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In 1973 Schwenk [7] proved that almost every tree has a 
cospectral mate. Inspired by Schwenk’s result, in this paper 
we study the spectrum of two families of trees. The p-sun 
of order 2p + 1 is a star K1,p with an edge attached to 
each pendant vertex, which we show to be determined by its 
spectrum among connected graphs. The (p, q)-double sun of 
order 2(p + q + 1) is the union of a p-sun and a q-sun by 
adding an edge between their central vertices. We determine 
when the (p, q)-double sun has a cospectral mate and when it 
is determined by its spectrum among connected graphs. Our 
method is based on the fact that these trees have few distinct 
eigenvalues and we are able to take advantage of their nullity 
to shorten the list of candidates.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this paper is to study the spectra of two families of graphs and to decide 
if they have a unique spectrum among connected graphs. The motivation for this type 
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of study comes from complexity theory. The Graph Isomorphism Problem asks to decide 
whether two given graphs are isomorphic. From the viewpoint of computational com-
plexity theory, it is a celebrated problem that it is not yet known whether it is solvable in 
polynomial time or not. Since checking whether two graphs are cospectral can be done 
in polynomial time, the isomorphism problem concentrates on checking isomorphism 
between cospectral graphs.

From the prospective of the spectral graph theory, this question is generally studied 
by analyzing the spectrum of matrices associated with graphs, identifying which graphs 
are uniquely determined by the spectrum (DS), up to isomorphism. If we know that a 
graph is DS, then we know its entire structure (vertices, edges, connectivity, subgraphs 
etc) just by looking at the eigenvalues of the associated matrix (a problem with order of 
n3 time complexity). Hence one of the most important problems in the area is to decide 
which graphs are DS [9].

The question which graphs are DS arose in chemistry with Günthard and Primas [2]
in 1956. All graphs were believed to be DS, until in 1957 Collatz and Sinogowitz [10]
exhibit a pair of cospectral (non-isomorphic) trees.

A landmark result came in 1973, when Schwenk [7] proves that almost all trees are 
cospectral by showing that given a tree, it is possible to build a non-isomorphic pair 
with the same characteristic polynomial. Since then, many methods for constructing 
cospectral graphs have emerged, some of which can be found in [9], for instance. To 
this day, it is not known whether most graphs are DS or not, as there are results that 
reinforce both beliefs.

As van Dam and Haemers point out in the celebrated paper [9], it is not easy to 
show that a single graph has a unique spectrum among all graphs. In this paper, we are 
concerned with two families of graphs.

The p-sun (see Section 2 for definitions) has one vertex of degree p > 2, p vertices of 
degree 2 and p pendant vertices and, therefore, belongs to a wider class of trees known 
as starlikes (has exactly one of its vertices with degree greater than 2). In 2002, Lepovic 
and Gutman [5] show that no two non-isomorphic starlike trees are cospectral. In 2007, 
Omidi and Tajbakhsh [6] show that if T is a starlike with maximum degree Δ, then the 
maximum degree of any cospectral graph with T must be less than Δ and it has at most 
two vertices of degree at least 5. In addition, they also show that all starlike trees are 
DS in relation to the Laplacian matrix.

More recently, in 2006, Wang and Xu [11] show that all starlike trees with a maximum 
degree 3 (T-shape trees) are determined by the spectrum, with only a few well-defined 
exceptions. We notice that the p-sun is also a T-shape tree and when p = 3 it is one of 
the exceptions. In this paper we will show that the p-sun is DS among connected graphs. 
On the other hand, we will see that this graph may have a cospectral mate, if we consider 
disconnected graphs.

The other family we study is the (p, q)-double sun, which is composed by a p-sun 
and a q-sun joined by an edge between their central vertices. We determine when the 
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(p, q)-double sun is DS among connected graphs. Moreover, when the (p, q)-double has 
a connected cospectral mate H, we determine precisely the graph H.

We point out that the p-sun and the (p, q)-double sun are important graphs as, for 
example, they are conjectured to be graphs with largest Randić energy [3]. We also em-
phasize that the technique used in our proofs is novel, as we use a localization algorithm 
and take advantage of relations between matching number and nullity.

The paper is organized as follows. In Section 2 we see some basic notions of (spectral) 
graph theory which are needed along the paper as well as some important preliminary 
results and a localization algorithm. Our first main result is presented in Section 3, where 
we show that the p-sun is DS among connected graphs. Section 4 is a guide for the proof 
of the results about (p, q)-double sun. Sections 5, 6, 7 and 8 contain the details of the 
analysis of trees having perfect matching and different values of the diameter. Finally, 
in Section 9, we discuss our results and suggest some research problems.

2. Preliminaries

In this section we set the notation, give basic definitions and state known results that 
will be used in this manuscript. We also set forward the main tool used to prove our 
main results.

We will deal with simple graphs G = (V, E). A vertex with degree 0 is called isolated
and a vertex with degree 1 is called pendant. Also a vertex with a pendant neighbor is 
called quasi-pendant.

An subset M of edges is called a matching of G if no two edges of M share a com-
mon vertex. A matching is called maximum in G if it has maximum cardinality among 
all matchings, and it is called perfect if every vertex of G is incident with (exactly) 
one edge in M . The cardinality of a maximum matching is called the matching num-
ber of G, denoted by μ(G). A tree with a perfect matching is denoted by PM-tree for 
short.

For a tree T on at least two vertices, a vertex v ∈ T is called mismatched in T if there 
exists a maximum matching M of T that does not cover v; otherwise, v is called matched
in T . If a tree consists of only one vertex, then this vertex is considered mismatched.

The distance of two vertices u, v in G is the length (number of edges) of a shortest 
path between u and v in G. The greatest distance between any two vertices in G is the 
diameter of G, denoted d(G). A vertex is central in G if its greatest distance from any 
other vertex is as small as possible.

With G we associate the adjacency matrix which is the 0-1 matrix A indexed by the 
vertices of G, where Auv = 1 when u and v are adjacent in G and Auv = 0 otherwise. 
The spectrum of G is the spectrum of its adjacency matrix. The nullity of the graph G, 
denoted by η(G), is the multiplicity of the eigenvalue zero in the spectrum of G.

