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Abstract 

Considering the increasing need for renewable products, the present work aims to evaluate the physical-
chemical properties of the eucalyptus harvest residues and its constituent fractions individually (barks, leaves, 
and branches), through proximate, ultimate, energetic and thermal analyzes. The biomass studied was 
Eucalyptus saligna species, cultivated mainly for the production of pulp and paper. The proximate analysis of 
the residue resulted in the moisture content of 10.1%, ash content of 3.9%, volatile materials about 81.1%, and 
fixed carbon of 15.0%, showing similar values to the constituent fractions. The ultimate analysis of the residue 
resulted in 46.5% of carbon content, 5.8% of hydrogen, and 43.2% of oxygen. The high heating value (HHV) 
for the residue is 17.93 MJ/kg, comparable to other biomasses of importance, including eucalyptus wood, the 
noblest part of the forest cultivation. The thermogravimetric (TGA) and differential thermal analysis (DTA) were 
carried out and the resulting thermograms show three main ranges of biomass degradation. The first range, 
from 30 to 150 °C, corresponds to the drying of the material; in the range from 200 to 325 °C hemicelluloses 
degrade, with partial degradation of lignin and cellulose, and in the range from 325 to 380 °C, the majority of 
cellulose degradation takes place. The physical-chemical data demonstrate that the eucalyptus residue is an 
excellent source of biomass for thermal conversion processes. Obtaining products with higher added value 
from this residue contributes to the implementation of new technological practices that link economic 
development to environmental responsibility. 

Keywords: Eucalyptus harvest residue; Physical-chemical characterization; Thermal conversion. 

Resumo 

Considerando a crescente necessidade de produtos renováveis, o presente trabalho tem como objetivo avaliar 
as propriedades físico-químicas dos resíduos da colheita do eucalipto e suas frações constituintes 
individualmente (cascas, folhas e galhos), por meio de análises imediata, elementar, energética e térmica. A 
biomassa estudada foi a espécie Eucalyptus saligna, cultivada principalmente para a produção de celulose e 
papel. A análise imediata do resíduo resultou em teor de umidade de 10,1%, teor de cinzas de 3,9%, materiais 
voláteis em torno de 81,1% e carbono fixo de 15,0%, apresentando valores semelhantes entre as frações 

Edição Especial                                                                                                  Submissão: 06/11/20 Aprovação: 06/11/20 Publicação: 04/12/20  
 



                        Characterization of residual biomass from the harvest of Eucalyptus saligna… 2 
 
 

REGET, Santa Maria, v. 24, Ed. Especial, e13, p. 1-26, 2020 

    

constituintes. A análise elementar do resíduo resultou em 46,5% de teor de carbono, 5,8% de hidrogênio e 
43,2% de oxigênio. O poder calorífico superior do resíduo foi determinado em 17,93 MJ/kg, comparável a 
outras biomassas importantes, incluindo a madeira de eucalipto, a parte mais nobre do cultivo florestal. A 
análise termogravimétrica (TGA) e térmica diferencial (DTA) foram realizadas e os termogramas resultantes 
mostram três faixas principais de degradação da biomassa. A primeira faixa, de 30 a 150 °C, corresponde à 
secagem do material; na faixa de 200 a 325 °C as hemiceluloses degradam, com degradação parcial da lignina 
e celulose, e na faixa de 325 a 380 °C, ocorre a maior parte da degradação da celulose. Os dados físico-químicos 
demonstram que o resíduo do eucalipto é uma excelente fonte de biomassa para processos de conversão 
térmica. A obtenção de produtos de maior valor agregado a partir desse resíduo contribui para a implantação 
de novas práticas tecnológicas que vinculam o desenvolvimento econômico à responsabilidade ambiental. 

Palavras-Chave: Resíduo florestal de eucalipto; Caracterização físico-química; Conversão térmica. 

1 Introduction 

The action plan prepared by the United Nations, called Agenda 2030, aims to 

promote global sustainable development. Among the objectives proposed and related to 

the environment, it can be highlighted: the encouragement to responsible consumption 

and production; the promotion of sustainable use of terrestrial ecosystems; the universal 

access to drinking water and basic sanitation; the promotion of sustainable agriculture; the 

expansion of clean and affordable energy generation; and the action against global climate 

change (UN, 2015).  In order to meet the goals established in this action plan, the adoption 

of sustainable practices as a commitment of the whole society must be considered. In this 

context, industrial development is linked to the adoption of sustainable and socially 

responsible policies and actions, representing new challenges and opportunities for the 

different economic actors worldwide. 

