
A~~_"-~ ~c;._~~ *~.c-c.S
.. ~ e..o -;'- -/\ - ... k"\ : r> j. r. - Csôv

J ~ J~ u~~t

\. f os t:-~ _,
~ C_ ,~ . o;O._~

M d I. · · d · r 1· t• o e 1ng an eng1neenng es1gn app 1ca 1on
using extended object-ori~nted concepts

. ... -~.. '5g:....-...): ~~e..o : ~c:Los.

Lia Goldstein Golendziner

Clesio Saraiva dos Santos*

Flávio Rech Wagner*

Abstract
This paper presents an approach to extend object-oriented data models, in which versions
of an object are allowed to appear at different leveis of an inheritance hierarchy, in contràst
to the known approaches where they are admitted only at one levei. This approach allows
the design and instantiation of objects to become very natural, starting with the design of an
object in a class and refining it, adding properties to the subclasses. Versions of objects can
be defined in a subclass, having ascendant versions/objects associated to the superclasses.
The paper also discusses how the extended model can be used to model engineering
applications, fulfilling their requirements . The application is the STAR framework, which
implements an innovative and flexible data model that allows the user to define an object
schema for each design object. Design alternatives and views can be created during the
design process andare represented in the object schema. Versioning appears in the STAR
model not only for the real design data, but also for alternatives and views in the object
schema. This requirement is not naturally modeled by the existing version models m
object-oriented databases.

Keywords object-oriented databases, engineering databases, data modeling, versions

1 Introduction
Research related to versions was motivated by the requirements of some application

areas, mainly Engineering applications (CAD-Computer Aided Design), Software
Engineering (CASE-Computer Aided Software Engineering) , Manufacturing (CAM-

1 Computer Aided Manufacturing), Office Automation, Hyperdocuments and Historie
Data bases.

Efforts in engineering applications focused mainly at the problems related to object
representation [2,5, 11,12,14,20,21], and are based in semantic data models such as the
Entity-Relationship Model (the most frequently used one). Katz [16] argued that many
proposals presented in the area of engineering applications were similar, and proposed a
basic terminology together with a collection of mechanisms that must be present in any
approach to represent this kind of application.

* (clesio , fl avio)@ inf. ufrgs.br- Instituto de Inforrnática-UFRGS, Caixa Postal 15064
CEP 91501-970 Porto Alegre-RS

Modeling an engineering design application using extended object-oriented concepts

Currently there is a trend to extend object-oriented database models and systems with
version concepts and mechanisms, aiming at the definition of a framework, that may be
refined to support many classes of applications [1,7 ,19,24] . In the context of object­
oriented database systems, versions allow the simultaneous representation of many object
states. A version represents an identifiable state of an object, considered by the user as
semantically significant, and must be treated by the data model as any other object in the
system.

On the other hand, few results have been reported on the use of these object-oriented
models by engineering applications [15 ,22,23 ,28].

The STAR framework [27], which is being developed at UFRGS (Federal University of
Rio Grande do Sul - Brazil), is an Electronic Design Automation Framework which
implements an innovative and flexible data model , that allows the user to define, for each
object type, a schema of design alternatives and views to be created during the design
process [25]. During the development of this project it was observed that the STAR data
model has some requirements not adequately satisfied by the existing object-oriented
models. These requirements include representation o f versions at more than _one abstraction
levei in an inheritance hierarchy and support for definition and manipulation of
configurations.

Some object-oriented database models allow versions, but only at the most specialized
type/class in an inheritance hierarchy [1 ,3,18]. The possibility of having versions
simultaneously at different leveis of abstraction provides a richer model and allows a more
natural representation o f the reality. On the other hand, when versions can be associated to
database objects , the user may be required to choose, from a possibly large set of options,
the specific combination of versions that will be associated to the components of a complex
object in each situation. Each combination of specific component versions of an object is
called a configuration.

The version model introduced in ['1 3] and used in this paper handles configurations as
versions, introducing a very useful possibility of combining versions and configurations to
construct other versions, as well as deriving new versions from configurations.
Configurations are out of the scope of this paper and the adopted approach is described in
[13].

This work focuses on version modeling at the application levei, to support the
requirements from engineering applications. A version model is presented, in which the
versioning of objects at ali leveis of an inheritance hierarchy is allowed, not restricting
versioning to only one levei. It is shown how this extension to the object-oriented paradigm
allows a more natural modeling of many real world situations, specially when the objects
are constructed in a top-down process. A concrete application, the ST AR framework, is
presented, and its requirements in terms of versioning of objects are outlined.

