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“The struggle itself ... is enough to fill a man’s heart.

One must imagine Sisyphus happy..”

— ALBERT CAMUS, THE MYTH OF SISYPHUS
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ABSTRACT

Semantic image segmentation is a topic of computer vision that can be applied to many

different fields of research. In biomedical research it is important to be able to distinguish

the object of interest in the image from the background, particularly for microscopy im-

ages of cells. The segmentation of cells is a time consuming process if done by hand,

many approaches to this problem use Deep Learning models to solve this. A common

trait to these approaches is they are trained on a specific dataset and tipically perform

poorly when there is a shift on the domain of images to evaluate compared to the training

dataset. We propose to analyze both the extent of domain shift/overfitting and mitiga-

tion techniques with the use of data augmentation. To evaluate our approach we will

compare models with and without data augmentation cross validating through intra- and

inter-dataset testing.

Keywords: Semantic segmentation. data augmentation. domain-shift. cell segmenta-

tion.



Mitigando domain shift em segmentação de células usando data augmentation

RESUMO

Segmentação semântica de imagens é um tópico de visão computacional que pode ser

aplicado em vários domínios de pesquisa. No campo de pesquisa de biomedicina é im-

portante ter a capacidade de distinguir um objeto de interesse em uma imagem do fundo,

particularmente para imagens de microscopia de células. A segmentação de células é um

processo demorado se feito a mão, muitas abordagens para esse problema usam modelos

de Deep Learning para resolver isso. Uma característica em comum dessas abordagens

é que elas são treinadas em um dataset específico e tipicamente não geram resultados

bons quando há uma mudança no domínio de imagens a ser avaliadas comparado ao da-

taset de treinamento. Nós propomos analisar ambos a extensão do problema de domain-

shift/overfitting e técnicas de mitigação através de data augmentation, usando validação

cruzada através de testes intra e inter-dataset.

Palavras-chave: Segmentação Semântica, Data Augmentation, Domain-Shift, Segmen-

tação de Células.
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1 INTRODUCTION

As biomedical studies advance, the ability to efficiently segment cells in micro-

scopic imaging, isolating each cell inside an image from the background, becomes crucial

in several applications. Although humans can visually determine cell morphology and

delineate their borders, automating this process using semantic segmentation with deep

learning networks can facilitate the processing of large amounts of biomedical images

and help with analyzing the data. Considering the idea of automating this process, the

introduction of image processing techniques such as semantic segmentation and instance

segmentation was a big step towards shortening the amount of labor needed to process an

image.

The purpose of a semantic segmentation algorithm is to categorize the elements

of an image into different classes, assigning a unique label to each pixel. In the case of

biomedical images, it can be used to differentiate among different cells, the backgound,

cell nuclei, different types of tissues, and more, all into different categories to be visual-

ized separately. This is represented in a segmentation mask, which is the output of the

semantic segmentation and is an image that indicates which pixels in an image belong

to a particular object or region. For instance, in cell segmentation a semantic mask can

identify and segment cells from the background, the cells would have a unique label and

the pixels corresponding to the cells would be set to a particular value in the mask. This

can be visualized in the Figure 1.1, where we have the original image, the annotated mask

and the output of a semantic segmentation prediction.

Figure 1.1: Semantic Segmentation

From left to right: Test Image, Ground Truth, Predicted Result
Source: (ZHOU et al., 2016; ZHOU et al., 2017)

There are cases in which semantic segmentation is not suitable for a task. One

example is cell counting in microscopy images that are densely packed together: in this

scenario, cells tend to overlap, making it difficult to tell how many there are in a given

image. This problem can be addressed with instance segmentation algorithms, which are

algorithms that can delineate and differentiate each instance of objects in an image (i.e.
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identify each person in a group of people as a separate instance).

A common problem for many of the machine learning solutions that exist nowa-

days is they often fail to handle changes between training (source) and test (target) input

distributions, as mentioned by Sun, Feng and Saenko (2015) – this problem is called do-

main shift. This is a problem that affect models that are trained on specific datasets and

applied to different ones. A possible solution is to bridge the gap between datasets for

domain shift, such as minimizing target and source distance or re-evaluating weights and

features. Another way that does not require making external changes is through image

augmentation, which consists of creating new training examples from the existing ones.

To make a new sample, you slightly change the original image. For instance, it is possible

to make a new image a little brighter; cut out a piece from the original image; make a new

image by mirroring the original one, as can be seen in Figure 1.2. In regards to semantic

segmentation some data augmentation are applied both on the image and the segmentation

mask, like geometric transformations i.e., translation, rotation, scale.

Figure 1.2: Different kinds of augmentations

Source: (BUSLAEV et al., 2020)

The goal of this work is to check the extent of domain shift/overfitting in the

context of cell segmentation, and explore mitigation strategies based on data augmenta-

tion. More precisely, we use a state-of-the-art segmentation architecture called Efficien-

tUNet++ (SILVA et al., 2021), and explore various modern data augmenting techniques

that aim to bridge the domain gap that exists in the field of cell segmentation, when mod-

els are trained on one dataset and tested on another. Our work has several parameters

alongside a combination of various successful data augmentation techniques. These spec-

ifications are as follows:

• Training on the CTC dataset, which doesn’t have a large amount of data like Ima-
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geNet, thus increasing the importance of data augmentation.

• Use of a mixture of RandAugment (CUBUK et al., 2019) and TrivialAugment (MÜLLER;

HUTTER, 2021) learning policies for practical data augmentation with a reduced

search space modified with additional augmentations that can be applied.

