j . The idea behind (4.40) is to combine the

HSV and iHSV-based transformations assigning a larger contribution to the HSV (iHSV)
based transformation in dark (bright) pixels, and then combine the result with the third
transformation (4.39) using a convex combination with T as weight. The larger vi,j is, the
larger is the contribution of the first transformation relative to the second transformation.
The larger T is, the larger is the contribution of the third transformation relative to the
combination of the first two transformations.

The final output image F́ is computed in the following way. The maximum and min-
imum channels of F́ must be Ḿ and ḿ, respectively, and the hue of F́ must be equal to
the hue of the original image F . This leads to the expression

F́i,j =
Ḿi,j − ḿi,j

Mi,j −mi,j

(Fi,j −mi,j) + ḿi,j, (4.42)

which is a hue-preserving transformation (UEDA et al., 2018) that maps Mi,j and mi,j

into Ḿi,j and ḿi,j , respectively.
Outputs of SADS using MMT extension to color images are shown in Figure 4.4f

(page 33).

4.7 WLS Calculation

The proposed algorithm demands multiple WLS filter calculations. The weights are
the same in all cases, and hence only the right-hand side of the sparse system in (3.13)
(page 23) change, being always equal to the image to be filtered reshaped as a vector. To
take advantage of this, a decomposition based approach is used to approximate the filter.
The procedure is the following.

First, a symmetric approximate minimum degree permutation (SAMD) is obtained for
A. Then, the modified incomplete Cholesky (MIC) factor R of the SAMD permutation
of A is calculated. Let O = WLS(F,W) and o and f be the column-major vectorization
of O and F, respectively. Consider ô defined as the solution to the system

RRTPô = Pf , (4.43)

where P is the permutation matrix that permutes the elements of a vector using the SAMD
reordering obtained for A. The system in (4.43) can be rewritten as PTRRTPô = f by
multiplying both its sides by PT and using the property PTP = I (which is valid because
P is a permutation matrix). Since A ≈ PTRRTP, it follows that ô is an approximation
for o. The system in (4.43) can be broken in two systems with coefficient matrices R and
RT ; the first gives the vector RTPô, while the second gives the vector Pô. These two
systems are sparse and triangular, and thus they can be efficiently solved with forward
and backward substitution.

The accuracy of this approximation for the WLS filter depends on the drop tolerance
parameter τ of the MIC factorization (MICF) used to decompose the SAMD of A. In
practice, for a sufficiently small τ , the result still behaves as an EPS filter. In comparison
with the original WLS filter, it was observed that the approximated method leads to less
diffusion across prominent edges, which can be advantageous for the algorithm. If a τ
too small is chosen, the approximation to the original WLS filter is very exact but the
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Figure 4.5: Block diagram for the SADS speed-up scheme with a downscale and a guided
upsampling algorithm.

Input image

Detail-preserving
downscale

Downscaled image

Estimation and
attenuation of
parameter maps

Attenuated
parameter maps

FGS-based
guided upsample

Upscaled attenuated
parameter maps

Source: Author.

Cholesky factor R may have too many nonzero elements, and the computational needs
could become very expansive for large resolutions; if a τ too large is chosen, there are
less computational needs, but the approximation to the original WLS filter may display
noticeable artifacts. τ is set to 1 · 10−5 in our experiments.

If a better approximation for the true WLS filter with more diffusion is desired, it is
proposed to use a permuted preconditioned conjugate gradient (PCG), where the precon-
ditioner is R and the permutation is given by the previously computed SAMD. The PCG
is initialized with the approximated solution in (4.43), and hence can be viewed as a re-
finement to it. It is up to the user to decide if PCG is used to refine the solution or not. In
practice, the PCG refinement will be strictly necessary only if the desired smoothing de-
gree is too large to be suitably achieved with the approximation (4.43) by only increasing
the smoothing parameter λ.

4.8 Speed-up with Downscale and Guided Upsampling

The computational cost of the algorithm may be prohibitively large for a large image.
For this reason, it is proposed to downscale the original image to a tractable resolution if
the original image size is larger than a threshold value. The algorithm is then executed
using the downscaled image as input, until the step in which the attenuated parameter
maps α̃, β̃ or α̃(c), β̃(c), c ∈ {M,m} are obtained. The attenuated parameter maps are
then upscaled to the original resolution using a guided upsampling algorithm. Figure 4.5
shows a block diagram representing this procedure.