The remainder of the paper is organized as follows. Section 2 presents the version
model, highlighting its basic concepts and the possibility of having object and version
hierarchies. Section 3 presents the data model o f the ST AR framework , and illustrates it
through an application, that represents a design of a microprocessor named RISCO. Section
4 describes the mapping o f the ST AR data model to the version model presented in section
2, and the main conclusions of this work are presented in section 5.

86 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

2 The version model

2.1 Version and versioned object

A version is an instance of an object at a given point in time or from a certain point of
view, which is considered relevant for a defined application. In an object-oriented model, a
version is a first class object, having an Object Identifier (OID). A version can then be
directly manipulated or queried .

Versions of a real world entity must be kept together and constitute a versioned object.
A versioned object is also a first class object and maintains information about its associated
versions. A versioned object can have properties, which should be common to ali its
versions. Each version belongs to exactly one versioned object.

Considering that applications cannot always determine if an object will present versions
or not, objects can dynamically change from non-versioned to versioned.

Objects (versioned or not) having the same properties and behavior can be grouped into
classes. Since the feature of being versioned belongs to an obje<;t and not to a class, a class
can have versioned as well as non-versioned objects as instances.

An automobile under design can be considered as a versioned object, having severa!
associated versions, which represent the different stages or alternatives considered
throughout the design. Figure 1 illustrates this example, where the severa! alternatives of an
automobile are shown. The notation used is based on that introduced in [17] .

Automobile

•.

c=J Class <==) Versioned Object Qversion

Figure 1 Versioned object and its versions

Each versioned object has one version considered as its current version. The current
version is automatically maintained by the system as the most recently created one. lf the
designer wants a different version to be considered as the current one, he can specify it, but
in this case the current version will remain fixed and will not change automatically with the
creation of new versions (as in [18]). The current version is used whenever an operation is
applied to a versioned object and does not specify one of its versions.

RITA • Volume V • Número 1 • Julho 98 87

Modeling an engineering design application using extended object-oriented concepts

2.2 Version properties

Versions of a versioned object are related through a derivation relationship, which forms a
directed acyclic graph. For the version mille (Figure 1), version cs is called its predecessor
and version elx, its successor. A version can have severa! successors and predecessors.

Versions have a status, that can be working, stable, or consolidated (similar to the
classification in [3,18]), reflecting their robustness. Operations on versions are restricted,
acc9rding to their status. A working version is essentially a temporary version that has to
undergo modifications to reach a more stable status. A stable version has reached more
stability and can be shared. Stable versions cannot be modified, but can be removed. A
consolidated version is a final version that can neither be modified nor removed.

New versions are created with the working status. When a version is derived from
another one, its predecessors are automatically promoted to stable, thus avoiding
modifications on versions that were important from a historical point of view. The user can
explicitly promote versions from working to stable, or from stable to consolidated.

2.3 Object and version hierarchies

This section presents the proposal of object versioning at different leveis of an inheritance
hierarchy. The advantages of this approach in modeling applications are discussed and
compared to the traditional approach where versions are restricted to one levei of the
hierarchy.

Inheritance

Inheritance is one of the basic concepts in object-oriented databases [4] and one of the
reusability mechanisms. Refinement and extension [6] are the two ways in which
inheritance can occur. "

Inheritance by refinement is the most traditional approach , corresponding to the is-a
relationship between objects. Considering T2 as a subtype o f TI , each T2-object is a
"special case" of a Tl-object and can be used whenever a Tl-object is expected [24] . In this
case, there is a migration of properties through the leveis of the hierarchy, from top to
bottom. The leaves may be seen as complete instances of the objects , including ali the non­
conflicting properties of their ascendants, as well as those resulting from the conflict
resolutions. This type of inheritance is present in many object-oriented database systems,
such as 02 [10], ORION [19] and GemStone [8].

Extension inheritance is related to the idea of prototypes and appears in data models
such as PEGASUS [6,24] (extension ofEXTRA [9]). Each T2-object has an associated Tl­
object (called prototype in [6] and herein called ascendant). In this case, each property
refers to a specific levei of the hierarchy, modeling some relevant aspect of the real world
object. References to attributes that are not defined in T2 are delegated to its associated Tl­
object.

88 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

Object and version mapping

When refinement inheritance is used , objects and their corresponding versions appear at
only one levei of the hierarchy [3 ,7, 18]. In the version model presented in this paper, where
extension inheritance is used, versions of each object are aliowed at ali leveis. In this way,
object modeling and instantiation can be done at various leveis of abstraction, and the
definition or redefinition of object properties can be done at any levei.

Lets assume the schema presented in Figure 2, which represents an inheritance
hierarchy: Vehicle is a superclass and Automobile and Truck are subclasses. The example in
Figure 3 shows the modeling of versions at more than one levei of this inheritance
hierarchy.

