
Miguel R. Fornari

Lia G. Golendziner

Flávio R. Wagner

Abstract
The ST AR data model supports the definition o f object se h e mata, according either to some
design methodology or to the designer's decision. Object schemata allow a flexible
management o f the various representations that are created during the design of a particular
object. Object schemata can evolve or even be dynamically defined, departing from an
existing object schema and making changes to it. Schema evolution facilities are a valuable
support for both the definition o f new design objects and design methodology management.
Schema evolution is maintained through versions, so that version management is applied
not only to design objects themselves, but also to object schemata. Consistency is
guaranteed for schema operations, based on a set of invariant rules.

1 Introduction

Typical EDA frameworks are built upon a database management system that offers data
representabon facilities and basic versioning mechanisms. On top of this layer, various
servers, eventually implemented as domain-neutral tools, are available. Typical servers
support the management o f versions, configurations (both aspects of data management), and
design methodologies.

In a complex design environment, where prototyping is a common way of developing
systems, there is a great need to change the schema definition [2]. This process requires a
special tool, incorporated to the database, to allow operations over the schema [1]. Schema
updates should not represent an extreme overhead and, at the end of the changes, schema
and instances must be correct and consistent. There is also a need for flexibility, which
tends to make this kind of operation more expensive to the system.

This work describes an innovative data definition layer that allows the creation and
evolution of object schemata in the STAR framework [13]. The mechanism uses object
versions to represent severa! states of the same object and to permit the return to previous
states of one object in a natural way. Changes to an object schema are not done "in-place",
but new versions are generated, so that a schema evolution history is kept. The main

lThis work was partially supported by CNPq and CAPES.

* (miguel, flavio)@ inf.ufrgs.br- Instituto de Informática-UFRGS, Caixa Postal 15064

CEP 91501-970 Porto A1egre-RS

Schema Evolution in the STAR Framework

objective of this mechanism is to allow the construction of a new object schema based on an
existing one. Tested object schemata can then be reused, improving design team
productivity and increasing reliability of resulting systems.

The remaining o f the pape r is organized as follows. Section 2 introduces the ST AR data
model, the design methodology layer and the version model. Section 3 presents the schema
definition and evolution layer. Section 4 presents a comparison of this mechanism with
those existing in other frameworks and object-oriented database systems and Section 5
concludçs with final remarks.

2 The STAR framework

2.1 The STAR data model
In the STAR data model, shown in Figure 1, each Design object gathers an arbitrary

number of ViewGroups· and Views . The ViewGroups may in turn gather, according to user
or methodology-defined criteria, any number of other ViewGroups and Views, building a
tree-like hierarchical object schema.

Ports
UserFields

ViewGroups
e Views

Design

Ports
UserFields

ViewGroups
e Views

ViewState

Figure 1: The ST AR data model

Ports
UserFields

The fact that Views may be defined at any levei of the object schema offers an unlimited
number of ways for organizing the different representations of the Design. Since the system
does not enforce any grouping criterion, it is left to the user or to the design methodology to

104 RITA • Volume V • Número 1 • Julho 98

Schema Evolution in the ST AR Framework

decide how Views will be organized. Views are of one of the types: HDL, for behavioral
descriptions, MHD, for structural descriptions and Layout, for geometric descriptions.

The object schema is a generalization hierarchy, in that each node is an abstraction of
the subtree below it. Properties defined at each node may be inherited by its descendant
nodes (inheritance is optional) . Inheritance occurs among instances: not only the existence
of an attribute is inherited by the descendant nodes, but also its value, when defined .
Inheritance may be by default, when descendant nodes may redefine attributes to more
specialized domains and modify attribute values , or strict, when redefinition at descendant
nodes is not possible.

The purpose of Design, ViewGroup and View nodes of the object schema is to organize
the various representations of a Design object and to guarantee the consistency of the
common attributes through the inheritance mechanism. Therefore, these nodes contain only
the attributes to be shared by the representations they gather.

Real design data, such as structural decomposition, HDL descriptions, and layout masks,
are contained in the ViewStates, that are revisions created for each of the Views .

There are three types of attributes for each node of the schema: UserFields, Ports and
Parameters.

UserFields are user-defined object attributes, which have a name and a domain
specified. The domain can be simple (character, string, integer, real, boolean) or composed
(record , array, set, subset and enumeration). Inheritance is optional for UserFields, that is,
attributes can be defined as "local" to one node and not passed down to the inheritance
hierarchy. If the inheritance type is defined as default for a UserField, its domain can be
redefined, but only making restrictions to it. The new domain must be a subset of the
original one.