• Alongside standard data augmentation techniques, implementation of two promis-

ing techniques in regards to the field of cell segmentation, CutMix by (YUN et al.,

2019) and Random Local Rotation (RLR) (ALOMAR; AYSEL; CAI, 2023).

To analyze the effectiveness of the generalized model approach through data augmenta-

tion, we will perform a comparison of the models with and without data augmentation in

an intra- and inter-dataset validation scheme.

The rest of this work is organized according to the following. Chapter 2 elab-

orates on the necessary technical background concepts to understand this work and ex-

plores works similarly related to these problems. In Chapter 3 we introduce our proposed

solution. Chapter 4 pertains to the results and analysis of our implementation. Finally in

Chapter 5, we present our conclusion.
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2 BACKGROUND AND RELATED WORKS

There are many differences in the process of machine learning compared to how a

human learns information. Regarding semantic segmentation, to achieve the capability of

classifying elements in an image, either through an image processing algorithm or a deep

learning method, there is a need to recognize patterns on an image to be able to categorize

its pixels. The concept of a pattern can have multiple degrees of complexity, a simple algo-

rithm could detect all the straight lines in an image, or the edges of an object, but through

the use of neural networks it can go as far as detecting human shapes. For the more com-

plex goals, it is essential to have an ample amount of image samples through which a deep

learning model can train and learn to recognize and classify new images. The quality of

a dataset determines how difficult the learning process will be. It is not always possible

to guarantee that a dataset has good quality samples inside, sometimes the images can be

blurry, or noisy, or there may be few samples to learn from. Many of these are common

problems that can be encountered when working with a dataset. This chapter abides by

the following order. Section 2.1 provides information about the dataset used throughout

this work. In Section 2.2, we describe classical computer vision approaches to semantic

segmentation. In Section 2.3, we explore the deep learning approaches to semantic seg-

mentation. Finally, Section 2.4 briefly describes data augmentation and presents different

approaches on the subject through recent works.

2.1 Datasets

The dataset used in this work is an initiative presented by (ULMAN et al., 2017)

aimed at promoting the development and objective evaluation of cell segmentation and

tracking algorithms. The Cell Tracking Challenge (CTC) incentive provides various

datasets that consist of 2D and 3D time-lapse video sequences of fluorescent counter-

stained nuclei or cells moving on top or immersed in a substrate, along with 2D Bright

Field, Phase Contrast, and Differential Interference Contrast (DIC) microscopy videos of

cells moving on a flat substrate. The videos cover a wide range of cell types and quality

(spatial and temporal resolution, noise levels, etc.) In addition, they provide 2D and 3D

videos of synthetic fluorescently stained cells and nuclei of different shapes and motion

patterns.

There are several different types of cells in this dataset. For our purposes, however,
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Figure 2.1: Example of different cell types present in dataset

Source: (ULMAN et al., 2017)

we will consider them to pertain to the same class – a cell. Hence, each pixel in the images

will be classified as either background or cell, yielding a binary classification problem. In

order to keep our work on a simpler scope we will avoid the 3D data and only focus on

2D imagery. These images are suitable for our use case because the number of annotated

samples is not large, which motivates the use of data augmentation for obtaining more

training samples. Also, the different cell types are visually different, which might cause a

domain gap when training a model with one cell type and then evaluating it with another.

Each cell type dataset is classified according to a naming convention separated in

three parts. The first name denotes microscopy modality, which can be either fluorescence

(Fluo), differential interference contrast (DIC), bright field (BF) or phase contrast (PhC).

The following name describes the cell image’s capture characteristics, firstly the staining,

either nuclear (N) or cellular (C), the dimensionality (2D or 3D) and the resolution (low

(L), high (H)). The last name is the cell type or model organism used. Through the

information provided by the name of the cell type datasets, we are given an idea of which

dataset images provide more information and are thus less likely to suffer from domain

shift.

2.2 Classical Computer Vision Approaches

Image segmentation is a fundamental problem that arises in many different do-

mains besides biomedical research, as such, a lot of approaches have been developed and
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improved over the years to solve this problem. The simplest methods use traditional com-

puter vision techniques to perform segmentation, without relying on AI-based solutions.

In regards to traditional approaches for image segmentation that do not rely on

deep learning, the most basic implementation is simple binarization. The underlying

principle is to classify an image pixel into foreground and background by selecting a

threshold point in regard to pixel intensity. Although a threshold can be chosen manually,

it is preferable to make the process automatic. Otsu’s method by Otsu (1979) is a well-

known technique for binary thresholding. In this approach, the threshold is determined

by minimizing intra-class intensity variance, or equivalently, by maximizing inter-class

variance, as described by the author. This method can also be extended to perform multi-

level thresholding, allowing image classification beyond two classes. In this approach it

is also possible to apply post processing techniques like closing or dilation along with a

connected components algorithm to further improve results.

Figure 2.2: Sample image before and after Otsu Thresholding

Source: (NOROUZI et al., 2014)

A more complex approach is the watershed algorithm, which is a well-known

technique in the field of computer vision. The general concept relates to the idea of a

geological watershed, in which the image is treated as a topological map and the bright

pixels are treated as mountains and the dark pixels are treated as valleys; the segmentation
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proceeds akin to water filling in the spaces and stopping on the borders of the objects in

the images. For this algorithm to function, it is necessary to determine markers for each

object present in the image, including the background, as these will be the starting points

for the water to fill in the image.