A graph is determined by its spectrum – DS for short – if there is no other non-
isomorphic graph with the same spectrum. If there is such a non-isomorphic graph with 
the same spectrum, we say both are cospectral mates.
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Fig. 1. The 3-sun with 7 vertices and the (3,4)-double sun with 16 vertices.

We understand that a sun graph has different forms in the literature. Here we follow 
the definition from Gutman et al. in [3]. Let p ≥ 1. The tree of order n = 2p +1 obtained 
from a star K1,p with an edge attached to each pendant vertex is called p-sun. For 
p, q ≥ 1, the tree of order n = 2(p + q + 1) obtained from the union of two suns, the 
p-sun and q-sun, by adding an edge between their central vertices is called (p, q)-double 
sun. Fig. 1 illustrates the graphs we are concerned in this note.

The following results may be found in van Dam and Haemers [9].

Proposition 2.1. Let G be a connected graph with diameter d. Then G has at least d + 1
distinct eigenvalues.

Lemma 2.2. For the adjacency matrix of a graph G, the following can be deduced from 
the spectrum:

(i) The number of vertices.
(ii) The number of edges.
(iii) Whether G is bipartite.

From Jacobs et al. [4] we have the following algorithm which is used extensively in our 
results. The algorithm operates directly on a (rooted) tree and works bottom-up. The 
tree is rooted at an arbitrary vertex and the vertices are ordered v1, . . . , vn such that if 
vi is a child of vk, then k > i.

The algorithm Diagonalize finds a diagonal matrix D that is congruent to A(T ) +αI, 
for any real number α. Hence the next result follows [4]:

Theorem 2.3. Let D be the matrix produced by Diagonalize(T, −α), for T a tree.

(i) The number of positive entries in D is the number of eigenvalues of T greater than 
α.

(ii) The number of negative entries in D is the number of eigenvalues of T less than α.
(iii) If there are j zero entries in D, then α is an eigenvalue of T with multiplicity j.

We would like to point out that Algorithm 1 may also be used to compute the 
characteristic polynomial det(λI − A), where λ is an indeterminate. We may use 
Diagonalize(T, −λ) to compute det(A − λI). However we would be working over the 
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Algorithm 1: Diagonalize(T ,α).
Input: tree T , scalar α
Output: diagonal matrix D congruent to A(T ) + αI
initialize d(v) := α, for all vertices v
order vertices bottom-up
for k = 1 to n do

if vk is a leaf then
continue

else if d(c) �= 0 for all children c of vk then
d(vk) := d(vk) − ∑ 1

d(c) , summing over all children of vk

else
select one child vj of vk for which d(vj) = 0
d(vk) := − 1

2
d(vj) := 2
if vk has a parent vl, remove the edge vkvl

end if
end for

vn

vp+1 vp+2 v2p

v1 v2 vp

· · ·

· · ·

−λ

−λ −λ −λ

−λ −λ −λ

· · ·

· · ·
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−λ2+1
λ

−λ2+1
λ

−λ2+1
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· · ·

· · ·
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−λ2+1

−λ2+1
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−λ2+1
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· · ·

Fig. 2. Diagonalize algorithm step-by-step applied to the p-sun.

quotient field R(λ) of R[λ]. The output of Diagonalize(T, −λ) over R(λ) will be a diago-
nal matrix D whose product of the diagonal terms is det(A −λI) and adjusting the sign 
by (−1)n we obtain det(λI −A).

To emphasize the previous observation we will use the algorithm Diagonalize with 
α = −λ to obtain the characteristic polynomial φp-sun(λ) of the p-sun. We set the root 
to be the vertex of degree p and we begin by initializing each vertex with d(v) := −λ and 
then we skip all the leaves and look at their quasi-pendant neighbors. According to the 
algorithm, for each one of these quasi-pendant vertices vk, as they only have one child c
with d(c) = −λ, we have d(vk) := d(vk) −

∑ 1
d(c) = −λ − 1

−λ = −λ2+1
λ .

Finally we look at the root vn which has p children with d(c) = −λ2+1
λ each and so 

we find d(vn) := d(vn) −
∑ 1

d(c) = −λ − pλ
−λ2+1 = λ(λ2−1−p)

−λ2+1 . We can see in Fig. 2 the 
algorithm being applied step-by-step to the tree. In the tree on the left we show the 
vertices named bottom-up and in the remaining trees the values d(v) of each vertex are 
shown as they are calculated at each level up to the root.

To find det(A − λI) we just multiply all the values d(v) that the algorithm has com-
puted. Then the characteristic polynomial of the p-sun is given by

φp−sun(λ) = (−1)ndet(A− λI)

φp−sun(λ) = (−1)n(−λ)p
(
−λ2 + 1

)p (
λ(λ2 − 1 − p)

2

)

λ −λ + 1
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= λ(λ2 − 1)p−1(λ2 − (p + 1)).

The following two results can be found in Gong et al. [1]. The first associates the 
matching number and the nullity of a tree, and the second ensures that every quasi-
pendant vertex of a tree is matched.

Lemma 2.4. Let T be a tree of order n, with nullity η(T ) and matching number μ(T ). 
Then η(T ) = n − 2μ(T ).

Lemma 2.5. If v is a quasi-pendant vertex of a tree T , then v is matched in T .

The following well known result about trees is stated here for easy reference.

Lemma 2.6. A connected graph with n vertices is a tree if and only if it has n − 1 edges.

We observe that any tree with nullity zero has a perfect matching, for Lemma 2.4
yields μ(T ) = n

2 . Also every PM-tree has an even number of vertices since each edge 
has two vertices and no edge in a matching share a vertex with another. In particular, 
any tree T of order n (therefore n − 1 edges) and nullity η(T ) = 1, has a matching 
number μ(T ) = n−1

2 ∈ Z, which means that half of its edges are matched by a maximum 
matching and thus all its vertices (but one) are covered, for T has an odd number of 
vertices.

2.1. Constructing a general tree with a given diameter

In order to determine the spectral characterization of the p-sun and the (p, q)-double 
sun, we will need to analyze trees with diameters up to 7. For this we need to understand 
the structure of such trees. As this may be of independent interest, we explain in this 
section how to construct general trees with a given diameter.

The following is well known, but we emphasize here for completeness.

