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Abstract 

In this paper we will present an interval version to the Fixed Point 
Theorem. Such theorem offers a practical method ( the 'sucessive ap­
proximations method') which serves to the interval fixed point equa­
tion root compute. We will also present a criterion that allows to de-

" fine easily the interval semi-plain regions which can hold such roots . 
Finally, we will do a practical application, showing in what manner to 
compute the polynomial interval function fixed points. 
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1. Introduction 

In this paper we will present an interval version to the Fixed Point Theo­
rem. Such theorem offers a practical method ( the 'sucessive approximations 
method') to compute the interval fixed point equation roots. 

*Research supported by ArlnPar Project under grant # 680075/94-1 from 
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We will start presenting some interval arithmetic basic concepts which 
will be necessary to our study. After this we will present and demonstrate 
the Fixed Point Theorem interval version. We will also show a criterion that 
allows to define easily the regions of the interval semi-plain which can hold 
such roots. At last, we will make a, practical application of such theorem, 
showing in what manner to compute the polynomial interval functions fixed 
'points such as f(X) = A.X2 + B.X + C , where I A I< 1. 

2. Basic Concepts 

Follows we will present some interval arithmetic basic concepts. 

Definition 1 (Interval) 
Let be Fi! the real number set and a , b E Fi! two points such that a ~ b. 

Then, the set { x E Fi!/ a ~ x ~ b} is a "interval o f real numbers" (o r just 
"interval") and it will be denoted by X = [a; b]. 

Definition 2 (I Fi! Set) 
We define and denote by IR the set of all intervals, that is 

IR = {[a; b]ja , b E R, a~ b}. 
" 

Definition 3 (Arithmetic Operations on iR) 
Let A, B E IR two intervals. The operations "sum", subtraction", "prod­

uct" and "division" in IR are defined by A* B = {a* b /a E A, b E B} , in 
which * E { +, - , ., /} is any one of the four arithmetic operations . We need 
assume that O rf. B, in the division. 

Definition 4 (Distance between two intervals) 
Let be A= [a; b] and B =[c; d] two intervals. 
We define the distance from A to B by 8 = max{ l a- c I, I b- d 1}. 

Notation: dist(A, B) = dist([a; b], [c; d]) = max{l a- c I, I b- dI};?:: O. 

Corollary 1 
A= B {:} dist(A, B) =O . 

118 January, 1997. Extra Edition. 



TecbnicaJ Report 

Definition 5 (Modulus of an interval) 
Let A = [a; b] E IR an interval. 
We define the modulus of the interval A by /.L= dist(A , 0) , which corre­

sponds to the distance from A to zero. 

Notation: I A 1=1 [a; b]l= dist(A , O) = max{l a I, I b I}~ O. 
Corollary 2 (Modulus Properties) 

1. I X I= o Ç} X =O; 
2. I X+ y 1~1 X I + I y I; 
3. IX.YI~IX 1·1 Yl. 

Theorem 1 
Let A, B , C, DE iR intervals. Th en: 

1. dist(A + B , A+ C) = dist(B , C); 

2. dist(A.B , A. C)~~ A I .dist(B , C); 

3. dist(A + B , C+ D) ~ dist(A , C) + dist(B, D); 

4. dist(A.B, C.D) ~~ B I .dist(A, C)+ I C I .dist(B , D ); 

5. dist (A, B) ~~A 1. 1 B l. dist(~, -JJ ), if O (j_ A, O (j_ B; 

6. I xn' I= I x In . 
Definition 6 (Interval Sequence) 

A n interval sequence is a function X : N --t IR 
n 1--t X(n) = Xn 

that assoei ates to each natural number n an interval X ( n) in IR. 
Th e interval X ( n) will be represented by Xn and the sequence 

X= (X1,X2,X3, ... ,Xn, ... ) will be denoted by (Xn)nEN orsimply by (Xn)n . 

Definition 7 (Limit of a Sequence) 
Let X = (Xn)n an interval sequence. 
We say that the interval L is the limit of the sequence X= (Xn)n if the 

terms Xn tends to L , that is L is the limit of sequence X = (Xn)n if 

(V é> 0)(3 no E N)/ { dist(Xn , L ) <é} 

always that n ~ no. Simbolically we have: 
limn__..oo Xn =L Ç:;> (V é> 0) (3 no E N)/n >no=? dist (Xn, L ) <é 
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Notation: f-= limn-+oo Xn or f-=:= limXn 

Definition 8 ( Convergent Sequence) 
Let X = (Xn)n an interval sequence. X = (Xn)n is a convergent se­

quence if exist f- E m such that limn-+oo Xn = f-. 
In this case1 we say that Xn converges to f_ and we denote by Xn ---+ f_ to 

n ---+ oo. 

