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Abstract. This work consists of the development of software that can identify acoustic 

emission events faster than the acquisition rate, and use them to compute the evolution 

of local parameters, which can be used as precursors of local and global collapse. The 

program was developed in Python, using a moving window with a floating threshold in 

which events are detected using the Short-Term Energy technique. The end is detected 

using the Zero-Cross-Rate, and is a part of the program that still needs improvement in 

accuracy. Overall, the program shows good performance and promising results for 

event detection and parameter calculation. 
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NOMENCLATURE 

 

Símbolos   

A Signal amplitude [V] 

Es Signal energy [V s] 

fs 
Signal characteristic 
frequency 

[Hz] 

ti Event start time [s] 
tf Event end time [s] 

tp 
Event maximum amplitude 
time 

[s] 

Ap Maximum amplitude value [V] 
Ath Threshold amplitude value [V] 

RT Event rise time [s] 

RA Event rise angle [s/V] 
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1. INTRODUCTION 

 

The large amount of available information nowadays makes data treatment and 

analysis one of the most important tools in decision-making in a variety of fields 

ranging from biology and marketing, social networks and engineering. The technologies 

developed around data analysis continuously increase their influence over our daily 

lives. One example we could mention is the analysis of certain vehicle parameters, such 

as air-fuel mixture enrichment after a fuel shutoff event not followed by acceleration, in 

order to increase catalyst efficiency, thus reducing pollutants emissions (Choi et al., 

2019), an effect illustrated in Figure 1b. Another example that can be mentioned is the 

combined analysis of data collected from a hospital to improve its efficiency (Kohl et 

al., 2019), and even the usage of user access data from a social network to determine the 

best time for posting new content in order to get more viewers.  

 

Figure 1 - Emissions test setup (a) and catalyst efficiency drop after fuel shutoff 

without further injection (b). Source: (a) https://www.sentronics.com/article/how-

temperature-affects-fuel-consumption-measurement-accuracy/ (b) Author. 
 

 
 

In engineering, damage determination and measurement using the structure response 

are widely used in maintenance and monitoring of structures of great interest, such as 

oil pipelines, old buildings, among others. Among these data analysis techniques, one 

that stands out is the acoustic emission technique (AET), which consists of obtaining 

characteristic signals caused by elastic waves generated by internal mechanisms in the 

system. AET can be used in non-destructive tests, with real-time analysis while the 

system conditions continuously change, for example when applying load to a structure, 

increasing internal pressure of a pipeline or the growth process of a plant, which makes 

this technique very valuable in the monitoring of systems whose conditions change over 

time. Three usage examples of AET are: the monitoring of a 2500-year-old structure in 

Italy called Temple of Athena, whose pillars are excited by the weight of structure itself 

and by the surrounding traffic of vehicles and people (Figure 1a), mentioned by 

Carpinteri et al. (2008a); the monitoring of a tomato plant growth, in order to establish 

the best irrigation regime (Figure 1b), mentioned by Kageyama and Sakai (2016); the 

monitoring of high pressure oil pipelines (Figure 1c), mentioned by Quo et al. (2020). 
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Figure 2 - Configuration of the installed AE sensors in the pillar of the Temple of 

Athena (a), in the tomato plants stems (b) and in the high-pressure oil pipeline (c), and 

an AE event example (d). Source: Rojo Tanzi (2020). 

 
 

Through the identification of acoustic emission (AE) signals, it’s possible to compute 

global parameters, and the evaluation of their evolution can indicate a change in the 

system conditions, for example, that a structure is about to collapse. In this context, it is 

possible to define the general objective of this work, which is to develop a tool for AE 

studies capable of interpreting data faster than the acquisition rate. The specific 

objectives are the following: 

- Apply array programming techniques to speed up event detection, as described by 

Harris et al. (2020); 

- Calculate the evolution of global parameters used in the Acoustic Emission 

Technique; 

- Validate the program by comparing its results to other results obtained with the 

same dataset; 

- Discuss the damage process identification by analyzing the graphic of the 

parameters. 

 

 

Structure of this paper 

 

Section 2 presents the theoretical foundations that describe the physical meaning of 

the events and obtained parameters, along with the techniques used for obtaining them. 

Section 3 contains a bibliographical review of tested AE event detection techniques. 