Observation 2.7. Let T be a tree with diameter d. Then T has a path P with largest 
length d as a subgraph. If d is even, then P has an odd number of vertices and so it has 
one central vertex v. Similarly, if d is odd, then P has two central vertices with an edge 
e joining them. The vertex v and edge e are unique, independently of the largest path 
P . The edge e is called the central edge of the (odd diameter) tree T , while the vertex v
is called the central vertex of the (even diameter) tree T .

The following is also well known.

Observation 2.8. If a tree has even diameter 2k, then the distance from its central vertex 
v to any other vertex is at most k. If it has an odd diameter 2k + 1, then the distance 
from any of its central vertices to any other vertex is at most k + 1 and a path which 
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Fig. 3. General trees of diameters 1, 3, 5 (top) and 7 (bottom).

attains such maximum distance contains the central edge e. Moreover, there must be at 
least one path from each central vertex with length k that does not contain e.

Since we need a rooted tree to apply Algorithm 1, in what follows, we always choose 
the central vertex as the root; if the tree has an odd diameter, we choose either one of 
the central vertices.

Let d be a fixed diameter. We initialize the construction of the tree T according to 
the parity of d. If d = 2k ≥ 2 is even, we initialize T with a vertex, and if d = 2k+1 ≥ 3, 
we initialize T with an edge. The rest of the procedure is the same, depending only on 
k, not the parity of d.

First we attach p(v) ≥ 2 pendant vertices to each vertex v in T . We continue this proce-
dure for a total of k steps, where at each step we attach p(v) ≥ 2 pendant vertices to every 
vertex v present in T so far. The important thing is to attach an amount greater than 1 
(but not necessarily equal) to every vertex at each step in order to yield a general tree.

We first exemplify this procedure by creating a general tree T with diameter 7. As 
d = 2.3 + 1, we initialize T with an edge and then we have k = 3 steps to complete the 
process.

We observe that while constructing the general tree of diameter 7, we also construct 
general trees of diameter 1, 3 and 5 in the process. We refer to Fig. 3.

The only difference between constructing an odd and an even diameter tree is the first 
step, so in order to build T with diameter 6, we initialize it with a vertex, instead of an 
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Fig. 4. Steps yielding to the general tree with d = 6.

edge. As d = 2.3, we only have k = 3 steps after the initial vertex. We also notice that a 
general tree with an odd diameter 2k+1 may be thought of as two general trees with an 
even diameter 2k connected by their central vertices. For instance, a general tree with di-
ameter 7 can be seen as two general trees with diameter 6 connected by their central ver-
tices. We refer to Fig. 4 for the construction of general trees of even diameter 0, 2, 4 and 6.

3. The p-sun is DS among connected graphs

In this section we prove that the p-sun is determined by its spectrum among connected 
graphs. Our method takes advantage of the fact that the sun has nullity one and only five 
distinct eigenvalues. Hence, by using Proposition 2.1, it suffices to determine all possible 
trees with diameter at most 4 whose eigenvalue 0 has multiplicity one. This discrimination 
turns out to be fairly simple and, by putting together the previous results, it allows us 
to show that the sun has no cospectral mates in the set of connected graphs.

Proposition 3.1. The spectrum of the p-sun is

{0(1),−1(p−1), 1(p−1),−
√

p + 1
(1)

,
√
p + 1

(1)}

for p ≥ 1.

Proof. The result follows by noticing that the characteristic polynomial of the p-sun 
computed in the previous section is λ(λ2 − 1)p−1(λ2 − (p + 1)). �

A tree with diameter 3 (see Fig. 3) (top) may be seen as two stars K1,a and K1,b with 
their centers connected by an edge. Hence we denote a diameter 3 tree of order n by 
T (a, b), as in [8], where n = a + b + 2 with a ≥ b ≥ 1 leaves at each end of T (a, b).

A tree with diameter 4 (see Fig. 4) may also be seen as a star K1,� with its center con-
nected to the centers of k stars K1,p1 , . . . , K1,pk

. We denote it by T (�, p1, . . . , pk), where 
� ≥ 0, k ≥ 2 and pi ≥ 1. We notice that the p-sun is the particular case T (0, 1, . . . , 1) for 
k = p and observe that � ≥ 0 and pi ≥ 1 because this guarantees d = 4.
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· · ·

p1 · · · pk

� = 2

· · ·

p1 · · · pk

� = 1

· · ·

p1 p2 · · · pk

Fig. 5. The only trees with d = 3 (top) and d = 4 (bottom) and nullity one.

Lemma 3.2. Consider the set of trees.

(i) The only tree with diameter 3 and nullity one is T (2, 1).
(ii) The only trees with diameter 4 and nullity one are the p-sun, T (2, 1, . . . , 1) and 

T (1, 2, 1, . . . , 1).

Proof. We recall that a tree with nullity one can have a single mismatched vertex. For 
item (i), we notice that if a ≥ b = 2, then it is easy to see that T (a, b) would have more 
than one mismatched vertex. By the same reasoning, in a diameter 4 tree, there can be 
at most one quasi-pendant vertex with two pendant vertices and hence item (ii) follows. 
We refer to Fig. 5 for an illustration. �

We now state the main result of this section.

Theorem 3.3. Let p ≥ 1 be an integer. Then the p-sun is determined by its spectrum 
among connected graphs.

Proof. We first notice that for p = 1 and p = 2, the p-sun trees are the paths P3 and P5, 
respectively, which are DS. Hence we assume that p ≥ 3. By Proposition 3.1 we know 
that the spectrum of the p-sun is {0(1), ±1(p−1), ±√

p + 1(1)}, where n = 2p + 1 ≥ 7 is 
its order.

Suppose T is a connected graph non-isomorphic and cospectral with the p-sun. By 
Lemma 2.2 (ii), the number of edges of T is n − 1 and hence, by Lemma 2.6, we may 
assume T is a tree. By Proposition 2.1, as T has 5 distinct eigenvalues, its diameter is 
at most 4. As the only trees with diameter 1 and 2 are P2 and K1,n−1, respectively, and 
they both are determined by their spectra, they may be ruled out.

