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Abstract 
This paper presents an approach to extend object-oriented data models, in which versions 
of an object are allowed to appear at different leveis of an inheritance hierarchy, in contràst 
to the known approaches where they are admitted only at one levei. This approach allows 
the design and instantiation of objects to become very natural, starting with the design of an 
object in a class and refining it, adding properties to the subclasses. Versions of objects can 
be defined in a subclass, having ascendant versions/objects associated to the superclasses. 
The paper also discusses how the extended model can be used to model engineering 
applications, fulfilling their requirements . The application is the STAR framework, which 
implements an innovative and flexible data model that allows the user to define an object 
schema for each design object. Design alternatives and views can be created during the 
design process andare represented in the object schema. Versioning appears in the STAR 
model not only for the real design data, but also for alternatives and views in the object 
schema. This requirement is not naturally modeled by the existing version models m 
object-oriented databases. 

Keywords object-oriented databases, engineering databases, data modeling, versions 

1 Introduction 
Research related to versions was motivated by the requirements of some application 

areas, mainly Engineering applications (CAD-Computer Aided Design), Software 
Engineering (CASE-Computer Aided Software Engineering) , Manufacturing (CAM-

1 Computer Aided Manufacturing), Office Automation, Hyperdocuments and Historie 
Data bases. 

Efforts in engineering applications focused mainly at the problems related to object 
representation [2,5, 11,12,14,20,21], and are based in semantic data models such as the 
Entity-Relationship Model (the most frequently used one). Katz [16] argued that many 
proposals presented in the area of engineering applications were similar, and proposed a 
basic terminology together with a collection of mechanisms that must be present in any 
approach to represent this kind of application. 
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Modeling an engineering design application using extended object-oriented concepts 

Currently there is a trend to extend object-oriented database models and systems with 
version concepts and mechanisms, aiming at the definition of a framework, that may be 
refined to support many classes of applications [1,7 ,19,24] . In the context of object­
oriented database systems, versions allow the simultaneous representation of many object 
states. A version represents an identifiable state of an object, considered by the user as 
semantically significant, and must be treated by the data model as any other object in the 
system. 

On the other hand, few results have been reported on the use of these object-oriented 
models by engineering applications [15 ,22,23 ,28]. 

The STAR framework [27], which is being developed at UFRGS (Federal University of 
Rio Grande do Sul - Brazil), is an Electronic Design Automation Framework which 
implements an innovative and flexible data model , that allows the user to define, for each 
object type, a schema of design alternatives and views to be created during the design 
process [25]. During the development of this project it was observed that the STAR data 
model has some requirements not adequately satisfied by the existing object-oriented 
models. These requirements include representation o f versions at more than _one abstraction 
levei in an inheritance hierarchy and support for definition and manipulation of 
configurations. 

Some object-oriented database models allow versions, but only at the most specialized 
type/class in an inheritance hierarchy [1 ,3,18]. The possibility of having versions 
simultaneously at different leveis of abstraction provides a richer model and allows a more 
natural representation o f the reality. On the other hand, when versions can be associated to 
database objects , the user may be required to choose, from a possibly large set of options, 
the specific combination of versions that will be associated to the components of a complex 
object in each situation. Each combination of specific component versions of an object is 
called a configuration. 

The version model introduced in ['1 3] and used in this paper handles configurations as 
versions, introducing a very useful possibility of combining versions and configurations to 
construct other versions, as well as deriving new versions from configurations. 
Configurations are out of the scope of this paper and the adopted approach is described in 
[13]. 

This work focuses on version modeling at the application levei, to support the 
requirements from engineering applications. A version model is presented, in which the 
versioning of objects at ali leveis of an inheritance hierarchy is allowed, not restricting 
versioning to only one levei. It is shown how this extension to the object-oriented paradigm 
allows a more natural modeling of many real world situations, specially when the objects 
are constructed in a top-down process. A concrete application, the ST AR framework, is 
presented, and its requirements in terms of versioning of objects are outlined. 