Ports are interface signals and may contain in turn their own user-defined attributes.
Port's definition specifies: a domain, that indicates the type of information contained; a
direction (in, oút or inout); and the number of wires. There are two types of Ports:
PortWires with just one wire and PortBundles composed by a set of PortWires. Ports are
interconnected by Nets.

Parameters allow the user to build generic, parameterized objects. Parameters have
only a name and a domain. Inheritance is mandatory regarding the existence of Ports and
Parameters .

The STAR data model allows the specification of relationships between objects, which
is done through an object of type Correlation . A Correlation has a direction and a mode.
The direction (bi-directional, directed or non-directed) indicates an existence dependency.
For example, a correlation defined as A 0 B (A directed to B) indicates that B can only
exist while A exists . The mode (protect or detete) indicates the action to be done when the
remova! of an object is required . If the mode is delete, a remova! of a node causes the
remova! of the nodes that depend on it through Correlations. Otherwise (protect mode), a
remova! cannot be executed if there are dependent nodes. In a non-directed Correlation, the
mode is irrelevant. Correlations can also have UserFields and a relationship criterion, for
documentation purposes.

It is important to notice that an object schema in ST AR is a hierarchy that presents
inheritance not only for attribute definition (as occur for most of the OODBMS) but also for

RITA • Volume V • Número 1 • Julho 98 105

Schema Evolution in the STAR Framework

attribute values, which can be defined at any levei of the hierarchy. V alue inheritance brings
up two problems into consideration: modifications in object descriptions and modifications
in attribute values.

2.2 Design methodology management
A design methodology is a set of design rufes that either enforce or guide the activities

performed by the user, so as to obtain objects with desired properties. The definition of a
design methodology in the STAR framework is based on three main principies [13] : the
definition of the object schema for the design objects, the specification o f the task flow and
the hierarchization of design strategies. The object schema has been already discussed
above.

Task flow is expressed through a condition-driven model. A task is described with a 4-
tuple (name, pre-conditions, tool, post-conditions) . A task is eligible for execution when its
pre-conditions hold . These conditions can express the existence of objects or properties of
them, explicitly modeled as attributes in the object schema. To execute the task, the
specified tool is used. Post-conditions describe the properties expected from the objects
after a task is executed. Again, a set of new objects, generated by the tool can be expected
as the result of the execution. If the post-conditions are not achieved, the task fails, though
new object representations might have been created. A task execution is considered a long
database transaction , whose effects can be undone i f the user asks for. It is left to the user to
select among many enabled tasks. A methodology succeeds when ali its tasks have
succeeded. Tasks may be executed stand-alone or within a design strategy.

Design methodologies can be organized in a hierarchical way. A new design
methodology can be derived from a previous one by extending the object schema (using the
schema evolution mechanism) or defining new tasks.

Task definition must be consistent with the object schemata that are known to this
methodology, that is, ali referenced objects and attributes must exist and attribute
comparisons must be done with corfect domain values .

2.3 Version management
The STAR framework provides a two-level versioning support [11] . At a conceptual

levei , the object schema defines Vie wGroups and Views that represent different design
views and alternatives, according to user or methodology control. Ata lower levei, revisions
are automatically generated by the system, when updates are done to specific
representations of the design object.

There are two revision mechanisms. First, to each View an acyclic graph of ViewStates
is appended. They contain the real design data that corresponds to the various design
representations (layouts, HDL, descriptions, and so on). Another mechanism allows the
sequential versioning of the other nodes of the object schema (Design, ViewGroup, and
View), due to changes made to attributes that were defined as versionable. The system
maintains the correspondence between ViewStates and versions of ascendant nodes, thus
linking each ViewState to the inherited attributes that were valid at the time of its creation.

Versions have an associated status , representing their design stage, which can be in
progress, stable or consolidated. In progress versions can be changed or deleted. Stable
versions can be deleted , but not changed . To maintain the historical sequence of versions ,

106 RITA • Volume V • Número 1 • Julho 98

Schema Evolution in the ST AR Framework

they are only logicaliy deleted. Consolidated versions can not be changed nor deleted. They
can only be selected and read. When a version is promoted (to stabilized or consolidated),
its predecessors are also promoted to the same status.

Attributes (UserFields, Ports or Parameters) can be defined as versionable or non
versionable. A modification on a versionable attribute implies a creation of a new version,
exception made for versionable attributes of in progress versions, which can be modified.
The automatic revision control guarantees that when a stabilized object is modified, a new
version is created as a copy of it, but with the modified values (i f the modified attribute was
defined as versionable). A non-versionable attribute can not be modified in any way. The
new version is created with in progress status.