By Lemma 3.2 (i) the only tree with nullity one and diameter 3 is T (2, 1), which has 
5 vertices, so it cannot be cospectral with the p-sun.
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Now only trees with diameter 4 remain to be considered and then, by Lemma 3.2 (ii), 
we shall verify whether T is isomorphic to either T (2, 1, . . . , 1) or T (1, 2, 1, . . . , 1). We 
first notice that the multiplicity of the eigenvalue 1 (or -1) of T equals p − 1, i.e., n−3

2 .
If T � T (2, 1, . . . , 1), then it has order n = 2k+3 and thus the eigenvalue 1 must have 

multiplicity k. After applying Algorithm 1 and using Theorem 2.3, we find out that its 
multiplicity is actually k − 1, so this tree cannot be cospectral with the p-sun.

In a similar manner, if T � T (1, 2, 1, . . . , 1), it has order n = 2k + 3 and so the 
eigenvalue 1 must also have multiplicity k, but using Theorem 2.3 we find out it actually 
has multiplicity k − 2.

Therefore the p-sun has no cospectral mates among connected graphs. �
4. Spectral characterization of the (p, q)-double sun

This section is a guide for the spectral characterization of the (p, q)-double sun. The 
main result is the following.

Theorem 4.1. Let 3 ≤ p ≤ q be integers and G the (p, q)-double sun with n = 2(p + q+1)
vertices. Consider

p′ = 1
4(n− 4 + 2

√
(p− q)2 + n− 5).

(a) G is DS among connected graphs if and only if p′ is not a natural number.
(b) G has a connected cospectral mate if and only if p′ is a natural number.

We now explain how we achieve the proof of this result. Because we are considering 
only connected graphs, we may restrict the analysis to trees of diameter d ≤ 7, because 
the (p, q)-double sun G has 8 distinct eigenvalues. As G has nullity 0, we restrict further 
to those trees with perfect matching.

In Section 5 we prove Proposition 5.4 showing that G has no cospectral mate among 
trees with diameter d ≤ 4. In sections 6 and 7 we prove Propositions 6.2 and 7.3 showing, 
respectively, that G has no cospectral mates among trees of diameters 5 and 6.

In Section 8 we deal with PM-trees of diameter 7. There, we reduce the analysis to 4 
prototype PM-trees. Proposition 8.2 shows that 3 of the 4 types are not cospectral with 
G. However, as Proposition 8.3 shows, one type may be cospectral with the (p, q)-double 
sun G, exactly when p′ = 1

4 (n − 4 + 2
√

(p− q)2 + n− 5) is a natural number.
Hence, collectively, Propositions 5.4, 6.2, 7.3, 8.2 and 8.3 prove Theorem 4.1.
The remaining of the paper is as follows. The rest of this section has some general 

results that will be used in the remaining sections, where the PM-trees with diameter 
d ≤ 7 are studied. Section 9 discusses the results of this paper and suggests some research 
problems.

Proposition 4.2. The spectrum of the (p, q)-double sun is
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{−1(p+q−2), 1(p+q−2),−r
(1)
1 ,−r

(1)
2 ,−r

(1)
3 , r

(1)
1 , r

(1)
2 , r

(1)
3 }

for p, q ≥ 1, where ±r1, ±r2 and ±r3 are the roots of the polynomial

λ6 − (p + q − 3)λ4 + (pq + p + q + 3)λ2 − 1.

Proof. We perform Diagonalize(T, −λ) with the (p, q)-double sun rooted at the vertex 
of degree p + 1 to obtain det(A − λI). Therefore

φ(p,q)−double sun(λ) = (λ2 − 1)p+q−2[λ6 − (p + q + 3)λ4 + (pq + p + q + 3)λ2 − 1].

It is easy to check (say, by substitution) that λ = ±1 are not roots of the sixth degree 
polynomial and thus the result follows. �
Lemma 4.3. Let T = (V, E) be a tree with diameter d > 3 and � ≥ 1 non-pendant vertices 
which are adjacent to quasi-pendant vertices of degree 2. Then T has at least � eigenvalues 
less than −1.

Proof. Let V ′ = {v1, . . . , v�} ⊂ V be the � ≥ 1 non-pendant vertices of T having some 
quasi-pendant neighbor of degree 2. If � ≥ 2, to avoid overcounting, we first need to 
prove that every quasi-pendant vertex of degree 2 is neither in V ′ nor has more than one 
neighbor in V ′.

For � ≥ 2, let u be a quasi-pendant vertex of degree 2.
First we show that u /∈ V ′. If u ∈ V ′, then u has a quasi-pendant neighbor v of degree 

2. Since both u and v have one pendant neighbor each, we have T � P4 with diameter 
3, a contradiction. And to see that u cannot have both neighbors in V ′ we simply notice 
that one neighbor of u is pendant, another contradiction.

Finally, to prove the desired result, we set the root at some vertex that is neither a 
pendant nor a quasi-pendant of degree 2 and apply Algorithm 1 with α = 1. We notice 
that this ensures that each vertex in V ′ is processed after their quasi-pendant neighbor 
of degree 2 (see Fig. 6 for an illustration).

Initializing Algorithm 1 with α = 1 implies that a quasi-pendant vertex u of degree 2 
(which has only one pendant child) has its value d(u) := 1 − 1

1 = 0. Now we can process 
every vi ∈ V ′. We notice that every vi has children whose value is 0. We choose one 
such a child u, set d(u) = 2, d(vi) := −1

2 , and remove the edge with the parent of vi (if 
any). Thus the value dvi = −1/2 is permanent and by Theorem 2.3 we have proved the 
desired result. �

Next we show an example of Lemma 4.3 represented in Fig. 6, where we set α = 1 (to 
obtain information about −α) and we apply Algorithm 1 bottom-up. In this example, 
we have � = 2 vertices that satisfy Lemma 4.3 and in fact the tree has 3 eigenvalues less 
than -1, because 3 values remain negative after the application of the algorithm.
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Fig. 6. Application of Lemma 4.3.

Lemma 4.4. The (p, q)-double sun has exactly two eigenvalues less than -1.

Proof. This follows by observing that the application of Algorithm 1 with α = 1 on the 
(p, q)-double sun leaves two negative values. �

Even though simple, together with Lemma 4.3, the following will be a powerful tool 
for identifying which PM-trees should be tested as double sun’s cospectral mates.

Lemma 4.5. In a graph with perfect matching, every quasi-pendant vertex has only one 
pendant vertex.