Definition 9 (Interval DIGSEs) 
Let X = [.f.; x] the exact solution for an interval problem and let Y = 

[.l[; y] an approximation for such solution X. We say that Y has a exact 
significative digits (DIGSEs) in respect to X if Jj_ as well as y h ave a 
exact significative digits respecting to .f. and X1 respectively. The value of a 
is given by: 

. IY-.f.l 117-xl 
a= DIGSE( Y, X)= mzn{ -1og10 (2. I .f. I ), -1og10(2. I x I )} 

!f Y = X then , by definition1 a = +oo 1 that is1 all the digits of Y are 

corret. 

Example 1 Let X= [e , 1r] and Y = [2 .7182818,3.1415999] . 
We have DIGSE( Y, X) = DIGSE([2.7182818, 3.1415999], [e, 1r]) = 

· {-1 (2 12.7182818-el) -1 (2 13.1415999-'Jrl)} _ 
mzn oglO . lei ' oglO . I'Jrl -
min{ -1og10 (2 .0527 * 10-8

), -1og10( 4.6132 * 10-6
)} = min{7.687, 5.336} 

5.33. 
Thus, Y has 5 corret digits in respect to X. 

Definition 10 (Complete Metric Space) 
We say that (S, p) is a Complete Metric Space if for any Cauchy's 

sequence X = (Xn)n in S! the value f- of the limit is also an element that 
belongs to the set S. 

Theorem 2 (m is a Complete Metric Space) 
The m set suppliedfunction p(X, Y) = dist(X , Y) is a Complete Metric 

Space. 

Proof: Omitted. The detailed proof can be found in [EDG 90] or m 
[ALE 83]. 
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Definition 11 (Closed Ball) 
The closed ball centered in A E IR with radius r ~ O is the set of the 

points X E IIR in which the distance to point A is smaller o r equal to r. Such 
set will be denoted by JA A) . 

Thus, Fr(A) = {X E IIR/ dist(X; A) ~ r}. 

Definition 12 (Open Ball) 
The open ball centered in A E IR with radius r > O is the set of the 

points X E I R in which the distance to point A is smaller to r. Such set will 
be denoted by Br(A). 

Thus, Br(A) ={ X E IR/dist(X,A) <r}. 

Definition 13 (Accumulation Point) 
Let X Ç m a subset of IR . 
We say that A E IR is an accumulation point of X if any open ball 

centered in A holds some point o f X di.fferent from A) that is) 

• (Vé > O)(::JX E X)/ X E (Be(A) - {A}) 

In other words) A is an accumulation point of X if ('rlf > 0)(3 X E X) 
such that O< dist(X,A) <é. 

Definition 14 (Interval Function) 
Let f : X f-+ Y a function . 

X f-+ f(X) 
!f X = Dom(!) ç IR and Y = Cod(f) c m then we say that f is an 

interval function o f an interval variable. 

Definition 15 (Limit of a Function) 
Let f : X -+ IR a interval function defined in a subset X Ç m and let 

A E IR an accumulation point of X. 
The interval L is the limit of function f(X) when X tends to A if 

for each real number é > O arbitrary) exists a real number 8 > O such that 
dist(f(X), L) <é always that X E X andO < dist(X, A) < 8. 
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Notation 
lim f(X) =L 

X _.A 

It must be observed that expression limx__.A f(X) = L is an abbreviation 
to the following affirmation: 

'(V é >O) (3 8 > 0)/ X E X, O < dist(X , A) < 8 =? dist(f(X) , L) <é 

or that, it always possible to become f(X) arbitrarily near L, since that we 
take X E X suficiently near A, but X =/=- A. 

Intuitively, a function f : X Ç IR -+ IR is continuous in A E X when 
it is possible to become f(X) arbitrarily near of f( A) since that we take X 
suficiently near of A. 