Vehicle • motor
• fuel

/~
Automobile Truék

• drivetrain
• accessories

• load capacity

Figure 2 Example schema

The real world entity fiat-uno is represented at two leveis of abstraction: Vehicle, with
the properties motor and fuel (fiat-uno-v), and Automobile, with the properties drivetrain
and accessories (fiat-uno-a). At each of these leveis, there are versions associated to the
corresponding versioned objects.

In this way, tRe design of a new automobile may be carried on starting at the top levei
and having the details of the other leveis specified !ater. In the example, a new automobile
may be designed starting with its characteristics at the Vehicle levei, thus creating the
versions at this levei (for example, versions vi and v2 can be created). In a further step, the
versions at the Automobile levei (for example, version cs) may be created and linked to
their ascendants (version cs is linked to vi and v2) .

Each version at a subclass must have at least one corresponding ascendant, to which it
is linked at creation time. In some situations, one version may have more than one
ascendant. This flexibility is important, aliowing the designer to concentrate at one levei at
a time during the design process, as weli as to determine ali the possible combinations of
one version with versions at higher leveis of the inheritance hierarchy.

In the example, version cs of fiat-uno-a, at the Automobile levei, can be combined with
two different versions of fiat-uno-v (versions vi and v2), at the Vehicle levei. These
combinations represent two possible configurations for a fiat-uno: version cs having v i as
ascendant (using gas as fuel), and version cs having v2 as ascendant (using alcohol as fuel).

On the other hand , the same version in a superclass may correspond to more than one
version in a subclass. This situation occurs in the example of Figure 3, where one version at

RITA • Volume V • Número 1 • Julho 98 89 .

Modeling an engineering design application using extended object-oriented concepts

the Vehicle levei (ex: v3) corresponds to two versions at the Automobile levei (ex: mille and
elx).

+'*'
1 correspondence

..
Figure 3 Versions represented at more than one levei of the inheritance hierarchy and

their correspondences

In this way, correspondences (mappings) are defined between versions of an object at
one levei and versions of their corresponding ascendants in the superclass. In Figure 3, the
mapping is n:m. Each version in the class Automobile may correspond to n versions in the
superclass Vehicle, and vice versa. The mapping defines an integrity constraint, which is
specified with the definition of the inheritance relationship between a class and its
superclass, in the database schema. lt is system's responsibility to enforce the constraint.
The mappings defined among versions may be n:m, as in Figure 3, 1:1, 1:n, or n:1.

When one needs to get an object including properties from ali leveis, the process starts
at the most specialized levei, with the choice of one ascendant for each related superclass.
The ascendant may be explicitly identified by its OID, or by means of pre-defined criteria:
recent (most recent), first (the oldest), or current (the one specified as current) . The
criterion will be used when more than one ascendant version is linked to the desired version
or object.

90 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

Versioned and non-versioned objects may exist in the same inheritance hierarchy. Non­
versioned objects and versioned objects that have no versions are considered as a version,
when the mapping constraint must be verified.

Without the possibility of representing versions at various leveis of the inheritance
hierarchy, other features of a data model could be used, but they do not result in adequare
models in many situations. These alternative features are analyzed below.

Considering the fiat-uno example, one alternative would be to start creating one
version of a Vehicle object, which would be !ater on refined, by the addition of Automobile
properties. The solution would be to migrate the Vehicle object to the Automobile subclass.
The problem with this solution is that object migration in general is not allowed. The
reason commonly pointed out is the need to redefine the OID of the migrating object
(beca use the class is part o f the OID [19]), as well as the OID o f the possible existing
versions derived from the migrating version/object.

Another possibility is the creation of versions directly in the class Automobile, but only
with the Vehicle properties (the other properties receiving null values, which will be
redefined lat.er). In this case, a restriction must be imposed: the actual val!JeS for the
undefined properties must be set before deriving a new version from this one (because the
model establishes that, when a new version is derived, its ancestors may not be changed
anymore).

In addition , when versions are allowed at only one levei , it is difficult to find out
differences and similarities between the versions, concerning the characteristics defined at
different leveis of the inheritance hierarchy. Figure 4 presents a possible representation of
the situation modeled in Figure 3, but with versions appearing at only one levei.

Operations defined for objects and versions

The operations defined for objects and versions can be classified into three groups:
operations for creation, operations for navigation in the inheritance hierarchy, and
operations for retrieval of versions/objects.