Figure 2.3: Watershed Segmentation

Source: (ZHENG et al., 2021)

Figure 2.4: Watershed Segmentation on Cells

Source: (LUX; MATULA, 2020)

2.3 Deep Learning Approaches

When talking about machine learning solutions to image segmentation, a common

approach is to use of encoder-decoder structures based on convolutional neural networks

(CNNs), which are neural networks with convolutional layers. As defined by O’Shea and

Nash (2015), the layer’s parameters focus on the use of matrices called learnable kernels.

When the data hits a convolutional layer, it convolves each filter across volumetric data,

which entails the spatial dimensionality of the input and the different color channels, to

produce a 2D activation map.
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Some of the initial approaches using convolutional neural networks achieved promis-

ing results, most notably the architecture proposed by Simonyan and Zisserman (2014)

for image classification, which had a large network with millions of parameters on the

ImageNet dataset with 1 million training images. Another approach proposed by Cireşan

et al. (2012) computed the class label of a pixel using as input the image intensities in a

square window centered on the pixel itself. Both networks produced very good results at

the time, but each solution had drawbacks, being the need for a large training dataset or a

very slow training speed.

One of the most influential networks for deep learning in biomedical applications

is U-Net by Ronneberger, Fischer and Brox (2015). It has great performance, regarding

segmentation accuracy, and mitigates the previously stated weaknesses, as it can work

with relatively small datasets and has a swift training speed, not to mention having more

precise predictions. Its architecture is based on a fully convolutional network. A fully

convolutional network (FCN), according to Minaee et al. (2020), is a network that has only

convolutional or pooling layers, without the fully connected layers common in other types

of networks. This enables it to take an image of arbitrary size and produce a segmentation

map of the same size as opposed to a classification score. The main characteristic of this

architecture is its U-shape, as seen in Figure 2.5.

The network consists of a contracting path and an expansive one. An input sam-

ple passes first through the contracting path, which consists of sequential applications of

two 3 × 3 convolutions, rectified linear unit (ReLU) and 2 × 2 max pooling operations

with stride 2. This repetition causes downsampling of the image for each step of the se-

quence, in which the number of feature channels is doubled. As for the expansive path,

the sequence that repeats is upsampling of feature map, 2× 2 convolution that halves the

feature channels, concatenation of the cropped feature map from the same level on the

contracting side, two 3 × 3 convolutions ending with a ReLU. The last layer, in which

the output is generated has a 1 × 1 convolution to map the feature map into the desired

number of class channels. The network trains using both input images along with their

segmentation maps, using the stochastic gradient descent implementation by (JIA et al.,

2014). The energy function, defined by Ronneberger, Fischer and Brox (2015), is com-

puted by a pixel-wise softmax over the final feature map. To compute the loss function

for the network, cross entropy was used.

To ensure that the network can learn in contexts with small sample sizes for train-

ing data, it is important to implement data augmentation to increase the amount of samples
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available. In order to improve the network training, augmentations regarding shift and ro-

tation invariance, as well as deformation robustness and gray value variations, and notably

elastic deformations are key to improve performance with very few training samples.

Figure 2.5: U-Net Architecture

Source: (RONNEBERGER; FISCHER; BROX, 2015)

The U-Net network can be considered a pioneer in the field, as this work is a well

known name in the field of semantic segmentation. Due to this renown, many different

papers have expanded and branched variations of this architecture, improving various

aspects of the network.

A direct successor to U-Net is the Unet++ by Zhou et al. (2018). This model

is an encoder-decoder architecture that improves on the original U-Net implementation

by connecting the encoder and decoder through a series of nested dense convolutional

blocks. The purpose of these additional connections is to bridge the semantic gap of the

feature maps in the encoder and decoder prior to fusion, this can be seen in Figure 2.6.

The network we will base our work on can be considered a second generation successor

to U-Net, as it is based on the UNet++ architecture, it is the EfficientUNet++ network, we

describe the model in detail in Chapter 3.

2.4 Data Augmentation

Throughout the years, many techniques have been developed to improve machine

learning approaches for semantic segmentation. A prominent technique used in most
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Figure 2.6: UNet++ Architecture, black indicates the original U-Net, green and blue show
dense convolution blocks on the skip pathways, and red indicates deep supervision.

Source: (ZHOU et al., 2018)

datasets that are not significantly large or that lack image diversity is data (image) aug-

mentation. These augmentations can be classified by grouping them according to the type

of transformation they apply, as seen in Figure 2.7.

In the beginning, the choice of which data augmentations to apply to a dataset was

made by analyzing and picking the transformations that yielded better results, or sim-

ply selecting commonly used augmentations. However, selecting the set of augmentation

primitives, their magnitudes and combination possibilities is not a trivial task. There are

two approaches to optimizing the selection of augmentation policies to use: A brute force

approach which relies on manually selecting and testing which data augmentations pro-

vide better results, and another approach is based on relying on deep learning algorithms

to learn which data augmentations perform better by training on dataset.

One approach in particular which has remarkably good performance and does

not rely on Deep Learning techniques is the RandAugment by (CUBUK et al., 2019).

Typically, for each data augmentation that is chosen to be applied to a dataset, there are

parameters that can be configured to fine-tune the transformation, producing subtle or

more prominent changes to an image. Besides configuring these values, it is possible

to set the probability of applying said augmentation to the image. Hence, it is possible

for an image to have a varying amount of transformations done to it while training a

model. RandAugment considers a subset of 14 different transformations to apply, as
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Figure 2.7: Different types of data augmentation

Source: (ALOMAR; AYSEL; CAI, 2023)

can be seen in Figure 2.8. This procedure will always apply N transformations chosen at

random, from the available possibilities in the list. At last, the augmentations selected will

then be applied to an image according to a magnitude parameter, which will determine

the intensity of all the transformations to be performed. This implementation performs

exceptionally well considering the simplicity of its concept and that the transformations

that are applied are simple geometric and photometric transformations. It is comparable

to recent Deep Learning approaches like AutoAugment by Cubuk et al. (2018).