To be more precise , we have the following definition: 

Definition 16 (Continuous Interval Function) 
Lei f : X Ç IR -+ IIR a interval function. 
Given A E X a point in the domain of the function, we say that f is a 

continuous interval function in A if 

(V é> 0)(3 8 > 0)/ X E X and dist(X, A) < 8 ~ dist(f(X),f(A)) <é 

That is, f is continuous in A if for each é > O given arbitrarily we can 
find 8 > O such that given K E X we have that the distance from f(X) to 
f(A) is smaller than é always that the distance from X to Ais smaller than 
8. 

We say simply that f : X Ç m-+ m is continuous when f is continuous 
in all the points X E X. 

As we saw in the previous definition, a function f : X Ç m -+ m is 
continuous in X if (V A E X) and (V é> 0)(3 8 > 0)/ X E X and dist(X , A) < 
8 =} dist(f(X),f(A)) <é. In this case, it must be observed that the value 
of 8 depends on é as well as the point A chosen in X. 

In general, it is not possible to obtain from é > O given, an only 8 > O 
that serves for all the points A from X. If it to happen, then f will be said 
a continuous uniform function. 

Definition 17 (Continuous Uniform Function) 
Let f : X Ç IR -+ IR a interval function. Then f is a continu­

ous uniform function if (V é > 0)(3 8 > O) such that V X, Y E X with 
dist(X , Y) < 8 we have that dist(f(X),f(Y)) <é. 
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Theorem 3 
Let f : X Ç IR ---+ IR a continuous uniform function. !f X = ( Xn )n ls a 

Cauchy 's sequence in X then Yn = f(Xn) is a Cauchy 's sequence. 

Corollary 3 
Let f : X Ç IR ---+ IR a continuous uniform function . Then for ali A E X' 

exists th e limit limx --+A f (X). 

Theorem 4 
A function f : X Ç IR -~ IR is a continuous uniform function iff (Xn)n 

and ( Yn)n in X with lim dist(Xn , Yn) =O we have that 
n--+oo 

lim dist(J(Xn)J( Yn)) =O. 
n--+oo 

Definition 18 (Lipschitz's Function) 
Let f : X Ç IR ---+ IR a interval function. Then f is a Lipschitz's 

function if exist c > O such that dist(J(X),j( Y)) ~ c.dist(X , Y), for all 
X, Y E X . 

Remark: All Lipschitz's function is continuous, because given A E X and 
for all é> O we take 8 = ~ > O and thus dist(X, A) < 8 => dist(f(X),J(A)) ~ 
c.dist(X , A)= c. ~= é. 

Definition 19 (Contraction) 
Let f : X Ç IR ---+ IR a Lipschitz's function. 
Then f is a À-contraction (or simply contraction) if exist ,\E R such 

that O ~ ,\ < 1 so that dist(J(X),j( Y)) ~ ,\ .dist(X , Y) , for any X , Y E X. 

Example 2 
f : IR ---+ IR 

X r-+ f(X) = Uo; ~ ] .X+ [-3; 5] 

Remark: All contraction is a continuous function, because it is Lipschitz. 

Definition 20 (Fixed Point) 
Let f : X Ç IR ---+ IR a interval function. 

Then X* E X is a fixed point of the function f if X*= f( X*) . 
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There are various theorems about fixed points , however the theorem as 
follows is one of the usefuler theorems because beyond its demonstration be 
enough simple, it serves to prove the existence of a fixed point , to guarantee 
its unicity and still to furnish an iterative method to compute the fixed point 
in question. 

Then, we will see the theorem and its demonstration. 

Theorem 5 (Successive Approximations Method) 
Let F Ç m a closed set and f : F -+ F a contraction. Given any point 

Xo E F, the interval sequence X= (Xn)n defined by 
X1 = f(Xo), X2 = f(XI), ... , Xn+l = f(Xn) , ... converges for a point X* E F, 
that is the unique fixed point o f f in F. 

Proof: 

As f is a contraction, it follows that exist ,\ E R such that O :Ç ,\ < 1, 
with dist(J( X),J( Y)) :Ç ,\ . dist( X , Y). 

Thus , dist(Xk+l , Xk) :Ç ,\k .dist(X1 , Xo), because we have: 
dist(X2 , X1) = dist(f(XI),f(Xo)) :Ç ,\ .dist(X1 , Xo). 
Supposing that dist(Xk+l , Xk) :Ç ,\k .dist(X1,X0 ) and , by induction, we 

just need to show that dist(Xk+ 2 , Xk+I) :Ç ,\k+
1 .dist(X1 , Xo). 

