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Abstract 

'This paper begins with a review of the :fioating-point system, where 
:fioating-point numbers are characterized. It reveals the need of a stan­
dard in order to solve the problem of production of different results in 
different computers , as well as the problems oflibrary 's portability and 
software package. It also characterizes the IEEE-754 standard, which 
specifies the binary :fioating-point system for computers since 1980. 
This standard also specifies: representation of numbers , arithmetic 
operations , conversion between formats and treatment óf exception 
with under:fiow and over:fiow. Special types of the NaN (not a num­
ber ), + and - infinite, non normalized numbers and implicit bit are 
also characterized. 
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1. Introd uction 

Some decades ago, everything considered as scientific computation was clone 
by means of a sEde rule or tables of logarithms of numbers and standard func­
tions. The use of logarithms would avoid the necessity of using exponents , 
making easier the use of sEde rules, but the precision was Emited. Additions 
and sÚbtractions were clone so that terms of relatively small magnitude were 
excluded and subtraction of almost equal terms could let the results without 
representation. Unfortunately, they were ignored. When clone by hand, the 
number of possible computations was so small that the effects of neglect­
ing small terms and cancellation could actually be observed and appropriate 
measures could be taken (Kulisch, [KUL93]). 

Computer arithmetic characterizes how real numbers are represented and 
how operations in a digital machine are performed. The representation of 
machine numbers are described by the representation system (fixed-point, 
floating-point or integer). The waythe operations are carried out is described 
by the arithmetic itself. 

The representation of real numbers in computers is an important ques­
tion since the beginning of computer's development. Real numbers were 
initially represented in the fixed-point numerical system. The passage to the 
representation in floating-point started in the fifties and has characterized 
a significant evolution in Sciénce of Computation and Scientific Computa­
tion, especially by the improvement of quality ( accuracy) in the results of 
operations performed in floating-point. 

This evolution continued, not in a well standardized form, by means of 
the representation of floating-point numbers with more and more digits in 
the mantissa. The mantissa length depended on the machine and, yet , it 
could vary, resulting in formats known as single precision, double precision 
and extended precision, respectively. 

When one wants to talk about a fioating-point system, or when we want 
to characterize it, it is necessary to specify the numerical base of the system, 
the mantissa's number of digits, the base's exponent range interval and how 
the representation of these numbers is clone, how underfiow and overflow are 
treated, how arithmetic operations are performed and which roundings are 
availabJe and used in those operations, for they will all influence the analysis 
and the amount of errors that computations clone in this system will have. 
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Undoubtedly, the representation of a floating-point number has many 
advantages, but it has also introduced some disadvantages, such as the error 
control problem in numerical computations, which many times turns out 
totally wrong results, but that seem to be correct. That is, the procedure 
is correct, but the result loses the meaning due to the inaccuracy of the 
numerical representation and of roundings applied in the evaluations of the 
floating-point operations and arithmetic expressions. 

Another question resulting from this variety of machines and of its fioating­
point systems available in the market is that the computations clone in each 
machine would provide different results. In some machines, the result of an 
expression or method was significant, whereas it was not in other machines. 

In order to standardize and give new advantages, the standards Sub­
committee of the Institute of Electrical and Electronics Engineers (IEEE) 
has developed standards, such as the standard for binary arithmetic, called 
IEEE-754 (recognized in 1985) or IEEE standard 854, which defines the 
norms for decimal floating-poiri.t arithmetic. 

The IEEE 754 and 854 [IE.EE 85] floating-point standards provide four 
basic arithmetical operations , +, - , *, j with maximum accuracy, including 
control of rounding towards zero, rounding to the nearest machine number, 
towards minus infinity and towards plus infinity. Maximum accuracy means 
least-bit accuracy. That is , there is no other machine number between the 
value and the rounded result. Nowadays, many of the floating-point exact 
processors available in the market are equipped with an arithmetic according 
to these standards , especially in microcomputers. 

