
{:JJ Cff I J kO \t { CL

(fJF(\ weio. ·.
de rE.l{-t l..l..Cv'-'e

í's{~ LU)\ -c

f t< 1\t 1 e~~ " ve:::.

,:.JJd '(iC1SC S ·

Revista de

Informática
Teórica e Aplicada

C>~ ç V·

Automated Recognition of Design Patterns for
Framework Understanding.

Marcelo Campo t and Roberto Tom Price*

tuniversidad Nacional dei Centro de la Pcia. de Buenos Aires
Instituto de Sistemas- Grupo de Objetos y Visualización

San Martín 57, (7000) Tandil, Bs. As., Argentina.

Universidade Federal do Rio Grande do Sul-Instituto de Informática
Capus do Vale, Bloco IV, Predio 43424

Porto alegre-RS-Brasil
.e-mail: mcampo@exa.unicen.edu.ar, tomprice@inf.ufrgs.br

Abstract

System design is one of the most important tasks in the software development
cycle~' but it is also one o f the most complex and time-consuming tasks. Thus,
reuse of existing designs becomes very important. Object-oriented
frameworks are generic designs for specific application domains that enable
the reuse of designs and domain expert experience. In spite of this,
frameworks are not simple to reuse because they are difficult to comprehend,
mainly due to a lack of good documentation and supporting tools. In this
work, an approach to framework comprehension based on the automated
recognition and visualization of design patterns is presented. A tool was built
to support this approach, by trying to automatically identify and explain the
potentia~ patterns existing in a given design. Experimental results and
concl4sions of tool utilization are also presented.

Keywords: Frameworks, design patterns, visualization.

Volume IV Número 1 139

Artigo técnico

1. Design Reuse and Frameworks

System design is one of the most important tasks in the software development
cycle. The design defines, essentialiy, how the system is divided in parts, the interfaces
among these parts and how they cooperate in order to implement the required functionality .
A good design makes system change and evolution easier by reducing the impact of local
change on the rest of the system when a given part has to be adapted to new requirements.
System design is, also, one of the most complex tasks of the development cycle. First,
design involves the system organization aspects from the point of view of component
implementation for a given problem resolution. Second, design involves cognitive aspects
of the user interfaces to be provided, specific features from the supporting hardware
platforms, as weli as specific knowledge about the application domain. With ali these
aspects in mind, it is reasonable to affirm that the development of a system that provides a
good balance among ali these aspects is not a task that can be easily achieved by
inexperienced designers [DEU 89][JOH 93][GAM 94]. Therefore, the reuse of existing
designs becomes very important.

With the advent of the object-oriented paradigm at the beginning of the last
decade, a new development paradigm appears, where reuse is an integral part of the
paradigm. Inheritance, polymorphism and dynamic binding provide the technology that
enables the construction of software by specialization, based on the extension of the
functionality of existing components. Through the definition of abstract classes, it is
possible to reuse, beyond isolated classes, sets of classes designed as a whole for the
resolution of the generic functionality of a given application domain. That definitively
means application design reuse.

A set of classes that provides a generic solution for a given application domain is
denominated object-oriented framework [DEU 89][JOH 88] . Essentialiy, a framework is
constituted by a set of classes that implements a domain specific architecture [BEC 94].
Framework classes provide the generic behavior of any application within its domain,
leaving the implementation of specific aspects of a given application to be completed by
subclasses. This feature represents an important benefit because, once the framework is
understood, developers have to focus just on the solution of the specific aspects of the
problem being solved, while the overali control structure of the application is inherited
from framework classes. In this way, if domain experts design a framework, users of the
framework are reusing, implicitly, the experience o f these experts.

Through these characteristics, frameworks offer a great potential to increase the
productivity and quality in software development. However, starting to use a framework for
building specific applications remains a complex task for a user other than the framework
designer. Comprehending a framework is, frequently, much harder than comprehending
Iibraries of components that can be reused independently. In the latter case, it is sufficient
to understand component externai interfaces. On the other hand, using frameworks in order
to obtain the maximum benefit from framework reuse, it is necessary to comprehend the
internai design of its classes, how these classes coliaborate among themselves, as weli as

140 Volume IV Número 1

Artigo técnico

the way instances of those classes collaborate at run time [LAJ 94][LAN 95]. Reaching a
detailed comprehension of these aspects is, in general, an expensive and time consuming
task. This aspect can be considered as the most restrictive facto r o f the technology.

The inherent complexity of object-oriented program comprehension, widely
discussed in recent literature [HEL 90][WIL 92][JOH 92][DEP 93][DEP 94][LAJ 94]
[LAN95], can be considered as one of the main causes of the problem of framework
comprehension. However, the limitations for representing abstract designs of the current
object-oriented design documentation techniques are another important restricting factor.
For that reason, severa) special documentation techniques, such as contracts [HEL 90],
patterns [JOH 92] and meta-patterns [PRE 94] were proposed to aid the user in the
comprehension of a framework organization. Some of them also describe how a framework
can be used to build applications. Certainly, these techniques are very use fui for
documenting mature and stable frameworks. Nevertheless, not ali the frameworks are
described using these techniques and, even if they are, the examination of applications or
examples developed using the framework is a good starting point to understand the way its
classes are instantiated and related among themselves.

In this context, even if documentation is available, tools that analyze the behavior
of applications and examples usually provided with a framework, and that visualize the way
the classes are organized and related by message passing represent a valuable complement
to aid the comprehension of a framework. Particularly, tools that enable the developer to
recognize and visualize abstractions of a higher levei than the code, such as design patterns
[GAM 94] for example, provide an excellent vehicle for understanding the framework
design on a higher levei of abstraction than simple visualizations based on classes or
interactions among objects. A design pattern is the abstraction of a recurring design
problem found in different object-oriented designs. Essentially, a design pattern expresses a
design intent, su~gesting a generic organization of classes and distribution of
responsibilities among them that solve the problem in a flexible way. Currently, design
patterns are proposed as a way to produce more reusable and adaptable designs. Also,
design patterns provide an excellent vehicle for communicating design solutions among
designers, and therefore, for helping to understand such designs in terms of standard
solutions to common problems.