. But dist(Xk+2 , Xk+ 1 ) ~ dist(J(Xk+1 ),J(Xk)) :Ç ,\ .dist(Xk+l, Xk) :Ç 

À.Àk .dist(X1 , X0 ) = Àk+1 .dist(XbX0 ). 

Soon n E N we have that dist(Xn+l,Xn) :Ç ,\n .dist(X1,Xo). 
Now we need to show that the interval sequence Xk+ 1 = f(Xk) is a 

Cauchy 's sequence, that is, that dist(Xm, Xn) -+ O to n, m -+ oo , or equiva­
lently that limk-+oo dist(Xk+p' Xk) =O , for all p E N . 

But dist(Xk+p , Xk) :Ç dist(Xk+p,Xk+1 ) + dist(Xk+l,Xk) :Ç 

dist(Xk+p , Xk+ 2 ) + dist(Xk+2 , Xk+ 1 ) + dist(Xk+l , Xk) :Ç . . .. 
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... :::;;; dist(Xk+p,Xk+p-1) + dist(Xk+p-1,Xk+p-2 ) + ... + dist(Xk+1,Xk):::;;; 
:::;;; Àk+p-1 .dist(X1,Xo) + ... + Àk+1 .dist(Xt,Xo) + Àk .dist(X1,Xo) = 

= dist(X1, Xo)[ À k+p-1 + ... + À k+1 +À k] = dist(X1, Xo). L: f::-~ À k+i = 

= dist(X1 , Xo). L:f::-~ Àk . ,\i= dist(X1, Xo). Àk. L:f::-~ ,\i :::;;; 

dist(X1,Xo).Àk .2:::~0 ,\i = dist(Xt,Xo) . Àk . 1 ~.x = /!..x.dist(X1 ,X0 ), because 
0:::;;;,\<1. 

Summarizing, O:::;;; dist(Xk+P' Xk):::;;; 1~.x .dist(Xt, Xo) . 
k 

Thus, O:::;;; dist(Xk+p, Xk):::;;; 1~.x .dist(X1, X0 )-+ O, ao k-+ oo. 

That is, limk--+oo dist(Xk+p,Xk) =O, for all p E N, whence it follows that 
X = (Xn)n is a Cauchy's sequence. 

It follows that exist X. E IR such that limk-oo Xk = X. and as F is a 
closed set, it follows that X. E F. 

As f is a continuous function, we have: 
X. = limk--+oo Xk = limk--+oo Xk+l = limk-oo f(Xk) =f( X.). 
That is, X. is a fixed point o f f beca use X* = f (X.). 
Now we just need to show the unicity of X*. 
Supposing that exists another point A E F such that A= f( A). 
Thence we have O :::;;; dist(X*, A) = dist(J(X*), A) = dist(J(X*),J(A)) :::;;; 

À .dist(X*, A), orbe, dist(X*, A) :::;;; À .dist(X*, A), or still that 
(1- ,\).dist(X*, A)~ O. 

Blft (1- ,\) >O because O:::;;; À < 1. 
Thus O:::;;; (1- ,\).dist(X., A) :::;;; O{::} dist(X*, A) =O. 
That is, A = X*. Soon the fixed point X* of f is unique. 
Remark: It is immediate of the previous theorem that if X Ç IR is a 

compact set and the function f :X -+X performs the condition 
dist(J(X),J( Y)) :::;;; dist(X, Y) for all pair of the point X =fi Y in X then the 
function f has an unique fixed point in X. But, if X Ç IR is an any set, then 
in order to we can guarantee that a contraction f : X -+ IR has an unique 
fixed point X* E X it is necessary to finda subset F Ç X such that f(F) Ç F, 
in which F is a closed set in IR. The following theorem is frequently utilized 
to this end. 

Theorem 6 
Let f : X Ç IR -+ IR a À-contraction. If X holds the closed ball :Fr(A) 

such that dist(J(A), A) :::;;; (1- À).r then f admits a fixed point X. in :Fr(A). 
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Proof: 
It is enough to prove that f(:Fr(A)) Ç :Fr(A). 
Given any X E :Fr(A) we show that f(X) E :Fr(A). · 
But X E :Fr(A) 9 dist(X, A) ~ r. 
Thus dist(f(X), A)~ dist(f(X),j(A)) + dist(f(A), A) ~ 

À . di~t (X, A) + ( 1 - À) . r ~ À . r + ( 1 - À) . r = r . 