The operators concerning creation o f versions are the following :

create_ versioned_object (class): OID;
derive_ version (set(OID)

[, ascendant: [class 1 :] set(OID) ...]
[, descendant: [class2:] set(OID) ...]): OID;

Version creation can occur in one of the following ways:
1) creation of a versioned object and afterwards creation of versions for it. The

possibility of creating a versioned object without versions allows references to the
versioned object, so that top-down designs can be carried on . Derivation of versions can
then proceed, using the versioned object OID as a parameter;

RITA • Volume V • Número 1 • Julho 98 91

Modeling an engineering design application using extended object-oriented concepts

Vehic/e

Automobile

Figure 4 Versions only at the most specialized class

2) derivation of a version from an existing one (or more than one). The new version is a
copy of its predecessor. If more than one version is used as parameter, only the first one is
copied, but a derivation relationship is kept with ali of them;

3) a version can be derived for an object that was non-versioned up to this moment. In
this case, the non-versioned objeêt becomes the first version of a new versioned object, and
a new version is derived from it.

When a version is created, it must be necessarily connected to an ascendant
version/object. Optionally, descendants can be informed.

Operations for navigation in the inheritance hierarchy allow the retrieval of ascendants
and descendants of an object, in given classes. The operations are:

get_ascendant (OID, class [criterionl"*"]): set (OID ascendant object);
get_desce~dant (OID, class [criterionl"*"]): set (OID descendant object);

If more than one ascendant version exists for the desired version, either ali the versions
can be returned (option *), or only one, according to the specified criterion. The criterion
could either indicate a manual selection, when the OID of the ascendant version is given, or
an automatic selection, when one of the following pre-defined criteria is given: recent,
first, or current (recent is used as default). The get_descendant operation is similar to the
get_ascendant one, but it is applied to descendant objects in the identified subclass.

Retrieval of objects can be made through the following operations:

92 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

get_object (010): list(attribute values) ;
get_complete_object (010 [, ascendant: classl [: criterion]

[, class2 [: criterion]] ... J): list(OIO);
The operator get_object retrieves the values of those attributes defined in the class to

which the object belongs. This operation returns the attributes that are defined at a single
levei of the inheritance hierarchy. To retrieve ali the attributes of a real world entity
modeled in the database, navigation must be performed along the hierarchy, so that ali
objects representing the given entity are retrieved. The operation get_complete_object was
defined with this purpose and returns the ascendants of an object in the inheritance
hierarchy, one for each superclass. If only some ascendants are desired, the desired classes
must be identified. When there is more than one ascendant for a version , the criterion is
used to select only one, exactly as in the operations get_ascendant and get_descendant.

Besides these operations, operations for navigation in the version derivation graph are
also provided (get_first_ version, get_last_ version, get_successor, get_predecessor,
get_ versioned_object).

It must be noted that ali the operations presented in this section apply also to versioned
objects, in which case the current version will be considered.

3 The data model o f the ST AR framework
In the following sections the concepts of the STAR framework that are relevant to this
work will be described. An example of an application of STAR is given to illustrate these
concepts. The mapping from the ST AR concépts to the version model is presented in
Section 4.

3.1 Object types

A real world entity being designed in the ST AR framework is represented by a Design
object (Figure 5). Each Design object gathers an arbitrary number of ViewGroups and
Views 1. ViewGroups may in turn gather, according to application-defined criteria, any
number of other ViewGroups and Views, building a tree-like hierarchical object schema.
Three types of Views are supported : HDL Views , for behavioral descriptions, MHD Views
(Modular Hierarchical Description), for structural descriptions , and Layout Views, for
geometric descriptions. In ali View types, objects can be described as a composition of sub­
objects that are instances of other objects.

ViewGroups can be used, for instance, to build a hierarchy of design decisions, where
alternatives for a given design state are appended to the ViewGroup that corresponds to this
state and represented by another ViewGroup or View. The advantages and generality of this
data modelare stressed elsewhere [25,27].

1 The concept o f VieiV is not that o f the database field , but corresponds to the description o f a design object at a
given abstraction levei (electrical, gate-level, etc.).

RITA • Volume V • Número 1 • Julho 98 93

Modeling an engineering design application using extended object-oriented concepts

Design

1-'orts

Usert=ields

I
I I

Viev.G"a.p 1 View1
I&

1-'orts)'i! 1-'orts ...
Usert=ields Usert=ields

'i)
I ' <?:

VíeW::>'tates

I
Viev.G"a.p k Viewj

1-'orts .. . 1-'orts
UserHelds UserHelds

I I
I

Viev,Guups and Vie'NS Viev..6'tates

Figure 5 The ST AR data model
The hierarchy formed by Design, ViewGroup and View nodes defines properties of the

entity being designed and is an inheritance hierarchy. Each node has properties that may be
inherited by its descendant nodes (éxtension inheritance). Not only the existence of an
attribute is inherited by the descendant nodes, but also its value, when defined. The role of
Design, ViewGroups and Views is to organize the various representations of a design
object, ensuring consistency for common properties, through the inheritance mechanism.
Thus, each node contains properties that are shared by the representations it gathers .