The downscale is made using a detail-preserving downscale algorithm inspired in
(WEBER et al., 2016). Algorithm 1 explains the steps of the downscale algorithm used.
Let r be the downscale ratio. In the algorithm, downscale(·) denotes a conventional down-
scale with ratio r using a box kernel and upscale(·) denotes a conventional upscale to the
original resolution using bicubic interpolation. As before, K∗ denotes a convolution with
a Gaussian kernel. F̂ is a coarsened version of F . V is an image of weights that measure
the distance between each pixel of F and F̂ , having the same size as a channel of F .
Symbols ◦ and ⊘ denote the element wise multiplication and division, respectively. η
controls the degree of preservation of details of the downscale algorithm.
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Algorithm 1 Detail-preserving downscaling.
Input: input image F with nch channels, downscale ratio r, detail preservation level η,

weights tolerance ϵd
Output: downscaled image Z

1: F̂(c) = upscale(K ∗ (downscale(F(c)))),
c = 1, . . . , nch

2: Vi,j =
∑nch

c=1

(
F

(c)
i,j − F̂

(c)
i,j

)2
,

i = 1, . . . , H, j = 1, . . . ,W
3: V̄ = 1

N

∑H
i=1

∑W
j=1 Vi,j

4: Vi,j ← (Vi,j/V̄ + ϵd)
η/2

5: Z(c) = downscale(V ◦ F(c))⊘ downscale(V),
c = 1, . . . , nch

Algorithm 1 is derived from the algorithm proposed in (WEBER et al., 2016) by
simplifying some of its steps and making them more straightforwardly implementable.
The output of the Algorithm 1 has similar characteristics to the output of the original
algorithm in (WEBER et al., 2016), although the two algorithms are not equivalent.

As mentioned, after obtaining the attenuated parameter maps, they are upscaled to the
original resolution using a guided upsampling algorithm. As visible in Figure 4.2b (page
29), the parameter maps are piecewise smooth — i.e., they are smooth inside segments
and all the significant gradients are in the structural edges. This is also valid for the
attenuated parameter maps. The objective in using a guided upsampling algorithm is to
conserve this property. If a traditional interpolation technique (e.g., bicubic interpolation)
is used, the upscaled attenuated parameter maps would have blurred edges, and the output
image would have large halos beside structural edges.

The guided upsampling algorithm is based on the sparse data interpolation scheme
described in subsection IV.C of (MIN et al., 2014). Such sparse data interpolation scheme
uses the fast global smoothing (FGS) EPS filter proposed in (MIN et al., 2014). The
guided upsampling algorithm will be referred as FGS-based guided upsampling (FGS-
GU). Algorithm 2 describes the FGS-GU.

4.9 Model to Select FGS-GU Smoothness Parameter

The choice of the smoothness parameter λFGS from FGS-GU is not trivial. A value too
small do not provide the smoothing required for the sparse data interpolation, and a value
too big causes over smoothing of the upsampled parameter map, potentially producing
halos on SADS result (FGS is less edge-preserving than original WLS). The best value
of λFGS depends on the downscale ratio r (the ratio between the downscaled and original
dimensions). The smaller r is, the larger the λFGS needed, because more smoothing is
required for the sparse data interpolation. For this reason, a model was created to provide
a suitable value of λFGS given r. Here, the model and the procedures to obtain this model
are described.

Two square (width equal height) images were selected (Figure 4.6 (page 42)). For
each image, the α parameter map was computed and attenuated. The parameter map was
then downscaled for resolutions ranging from 8×8 to the original image size minus 1 in
each dimension. For each downscale resolution, Golden Section Search (GSS) was used
to find the value of λFGS that minimizes the mean of absolute differences between the
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Algorithm 2 FGS-GU
Input: image to be upscaled E of size H ′ ×W ′, guidance image F of size H ×W
Output: upscaled image U

1: Initialize the auxiliary images H and Ẽ as matrices of 0s with the target resolution
H ×W

2: Let

i∗(i) =

⌈(
i− 1

2

)
H

H ′

⌉
,

j∗(j) =

⌈(
j − 1

2

)
W

W ′

⌉ (4.44)

Compute the nonzero elements of H and Ẽ with

Hi∗(i),j∗(j) = 1,

Ẽi∗(i),j∗(j) = Ei,j,

i = 1, . . . , H ′; j = 1, . . . ,W ′.

(4.45)

3: Compute the output image U with

U = FGS(Ê,F , λFGS)⊘ FGS(H,F , λFGS), (4.46)

where FGS(X,Y , λFGS) denotes the FGS filter proposed in (MIN et al., 2014) applied
to the image X using Y as guidance image and λFGS as smoothness parameter.
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Figure 4.6: Images used to generate data for the λFGS model.

(a) (b)

Source: shutterstock.com (4.6a) and idealista.pt (4.6b).

original parameter map and the result of upsampling the downscaled parameter map with
FGS-GU. GSS was applicable in this case because it was verified graphically that the
objective function minimized was convex. From the results of this procedure applied to
the two images, data with (r, optimalλFGS) pairs was gathered. Such data was then used
to fit a model to predict the optimal λFGS given the downscale ratio r.

