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Abstract

In this paper we will present an interval version to the Fixed Point
Theorem. Such theorem offers a practical method (the ‘sucessive ap-
proximations method’) which serves to the interval fixed point equa-
tion root compute. We will also present a criterion that allows to de-
fine easily the interval semi-plain regions which can hold such roots.
Finally, we will do a practical application, showing in what manner to
compute the polynomial interval function fixed points.

Key Words

Interval Arithmetic, Fixed Point Theorem.

1. Introduction

In this paper we will present an interval version to the Fixed Point Theo-
rem. Such theorem offers a practical method (the ‘sucessive approximations
method’) to compute the interval fixed point equation roots.

*Research supported by ArInPar Project under grant # 680075/94-1 from
ProTeM-CC/CNPq.
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We will start presenting some interval arithmetic basic concepts which
will be necessary to our study. After this we will present and demonstrate
the Fixed Point Theorem interval version. We will also show a criterion that
allows to define easily the regions of the interval semi-plain which can hold
such roots. At last, we will make a practical application of such theorem,
showing in what manner to compute the polynomial interval functions fixed

‘points such as f(X) = A.X%+ B.X + C, where | A |< 1.

2. Basic Concepts

Follows we will present some interval arithmetic basic concepts.

Definition 1 (Interval)

Let be R the real number set and a,b € R two points such that a < b.
Then, the set {z € R/a < z < b} is a “interval of real numbers” (or just
“interval”) and it will be denoted by X = [a; b].

Definition 2 (IR Set)
We define and denote by IR the set of all intervals, that is
IR = {{a; b]/a,b € R, < b).

Definition 3 (Arithmetic Operations on IR)

Let A, B € IR two intervals. The operations “sum”, subtraction”, “prod-
uct” and “division” in IR are defined by Ax B ={axb/a € A,b € B}, in
which x € {+,—,.,/} is any one of the four arithmetic operations. We need
assume that 0 € B, in the division.

Definition 4 (Distance between two intervals)
Let be A = [a; b] and B = [¢; d] two intervals.
We define the distance from A to B by § = maz{| a—c|,|b—d |}.
Notation: dist(A, B) = dist([a; b],[c; d]) = maz{|a—c|,|b—d |} > 0.

Corollary 1
A= B & dist(A,B) = 0.
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Definition 5 (Modulus of an interval)

Let A = [a; b] € IR an interval.

We define the modulus of the interval A by p = dist(A,0), which corre-
sponds to the distance from A to zero.

Notation: | A |=| [a; b] |= dist(A,0) = maz{| a|,| b |} > 0.
Corollary 2 (Modulus Properties)

L |X|=0&X=0;
2| X+YKIX|+]|Y|;
S |XYIKIX]|.|Y]

Theorem 1
Let A,B, C,D € IR intervals. Then:

dist(A+ B,A+ C) = dist(B, C);

dist(A.B,A.C) <| A | .dist(B, C);

dist(A+ B, C + D) < dist(A, C) + dist(B, D);

dist(A.B,C.D) <| B | .dist(A,C)+ | C | .dist(B, D);
dist(A,B) <| A|.|B|.dist(5,%), f 0 A, 0¢ B;

6. | XV |=|X|".

Sr P S b ke

Definition 6 (Interval Sequence)
An interval sequence is a function X : N — IR
n = X(n)=X,
that associates to each natural number n an interval X(n) in IR.
The interval X (n) will be represented by X, and the sequence
X = (X1, X5, X, ., Xn, o) will be denoted by (X,),en or simply by (Xa),.

Definition 7 (Limit of a Sequence)

Let X = (X,), an interval sequence.

We say that the interval L is the limit of the sequence X = (X,), if the
terms X, tends to L, that is L is the limit of sequence X = (X,), if

(Ve > 0)(3 ng € N)/{dist(X,,L) < ¢}

always that n > ng. Simbolically we have:
limy oo Xp = L & (Ve > 0)(Fng € N)/n > ng = dist(X,,L) < ¢
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Notation: L = lim,. ... X; or L= hm X,

Definition 8 (Convergent Sequence)

Let X = (X,), an interval sequence. X = (X,), is a convergent se-
quence if exist L € IR such that lim, ., X, = L.

In this case, we say that X, converges to L and we denote by X, — L to
n — oo.

Definition 9 (Interval DIGSEs)

Let X = [z; T] the ezact solution for an interval problem and let Y =
ly; 7] an approzimation for such solution X. We say that Y has a exact
significative digits (DIGSEs) in respect to X if y as well as § have «
ezact significative digits respecting to z and T, respectively. The value of a
is given by:

ly—z|
|z |

jy Lol (e L L= Elyy

|7

a = DIGSE(Y,X) = min{—log;o(2.