Proof. It suffices to observe that in a graph with perfect matching, all its vertices are 
matched, and that would not be possible if a quasi-pendant vertex had more than one 
adjacent pendant vertex. �
5. PM-trees with diameter 2,3 and 4

In this section we show that trees with diameter 2, 3 and 4 can not be cospectral with 
the (p, q)-double sun. We use the fact that our target tree, the (p, q)-double sun, is a 
PM-tree.

Lemma 5.1. There is no PM-tree with diameter 2.

Proof. The only tree with diameter 2 is the star K1,n, with n > 1 and thus its central 
vertex v has more than one pendant vertex. Now the result follows from Lemma 4.5. �
Lemma 5.2. The only PM-tree with diameter 3 is P4 � T (1, 1).

Proof. Let T be a tree of diameter 3. Again, applying Lemma 4.5, we see that the only 
tree having quasi-pendant vertices with a single pendant neighbor each is T (1, 1). �

Using the same reasoning, follows the result for a diameter 4 tree.

Lemma 5.3. The only PM-tree with diameter 4 is T (1, 1, . . . , 1).
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· · ·

Fig. 7. The only PM-trees with d = 3 (left) and d = 4 (right).

Fig. 7 illustrates the PM-trees with d = 3 and d = 4. The diameter 4 tree with perfect 
matching is of particular interest, since it appears as branch at central vertices in PM-
trees with greater diameter. On such occasions, we make use of Lemma 4.3 to restrict our 
possibilities of PM-trees because each branch presenting this form increases the amount 
of eigenvalues less than -1 by one, since its central vertex is adjacent to quasi-pendant 
vertices of degree 2.

The following result puts together the above lemmata, concluding that none of the 
PM-trees with diameter 2, 3 or 4 can be cospectral with the (p, q)-double sun for p, q ≥ 1.

Proposition 5.4. The (p, q)-double sun has no cospectral mates among connected graphs 
with diameters 2, 3 and 4.

Proof. As before we can restrict ourselves to trees. Now, by Lemma 5.1, there is no 
PM-tree with diameter 2. As Lemma 5.2 states, the only PM-tree with diameter 3 has 4 
vertices, but any cospectral mate with the (p, q)-double sun must have at least 6 vertices, 
as p, q ≥ 1 and n = 2(p + q + 1).

Finally we apply Algorithm 1 with α = 1 to the tree with diameter 4 together with 
Theorem 2.3 and we see that T (1, 1, . . . , 1) has a single eigenvalue less than -1, when it 
should have exactly two in order to be a possible cospectral mate of the double sun, by 
Lemma 4.4. �
6. PM-trees with diameter 5

Not as simple as above, where we can easily see the only possibilities of PM-trees with 
diameter 2,3 and 4, in this section we determine the PM-trees with diameter 5.

Starting with the general tree with diameter 5, based on Lemma 4.5 our first step is 
to remove all but one pendant vertex from each quasi-pendant vertex. Next we match all 
quasi-pendant vertices of degree 2 with their pendant neighbor, which is a consequence 
of applying Lemma 2.5. This process is represented in Fig. 8.

The reason why we do not match every pendant edge all at once is because some of 
them could be removed from the tree without changing its diameter or its general form.

Now, we observe that in order to preserve the diameter of the tree we must keep at 
least one path with maximum length at each central vertex by Observation 2.8 and, 
therefore, the central vertices can never be removed.

Then we are left with only two possibilities: matching the central edge or not. If we 
match the central edge, we must remove the pendant edges at each central vertex and 
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Fig. 8. First steps to build PM-trees with diameter 5.

· · ·

p · · ·

q

· · ·

p′ · · ·

q′

Fig. 9. The only two PM-trees with d = 5.

we end up with the double sun. Otherwise, if we do not match the central edge, then we 
can only match each central vertex with their pendant neighbor and we denote T5 this 
PM-tree.

Both possibilities are shown in Fig. 9.

Lemma 6.1. The only two PM-trees with diameter 5 are the (p, q)-double sun and T5.

The next result shows that T5 is not cospectral with the double sun. Our method 
checks the multiplicity of the eigenvalues ±1 to discard this possibility by the use of 
Algorithm 1.

Proposition 6.2. The double sun has no cospectral mates among connected graphs with 
diameter 5.

Proof. As before, because we are restricting ourselves to connected graphs, then it follows 
from Lemma 6.1 that the only possible candidate for cospectrality is the tree T5.

First we recall that the multiplicity of the eigenvalues ±1 of the (p, q)-double sun is 
p + q − 2, where p, q ≥ 1. In terms of the number of vertices n = 2(p + q + 1), we can 
translate this multiplicity as n − 3.
2
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Fig. 10. First steps to build PM-trees with diameter 6.

Let T5 with p′, q′ ≥ 1 quasi-pendant vertices with degree 2 in each central vertex and 
thus with n = 2(p′ + q′ + 2) = 2(p + q + 1) vertices.

Using Algorithm 1 on T5 with α = 1, we see that the multiplicity of -1 is p′ + q′− 2 =
n
2 − 4, by Theorem 2.3, and we conclude they do not have the same spectrum. �

From now on, the procedures to determine the PM-trees with diameter 6 and 7 follow 
the same pattern that we have just seen. Certainly there are many more possibilities of 
perfect matchings when considering those diameters, but with the help of some previous 
results we are going to be able to reduce dramatically such cases.

7. PM-trees with diameter 6

In the same way as before, to determine the PM-trees with diameter 6, we start with 
a general tree and by Lemma 4.5 we prune its pendant vertices, leaving only one at 
each quasi-pendant vertex. After that, supported by Lemma 2.5, we can match every 
edge between a quasi-pendant vertex with degree 2 and its pendant neighbor, since they 
cannot be matched by any other edge. We see this process in Fig. 10.

Looking from the perspective of the central vertex, it can only be matched with some 
neighbor yet to be matched. There are two ways to do that. The first one is to match 
the central vertex with its pendant edge, then we must match all other pendant edges 
left, as there is no other possibility. We call this a type I PM-tree with diameter 6. The 
second way is to match the central vertex u with a non-pendant vertex v, then we must 
remove both pendant edges incident at u and v since they can no longer be matched, and 
the remaining pendant edges of the tree are all matched. We call this a type II PM-tree 
with diameter 6. The two resulting trees are illustrated in Fig. 11.