Agro-industrial residue and by-products can be used as an alternative to minimize 

environmental impacts. The possibility of applying these residues, both inside and outside 

the industry of origin could represent a viable and sustainable practice. In the pulp and 

paper industries, residues generated in harvesting wood from cultivated forests can be used 

as raw material to obtain products with higher added value. The characterization of the 

residual biomass from coffee production is an example of a study carried out to evaluate 

and quantify the properties of residual biomass as shown in (MENDOZA MARTINEZ et al., 

2019), where the residue can be viable for thermochemical conversion processes such as 

pyrolysis, gasification and combustion. Agroforestry and industrial residues have received 
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increasing attention as a raw material for thermal processes, aiming higher value products, 

as presented by (FERREIRA et al., 2020), where sugar cane straw is used in pyrolysis 

processes. Other sources of residual biomasses were recently studied in (BHARATH et al., 

2020), where date palm trees from the West Asia region were characterized for the 

production of biofuels. 

Lignocellulosic biomass is a complex mixture of natural polysaccharide polymers 

known as cellulose and hemicelluloses, apart from lignin and small amounts of other 

substances, such as extracts and inorganic materials contained in the cell wall of plants. 

Cellulose is the main constituent of the cell wall of vegetables, representing 40 to 45% of 

the dry matter of most woods. It is a long and linear polysaccharide, composed of the union 

of a single monomer (glucose) through ß-(1,4) glycosidic bonds. Except for its degree of 

polymerization, cellulose has the same structure in all types of biomasses (CORTEZ (ORG); 

LORA (ORG); GÓMEZ (ORG), 2008). The high degree of ordering and crystallinity presented 

is due to a large number of existing hydrogen bonds, responsible for the relative thermal 

stability exhibited by the compound. Cellulose decomposes at temperatures ranging from 

approximately 315 to 400 °C (VIEIRA et al., 2020). Hemicelluloses, on the other hand, 

comprise the non-cellulosic polysaccharides present in the biomass. They are generally 

made up of pentoses (xylose, arabinose, galactose, mannose, and rhamnose), have 

ramifications, are amorphous and much smaller than cellulose (YANG, H. et al., 2007). They 

represent, on average, 20 to 30% of the dry matter of wood, and its degradation occurs at 

temperatures ranging from 190 to 360 °C (SHEN; GU; BRIDGWATER, A. V., 2010). The third 

major component of biomass is lignin, which is also a biopolymer, distinct from cellulose 

and hemicelluloses. Lignin can be represented by a three-dimensional, amorphous and 

branched macromolecule, with repetitive phenylpropane structures joined by ether (C-O-C) 

or carbon-carbon (C-C) bonds. This biopolymer represents, on average, 18 to 35% of the 

dry matter of wood. Its decomposition occurs over a wide temperature range,  from 100 °C 

to 900 °C (SHEN; GU; BRIDGWATER, A. V., 2010), being responsible for the presence of 

phenols and other aromatic compounds in bio-oil, also contributing to the formation of 

biochar (PEREIRA et al., 2013). 
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Thermochemical processing is considered as one of the technological alternatives to 

add value to products from agroforestry residues, highlighting pyrolysis as one of the most 

used methods. Fundamentally, pyrolysis is a physical-chemical process, in which the 

biomass is heated to temperatures ranging from 300 °C to 800 °C in a non-oxidizing 

atmosphere. Therefore, under such conditions, the organic matter undergoes 

decomposition, that is, the macromolecules of the original components of the biomass 

undergo rupture, resulting in a complex mixture of organic compounds. At the end of the 

process, three phases are produced: solid phase (also called charcoal or biochar), liquid 

phase, consisting of condensable vapors (called bio-oil or pyroligneous liquor) and the gas 

phase, consisting basically of CO, H2, CO2, and CH4 (non-condensable gases). The liquid and 

gaseous phases can be used to generate heat and electricity, also they can be converted, 

through chemical routes, into fuels and chemicals of high industrial demand (BRIDGWATER, 

T., 2006). Many of the fuels and chemicals obtained from petroleum can also be produced 

from bio-oil which is also nominated "green oil". The solid phase, in turn, is a source of low-

cost carbonaceous material, which has multiple applications: soil fertilizer; bioadsorbent of 

heavy metals and polluting organic compounds in wastewater treatment plants; air 

decontamination agent and humidity controller in the construction industry; carbon-based 

electrodes in electrochemical energy conversion and storage systems such as 

superconductors and batteries; reducing agent in blast furnaces in the steel industry; and 

inert additive in the cosmetics and paints industry (FAKAYODE et al., 2020). 

The pyrolysis of biomass is being extensively studied from different vegetable raw 

materials, such as Prosopis juliflora wood (CHANDRASEKARAN; RAMACHANDRAN; 

SUBBIAH, 2018), poplar wood (DONG et al., 2012), and rice-husk (VIEIRA et al., 2020; 

ZHANG, Z. et al., 2020). Innovative proposals are presented by (LANGUER et al., 2020), who 

analyzed the thermal processing of sludge from water and sewage treatment plants, 

showing potential for obtaining higher value-added products. 