ViewStates contain the real design data that correspond to the various design
representations, such as layouts, HDL (Hardware Description Language) descriptions and
structural decompositions . ViewStates correspond to revisions created for each View.

Properties of each node of the object schema can be of one of three types : Port,
UserField, and Parameter. Ports represent interface signals and can also present properties.
UserFields are user-defined attributes and have a name and a domain. Parameters allow
the designer to build parameterized, generic objects.

An example of an application in the STAR framework is the design of the
microprocessor RISCO, a 32-bit microprocessor developed at UFRGS . Figure 6 shows part
of the object schema corresponding to the design of this microprocessor. A more complete
description can be found in [26] .

94 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

HI~CU

Design

Max-area
Max-power-dissipation
Min-e lock-frequency

--- -......:-- -::
V G-HI~CU-~truct v -HI~Cu-t:Sehav

ViewGroup HDLView

/ I
I

V-HI~Cu-~truct-Ubj ... " - " 1 Ht:S2 1

MHDView _,....,..*"-..,("' I

' Ht:Sl "-"
UP '"~~'"~'
CP , RB3 J
ClockGen " -"" Va lidat-lnterf

Figure 6 Object schema for the microprocessor RISCO
" The methodology for the microprocessor behavioral design specifies the RISCO Design

object and its initial object schema, including Views that contain behavioral related
information . V-RISCO-Behav, of type HDL, is one of these Views, corresponding to an
initial behavioral specification of the microprocessor written in some hardware description
language. As a result o f the design process, ViewStates (RB 1, RB2 and RB3) are created
for this View. The RISCO object has three initial attributes, corresponding to requirements
set by the design manager: maximum area (Max-area), maximum power dissipation (Max­
power-dissipation), and minimum clock frequency (Min-clock-frequency). These
attributes, with their corresponding values, are defined at the root of the object schema.

A structural representation is manually generated from the behavioral one. The circuit is
partitioned into its four main structural blocks: the operational block OP, the control block
CP, the clock generator ClockGen, and the validation interface Validatlnterf. A
ViewGroup VG-RISCO-Struct is added to the object schema, gathering ali Views of the
RISCO object that correspond to the structural design. One of these Views is V-RISCO­
Struct-Obj , of type MHD, and contains references to four other Designs: OP, CP,
ClockGen, and Validatinterf. Associated to this View, two ViewStates were created: RS 1
and RS2.

RITA • Volume V • Número 1 • Julho 98 95

..

Modeling an engineering design application using extended object-oriented concepts

3.2 Versions in the ST AR framework

Version management in the STAR framework [25] is supported by two different
mechanisms: a) conceptual versioning, which is user-controlled or defined by the design
methodology; b) automatic revision mechanism.

At the conceptual levei, the user or the design methodology may define a particular
object schema for each design object so as to organize design views and alternatives
according to a given strategy. This allows the user to apply a methodology contrai which is
high(y tuned to the design of each object [27]. At this levei , each object has a few number
of versions, represented by the ViewGroups and Views.

At a lower levei, versions can be generated for any node of the object schema, during
the design activity (Figure 7). There are two revision mechanisms. Firstly, to each View
(i .e., each leaf of the object schema) an acyclic graph of ViewStates is associated. Secondly,
the other nades of the object schema (Design, ViewGroup , and View) may have a sequence
of versions, reflecting the changes made to attributes (Ports, UserFields, and Parameters)
that are defined at these nades. The system maintains the correspondence between
ViewStates and versions of their ascendant nades, thus linking each ViewState to the
ascendant nades that were current at the time of its creation.

Each version has a status, representing its design stage. Possible status values are in­
progress, stable, and consolidated. In-progress versions can undergo modifications and
remova!. Stable versions cannot be modified but can be removed, while consolidated
versions can neither be modified nor removed. When a successor is created for a Design,
ViewGroup, or View version , or for a ViewState, the corresponding predecessor(s) is(are)
automatically promoted to stable.

Desian
...

Ports
UserFields

I

ViewGrouo n View i

Ports ... Ports
UserFields UserFields

I I

ViewGrouos and Views

Figure 7 Versions in the STAR data model

96 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

The designer can also explicitly promote any version that should neither be modified
nor removed anymore. -

The concept of current version is used to define the version on which operations will be
applied. Either the user explicitly sets the current version, or the system automatically
maintains the most recent version as the current one. This concept is exactly the same as
that described in section 2.1. There is one current version at each node of the object schema
and also one current ViewState for each View.