Before we continue, a bit of notation is needed for the two types of diameter 6 PM-
trees with central vertex u. For a type I PM-tree with diameter 6, u has deg(u) = r+k+1
neighbors, where r ≥ 0 is the number of quasi-pendant vertices with degree 2, k ≥ 2 is 
the number of quasi-pendant vertices with degree greater than 2, and the 1 corresponds 
to the matched pendant edge. We also say that a vertex vi adjacent to u with deg(vi) > 2
has pi ≥ 1 quasi-pendant neighbors with degree 2, for 1 ≤ i ≤ k.
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u

· · ·

...

· · · · · ·

r ≥ 0

p1 · · · pk

u

v

· · ·

...

· · · · · ·· · ·

r ≥ 0

p p1 · · · pk

Fig. 11. Type I and type II general PM-trees with diameter 6.

For a type II PM-tree with diameter 6, u has also deg(u) = r+k+1 neighbors, where 
we still have r ≥ 0, but the differences are that k ≥ 1 and, since its matched edge uv is 
not pendant, we say that v has p ≥ 1 quasi-pendant neighbors with degree 2.

Observation 7.1. The reason for the lower restraints at k, pi and p is only to guarantee 
the tree’s diameter in each type. More precisely, we need to have at least two paths (with 
no edge in common) from the central vertex with maximum length. Therefore, the type 
I tree must have at least two paths with length 3 (k ≥ 2) and the type II tree must have 
one path with length 3 containing the central vertex’s matched edge (p ≥ 1) and at least 
one more path with the same length (k ≥ 1). As r has no influence on the diameter, we 
can have r = 0 with no problem.

Thanks to Lemma 4.4, we can determine which PM-trees with diameter 6 are of 
interest when looking for cospectral mates to the (p, q)-double sun. Its proof uses the 
notation established for type I and type II PM-trees with diameter 6, as can be easily 
understood by looking at Fig. 10 together with Observation 7.1 above.

Lemma 7.2. The only PM-trees with d = 6 and two eigenvalues less than -1 are:

(i) the type I tree with k = 2 and r = 0;
(ii) the type II tree with k = 1 and r = 0.

Proof. Let T be a type I PM-tree with diameter 6 and central vertex u, where deg(u) =
r + k + 1. As stated in Observation 7.1, we must have k ≥ 2 in order to maintain the 
diameter of T , but r ≥ 0. If r ≥ 1, then T would have at least k + 1 vertices which are 
adjacent to quasi-pendant vertices of degree 2. Therefore, by Lemma 4.3, T would have 
k+ 1 ≥ 3 eigenvalues less than -1, which is not of interest because of Lemma 4.4. So the 
only way of having (at least) two eigenvalues less than -1 is to assign k = 2 and r = 0.

Similarly, we now consider a type II PM-tree with diameter 6 but, different from the 
type I, we have p ≥ 1 and k ≥ 1 as restraints to ensure the diameter, and r ≥ 0 still. 
Then, by Lemma 4.3, if r = 0 we would already have at least k + 1 ≥ 2 eigenvalues 
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p1 p2

· · · · · ·

p′ p1

Fig. 12. PM-trees T6(i) and T6(ii) of Lemma 7.2, respectively.

less than -1 (where the 1 comes from p > 0), whereas if r ≥ 1 we would have at least 
k + 2 ≥ 3 eigenvalues less than -1, exceeding our intention. Thus we must assign k = 1
and r = 0 to the type II tree in order to have (at least) two eigenvalues less than -1.

Applying Algorithm 1 with α = 1 to the above cases, we can see that these trees have 
exactly two eigenvalues less than -1, both of them being represented in Fig. 12. �

Next we show that both trees of Lemma 7.2 are not cospectral with the (p, q)-double 
sun. Likewise we did in Proposition 6.2, the proof is based on the multiplicity of the 
eigenvalues ±1.

Proposition 7.3. The double sun has no cospectral mates among connected graphs with 
diameter 6.

Proof. As we know, the (p, q)-double sun has n = 2(p + q + 1) vertices and, by Proposi-
tion 4.2, its eigenvalues ±1 have multiplicity n2 − 3 = p + q − 2. We refer to the trees in 
case (i) and (ii) of Lemma 7.2 as T6(i) and T6(ii), respectively. So T6(i) is the type I tree 
with k = 2 and T6(ii) is the type II tree with k = 1, both with r = 0.

Looking at T6(i) we see it has n = 2(p1 + p2 + 3) vertices, where p1, p2 ≥ 1. Applying 
Algorithm 1 with α = 1 we conclude its eigenvalue -1 has multiplicity p1+p2−1 = n

2 −4, 
by Theorem 2.3.

The same goes for T6(ii) with n = 2(p′+p1+2) vertices, where p′, p1 ≥ 1. Then applying 
Algorithm 1 with α = 1, we see that the eigenvalue -1 has multiplicity p′+p1−2 = n

2 −4, 
by Theorem 2.3.

Therefore we conclude none of them are cospectral with the double sun. �
8. PM-trees with diameter 7

This section covers the case of the diameter 7 PM-trees. We start with the general 
tree with diameter 7 that may be seen in Fig. 13 and we build the possibilities of perfect 
matching. Finally, we sort those that interest us, i.e., the PM-trees with no more than 
two eigenvalues less than -1.

By Lemma 4.5, we first remove all but one pendant vertex at each quasi-pendant 
vertex and right after, by Lemma 2.5, we match every quasi-pendant vertex with degree 
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Fig. 13. General tree with diameter 7.
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Fig. 14. PM-trees with diameter 7: type I (top) and type II (bottom).

2, since there is no other way of matching them. Observing that the central edge may 
or may not be matched, we separate our analysis for both cases. If the central edge is 
matched, we remove the pendant edges at both central vertices and we match all pendant 
edges remaining. We call this a type I PM-tree with diameter 7. The result is represented 
in Fig. 14 (top).

We set now some notation for the type I trees and future references. We say that the 
PM-tree with diameter 7 and matched central edge uv has one of its central vertices 
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u with deg(u) = r + k + 1, where r ≥ 0 is the number of quasi-pendant vertices with 
degree 2 and k ≥ 1 is the number of vertices with degree greater than 2, the other central 
vertex v has deg(v) = s + l + 1, where s and l are analogous to r and k, respectively, 
and the number 1 in both degrees represents the central edge. We also say that each 
vertex ui �= v adjacent to u with deg(ui) > 2 has pi ≥ 1 neighbors with degree 2, for 
1 ≤ i ≤ k. An analogous statement is said about the other central vertex; each vertex 
vi �= u adjacent to v with deg(vi) > 2 has qi ≥ 1 neighbors with degree 2, for 1 ≤ i ≤ l. 
Such restrictions on k, l, pi and qi are intended to preserve the diameter of the tree and 
that is also why r and s can be zero.