If Y = X then , by definition, « = 400, that is, all the digits of Y are

corret.

Example 1 Let X = [e, 7] a = [2.7182818, 3.1415999].
We have DIGSE(Y X) SE([2.7182818, 3.1415999], [e, 7]) =

min{— log,,(2. [2. 7182818— )’_10010(2 I3. 141|57;9]99 7r|)} _

min{—log;(2. 0527 * 107%), —log,(4.6132 * 107%)} = min{7.687,5.336} =
5.33.
Thus, Y has § corret digits in respect to X.

Definition 10 (Complete Metric Space)

We say that (S, p) is a Complete Metric Space if for any Cauchy’s
sequence X = (X,), in S, the value L of the limit is also an element that
belongs to the set S.

Theorem 2 (IR is a Complete Metric Space)
The IR set supplied function p(X,Y) =dist(X, Y) is a Complete Metric
Space.

Proof: Omitted. The detailed proof can be found in [EDG 90] or in
[ALE 83].
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Definition 11 (Closed Ball)

The closed ball centered in A € IR with radius r > 0 is the set of the
points X € IR in which the distance to point A is smaller or equal to r. Such
set will be denoted by F,.(A).

Thus, F,(A) = {X € IR/dist(X,A) < r}.

Definition 12 (Open Ball)

The open ball centered in A € IR with radius v > 0 is the set of the
points X € IR tn which the distance to point A is smaller to r. Such set will
be denoted by B,(A).

Thus, B,(A) = {X € IR/dist(X, A) < r}.

Definition 13 (Accumulation Point)

Let X C IR a subset of IR.

We say that A € IR is an accumulation point of X if any open ball
centered in A holds some point of X different from A, that is,

(Ve>0)(3X € X)/X € (B(4) —{A})

In other words, A is an accumulation point of X if (Ve > 0)(3X € X)
such that 0 < dist(X, A) <e.

Definition 14 (Interval Function)
Let f: X — Y a function .
X = f(X)
If X = Dom(f) C IR and Y = Cod(f) C IR then we say that f is an

interval function of an interval variable.

Definition 15 (Limit of a Function)

Let f : X — IR a interval function defined in a subset X C IR and let
A € IR an accumulation point of X.

The interval L is the limit of function f(X) when X tends to A if
for each real number ¢ > 0 arbitrary, exists a real number 6 > 0 such that

 dist(f(X), L) < ¢ always that X € X and 0 < dist(X,A) < 6.
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Notation
Jim f(X) =L

It must be observed that expression limx_.4 f(X) = L is an abbreviation
to the following affirmation:

(Ve>0) (36§>0)/X €X, 0< dist(X,A) < 6= dist(f(X),L) < e

or that, it always possible to become f(X) arbitrarily near L, since that we
take X € X suficiently near A, but X # A.

Intuitively, a function f : X C IR — IR is continuous in A € X when
it is possible to become f(X) arbitrarily near of f(A4) since that we take X
suficiently near of A.

To be more precise, we have the following definition:

Definition 16 (Continuous Interval Function)

Let f : X CIR — IR a interval function.

Given A € X a point in the domain of the function, we say that f is a
continuous interval function in A if

(Ve>0)(36>0)/X € X and dist(X,A) <é= dist(f(X),f(A)) <e

That is, f is continuous in A if for each € > 0 given arbitrarily we can
find 6 > 0 such that given X € X we havé that the distance from f(X) to
f(A) is smaller than ¢ always that the distance from X to A is smaller than
8.

We say simply that f : X C IR — IR is continuous when f is continuous
in all the points X € X.

As we saw in the previous definition, a function f : X C IR — IR is
continuous in X if (VA € X) and (Ve > 0)(36 > 0)/X € X and dist(X, A) <
6 = dist(f(X),f(A)) < e. In this case, it must be observed that the value
of § depends on ¢ as well as the point A chosen in X.

In general, it is not possible to obtain from ¢ > 0 given, an only é > 0
that serves for all the points A from X. If it to happen, then f will be said
a continuous uniform function.

Definition 17 (Continuous Uniform Function)

Let f : X C IR — IR a interval function. Then f is a continu-
ous uniform function if (Ve > 0)(36 > 0) such that VX,Y € X with
dist(X, Y) < & we have that dist(f(X),f(Y)) <e.
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Theorem 3

Let f : X C IR — IR a continuous uniform function. If X = (X,), is a
Cauchy’s sequence in X then Y, = f(X,) is a Cauchy’s sequence.