In the last years, severa) tools aimed to help with the comprehension of object­
oriented software were described in the literature. These approaches are mainly centered
either on providing microscopic visions of program behavior for debugging purposes [BRU
93][STA 94][VIO 94], or on providing alternative visualizations of program data [DEP
93][DEP 94]. Even so, except for the work of Lange and Nakamura [LAN 95], little has
been reported on tools that use design patterns to help with framework comprehension.

In this work the results of a reverse engineering approach based on recognizing
and visualizing potential design patterns existing in a given framework is presented. This
approach is based on the Luthier framework [CAM 96][CAM 97] for building tools for
application analysis and visualization by means of reflection techniques based on meta­
objects [MAE 87]. Luthier provides flexible support for building visualization tools

Volume IV Número I 141

Artigo técnico

adaptable to different functionalities of analysis, using a hyperdocument manager to
organize the information. This hyperdocument representation supports the flexible
construction of different visualizations from the analyzed examples, as well as navigation
among different visual representations and textual documentation, by means of explicit
support for the edition of electronic documentation books. With this support, once one or
severa! applications developed with a given framework are analyzed, a Prolog
representation of gathered data is used to recognize potential design patterns that can exist
in the framework design. Prolog is used for representing the rules for design pattern
recognition, for building the visualizations of potential patterns, and for generating
explanations about these patterns and the reasons that suggested their presence in the
design.

This paper is organized as follows. The next section discusses the different aspects
that make the process of framework understanding difficult. Section 3 briefly describes the
main aspec!:> of the visualization tool and the recognition process, and in section 4
experimental results are presented. Section 5 summarizes related works and Section 6
concludes this work.

2. Why are Frameworks Difficult to Understand?

In order to be able to adequately specialize abstract classes, as well as to describe
the best way the application can be built through the composition of instances of subclasses
of those classes, a user needs to comprehend the detailed design of the framework. In
complex frameworks, these classes describe patterns of collaboration among instances,
through flexible design structures, that is, structures that enable the adaptation (sometimes
dynamically) of the general behavior provided by the framework.

A framework represents a tradeoff between a general ~nd a flexible solution. A
general solution can deal, without changes, with different variants of a given problem. A

· flexible solution, on the other side, is a solution that, through little changes on its structure,
can be adapted to solve those different variants. General solutions are certainly desirable,
but most of the times, they present performance problems or they are limited to very
restricted domains [PAR 79]. Flexible solutions can be adapted to every particular case,
allowing to exploit those aspects that simplify the solution, in terms of performance and
functionality. But, in general, very flexible design structures imply very complex designs
and, as a consequence, designs harder to understand.

This complexity is more acute in object-oriented programs. Object-oriented
programs are, in general, more difficult to understand than traditional procedural systems
(with functional architecture). In this case, the structure of the solution description, through
the programming language, corresponds directly with the way the system is executed by the
computer. Thus, hierarchical representation~ provide a visual representation very close to
the mental model a programmer has about an executing program. This correspondence
simplifies the identification of source portions that produce a given effect in the system

142 Volume IV Número I

Artigo técnico

execution '· Once the functional model has been recovered, which may not be a simple task,
it is relatively easy to reason about the system behavior and determine which portion of
code should be modified. In object-oriented programs, on the other hand, the relationship
between source code, structure and the execution model may not be so direct, whence the
consideration of two perspectives: the dynamic one and the constructive one is necessary
[BUH 92] .

Lange and Nakamura point out, as another problem related to framework
comprehension, the difficulty that developers find when trying to document them [LAN
95]. Framework documentation presents more complex problems than conventional system
documentation, either object-oriented or not. This complexity can be attributed, essentially,
to two main reasons: the abstract nature of the design and the goal of any framework, that
is, its reuse. On one hand, documentation has to show how to use the framework for
application building, without giving details about internai behavior. On the other hand,
detailed framework design description is also needed. While documentation of use is useful
for occasional users, framework documentation helps to use the framework in applications
other than the ones previewed by the original designer [JOH 92]. A clear comprehension
about the way a framework works is a great aid for using ali its potential.

2.1 The Object Model

The typical structure of an executing object-oriented program is a graph, where
nades represent objects and links represent object references. Objects are dynamically
created and destroyed, causing the topology o f the graph to change dynamically. In spite of
this, object-oriented programs are not built by configuring objects and object references,
but by the use of concepts such as classes, polymorphism and inheritance. These building
mechanisms allow. to divide a system in reusable components, which are implemented in
run time in the simpler instance network model. This dichotomy between both models is
one of the aspects that make object-oriented programs harder to understand than
conventional programs. That is, in arder to comprehend an object-oriented application it is
necessary to comprehend the dynamic and constructive visions, as well as the relationships
established among them. This implies the building of the reverse mapping, from the simple
instance network model to the hierarchy class model that describes it.

Polymorphism and dynamic binding are the essential mechanisms that enable the
construction of flexible software and, as a consequence, frameworks . Besides, they are two
essential factors that contribute to the difficulty in comprehending object-oriented
programs. Polymorphism, dynamic binding and inheritance allow very complex behavior
inside the same class hierarchy, which can only be completely understood at run time.
Examples of this kind of behavior are the classes designed to dynamically add functionality
to objects, called wrappers [GAM 94]. Most of the wrapper behavior is to propagate the
messages it receives to its component. This produces the execution of different

I This relationship is valid for sequential programs.

Volume IV Número I 143

Artigo técnico

redefinitions of a same method, in different leveis of the same hierarchy. The real method
to be executed depends on the configuration of instances at each execution point. This
behavior, known as yo-yo effect [TAE 89], makes it hard to statically determine the method
to be executed in a given invocation. As a consequence, it is necessary to analyze the code
of multiple classes, until the relationships among different hierarchy components are
comprehended.