The remainder of the paper is organized as follows. Section 2 presents the version 
model, highlighting its basic concepts and the possibility of having object and version 
hierarchies. Section 3 presents the data model o f the ST AR framework , and illustrates it 
through an application, that represents a design of a microprocessor named RISCO. Section 
4 describes the mapping o f the ST AR data model to the version model presented in section 
2, and the main conclusions of this work are presented in section 5. 
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2 The version model 

2.1 Version and versioned object 

A version is an instance of an object at a given point in time or from a certain point of 
view, which is considered relevant for a defined application. In an object-oriented model, a 
version is a first class object, having an Object Identifier (OID). A version can then be 
directly manipulated or queried . 

Versions of a real world entity must be kept together and constitute a versioned object. 
A versioned object is also a first class object and maintains information about its associated 
versions. A versioned object can have properties, which should be common to ali its 
versions. Each version belongs to exactly one versioned object. 

Considering that applications cannot always determine if an object will present versions 
or not, objects can dynamically change from non-versioned to versioned. 

Objects (versioned or not) having the same properties and behavior can be grouped into 
classes. Since the feature of being versioned belongs to an obje<;t and not to a class, a class 
can have versioned as well as non-versioned objects as instances. 

An automobile under design can be considered as a versioned object, having severa! 
associated versions, which represent the different stages or alternatives considered 
throughout the design. Figure 1 illustrates this example, where the severa! alternatives of an 
automobile are shown. The notation used is based on that introduced in [17] . 

Automobile 

•. 

c=J Class <==) Versioned Object Qversion 

Figure 1 Versioned object and its versions 

Each versioned object has one version considered as its current version. The current 
version is automatically maintained by the system as the most recently created one. lf the 
designer wants a different version to be considered as the current one, he can specify it, but 
in this case the current version will remain fixed and will not change automatically with the 
creation of new versions (as in [18]). The current version is used whenever an operation is 
applied to a versioned object and does not specify one of its versions. 
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2.2 Version properties 

Versions of a versioned object are related through a derivation relationship, which forms a 
directed acyclic graph. For the version mille (Figure 1), version cs is called its predecessor 
and version elx, its successor. A version can have severa! successors and predecessors. 

Versions have a status, that can be working, stable, or consolidated (similar to the 
classification in [3,18]), reflecting their robustness. Operations on versions are restricted, 
acc9rding to their status. A working version is essentially a temporary version that has to 
undergo modifications to reach a more stable status. A stable version has reached more 
stability and can be shared. Stable versions cannot be modified, but can be removed. A 
consolidated version is a final version that can neither be modified nor removed. 

New versions are created with the working status. When a version is derived from 
another one, its predecessors are automatically promoted to stable, thus avoiding 
modifications on versions that were important from a historical point of view. The user can 
explicitly promote versions from working to stable, or from stable to consolidated. 

2.3 Object and version hierarchies 

This section presents the proposal of object versioning at different leveis of an inheritance 
hierarchy. The advantages of this approach in modeling applications are discussed and 
compared to the traditional approach where versions are restricted to one levei of the 
hierarchy. 

Inheritance 

Inheritance is one of the basic concepts in object-oriented databases [4] and one of the 
reusability mechanisms. Refinement and extension [6] are the two ways in which 
inheritance can occur. " 

Inheritance by refinement is the most traditional approach , corresponding to the is-a 
relationship between objects. Considering T2 as a subtype o f TI , each T2-object is a 
"special case" of a Tl-object and can be used whenever a Tl-object is expected [24] . In this 
case, there is a migration of properties through the leveis of the hierarchy, from top to 
bottom. The leaves may be seen as complete instances of the objects , including ali the non­
conflicting properties of their ascendants, as well as those resulting from the conflict 
resolutions. This type of inheritance is present in many object-oriented database systems, 
such as 02 [10], ORION [19] and GemStone [8]. 