Considering the social, environmental, and economic impacts of eucalyptus 

cultivation, there is a growing concern and market interest in transforming forest residues 

into renewable products with higher added value. In this way, better use of cultivated forests 
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and the consolidation of a low carbon economy is achieved (IBA, 2017). The employment of 

biomass in energy generation processes can be considered a measure to mitigate emissions 

of greenhouse gases since the amount of CO2 released during the combustion of biomass 

is similar to the absorbed during its growth. Thus, considering a cultivated area that will 

produce energy, the CO2 balance is virtually zero and biomass can be considered a material 

with neutral emissions, causing less impact when compared to the burning of fossil origin 

materials. 

According to data collected in the Survey on Vegetable Extraction and Silviculture, a 

publication from the Brazilian Institute of Geography and Statistics, in 2018 Brazil had 9.9 

million hectares of forested area planted for commercial purposes, distributed over 3,488 

cities, 76.2% of which corresponding to eucalyptus (IBGE, 2019). Figure 1 shows some 

information about the planted forest areas in Brazil and the main species cultivated. 

Figure 1 – Main cultivated forests in Brazil and distribution of eucalyptus planted area by 

region in 2018 

 

Source: adapted from IBGE (2019). 

The management of soil regarding the eucalyptus forest residue has been widely 

discussed, taking into account soil conservation, plantation productivity, and the potential 

of the residue to produce higher added value products. Regarding soil conservation, after 

harvesting, the decomposition of barks, branches, and leaves contributes to fertilization. 

Most nutrients are found in barks and leaves, suggesting that the best harvesting practice 

involves thinning and cleaning the logs at the planting site (RESQUIN et al., 2020). The 

removal of a portion of these residues does not compromise the nutrient stock in the soil 

(ROCHA et al., 2016), which is in accordance with (NÚÑEZ-REGUEIRA, 2004) where it is 
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estimated that to avoid soil impoverishment, approximately 10% of the residues must 

remain at the plantation site, mainly the barks. Thus, the appropriate management and use 

of forest harvest residue allow better utilization of the material including energy purposes 

without compromising the production cycle. 

Within the context of using the forest residue from the eucalyptus harvest to obtain 

products with higher added value, the characterization of the biomass properties presents 

great relevance, mainly considering applications for thermal conversion. The properties of 

biomass are reflected in the characteristics and yield of the products obtained, and allow 

the setup of the operational conditions for thermal conversion processes. The set of 

properties of biomass will define the applicability of the material, and its knowledge is 

mandatory to carry out any analysis of technical or economic feasibility. 

The present study aims to evaluate the physical-chemical properties of eucalyptus 

forest residue (Eucalyptus saligna) and its fractions (barks, leaves, and branches), employing 

proximate, ultimate, energetic, and thermal analyzes. With the results obtained, it is possible 

to evaluate the quality of the residue as a source of biomass for thermal conversion 

processes as well as the production of biomaterials - biochar or bio-oil. The extensive 

characterization of this residual biomass is not available in the literature, and the results 

contribute to the expansion of knowledge of the residue of this important species, making 

it possible to add value to the residual biomass from the eucalyptus forest industry. 

2 Materials and Methods 

2.1 Biomass and preparation of samples 

The eucalyptus forest residue used in the present study was obtained from the forest 

plantation of the company CMPC Celulose Brasil, located in the city called Barra do Ribeiro, 

in the state of Rio Grande do Sul, in southern Brazil, (30.35 °S, 51.25 °O), characterized by a 

subtropical climate. The site is the largest of CMPC properties in the Rio Grande do Sul state 

for the production of eucalyptus. The collected residue corresponds to the Eucalyptus 

saligna species at 7 years old. The appropriate harvest average age is close to 8 years, 
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considering the optimization of forest resources according to the company management 

plan (CMPC, 2019). This eucalyptus species is one of the most cultivated in the country, and 

it is characterized by having smooth bark, erect trunk, and reaching up to 30 meters in 

height. Figure 2 illustrates one of the Eucalyptus saligna planted fields, the remaining 

residue in the soil after harvest, and the collection of the residual biomass for 

characterization. 

Figure 2 – Eucalyptus saligna planted area (left), residue deposited on the soil (center), and 

collection of the residual biomass (right) 

 

A commercial eucalyptus clone has about 12% of roots, 8% of barks, about 2 to 5% 

of leaves, and the branches represent 4 to 8% of the tree (FOELKEL, 2010). From the study 

presented in (GATTO et al., 2014) regarding the planting of Eucalyptus spp., the roots 

represent 9.4% of the tree, followed by 9.0% of branches, 5.6% of barks, and 4.5% of leaves. 