2.2 The Role of Design Patterns

A framework is, essentially, the implementation of a generic architecture for an
application domain in terms of classes. A previous knowledge about the application domain
is, doubtless, of great importance to help with a given framework comprehension. Through
the general domain knowledge, a programmer is able to comprehend the general
organization of concepts or, more specifically, the domain model implemented by the
framework. On the other hand, it is also necessary to take into account that the goal of a
framework development is to allow framework users to reuse the designer domain
knowledge. Therefore, it is reasonable to expect that the framework users do not have a
deep knowledge about the application domain, but just the essential knowledge about the
functionality of the application to be implemented. Ideally, in order to be actually useful , a
framework should allow the user to implement applications knowing just the functionality
that abstract classes leave to be implemented by subclasses. Therefore, a reasonable first
step in a framework comprehension process is to provide the user with the mechanisms that
allow her to build an initial mental model of the structure and the behavior of the
architecture implemented by the framework. According to this, providing support for
recognizing abstractions not supported by the programming language, is an important
complement to facilitate the global comprehension of the functionality of a framework.

Design patterns [GAM 94] represent design abstractions that are not supported by
current object-oriented languag~s, but are of great importance in comprehending how
system objects are organized and collaborate in order to satisfy the global functionality. A
design pattern names a given combination of classes and methods that solve a general,
recurring, design problem. For example, the Composite design pattern (Fig. 1) prescribes
how to organize objects that are recursively composed to form a hierarchy of parts. The
pattern enables a uniform treatment of single and composed objects through the definition
of a common interface to the services provided by single and composite objects. Single
objects directly manage requirements from externai clients, while composites propagate
requirements to their components.

144 Volume IV Número 1

I Client I ~

I

I Leaf

I Operation()

Component

Operêltion()
Add(Component)
Remove(Component)
GetChild(int)

A
I

I Composite

I Operation() o- -
Add(Component)
Re=ve(Component)
CCtChild(int)

children

U g in children
.Operation()

---ror~

Fig. I Class Structure of the Composite Design Pattern

Artigo técnico

If a user knows the problem that a given pattern is intended to solve, and what
classes and methods the pattern prescribes for the generic solution, then this user can
quickly understand the nature of the relationship established among framework classes
without a very detailed analysis. In this way, the identification o f potential design patterns
that can exist inside a framework structure is an important complement to improve the
comprehension of how determined parts of the framework were designed and the function
that some methods have inside a given class.

lt is necessary to take into account that · an approach exclusively centered on
recognizing and visualizing design patterns is not enough to completely guide the process
of framework comprehension. Design patterns can be useful to drive the process of
framework design at architectural levei, but not ali the framework structures can be derived
from the design patterns described in, for example, the catalog presented by Gamma et ai
[GAM 94]. The,number of patterns in the catalog, which are the most widely known, is
relatively small and they vary a lot in their levei of abstractions and the domains where they
are useful. Therefore, recognizing these functional units in a framework becomes an
important complement in order to provide the user with more abstract initial visions of the
framework structure.

3. Looking for Design Patterns with Luthier

The Luthier framework was designed and implemented in Smalltalk, with the goal
of providing a flexible support for the construction of tools for object-oriented framework
analysis and visualization, through reflective techniques based on meta-objects [MAE 88].
A distinctive characteristic of Luthier is the sub-framework for meta-object support based
on the concept of meta-object managers [CAM 96]. Through this support customized meta­
object protocols, specially adapted for different dynamic program analysis functions, can be
implemented with little effort. Specific meta-object classes can be implemented to extract
relevant static and dynamic information from the analyzed program, and to build an
abstract representation of the framework. With this information, different abstractions, such

Volume IV Número I 145

Artigo técnico

Visualization

Properties Sele7tor
Design Patterns A~straétor

Model

Fig. 2 Relationship among visualizations, abstractors and information representation

as subsystems and design patterns, can be deduced, and different visualizations can be built
using the visualization sub-framework.

Luthier introduces the concept of abstractor objects, which explicitly separate the
information representation from the visualizations (Fig. 2). Abstractors represent a generic
architectural component of tools, where different analysis algorithms and selection criteria
can be located, without the need of modify either the classes of the information
representation or the classes implementing visualizations. They also provide a generic
support for symbolic abstraction scales, which enable the semantic zoom of visualizations
without the need to program special filters in visualizations. An abstraction scale is an
ordered tuple naming the order in which constructions, such as subsystems, classes,
methods, and so on, should be visualized. A scale has its own user-interface control
(usually a slider) through which the user can interactively vary the levei of abstraction of
the visualization (i .e. dynamically showing or hiding details). The visualizations, in turn,
only have to worry about what must be shown in the current abstraction levei, according to
the data that abstractors pass to them.

This powerful feature enables the combination and reuse of different algorithms
for abstraction recognition with different visualization styles, as for example, subsystem
analysis, structural relationship analysis and design patterns.

3.1 Recognizing Design Patterns

Recognizing potential design patterns that may exist in the structure of an analyzed
framework is, essentially, a pattern matching problem. Pattern matching techniques are
used by most of reverse engineering tools, but in general, they are limited to small scale
problems. Graph-based representations have the Iimitation of the impossibility for checking

146 Volume IV Número 1

Artigo técnico

the existence of a given pattern among other patterns intermixed in the program code [FIS
91]. In the case of object-oriented· programs, recognizing structural patterns through pattern
matching presents the same limitation, complicated by the dynamic nature of thç: graph
defined by the configuration of the instances. Prolog-based representations, on the other
hand, can simplify the process of pattern matching, by look for abstract properties of the
control flow rather than only its structure. Different patterns can be expressed in terms of
rules that define the static and dynamic relationships that characterize each pattern, as well
as, heuristics that help to identify a pattern from other similar patterns. This last aspect is
particularly relevant in the case of design patterns because severa! patterns have a very
similar static class structure, it being only possible to distinguish one from another by its
dynamic behavior, having no type information, as in Smalltalk. Besides, the materialization
of design patterns can depend on the implementation language and the particular
requirements of each application. Therefore, it is not possible· to guarantee that ali the
patterns that could exist in a framework can be automatically recognized through a pattern
matching process.

Also, it is necessary to take into account that a design pattern expresses a design
intent, suggesting a generic class structure to organize and distribute responsibilities among
them, which is almost identical in many cases. Evident examples o f this fact are Composite,
Decorator and Proxy design patterns. Composite and Decorator have a very similar c1ass
structure, but their design intents are different. While Decorator adds functionality to the
decorated object, Composite has the goal of object composition. From the dynamic
behavior point of view, both patterns are characterized by propagating messages to its
components. The only difference is that Decorator is composed of just one component,
while Composite often has more than one. Decorator and Proxy have an identical class
structure, differing in the design intent. The goal of a Proxy is to control the access to the
object that it represents. In this case, the distinctive behavior among them, is that generally
case, a Decorator always propagates messages to its component, while a Proxy might
conditionally propagate such messages. Similar problems also arise with State and Strategy.