Extension inheritance is related to the idea of prototypes and appears in data models 
such as PEGASUS [6,24] (extension ofEXTRA [9]). Each T2-object has an associated Tl­
object (called prototype in [6] and herein called ascendant). In this case, each property 
refers to a specific levei of the hierarchy, modeling some relevant aspect of the real world 
object. References to attributes that are not defined in T2 are delegated to its associated Tl­
object. 
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Object and version mapping 

When refinement inheritance is used , objects and their corresponding versions appear at 
only one levei of the hierarchy [3 ,7, 18]. In the version model presented in this paper, where 
extension inheritance is used, versions of each object are aliowed at ali leveis. In this way, 
object modeling and instantiation can be done at various leveis of abstraction, and the 
definition or redefinition of object properties can be done at any levei. 

Lets assume the schema presented in Figure 2, which represents an inheritance 
hierarchy: Vehicle is a superclass and Automobile and Truck are subclasses. The example in 
Figure 3 shows the modeling of versions at more than one levei of this inheritance 
hierarchy. 

Vehicle • motor 
• fuel 

/~ 
Automobile Truék 

• drivetrain 
• accessories 

• load capacity 

Figure 2 Example schema 

The real world entity fiat-uno is represented at two leveis of abstraction: Vehicle, with 
the properties motor and fuel (fiat-uno-v), and Automobile, with the properties drivetrain 
and accessories (fiat-uno-a). At each of these leveis, there are versions associated to the 
corresponding versioned objects. 

In this way, tRe design of a new automobile may be carried on starting at the top levei 
and having the details of the other leveis specified !ater. In the example, a new automobile 
may be designed starting with its characteristics at the Vehicle levei, thus creating the 
versions at this levei (for example, versions vi and v2 can be created). In a further step, the 
versions at the Automobile levei (for example, version cs) may be created and linked to 
their ascendants (version cs is linked to vi and v2) . 

Each version at a subclass must have at least one corresponding ascendant, to which it 
is linked at creation time. In some situations, one version may have more than one 
ascendant. This flexibility is important, aliowing the designer to concentrate at one levei at 
a time during the design process, as weli as to determine ali the possible combinations of 
one version with versions at higher leveis of the inheritance hierarchy. 

In the example, version cs of fiat-uno-a, at the Automobile levei, can be combined with 
two different versions of fiat-uno-v (versions vi and v2), at the Vehicle levei. These 
combinations represent two possible configurations for a fiat-uno: version cs having v i as 
ascendant (using gas as fuel), and version cs having v2 as ascendant (using alcohol as fuel). 

On the other hand , the same version in a superclass may correspond to more than one 
version in a subclass. This situation occurs in the example of Figure 3, where one version at 
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the Vehicle levei (ex: v3) corresponds to two versions at the Automobile levei (ex: mille and 
elx). 

+'*' 
1 correspondence 

.. 
Figure 3 Versions represented at more than one levei of the inheritance hierarchy and 

their correspondences 

In this way, correspondences (mappings) are defined between versions of an object at 
one levei and versions of their corresponding ascendants in the superclass. In Figure 3, the 
mapping is n:m. Each version in the class Automobile may correspond to n versions in the 
superclass Vehicle, and vice versa. The mapping defines an integrity constraint, which is 
specified with the definition of the inheritance relationship between a class and its 
superclass, in the database schema. lt is system's responsibility to enforce the constraint. 
The mappings defined among versions may be n:m, as in Figure 3, 1:1, 1:n, or n:1. 

When one needs to get an object including properties from ali leveis, the process starts 
at the most specialized levei, with the choice of one ascendant for each related superclass. 
The ascendant may be explicitly identified by its OID, or by means of pre-defined criteria: 
recent (most recent), first (the oldest), or current (the one specified as current) . The 
criterion will be used when more than one ascendant version is linked to the desired version 
or object. 
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Versioned and non-versioned objects may exist in the same inheritance hierarchy. Non­
versioned objects and versioned objects that have no versions are considered as a version, 
when the mapping constraint must be verified. 