Regarding the generation of residue after harvest, approximately 23% of a eucalyptus tree 

becomes waste, with 12% barks, 6%  branches, and 5% leaves (SILVA, F. De C. E, 2016). 

The residue was collected and part of it divided into three constituent fractions, that 

is, barks, branches, and leaves. The samples were reduced in size in a knife mill and sieved 

through a 40-mesh sieve, to uniformize the particle size. The analyzes were performed on 

the residue as well as on its different fractions, characterizing the forest biomass and its 

constituents separately, and thus obtaining more comprehensive results. 

2.2 Proximate analysis 
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The proximate analysis of a sample provides the content in mass percentage of 

moisture, ash, volatile materials, and fixed carbon, contributing to the understanding of the 

material behavior when subjected to a thermal conversion process. The tests were carried 

out in a 3000 W muffle furnace, equipment developed by the laboratory team (Figure 3) 

with digital PID temperature control and feature of programming ramps and thermal levels. 

Porcelain crucibles with lids were used to contain the sample (Figure 3). 

Figure 3 – Muffle furnace developed by the research group (left) and crucibles used in the 

proximate analysis disposed inside the furnace (right) 

 
To determine the moisture content (% U), the samples were dried at a temperature 

around 104 °C to 110 °C, until constant mass. The moisture content (% U) represents the 

amount of water present in the biomass and was determined according to Equation 1. 

%𝑈 =  
(𝐴 − 𝐵)

𝐴
× 100 (1) 

where A = initial mass of the sample; B = final mass of the sample after heating. 

The ash content (% AC) represents the mass of biomass that does not undergo 

combustion, that is, it represents the inorganic residue that remains after the burning of 

organic matter. It was determined by heating the sample to 750 °C for two hours with semi-

capped crucibles. The ash content was calculated according to Equation (2). 

%𝐴𝐶 =  
(𝐶 − 𝐷)

𝐴
× 100 (2) 

where C = mass of the crucible with lid and ash residue; D = mass of empty crucible 

with lid; A = initial mass of the sample. 
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The volatile matter (% VM) represents the fraction of the biomass that is released in 

the form of gases formed from the exposure of the sample to high temperatures. The 

volatile fraction was determined by heating the sample in a crucible with a lid for 6 minutes 

at 950 °C. To determine the volatile matter, the percentage of total mass loss (% ML) in the 

thermal process was first calculated using Equation (3). 

%𝑀𝐿 =  
(𝐹 − 𝐺)

(𝐹 − 𝐷)
× 100 (3) 

where D = mass of the empty crucible with a lid; F = mass of crucible with lid and 

sample before heating; G = mass crucible with lid and sample after heating. 

The percentage of volatile material (% VM) is obtained by Equation (4), where the 

moisture content initially present in the sample is discounted. 

%𝑉𝑀 = %𝑀𝐿 − %𝑈 (4) 

where % ML = mass loss; % U = moisture content of the sample. 

The fixed carbon (%FC) was determined by difference using Equation (5) and 

corresponds to the amount of carbon remaining after discounting moisture, ash content, 

and volatile matter. 

%𝐹𝐶 = 100% − (%𝑈 + %𝐴𝐶 + %𝑉𝑀) (5) 

2.3 Ultimate analysis 

The elemental composition of biomass is an important property that defines the 

energy content and determines the applicability of a material. It is an assay used to 

determine the chemical composition of different materials, providing the mass percentages 

of the elements carbon (C), hydrogen (H), oxygen (O), nitrogen (N) and sulfur (S) contained 

in the sample. In addition to the elements mentioned above, the ultimate analysis also 

provides the ratio between the atomic percentages of hydrogen/carbon (H/C) and 

oxygen/carbon (O/C). These relationships allow the calculation of the High Heating Value 

(HHV) and the Low Heating Value (LHV), due to the existence of a correlation between both. 
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The higher the proportion of oxygen and hydrogen, compared to carbon, the lower the 

energetic value of a material, due to the lower energy involved in the C – O and C – H bonds 

than in the C – C bond (MCKENDRY, 2002). 

In this work, the elemental composition was determined through the use of empirical 

correlations based on a large number of data and covering all categories of solid 

lignocellulosic materials (PARIKH; CHANNIWALA; GHOSAL, 2007). Such correlations use the 

results previously obtained in the proximate analysis, being a simple, rapid, economic, and 

efficient method. The values of the ultimate analysis were obtained through Equation 6  

(wt% carbon), Equation 7  (wt% hydrogen), and Equation 8 (wt% oxygen), as presented in 

(PARIKH; CHANNIWALA; GHOSAL, 2007). 

𝐶(%) = 0.637(FC)  +  0.455(VM) (wt%) (6) 

𝐻(%) = 0.052(FC)  +  0.062(VM) (wt%) (7) 

𝑂(%) = 0.304(FC)  +  0.476(VM) (wt%) (8) 

where CF = fixed carbon; VM= volatile material. 