The strategy adopted for pattern recognition takes advantage of the following
Smalltalk characteristics:

• Decorator and Proxy patterns are recognized if they were implemented using the
doesNotUnderstand: method, which is the most common way to delegate
responsibilities among objects. If an object receives a message not implemented by it,
the doesNotUnderstand: method is automatically invoked by the run-time system. The
Decorator and Proxy patterns are usually implemented by redefining this method for
passing a request to its component.

• Pattern Observer has a Subject object, which updates ali its dependent objects, called
observers, every time its internai state changes. This mechanism is already implemented
in Smalltalk, in the Object class, that provides the behavior need to manage the object
dependent list, and to inform every dependent object the changes on the observed
object. When this object changes its state, it announces the change by sending itself the
changed message that makes dependent objects receive the update message.

Volume IV Número 1 147

Artigo técnico

• In the representation of the collected information, methods are classified according to
their categories. Thus, recognition of TemplateMethod pattern is trivial.

3.2 Prolog-based Representation

An abstractor that provides pattern information to the visualization encapsulates
the generic pattern recognition mechanism. Hypertext model information representation is
converted to Prolog format, according to the following convention:

class (CiassName, Superclass, RootCJass)

message (OriginMethod, OriginCJass,OriginRootCJass, OriginMethodCategory,

OriginMethodType, TargetMethod, TargetClass,TargetRootClass,

TargetMethodCategory, TargetMethodType)

This terms represent class and message information needed for recognition. The
last term represents communication among components (control flow), as well as
communication inside a component. For both types of methods, the following information
is stored:

• method name
• method implementing class
• method category (abstract, hook, template or base)
• method type (instance or class)

For example, if OriginClass and TargetClass are the same, communication is
occurring inside the component, otherwise the communication is occurring between
different components. lf OriginMethod and TargetMethod are the same, and
communication is occurring in~!de a component, it is considered a "recursive" invocation;
but, if communication is held between different components, it is considered message
propagation.

Individual pattern characteristics are codified by Prolog rules that search through
the data base message and class combinations that satisfy each particular rule. There are
general aspects for ali the patterns belonging to the same category, and with the addition o f
every pattern ' s specific aspects, the rule is defined. For example, structural patterns are
characterized by the way objects are composed in order to achieve more functionality.
Therefore, the rule for recognizing this kind of patterns is based on finding composed
objects. The specific rule for Composite pattern detects that a Composite object, when it
receives a message, propagates it to, at least, two of its components. The Composite and its
components should have a common Superclass.

148

% Checks the existence o f at least two subclasses to which messages are
%propagtedfrom a superclass

CompositeO:-

Volume IV Número I

Artigo técnico

1) message(Operation, Composite, FatherComposite, _, _, Operation,
Component1, FatherComponet1, _, _),

2) message(Operation, Composite, FatherComposite, _, _, Operation,
Component2, FatherComponet2, _, _),

3) isReceiverVarlnst(Operation,Operation, Composite),
4) hasCommonSuperC1ass(Composite, Component1),
5) hasCommonSuperC1ass(Composite, Component2),
6) assert(composite(Composite, Operation,[[Component1, Operation],

[Component2, Operation]])),
7) fail.

Composite():- !.

The terms of the rule numbered (1), (2) and (3) verify if the Composite class
propagates the request Operation to, at least, two components: Componentl and
Component2. The hasCommonSuperClass predicate, used in (4) and (5) determines if
classes Composite, Componentl and Component2 have a common superclass.

Object composition in Smalltalk is implemented as a reference to an object, by
means of an instance variable. The auxiliary predicate isReceiverVarlnst(Ml, M2, C)
analyzes Smalltalk code and verifies if the M2 method from the C class invokes the Ml
method, where the receiver of method Ml is an instance variable of C2.

Another example is the Strategy pattern. The pattern intent is to define a family of
algorithms, encapsulate each one, and make them interchangeable. Strategy lets the
algorithm vary ind_ependently from clients that use it [GAM 94]. The rule for Strategy
pattern recognition searches for a class defining a common interface for ali supported
algorithms (an abstract method), and verifies if this method is redefined in ali its subclasses.
This strategy method must be invoked by a client through a reference held by the client
(instance variable), and this client should not be on the same inheritance hierarchy of the
Strategy.

%Cheks for a class defining an abstract algorithm.
Strategy():-

1) message(ClientMethod, ClientC!ass, _, _, _, StrategyMethod,
ConcreteS trategy,

Strategy ,abstract,instance),
2) class(ConcreteStrategy, _, Strategy),
3) allSubclassesRedefined(Strategy, StrategyMethod,_),

2This checking verifies i f the receptor object is referenced directly o r through a collection.
This information is gathered by Luthier during the analysis phase and mairrtained in the
hipertext representation of the class.

Volume IV Número I 149

Artigo técnico

4) isReceiverVarlnst(ClientC!as_s, ClientMethod, StrategyMethod),
5) not(relatedClasses(ClientC!ass,Strategy)),
6) assert(strategy(Strategy, StrategyMethod, [ClientMethod, ClientClass,

StrategyMethod, ConcreteStrategy])),
7) fail.

Strategy():- !.

Terms (1) to (3) state that Strategy class defines the interface of the method and
that every subclass redefines the method. Terms (4) and (5) verify the conditions that have
to be fulfilled by the client. Term (6) stores the potential pattern.

The rules shown above were simplified for clarity's sake. The actual rules are
more complex, as many details have to be considered for a more accurate pattern
recognition. Even so, the rules described are sufficient so as to give a good idea about their
general structure. The rules for the rest of the design patterns that can be recognized
respond to a similar structure.