Figure 2.8: Transformations considered by RandAugment
• identity
• autoContrast
• rotate
• solarize
• color

• posterize
• contrast
• brightness
• sharpness
• shear-x

• shear-y
• translate-x
• translate-y

Recently, other approaches that have been gaining traction use Deep Learning to

determine the best data augmentation policies to apply to a specific dataset, like AutoAug-

ment by Cubuk et al. (2018), or more recent works like Population Based Augmentation

by (HO et al., 2019) and FasterAutoAugment by (HATAYA et al., 2019).
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The Deep Learning approaches are based on data augmentation policies learned

automatically. The initial work that started this field was AutoAugment by Cubuk et al.

(2018), which casts the problem of finding the best augmentation policy as a discrete

search problem. This work is divided into a search algorithm and a search space. The

algorithm trains a neural network with a sampled augmentation policy, which contains

the transformation to be performed, its probability of being applied, and the magnitude

of the operation. The validation accuracy of the network is used as feedback for fine-

tuning the algorithm. The search space contains the policies, and for each policy there is

a group of five pairs of image operations to be applied, with their respective probabilities

and magnitudes as parameters. Examples of augmentation policies using this strategy can

be seen in Figure 2.9.

Figure 2.9: Example of policy in search space

Source: (CUBUK et al., 2018)

AutoAugment displays results that compare favorably in image classification through

reinforcement learning, but it is not devoid of problems. The optimization task is com-

putationally expensive, using 5000 GPU hours for one augmentation search according

to Li et al. (2020). Since not a lot of people have access to these kinds of computational

resources or time, many advancements have been made in different works to improve

these costs. Population-Based Augmentation tackled this problem through the use of op-

timization based on population. Meanwhile, Fast AutoAugment by Lim et al. (2019), an

approach that is pointedly an upgrade to AutoAugment, used bayesian optimization for

solving the augmentation search as a density matching problem. As observed by Li et

al. (2020) though PBA and Fast AA greatly improve search speed, augmentation policy

learning remains rather slow, e.g. PBA still needs 5 GPU hours for one search on the

reduced CIFAR-10 dataset. On Figure 2.10 below the performance of the optimization

problems can be observed.
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Figure 2.10: Comparison of GPU times and Test Error on different datasets for each
approach

Source: (LI et al., 2020)
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3 METHODOLOGY

In order to evaluate the impact of domain shift/overfitting in regard to cell seg-

mentation, we will implement a series of data augmentation techniques aiming to mitigate

their effects. Taking into account these techniques, we can then analyze the performance

of a model trained with this generalized approach through augmentation and without it

on the various cell samples inside CTC dataset in an intra- and inter-dataset validation

comparison.

The model chosen for this work is the EfficientUNet++ Silva et al. (2021). It was

selected due to being relatively recent, an improvement on the UNet++ Zhou et al. (2018)

network, which is itself a direct successor of U-Net Ronneberger, Fischer and Brox (2015)

architecture and having comparable results with these models. The efficiency noted in the

model’s name is also an important characteristic to consider for this work, which has a

small scope of focus and resources.

3.1 Model

The EfficientUNet++ is a fully convolutional neural network for ordinary and

medical image semantic segmentation. The network is composed of an encoder and a

decoder. The encoder extracts features of different spatial resolutions, which are fed to

the decoder through skip connections, being selected from an existing encoder architec-

ture. The decoder combines its own feature maps with the ones from skip connections

to produce accurate segmentation masks. The EfficientUNet++ decoder architecture is

based on the UNet++, a model composed of nested U-Net-like decoder sub-networks as

can be seen in Figure 3.1.

As defined by Silva et al. (2021), the EfficientUNet++ replaces the UNet++’s

blocks with residual bottlenecks with depthwise convolutions to increase performance

and computational efficiency, which have feature maps that are processed with concur-

rent spatial and channel squeeze and excitation (scSE) blocks Hu et al. (2017) to enhance

performance., this can be seen in Figure 3.2. Each convolution is followed by batch nor-

malization Ioffe and Szegedy (2015) and Hardswish Howard et al. (2019), except for the

last 1× 1 convolution, which is not activated. C and C ′ are the numbers of input and out-

put channels. Feature map height and width are not altered. The bottleneck ratio, b, is set

to 1, and the number of convolution groups, g, is equal to the number of input channels,
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making the 3× 3 convolution depthwise. The scSE block uses a squeeze ratio of 1.

The network synergizes well with EfficientNet encoders proposed by Tan and Le

(2019). Due to their efficient visual representations (i.e., using few channels to represent

extracted features), EfficientNet encoders require few computations from the decoder,

they implement a compound scaling method, which use a compound coefficient φ to

uniformly scale network width, depth, and resolution in a principled way. There are

a selection of different EfficientNet encoders available, with an increasing amount of

parameters, from the lowest B0 with 5M parameters up to the highest B7 with 66M. In

this work, we use the EfficientNet-B0 encoder for training, as the proposed problem does

not require a higher scale.

Figure 3.1: The EfficientUNet++ decoder is based on Unet++ decoder implementation
(The components outside of the backbone, which is the encoder).

Source: (ZHOU et al., 2018)

Figure 3.2: Comparison of EfficientUNet++ Block vs Unet++ Block.