Section 4 contains the results obtained from this program, and shows the graphic with 

all the values of the parameters obtained in the validation process. Section 5 is the 

conclusion, where we discuss the obtained values. 
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2. THEORETICAL FOUNDATIONS 

 

2.1 Acoustic Emission Technique (AET)  

  

This technique consists of mounting Acoustic Emission (AE) sensors on the system 

surface, from which data is collected and can either be stored for future analysis or be 

used to monitor structures in use (such as a pressure vessel). These sensors are capable 

of detecting the elastic waves that propagate in the solid, as a result of changes in its 

internal structure. According to Ohtsu (2015), “Fracture in a material takes place with 

the release of stored strain energy, which is consumed by nucleating new external 

surfaces (cracks) and emitting elastic waves”. The sensors measure acceleration of high 

frequency, normally ranging from 20 kHz to several MHz, according to Grosse and 

Ohtsu (2008). Figure 3 illustrates a typical Acoustic Emission signal where one event 

has occurred, and some parameters extracted from this event. These are individual 

parameters, and combined, they generate some indicators of system collapse, as 

described by Ohtsu (2015). 

 

Figure 3 - Acoustic Emission signal example and the parameters obtained from it. 

 
 

The forementioned parameters include the event start time (ti), end time (tf), and 

moment of maximum amplitude (tp), maximum amplitude value (Ap), threshold 

amplitude value (Ath), rise time (RT = tp – ti), and rise angle (RA = RT / Ap). 

 

2.1.1 b-value 

 

The b-value, or Gutenberg–Richter coefficient, was first introduced in the evaluation 

of seismic events in the 1940s. It defines a relationship between the number of events 

(N) and their amplitude (A). First, we count the number of events with amplitude equal 

or greater to the amplitude of each point, in a moving window containing a defined 

amount of events, and then make a linear regression of these points in a bi-log graph of 

number of events and amplitude, as illustrated in Figure 4. The b-value represents the 

angular coefficient of this regression, according to Eq. 1.  

 

(Eq.1) 
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Figure 4 - Illustration of the b-value. 

  

When the damage process starts in a structure, the events originate from small micro-

cracks and are of lower amplitude and more homogeneously distributed, which results 

in a high b-value. As damage progresses, the micro-cracks generate events with a larger 

amplitude that tend to accumulate in a preferential place, which in turn reduces the 

number of events larger than those amplitudes, reducing the b-value. 
 

2.1.2 є-value 

  

This value is computed in a similar way to the b-value, but relates energy of the 

signal (Es) to the number of events, as in Eq. 2.  

 

(Eq.2) 

 

The energy can be obtained by the RILEM method, which consists of calculating the 

area of a triangle made of the start point, end point, and peak amplitude point of the 

signal – RILEM Technical Committee (Masayasu Ohtsu), 2010 - or by simple RMS 

value of the signal. Using the RMS signal has yielded improved sensitivity compared to 

the RILEM method, as observed by Rojo Tanzi et al. (2021). Both are used in the 

program. Figure 5 (c) illustrates the calculation of the є-value. 

 

Figure 5 - Illustration of the RILEM energy (a), the signal RMS (b) and є-value (b). 

 
 

2.1.3 c-value 

 

The calculation of this parameter is similar to that of values b and є, and it focuses on 

the frequency distribution of the AE events, related to the number of events, as in Eq. 3.  

 

(Eq.3) 
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For each event, a Fast Fourier Transform is applied to the signal, and the frequency 

with the largest power spectral density is considered the characteristic frequency of that 

event. While the damage process changes and the micro-cracks start to grow, the c-

value decreases, indicating an imminent collapse of the structure. Figure 6 shows an 

illustration for obtaining the c-value. 

 

Figure 6 - Illustration of the power spectrum on the frequency domain (a) and c-value 

(b). 

 

 

2.1.4 Average amplitude 

 

The average amplitude is the simple average of the amplitude values from the events 

inside the moving window. It is reported by Belousova and Grigorieva (2018) that it 

helps track the dynamics of crack formation. This parameter is complementary to the b-

value. 

 

3. BIBLIOGRAPHICAL REVIEW 

 

In this section, we review the event detection techniques used in previous works. 

Event detection is a basic functionality to find where each event starts and ends, in order 

to obtain the event parameters shown in Figure 3, and it is discussed in several papers. 

The most basic technique is setting a fixed amplitude threshold above which the signal 

is considered an event. However, this can lead to imprecise detection of AE events, 

especially when the noise floor amplitude has significant variations. Therefore, more 

precise techniques were developed, two of them are explained in the next section, one 

by Xiang (2017) and another by Piñal-Moctezuma, F. et al. (2019). 