Another arithmetic has been proposed by Kulisch. In this arithmetic 
[KUL81 , KUL83], new basic operations were added, called optimal scalar 
product of two vectors with rounding control evaluated with maximum ac­
curacy. These basic operations are fundamental to arithmetical operations 
such as multiply and sum or multiply and accumulate [IGR89], and opera­
tions with vectors and matrices, all computed with maximum accuraçy. The 
optimal scalar product is also a necessary operation for the verification and 
validation of numerical problem solutions, as commented later in this article. 
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2. Computational Arithm,etic Definition 

In the computer's memory, each number is stored in a position, which consists 
in a signal ("+" or "-") plus a fixed number of digits. An important question 
in a computer architecture is how the digits that represent the numbers which 
compose the numerical systems will be used. 

Thére are two principal numerical systems that are used in digital com­
puters: the fixed-point and the floating-point systems. Each one has its own 
concept of computational arithmetic. The fixed-point system is still used in 
some commercial and financiai applications. The results computed in those 
applications do not exceed the interval of representation of the integers, and 
consequently they are free of errors. For this reason, the computer's image 
before people in general is of a "perfect" computational tool. 

In the representation model of fixed-point numbers two parts are con­
sidered, an integer and a fraction one. The characterization consists of the 
numerical base used ( b), the number of digits ( n) and the number of digits 
of the fraction part (!). It is represented by the 3-tuples P(b, n,j). In the 
fifties, the floating-point representation in computers was introduced. Nowa­
days , most of computers use the floating-point number system, denoted by 
F(b, n, e1 , e2 ) where "b"is the base number , "n"is the precision and "e1 " 

and "e2 " are the minimum and the maximum exponent o f the interval. Any 
non zero real number x, is represented in F in the form: 

( 
d1 d2 dn) e 

X := ± bJ + bi + ... + -,;;; b 

But with this introduction a problem with error control arose. That is, 
the results obtained do not correspond to the reality. In some cases there 
were digits available or idle in the fraction part, whereas in the integer part 
there would occur overflow. 

In other cases, the digits available were in the integer part, whereas the 
result would lose its meaning through lack of digits in the fraction part. The 
need of controlling these errors arose in order to make possible, at the end 
of the computation, a result with higher accuracy. 

Problems involving various arjthmetic calculations, where several digits 
are necessary, happens many times in natural and technological sciences. 
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The fl.oating-point syst~m allows :fioating-point arithmetic operations to 
be used with significant approximation in order to calculate the solution of 
these pro blems. 

Computers today perform basic fl.oating-point operations with high or 
even maximum accuracy. However, the results of computations composed of 
severa! arithmetic operations can be completely wrong. That is , the result of 
each operation differs at most by 1/2 unit in the last place, according to the 
choice of the rounding function. However, after two or more fl.oating-point 
operations, the result can be totally wrong. 

An example of this is the addition: 1050 + 812-1050 + 1035 + 511-1035 = 
1323 . By adding these numbers from the left to the right, most computers 
give ZERO as result. This error comes up because the fl.oating-point format 
of these computers cannot operate with the large interval of digits required 
for this computation. 

Another example of this is the scalar product. Let x and y be two vec­
tors with six components: x = (1020 ,1223,1018 ,1015 ,3,-1012 )t and y = 
(1020 , 2, -1022 ,1013 ,2111,1016

( Let the scalar product be denoted by x.y. 
Here, the corresponding components are multiplied , and all the products are 
summed. In exact arithmetic, the result would be 8779, for the scalar product 
would have the following summands: 1040 + 2446- 1040 + 1028 + 6333- 1028

. 

However, every computer (including those with IEEE arithmetic) gíves the 
value zero for this scalar product. The reason for this is tha.t the summands 
have such dífferent orders of magnitude that they cannot be processed cor­
rectly in fl.oating-point. This catastrophic error occurs even though the data. 
(the components of the vectors) consume less than 4% of the exponent range 
of computers of small and medium size. 