Source: (SILVA et al., 2021)
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3.2 Metrics

To see how accurate a model is for semantic segmentation both when training

a model and during it’s evaluation, it is very important to choose an appropriate way of

measuring the results. There are many different ways to measure the “quality” of a model,

and the simplest is through pixel accuracy: the percentage of pixels in your image that

are classified correctly. Although this metric is valid, it would evaluate poorly for our

task, because high pixel accuracy does not correlate to superior semantic segmentation.

This is due to class imbalance, which happens when an image has a disproportionate

amount of pixels to the classes. Considering that we have images with different cell

sizes, it is important to take this into account. The measure we chose is Intersection-

Over-Union (IoU), also known as Jaccard Index, this is a very straightforward metric

and commonly used for semantic segmentation and it measures the overlap between the

predicted segmentation and the ground truth mask divided by the union of both.

Figure 3.3: IoU Calculation visualized.

Source: Google Images

Focusing on the objective of applying semantic segmentation to biomedical im-

agery, the loss function selected for this work is the Dice Loss. It is calculated from the

Dice similarity coefficient (DSC), which measures the similarity of two samples – in this

case, a predicted segmentation and a ground truth. Considering that DSC can range from

0-1 (0-100%) in terms of similarity, the Dice Loss is the difference between the samples,

below on Figures 3.1 and 3.2 are displayed the formulas for DSC and Dice Loss.
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DSC =
2|X ∩ Y |
|X|+ |Y |

(3.1) d = 1− 2|X ∩ Y |
|X|+ |Y |

(3.2)

To determine the output of semantic segmentation in a neural network, it is nec-

essary to use an activation function, which derives output from a set of input values to a

node. There are several different activation functions that can be used for the semantic

segmentation task, but given the scope of our problem, classifying a pixel between back-

ground and cell, the most suitable metric for activation is the sigmoid function. Defined

in Figure 3.4 below, the sigmoid function has two outputs, 0 or 1, which matches our

purposes exactly.

Figure 3.4: Sigmoid function visualized

Source: Google Images

3.3 Data Augmentation Techniques

For this work, a few recently developed data augmentation techniques that ap-

peared promising in regard to semantic segmentation on biomedical images were selected

according to their simplicity and the positive results observed from a few different works

regarding cell segmentation.

One particular work which analyzed many different approaches to semantic seg-

mentation and proposed its own approach is Alomar, Aysel and Cai (2023). Their work

proposes the Random Local Rotation (RLR) augmentation, which we adopt as another

technique for training the model. The RLR is an augmentation technique that, given an

input sample, randomly selects a circular area inside the sample and rotates it by a random

number of degrees. This can be better exemplified in Figure 3.5 below.
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Figure 3.5: The random local rotation data augmentation strategy. Operator represents
pointwise multiplication.

Source: (ALOMAR; AYSEL; CAI, 2023)

Aiming to mitigate domain shift problems when training on one set of data and

testing on another, we adopt the CutMix augmentation by Yun et al. (2019). It is a trans-

formation inspired by regional dropout strategies, which guide a model to consider less

discriminative features of an object for classification, which in turn improves network

generalization and object localization capabilities. Unlike regional dropout, which re-

move relevant pixel information from the image, thus leading to a loss in the image and

inefficiency when training, CutMix solves this problem, instead of simply removing pix-

els, it replaces the missing pixels with a patch from another image as observed in Figure

3.6. The segmentation masks are also mixed in the same manner as the images, thus

guaranteeing both image and mask have no uninformative pixels. This also improves lo-

calization by making the model work on identifying objects which can be partially hidden

from view.

TrivialAugment by Müller and Hutter (2021) is an approach that is similar to Ran-

dAugment Cubuk et al. (2019). It works on the following principle: when an input image

is received, it randomly samples an augmentation from a set list of augmentations and ap-

plies the transformation to the image with a magnitude that is sampled at random from a

set of possible magnitudes which ranges from {0, ..., 30}, finally returning the augmented
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Figure 3.6: Comparison of similar augmentations with CutMix.

Source: (YUN et al., 2019)

image. The main difference from RA lies in the fact that TA only applies one augmenta-

tion per image with a randomly selected magnitude given a set of possible magnitudes for

each sample. In contrast, RA applies N augmentations with the same selected magnitude

for all samples. In our work, we use a modified TA implementation, allowing multiple

augmentations per image like RA, but keeping the random magnitude like in TA. We

utilize a slightly modified augmentation space, i.e., the set of augmentations, as seen in

Table 3.1.
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Table 3.1: List of Augmentations in our work
Augmentation Effect

NoOp Identity transformation, does
not change sample.

Equalize Equalizes the image his-
togram.

Solarize Invert all pixel values above a
threshold.

ColorJitter Randomly changes the
brightness, contrast, and
saturation of an image.

RandomBrightnessContrast Randomly changes bright-
ness and contrast of the input
image.

Sharpen Sharpens the input image and
overlays the result with the
original image.

RandomGridShuffle Divides the image by a grid
into cells, then randomly
shuffle the grid cells on im-
age.

InvertImg Invert the input image by
subtracting pixel values from
255.

ElasticTransform Elastic deformation of im-
ages as described by Simard,
Steinkraus and Platt (2003)

GaussNoise Applies gaussian noise to the
input image.

RLR Applies Random Local Rota-
tion augmentation previously
described.