Without the possibility of representing versions at various leveis of the inheritance 
hierarchy, other features of a data model could be used, but they do not result in adequare 
models in many situations. These alternative features are analyzed below. 

Considering the fiat-uno example, one alternative would be to start creating one 
version of a Vehicle object, which would be !ater on refined, by the addition of Automobile 
properties. The solution would be to migrate the Vehicle object to the Automobile subclass. 
The problem with this solution is that object migration in general is not allowed. The 
reason commonly pointed out is the need to redefine the OID of the migrating object 
(beca use the class is part o f the OID [ 19]), as well as the OID o f the possible existing 
versions derived from the migrating version/object. 

Another possibility is the creation of versions directly in the class Automobile, but only 
with the Vehicle properties (the other properties receiving null values, which will be 
redefined lat.er). In this case, a restriction must be imposed: the actual val!JeS for the 
undefined properties must be set before deriving a new version from this one (because the 
model establishes that, when a new version is derived, its ancestors may not be changed 
anymore). 

In addition , when versions are allowed at only one levei , it is difficult to find out 
differences and similarities between the versions, concerning the characteristics defined at 
different leveis of the inheritance hierarchy. Figure 4 presents a possible representation of 
the situation modeled in Figure 3, but with versions appearing at only one levei. 

Operations defined for objects and versions 

The operations defined for objects and versions can be classified into three groups: 
operations for creation, operations for navigation in the inheritance hierarchy, and 
operations for retrieval of versions/objects. 

The operators concerning creation o f versions are the following : 

create_ versioned_object (class): OID; 
derive_ version (set(OID) 

[, ascendant: [class 1 :] set(OID) ... ] 
[, descendant: [class2:] set(OID) ... ]): OID; 

Version creation can occur in one of the following ways: 
1) creation of a versioned object and afterwards creation of versions for it. The 

possibility of creating a versioned object without versions allows references to the 
versioned object, so that top-down designs can be carried on . Derivation of versions can 
then proceed, using the versioned object OID as a parameter; 
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Vehic/e 

Automobile 

Figure 4 Versions only at the most specialized class 

2) derivation of a version from an existing one (or more than one). The new version is a 
copy of its predecessor. If more than one version is used as parameter, only the first one is 
copied, but a derivation relationship is kept with ali of them; 

3) a version can be derived for an object that was non-versioned up to this moment. In 
this case, the non-versioned objeêt becomes the first version of a new versioned object, and 
a new version is derived from it. 

When a version is created, it must be necessarily connected to an ascendant 
version/object. Optionally, descendants can be informed. 

Operations for navigation in the inheritance hierarchy allow the retrieval of ascendants 
and descendants of an object, in given classes. The operations are: 

get_ascendant (OID, class [criterionl"*"]): set (OID ascendant object ); 
get_desce~dant (OID, class [criterionl"*"]): set (OID descendant object); 

If more than one ascendant version exists for the desired version, either ali the versions 
can be returned (option *), or only one, according to the specified criterion. The criterion 
could either indicate a manual selection, when the OID of the ascendant version is given, or 
an automatic selection, when one of the following pre-defined criteria is given: recent, 
first, or current (recent is used as default). The get_descendant operation is similar to the 
get_ascendant one, but it is applied to descendant objects in the identified subclass. 

Retrieval of objects can be made through the following operations: 
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get_object (010): list(attribute values) ; 
get_complete_object (010 [, ascendant: classl [: criterion] 

[, class2 [: criterion]] ... J): list(OIO); 
The operator get_object retrieves the values of those attributes defined in the class to 

which the object belongs. This operation returns the attributes that are defined at a single 
levei of the inheritance hierarchy. To retrieve ali the attributes of a real world entity 
modeled in the database, navigation must be performed along the hierarchy, so that ali 
objects representing the given entity are retrieved. The operation get_complete_object was 
defined with this purpose and returns the ascendants of an object in the inheritance 
hierarchy, one for each superclass. If only some ascendants are desired, the desired classes 
must be identified. When there is more than one ascendant for a version , the criterion is 
used to select only one, exactly as in the operations get_ascendant and get_descendant. 