 

3.1. Floating threshold for transient AE detection 

  

There are many solutions for AE event detection, some of which require much 

processing time and are not suitable for processing data faster than the acquisition rate. 

The threshold is the simplest and most used way of locating the AE signals, however, 

when the noise amplitude presents variations, as illustrated in Figure 7, a single 

threshold fails to correctly identify the events, returning too many false positives or not 

locating an event, if it was set too low or too high. One workaround for that problem, 

mentioned by Xiang (2017), is to recalculate the threshold in a moving window, which 

sets a higher threshold for noises with more amplitude. The author suggests making the 

signal envelope, calculating the mean of the envelope, and then setting the threshold to 

three times the standard deviation of the envelope above the mean. To be considered AE 
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events, only points that have consecutive spikes above the threshold are considered 

possible AE events, which rules out outliers. 

 

 Figure 7 - Noise signal in the same test. The variations require a control system to 

adapt to the noise difference, like the floating threshold. 

 

3.2. Short-Term Energy and Zero-Cross Rate (STE-ZCR) analysis 

 

This technique is mentioned by Piñal-Moctezuma et al. (2019), and detects events 

through a refined multi-step technique. The first step is the generation of characteristic 

functions for the short-term-energy (STE), which is the sum of the square of each 

point’s absolute value,  and the zero-cross-rate (ZCR), which is the time it takes for the 

signal to change its sign from negative to positive or vice-versa. Then the event start 

points are determined by the positive derivative STE signal, and the endpoints of the 

events are determined by the rise of the ZCR derivative. This is due to the events having 

greater energy than the noise signal, and also having a much smaller ZCR than the noise 

signal. The combination of both values makes a reliable indicator of the event duration. 

The result of this technique is illustrated in Figure 8, where in (a) we see the event 

signal highlighted from start to finish. On (b) we see the STE value used to detect that 

an event is happening, on (c) we see the STE derivative, used to find the event start 

time, and on (d), we see the ZCR derivative, where the leftmost yellow highlighted 

square, as well as the third square, highlighted in blue, are used to set the threshold to 

which the signal must return in order for next the event to end. 

 

4. METHODOLOGY 

 

In this work, data was acquired from tests performed at the GMAp (Grupo de 

Mecânica Aplicada – Applied Mechanics Group) at UFRGS, and are used as input for 

the program, which runs simulations on acquired data. The data for both tests was 

supplied by GMAp, and the papers they relate to are Rojo Tanzi et al. (2021) and Rojo 

Tanzi et al. (2020). 

The code development is made with Python language – reference to Ernesti, J., 

Kaiser, P (2022) - with the assistance of the mathematical library NumPy. User 

interface is made with built-in library tkinter and matplotlib for the graphs. 
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Figure 8 - Two AE events and their duration (green shaded areas) (a), the STE graph 

for the same time period (b), the STE derivative, in which the first rise will set the event 

start (c), and the ZCR graph which is used to detect the event ending, by interpreting its 

decrease when the event start and then its increase as it ends (d). Source:  Adapted from 

Piñal-Moctezuma et al. (2019). 

 

 
  

4.1 Event detection 

 

In order to obtain the indicators that assist the user in identify significant damage to 

the analyzed structure, first the parameters of each event must be obtained, and the first 

part is to identify the event start and end times. Within this time, we obtain the 

maximum amplitude, energy and characteristic frequency. 

The detection is made within each moving window, which have their own amplitude 

threshold set based on the specific window noise, as described in Section 3.1. Points 

above this threshold are separated for further analysis. The procedure is first to create a 

top envelope of the signal (which reduces the number of points and facilitates analysis), 

then setting the threshold to three times the standard deviation above the mean value of 

the envelope, as suggested by Xiang (2017). This multiplier of three times is adjustable 

by the user to increase or reduce sensitivity. 

After setting the threshold for the window, all the envelope points above it are 

analyzed with 2 parameters: the Short-Term Energy (STE) and the (ZCR). This 

technique is described in Section 3.2. 

 

4.1.1 Event start detection 

 

The STE is used to detect the event start. The algorithm finds the points where the 

envelope crosses the threshold, then for a set number of following neighbors, set to 10 

as the standard but configurable by the user, it checks if there are at least 2 other points 

above the threshold that are in a row or with one gap between them. If there are, it 
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calculates the total energy of this segment, and if not, it gives a value of zero. This 

filters out false positives, and the event start is identified where the energy goes above 

zero, as illustrated in Figure 9. 