CutMix Applies CutMix augmenta-
tion previously described

Source: (BUSLAEV et al., 2020)
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4 EXPERIMENTAL RESULTS

In this chapter, we present the setup for training our proposed generalized model

for cell segmentation. We also analyze the results against a model without our proposed

strategies. We describe the initial data preparation alongside the parameters used in the

model, as well as how the dataset will be used in training. It is important to note that

our environment is established in Google Colab, and all of our training and testing is

done with this environment in mind as there are hardware limitations to consider regarding

GPU, memory size, and storage limits.

4.1 Dataset Preparation

As previously seen in Figure 2.1, the CTC dataset is separated into various dif-

ferent cell types, each one containing many images along with their ground truth masks,

captured in a time-lapse sequence. There are different types of reference segmentation

masks available in this dataset, as defined by Ulman et al. (2017)

• Absolute truth corpus (ground truth) containing exact reference annotations, avail-

able only for simulated datasets;

• Gold-standard corpus (gold truth) containing human-made reference annotations,

obtained as a consensual or majority opinion of several human experts;

• Silver-standard corpus (silver truth) containing computer-generated reference an-

notations, obtained as the majority opinion over the results of several automatic

analysis methods submitted by former challenge participants.

In this work, we will use only silver truth masks and when available ground truth

masks, for simulated data. This is due to there not being gold truth masks for all images

in a given cell type, meanwhile, the other kinds of masks are available for all images and

thus it is preferable to use them when training.

Due to the nature of our environment and the way the CTC dataset is organized, it

is necessary to establish some limitations on our data. Firstly, all images and segmentation

masks need to be resized to 256×256 to be a valid input for our model. The CTC challenge

broaches more than just semantic segmentation: it also entails object tracking, thus the

segmentation mask is originally an instance segmentation mask, meaning each cell has

a unique pixel value, allowing distinguishing each individual cell instance. Considering
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our objective, we can simplify the segmentation masks by applying a simple threshold

operation to them, leaving only two distinct pixel values, background and cells, as seen in

Figure 4.1.

Figure 4.1: Fluo-N2DL-HeLa cell type mask before and after threshold.

Source: The Authors

Each cell type in the CTC dataset has a different amount of samples to train on,

and some have very few compared to others as seen in Table 4.1, which can lead to

training imbalance. To avoid this problem, we always sample the lowest amount of images

available, which is from Fluo-C2DL-MSC with 96 samples, regardless of cell type, thus

ensuring that sample size does not skew our model’s training.

Table 4.1: Samples per cell type
Cell type Amount of images

BF-C2DL-HSC 3528
BF-C2DL-MuSC 2752
DIC-C2DH-HeLa 168
Fluo-C2DL-MSC 96

Fluo-N2DH-GOWT1 184
Fluo-N2DH-SIM+ 215
Fluo-N2DL-HeLa 184
PhC-C2DH-U373 230
PhC-C2DL-PSC 600
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4.2 Model configuration

We use two models to run our experiments and compare results. The first is our

baseline model, which runs without any of our proposed data augmentation techniques.

The second model trains with our selection of data augmentation techniques. Both models

are EfficientUNet++ networks and they have the same parameters, seen in Table 4.2. This

ensures that the primary difference in performance lies in our proposed techniques, which

facilitates comparison. To avoid overfitting, we implement early stopping, a technique

that stops the model training when the validation loss does not decrease through several

iterations – the number of iterations until the training stops is controlled by the patience

parameter.

Table 4.2: List of parameters for our models
Parameter Value
Optimizer Adam

Train Validation Split Training: 80%, Validation: 20%
Batch Size Training: 8, Validation: 1

Learning Rate 10−3

Patience 10
Encoder Weights None or Imagenet (DENG et al., 2009)

Max Epochs 150 or Early Stop

4.3 Data Augmentation

Due to the relatively small size of our dataset, it is important to work with data

augmentation to give the model more samples to learn from. On each epoch during train-

ing, the model receives the images to learn, on this step of the process when retrieving

the image and segmentation mask, we use our modified TA function to randomly select

an augmentation from the available list, described in Table 3.1, and apply it to the image

or in cases like geometric augmentations, to both. Illustrated in Figure 4.2 is an example

of augmentations applied to a sample image from DIC-C2DH-HeLa.

In order to understand which of the augmentations from the set that we use pro-

vides a greater impact on the evaluation performance of our model, we perform our ex-

periments with smaller subsets of our collection of augmentations, along with the full set

as well, thus allowing us to compare the performance of augmentations. In Table 4.3 we

describe the subsets we use.
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Figure 4.2: Example of augmentations applied.

Source: The Authors

4.4 Proposed Training and Evaluation

For our initial experiments, we first evaluate how the baseline model performs

when training on one cell type and evaluating on a completely different type, this is done

with no initial pre trained encoder weights, which means we use random weight initial-

ization.

As can be observed in Table 4.4, the results of the baseline model evaluate poorly

on other cell types compared to the one it trained on. This behavior is an obvious example

of the domain shift problem. Comparing the results with a model trained using all the

data augmentations discussed in Table 3.1 and using ImageNet pre-trained weights for its

encoder, which are then re-trained, as opposed to freezing the weights, the new model

performs much better and the use of data augmentation improves the results. We can

observe that not all cell types are improved by the same amount, which can be attributed

to the similarity between images in some cell types and limitations on the effectiveness of

CutMix augmentation, due to it sampling random image crops from all cell types, there

are cases where the resulting augmented image may not provide relevant information.

This can be mitigated by narrowing the cell types CutMix samples from. For the following
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experiments, we initialize encoder weights with ImageNet pre-trained weights, which

improves model learning and reduces training time.