Whence dist(f(X), A) ~ ror be f(X) E :Fr(A) . 

3. Aplications 

In this section we will examine some practical applications to the Fixed Point 
Interval Method. 

Example 3 Compute the fixed point o f the function 

f: IR -+ IR 
X ~ f(X) = [{0 ; ~]X+ [-3; 5] 

Solution: 
Firstly, we need to show that f is a contraction. After, we must find a 

region that holds the fixed point X* and finally, we must compute such fixed 
point through the sequence limit Xn+ 1 = f(Xn), in which X0 is an interval 
token inside of the convergence region. 

1. f is a contraction because 
dist(f(X),J( Y)) = dist([ 1

1
0 ; ~]X+ [-3; 5], [1

1
0 ; ~] Y + [-3; 5]) = 

dist([ 1
1
0 ; ~]X, [1

1
0 ; ~] Y) ~~ [1

1
0 ; ~] I .dist(X , Y) = ~.dist(X, Y), in which 

\ = l 
A 2 ' 

2. We need to define the value of R of such way that f(:FR(O)) Ç :FR(O), 
that is, if X E :FR(O) then f(X) E :FR(O). 

Thence f(X) E :FR(O) 91 f(X) I~ R. 
But I f(X) 1=1 Uo; ~]X+ [-3; 5]1~1 [1

1
0 ; ~]I · I X I+ I [-3; 5]1~ 

~·I X I +5 ~ ~.R+5 because I X I~ R. 
Thence ~.R+ 5 ~R{:} R~ 10. 
Thus, f(:FR(O)) Ç :FR(O) 9 R~ 10. 
In this manner, it is enough we take any Xo such that I Xo I~ 10. 
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At last, for we obtain the value of X. it is enough iterates the sequence 
Xn+1 = J(Xn) = [1

1
0 ; ~]Xn + [-3; 5], taking as Xo any X E IR such that 

I X I;;:: 10. 
For example, taking X0 = [15; 15], we have as follow the table with the 

computed values to the sequence Xn+1 = J(Xn) = Uo; ~]Xn + [-3; 5]: 

Table 1: Sequence Values Xn+1 = f(Xn) = [1
1
0 ; ~].Xn + [-3; 5] 

I n I Xn 
o [15 15] -1.34 
1 [-1.5 12.5] -0.08 
2 [-3.75 11.25] 0.34 
3 [-4.875 10.625] 0.68 
4 [-5.4375 10.3125] 1.01 
5 [-5. 71875 10.15625] 1.32 
6 [-5 .859375 10.078125] 1.62 
7 [-5.9296875 10.0390625] 1.93 
8 [-5.96484375 10.01953125] 2.23 
9 [-5.982421875 10.009765625] 2.53 

10 [-5.9912109375 10.0048828125] 2.83 
20 [-5.99999141693116 10.000004 7683716] 5.84 
30 ~5.9999999916181 10.0000000046567] 8.85 

Thus, the limit is [-6; 10] and [-6; 10] = [ 1
1
0 ; ~].[-6; 10] + [-3; 5]. 
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Example 4 Compute the fixed point of the function 
f : m-+ m 

X r-+ f(X) = Uo; ~]X 2 + [2
1
o; ~]X+ [;5 ; 156] 

Solution: 
Firstly we have to show that f is a a contraction, that is, that 

dist(f(X),f( Y)) ~ >. .dist(X , Y) . 
But dist(f(X),f( Y)) = 

dist([1
1
o; ~JX 2 + [2

1
0; ~]X+ [;5; 1

56], [1
10; ~] y 2 + [210; ~] y + [;s; 156]) = 

dist([11o; ~]X2 + [Jo; ~]X' [11o; ~] y2 + [Jo ; ~] Y) ~ 
dist(U0 ; i]X2

, [ 1
1
0 ; il Y 2

) + dist([J0 ; iJX , [2
1
0 ; il Y) ~ 

1 1 . 1 1 
I [lO; 4JI .dzst(X2

, Y 2 )+ I [
20

; 4JI .dist(X, Y) = 

~.dist(X2 , Y 2
) + ~.dist(X, Y) = ~(dist(X 2 , Y 2

) + dist(X , Y)) ~ 
4 4 4 
1 

4(dist(X 2,X.Y)+dist(X.Y, Y 2 )+dist(X , Y)) ~ 
1 4(1 X I .dist(X, Y)+ I Y I .dist(X, Y) + dist(X , Y)) = 

I X I+ I y I +1 
4 

.dist(X, Y) ~ dist(X , Y) {:} 

I X I+ I y I +1 < 1 {:}1 X I+ I y I~ 3. 
4 ~ 

Thus, the first condition that needs to be satisfied in order to f(X) be 
a contraction is that I X I + I Y I~ 3, for any X, Y taken in the region of 
convergence, which still needs to be defined. 