3.3 Visualization

Fig. 3 presents a snapshot of the graphical browser provided by Luthier to
visualize design patterns recognized in the structure of an analyzed framework. In this
browser, an extended OMT notation is used to indicate the messages and methods involved
in each pattern and colors (not shown in figure 3) are used to enhance comprehension. The
lower pane presents the complete list of design pattern names, highlighting with different
colors those patterns that were recognized during the analysis phase. The selection of a
pattern from the Iist, highlights in the visualization the classes involved in that pattern with
its corresponding color. This enables the independent analysis of each pattern, as well as,
the navigation to the alternative message flow visualization, in order to analyze the
dynamic behavior of the pattern. Alternatively, it is possible to highlight with the
corresponding color those methods and messages that define each selected pattern. The first
visualization is helpful to focus the user attention on occurrences of particular patterns,
whereas the second alternative is useful to visualize those patterns that define the design of
a given class.

The example of Fig. 4 shows the visualization of the FactoryMethod design
pattern in the class LuthierLayoutStrategy. This pattern is suggested because the
insert:at:model: abstract method is redefined in CollaborationLayoutStrategy and
ComponentLayoutStrategy subclasses, which creates objects of type ComponentView,
belonging to a different class hierarchy.

Similarly, the Luthier framework [CAM 97] identifies, draws and explains other
existing design patterns.

!50 Volume IV Número I

~
!:
~

"'
-.::::
<: ::::,
~

"' (3 "T1 .._ qc;·
~

< v;·
c:
~ N.
$:>)
õ'
::::
o,
::r
<'>

~
C")

8
~

~
S. c
~

o
<'>
"' ciQ'
::::
'i:)

~
~
::::

Views Animation

I

.• LuthierstrategyCol
mooel:

b uild\As ua P resentatioo

inse rt:at:mooel :

bounds

1ext

bounds:

update :lith :11Cm:

~

~;;;~;;; .. ;;;;;.liJ;tl;;;qg;;;;t;f;,~;n;rr. "";,~;~r::b::=~~~f =.=b~j;l;-;·~·~;,11'~> ;._.~.~~.Jlii; .. +;: ;rnB~t~l<~w~·~-~·.~" ~.i;;0i: :;--:---:--:0~;L~:t;,~0:,~' E~~;:;.;I;I;IIIJ~·;, ~~-~f .
rDesignP~erns ---·•

i Creati onàl : . íJ Pilst=tF i.DID'i

1 Stn.Jcb.Jral :. D ·~~ter
j Bel1avidrlll: C Cl\;4r,OtR~fP

íJ ~uilde1
c flrtdg·:

mt~a:mrytkthoo [
· [J; (;,::<nr•os.ite ,

[L Ob~anre. r
~ · 7>­

c .T ~nip J~M.tnc;J: : ·.

Artigo técnico

-.;
"8
E
i;j ..
i:: ..,

c: .. "' ., o c: .o

-.; ~
"8 lU ..
E 1l

152

~ I---
-.;

~
"8

·= !'; ..
~

lii .., i::
§ 1< "C ~, ..
o g. ~!

..
J!l .o c:

~·

I

~
] '"

"8 ~:)
f

~
E -"' .i.< c rq :.::1

i:.!

~ ;r.
1:;

'-- I-

c

"

6
., ~ 6 1 16 .. 'JY

º
.,
I!! c: .. D.. ..

i
Q. 1'l

.,
~ 'ª'

I!!
~~

·;).' ., c: D.. t-->- "? f---..- ., f-
~ :::> :~ 1'l (> .;: 16
"" ~ o .,

I~
c
~ ·= c: c:

l ~ :::> k o º 19
~ ' ~ tli iU .. ., c: 1l 16 i:~ - Q.

m
.. .,,

~ 0. .., .., õ.. ..,

'ª' "" Si I!! ia Si g. g. lij
.,

lij .t;.~ 'õ ..

Fig. 4 Visualization of Strategy and Factory Method in the
LuthierLayoutStrategy class

Volume IV Número 1

Artigo técnico

3.4 Explaining Recognized Patterns

One important aspect, missing in most of the visual understanding tools for object­
oriented programs existing in the literature, is the support provided to ·explain the structure
and behavior of the analyzed program. Also, these tools provide little or no support to
produce additional documentation, on the comprehension process carried out by a user.

Luthier provides support for the construction of electronic books fully integrated
with the visualizations built from the collected program information. Books can be
organized in terms of chapters and sections, allowing the interactive use of visual attributes
and fonts to highlight paragraph titles and text.

Through this support, a book describing the design patterns that were recognized
in the framework is automatically generated. The book is divided into three chapters, one
for each pattern category, i.e. Creational, Structural and Behavioral. As II).any sections as
patterns in .each category were recognized com pose each chapter. A section includes a short
explanation about the pattern that it describes, and textually explains the reasons that
suggested the existence of one or severa! occurrences of the pattern in the framework
structure. The explanation includes the extended OMT diagram of the framework classes
where the pattern was recognized.

This kind of information provides the user with additional information that
facilitates the understanding of the functioriality implemented by the involved classes. The
combination of textual and graphical representations allows the user to analyze each pattern
according to its class structure and the functionality of the involved methods from the point
of view of the design intent of the pattern. Through the navigation capabilities provided by
the tool, the úser can navigate from the different visual representations up to the
implementation of the methods. This functionality enables the framework exploration at
different leveis of abstraction, starting at the abstraction levei provided by design patterns.
Figure 4 shows the section generated for the Composite design pattern, where the reasons
for the pattern recognition are briefly explained. In the upper text, the pattern is described
br.iefly, and then the recognized Composite patterns are explained with text and graphics.

The LuthierComrriand component is recognized as a Composite pattern because
the LuthierEditionCommand class, that plays a composed-object role, propagates the
release method to its components: LuthierPasteCommand, LuthierPasteTextCommand,
LuthierCopyCommand and EuthierCopyAsLinkCommand.

Volume IV Número I 153

'Tl
c[Q"
VI

tTl
><

'O
p;
::l
~
õ"
::l
o,
n
o
3

'O
o
"' ~-
'"O
~
õ ...,
::l

"' ::0
(1)
()

o
(IQ
::l t::i.
(1)

0..

::r
~

l'
s::

i:: a-
;:! õ"
"'

...,
......
-.:::
~
;:!

"' ;::;
.......