Considering the results so far, we can explore the impact of the proposed aug-

mentation subsets in Table 4.3 by training on four distinct scenarios, which can give us a

better understanding of the influence of the cell type the model is trained on along with the

augmentations applied. These scenarios ensure we can observe the effects of small and

large domain shifts, along with the amount of training samples. All scenarios are trained

with pre-trained weights of ImageNet and further re-trained. The training scenarios are

the following:

• Scenario 1: Train on a cell type that is distinct both in its morphology and in the

environment that it was captured in compared to the cell type that we evaluate. For

this scenario, we choose the DIC-C2DH-HeLa samples, and we evaluate against all

cell types. The cells are very big compared to others and the background is distinct

(Observe the difference in Figure 2.1.

• Scenario 2: Train on a cell type that is similar both in morphology and in the en-

vironment that it was captured to the cell type we evaluate. For this scenario, we

choose to train on the Fluo-N2DH-SIM+. The cells have a similar size and back-

ground to the other Fluorescent samples.

• Scenario 3: Train on all cell types but the one we evaluate on, use a distinct cell

type like in Scenario 1. In this scenario we evaluate on DIC-C2DH-HeLa.

• Scenario 4: Train on all cell types but the one we evaluate on, use a similar cell type

like in Scenario 2. In this scenario we evaluate Fluo-N2DH-SIM+.

Table 4.5 shows the results for scenario 1. We can see mixed results between Base-

line and Set 1, some cell types like Fluo-N2DH-GOWT1 improved by 37% while others

like BF-C2DL-HSC deteriorated by 24%. Sets 2 and 3 did not show any significant re-

sults in comparison, which shows that focusing on a particular kind of data augmentation,

be it photometric or geometric, is not as effective as using a broader mixture of augmen-

tations like Set 1. To affirm that this is due to choosing a cell type that is distinct from

the others, we need to observe the results of 4.6. Notably, Set 4 of augmentations behaves

as expected, the cell type that the CutMix augmentation focuses on has an improved IoU

Score, at the expense of the others. It is also possible to note the influence of the quality

of the captured images due to microscopy modality (quality of capture from best to worst

DIC > BF > PhC > Fluo) and resolution quality. Cell types with high (H) resolution have
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better performance overall and on baseline model DIC has better compatibility with BF

and PhC capture modalities, which have similar qualities rather than Fluo.

The results of scenario 2, seen in Table 4.6, show very different results from Table

4.5, which conforms with our hypothesis that cell type distinctiveness influences how ef-

fective augmentations will be. We can observe that, in this scenario, each test case had no-

table results. Set 2, which contains Photometric augmentations, displayed improvements

in cell types with differences in visual aspects like color and brightness. On the other

hand, Set 3, which contains Geometric and Kernel augmentations, showed improvements

in cell types with similar sizes but different shapes to the one we trained on as observed

in PhC-C2DL-PSC, which improved by 15% compared to Baseline. We can also observe

that Fluo performed better on other Fluo cell types and PhC due to being closer in image

capture quality rather than BF and DIC.

Table 4.7 shows the results for scenario 3, in which we compare the Baseline,

and augmentation Sets 1 and 5. We can observe that the same improvement that Set 1

displayed in Table 4.5 is not present this time. This shows that the broader the number

of samples available during training, the smaller the impact of generalized augmentation

when considering a specific cell type. This time, Set 5 results in a 42% improvement,

without degrading the overall performance of the model on the other cell types by too

much, only around 1%.

The final scenario, summarized in Table 4.8, shows that when evaluating on a cell

type that has similarities to the ones present in the training process there is an improve-

ment in both the cell type evaluated and the other cell types.

Figure 4.3: Example of prediction on Fluo-N2DH-SIM+ of Scenario 4.

Source: The Authors
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Table 4.3: Augmentation subsets for training
Name of augmentation
subset

Augmentations Description

Set 1: All Aug + Gen-
eral CutMix

NoOp, Equalize, So-
larize, ColorJitter,
RandomBrightness-
Contrast, Sharpen,
RandomGridShuffle,
InvertImg, Elastic-
Transform, Gauss-
Noise, RLR, CutMix

Applies all augmenta-
tions, CutMix can sam-
ple all cell types

Set 2: Photometric Aug NoOp, Equalize, So-
larize, ColorJitter,
RandomBrightness-
Contrast, InvertImg

Contains Photomet-
ric transformations,
changes to color
channel/pixel value

Set 3: Geomet-
ric/Kernel Aug

NoOp, Sharpen, Gauss-
Noise, RandomGridS-
guffle, Elastic Trans-
form, RLR

Contains Geometric
and Kernel transforma-
tions

Set 4: All Aug + Spe-
cific CutMix

NoOp, Equalize, So-
larize, ColorJitter,
RandomBrightness-
Contrast, Sharpen,
RandomGridShuffle,
InvertImg, Elastic-
Transform, Gauss-
Noise, RLR, CutMix

Applies all augmenta-
tions, CutMix can sam-
ple from one specific
cell type

Set 5: Specific CutMix CutMix Apply sampling from
the cell type that will be
evaluated

Table 4.4: Initial training of baseline model vs All Augmentations on DIC-C2DH-HeLa
cell type

Cell type BaseLine All Augmentations
IoU Score %

BF-C2DL-HSC 17.99 20.95
BF-C2DL-MuSC 6.82 11.4
DIC-C2DH-HeLa 84.87 92.82
Fluo-C2DL-MSC 10.6 16.98

Fluo-N2DH-GOWT1 11.83 64.42
Fluo-N2DH-SIM+ 7.53 52.29
Fluo-N2DL-HeLa 0.001 0.001
PhC-C2DH-U373 20.58 27.39
PhC-C2DL-PSC 9.47 11.53
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Table 4.5: Scenario 1: Train on DIC-C2DH-HeLa
Cell type Baseline Set 1 Set 2 Set 3 Set 4