2.4 High heating value 

The characterization of the high heating value (HHV) allows the knowledge of the 

energy efficiency of the material, that is, the amount of energy released in the form of heat 

during the complete combustion per unit mass of the material, which can be measured in 

kJ/kg or MJ/kg. The conduction of this assay traditionally requires a bomb calorimeter and 

gaseous oxygen, among other materials, generating a relatively high cost in the analysis. 

Without significant loss of quality in the results, empirical equations can be used that define 

a general correlation between the HHV (on a dry basis) and the values obtained in the 

proximate analysis. The use of validated empirical correlations enables a quick and efficient 

assessment of the energy performance of fuels and biomasses, in general. The HHV is 

calculated using equation (9), presented by (PARIKH; CHANNIWALA; GHOSAL, 2005). 
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𝐻𝐻𝑉 = 0.3536(%FC) +  0.1559(%VM) −  0.0078(%AC) (MJ/kg) (9) 

where: % FC = fixed carbon (wt%); %VM = volatile material (wt%); %AC = ash content 

(wt%). 

2.5 Thermal analysis 

The thermal analysis comprises several techniques that relate the physical-chemical 

properties of a sample over a temperature range. Thermogravimetric analysis (TGA) and 

differential thermal analysis (DTA) show the mass loss and the derivative of mass loss with 

temperature, respectively. They were carried out to verify the thermal degradation kinetics 

of the samples and to support pyrolysis tests since the stages observed in the curves are 

directly related to the thermal degradation of hemicelluloses, cellulose, and lignin. Samples 

of approximately 20 mg were used, in platinum crucible, in a TGA equipment, brand TA 

Instruments, model SDT Q600 V20.9 Build 20, shown in Figure 4. The assays are performed 

under inert atmosphere (N2) with 100 mL/min flow rate and heating rate of 30 °C/min, and 

temperature ranging from 25 to 450 °C. 

Figure 4 – TGA equipment model SDT Q600 (left) and crucible used to perform the thermal 

analysis (right) 

 

3 Results and Discussion 

3.1 Proximate Analysis 
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The results of the proximate analysis of the forest residue from the eucalyptus harvest 

and its fractions separately are shown in Table 1. The amount of water present in the 

biomass impacts on the physical-chemical properties of the material, highlighting the low 

heating value (LHV), which is strongly influenced, both being inversely proportional, that is, 

the LHV decreases with the moisture content. About volatile content, higher percentages 

favor the formation of the liquid phase (bio-oil), while smaller percentages favor the 

formation of the solid phase (biochar). Besides, the higher the volatile content, the greater 

the reactivity of the material, and the faster it will burn. The ash content reflects the non-

combustible content of the material, that is, minerals and inorganic compounds, such as 

oxides of calcium, magnesium, potassium, sodium, silicon, iron, and phosphorus. The ash 

content constitutes on average less than 1% by mass of the materials of lignocellulosic 

origin. A high ash content reduces the HHV and LHV and represents impurities that must 

be reduced for better thermal conversion of the biomass, without causing damage to the 

reactor. The gravimetric yield of biomass, in terms of biochar, is directly proportional to the 

fixed carbon content and can be considered an important factor in the energy qualification 

of the final product, as it is directly related to the heating values and the lignin content 

(PEREIRA et al., 2013). 

Table 1 – Proximate analysis results for the biomass and its different components 

Sample % U % AC % VM % FC 

Residue 10.1 3.9 81.1 15.0 

Barks 10.2 6.2 79.9 13.9 

Leaves 9.1 3.7 81.0 15.3 

Branches 10.4 1.9 85.1 13.0 

 
When observing the results presented in Table 1, it can be seen that the values found 

are similar to those reported by (SILVA, F. T. M.; ATAÍDE, 2019), who have analyzed wood 

from a different species of eucalyptus (Eucalyptus urograndis), in carbonization studies, and 

obtained values of 7.6%, 0.46%, 87.95% and 11.59% for moisture, ashes, volatiles, and fixed 

carbon, respectively. The ash content of the residue is higher than that of wood, a more 

noble part, and is mainly due to the contribution of barks. The results found in (ALMEIDA; 
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BRITO; PERRÉ, 2010) for bark samples of Eucalyptus saligna are similar to those found in the 

present study, recording the following values for ash content, volatile materials, and fixed 

carbon, in the order: 6.20%, 81.60% and 12.20%. The same authors found for the barks of 

Eucalyptus grandis 5.50% for ash content, 60.00% for volatile material, and 34.50% for fixed 

carbon. It is important to note in the present study the characterization of the eucalyptus 

harvest residue and its other components, such as leaves and branches, not extensively 

reported in the literature, increasing the knowledge about alternatives applicable to the 

countries that have eucalyptus cultivations. 