 

Figure 9 - Event start detection through STE. 

 
 

4.1.2 Event end detection 

 

The end is detected via the ZCR where the Nth point after an event starts that passes 

the ZCR envelope average. N is defined by the user and is set by default to 5 to avoid 

early detection by noise. Figure 10 illustrates in blue the event start, detected via STE, 

the ZCR in green, the ZCR envelope average in a red horizontal line, and the event end, 

represented by vertical red lines. The event duration is represented by the painted 

rectangles. 

 

Figure 10 - Event end detection through ZCR. 

 
 

5. RESULTS AND APPLICATIONS 

 

In this section, we test this algorithm with two acoustic emissions signals that have 

already been interpreted and have had their results published in papers and compare the 

results for the indicators to check the program’s accuracy. The event detection quality is 

discussed in section 5.1. 

 

5.1 Results for event detection 

  

The most important part of the program is the automatic event detection, and that 

includes obtaining its start and end points, which can affect mostly the є and c values, 

since the b-value and the average amplitude use only the event amplitude as input. The 

event detection part of the algorithm has indicated that it works well in detecting an 

event start and its highest amplitude, but is not very precise in detecting the event end, 

mainly due to the ZCR average being affected by a long signal (in relation to the 

window size) of great amplitude, which sets the window average to a lower value. This 

causes the threshold to be lower, and small noises already pass the average, causing an 

early event end detection. In some cases, when the event has a length that is short in 

relation to the window (0.05), then the detection works well. In cases where the event 
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has a length of 0.15, three-quarters of the window size, the event is split into parts, and 

4 events were detected in this specific case. 

Furthermore, in windows where the signal was mainly noise, some false detections 

of long but small amplitude events happened. An example of this is illustrated in Figure 

11c. 

These detection errors are a common problem in automatic event detection 

algorithms, as mentioned by Xiang (2017) - “[…] when the noise floor amplitude has 

significant change, an appropriate threshold is not easy to be obtained to trigger the AE 

signal alarm.”  

 

5.2 Application on the spaghetti bridge model 

  

This AE signal originated from a spaghetti bridge competition held at the Federal 

University of Rio Grande do Sul (UFRGS) by mechanical engineering graduation 

students, and its results were the subject of the paper by Rojo Tanzi et al. (2021).  

 

5.2.1 Problem description 

 

The bridge studied in the paper is supported on both sides, and the load is applied at 

the bottom center point. One AE sensor is installed on the side and the other at the top 

of the bridge. Four pictures of the experiment at different times during the test are 

shown on Figure 11, and the sensors are pointed out on  Figure 11a. 

 

Figure 11 - Spaghetti bridge model at various moments during the test. Source: Rojo 

Tanzi et al. (2021). 

 

The bridge is 1.08 m long, 0.45 m high, and 0.15 m wide, with a mass of 1.40 kg. 

The load is increased every 10 s and the bridge collapsed with a load of 784.80 N at 235 

s into the test. According to the author Rojo Tanzi (2021), “the sensors are piezoelectric 

accelerometers, with frequency measurement in lineal range from 5 Hz to 60 kHz. Their 

signal was acquired through a data acquisition module Brüel & Kjær® PULSE™ 3035, 

at a sampling rate of 65.54 kHz. A Nyquist-type filter with a cutoff frequency of 30 kHz 

was used in order to reduce noise and to avoid aliasing”. The data was processed using 

the SoftAE software, whose creation was part of the dissertation by Rojo Tanzi (2020). 
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5.2.2 Results 

 

The test results obtained with this algorithm are presented on Figure 12 (b to h) along 

with the results previously obtained by Rojo Tanzi et al. (2021) on (a), which displays 

all parameters (b-value, c-value, є value for frequencies using RMS and RILEM, and 

event count). Each indicator is individually evaluated in the next sections. The 

histograms for b-value, є-value and c-value are made with 25 events with 5 events 

overlap, the same as in the previous study. This program has found 445 events, as 

opposed to 230 events found in the previous program, mainly because of the event end 

detection described in Section 5.1, which led to many events being split in more than 

one part. 

 

(a) b-value: The b-value illustrated on Figure 11b presents instabilities in the regions 

between 120 s and 150 s, with peaks on 123.63 s, 134.54 s and 146.23 s, while the load 

increases occurred at 117.88 s, 131.34 s and 142.88 s. This shows that this indicator 

responds to the load variation, which can also be noticed in the graph for the є-value 

Figure 11c. Overall, the b-values obtained correlate well with the ones already studied, 

and the load characteristics of the test, which shows that the program worked well on 

obtaining this parameter. 