For ali objects having versions in the object schema, there is the notion of current
version (by default, the most recent one). The user can query old versions without changing
the current one. Changing current versions is made through a selection operation, in one of
the two foliowing ways:

Partial: A version is selected from one node of the object schema and only the current
version of this node is changed. Current versions of ali other nodes in the object schema are
not changed. It is user's responsibility to verify consistency among the version selected for
this node and the others in the object schema.

Total: The user chooses either a specific version in one of the nodes ora ViewState. The
system then changes the current version of ali the ascendant nodes to the version that were
valid at the creation time of the chosen version (or ViewState) .

3 Schema Evolution
Due to the nature of the design process, an object schema may need to be dynamically

modified in several ways, reflecting new specifications and user requirements, inclusion of a
new tool to the environment and correction of modeling errors. In particular, schema
evolution is an essential feature for supporting design methodology management in an
evolving environment,"- where the inclusion of new tools and strategies, during the design
process, may impose the incorporation of new types of object representations and new
attributes to the already existing object schemata.

A mechanism for the definition and evolution of object schemata has been developed for
the STAR framework. As in object-oriented databases [9, 7, 4], this mechanism is based on
schema invariants, which are basic conditions that must always hold to insure that the
object schema is in a consistent state.

Object schemata can be created from scratch, a simple situation for the schema
evolution manager, but it is highly desirable to develop an object schema from an existing
one, weli tested and approved. To achieve this , the first operation must be the copy of one
existing schema to a new area. The inclusion of new ViewGroups and Views does not affect
ViewStates that already exist. Modifications in nodes having associated ViewStates can also
be done. In this case, new ViewStates have to be generated, reflecting the modification in
ascendant nodes. This method of object schema definition results in an important decrease
of design development time.

RITA • Volume V • Número 1 • Julho 98 107

Schema Evolution in the STAR Framework

3.1 Schema Invariants
Invariants for the schema evolution mechanism were defined to assure database

integrity and object schema correctness. The invariants for the STAR schema evolution
are2:

• Each object inherits properties from only one other object (single inheritance). This
restriction comes from the definition of the object schema as a tree-like

• generalization hierarchy.

• Ali descendant nodes from an object have a unique name. The complete name of an
object is composed by the Design name and ali the descendant object names that are
in the path to the mentioned object in the object schema.

• Ali attributes of an object have unique names. This restriction guarantees attribute
identification.

• Ali inheritable attributes of an ascendant object are inherited. Since the first invariant
assures that multiple inheritance does not exist, n·ame conflicts do not occur.

• UserFields inherited by default can be redefined in descendant nodes: the domain can
be redefined to more specialized domains or values can be modified. Strict inherited
attributes (some UserFields , ali Parameters and Ports) can not be redefined.

• Ali referenced objects in the schema are present in the database. This is the referential
integrity of relational databases adapted to the STAR framework.

This invariant set assures the integrity of the database objects. However, sometimes a
sequence of operations is needed to go from a consistent database state to another one.
Then, a modeling transaction cau be started, disabling the invariant checking until the
transaction is committed. One exception is the stabilization of a version. When this
operation is required , the hierarchy where the object version is included must be verified to
assure that only correct versions are stabilized. This modeling transaction is typically a long
transaction and must be incorporated in the mechanism of long transactions provided in the
framework .

3.2 Operations
A complete set of operations for schema modification is defined to allow an easy data

modeling and evolution in the STAR framework. These operations are the basis for a
higher levei object schema definition language and are listed below. The name of the object
is in bold, its properties are in italic and the possible operations on an object are cited .
Brackets indicate an option to be taken. Square brackets indicate an optional value. If not
specified, a NULL value is assumed.

2For simplicity, object means Design, ViewGroup or View. Instance means ViewState
and attribute means UserField, Port or Parameter.

108 RITA • Volume V • Número 1 • Julho 98

Schema Evolution in the STAR Framework

• Library (Name)
Operations: Create; Delete.

• Design (Name, Library)
Operations: Create; Delete.

• ViewGroup (Name, {Design, ViewGroupj, [Criterion})
Operations: Create; Delete; Modify ascendant object or criterion.

• View (Name, {Design, ViewGroup}, Type)
Operations: Create; Delete; Modify ascendant object.

• Parameter (Name, Domain, lnheritable, Versionable, Object)
Operations: Create; Delete; Modify domain, versionable characteristic and/or
inheritable characteristic.