The model was chosen by analyzing the shape outlined by the gathered data. Let
(xd, yd) be the (r, optimalλFGS) pairs in the data. Let a (k) indicate the k-th data sam-
ple. yd appears to grow boundless when xd approaches 0, and approaches 0 when xd
approaches 1 (both behaviors were expected). By multiplying the yd with x2d, the singu-
larity of yd when xd approaches 0 was removed. Hence, a rational function in the form
f(x) = polx/x2 was chosen as the model, where pol is a polynomial of degree 6. The
polynomial was fitted to the pairs (xd, y

′
d), where y′d = x2dyd. To this end, Iteratively

Reweighted Least Squares (IRLS) with L-2 regularization was used. The weights of the
IRLS were computed in each iteration with

w(k) = 1/
√
0.2 + d(k)2,

d(k) = pol(xd(k))− y′d(k).
(4.47)

The regularization matrix was 1 · 10−6 diag(0, . . . , 6), where each diagonal element cor-
respond to a polynomial term, by degree order (the constant polynomial term received no
regularization, and the other polynomial terms received a regularization proportional to
their degree). 6 iterations of the IRLS were run. The choice (4.47) for the IRLS weights
corresponds to a minimization of the objective function

∑
k

√
0.2 + d(k)2, which is more

robust to outliers than the simple sum of squares of the residuals d(k). Robustness to
outliers was required because the observed data has deviations from the smooth appar-
ent relationship between r and optimal λFGS, notably an attraction of λFGS to 0 when r
approaches 0.5. Regularization was required because the observed data is noisy.

In practice, although the obtained model fitted the data adequately, it was observed
that it produced values of λFGS not sufficiently large for the upsample. For this reason, a
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Figure 4.7: Effect of the downscale/guided upsample speed-up scheme on the output of
SADS.

(a) Input (b) r = 0.2 (c) r = 0.4 (d) r = 0.6 (e) r = 0.8 (f) No downscale
- MAE = 0.0463 MAE = 0.0276 MAE = 0.0179 MAE = 0.0093 -

Source: TM-DIED dataset (VONIKAKIS, 2021) (4.7a) and author (other images).

factor of 10 was multiplied to the fitted model. The final model is

f(x) = 10
6∑

k=0

θkx
k−2,

θ = (0.25,−0.34, 5.34,−18.64,
15.22, 11.98,−13.72),

(4.48)

where here θ was rounded to two decimal places for compactness. Tests showed that the
final model provided suitable values of λFGS for all values of r.

Figure 4.7 shows outputs of SADS with and without the downscale/guided upsample
scheme, using varying downscale ratios. The mean absolute error (MAE) between the
SADS output without the scheme and each SADS output with the scheme is given. The
original resolution is 867×1155 (nearly 1 mega pixel). The results show that when don-
wsample is used there is some loss of local contrast gain, specially in the dark areas inside
the building. The lower r is, the higher the loss of local contrast gain. Nevertheless, there
is a high similarity between the results. The effect of using the downsample scheme is
somewhat similar to increasing the smoothness parameter λ from the WLS filter.

4.10 Summary of SADS Main Algorithms

In this Section the main SADS algorithms are summarized. Algorithm 3 is the SADS
algorithm for grayscale images. Algorithm 4 (page 45) is the SADS algorithm for color
images using MMT extesion (Section 4.6.2 (page 33)). The SADS algorithm for color
images using LCT extension (Section 4.6.1 (page 33)) is simply Algorithm 3 applied to
the luminance channel, using the expressions for the WLS weights and smoothness map
designed for color images.

4.11 Reasons for Using the Beta Distribution

The beta distribution is used in the proposed method for the following reasons. First,
the shapes assumed by the beta distribution CDF are adapted to the enhancement tasks. It
is the case that:

• A transformation that corrects dark areas should be concave downwards, similarly
to the shape of f(x) = xa, x ∈ (0, 1], a ∈ (0, 1).

• A transformation that corrects bright areas should be concave upwards, similarly to
the shape of f(x) = xa, x ∈ (0, 1], a ∈ (1,∞).
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Algorithm 3 SADS for grayscale images.
Input: Image to be enhanced F
Output: Enhanced image F́

1: if N > nmax then
2: Downscale F using Algorithm 1 (page 40), with downscale ratio r =

√
nmax/N

and preservation level η. From here, symbol F denotes the downscaled image,
except at the upscale step

3: end if
4: Compute the WLS weights W with (4.1) (page 25), the Laplacian matrix LLL using

(3.15) (page 23) and the matrix A with (3.14) (page 23)
5: Compute the SAMD of A and store the permutation indexes
6: Compute the MIC factor R of the SAMD permutation of A, using τ as drop tolerance

7: if C > 0 then
8: Compute the smoothness map S with (4.16) (page 30)
9: Compute the local smoothness influence Q with (4.20) (page 32)

10: end if
11: if Use MLE then
12: Compute G and Ḡ with (4.9) (page 27)
13: Compute α and β with (4.10) (page 28)
14: else
15: Compute µ and s with (4.5) (page 27)
16: Compute α and β with (4.6) (page 27)
17: end if
18: if C > 0 then
19: Compute li,j with (4.21) (page 32)
20: else
21: Set li,j = K
22: end if
23: Compute α̃ and β̃ with (4.15) (page 30).
24: if Donwscale was made then
25: Upscale α̃ and β̃ with Algorithm 2 (page 41) using the original image (not down-

scaled) F as guidance image and H ×W as target resolution
26: end if
27: Apply transformations (4.13) (page 30) and (4.14) (page 30). If ᾰ = β̆ = 1, transfor-

mation (4.14) (page 30) is the identity function and does not need to be calculated
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Algorithm 4 SADS for color images with MMT extension.
Input: Image to be enhanced F
Output: Enhanced image F́