 

(b) є-value: The є-value results are illustrated on Figure 11d, and show a significant 

change around the 150 s mark, which represents a likely change in the system 

characteristics. This behavior is also seen on the previous study on Figure 12a. 

 

(c) c-value: The c-value is the parameter with the biggest difference from the previous 

study. It shows a slight decrease between 135 s and 140 s, but the magnitude of the 

decrease is small and not very conclusive. This difference is likely related to the 

software difficulty in finding the correct event endpoint, and since this parameter is 

affected by the event length as the frequency decays throughout the event, the 

differences can be significant. To improve that, more work must be done in correcting 

the event end detection. 

 

(d) Average amplitude: This parameter was not registered in the previous study, but 

was inserted in the program due to its possible relevance, as mentioned in section 2.1.4. 

The average amplitude has shown a big increase between 140 s and 150 s, along with 

the other noticeable changes in the other parameters, and another at the end of the test 

after 210 s, and finally a major one at 234 s. This was the only parameter to show a 

good response at the end of the test (after 210 s) near the collapse, which points to its 

importance in structural monitoring. 
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Figure 11 - Results adapted from Rojo Tanzi et al. (2021) (a), and each of the 

parameters obtained with this program (b to h). 

 

 

5.3 Application on a pre-cracked basalt specimen 

 

This AE signal originated from a test in a prismatic basalt specimen with an oblique 

pre-fissure, and its dimensions, boundary conditions, and photo are shown in Figure 12, 

and it was first analyzed by Rojo Tanzi et al. (2022).  
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Figure 12 - Basalt specimen geometry (a), boundary conditions (b) and photo (c). 

Source: Rojo Tanzi et al. (2022). 

 
 

5.3.1 Problem description 

 

The measurements were performed with a data acquisition system with a frequency 

of 445 kHz, with two sensors, one on each side of the specimen, and the prescribed 

displacement was  applied at a constant velocity of 0.6 mm/min. The specimen is a 

square with 70 mm sides and 25 mm thickness. 

 

5.3.2 Results  

 

The test results obtained with this algorithm are presented on the result section for 

each parameter, along with the results previously obtained by Rojo Tanzi et al. (2022). 

The load and event count are displayed on Figure 13. Each indicator is individually 

evaluated in the next sections. The histograms for b-value, є-value and c-value are made 

with 35 events with 3 events overlap, the same used on the previous study. This 

program has found 1289 events, as opposed to 1274 events found in the previous 

program. A manual review of the data indicated 211 false positive detections, 16%. 

 

Figure 13 - Basalt specimen geometry load applied (a) and event count (b). 

 
 

(a) b-value: The b-values obtained are illustrated on the graph in Figure 14, where 

(a) is the result from the previous study and (b) from this program. The graph shows a 

steep decrease in the b-value at 107 s, and in the previous study there is one at 114 s 

(marked as point (a)), and this delay is linked to the event detection. Since the windows 

are calculated for every three new events, if a false event is identified, then a b value 

will be generated in advance. If, on the other hand, an event is overlooked, then this will 

lead to a delay in the generation of the next value. Moreover, we see low points of b-

value in the ranges of 125 s to 135 s and also between 135 s to 145 s, observable in both 
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graphs. The third critical point is the steep decrease near 220 s, where the b-value drops 

below 1, and the fourth is the drop at 275 s. The overall comparison of both results 

shows a good connection between the obtained b-values and the test critical points. 

 

Figure 14 - Results for b-value adapted from Rojo Tanzi et al. (2022) (a), results from 

this program (b). 

 
 

(b) є-value The є-values graph is on Figure 15, where (a) is from the previous study, (b) 

is the value obtained using the signal RMS, and (c) is the value obtained using the 

RILEM method. The results from this program show steep decreases in є at around 120 

s, where it goes just below 1, and a sudden increase at 130 s,  behavior also observed in 

the  previous study between 125 s and 131 s. The next point of interest is another valley 

with steep edges between 135 s and 151 s, where c again drops below 1, The next 

sudden changes happen between 220 s and 227 s. The results obtained using the RILEM 

method had much smaller amplitudes overall and displayed only three steep changes at 

146 s, 204 s, and two smaller ones at 220 s and 268 s. These decreases to low values 

coincide with the times where critical events occurred. The low amplitude and small 

variation of this parameter with RILEM reflect the event identification problem. 