IoU Score %
BF-C2DL-HSC 45.86 20.95 24.23 44.81 38.10

BF-C2DL-MuSC 10.16 11.40 5.44 3.33 7.92
DIC-C2DH-HeLa 92.19 92.82 92.78 91.89 91.68
Fluo-C2DL-MSC 3.73 16.98 0.84 4.19 28.32

Fluo-N2DH-GOWT1 27.38 64.42 33.81 11.37 43.30
Fluo-N2DH-SIM+ 8.74 52.29 4.74 1.16 7.92
Fluo-N2DL-HeLa 20.41 0.001 0.92 0.02 0.001
PhC-C2DH-U373 45.84 27.39 13.00 40.88 32.65
PhC-C2DL-PSC 17.95 11.53 1.97 6.21 4.66

*Set 4 CutMix samples Fluo-C2DL-MSC specifically

Table 4.6: Scenario 2: Train on Fluo-N2DH-SIM+
Cell type Baseline Set 1 Set 2 Set 3 Set 4*

IoU Score %
BF-C2DL-HSC 12.97 2.61 3.04 6.13 0.99

BF-C2DL-MuSC 7.92 19.18 11.80 8.44 16.93
DIC-C2DH-HeLa 14.68 0.75 2.43 5.57 0.62
Fluo-C2DL-MSC 40.69 42.60 35.21 42.04 40.74

Fluo-N2DH-GOWT1 75.57 72.98 74.04 75.08 81.80
Fluo-N2DH-SIM+ 89.59 88.21 89.50 88.08 88.83
Fluo-N2DL-HeLa 4.70 26.52 32.75 1.84 24.45
PhC-C2DH-U373 28.64 36.04 36.94 31.20 33.70
PhC-C2DL-PSC 24.89 27.37 24.83 39.75 24.20

*Set 4 CutMix samples Fluo-N2DH-GOWT1 specifically

Table 4.7: Scenario 3: Train on All Cell Types, Evaluate on DIC-C2DH-HeLa
Cell type Baseline Set 1 Set 5*

IoU Score %
All Cell Types 85.61 83.65 84.73

DIC-C2DH-HeLa 5.57 8.63 47.48

*Set 5 CutMix samples DIC-C2DH-HeLa specifically

Table 4.8: Scenario 4: Train on All Cell Types, Evaluate on Fluo-N2DH-SIM+
Cell type Baseline Set 5*

IoU Score %
All Cell Types 86.17 87.00

Fluo-N2DH-SIM+ 46.29 53.78

*Set 5 CutMix samples Fluo-N2DH-SIM+ specifically
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5 CONCLUSION

In this work we have observed the problem of domain shift and overfitting in the

context of cell segmentation through extensive experiments. We have also implemented

several different mitigation strategies based on modern data augmentation techniques,

namely: TA Müller and Hutter (2021), RLR (ALOMAR; AYSEL; CAI, 2023) and Cut-

Mix Yun et al. (2019) with varying degrees of success.

In our tests, we used a model based on the EfficientUNet++ (TAN; LE, 2019)

architecture with the EfficientNet-B0 encoder. We train two versions of this model on the

CTC dataset, which contains several samples of different cell types. The first is a model

without using any of our data augmentation techniques, this can be used as a baseline

for comparison with the next model which implements the proposed data augmentations.

We also tested different subsets of our proposed augmentations in different scenarios to

narrow down what is the best approach for each situation.

To analyze the effectiveness of the proposed generalized model with data augmen-

tation, we performed experiments on both a baseline and our approach with an intra- and

inter-dataset validation scheme. The results showed that when the training sample is small

and there is a big domain shift between datasets, the best approach is to implement all the

proposed augmentations to broaden the dataset as much as possible. In this scenario when

the domain shift is small it is best to tailor the augmentations to best match the desired

dataset domain, i.e, if the cells have different shapes apply geometric augmentations; if

the background has a different color apply photometric transformations. We have also ob-

served that when the training dataset is bigger and already has a broad variety of samples,

the best approach is to use CutMix directly on the dataset domain that is to be evaluated.

It is important to note that there is variability when training and testing models, due to the

random nature of training weights and augmentations, but this was not evaluated in this

work due to time constraints.

We have briefly touched on a few different works, which had approaches that

were applicable to this work. We discuss these implementations along with others that

were researched but not mentioned as possibilities for future improvements in this work.

A difficult part of this work was choosing which data augmentation primitives to

adopt. Many of the selected transformations came from already established augmenta-

tion spaces like in RandAugment (CUBUK et al., 2019). This could be further improved

by implementing one of the Deep Learning approaches to data augmentation like Au-



40

toAugment (CUBUK et al., 2018), which would optimize the choice of augmentations

according to our dataset.

A unique approach to data augmentation that was briefly observed in (ALOMAR;

AYSEL; CAI, 2023) is the ObjectAug (ZHANG; ZHANG; XU, 2021), which proposes

object-level data augmentation for semantic segmentation, which is accomplished by ap-

plying other data augmentation techniques only to the objects in the image sample. This

process is done by interpreting the segmentation masks to extrapolate what parts of the

image pertain to the object to augment. This could be applied to our work, changing

a cell’s color could make it harder or easier to distinguish from background, geometric

transformations could produce more variations in cell shape.
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