1: if N > nmax then
2: Downscale F using Algorithm 1 (page 40), with downscale ratio r =

√
nmax/N

and preservation level η. From here, symbol F denotes the downscaled image,
except at the upscale step

3: end if
4: Compute the WLS weights W with (4.2) (page 26), the Laplacian matrix LLL using

(3.15) (page 23) and the matrix A with (3.14) (page 23)
5: Compute the SAMD of A and store the permutation indexes
6: Compute the MIC factor R of the SAMD permutation of A, using τ as drop tolerance

7: if C > 0 then
8: Compute the smoothness map S with (4.16) (page 30), using the Ti,j definition in

(4.18) (page 31).
9: Compute the local smoothness influence Q with (4.20) (page 32)

10: end if
11: if Use MLE then
12: Compute G(c) and Ḡ(c) with (4.34) (page 36)
13: Compute α and β with (4.33) (page 36)
14: else
15: Compute µ and s with (4.32) (page 36)
16: Compute α and β with (4.31) (page 36)
17: end if
18: if C > 0 then
19: Compute li,j with (4.21) (page 32)
20: else
21: Set li,j = K
22: end if
23: Compute α̃ and β̃ with (4.35) (page 36).
24: if Donwscale was made then
25: Upscale α̃ and β̃ with Algorithm 2 (page 41) using the original image (not down-

scaled) F as guidance image and H ×W as target resolution
26: end if
27: Use (4.36) (page 36) to (4.42) (page 38) to obtain the output image F́ .
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• A transformation that enhances middle tone contrast should have a sigmoid shape.

• A transformation that enhances contrast simultaneously in dark and bright areas
should have a logit shape (a shape similar to the shape of the logit function f(x) =
log(x/(1− x))).

• The transformation that conserves the input is the identity function.

Figure 3.1 (page 22) shows that the beta distribution CDF can have all these useful shapes,
allowing SADS to correct under and over enhancement and enhance contrast, and also
conserve the input if the values are already evenly distributed.

Second, the support of the beta distribution CDF is the interval (0, 1), allowing a direct
correspondence to the interval of the normalized image values.

Third, the MLE expressions can be written in terms of sample means of all the image
values, allowing the conversion of these expressions into a heuristic regional version by
replacing the sample means with WLS filters.

Fourth, the beta distribution CDF, which is the regularized incomplete beta function
Ix(α, β), can be quickly and efficiently computed with partial fraction expansions.

4.12 Reasons for not Using Segmentation

It would be possible to use a segmentation algorithm to segment the image and for
each segment compute the parameters of the beta distribution, instead of using WLS fil-
ters. However, this approach would have the following drawbacks.

Segmentation techniques are not always reliable and may fail to correctly separate
segments, making SADS more unpredictable. Additionally, segmentation requires con-
siderably more computational power than the WLS filter, and is also a much more com-
plex task than it.

Moreover, if segmentation is used, the parameter maps would be exactly piecewise
constant. Thus, the parameter maps would always change abruptly, even in the cases
in which a smooth variation is required. For example, if an area in the image changes
smoothly, or if there is a smooth or diffuse transition between two segments, a smooth
variation of the parameter maps is required. Segmentation would make the parameter
maps change abruptly in these cases, creating artificial edges in the output image. Fur-
thermore, the parameter maps should not be always constant inside segments, because
they should adapt to variations within each segment.

It should also be noted that recent algorithms, such as LIME (GUO; LI; LING, 2016)
and Zhang’s method (ZHANG; NIE; ZHENG, 2019), do not use segmentation to calculate
illumination maps; they use the WLS filter instead.
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5 EXPERIMENTS

The evaluation of the SADS method was conducted through a series of experiments
that assess SADS contrast enhancement, exposure correction and dehazing capabilities
using no-reference (NR) and full-reference (FR) metrics, compared to other methods in
the literature. The results are presented in Sections 5.1, 5.2 (page 49), 5.3 (page 51), 5.4
(page 53), 5.5 (page 55) and 5.6 (page 56). SADS was executed on Matlab R2015a, except
in the experiment of Section 5.5 (page 55), which was conducted on Matlab Online.