Corollary 3

Let f : X C IR — IR a continuous uniform function. Then for all A € X'
exists the limit limx_ 4 f(X).

Theorem 4

A function f : X C IR — IR is a continuous uniform function iff (X,),
and (Y,), in X with 1111_{1’()10 dist(X,, Yn) = 0 we have that
lim. dist(f(Xa), /(Ya)) = 0.

Definition 18 (Lipschitz’s Function)
Let f : X C IR — IR a interval function. Then f is a Lipschitz’s

function if exist ¢ > 0 such that dist(f(X),f(Y)) < c.dist(X,Y), for all
Xa Y e X.

Remark: All Lipschitz’s function is continuous, because given A € X and
for all e > 0 we take § = £ > 0 and thus dist(X, A) < 6 = dist(f(X),f(4)) <
c.dist(X,A) =¢.2 =e¢.

Definition 19 (Contraction)

Let f : X CIR — IR a Lipschitz’s function.

Then f is a A\-contraction (or simply contraction) if exist A € R such
that 0 < A < 1 so that dist(f(X),f(Y)) < A.dist(X,Y), forany X, Y € X.

Example 2
f: IR - IR
X = f(X)=[%; X +[-3; 5]

Remark: All contraction is a continuous function, because it is Lipschitz.

Definition 20 (Fixed Point)
Let f : X C IR — IR a interval function.
Then X, € X is a fixed point of the function f if X. = f(X.).
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There are various theorems about fixed points, however the theorem as
follows is one of the usefuler theorems because beyond its demonstration be
enough simple, it serves to prove the existence of a fixed point, to guarantee
its unicity and still to furnish an iterative method to compute the fixed point
in question.

Then, we will see the theorem and its demonstration.

Theorem 5 (Successive Approximations Method)

Let F C IR a closed set and f : F — F a contraction. Given any point
Xo € F, the interval sequence X = (X,), defined by
X1 =f(X0), Xo = f(X1),..., Xoy1 = f(Xh),... converges for a point X, € F,
that is the unique fized point of f in F.

Proof:

As f is a contraction, it follows that exist A € R such that 0 < A < 1,
with dist(f(X),f(Y)) < X.dist(X, V).

Thus, dist(Xp1, Xi) < X .dist( Xy, Xo), because we have:

dist(Xs, X1) = dist(f(X1),f(Xo)) < A.dist( Xy, Xo).

Supposing that dist( X1, Xi) < bL .dist(Xi1, Xo) and, by induction, we
_just need to show that dist(Xpy2, Xpy1) < b .dist( X1, Xo).

But dist(Xgr9, Xpt1) = dist(f (Xes1), f(Xi)) < A .dist(Xpq1, Xi) <
AN dist(Xy, Xo) = M dist(Xy, Xo).

Soon n € N we have that dist(X,11,X,) < A" .dist(Xq, Xo).

Now we need to show that the interval sequence Xpy1 = f(X;) is a
Cauchy’s sequence, that is, that dist(X,,,X,) — 0 to n, m — oo, or equiva-
lently that limj_.e dist(Xiip, Xi) =0, for all p € N.

But dist(Xk+:,,,Xk) < diSt(Xk.f.p,Xk..;_l) + diSt(Xk+1,Xk) <
diSt(Xk+p7 Xk.|_2) + dist(Xk+2, Xk+1) + disi(Xk+1, X}C) & sama
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< dist(Xk+p, ch+p—1) + diSt(Xk.H,_l, Xk+p_2) -I- oot dist(Xk+1, Xk) <
S AP dist(Xy, Xo) + ...+ AR dist(X1, Xo) + A dist(Xy, Xo) =
= dist( Xy, Xo) NP 4+ M A = dist(Xs, Xo). T1 O LA
= dist(X1, Xo). zp_ou = = dist(Xy, Xo). \¥. S22 AT <
dist(Xy, Xo). A . 22, N = dist(Xy, Xo). \F T = %.dzst(Xl,Xo), because
i<l
Summarizing, 0 < dist(Xg4p, Xi) < l’\_—k,\.dist(Xl,Xo).

Thus, 0 < dist(Xesp, Xi) < 2og.dist(Xy, Xo) — 0, a0 k — co.

That is, limg_.eo dist(Xi4p, Xz) = 0, for all p € N, whence it follows that
X = (X,), is a Cauchy’s sequence.

It follows that exist X, € IR such that lim;_,., X; = X, and as F is a
closed set, it follows that X, € F.