The user may change the current version either to return to a previous design phase, or
to create revisions from older versions, or to create new alternatives. A select operation is
provided to change the current version to the selected one. Changing the current version at
a given levei of the object schema may imply changing the current versions of the other
leveis too. The select operation can be performed in one of the following ways: 1) partia!
selection - selects a new current version at only one levei, without changing the current
versions at the other leveis; 2) total selection - selects a new current version at an arbitrary
levei n of the object schema, and propagates the selection to ali upper leveis, by selecting at
eqch level the version which is associated to the chosen one at leve~ n. Total selection can
also be applied to ViewStates, in which case the current versions of the ascending nodes of
the object schema will be changed to the ones that were current at the time the selected
ViewState was created. Mapping of the select operation to the operations described in
section 2.3 is shown in section 5.3.

In the graphical representation used in Figures 6 and 7, versions of nodes Design,
ViewGroup and View that are in the front plan are the current ones. In Figures 6, nodes
RISCO, VG-RISCO-Struct, V-RISCO-Struct-Obj and V-RISCO-Behav have associated
versions, since it is assumed that their attribute values have been changed. The graphs of
ViewStates are represented in their entirety, whereby the ViewStates that are not
descendants of the current version of the corresponding View have a dashed contour. In the
example, ViewStáte RS 1 is not a descendant o f the current version o f View V-RISCO­
Struct-Obj, but of its previous version. In the same way, ViewStates RB 1, RB2 and RB3
were created when the first version of V-RISCO-Behav was the current one and, thus, are
not descendants of the current version.

For each node of the object schema, values can be assigned to its attributes when the
node is created or afterwards, when its descendants are created. For example, values can be
assigned to attributes of the node Design RISCO when the node is created, or when a
descendant ViewState is generated.

4 Mapping the STAR data model to the version model

4.1 Version mapping

When mapping the ST AR data model to the version model, the two versioning modes o f
STAR are represented in a similar way.

Considering the conceptual versioning, each ViewGroup or View is represented by a
versioned object, which is an instance of a defined class. ViewGroups and Views must be
versioned objects, since each reference to any ViewGroup or View is always a generic

RITA • Volume V • Número I • Julho 98 97

Modeling an engineering design application using extended object-oriented concepts

reference to the node, leaving to the system the decision of selecting its current version. In
the same way, the Design node is also represented by a versioned object.

To model the RISCO microprocessor, the classes Microprocessor, MP-structure, MP­
behavior, and MP-V-structure were defined, building an inheritance hierarchy (Figure 8).
Each of these classes has a versioned object as its single instance, representing the
corresponding node o f the se h ema object in ST AR.

MP·

MP-V·

structure

MP-V&

st:ructure

Figure 8 Representation of the RISCO schema object in the version model presented

Concerning automatic versioning, the two revision mechanisms are represented in two
distinct ways. The graph of ViewStates associated to a View is represented by a versioned
object which has the object representing the View as its ascendant object. In the example,
two new classes MP-VS-structure and MP-VS-behavior were defined for these versioned
objects. The versioned objects VS-RISCO-Behav and VS-RISCO-Struct represent the
ViewState graphs and have, respectively , the objects V-RISCO-Behav and V-RISCO­
Struct-Obj as ascendants, which correspond to the Views with the same name.

98 RITA • Volume V • Número 1 • Julho 98

Modeling an engineering design application using extended object-oriented concepts

The second reviSIOn mechanism (versioning of nodes of the schema object) is
implemented by versions that are created for the object representing the node. For example,
versions o f the RISCO Design node are represented by versions m 1 and m2.

The concepts of current version and version status in the STAR framework are
represented by similar concepts in the version model.

4.2 Correspondences among versions

When mapping the STAR data model , correspondences between versions in a given class
and versions in its superclasses are always n:m. Severa! versions of an object in a class can
correspond to the same version o f an object in a superclass (for example, RB 1, RB2 and
RB3 in Figure 8 correspond to the same version b 1). On the other hand, severa! versions of
an object in a superclass can correspond to the same version of an object in a subclass (for
example, m1 and m2 correspond to the version b2).

Since in the STAR model each node of a schema object can be linked to only one
ascendant node, each class will have a single superclass (single inheritance).

InSTAR, whenever a version of a node is created, it is connected to the current version
of the ascendant node. In the version model, while creating a version, the user must
indicate the ascendant object, and if this object has versions, the current one is considered.
To get the correspondences as shown in Figure 8, the objects must have been created in the
order shown in Table 1 (only the left subtree of the hierarchy is shown). Table 1 also shows
the corresponding operations in the version model.