5.1 Contrast Enhancement and Exposure Correction, Dataset with-
out References

In this experiment, 50 natural images with contrast or exposure defects were enhanced
using CLAHE (PIZER et al., 1987) on HSL color space, Ying’s method (YING et al.,
2017), Zhang’s method (ZHANG; NIE; ZHENG, 2019), Local Color Distributions Prior
Network (LCDPNet) (WANG; XU; LAU, 2022) and the proposed SADS. For conve-
nience, Ying’s and Zhang’s methods will be referred to as Ying17 and Zhang19, respec-
tively. The images are from TM-DIED dataset (VONIKAKIS, 2021). The results of the
methods were quantitatively evaluated using the NR IQA metrics Blind/Referenceless Im-
age Spatial Quality Evaluator (BRISQUE) (MITTAL; MOORTHY; BOVIK, 2012), Natu-
ral Image Quality Evaluator (NIQE) (MITTAL; SOUNDARARAJAN; BOVIK, 2012), In-
tegrated Local NIQE (IL-NIQE) (ZHANG; ZHANG; BOVIK, 2015), Deep Bilinear CNN
(DB-CNN) (ZHANG et al., 2018), Contrast-Changed Image Quality Measure (CEIQ)
(YAN; LI; FU, 2019) and Multi-Scale Image Quality Transformer (Musiq) (KE et al.,
2021).

CLAHE was executed applying Matlab’s ‘adapthisteq’ built-in function to the light-
ness of HSL color space. For the other concurrent algorithms, the official implementa-
tions were used. The implementations of Ying17 and Zhang19 are in Matlab, and the
implementation of LCDPNet is in Python with Pytorch.

Table 5.1 shows the parameters fixed for SADS in this experiment. These parameters
were chosen empirically, visually evaluating the output images compared to the input
images. For CLAHE, a clipping limit of 0.02 and an 8× 8 grid of tiles were adopted. For
Zhang19, the γ parameter (defined in (ZHANG; NIE; ZHENG, 2019)) was set to 0.7, and
the other parameters were the same as in the original code. For the other algorithms, the
original parameter choices were kept.

Table 5.2 (page 49) shows the median of each metric for the 50 images, for each
enhancement algorithm. An upwards (downwards) arrow after the metric name means
the higher the better (the lower the better). The best and second best results of each row
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Table 5.1: Parameters of SADS for the contrast and exposure experiment.
Symbol Description Value
σ Scale parameter of WLS

weights Gaussian blur
2

λ Trade-off factor of WLS
objective function

0.25

- Estimation method MLE
- Use PCG for WLS filter? No
τ ICF tolerance 1 · 10−5

z Scale parameter of
smoothness map

8 · 10−4

p Power parameter of
smoothness map’s
generalized mean

0.025

γ Power parameter of
smoothness map’s input

0.025

K Global transformation level 0.8
C Local transformation level

factor
0.5

- Color image extension
method

MMT

T Coefficient from the
combination of
transformations in the MMT
color image extension

0.7

h Scale parameter of MMT
color image extension
weights

0.5

η Preservation level of
Algorithm 1 (page 40)

0.75
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Table 5.2: Median of the IQA metrics in the contrast and exposure experiment without
references.

CLAHE Ying17 Zhang19 LCDPNet SADS
BRISQUE ↓ 15.802 16.215 16.807 18.281 15.395

NIQE ↓ 2.300 2.475 2.414 2.648 2.326
IL-NIQE ↓ 18.483 19.996 19.329 21.169 18.627
DB-CNN ↑ 58.022 57.678 59.756 53.860 59.785

CEIQ ↑ 3.585 3.407 3.572 3.409 3.592
Musiq ↑ 66.892 67.186 68.088 65.649 68.652

are highlighted with bold and underline, respectively. The proposed SADS had the best
result for four of the IQA, and the second best for two of the IQA.

Figure 5.1 shows some of the image outputs in this experiment. The outputs verify
the high capability of SADS to enhance contrast and correct exposure. We can observe
that, when CLAHE performs well for an image, SADS output is similar to CLAHE’s out-
put, but when CLAHE performs badly, SADS achieve a much better result. In special,
CLAHE was unable to correct some of the dark regions in the inputs, and over enhanced
sky regions. Zhang19 method also had similar outputs to SADS in some cases, but in
other cases over enhanced sky areas or enhanced dark regions less than SADS. A prob-
lem observed with Zhang19 method is that apparently the fusion method adopted by it
do not select the LIME result in some situations where it should, thus leaving some dark
regions without enhancement (e.g., in the third image in Figure 5.1, at the center of the
window). Ying17 method performed well for enhancing low light regions, but gener-
ated results too bright in many cases, and could not correct overexposed regions (which
was expected, since it is an algorithm for low light correction only). LCDPNet gener-
ated images with well-balanced exposure, but in some cases do not enhanced contrast
satisfactorily or produced slightly artificial colors.