As f is a continuous function, we have:

X,.. = limk—»oo Xk = 1imk_.oo Xk+1 = limk_,oo f(Xk) = f(X,.)

That is, X. is a fixed point of f because X. = f(X.).

Now we just need to show the unicity of X,.

Supposing that exists another point 4 € F such that A = f(A).

Thence we have 0 < dist(X., A) = dist(f(X.), A) = dist(f(X.),f(A)) <
A.dist(X., A), or be, dist(X., A) < A.dist(X,, A), or still that
(1 —X).dist(X., A) <0.

But (1 —X) > 0 because 0 < A < 1.

Thus 0 < (1 — X).dist(X,, A) < 0 & dist(X,, A) = 0.

That is, A = X.. Soon the fixed point X, of f is unique.

Remark: It is immediate of the previous theorem that if X C IR is a
compact set and the function f : X — X performs the condition
dist(f(X),f(Y)) < dist(X, Y) for all pair of the point X # Y in X then the
function f has an unique fixed point in X. But, if X C IR is an any set, then
in order to we can guarantee that a contraction f : X — IR has an unique
fixed point X, € X it is necessary to find a subset F C X such that f(F) CF,

in which F is a closed set in IR. The following theorem is frequently utilized
to this end.

Theorem 6
Let f : X C IR — IR a A-contraction. If X holds the closed ball F,.(A)
such that dist(f(A),A) < (1 — A).r then f admits a fized point X, in F,.(A).
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Proof: :

It is enough to prove that f(F,(A)) C F,(A).

Given any X € F,(A) we show that f(X) € F,(A). -

But X € F(A) & dist(X,A) < r

Thus dist(f(X), A) < dist(f(X), f(A)) + dist(f(A4), 4A) <
Mdist(X,A)+ (1= X)r<Ar+(1=X).r=r.

Whence dist(f(X),A) < ror be f(X) € F,(4).

3. Aplications

In this section we will examine some practical applications to the Fixed Point
Interval Method.

Example 3 Compute the fized point of the function

f: IR — IR
X""f() [0’2]X+[3§5]

Solution:

Firstly, we need to show that f is a contraction. After, we must find a
region that holds the fixed point X, and finally, we must compute such fixed
point through the sequence limit X,4+; = f(X,), in which X, is an interval
token inside of the convergence region.

1. f is a contraction because

dist(f(X) f(Y))= dist{i; 2]X—{-[ 3; 5], (55 31Y +[-3; 3]) =
dwt([ s 1Y) <| [555 3] | -dist(X,Y) = 3.dist(X,Y), in which

2.2 We need to define the value of R of such way that f(Fgr(0)) C Fr(0),
that is, if X € Fg(0) then f(X) € Fgr(0).

Thence f(X) € Fr(0) | f(X) | R.

But | f(X) |=] ({5 31X +[=3; 8] I<| [§5s 31 |- 1 X [+1[=3 5] I<
1.1 X | +5< 3.R+5 because | X |< R.

Thence $.R+5< R < R > 10.

Thus, f(Fr(0)) € Fr(0) & R > 10

In this manner, it is enough we take any X such that | Xo |> 10.

10’ 2]
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At last, for we obtain the value of X, it is enough iterates the sequence
Xop1 = f(Xa) = [35 3]Xa +[=3; 3], taking as Xo any X € IR such that
| X |> 10.

For example, taking Xy = [15; 15], we have as follow the table with the
computed values to the sequence X, 41 = f(X,) = [35; 3] Xa +[-3; 5]:

Table 1: Sequence Values X, 41 = f(Xa) = [55; 3]-Xn + [—3; 5]

[(n [ X, [ DIGSE(X,, Xa1) |
0] [15 15] 1.34
1|[1.5123] -0.08
2 | [-3.75 11.25] 0.34
3 | [-4.875 10.625] 0.68
4 | [-5.4375 10.3125] 1.01
5 | [-5.71875 10.15625] 1.32
6 | [-5.859375 10.078125] 1.62
7 | [-5.9296875 10.0390625] 1.93
8 | [-5.96484375 10.01953123) 2.23
9 | [-5.982421875 10.009765623] 2.53

10 | [-5.9912109375 10.0048828125] 2.83
20 | [-5.99999141693116 10.0000047683716] 5.84
30 | [-5.9999999916181 10.0000000046567] 8.85

Thus, the limit is [—6; 10] and [—6; 10] = [15; 3].[—6; 10] 4+ [-3; 5].
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Example 4 Compute the fized point of the function
f: IR —- IR
X = JX) =l X+ 5 X + 5 )