~~ Design Patterns a!ll
Composite

Compose objects into tree structures to represent pari hierarchies. Allows clients to treat

uniformty individual anel compile objects. This pattern cleff~rentites composite objects, Composite,

from the leafs, Leaf, being lhe commom superclass Component, which rl!presents lhe compo!;ite

Recognized Composites

The following cornponents respond to lhe structure of COM.A:::J& !'TE because lhe component that

has lhe role of ComposHe, Luthierfd.itionCommand, fordwards lhe request:

release to lhe followlnÇI cornponent childs: luthierCopyAslinkCommand

LuthierPaste TextCommand luthierÇopyCgmrnan!l l,ytl}igrÇytCmnmand

Artigo técnico

4. Experimental Results

In order to test the effectiveness of the approach and the tool, an experiment on
framework utilization for building applications was carried out. The experiment does not
precisely demonstrate the efficiency levei of neither the framework comprehension
approach nor the tools built to support it, but it gives a good idea about their advantages as
well as their limitations. It consisted in building a Petri Net editor with typical editing
functionality , using the well-known framework HotDraw [JOH 92] , for construction of
graphical editors.

The most important aspects of the editor' s designare the definition of figures to be
edited and the utilization of the constraint system. because the rest of the functionality is
almost completely implemented by the framework, and it is simple to be copied from
existing examples. In this way, through the experiment is was possible to test the
ffamework comprehension, on class redefinition aspects as well as utilization of existing
classes.

Three groups of students of the System Engineering course were used for the experiment.
Two of them used the set of tools developed with Luthier for supporting framework
comprehension (groups GLl and GL2), while the third group (GN) did not use the tool.
Besides, group GL2 used the complete set of tools, including the design pattern recognition
and visualization but groep GL I did not use the functionality related to patterns.

The resultant applications were compared using metrics based on [LOR 94] . The
results obtained from the metrics can be interpreted in different ways, depending heavily on
the type of the anaMyzed program. When comparing the levei of framework reuse, most of
the metrics do nott provide information that can be considered very significant, although
they offer interesting suggestions about the relatives differences among the three
applications, w'hich can be verified through further analysis. The metrics highlighted in
Table 1, are those that, on àverage, are particularly interesting as a suggestion about the
framework. reuse achieved by each application, as well as the design quality of an
application compared with the others. The complete result analysis can be found in [CAM
97].

The specialization index of groups GLl and GL2 are nearly equivalent, while the
index of the GN is significantly lower. This index shows a low levei of method redefinition
and reuse of the functionality provided by the framework, as the number o f new methods is
high. On average, though, GL 1 presents the greatest number o f new methods per class and
the highest nesting levei. In. this case, the specialization index is complemented for a great
number o f inherited methods .. The relationship between redefined and added methods
shows a pàrity between groups GLl and. GN, while the value for GL2 is two times greater.
The combination of both index suggests a better degree of reuse for group GL2. The other
metrics do not provide significant information, excepting the following aspects:

• The great number of class variables defined by GN, which are completely unnecessary.

Volume IV Número I 155

Artigo técnico

• GL2 presents the lower number of classes without instances and uncalled methods,
suggesting a better use o f the available functionality.

• In order to determine which is the best solution between GL1 and GL2, a detailed
analysis of the applications was made. Here, similar information from that provided by
the metrics can be extracted: the application developed by group GN presents the
greater problems related with the editor design, while the other two applications
present little difference between them.

• Comparing the results in a general way, the main difference between the design
decisions o f the three applications is related to the design of the figures to be edited and the
utilization of the constraints:

• GL 1 presents a better utilization o f the constraint system, which allows them to easily
solve some problems that arose dueto bad decisions about class specialization.

• GL2 presents the better structure, in terms o f reuse o f the framework functionality, due
to an adequate selection of the classes to be specialized, but they make a weak
utilization of the constraint system.

• GN presents problems on the reuse of behavior implemented by the framework, on the
aspects related with abstraction designs as well as on the use of the constraint system.

From the analysis o f the time used by each group [CAM 97], it can be seen that GL 1 had
more time dedicated to comprehension activities and less time to development, while GL2
was the group that used less total time. The difference between the times of tool utilization

Metric GLI GL2 GN
Totais

Number of Classes 16 12 32
Lines o f Code 1427 980 1854
Nestin~ Levei (ma~) 7 7 8
Number of Methods 178 148 281
Number o f Inherited Methods 2040 1569 4082
Number o f Redefined Methods 102 95 126
Number of Added Methods 76 53 155
Number of Messages 815 781 1370
Number o f C1ass Variab1es o o 16
Classes wlo Instances 9 4 18
Number of Methods not Called 51 ::SI 115
Number o f Public Methods 94 : ;;;_ ; 125

Avera~es

Number of Inherited Methods I 127.50 130.75 127.56
Class
Number of Redefined. M. I Class 6.37 7.91 3.93
Number of Added Methods I : 8.56 4.41 6.85
Class
RI A Proportion 0.63 1.55 0.61

Specialization lndex 3.47 3.20 2.36

Table 1- Metric values

156 Volume IV Número 1

Artigo técnico

is the reason for the much better use o f the constraint system by group GL 1.

Some important conclusions can be extracted from the experiment described above
about the utilization of the framework comprehension tool , but they are not definitive
because of the small size of the sampling it represents:

• The tool helped to obtain much better results, in terms of the reuse of the functionality
provided by the used framework and quality o f the final work.

• The tool can induce an exploration of details that are not necessarily relevant.
Nevertheless, the comprehension of these details helped the group GLl to use a very
complex subsystem, such as the constraint system, very well.

• The tool does not necessarily help to·reduce the development time.
• The total time used by GL2 group shows that design patterns induced more adequate

design decisions, making the framework exploration easier.

5. Related Work

The use of visualization and animation techniques to assist object-oriented
program understanding is being specially explored in the area of program debugging. Most
of the current systems are based on event generation mechanisms. Events are used to
inform the visualization system on, for example, the sending of messages, instance
creation/destruction and method entry/exit. Event-based mechanisms are especially suitable
for program animation tools because they support the definition of events at any levei of
abstraction.