5.2 Contrast Enhancement and Exposure Correction, Dataset with
References

In this experiment, 17 natural images with contrast or exposure defects were enhanced
with the same algorithms from the experiment of Section 5.1 (page 47), and the out-
puts were quantitatively compared to reference images. The image pairs are from MEF
dataset (MA; ZENG; WANG, 2015), which contains 17 image sequences with multiple
exposure levels (≥ 3) for each scene, and the results of 8 multiple-exposure fusion al-
gorithms applied to each sequence. One image from each image sequence was selected
as the input image. The fusion results generated with the algorithm from (MERTENS;
KAUTZ; VAN REETH, 2009), labeled ‘Mertens07’ in the dataset, were used as reference
images (i.e., the ground truth). The quantitative comparison between the outputs and the
reference images was made using some of the most relevant FR IQA metrics in the lit-
erature, namely Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) Index
(WANG et al., 2004), Visual Information Fidelity (VIF) (SHEIKH; BOVIK, 2005, 2006),
Feature Similarity (FSIM) (ZHANG et al., 2011), Gradient Magnitude Similarity Devi-
ation (GMSD) (XUE et al., 2013), Learned Perceptual Image Patch Similarity (LPIPS)
(ZHANG et al., 2018) and Attention-Based Hybrid Image Quality Assessment (AHIQ)
Network (LAO et al., 2022). The outputs were also evaluated with the NR IQA metrics
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Figure 5.1: Sample results of the contrast and exposure experiment without references

(a) Input (b) CLAHE (c) Ying17 (d) Zhang19 (e) LCDPNet (f) SADS

Source: TM-DIED dataset (VONIKAKIS, 2021) (5.1a) and author (other images).
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Table 5.3: Median results of the FR IQA metrics in the contrast and exposure experiment
with references.

CLAHE Ying17 Zhang19 LCDPNet SADS
PSNR ↑ 13.047 19.705 16.070 17.117 16.531
SSIM ↑ 0.515 0.745 0.651 0.696 0.763

VIF ↑ 0.400 0.460 0.412 0.406 0.437
FSIM ↑ 0.812 0.890 0.861 0.862 0.876

GMSD ↓ 0.147 0.105 0.116 0.111 0.101
LPIPS ↓ 0.267 0.221 0.229 0.233 0.229
AHIQ ↑ 0.208 0.464 0.262 0.317 0.358

Table 5.4: Median results of the NR IQA metrics in the contrast and exposure experiment
with references.

CLAHE Ying17 Zhang19 LCDPNet SADS
BRISQUE ↓ 17.593 16.658 18.796 20.537 14.986

NIQE ↓ 2.821 2.929 2.778 2.996 2.548
IL-NIQE ↓ 22.946 23.496 23.355 26.677 21.869
DB-CNN ↑ 53.678 53.193 54.143 48.892 55.600

CEIQ ↑ 3.021 3.362 3.269 3.295 3.395
Musiq ↑ 64.782 65.671 66.074 64.472 66.374

used in Section 5.1 (page 47). The parameters used for SADS and the other enhancement
algorithms were the same as in the experiment of Section 5.1 (page 47).

Table 5.3 and Table 5.4 show the median of the results of the FR and NR metrics,
respectively. Table 5.3 shows that Ying17 and the proposed SADS achieved results per-
ceptually closer to the reference images. The good FR scores of Ying17, which is design
to correct only low light images, is due to the fact that all selected input images were low
light images (the high exposure images in the MEF dataset sequences have large saturated
areas or are too close to the selected ground truth images, and thus none of them was se-
lected as input image). Table 5.4 shows that SADS achieved the highest quality according
to all NR metrics.

Figure 5.2 shows some of the image outputs in this experiment. Some of the observa-
tions made in Section 5.1 (page 47) regarding the performance of SADS with respect to
the other methods also apply to the outputs in this experiment.

5.3 Image Defogging/Dehazing

In this experiment, 306 natural foggy/hazy images were enhanced using DehazeNet
(CAI et al., 2016), Artificial Multiple-Exposure Fusion (AMEF) (GALDRAN, 2018),
Feature Fusion Attention Network (FFA-Net) (QIN et al., 2020), DehazeFormer (SONG
et al., 2022) and the proposed SADS. The images were selected from the LIVE Image
Defogging Database (CHOI; YOU; BOVIK, 2015). The results of the methods were
quantitatively evaluated using Fog Aware Density Evaluator (FADE) NR metric (CHOI;
YOU; BOVIK, 2015). The FADE metric estimates the fogginess/haziness density of an
image, and thus a lower FADE result indicates a better performance of the algorithm. The
parameters used for SADS where the same used in the contrast and exposure experiments,
except for a change in z and T for the values indicated in Table 5.5 (page 53). A smaller
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Figure 5.2: Sample results of the contrast and exposure experiment with references.
InIn

GTGT

InIn

GTGT

InIn

GTGT

InIn

GTGT

InIn

GTGT

(a) In/GT (b) CLAHE (c) Ying17 (d) Zhang19 (e) LCDPNet (f) SADS

Source: MEF dataset (MA; ZENG; WANG, 2015) (5.2a) and author (other images).
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Table 5.5: Parameters of SADS changed for the defogging/dehazing experiment.
Symbol Description Value

z Scale parameter of
smoothness map

1 · 10−5

T Coefficient from the
combination of
transformations in the MMT
color image extension

0.5

Table 5.6: Median of the FADE metric in the defogging/dehazing experiment.
DehazeNet AMEF FFA-Net DehazeFormer SADS

0.677 0.647 1.376 1.078 0.619

z is used to have higher values in the smoothness map only for virtually flat regions,
helping the transformation to perform better in hazy areas. A smaller T is used to increase
the contribution of the third transformation in MMT extension for color images, which
increases the colorfulness, as required to attenuate the foggy/hazy aspect.