Besides these operations, operations for navigation in the version derivation graph are 
also provided (get_first_ version, get_last_ version, get_successor, get_predecessor, 
get_ versioned_object). 

It must be noted that ali the operations presented in this section apply also to versioned 
objects, in which case the current version will be considered. 

3 The data model o f the ST AR framework 
In the following sections the concepts of the STAR framework that are relevant to this 
work will be described. An example of an application of STAR is given to illustrate these 
concepts. The mapping from the ST AR concépts to the version model is presented in 
Section 4. 

3.1 Object types 

A real world entity being designed in the ST AR framework is represented by a Design 
object (Figure 5). Each Design object gathers an arbitrary number of ViewGroups and 
Views 1. ViewGroups may in turn gather, according to application-defined criteria, any 
number of other ViewGroups and Views, building a tree-like hierarchical object schema. 
Three types of Views are supported : HDL Views , for behavioral descriptions, MHD Views 
(Modular Hierarchical Description), for structural descriptions , and Layout Views, for 
geometric descriptions. In ali View types, objects can be described as a composition of sub­
objects that are instances of other objects. 

ViewGroups can be used, for instance, to build a hierarchy of design decisions, where 
alternatives for a given design state are appended to the ViewGroup that corresponds to this 
state and represented by another ViewGroup or View. The advantages and generality of this 
data modelare stressed elsewhere [25,27]. 

1 The concept o f VieiV is not that o f the database field , but corresponds to the description o f a design object at a 
given abstraction levei (electrical, gate-level, etc.). 
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Design 

1-'orts 

Usert=ields 

I 
I I 

Viev.G"a.p 1 View1 
I& 

1-'orts )'i! 1-'orts ... 
Usert=ields Usert=ields 

'i) 
I ' <?: 

VíeW::>'tates 

I 
Viev.G"a.p k Viewj 

1-'orts .. . 1-'orts 
UserHelds UserHelds 

I I 
I 

Viev,Guups and Vie'NS Viev..6'tates 

Figure 5 The ST AR data model 
The hierarchy formed by Design, ViewGroup and View nodes defines properties of the 

entity being designed and is an inheritance hierarchy. Each node has properties that may be 
inherited by its descendant nodes (éxtension inheritance). Not only the existence of an 
attribute is inherited by the descendant nodes, but also its value, when defined. The role of 
Design, ViewGroups and Views is to organize the various representations of a design 
object, ensuring consistency for common properties, through the inheritance mechanism. 
Thus, each node contains properties that are shared by the representations it gathers . 

ViewStates contain the real design data that correspond to the various design 
representations, such as layouts, HDL (Hardware Description Language) descriptions and 
structural decompositions . ViewStates correspond to revisions created for each View. 

Properties of each node of the object schema can be of one of three types : Port, 
UserField, and Parameter. Ports represent interface signals and can also present properties. 
UserFields are user-defined attributes and have a name and a domain. Parameters allow 
the designer to build parameterized, generic objects. 

An example of an application in the STAR framework is the design of the 
microprocessor RISCO, a 32-bit microprocessor developed at UFRGS . Figure 6 shows part 
of the object schema corresponding to the design of this microprocessor. A more complete 
description can be found in [26] . 
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HI~CU 