As a. third exa.mple, it will be considered a :fioa.ting-point system with 
base 10 a.nd a mantissa of five digits. The difference of the two numbers , 
x = 0.10005 · 105 and y = 0.99973 · 10\ must be computed. Now, both 
opera.nds are from the sa.me magnitude order. The computer now gives the 
completely correct result: x · y = 0.7700 · 101

. Now, suppose tha.t the two 
numbers x and y are each the result of two previous multíplíca.tions. Since 
we are dealíng wíth five-digit aríthmetic, these products of course have ten 
digits. Suppose tha.t the unrounded products are x1 · x2 = 0.1000548241 .105

, 

y1 · y2 = 0.9997342213 .104
. Subtracting these two numbers, after rounding 

to five places, one obtains the result (x1 · x2 - y1 · y2 ) = 0.81402 .101
, which 

differs in every digit from the result computed above. 
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In the second case, the value of the expr~ssion x1 · x2 - y1 · y2 was com­
puted to the closest five-digit fioating-point number. On the other hand, 
the fioating-point arithmetic with rounding after each operation gave a com­
pletely wrong result. 

Computers, also, have become faster. In the middle of the fifties , they 
could perform about 100 fioating-point operations per second. Today, fast 
compúters can execute some billion fioating-point operations per second, and 
this in situations where the whole process can takes hours . However, the 
formats of the data use has changed. The process is clone with about 17 
decimal digits. Sometimes , a format twice as long is used in cases of very 
important applications. 

In the classical analysis of the error in numerical algorithms, the error in 
each fioating-point operation is estimated. Without doubt, it is not possible 
to proceed in this way for an algorithm that performs 1014 operations per 
hour. Thus, an- erro r analysis is no longer performed as a rule. Indeed, the 
possibility that the result may be wrong is not always taken into considera­
tion. Once in a while, the user tries to justify the computed result by means 
of heuristic methods, or make it plausible. However , there are also users 
who are not aware of the fact that the computed results could be completely 
wrong, perhaps due to confusion with the completely different properties of 
computation with integers. From the mathematical point of view, the prob­
lem of correctness of computeéi results is of central importance because of 
the high computational speed attained today. The determination of the cor­
rectness of computed results is essential in many applications that are now 
classical, such as simulation or mathematical modeling. We have apparently 
used the fioating-point arithmetic with those problems and it has been said 
it is a necessary evil. 

2.1 Representation 

A real number x E IR is called a normalized fioating-point number if it is 
in the form x = mbe, where m = ±O.d1 d2d3 ... dn, and one fixed n E N and 
where it holds that: 

a) 1 :s;; d1 :s;; b - 1, 
b) O :s;; d; :s;; b - 1, i = 2( 1) n 
c) e1 :s;; e :s;; e2, where e1 :s;; O, e2 > 1 and e1, e2 E l 
d) zero: o= o.ooo .. . o.be1 
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The union of all :fioating-point numbers defined in this way is called a 
:fioating-point system. Let a :fioating-point system F = F(b , n , e1 , e2 ) be 
given. The number 0.1 be1 represents the smalless positive non zero number 
of :fioating-points and B = O.[b -1J[b -1J[b -1] · · · [b- 1] .be2 represents the 
bigger fioating-point number in this system. 

A :fioating-point system F consists of a finite number of elements. They 
are equally spaced between the successive powers of b and its negative image. 
This space changes at each power of b. Figure shows a simple :fioating-point 
system F = (2, 3, -1 , 2) with 33 elements. The successive powers of 2 are 
2114

, 2112
, 21

, 22
. The :fioating-point system F has lower and upper element. 

Each number in F must represent a certain interval of real numbers. For ex­
ample , in the figure 2.1, the fioating-point number 3 may represent the black 
interval indicated. A :fioating-point system looks like a screen over the real 
numbers. The :fioating-point filter expression is also used by some authors . 

I e I 2e I m1 = 0.100 I mz = 0.101 I m3 = 0.110 I m4 = 0.111 I 
-1 1/2 0.2500 0.3125 0.3750 0.4375 
o 1 0.5000 0.6250 0.7500 0.8750 
1 2 1.0000 1.2500 1.5000 1.7500 
2 4 2.0000 2.5000 3.0000 3.5000 

minimums elementsnonzerus 

rr J uooer elem ent 

--+-+1 1-+-1 +-+1 I +++111 t-t+-ll ~ )J-t+-tl ~ ~+-+1 I +++11 1 +-+1 I -17151-, lt--+1---7) R 

-4 -3 -2 -1 o 1 2 3 4 

t t t ttttt t t t ooV~ers of 2 

Figure 1: A basic fioating-point system F = F(2,3, -1 ,2) 