4.3 Partia) and total selection

The mechanisms for version selection in ST AR are supported in the version model in the
following way:

1- Partia! s~ection: the selection of a version or ViewState is implemented by changing
the current version of a versioned object, through the change_current operation.

2- Total selection: this operation implies the modification of the current version at one
node and at ali its ascendant ones. In the version model, this operation is performed
through a sequence of operations change_current and get_ascendant. Change_current
modifies the current version at one node, and get_ascendant returns the corresponding
ascendant. This ascendant version must be made the current one at its node. This sequence
must be repeated until the root of the inheritance hierarchy is reached.

5 Conclusions
This paper presented a version model, in which one of the main characteristics is enabling
definition of versions at various leveis of inheritance hierarchies. It was shown how this
feature allows a more natural modeling of real world situations, specially those in which
the objects are constructed in a top-down process. In this case, the objects at the higher
leveis of the hierarchy may be versioned before the creation of the lower levei objects,
without the use of null values or similar constructions.

RITA • Volume V • Número I • Julho 98 99

Modeling an engineering design application using extended object-oriented concepts

Table 1 Mapping o f operations o f the ST AR data model to the version model

Operations

In the ST AR data model In the version model presented
creation of Design RISCO • creation of class Microprocessor

. • creation of a versioned object (RISCO),
instance o f Microprocessor
• creation o f version m 1

creation of ViewGroup VG-RISCO-Struct • creation of class MP-structure
• creation of a versioned object (VG-
RISCO-Struct), instance of MP-structure,
having object RISCO as ascendant
• creation o f version s 1, having version
m1 as ascendant (current version of
ascendant)

creation of View V-RISCO-Struct-Obj • creation o f class MP-V -structure
• creation o f a versioned object (V-
RISCO-Struct-Obj) , instance o f MP-V-
structure, having object VG-RISCO-
Struct as ascendant
• creation o f version vs 1, having version
s 1 as ascendant (current version o f
ascendant)

creation o f ViewState RS 1 • creation o f class MP-VS-structure •. • creation of a versioned object (VS-
RISCO-Struct), instance o f MP-VS-
structure, having object V-RISCO-Struct-
Obj as ascendant
• creation o f version RS 1, having version
vsl as ascendant (current version of
ascendant)

version creation for Design RISCO • derivation of version m2, as successor of
m1

version creation for ViewGroup VG-RISCO- • derivation of version s2, as successor of
Struct s 1, having version m2 as ascendant
version creation for View V-RISCO-Struct-Obj • derivation of version vs2, as successor

o f vs 1, having version s2 as ascendant
creation of ViewState RS2 • derivation of version RS2, as successor

of RS 1, having version vs2 as ascendant

On the other hand, versions of the same object appearing at different leveis of a
hierarchy introduce the idea of version mapping. These mappings allow a more concise

100 RITA • Volume V • Número 1 • Julho 98

.,------ - - - ---

Modeling an engineering design application using extended object-oriented concepts

representation of the alternatives for object configuration [13]. Configurations are obtained
by the choice of an adequate version at each levei, without the need to explicitly represent
the (often very large) entire set o f permitted combinations, as in those models where
versions of each object are allowed only at one levei of the inheritance hierarchy.

It was shown how the presented version model supports the requirements from the
ST AR data model. The ST AR framework is an engineering design application, which h as
non-conventional requirements in terms of representation of objects and versioning. The
STAR data model, developed to support digital systems design, includes some features that
are not naturally modeled by object-oriented models in which versions of each object are
allowed at only one levei of inheritance hierarchies. STAR versions can be created for any
node of an object schema, requiring the modeling of correspondences among versions at
different leveis.

In this context, mappings among versions were used to model the relationship among
the various nodes o f an object se h ema in ST AR

References

[1] Agrawal , R.; Buroff, S. ; Gehani, N. ; Shasha, D. Object versioning in Ode. In: Int.
Conf on Data Engineering, 7., 1991. p. 446-455 .

[2] Batory, D.S.; Kim, W. Modeling concepts for VLSI CAD objects. ACM
Transactions on Database Systems, v.10, n.3, p.322-346, Sept. 1985.

[3] Beech, D.; Mahbod, B. Generalized version control in an object-oriented database.
In: Int. Conf on Data Engineering, 1988. p.14-22.

[4] Bertino, E.; Martino, L. Object-Oriented Database Systems: Concepts and
Architectures. Addison-Wesley, 1993.

[5] Berkel, J. et ai. Modelling CAD-objects by abstraction. In: Int. Conf on Data and
Knowledge Bases, 3., 1988 . p. 227-240.