Now consider the case when the central edge uv is not matched, then we have 3 
possibilities:

(a) match u and v with their pendant edges;
(b) match u with its pendant edge and match v with some neighbor v0 with degree 

greater than 2;
(c) match u and v with some neighbors u0 and v0, respectively, with degrees greater 

than 2;

We notice that case (b) is symmetric in relation to the central edge, that is, it would 
lead us to the same result if we switch vertices u and v.

In case (a), we simply match all pendant edges and we call this a type II PM-tree 
with diameter 7, as we can see in Fig. 14 (bottom).

Similar to the notation before, we say that the type II PM-tree in case (a) with non-
matched central edge uv has the central vertex u with deg(u) = r+k+2, where r ≥ 0 is 
the number of quasi-pendant vertices with degree 2 and k ≥ 1 is the number of vertices 
with degree greater than 2, the other central vertex v has deg(v) = s + l+2, where s and 
l are analogous to r and k, respectively, and the number 2 in both degrees represents 
the central and pendant edges at each central vertex. Furthermore, each vertex ui �= v

adjacent to u with deg(ui) > 2 has pi ≥ 1 neighbors with degree 2, for 1 ≤ i ≤ k, and 
each vertex vi �= u adjacent to v with deg(vi) > 2 has qi ≥ 1 neighbors with degree 2, 
for 1 ≤ i ≤ l. We recall that p1, . . . , pk, q1, . . . , ql, k, l, r, s here have no relation with the 
ones in the previous (or the following) case(s), so we always make it clear which case we 
are referring to. We stress that the reason for the restrictions on the parameters is due 
to the diameter of the tree.

In case (b), we remove only the pendant edges at v and v0, and match all pendant 
edges remaining, as there is nothing else to do. We call this a type III PM-tree with 
diameter 7 and the resulting tree is shown in Fig. 15 (top).

We say that the PM-tree in case (b) and non-matched central edge uv has u with 
deg(u) = r + k + 2, where r ≥ 0 is the number of quasi-pendant vertices with degree 
2 and k ≥ 1 is the number of vertices with degree greater than 2. The other central 
vertex v has deg(v) = s + l + 2, where s is analogous to r, but as much as l represents 
the same kind of vertices as k, we have l ≥ 0 because, if l = 0 then it does not affect 
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Fig. 15. PM-trees with diameter 7: type III (top) and type IV (bottom).

the diameter of the tree, whereas k must necessarily be positive. The number 2 in both 
degrees represents the central and matched edges at each central vertex.

Finally, each vertex ui �= v adjacent to u with deg(ui) > 2 has pi ≥ 1 neighbors with 
degree 2, for 1 ≤ i ≤ k. Also the vertex v0 matched to v has q ≥ 1 neighbors with 
degree 2 and if l ≥ 1 then each vertex vi �= u adjacent to v with deg(vi) > 2 has qi ≥ 1
neighbors with degree 2, for 1 ≤ i ≤ l.

We now turn to case (c), when we must remove the pendant edges at u, v, u0, v0 since 
they cannot be matched anymore and we match the remaining pendant edges. We call 
this a type IV PM-tree with diameter 7 and it is represented in Fig. 15 (bottom).

Here we say that the PM-tree in case (c) and non-matched central edge uv has u with 
deg(u) = r+k+2, where r ≥ 0 is the number of quasi-pendant vertices with degree 2 and 
k ≥ 0 is the number of vertices with degree greater than 2 and v with deg(v) = s + l+2, 
where s and l are analogous to r and k, respectively. The number 2 in both degrees 
represents the central and matched edges at each central vertex.

Moreover, the vertex u0 matched to u has p ≥ 1 neighbors with degree 2 and if k ≥ 1
then each vertex ui �= v adjacent to u with deg(ui) > 2 has pi ≥ 1 neighbors with degree 
2, for 1 ≤ i ≤ k. Also the vertex v0 matched to v has q ≥ 1 neighbors with degree 2 and 
if l ≥ 1 then each vertex vi �= u adjacent to v with deg(vi) > 2 has qi ≥ 1 neighbors 
with degree 2, for 1 ≤ i ≤ l. We observe that k and l can be zero because the quantities 
r and s do not affect the diameter, so they can be zero as well.
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Fig. 16. The four PM-trees of Lemma 8.1, respectively.

The next result reduces the above four types of PM-trees with diameter 7 to just 
those with exactly two eigenvalues less than -1, thus limiting further our analysis. All 
the notations used in the proof agree with the ones defined in this section regarding the 
parameters k, l, r, s, p, q in each case.

Lemma 8.1. The only PM-trees with d = 7 and two eigenvalues smaller than -1 are:

(i) the type I tree with r, s = 0 and k, l = 1;
(ii) the type II tree with r, s = 0 and k, l = 1;
(iii) the type III tree with r, s, l = 0 and k = 1;
(iv) the type IV tree with r, s, k, l = 0.

Proof. We prove case (ii). The other cases are similar. Let T be a type II PM-tree with 
d = 7 and non-matched central edge uv connecting the central vertices u and v, where 
deg(u) = r+k+2 and deg(v) = s + l+2, as depicted in Fig. 14 (bottom). As previously 
stated, we must have k, l ≥ 1 to guarantee the diameter, but r, s ≥ 0.

When applying Lemma 4.3 to T , we begin by identifying V ′, i.e., the set of non-
pendant vertices adjacent to quasi-pendant vertices of degree 2. At first, since k, l ≥ 1, 
we have |V ′| ≥ k + l ≥ 2. Additionally, the central vertex u ∈ V ′ (v ∈ V ′) if and only 
if r > 0 (s > 0), but then |V ′| > 2. By Lemma 4.4, since any cospectral mate with the 
double sun has also two eigenvalues less than -1, we must have r = s = 0 and k = l = 1, 
so that at least two eigenvalues are less than -1.