The BEE++ application framework [BRU 93], provides a platform to build tools
for dynamic analysis of distributed programs. It supports event monitoring, visualization
and graphic debugging-tools distributed across different nodes of the network. Luthier does
not support the ánalysis of distributed frameworks, but the use of meta-objects could enable
the transparent monitoring of such applications too.

VizBug++ [STA 94] is a visualization system for C++ programs that integrates
diagrammatic views of the class hierarchy, instances and flow of control. The system is
based on events to produce smooth animation of the program execution through arrows that
represent method and function invocations. Vion-Dury and Santana [VIO 94] addressed
the use of 3D visualizations. They introduced the concept of virtual images for debugging
distributed object-oriented applications. A virtual image is a graphic representation of an
object that uses a 3D spatial model. Objects are represented by polyhedrons thal have
significant shapes, colors, volumes and orientation. From a. cognitive point of view, this
representation offers interesting possibilities to represent more abstract structures.
However, it does not seem certain that text can be entirely substituted by polyhedral shapes.

DePaw, Helm, Kimelman and Vlissides [DEP 93,94] proposed matrix-based
visualizations of the dynamic behavior of C++ programs. They use multiple views to
represent different aspects of execution data, using colors to denote instance
creation/destruction frequency , inter and intra class invocations, instance-allocation
history, among others. These representations are generated through a portable platform for

Volume IV Número 1 157

Artigo técnico

instrumenting C++ classes, enabling the generation of interesting events and the control of
the program execution. These representations do visualize partia! aspects of program
behavior and support navigation functions , but it does not emphasize aspects concerning
frameworks as those discussed in this paper.

Software Refactory [OPD 92] is the first example of using reverse engineering
tools to support framework development. This tool supports the restructuring process of a
framework programmed in C++, starting from the static analysis of applications built with
that· framework. Software Refactory implements in a semi-automatic way severa! class
refactorizations, as for example: creating abstract superclasses from concrete classes,
division of a class into different subclasses, and substitution of inheritance relationships by
aggregation relationships, among the most important. These processes imply the class
hierarchy reorganization, moving methods between classes and the creation of new
methods. Nevertheless, the changes that have to be done to the code are simple, because the
common behavior can contain aspects specific to each implementation. The semantic of
severa! constructions can not be inferred through lexical and structural analysis and,
therefore, it is necessary for the designer to determine when a given transformation must be
applied or not. Even so, this feature is desirable, because the refactoring process is an
activity to be carried out by the framework designer, who knows the reasons why some
design constructions were implemented in specific ways. Software Refactory provides a
valuable support for code manipulation and restructuring, but it does not provide any
support for documenting the result of factorizations that were made.

The work described in this paper is heavily related to the work of Lange and
Nakamura on the Program Explorer [LAN 95]. They also propose the use of interactive
program visualization based on design patterns as the way to obtain structured access to the
interaction of framework components. Their work intends to provide a uniform Prolog­
based model to represent static as well as dynamic framework information, but it does not
explicit how design patterns are automatically recognized, or even i f actually they are.

6. Conclusions

An approach to framework comprehension and a tool to support were presented.
Results of experiments carried out with the tool strongly suggest that the use of the tool
lead to better design decisions and a deeper knowledge about the analyzed framework. On
the other hand, development time seems to remain stable, independently of the tool
utilization. That is, the tool neither reduces the time needed to develop an application nor
imposes a delay on this development. However, the use of the pattern visuaiization would
enable to reduce these times, by making the framework exploration easier.

Current results are promising, but further and more comprehensive tests should be
done, in order to get more information about the effect of the tool utilization on framework­
based application development. These tests will allow to enhance the framework
comprehension approach and the supporting tool.

!58 Volume IV Número I

Artigo técnico

Regarding the design pattern recognition, through the current rules it is possible to
recognize patterns in cases whe're their existence is relatively evident. Even so, the rules can
be extended and improved to recognize implementations that are not so evident, adding
static information as, for example, method code structure. With this information, it could be
possible to try to determine with higher precision the existence of patterns not recognized
with the current rules.

The recognition o f design patterns is a very time-consuming task due, essentially,
to the inherent inefficiency of the Prolog interpreter, which is a program written in
Smalltalk itself. This double interpretation levei produces a relatively poor performance.
Besides, the rule implementation is extremely inefficient, being another source of poor
performance of the functionality. This inefficiency, however, can be tolerated if the useful
information provided by the tool is considered.

References

[AMA 97] Amandi, A; Price, A. Towards Object-Oriented Agent Programming: The
Brainstorm Meta-Levei Architecture. Procs. of 1st Autonomous Agents
Conference, Los Angeles, ACM Press, February 1997.

[BEC 94] Beck, K.; Johnson, R. Patterns Generate Architectures. Procs. ECOOP'94,
Bologna, ltaly, Berlin:Springer-Verlag, 1994. p. 89-110.

[BIG 87] Biggerstaff, T.; Richter C. Reusability Framework, Assessment, and
Directions. IEEE Software, March 1987.

[BIG 93] Biggerstaf, T.; Bharat, G.; Webster D. The Concept Assignment Problem in
Program Understanding. Procs. 15th. IEEE Intl. Conf. on Software
Engineering, Baltimore. Los Alamitos: IEEE Press, 1993.

[BRO 83] Brooks, R. Towards a Theory of the Comprehension of Computer Programs.
lnternational Journal of Man-Machine Studies, v.18, n.6, p. 543-554, June
1983.

[BRO 84] Brown, M. Sedgewick, Robert. A system for Algorithm Animation. ACM
Computer Graphics, v.11, n 7, July 1984, p. 177-186

[BRO 88] Brown, M. Exploring Algorithms using Balsa-//. IEEE Computer, v.19, n.5, p
14-36, May 1988.

[BRU 93] Bruegge, B.; Gottschalk, T.; Luo, B. A Framework for Dynamic Program
Analyzers, Procs. OOPSLA'93, Washington D.C. New York:ACM Press,
Oct. 1993.

[BUH 92] Buhr, R.; Casselman, R. Architectures with Pictures. Procs. OOPSLA'92,
Vancouver, Canadá.October1992.