The official implementation of the defogging/dehazing algorithms was used. De-
hazeNet and AMEF implementations are in Matlab, and FFA-Net and DehazeFormer
implementations are in Python with Pytorch. The default parameters were used in case
the model had parameters. For FFA-Net, the ‘ots’ pre-trained weights were used. For
DehazeFormer, the ‘outdoor/dehazeformer-s’ pre-trained weights were used.

Table 5.6 shows the median of the FADE metric for each algorithm. The proposed
SADS achieved the lower median FADE, verifying that it is competitive in the defog-
ging/dehazing task.

Figure 5.3 shows some of the image outputs obtained in this experiment. Generally,
AMEF and SADS generated results visually better than the other algorithms, showing
concordance with Table 5.6. DehazeNet tended to produce results too dark in foggy areas.
In a few cases, AMEF produced unnatural blue/green tones, e.g., in the image with stair.
In some cases, FFA-Net and DehazeFormer produced only slight corrections to foggy
areas. SADS was able to correct fogginess/haziness at least partially and at the same time
improve contrast and correct exposure.

5.4 Effect of Smoothing Parameter λ and Global Transformation
Level K on the Output

In this experiment, SADS was executed for varying combinations of the parameters λ
and K. MMT color extension method was used. Figure 5.4 (page 55) shows the results,
where each column corresponds to a value of K and each row corresponds to a value of
λ. For the effect of K, it can be observed that the larger K is, the larger is the degree of
enhancement with respect to the input image. For the effect of λ, it can be observed that,
when λ is small, finer details are boosted and there is less preservation of the relative con-
trast between segments, characterizing a more local intra-segment contrast gain. When
λ is large, more of the contrast between segments is preserved, and the contrast gain be-
comes less local. In conclusion, λ controls the spatial scale in which the enhancement
occurs, while K, as expected, controls the global enhancement degree.
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Figure 5.3: Sample results of the defogging/dehazing experiment.

(a) Input (b) DehazeNet (c) AMEF (d) FFA-Net (e) Dehaze- (f) SADS
Former

Source: LIVE Image Defogging Database (CHOI; YOU; BOVIK, 2015) (5.3a) and
author (other images).
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Figure 5.4: Effect of λ and K on the SADS output.
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Source: (FARBMAN et al., 2008) (5.4a (page 55)) and author (5.4b (page 55)).

5.5 Runtime Analysis

The following runtime analysis was conducted for SADS. Each one of the 50 input
images used in the experiment of Section 5.1 (page 47) was resized to a set of 10 different
resolutions. The set of resolutions was the same for each image, except for the interchange
between the first and second dimensions when the image is tall relative to when the image
is wide. The largest resolution is 1 mega pixel, with an aspect ratio of 3:4 for wide
images and 4:3 for tall images. The other resolutions are given approximately by the
largest multiplied by k/10, with k = 1, . . . , 9. SADS was applied to each image and
each resolution, and the execution time was measured in each case. This procedure was
made for SADS with both LCT and MMT color extension methods (Section 4.6 (page
32)); in the LCT case, HSL was the color system used to extract the luminance. The CPU
used by Matlab online at the experiment was an Intel Xeon Platinum 8375C @ 2.90GHz.
Table 5.7 (page 56) shows the median of the execution times for each resolution and
choice of color extension method.

The downscale/upscale scheme proposed on Section 4.8 (page 39) to speed up the
algorithm was not used in this experiment. By using such scheme, lower execution times
can be achieved, and SADS can be applied to larger resolutions without increasing sig-
nificantly its execution time. In practice, if the downscale/upscale speed up scheme is
used, the total execution time is the execution time of SADS on the resolution to which
the image is downscaled added to the execution times of the downscale and the guided
upsample (which are not very high).
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Table 5.7: Median of execution times of SADS by resolution and color extension method
(LCT with HSL color system and MMT)

Resolution Time (s)
(W ×H or H ×W ) LCT MMT

115 × 86 0.0540 0.0553
231 × 173 0.1134 0.1189
346 × 260 0.2251 0.2412
462 × 347 0.4061 0.4369
577 × 433 0.6875 0.7319
693 × 520 1.0864 1.1637
808 × 606 1.4992 1.5979
924 × 693 2.0813 2.2314

1039 × 779 2.6915 2.9014
1155 × 866 3.4545 3.6927

5.6 Limitations of the Proposed SADS Method

One of the main limitations of the proposed SADS is that the transformation obtained
for disconnected parts of a segment can be inconsistent, causing unnatural results. This
occurs because the WLS diffusion is attenuated by prominent edges, and thus the WLS
based regional mean potentially changes stepwisely from a disconnected part of a segment
to a neighbor part. For example, in Figure 5.5 (page 57), the sky segment is divided in
two sides by the antenna, which causes a jump discontinuity in the SADS transformation
for the sky, producing an unnatural aspect.