Design 

Max-area 
Max-power-dissipation 
Min-e lock-frequency 

--- -......:-- -:: 
V G-HI~CU-~truct v -HI~Cu-t:Sehav 

ViewGroup HDLView 

/ I 
I 

V-HI~Cu-~truct-Ubj ... " - " 1 Ht:S2 1 

MHDView _,....,..*"-..,("' I 

' Ht:Sl "-" 
UP '"~~'"~' 
CP , RB3 J 
ClockGen " -"" Va lidat-lnterf 

Figure 6 Object schema for the microprocessor RISCO 
" The methodology for the microprocessor behavioral design specifies the RISCO Design 

object and its initial object schema, including Views that contain behavioral related 
information . V-RISCO-Behav, of type HDL, is one of these Views, corresponding to an 
initial behavioral specification of the microprocessor written in some hardware description 
language. As a result o f the design process, ViewStates (RB 1, RB2 and RB3) are created 
for this View. The RISCO object has three initial attributes, corresponding to requirements 
set by the design manager: maximum area (Max-area), maximum power dissipation (Max­
power-dissipation), and minimum clock frequency (Min-clock-frequency). These 
attributes, with their corresponding values, are defined at the root of the object schema. 

A structural representation is manually generated from the behavioral one. The circuit is 
partitioned into its four main structural blocks: the operational block OP, the control block 
CP, the clock generator ClockGen, and the validation interface Validatlnterf. A 
ViewGroup VG-RISCO-Struct is added to the object schema, gathering ali Views of the 
RISCO object that correspond to the structural design. One of these Views is V-RISCO­
Struct-Obj , of type MHD, and contains references to four other Designs: OP, CP, 
ClockGen, and Validatinterf. Associated to this View, two ViewStates were created: RS 1 
and RS2. 
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3.2 Versions in the ST AR framework 

Version management in the STAR framework [25] is supported by two different 
mechanisms: a) conceptual versioning, which is user-controlled or defined by the design 
methodology; b) automatic revision mechanism. 

At the conceptual levei, the user or the design methodology may define a particular 
object schema for each design object so as to organize design views and alternatives 
according to a given strategy. This allows the user to apply a methodology contrai which is 
high(y tuned to the design of each object [27]. At this levei , each object has a few number 
of versions, represented by the ViewGroups and Views. 

At a lower levei, versions can be generated for any node of the object schema, during 
the design activity (Figure 7). There are two revision mechanisms. Firstly, to each View 
(i .e., each leaf of the object schema) an acyclic graph of ViewStates is associated. Secondly, 
the other nades of the object schema (Design, ViewGroup , and View) may have a sequence 
of versions, reflecting the changes made to attributes (Ports, UserFields, and Parameters) 
that are defined at these nades. The system maintains the correspondence between 
ViewStates and versions of their ascendant nades, thus linking each ViewState to the 
ascendant nades that were current at the time of its creation. 

Each version has a status, representing its design stage. Possible status values are in­
progress, stable, and consolidated. In-progress versions can undergo modifications and 
remova!. Stable versions cannot be modified but can be removed, while consolidated 
versions can neither be modified nor removed. When a successor is created for a Design, 
ViewGroup, or View version , or for a ViewState, the corresponding predecessor(s) is(are) 
automatically promoted to stable. 

Desian 
... 

Ports 
UserFields 

I 

ViewGrouo n View i 

Ports ... Ports 
UserFields UserFields 

I I 

ViewGrouos and Views 

Figure 7 Versions in the STAR data model 
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The designer can also explicitly promote any version that should neither be modified 
nor removed anymore. -

The concept of current version is used to define the version on which operations will be 
applied. Either the user explicitly sets the current version, or the system automatically 
maintains the most recent version as the current one. This concept is exactly the same as 
that described in section 2.1. There is one current version at each node of the object schema 
and also one current ViewState for each View. 