• UserField (Name, Domain, lnheritable, Versionable, lnheritance Type, Object,
[V alue])

Operations: Create; Delete; Modify domain, inheritable characteristic, versionable
characteristic and/or inheritance type; Modify value; Move the UserField to another
object.

• Port (Name, Type, Object, Versionable, Direction, [Number ofwires], [Domainj)
Operations: Create; Delete; Modify versionable characteristic, direction, number of
wires and/or domain; Move the Port to another object.

• Correlation (LeftObject, RightObject, Direction, [Mode], [Criterionj)
Operations: Create; Delete; Modify objects, direction, mode and/or criterion.

When a new nôde is created, its name and its immediate ascendant must be informed .
The name of the node must be unique, according to the schema invariants. When a node is
removed, ali its descendant nodes are removed too. For in progress versions, the design data
are realiy removed. For stable versions, the data are maintained in the database, but just
historical queries can be done on them. Consolidated versions cannot be removed. A node
can change its place in the object hierarchy, moving to another ascendant object. This
operation is semanticaliy equivalent to a combination of a remova! from the original node
and an insertion in the new one. Ali descendant nodes, i f they exist, are moved together.

Attributes can be inserted, removed and copied at any time. If the current version status
is not in progress, a new version is derived from it, and the attribute modification is
effective in this new version.

If an inheritable attribute is redefined, the inheritance mode must be verified. If this
attribute redefines another inherited attribute, then the inheritance mode should have been
defined as by default, and the redefined domain must be a subset of or equal to the inherited
domain.

When the domain of a UserField is modified , its value should be changed to keep
consistency. The user can define a special function that automatically maps the old values to
values in the new domain.

RITA • Volume V • Número 1 • Julho 98 109

Schema Evolution in the ST AR Framework

The modification of an attribute from versionable to non-versionable can be done at any
moment. This modification alters only the semantics ·of value modification of an object and
does not change the object schema.

Modifications in the number of wires in a Portare possible just for PortBundles. In case
of reduction of PortWires it is necessary to indicate PortWires to be removed. If the number
of wires is increased, a Iist of new PortWires has to be indicated. When the direction of a
PortBundle is modified, the direction of ali PortWires that composed it must be modified
too. Designers receive a list of Nets that are affected by the modification, to allow a manual
correction.

ViewStates are not considered in the schema evolution manager because they are
instance objects. Creation, removal and other operations on ViewStates are directly
controlled by the data manipulation Janguage (DML). Ali modifications in the object
schema are reflected in the instances, i.e., the ViewStates . The automatic revision control
generates a new version when some characteristics are modified, in a consistent way.

Correlations can be freely modified because changes on them do not violate any
invariant, just modify the semantics o f the delete operation.

Copy of a node is an essential operation to allow the designer to reuse a well tested and
approved object schema in the development of a new design. The designer can copy a well
established design to a new area and make some modifications to obtain the necessary
conceptual schema for the new design. The designer can copy just one node or the node and
ali its descendants.

A great number of schema evolution operations can affect the correction of already
defined tasks. For example, an attribute used to express a pre-condition of a task, if
removed, turns the tasks' definition incorrect. When such situation occurs, a list of
incorrectly defined tasks is returned to the designer, who is responsible for making the
necessary modifications for correcting the affected tasks .

...

4. Comparison

In the ST AR framework, both the final use r and the application programmer h ave full
access to the schema evolution facilities, including remova) and redefinition of nodes and
attributes.

In the CADLAB framework [5], for instance, the final user may only extend existing
schemata, by using the TIDL Janguage [6] and recompiling the schema definition. The
application programmer, in turn, may also delete attributes and object types for which no
instances exist.

In the NELSIS framework [15], the database system offers a semantic data model
(called OTO-D), versions, a graphical query interface, tool activation, support for design
transaction and physical distribution, but there is no schema evolution facility .

The power o f the se h ema evolution mechanism o f the ST AR framework can be
compared to those present in object-oriented databases, considering the large number of
available operations.

Invariants are used by ORION [7] , 02 [4] and GemStone [9]. These invariants

guarantee the structural correctness of schemata, but do not include behavioral aspects. In

110 RITA • Volume V • Número 1 • Julho 98

Schema Evolution in the ST AR Framework

ST AR, the mechanism that returns to the designer a list o f affected tasks is similar to the
mechanism that contrais method modifications in 02 and is calied behavioral consistency

[17] .
The possibility of combining versions of nodes and schema evolution presents

similarities with the proposals by Kim & Chou [7] and Skarra & Zdonik [10]. However, in
[7], versions o f the whole schema are generated after a se h ema modification. In [1 0],
versioning is done for a single class. Modifications that impact stored objects (for example,
changing a domain of an attribute) must be managed by handlers provided by the user. In
the STAR mechanism, versions are created for any node in the object schema. Version
nodes are connected so that it is possible to return to previous versions of any node, keeping
the correspondence among ali versions of the schema and the design data (represented by
the ViewStates).