We have 33 elements including zero. 
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We see some properties of floating-pojnt numbers. Let F be a floating­
point system described by F = ( b, n, e1 , e2 ). Then, the system's number of 
elements, which is denoted by #F (cardinal of F) is given by 

#F = 2. ( b - 1). ( b n -
1

). ( e2 - e1 + 1) + 1 

· For any mantissa, m is worth b-1 ~~ m I~ 1. I m I< 1, for every mantissa 
h as as first digit (before the point) the zero. I m I< b-I, for if I m I> b-1 

we would not have a normalized number, for the first digit after the point is 
not null (V x E F)[-x E F]. 

If x allows a representation in F, then it is necessary just to change the 
sign of X and then -X E F. Here we do not take into consideration the 
several codes for the representation of integer negative numbers, for in the 
case of complement of two, we can have x E F and -x E F, except if x is 
the biggest positive integer. 

3. IEEE Arithmetic Standard 

In the beginning of the eighties, an IEEE standard was started, defined as 
a set of rules that was commercially available for new systems to execute 
binary floating-point arithrpetic. 
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The relevant topics in the formulation of this standard were: 

• easy movement of the existing programs among the several computers 
that had this standard and that presented equal results; 

• to make easier and safer for the programmer to produce programs in 
the mathematical area, even if he has not much experience; 

• to provide direct support in order to diagnose the anomalies during 
execution, to treat the executions uniformly and to have an interval 
mathematics at low cost; 

• to provide standard elementary functions development, as sine, cosine 
and exponential, high precision arithmetic ( several words) and func­
tions that link symbolic algebraic computation with the numerical one. 

• to enable refinements and extensions instead of just prevent them. 
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IEEE standard specifi~s the format of: 

a) an extended and basic floating-point number; 

b) addition, subtraction, multiplication, division, square root, remainder 
and comparison operations; 

c) the conversion between integer and floating-point formats; 

d) the conversion between different floating-point formats; 

e) the conversion between basic floating-point numbers and decimal strings; 

f) the floating-point exceptions and their handling, including non numbers 
(NaNs). 

However, IEEE standard does not specify the formats of: 

a) decimal strings (numbers represented in the 10 base) and integer; 

b) an interpretation o f signal and mantissa fields o f nonnumbers (N aN s); 

c) a conve;rsion between binary and decimal extended number formats. 

3.1 Basic Definitions 

In this item, the principal definitions used in the specification of IEEE stan­
dard are presented. 

Biased exponent: the sum of a constant (bias) and the exponent, so that 
the exponent is never negative, making easier the representation. It is 
a change of scale. 

Binary floating-point number: a bit-string is characterized by three com­
ponents: a sign, a signed exponent and a mantissa. The numerical 
value, if there are any, is the signed product of the mantissa and of the 
binary base raised to the power of its exponent. In this standard it is 
not always possible to distinguish a bit-string fr9m the number it may 
represent . 
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Denormalized number: a non zero fioating-point number whose exponent 
has a reserved value, usually the format's minimum, and whose man­
tissa's first bit is zero. It is useful to represent lower numbers than the 
lowest machine number of the normalized standard. 

Destination: the location for the result of a binary or unary operation. The 
destination may be either explicitly specified by the user or implicitly 
supplied by the system (for example, intermediate results in subexpres­
sions or arguments for procedures ). Some languages place the results of 
intermediate calculations in destinations out of the user's control. This 
standard defines the result of an operation in terms of the destination's 
format and the operands' values. 

Exponent: the number two is raised to this component of the binary fioating­
point number. Occasionally, the exponent is called the signed or unbi­
ased exponent. 

Mode: a variable that a user may set, save and restore in order to control 
the execution of a subsequent arithmetic operation. The default mode 
is the mode that is active in the program, unless an explicit contrary 
statement is included in either the program or its specifications . 

The following mode must be implemented: rounding , to control the 
direction of rounding errors. In certain implementations, rounding pre­
cision may be necessary in order to shorten the precision of the result . 
The developer may, at his option, implement the following modes: dis­
abled/enabled traps, for handling of exceptions. 