The water content found is consistent with that expected for vegetable materials and 

comparable to that found in the literature for eucalyptus wood, although it may vary with 

the time of harvest. From an energetic point of view, the recommended values must be 

below 30%, since a higher moisture percentage leads to a decrease in LHV and a consequent 

decrease in the efficiency of the thermal conversion processes (IGNACIO; SANTOS, P. E. De 

A.; DUARTE, 2019). Biomasses with low moisture content (less than 10%) are desirable due 

to their higher energetic efficiencies and improved rate of thermal processes (FERMANELLI 

et al., 2020; SHER et al., 2020). 

The most pronounced difference to the results of the residual biomass and the values 

presented in the literature for eucalyptus wood is the ash content. However, according to 

(IGNACIO; SANTOS, P. E. De A.; DUARTE, 2019) the ash content can be divided into two 

parts: the natural ash from the mineral composition of the material itself and the ash from 

cutting and transporting biomass, which is a consequence of the adhesion of particles such 

as soil, sand, stones and the bark itself. It can be seen that the ash content of the residue 

(3.9%) is very similar to that of leaves (3.7%), with the highest content in the bark (6.3%) and 

the lowest in the branches (1.9%). The ash content of the eucalyptus residue (3.9%) is 

comparable to the one found from the dry coffee husk, which is also lignocellulosic biomass, 

that contains 3.55% ash, which is a low value compared to other agriculture residues 

(SETTER et al., 2020). High ash concentrations are not favorable for thermal conversion, since 

they decrease the burning yield, in addition to causing problems in the reactor structure, 

such as scale, corrosion, and slag formation.  
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It is also noted, through the data in Table 1, the high content of volatile material 

(81.1%) and fixed carbon (15.0%) for the residue. Compared with data from the literature 

(FERMANELLI et al., 2020) for three other biomass residues, the following values are found 

for volatile matter and fixed carbon respectively:  53.80% and 17.01% for rice husk, 70.03% 

and 23.18% for peanut shell, 64.47% and 16.54% for wheat straw. Thus, it can be seen that 

the data obtained in the present study demonstrate the feasibility of the residual biomass 

from the eucalyptus harvest to the thermal conversion processes. 

3.2 Ultimate Analysis 

The ultimate analysis provides the proportion of C, H, O, N, and S. For energy 

purposes, in general, biomasses with a high content of carbon and low content of oxygen 

are preferred. Table 2 shows the results obtained for the elemental composition of the 

residue and its fractions separately (barks, branches, and leaves), in the percentage of 

carbon (C), hydrogen (H), and oxygen (O). According to the data in Table 2, the samples 

studied have similar values in terms of C, H, and O, being around 46%, 5%, and 43%, 

respectively. As a comparison, lignocellulosic biomasses have an average elemental 

composition of 51% carbon and 42% oxygen in mass (ZHANG, L.; XU, C. (Charles); 

CHAMPAGNE, 2010). The results presented by (CARDONA et al., 2019) show the elemental 

composition of Eucalyptus spp. with 46.5% (C), 5.1% (H), and 47.6% (O), values very similar 

to the residue studied in this work. 

Table 2 – Data obtained in the ultimate analysis for the studied biomass and its different 

components 

Sample % C % H % O 

Residue 46.5 5.8 43.2 

Barks 45.2 5.7 42.2 

Leaves 46.6 5.8 43.2 

Branches 47.0 5.9 44.5 

3.3 High heating value 
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The elemental composition is directly related to the heating values, since it provides 

the mass percentages of the main elements forming the biomass and thus it is possible to 

relate to the amount of energy released in the breaking of the chemical bonds of these 

elements. The results of the HHV are shown in Table 3. 

Table 3 – High heating values for the studied biomass and its different components 

 Residue Barks Leaves Branches 

HHV (MJ/kg) 17.93 17.31 17.99 17.87 

 
When comparing the data in tables 1, 2, and 3, it can be seen that barks with a higher 

percentage of ash have lower energy efficiency. Similar values were found by (SILVA, F. T. 

M.; ATAÍDE, 2019), who analyzed samples of Eucalyptus urograndis wood already used in 

the Brazilian energy matrix. The analysis of the barks indicates that even though the material 

is less noble because it contains the lowest levels of carbon, and higher ash content, it is 

still somewhat comparable to the other constituent fractions in terms of releasing energy 

by combustion. 

Table 4 shows the values of ultimate analysis and HHV reported in the literature for 

some sources of biomass with the purpose of comparison with the residual biomass studied 

in this work. A general analysis of Table 4 shows that all the biomasses listed have C, H, and 

O contents in the 40 to 50%, 5 to 7%, and 35 to 53% ranges, respectively. Eucalyptus residue 

shows values very similar to those of eucalyptus wood itself with sometimes a higher carbon 

and lower oxygen content, thus giving to this residue a non-negligible energetic value 

compared to other biomasses currently studied. 