[6] Biliris, A. Modeling design object relationships in PEGASUS. In: Int. Conf on Data
Engineering , 6., 1990. p. 228-236.

[7] Bjornerstedt, A.; Hultén, C. Version control in an object-oriented architecture. In:
Kim, W. ; Lochovsky, F.H. (eds.). Object-Oriented Concepts, Databases, and
Applications. ACM Press, p. 451-485, 1989.

[8] Breitl , R. The GemStone data management system. In: Kim, W.; Lochovsky, F.H.
(eds.). Object-Oriented Concepts, Databases, and Applications. ACM Press, p. 283-
308, 1989.

[9] Carey, M.J.; Dewitt, D.J.; Vandenberg, S. A data model and query language for
EXODUS. In: ACM SIGMOD Conf, 1988.

[10] Deux et ai. The story of 02. IEEE Transactions on Knowledge and Data
Engineering, v.2, n.1, p.91-108, Mar. 1990.

[11] Dittrich, K.R.; Gotthard, W.; Lockemann, P.C. DAMOKLES- a database system for
software engineering environments. In: Workshop on Advanced Programming
Environments , June 1986. p. 353-371.

[12] Dittrich, K. ; Lorie, R. Version support for engineering database systems. IEEE
Transactions on Software Engineering, v.14, n.4, p. 429-437, Apr. 1988.

RITA • Volume V • Número 1 • Julho 98 101

Modeling an engineering design application using extended object-oriented concepts

[13] Golendziner, L.G.; Santos, C.S. Versions and configurations in object-oriented
database systems: a uniform treatment. In: lnt. Conf on Management of Data
(COMAD) , 7., 1995. p.18-37.

[14] Hudson, S.E.; King, R. Object-oriented database support for software environments.
In : ACM SIGMOD Conf, 1987. p.491-503.

[15] Jones, M.C.; Rundensteiner, E.A. Extending view technology for complex
integration tasks. In: lnt. /FIP Working Conf on Electronic Design Automation
Frameworks, 4. , 1994. p.76-85.

[16] Katz, R.H. Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys, v.22, n.4, p. 375-408, Dec. 1990.

[17] Kim, W.; Banerjee, J. ; Chou, H.T.; Garza, J.F. ; Woelk, D. Composite object
support in an object-oriented data base system. In: OOPSLA , 1987. p. 118-125.

[18] Kim, W.; Bertino, E.; Garza, J.F. Composite objects revisited. In: ACM SIGMOD
Conf, 1989. p.337-347.

[19] Kim, W. et ai. Architecture of the ORION next-generation database system. IEEE
Transactions on Knowledge and Data Engineering, v.2, n.1, p.109-124, Mar. 1990.

[20] Klahold, P.; Schlageter, G.; Wi lkes, W. A general model for version management in
databases. In: VLDB, 12., 1986. p. 319-327.

[21] McLeod, D.; Narayanaswamy, K.; Bapa Rao, K. An approach to information
management for CADNLSI applications. In: ACM Conf on Databases for
Engineering Applications, 1983. p.39-50.

[22] Miller, J.; Grê:ining, K.; Schulz, G.; White, C. The object-oriented integration
methodology of the CADlab work station design environment. In : ACMIIEEE
DesignAutomation Conference , 29. , 1989.

[23] Ramakrishnan, R.; Ram, D. Janaki. Modeling design versions. In: VLDB , 22., 1996.
p. 556-566.

[24] Sciore, E. Versioning and configuration management in an object-oriented data
model. VLDB Journal, v.3 , p. 77-106, Jan. 1994.

[25] Wagner, F.R.; Golendziner, L.G. ; Lacombe, J. ; Lima, A.V: Design version
management in the STAR framework. In : Newman, M.; Rhyne, T. (eds.). 3rd IFIP
Workshop on Electronic Design Automation Frameworks, 1992. p 85-97.

[26] Wagner, F.R. Modeling the Design Methodology for the RISCO Microprocessor.
Research Report 174, 1992.

[27] Wagner, F.R.; Golendziner, L.G.; Fornari, M.R. A tightly coupled approach to
design and data management. In: EURO-DAC, 1994. p.194-199.

[28] Wolf, Wayne. An object-oriented, procedural database for VLSI chip planning. In:
ACM/IEEE Design Automation Conference, 23., 1986. p 744- 751.

Artigo originalmente publicado em: INTERNATIONAL CONFERENCE on DATABASE
SYSTEMS for ADVANCED APPLICATIONS (DASFAA), 5., Melbourne, Australia, Apr.
1-4, 1997. Proceedings. Singapore: World Scientific, 1997. p.343-352.

102 RITA • Volume V • Número 1 • Julho 98