In ISIS-V [3] , at each transaction comrnit, a new version o f the entire database is
generated, defining a linear sequence of database states. Ali changes made during a
transaction, schema or instance modifications, are stored in the new database version.
Returning to previous definitions implies returning the whole database to a previous state.

5 Final remarks
This paper described a se h ema evolution mechanism considering the ST AR data model.

The proposed mechanism aliows the definition of a schema and its modification in severa!
ways, either adding or removing nodes/attributes/relationships between nodes. The
mechanism is extremely flexible and capable of retaining the system's development history,
based on versions of objects.

The implementation of the ST AR database is being made using KRISYS [8] , a
knowledge base management system that provides object-oriented concepts. The version
layer is implemented. Ali operations here described have been completely specified and are
being implemented as part of the data definition language.

"
Bibliography

[1] M.Atkinson et ai. The object-oriented database system - manifesto. Rapport
Technique Altai·r 30-89, 21 aoGt 1989.

[2] E.Bertino. Object-oriented database management systems: concepts and issues.
Computer, Los Alamitos-CA, v.24, n.4, p.33-47, Apr. 1991.

[3] J.W.Davison, S.B.Zdonik. A visual interface for a database with version
management. ACM Trans. on Office lnformation Systems, v.4, n.3 , July 1986.

[4] O.Deux. The 02 system. Communications of ACM, v.34, n.lO, Oct. 1991.

[5] K.Gottheil et ai. The Cadlab Workstation CWS - an open, generic system for tool
integration. In: F.J.Rammig(ed.). IFIP Workshop on tool integration and design
environments. North-Holiand, 1988.

[6] K.Groening et ai. From tool encapsulation to tool integration. In: F.J.Rammig,
R.Waxman(eds.). Eletronic Design Automation Frameworks . Elsevier Science
Publishers, 1991.

[7] W.Kim, H-T.Chou. Version of schema for object-oriented databases. In : VLDB
Conference , 1988.

RITA • Volume V • Número 1 • Julho 98 111

Schema Evolution in the ST AR Framework

[8] Mattos, N.M. An approach to knowledge base management. Springer-Verlag, 1991.
(Lectures Notes in computer Science, 513).

[9] D.J.Penney and J.Stein . Class modification in the GemStone object-oriented DBMS.
In: Sigplan Notices , December 1987.

[10] A.H.Skarra, S.B.Zdonik. The management of changing types in an object-oriented
database. Sigplan Notices, v.21, n.11 , 1986. (OOPSLA-86)

[11] F.R.Wagner et ai. Design version management in the STAR framework. In: 3rd
IFIP lnternational Workshop on EDA Frameworks . North-Holland, 1992.

[12] F.R.Wagner and A.H.Viegas de Lima. Design version management in the GARDEN
framework. In : 28th. ACMIIEEE Design Automation Conference , June 1991.

[13] F.R.Wagner, L.G.Golendziner, M.R.Fornari. A tightly coupled approach to design
and data management. In: EURO-DAC 94.

[14] W.Wilkes. Instance inheritance mechanisms for object-oriented databases. In : K.R.
Dittrich(ed.). Advances in Object-Oriented Database systems. Springer-Verlag,
1988.

[15] P. van der Wolf et ai. Data management for VLSI design : conceptual modeling, tool
integration & user interface. In: F.J.Rammig(ed.). IFIP Workshop on tool
integration and design environments. North-Holland, 1988.

[16] Zdonik, S. Object-oriented type evolution. In: Bancilhon, F.; Buneman, P. (eds.)
Advances in Database Programming Languages. ACM Press, 1990.

[17] R.Zicari. A framework for schema updates in an object-oriented database system.
In: lnternational conference on Data Engineering , 1991.

Artigo originalmente publicado em: INTERNATIONAL IFIP 10.5 WORKING
CONFERENCE on ELECTRONIC DESIGN AUTOMATION FRAMEWORKS, 4. ,
Gramado, novembro 28-30, 1994. Proceedings. London: Chapman&Hall , 1995. p.45-54

112 RITA • Volume V • Número 1 • Julho 98