When analyzing the HHV for several biomasses (residual and non-residual) of 

eucalyptus (Table 4), it can be observed the proximity among them, which vary about 15 

and 20 MJ/kg. There is no significant difference between the values presented by the wood 

and the residue, confirming the potential of residual biomass from eucalyptus for 

application in energy processes. 
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Table 4 – Ultimate and energetic analyzes data for different biomasses 

Biomass % C % H % O HHV 
(MJ/kg) 

Reference 

Residue from Eucalyptus 
saligna 

46.5 5.8 43.2 17.93 Present study 

Eucalyptus urosemente - - - 18.60 (IGNACIO; SANTOS, P. E. De A.; 
DUARTE, 2019) 

Wood - Eucalyptus urograndi 46.13 5.90 47.83 20.25 (SILVA, F. T. M.; ATAÍDE, 2019) 

Bark - Eucalyptus saligna - - - 17.10 (IGNACIO; SANTOS, P. E. De A.; 
DUARTE, 2019) 

Wood - Eucalyptus saligna - - - 19.90 (IGNACIO; SANTOS, P. E. De A.; 
DUARTE, 2019) 

Bark - Eucalyptus grandis - - - 16.90 (IGNACIO; SANTOS, P. E. De A.; 
DUARTE, 2019) 

Wood - Eucalyptus grandis - - - 20.00 (IGNACIO; SANTOS, P. E. De A.; 
DUARTE, 2019) 

Raw bark - Eucalyptus spp. 40.39 5.49 35.5 - (MARTINI; AFROZE; AHMAD RONI, 
2020) 

Eucalyptus tereticornis 
debarked 

50.83 5.86 43.22 - (WU et al., 2019) 

Raw biomass Eucaliptus spp. 46.5 5.1 47.6 18.10 (CARDONA et al., 2019) 

Rice husk 45.09 6.62 47.78 17.94 (FERMANELLI et al., 2020) 

Rice husk 31.39 3.39 43.40 15.77 (VIEIRA et al., 2020) 

Peanut shell 50.64 6.86 41.32 20.60 (FERMANELLI et al., 2020) 

Wheat straw 43.09 7.28 47.02 17.35 (FERMANELLI et al., 2020) 

Wheat straw 41.32 5.69 51.81 15.56 (SHER et al., 2020) 

Barley straw 40.87 5.78 52.80 15.46 (SHER et al., 2020) 

Coffee husk (dry) 46.41 6.33 44.51 18.50 (SETTER et al., 2020) 

3.4 Thermal Analysis 

Thermogravimetric analysis is a high-precision analytical technique that can be used 

to support the study of pyrolysis at low heating rates, being able to provide relevant 

information on the kinetics of the reaction processes. In Figure 5, the resulting thermograms 

exhibit the mass loss (TGA) and the derivative curves with temperature (DTA). Both results 

show the mass loss, where can be identified the changes undergone by the material over a 

controlled temperature range. 
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Figure 5 – TGA and DTA curves of eucalyptus harvest residue and its components: barks, 

leaves, branches, and residue 

 

The thermal analysis of the residue and its fractions did not show significant 

differences, presenting three ranges of degradation. The first range, from room temperature 

to about 100 °C, is attributed to the drying of the material, i.e. evaporation of water and the 

loss of some volatile components that are present in the sample, with an average value of 

10% of mass loss (Table 5). It was also observed, from 100 to 200 °C, an average loss of 

mass that varied from 3.25 to 4.80% (Table 5). This is considered a zone of thermal stability, 

where temperature higher than 200 °C usually determine the beginning of the degradation 

of the lignocellulosic biomass components. The biomass is thermally stable below this 

temperature range as long as it is not subjected to prolonged periods 

(RANDRIAMANANTENA et al., 2009). 

The second range, from 200 to 325 °C, corresponds to the major degradation of 

hemicelluloses (SILVA, C. M. S. DA et al., 2017). Hemicelluloses are less thermally stable, due 

to their structural characteristics (YANG, H. et al., 2007). In this range, there is also 

degradation of lignin and cellulose, but at a lower rate. The third and last range, from 

approximately 325 to 380 °C, is attributed to cellulose degradation (SILVA, C. M. S. DA et al., 

2017). Cellulose is more resistant to thermal degradation and is responsible for about half 
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of the dry biomass composition, which explains the higher peak intensity in the DTA graph 

about 350 °C (YANG, H. et al., 2007). The absence of a specific peak for lignin may be related 

to the fact that this biopolymer undergoes slow degradation over a wide temperature range, 

which varies from 150 to 900 °C, as a result of its high thermochemical stability (FERMANELLI 

et al., 2020; YANG, H. et al., 2007). Also, the low rate of mass loss of lignin normally results 

in a high yield of solid products from the pyrolysis process (QUAN; GAO; SONG, 2016). 