[CAM 96] Campo, M.; · Price, R. A Reflective Framework for Software Visualization
Tools. Procs. of the 10th Brazilian Symposium on Software Engineering, São
Carlos, Brazil. October 1996. (In Portuguese)

[CAM 97] Campo, M. Visual Comprehension of Frameworks through lntrospection of
Examples. Ph.D. Thesis . UFRGS, CPGCC, 1997. (In Portuguese)

[CHI 90] Chikofsky, E.; Cross, J. Reverse Engirieering and Design Recovery: A
Taxonomy. IEEE Software, v.7, n.1, p. 13-17, Jan. 1990.

Volume IV Número I 159

Artigo técnico

[DEP 93] De Pauw, W.; et ai. visualizing the Behavior of Object-Oriented Programs.
ACM Sigplan Notices, v.28, n.lü, New York:ACM Press, p.326-337,
Oct.l993 .

[DEP 94] De Pauw, W.; et ai. Procs. ECOOP'94, 10, 1994, Bologna, Italy.
Berlin:Springer-Verlag, 1994. p. 175-194.

[DEU 89] Deutsch, P. Frameworks and reuse in the Smalltalk-80 system, In: Biggerstaf,
T., Perlis, A. (Eds.) Software Reusability : Applications and Experience, New
York: ACM Press, 1989.

[FIS 91] Fisher, G.; Henninger, S.; Redmiles, D. Cognitive Tools for Locating and
Comprehending Software Objects for Reuse. Procs. Intl. Conf. on Software
Engineering, 13. , 1991. Los Alamitos: IEEE Press, 1991. p. 318-328.

[GAM 93] Gamma, E. ; et ai. Design Patterns: Abstraction and Reuse of Object-
Oriented Design. Procs. ECOOP'93 , Kaiserslautern, Germany.
Berlin:Springer-Verlag, 1993.

[GAM 94] Gamma, E.; et ai. Design Patterns: Reusable Elements of Object-Oriented
Design, Reading: Addison-Wesley, 1994.

[GOL 83] Goldberg, A. Smalltalk-80: The Language and its Implementation.
Reading:Addison-Wesley, 1983.

[HEL 90] Helm, R.; et. ai. Contracts: Specifying Behavioral Compositions in Object
Oriented Systems. Procs. OOPSLA'90, Otawa, Canada. New York: ACM
Press, 1990.

[JER 96] Jerding, D. ; Stasko, J.; Ball, T. Visualizing Message Patterns in Object­
Oriented Program Executions. Georgia Technology Institute, 1996. (Tech.
Report GIT-GVU-96-15). .

[JOH 88] Johnson, R. ; Foote, B. Designing Reusable Classes. Journal of Object­
Oriented Programming, v.1, n.12, 1988.

[JOH 92] Johnson, R. Documenting Frameworks Using Patterns. Procs. OOPSLA'92,
Vancouver, Canadá. New York:ACM Press, Oct.l992.

[JOH 93] Johnson, R. How to Design Frameworks, OOPSLA'93, Washington DC.
Tutorial Notes.1993 .

[KRU 92] Krueger , C. Software Reuse. ACM Computing Surveys, v.24, n.2, June
1992.

[LAJ 94] Lajoie, R.; Keller, R. Design mid Reuse in Object-Oriented Frameworks:
Patterns, Contracts, and Motifs in Concert. Procs. 62 Congress of the
Association Canadienne-Française pour I' Avancement des Sciences,
Montreal, Canada, 1994.

[LAN 95] Lange, D.; Nakamura Y. Interactive Visualization of Design Patterns Can
Help in Framework Understanding. ACM Sigplan Notices, v.30, n.lü. Oct.
1995.

[LOR 94] Lorenz M, Kid, J. Object-Oriented Software Metrics - A practical guide.
Englenwood Cliffs : Prentice Hall. 1984

[MAE 88] Maes, P. /ssues in Computational Reflection. In: Meta-Levei Architecture
and Reflection. Amsterdam: Elsevier Science, 1988.

[MAY 95] Mayrhauser Von, A.; Vans, A Program Comprehension During Software
Maintenance and Evolution. IEEE Computer, v.24, n.8, p. 44-55. Aug. 1995.

160 Volume IV Número 1

Artigo técnico

[OPD 92] Opdyke, W. Refactoring Object Oriented Frameworks. Ph.D. Thesis,
University of Illinois at Urbana-Champaign, 1992.

[PAR 79] Parnas, D. Designing software for ease extension and contraction, IEEE
Transactions on Software Engineering, v.5, n.2, p. 128-137, Feb 1979.

[PRE 94] Pree, W. Meta-Patterns: Abstracting the Essentials of Object-Oriented
Frameworks, Proc. ECOOP'94, Bologna, Italy. Berlin:Springer-Verlag,
1994.

[RUM 91] Rumbaugh, J.; et ai. Object-Oriented Modeling and Design, Prentice-Hall,
1991.

[SOL 84] Solloway, E; Ehrlich, K. Empirical Studies of Programming Knowledge.
IEEE Transactions on Software Engineering, v.10, n.5, p. 595-609, May.
1984.

[STA 90] Stasko, J. Simplifying Algorithm Animation with TANGO. Procs. IEEE
Workshop on Visual Languages, 1990, Stockie, Illinois, 1990.

[STA 94] Stasko, J.; Jerding, D. Using Visualization to Foster Object-Oriented
Program Understanding. Atlanta, Georgia Institute of Technology, July
1994. (Technical Report GIT-GVU-94-33).

[TAE 89] Taenzer, D.; Ganti, M.; Podar, S. Object-Oriented Software Reuse: The Yo­
Yo Problem. Journal of Object-Oriented Programming, v.2, Set. 1989.

[TIL 96] Tiley, S; Santana, P. Towards a Frameworkfor Program Understanding . 4th
IEEE International Conference on Program Comprehension, Berlin,
Germany, 1996.

[VIO 94] Vion-Dury, J.; Santana, M. Virtual Images: Interactive Visualization of
Distributed Object-Oriented Systems. Procs. OOPSLA'94, Portland, Oregon,
1994.

[Wil 92] Wilde, N.; Huit, R. Maintenance Support for Object-Oriented Programs,
•. IEEE Transactions on Software Engineering, v.18, n.12, Dec.1992.

Volume IV Número I 161