The user may change the current version either to return to a previous design phase, or 
to create revisions from older versions, or to create new alternatives. A select operation is 
provided to change the current version to the selected one. Changing the current version at 
a given levei of the object schema may imply changing the current versions of the other 
leveis too. The select operation can be performed in one of the following ways: 1) partia! 
selection - selects a new current version at only one levei, without changing the current 
versions at the other leveis; 2) total selection - selects a new current version at an arbitrary 
levei n of the object schema, and propagates the selection to ali upper leveis, by selecting at 
eqch level the version which is associated to the chosen one at leve~ n. Total selection can 
also be applied to ViewStates, in which case the current versions of the ascending nodes of 
the object schema will be changed to the ones that were current at the time the selected 
ViewState was created. Mapping of the select operation to the operations described in 
section 2.3 is shown in section 5.3. 

In the graphical representation used in Figures 6 and 7, versions of nodes Design, 
ViewGroup and View that are in the front plan are the current ones. In Figures 6, nodes 
RISCO, VG-RISCO-Struct, V-RISCO-Struct-Obj and V-RISCO-Behav have associated 
versions, since it is assumed that their attribute values have been changed. The graphs of 
ViewStates are represented in their entirety, whereby the ViewStates that are not 
descendants of the current version of the corresponding View have a dashed contour. In the 
example, ViewStáte RS 1 is not a descendant o f the current version o f View V-RISCO­
Struct-Obj, but of its previous version. In the same way, ViewStates RB 1, RB2 and RB3 
were created when the first version of V-RISCO-Behav was the current one and, thus, are 
not descendants of the current version. 

For each node of the object schema, values can be assigned to its attributes when the 
node is created or afterwards, when its descendants are created. For example, values can be 
assigned to attributes of the node Design RISCO when the node is created, or when a 
descendant ViewState is generated. 

4 Mapping the STAR data model to the version model 

4.1 Version mapping 

When mapping the ST AR data model to the version model, the two versioning modes o f 
STAR are represented in a similar way. 

Considering the conceptual versioning, each ViewGroup or View is represented by a 
versioned object, which is an instance of a defined class. ViewGroups and Views must be 
versioned objects, since each reference to any ViewGroup or View is always a generic 
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reference to the node, leaving to the system the decision of selecting its current version. In 
the same way, the Design node is also represented by a versioned object. 

To model the RISCO microprocessor, the classes Microprocessor, MP-structure, MP­
behavior, and MP-V-structure were defined, building an inheritance hierarchy (Figure 8). 
Each of these classes has a versioned object as its single instance, representing the 
corresponding node o f the se h ema object in ST AR. 

MP· 

MP-V· 

structure 

MP-V& 

st:ructure 

Figure 8 Representation of the RISCO schema object in the version model presented 

Concerning automatic versioning, the two revision mechanisms are represented in two 
distinct ways. The graph of ViewStates associated to a View is represented by a versioned 
object which has the object representing the View as its ascendant object. In the example, 
two new classes MP-VS-structure and MP-VS-behavior were defined for these versioned 
objects. The versioned objects VS-RISCO-Behav and VS-RISCO-Struct represent the 
ViewState graphs and have, respectively , the objects V-RISCO-Behav and V-RISCO­
Struct-Obj as ascendants, which correspond to the Views with the same name. 
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The second reviSIOn mechanism (versioning of nodes of the schema object) is 
implemented by versions that are created for the object representing the node. For example, 
versions o f the RISCO Design node are represented by versions m 1 and m2. 

The concepts of current version and version status in the STAR framework are 
represented by similar concepts in the version model. 

4.2 Correspondences among versions 

When mapping the STAR data model , correspondences between versions in a given class 
and versions in its superclasses are always n:m. Severa! versions of an object in a class can 
correspond to the same version o f an object in a superclass (for example, RB 1, RB2 and 
RB3 in Figure 8 correspond to the same version b 1). On the other hand, severa! versions of 
an object in a superclass can correspond to the same version of an object in a subclass (for 
example, m1 and m2 correspond to the version b2). 

Since in the STAR model each node of a schema object can be linked to only one 
ascendant node, each class will have a single superclass (single inheritance). 