Other problem occurs when the WLS diffusion inside a segment ‘leaks’ across the
edges of a small segment or a small disconnected part of segment contained inside or over-
lapping the former larger segment. An example occurs in Figure 5.6. The tree branches
enclose parts of the sky segment, and the transformation applied to this enclosed sky areas
is essentially the same transformation applied to the tree segment, generating the bright
sky areas between the tree branches. In its turn, the larger sky segment partially encloses
some of the tree branches in the top of the tree, and the transformation applied to this en-
closed branches is essentially the same transformation applied to the larger sky segment,
generating the dark branches in the top of the tree.

These problems also occurs for other WLS based methods, such as LIME (GUO; LI;
LING, 2016) and Zhang19, but they were observed in a larger degree for SADS.

Another limitation of SADS is the noise amplification on noisy segments that receive
very large contrast gains. This problem can be mitigated by the following strategy, in-
spired in (GUO; LI; LING, 2016). A denoising filter such as BM3D (DABOV et al.,
2007) would be applied to the SADS output. The original and filtered SADS output
would then be combined by a convex combination, where the coefficient of the convex
combination would depend on the local contrast gain, which can be measured by a heuris-
tic depending on certain variables, such as the maximum slope of the beta CDF fitted for
each pixel. The objective in combining the original and filtered SADS outputs according
to the contrast gain would be to reduce the filtering degree in areas that do not need to be
filtered, similarly to what is done in (GUO; LI; LING, 2016).
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Figure 5.5: Example of inconsistent transformations obtained for different parts of a dis-
connected segment.

(a) Input (b) Zhang19 (c) SADS

Source: TM-DIED dataset (VONIKAKIS, 2021) (5.5a) and author (other images).

Figure 5.6: Example of leakage of the parameter maps through edges of small semi en-
closed parts of segments.

(a) Input (b) SADS (c) SADS (highlight)

Source: TM-DIED dataset (VONIKAKIS, 2021) (5.6a) and author (other images).
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6 CONCLUSION AND FUTURE WORK

A method for contrast enhancement and exposure correction, namely Structure-Aware
Distribution Stretching (SADS), has been proposed for grayscale and color images. As
traditional histogram equalization based methods, SADS relies on the idea of stretching
the probability distribution of channels from the image. However, different from these
methods, SADS models the distributions of the channels with the beta distribution, fitting
such distribution regionally, with a structure-aware scheme based on replacing the sam-
ple mean operation with an EPS filter. SADS showed promising results for the tasks of
contrast enhancement, exposure correction and image defogging/dehazing.

In comparison to the well known retinex based algorithms, SADS has the advantage
of not suffering from the interval [0, 1] violation problem. Besides, SADS can enhance
the contrast of middle tone image regions, differently from most retinex methods that
tend to enhance the contrast only in dark or bright (by inverting the image) areas. In
comparison to typical adaptive histogram equalization algorithms, SADS has the follow-
ing advantages: do not produce the checkerboard effect; do not produce or produces in
a much smaller degree the staircase effect; applies a transformation better adapted to the
segments; applies a transformation with a simple smooth regular shape. In comparison
to learning based methods, SADS has the advantage of providing consistent outputs for
all classes of images, and not only images similar to the images in a training dataset,
and also the advantage of having multiple parameters that can be adjusted to better adapt
to each task (some learning methods also provide parameters enabling user adjustments,
however).

It is important to note that, in each experiment, the user-defined parameters for SADS
were kept constant for all input images. However, superior results can be achieved by
adjusting the SADS parameters individually for each image.

Possible directions for future works are: (i) the use of other distributions besides the
beta distribution as probability distribution model; (ii) adaptive ways of selecting or mod-
ifying the SADS parameters; (iii) a solution or mitigation for the limitation involving dis-
connected segments described in Section 5.6 (page 56); and (iv) the possibility of a multi-
scale version of SADS that combines the transformations or parameter maps obtained for
different smoothness degrees. In the direction (i) in special, there is the possibility of
using a constrained beta distribution where α, β satisfy αβ = 1; this may create a variant
of SADS focused on exposure correction only, without middle range contrast enhance-
ment; it would also be possible to combine the parameter maps of the original SADS and
such constrained SADS, thus enabling a control of the amount of middle range contrast
enhancement.
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APPENDIX A CREDITS TO INPUT IMAGES

The input images in Figures 1.1 (page 15), 4.4 (page 33) (first row), 5.5 (page 57)
and 5.6 (page 57) are from TM-DIED dataset (VONIKAKIS, 2021). The input image in
Figure 4.2 (page 29) is from DICM dataset (LEE; LEE; KIM, 2013), where a conversion
for grayscale was realized. The input images in Figures 4.3 (page 31) and 4.4 (page 33)
(second row) are from pexels.com, by Julius Silver and Ron Lach, respectively. The input
images in Figures 5.1 (page 50), 5.2 (page 52) and 5.3 (page 54) are from the datasets
used in their respective experiments. The input image in Figure 5.4 (page 55) is from
(FARBMAN et al., 2008), a courtesy of Norman Koren in that paper.
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