N aN s: it is a co de of a symbolic entity in fioating-point format. Its aim is 
not to interrupt the calculation in situations such as O /0 and root of 
a negative number, allowing the computation to go on, but indicating 
that there has been some invalid calculation. There are two types of 
NaNs: 

176 

a) Signaling NaNs: they signal invalid operation exception, whenever 
the operations appear as operands. 

b) Quiet N aN s: they propaga te through almost every arithmetic op­
eration without signaling exceptions. ' 
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Mantissa: a component of a binary fioating-point number that consists of 
an explicit leading bit to the left of the point and the fraction field to 
the right. 

Status flag: a variable that may take two states, set/clear. The user may 
clear a fiag, copy it, restore it to a previous state. When set, the status 
fiag may contain additional system information, possibly inaccessible 
to some users. The operations of this standard may as side effect set 
some of the following fiags: inexact result, underfiow, overfiow, division 
by zero and invalid operation. 

Formats: this standard defines four fioating-point formats divided into two 
groups, basic and extended, of which precision is single and double. 
The level of implementation of this standard is characterized by the 
combinations of the formats supported. 

4. High Accuracy Arithmetic 

The computer was invented to do complicated work for people. The evident 
discrepancy between computational power and control of computational er­
rors suggest also that we place the error estimation process into the computer. 
In order to do"that, the compu ter has to be made arithmetically more power­
ful than the ordinary one. In ordinary fioating-point arithmetic, most errors 
occur in accumulations , that is , by execution of a sequence of additions and 
subtractions. In fixed-point arithmetic, however, the accumulation operation 
is performed without errors. Thus, most errors encountered in fioating-point 
can be avoided if the accumulation is performed in fixed-point. 

With the current technology we can easily realize the :fixed-point accu­
mulation. We only need to provide a fixed-point register in the arithmetic 
unit which covers the whole fioating-point range. If a register with this char­
acteristic is not available, then it can be simulated in the principal memory 
by software. This naturally results in loss of speed, which in many cases is 
considered to be more important than the gain in confiability. 
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If this register has double precision, which is easily possible, then the 
·;calar products of vectors of any finite dimension can always be calculated 
exactly (the products, that is , the summands in scalar product, have double 
precision mantissa, and the exponent range is likewise doubled). The pos­
sibility of calculating the scalar products of vectors in floating-point of any 
dimension with total exactness opens a new dimension in numerical analy­
sis. In particular, the optimal scalar product proves itself to be an essential 
instrument to achieve higher, computational accuracy. 

In order to adapt the computer also for automatic error control, its arith­
metic must be extended with still another element. All the operations with 
floating-point numbers ( addition, subtraction, division and multiplication, 
and the optimal scalar product of floating-point vectors) must be supplied 
with directed roundings, that is, roundings to the previous machine number 
( downward), to the posterior ( upward) and to the nearest ( symmetric). 

An interval arithmetic for real and complex floating-point numbers, as 
well as for vectors and matrices with real and complex floating-point com­
ponents can be built with these operations. Intervals bring the continuum 
into the computer. An interval is represented in the computer by a pair of 
floating-point numbers. This describes the continuum of real numbers, which 
is limited by these two floating-point numbers. 

The operations on two intervals in the computer result from operations 
on two appropriately chosen endpoints of the interval operands. In this, the 
computation of the lower endpoint of the interval result is rounded upward , 
and the computation of the upper endpoint is rounded upward. The result 
certainly contains all the results of the operation, individually applying the 
elements of the first and second interval operands. 

5. High Performance Arithmetic 

The high performance arithmetic is projected to make possible the use of 
supercomputers in the solution of physical and chemical problems of en­
gineering, among other problems that may need high accuracy. For this, 
besides vector interval arithmetic ( operations, functions and evaluation of 
expressions), we have to provi de libraries that may render available for these 
users the interval methods for the solution of their problems. 
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Therefore, in arder that we may obtain a high performance arithmetic, 
this arithmetic must be extended with other elements. All the operations 
wi th fioating-point numbers must be supplied with directed roundings. 

An interval arithmetic for real and complex fioating-point numbers can 
be built with these operations. 