InSTAR, whenever a version of a node is created, it is connected to the current version 
of the ascendant node. In the version model, while creating a version, the user must 
indicate the ascendant object, and if this object has versions, the current one is considered. 
To get the correspondences as shown in Figure 8, the objects must have been created in the 
order shown in Table 1 (only the left subtree of the hierarchy is shown). Table 1 also shows 
the corresponding operations in the version model. 

4.3 Partia) and total selection 

The mechanisms for version selection in ST AR are supported in the version model in the 
following way: 

1- Partia! s~ection: the selection of a version or ViewState is implemented by changing 
the current version of a versioned object, through the change_current operation. 

2- Total selection: this operation implies the modification of the current version at one 
node and at ali its ascendant ones. In the version model, this operation is performed 
through a sequence of operations change_current and get_ascendant. Change_current 
modifies the current version at one node, and get_ascendant returns the corresponding 
ascendant. This ascendant version must be made the current one at its node. This sequence 
must be repeated until the root of the inheritance hierarchy is reached. 

5 Conclusions 
This paper presented a version model, in which one of the main characteristics is enabling 
definition of versions at various leveis of inheritance hierarchies. It was shown how this 
feature allows a more natural modeling of real world situations, specially those in which 
the objects are constructed in a top-down process. In this case, the objects at the higher 
leveis of the hierarchy may be versioned before the creation of the lower levei objects, 
without the use of null values or similar constructions. 
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Table 1 Mapping o f operations o f the ST AR data model to the version model 

Operations 

In the ST AR data model In the version model presented 
creation of Design RISCO • creation of class Microprocessor 

. • creation of a versioned object (RISCO), 
instance o f Microprocessor 
• creation o f version m 1 

creation of ViewGroup VG-RISCO-Struct • creation of class MP-structure 
• creation of a versioned object (VG-
RISCO-Struct), instance of MP-structure, 
having object RISCO as ascendant 
• creation o f version s 1, having version 
m1 as ascendant (current version of 
ascendant) 

creation of View V-RISCO-Struct-Obj • creation o f class MP-V -structure 
• creation o f a versioned object (V-
RISCO-Struct-Obj) , instance o f MP-V-
structure, having object VG-RISCO-
Struct as ascendant 
• creation o f version vs 1, having version 
s 1 as ascendant ( current version o f 
ascendant) 

creation o f ViewState RS 1 • creation o f class MP-VS-structure •. • creation of a versioned object (VS-
RISCO-Struct), instance o f MP-VS-
structure, having object V-RISCO-Struct-
Obj as ascendant 
• creation o f version RS 1, having version 
vsl as ascendant (current version of 
ascendant) 

version creation for Design RISCO • derivation of version m2, as successor of 
m1 

version creation for ViewGroup VG-RISCO- • derivation of version s2, as successor of 
Struct s 1, having version m2 as ascendant 
version creation for View V-RISCO-Struct-Obj • derivation of version vs2, as successor 

o f vs 1, having version s2 as ascendant 
creation of ViewState RS2 • derivation of version RS2, as successor 

of RS 1, having version vs2 as ascendant 

On the other hand, versions of the same object appearing at different leveis of a 
hierarchy introduce the idea of version mapping. These mappings allow a more concise 
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representation of the alternatives for object configuration [13]. Configurations are obtained 
by the choice of an adequate version at each levei, without the need to explicitly represent 
the ( often very large) entire set o f permitted combinations, as in those models where 
versions of each object are allowed only at one levei of the inheritance hierarchy. 

It was shown how the presented version model supports the requirements from the 
ST AR data model. The ST AR framework is an engineering design application, which h as 
non-conventional requirements in terms of representation of objects and versioning. The 
STAR data model, developed to support digital systems design, includes some features that 
are not naturally modeled by object-oriented models in which versions of each object are 
allowed at only one levei of inheritance hierarchies. STAR versions can be created for any 
node of an object schema, requiring the modeling of correspondences among versions at 
different leveis. 

In this context, mappings among versions were used to model the relationship among 
the various nodes o f an object se h ema in ST AR 
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