On the other hand, applying Diagonalize to T with α = 1 together with Theorem 2.3, 
we conclude that T has exactly two eigenvalues less than -1, as desired. �

The four types of PM-trees with d = 7 that remain to be analyzed are illustrated in 
Fig. 16.

We now prove that none of the trees of cases (i), (ii) and (iii) are cospectral with the 
double sun. For this it is sufficient to compute the multiplicity of the eigenvalues ±1.

Proposition 8.2. The double sun has no cospectral mates among type I, type II and type 
III trees with diameter 7.
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Proof. We recall that the (p, q)-double sun has n = 2(p + q + 1) vertices and the mul-
tiplicity of the eigenvalues ±1 is p + q − 2 = n

2 − 3. When we apply Algorithm 1 in the 
cases below, we always root the tree at one of its central vertices. We refer to the trees 
in cases (i), (ii) and (iii) of Lemma 8.1 as T7(i), T7(ii) and T7(iii), respectively.

First we look at T7(i) with n = 2(p1+q1+3) vertices. Applying Algorithm 1 with α = 1
followed by Theorem 2.3, we conclude that T7(i) has the eigenvalue -1 with multiplicity 
p1 + q1 − 1 = n

2 − 4. So T7(i) is not cospectral with the double sun.
Similarly, T7(ii) with n = 2(p1 + q1 +4) vertices. Applying Algorithm 1 with α = 1 we 

find that T7(ii) has the eigenvalue -1 with multiplicity p1+q1−2 = n
2 −6, by Theorem 2.3. 

Thus T7(ii) cannot be cospectral with the double sun.
Finally for T7(iii) with n = 2(p1 + q′ + 3) vertices. Applying Algorithm 1 with α = 1

together with Theorem 2.3, we determine that T7(iii) has the eigenvalue -1 with mul-
tiplicity p1 + q′ − 2 = n

2 − 5 and thus T7(iii) is also not cospectral with the double 
sun. �

For the type IV trees in case (iv) such a method does not work. In fact, we find pairs 
of cospectral mates among trees of type IV and the (p, q)-double sun. The next result 
characterizes exactly the parameters (p, q) for which there is a type IV tree cospectral 
with the double sun.

Proposition 8.3. Let 3 ≤ p ≤ q be integers and let G be the (p, q)-double sun with n =
2p + 2q + 2 vertices. Then G has a type IV tree cospectral mate if and only if

1
4(n− 4 + 2

√
(p− q)2 + n− 5)

is a natural number.

Proof. Here we are with case (iv) of Lemma 8.1, so let T7(iv) be that tree with n =
2(p′ + q′ +2) vertices and central edge uv. The method we are using so far does not help 
us because we find a multiplicity p′ + q′ − 1 = n

2 − 3 for its eigenvalue -1, i.e., it has the 
same number of eigenvalues -1 (and 1) as the double sun and so we need to compute its 
characteristic polynomial to see more deeply what its other eigenvalues are.

We point out that T7(iv) has a similar structure as the double sun; both have two stars 
connected by their centers with a path, making the application of the algorithm some-
what alike. Indeed, when applying Algorithm 1 to T7(iv) rooted at the central vertex u we 
initialize all the vertices with −λ and we obtain det(A(T7(iv)) − λI). The characteristic 
polynomial of T7(iv) is given by

φT7(iv)(λ) = (−1)ndet(A(T7(iv)) − λI)

= (λ2 − 1)p
′+q′−1[λ6 − (p′ + q′ + 4)λ4 + (p′q′ + 2p′ + 2q′ + 4)λ2 − 1].
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Now we look at the remaining polynomial of degree 6 of both the (p, q)-double sun and 
T7(iv). As T7(iiv) and the (p, q)-double sun have the same order n, we have p′ + q′ + 1 =
p + q. This implies that the coefficients of λ4 of the polynomials of both trees are equal. 
Therefore, T7(iv) and the (p, q)-double sun have the same spectrum if and only if their 
coefficients of λ2 coincide, that is, if and only if

pq + p + q + 3 = p′q′ + 2p′ + 2q′ + 4. (1)

Using the fact that q′ = n−4−2p′

2 and replacing it into (1) we obtain the following 
quadratic equation

(p′)2 +
(

4 − n

2

)
p′ +

(
2pq − n + 4

2

)
= 0, (2)

whose solutions are

1
4(n− 4 ± 2

√
(p− q)2 + n− 5).

We notice that, if p′ = 1
4 (n −4 +2

√
(p− q)2 + n− 5) is a natural number then q′ = 1

4 (n −
4 − 2

√
(p− q)2 + n− 5) is also natural. Similarly if p′ = 1

4 (n − 4 − 2
√

(p− q)2 + n− 5)
is natural, then q′ = 1

4 (n − 4 + 2
√

(p− q)2 + n− 5). Hence, the natural solution {p′, q′}
for (1) gives a cospectral mate T7(iv) of the (p, q)-double sun. Additionally, if (2) does 
not have a natural solution then the (p, q)-double sun doesn’t have a type IV tree as 
cospectral mate. �

For instance, following the proof of Proposition 8.3, we find that the (21, 28)-double 
sun of order n = 100 has the same spectrum as the tree T7(iv) with p′ = 18 and q′ = 30. 
Meanwhile, the (p, q)-double sun of order 102 = 2q + 2p + 2 is DS among connected 
graphs.

9. Conclusion

We were able to prove that the p-sun is determined by its spectrum among connected 
graphs and to establish when the (p, q)-double sun is determined by its spectrum among 
connected graphs and, otherwise, we determine its cospectral mates, thus showing ex-
amples of trees which do not fall into Schwenk’s theorem that almost every tree has a 
cospectral mate.

The method used in both cases was mainly supported by the few distinct eigenvalues 
of their spectra, implying that any cospectral mate should have a not so large maximum 
diameter, and by considering their nullity and properties involved, therefore not being 
forced to check every single tree with a fixed diameter, for there are several such trees.

After putting together some results based on Algorithm 1 that shows us the amount of 
eigenvalues in a given interval, we looked at the few remaining cases of possible cospectral 
mates and prove the above results.
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It is still an open problem to include the disconnected graphs on the analysis, that is, 
to prove whether or not the p-sun is determined by its spectra and to further characterize 
the (p, q)-double sun, now among all graphs.
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