Solution:
Firstly we have to show that f is a a contraction, that is, that

dist(f(X),f(Y)) < X.dist(X,Y).
But dzst( ( % litg =

dist([35; 71X = o 311X+ a5 feb gy 1Y + g IY + (5 55)
dist([%; 11x7 4+ gl [ 3]+ s ¥ S
dwt([% ]X2 B! Y2)+dwt([-21~ S 2l ¥ &

1

LY dzst(X2 Y2)+ | [% in dist(X, Y) =

i.dzst(Xz, y?2) 4 Z.dist(X, Y) = i(dzst(Xﬁ Y?) + dist(X, Y)) <
%(dist(x%x. Y)+ dist(X.Y, Y?) + dist(X, Y)) <

1

L X | dist(X, V)4 | Y | dist(X, ¥) + dist(X, ¥)) =

|Xl+|Y|+1d tHX,Y) < dist(X,Y) &

4
| X |+ ]Y|+1

<1<:>|X|+| Y <3,

Thus, the first condition that needs to be satisfied in order to f (X)b
a contraction is that | X | + | Y |< 3, for any X, Y taken in the region of
convergence, which still needs to be defined.

Convergence region determination:

Let X = Fg(0). By the theorem 6, we need to show that f(X) C X. But
FX)CXe|f(X)IKR, VX,eX

We have | £(X) |=| [&; 11X+ [5; 11X +[Z; ] I<
| 33 ]I IXI+|[20, I AX 1+ % Wl =3 X P51 X [ +5<
& + .R+ & because | X |< R and, by hypothesis, X € X

Thus, | f(X) |< B & %.R2+§.R+ S<R& LR -3R+E<0e
4R*-12R+5<0& Re|3; .

Thence, we have that X, € {X € IR/3 <| X |[< 2

Finally, to obtain the value of X, , it is enough to take Xy € IR such
that 7 <| Xo |< g and then we will have X, as the limit of the sequence

Xot1 = f(Xa) = [55 HMX2+[%; 1X, + [5; 3], according as we examine

in the tables as follows:
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Table 2: Sequence Values X, 41 = [£; 1] X2 + [20, 4]X - [45’ 16]

100 4

(X, [ DIGSE(X,, Xozr) |
0105 1] 20.46
1| [0.205555555555556 0.8125] 0.38
2 | [0.170058641975309 0.6806640625] 0.56
3 | [0.16695048182537 0.598491907119751] 0.77
4 | [0.166690325984997 0.551671117501897] 1.02
5 | [0.166668638332504 0.526503034846922] 1.29
6 | [0.166666830972542 0.513427120137486] 1.58
7 | [0.166666680358826 0.50675863195754] 1.87
8 | [0.16666666780768 0.503390735755254] 247
9 | [0.166666666761752 0.501698242149868] 2.47
10 | [0.166666666674591 0.500849842081534] 207
20 | [0.166666666666667 0.500000830628922] 5.78
30 | [0.166666666666667 0.500000000811162] 8.79
35 | [0.166666666666667 0.500000000025349] 10.29
Table 3: Sequence Values Xn41 = [35; S1X2+ [55; 3] Xn + [ =]

KB [ DIGSE(X,, Xoa) |
0105 2.5] -0.46
1 | [0.205555555555556 2.5] 0.38
2 [ [0.170058641975309 2.5] 1.43
3 | [0.16695048182537 2.5] 2.51
4 | [0.166690325984997 2.5] 3.58
5 | [0.166668638332504 2.5] 4.66
6 | [0.166666830972542 2.5] 5.74
7 | [0.166666680358826 2.5] 6.82
8 | [0.16666666780768 2.5] 7.90
9 | [0.166666666761752 2.5] 8.98
10 | [0.166666666674591 2.5] 10.06
20 | [0.166666666666667 2.5] 15.00
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4. Conclusions

In this paper we prove an interval version to the Fixed Point Theo-
rem. Such theorem provides a new method (the ‘Successive Approximations
Method’) which we use to compute the roots of interval fixed point equations.
This method, which is legitimately interval, can be applied for any Lipschitz’s
function of constant A < 1, but here we just did the interval polynomial root
compute. In order to we can apply such method, we need to show that exist
a region in the interval semi-plain which holds all the probable roots. For
this, we proved the theorem 6, that beyond defining such regions, it also
serves to decide about the existence or not of the solutions (if we do not get
to find a region which satisfyes the theorem 6 then, certainly, the equation
does not have fixed points). Thence, taking any point X, in the region of
convergence, we will obtain the fixed point value that iterate the function,
that is, computing X,+1 = f(X,), whence X, = lim, o X,.
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