Convergence region determination: 
Let X= FR(O). By the theorem 6, we need to show that f(X) Ç X. But 

f(X) Ç X {:}1 f(X) ~~R , V X, E X. 
We haveI f(X) 1=1 [110 ; ~]X 2 + [2

1
0 ; ~]X+ [;5 ; 156 ]1~ 

I [1
1
oi ~li -1 X 12+ I [21oi ~li. I X I+ I [;5; 156]1= ~-1 X 12 

+ ~- I X I +1
56 ~ 

~.R2 +~ .R + 1
5
6 because I X I~ R and, by hypothesis, X E X. 

Thus, I f(X) I~ R {:} ~.R2 +~.R+ 1
5
6 ~ R {:} ~.R2 - ~.R+ 1

5
6 ~ O {:} 

4R2
- 12R + 5 ~O{:} R E [~; n 

Thence, we have that X* E {X E m;~ ~I X I~ D· 
Finally, to obtain the value of X* , it is enough to take X 0 E m such 

that ~ ~~ X0 I~ ~ and then we will have X* as the limit of the sequence 
Xn+1 = f(Xn) = [1

1
0 ; ~]X;+ [2

1
0 ; ~]Xn + [;5 ; 1

5
6 ], according as we examine 

in the tables as follows : 
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Table 2: Sequence Values Xn+I = [ 1
1
0 ; ~]X;+ [2

1
0 ; ~]Xn + [}5 ; 1

5
6 ] 

I n I Xn 
o [00 5 1] -0.46 
1 [00205555555555556 008125] 0038 
2 [00170058641975309 006806640625] 0056 
3 [00 16695048182537 00598491907119751] 0077 
4 [00166690325984997 00551671117501897] 1.02 
5 [o 01666686383 325 04 o o 526503034846922 J 1.29 
6 [00166666830972542 00513427120137 486] 1.58 
7 [00166666680358826 0050675863195754] 1.87 
8 [00 16666666780768 00503390735755254] 20 17 
9 [00166666666761752 00501698242149868] 2.47 

10 [0 01 66666666674591 00500849842081534] 2077 
20 [00166666666666667 00500000830628922] 5078 
30 [O 0166666666666667 O o 500000000811162] 8079 
35 [O 0166666666666667 O 0500000000025349] 10029 

Table 3: Sequ@ce Values Xn+1 = [1
1
0 ; ~]X; + [2

1
0 ; ~] Xn + [}5 ; 1

5
6 ] 

I n I Xn 
o [005 205] -0.46 
1 [00205555555555556 205] 0°38 
2 [00170058641975309 205] 1.43 
3 [00 16695048182537 205] 2051 
4 [001 66690325984997 205] 3058 
5 [001 66668638332504 205] 4066 
6 [00166666830972542 205] 5074 
7 [00 166666680358826 205] 6082 
8 [0016666666780768 205] 7090 
9 [00166666666761752 2°5] 8098 

10 [0 01 66666666674591 205] 10006 
20 [001 66666666666667 205] 15000 
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4. Conclusions 

In this paper we prove an interval version to the Fixed Point Theo­
rem. Such theorem provides a new method (the 'Successive Approximations 
Method') which we use to compute the roots of interval fixed point equations. 
This tnethod, which is legitimately interval, can be applied for any Lipschitz's 
function of constant À < 1, but here we just did the interval polynomial root 
compute. In arder to we can apply such method, we need to show that exist 
a region in the interval semi-plain which holds all the probable roots. For 
this, we proved the theorem 6, that beyond defining such regions, it also 
serves to decide about the existence or not of the solutions (if we do not get 
to find a region which satisfyes the theorem 6 then, certainly, the equation 
does not h ave fixed points). Thence, taking any point X0 in the region o f 
convergence, we will obtain the fixed point value that iterate the function, 
that is, computing Xn+l = j(Xn), whence X* = limn--HJO Xn. 
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