 

Figure 15 - Results for є-value adapted from Rojo Tanzi et al. (2022) (a), results from 

this program (b). 

 
 

(c) c-value: The c-values obtained show the same rapid decrement behavior as the 

previous study results at 145 s, 158 s and 180 s. These rapid drops in the c value 
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indicate a change in the system configuration. The plot for these values is illustrated in 

Figure 16.  

 

Figure 16 - Results for c-value adapted from Rojo Tanzi et al. (2022) (a), results from 

this program (b). 

 

 

(d) Average amplitude: Again, the average amplitude demonstrated to be a good 

indicator of relevant changes happening in the system characteristics. It shows a very 

large increase in the two first critical areas, and a noticeable spike on the third one, and 

the variations are very clear due to their amplitude. This parameter was not obtained for 

the previous paper, so we can only compare this parameter’s behavior against the 

critical zones. Its illustration is on Figure 17. 

 

Figure 17 - Results for the average amplitude. 

 

5.4 Program Graphic User Interface (GUI) 

 

The GUI main window, seen on Appendix I – Fig. 1, consists of a graphic that 

displays the live signal on the top, along with the events found highlighted in green. The 

user has the option to pause the visualization (which does not pause the acquisition and 

processing of data), shift the view back and forth, and return to live to see the most 

recent data. The events are all stored and the user can visualize a list of events, shown in 

Appendix I – Fig. 2, and select an event to view in a separate window, as observed in 

Appendix I – Fig. 3. On the main window, there are also graphics for each parameter, 

also generated live (these do not pause). The program generates a report in CSV 

containing all the event parameters, and all the event plots are recorded in a PDF file, 

one event per page, as shown in Appendix II. This allows quick testing using different 

input configurations, which can speed up the analysis and save important engineering 

time. 
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6. RECOMMENDATION FOR FUTURE WORKS 

 

The most significant part of the program is the event detection, from which all the 

other parameters are calculated. Therefore, efforts in the direction of improving event 

end detection despite the window size and noise are interesting. One unsuccessful 

attempt involved making a linear regression of the event signal envelope and using it for 

end detection when it crossed zero, but the events are very unpredictable at the start and 

when there are ‘s’ waves for example, which increase in amplitude slowly, the first part 

of the event may have positive derivative. Other improvements to this program is code 

review to optimize performance, and study the relation between the signal 

characteristics and the parameters obtained to add calibration to a control system acting 

on the ZCR threshold, in order to improve event end detection.  

 

7. CONCLUSION 

 

The objective of creating a software with a graphic user interface, capable of 

interpreting an AE signal, identifying events, and generating local parameters on data 

obtained in buffers was successfully achieved. The analysis using a moving window 

with  a floating threshold works well in most cases, but has limitations when the whole 

window has only noise and therefore a small standard deviation, which triggers long, 

false events. When the event length is close to the size of the window, it lowers the ZCR 

average and leads to the detection of many events with a short duration. The ZCR 

derivative has a noticeable decrease when an event starts, but finding a threshold above 

which the end is correctly detected is not easy because of the same limitations of the 

floating threshold mentioned earlier. The STE analysis for event start detection works 

well overall, detecting precisely the start of most events. The average amplitude 

demonstrated to be a good precursor of failure, as it increases near the critical points. 

The calculated values for b, є, c and the average amplitude showed a good response to 

the tests critical points where the system suffered a configuration change. In the case of 

the Spaghetti bridge model, that had the load in a step pattern, coincided with the load 

increases, which points to a good relationship between the program output and the real 

event. For future works, it is suggested to improve end time detect precision. Overall, 

the program created provides fast response in a graphic user interface (illustrated in 

Appendixes I and II) and reports in CSV and PDF format, allowing quick tests using 

different input configurations, which can speed up the analysis and save important 

engineering time. 
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APPENDIX I – Program GUI 

  

 

 
 

 

 

 

 

Figure 1 – Program GUI main window. On the top is the live signal, and the others are the 

evolution of the calculated parameters in time 

Figure 2 – Program GUI events window 



 

 

Figure 3

 

3 – Program GUI event visualization 

 



 

 

APPENDIX II – Reports generated 

 

 

 

 

Figure 1 – CSV Report with data of each event 

Figure 2 – Two examples of PDF pages, each with one event plotted 