In arder to guarantee maximum accuracy in interval operations, it is nec­
essary to define the interval operations on the set of fioating-point numbers 
('v+, v- , V*, VI , !.l +, !.l-, !.l * and f.ll). These operations would be defined 
with the help of monotone roundings directed downwards V and upwards 
!.l. The calculation of the lower endpoint is rounded downwards and the 
calculation of the upper endpoint is rounded upwards. 

Thus , the high performance arithmetic gathers the characteristics of the 
high accuracy arithmetic, of the interval mathematics and of the vector pro­
cessmg. 

Vector processing or vectorization means the introduction of vector in­
structions of hardware in its programs, in arder that the high speed of these 
instructions may be used so that it can improve the performance of its pro­
grams. 

The primary objective of vectorization is to find out sequential opera­
tions that may be converted into vector operations semantically equivalent, 
making use of the advantages of the vector hardware. We may obtain the vec­
torization by re-compiling the scalar codes in a compiler that vectorize them 
automatically; through re-structuring the source code, helping the compiler 
in arder to obtain a better scale of vectorization and through the develop­
ment of a new algorithm to explorer the benefits of the vector characteristics 
of the machine. 

The vector processing removes most of tests and control of operations. It 
minimizes the time spent in the wait for the load of operands and store of the 
result, when referring groups of memory and through the use of registers of 
multiple ~lements . Another advantage of vector processing is that it reduces 
the number of instructions, in machine language, which needs to be loaded, 
decoded and executed. 
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6. Conclusions 

The fioating-point arithmetic is a fast way of doing scientific and engineering 
calculations. Today, individual fioating-point operations are, generally, of 
maximum accuracy. However, after just two or some few operations, the re­
sult may be completely wrong. Computers today perform over 1011 fioating­
point operations in a second. Thus, special attention must be given to the 
validity of the calculated results. Recently, some techniques have been de­
veloped in numerical analysis, which make possible that the computer itself 
verifies the validity of the results calculated for numerous problems and ap~ 
plications. Besides of this, the computer frequently establishes the existence 
and the uniqueness of the solution in this way. 

The result verification is performed by means of mathematical fixed-point 
theorems, such as Brouwer fixed-point theorem and its generalizations. 

The scientific calculation with automatic result verification is of funda­
mental importance for many applications, for example, for mathematical 
simulation and modeling. Models that are frequently developed by heuristic 
methods can only be refined systematically if the computational errors can 
be completely excluded. 

This article gives an introduction for all the scientific computation field 
with automatic result verification, 

References 

[BOH90] 

[IEEE85] 

[IGR89] 

180 

Bohlender, G. What Do We Need Beyond IEEE Arith­
metic? In: Ullrich, C ( ed.). Compu ter Arithmetic and Self­
Validating Numerical Methods. Academic Press, 1990. 

American National Standards Institute. Institute of Electri­
cal and Electronics Engineers: IEEE Standard for Binary 
Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, New 
York, 1985. 

IMACS, GAMM: Resolution on Computer Arithmetic. 
Mathematics and Computers in Simulation 31, 297-298, 1989. 

January, 1997. Extra Edition. 



[KIR88] 

[KUL81] 

[KUL83] 

[KUL93] 

[ULL90] 

Technical Report 

Kirchner, R.; Kulisch, U. Accurate Arithmetic for Vector 
Processing. Journal of Parallel and Distributed Computing 
(Academic Press) , vol. 5, N. 3, June 1988. 

Kulisch, U. ; Miranker, W. L. Computer Arithmetic in 
Theory and Practice. Academic Press , New York, 1981. 

Kulisch , U.; Miranker , W. L. (eds.): A New Approach to 
Scientific Computation. Notes and Reports in Computer 
Science and Applied Mathematics, Academic Press , Orlando, 
1983. 

Kulisch, U. ; Rall , L.B. Numerics with automatic result 
verification. Mathematics and Computers in Simula­
tion. (North Holland). v.35 , p.435-450, 1993. 

Ullrich, Ch. ( ed. ) Compu ter Arithmetic and Self­
Validating Numerical Methods. Proceedings of SCAN-89, 
Basel (Oct. 2-6 , 1989), Academic Press , 1990 . 

.. 

January, 1997. Extra Edition. 181 