Furthermore, the temperature of the analysis did not exceed 450 °C, since this range is 

suitable for the efficiency of the slow pyrolysis process when the solid phase (biochar) is 

targeted. Beyond that temperature, it is expected that there will be no further degradation 

of hemicelluloses and cellulose, and the residual mass can be attributed almost entirely to 

lignin (FERMANELLI et al., 2020). Results for thermal degradation of wood from four 

eucalyptus hybrids reported in (SANTOS, R. C. DOS et al., 2012) are similar to that of the 

residue and its fractions analyzed in this work. 

In Table 5, mass loss and residual mass are presented as a function of different 

temperature ranges, obtained from the thermogravimetric analysis, to assess the thermal 

stability of each of the samples studied. 

Table 5 – Values of mass loss and residual mass as a function of temperature ranges (in 

percentage) for the biomass studied and its different constituents 

Sample 
room temp. – 

100 °C 
100 – 
200 °C 

200 – 
300 °C 

300 – 
400 °C 

400 – 
450 °C 

Residual 
mass (%) 

Barks (%) 8.92 4.75 29.30 26.13 4.83 26.07 

Leaves (%) 8.07 3.25 14.75 25.37 7.13 41.43 

Branches (%) 9.48 4.80 15.00 28.69 5.95 36.08 

Residue (%) 10.70 3.76 13.85 29.89 6.26 35.54 

 
Table 5 shows that leaves were the material that had the highest residual mass and 

consequently the lowest mass loss (about 59%) throughout the thermogravimetric analysis, 

and can be considered the most thermally stable. The barks showed the highest overall 

mass loss (about 74%) and are considered the least stable up to the employed temperature 
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of 450 °C. In general, a more thermally stable material corresponds to higher solid phase 

yield, that is, a greater amount of biochar is produced during the pyrolysis process. 

According to the result found, it is expected that the residue from the eucalyptus 

harvest produces around 35% of the solid product and 65% of liquid and gaseous products 

in thermal processing up to 450 °C. As reported in the thermogravimetric analysis (SANTOS, 

R. C. DOS et al., 2012) for the wood of four eucalyptus hybrids, significantly lower values 

were found for the residual mass. Investigating thermal degradation up to a maximum 

temperature of 500 °C, they found values between 4 to 11% for the solid phase yield. On 

the other hand, as reported by (PEREIRA et al., 2013) when studying clones of Eucalyptus 

spp., mean residual masses that varied from 25.4 to 27.6% were found, values closer to those 

from the present study. Therefore, comparing the results, the residual biomass from the 

harvest of the Eucalyptus saligna presents appreciable thermal stability, which must be 

considered when the objective is the production of the solid phase. The higher values found 

for the residual mass are due to the chemical composition of this material, especially the 

lignin content. The higher the lignin content, the greater the thermal resistance of the 

biomass, and the conversion to the solid phase (VIEIRA et al., 2020). The proportion of 

products obtained through thermal conversion depends on the biomass characteristics, 

temperature, and heating rate, among other operational parameters. 

A more detailed analysis of Table 5 reveals that the highest thermal degradation of 

biomass occurred in the temperature range from 300 to 400 °C, in which losses of around 

25 to 30% by weight were obtained. This temperature range is normally attributed to 

cellulose degradation. Similar results to those obtained in the present work are found in the 

literature for varied sources of biomass (FERMANELLI et al., 2020; SANTOS, R. C. DOS et al., 

2012). The use of the eucalyptus harvest residue is still a source of biomass to be better 

explored. It shows potential for biochar production, with yield in the range of 30 - 35%. For 

energetic applications, the HHV in the range of 17 ~ 18 MJ/kg is also comparable to 

traditional biomass. 

4 Conclusions 
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The study of the residual biomass from Eucalyptus saligna carried out through 

proximate, ultimate, energetic, and thermal analyzes shows that thermal conversion 

processes through pyrolysis is a viable technological alternative to add value to this material. 

Based on the results of thermal analysis, the expected yield for the biochar produced is 

approximately 35%. The results of characterizations carried out can be used to manage the 

operational conditions for the processing of pyrolysis. The findings also encourage the best 

use of cultivated forests, through obtaining bioproducts with superior quality and a higher 

added value from harvest residues, since part of them can be removed from the soil without 

compromising nutrient content. 

Compared with other biomasses (residual or not), the residue from the harvest of 

Eucalyptus saligna has physical-chemical properties that render an excellent source of 

biomass for thermal conversion processing. Obtaining new products from the eucalyptus 

harvest residue can foment practices that combine profitability and sustainability, leading a 

positive return for the agroforestry area. 
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