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Abstract: Weld bead geometry is a critical factor for determining the quality of welded joints, for this the welding process 
input parameters play a key role. In this study, the relationships between welding process variables and the size of the 
weld bead produced by pulsed GMAW process were investigated by a neural network trained with Bayesian–Regulation 
Back Propagation algorithm and a second degree regression models. A series of experiments were carried out by 
applying a Box-Behnken design of experiment. The results showed that both models can predict well the bead geometry. 
However, the neural network model had a slightly better performance than the second-order regression model. Both 
models can be used for further analyses and using them may surmount or reduce the need of experimental procedures 
especially in thermal analysis validations of welding finite element modelling. 
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1. Introduction 
The quality of a welded joint is directly influenced by the input parameters during the welding process. Unfortunately, a 

common problem for manufacturers is the control of the process input parameters to obtain a welded joint with the required 
bead geometry and quality. For this, it has been necessary to determine the weld input parameters for almost every new welded 
product to obtain the required specifications, which requires the application of the trial and error method, where the weld input 
parameters are chosen by the skill of the engineer or machine operator [1]. Besides, fusion welding processes submit the 
materials to heating and cooling thermal cycles, which induce distortion and residual stresses and affects the joint mechanical 
properties. However, it is very difficult to quantify the thermal gradients and temperature fields by experimental tests. Thus, a 
numerical simulation becomes a powerful tool for the prediction of the workpiece temperature and residual stress in welding 
processes. However, one of the challenges in finite element modelling of welded structures is to define a heat source model 
which is accurately able to perform the heat input simulation. Usually, some of the input parameters of a selected heat source 
model, regarding the bead geometry, are estimated based on experimental measurements. Therefore, new methods to estimate 
the bead geometry and the heat source model are vital in order to reduce the amount of experimental work. 

Statistical and numerical methods are used to correlate the relationship between process variables and responses and 
optimization of the processes, such as factorial design, linear regression, second-order regression, Taguchi method, and artificial 
network. Xiong et al. [2] observed that the linear regression method does not provide adequate accuracy for bead geometry 
prediction, Taguchi method can’t lead to an optimal solution, and factorial design method needs a large number of experiments. 
However, it is known that these behaviors depend on the analyzed data set. Artificial neural network (ANN) and second order 
regression methods have been demonstrated to be powerful tools to establish welding process models. The ANNs exhibits a great 
capacity to perform nonlinear and multivariable mappings [2]. Kim et al. [3] compared the multiple regression and back propagation 
neural network approaches to study relationships between process parameters and top bead height for robotic multipass gas metal 
arc welding process. The back propagation neural network (BPNN) was considerably more accurate than multiple regressions. 
Towsyfyan et al. [4] compared the Regression Analysis and Artificial Neural Network for estimating the weld bead height, width and 
penetration based on the input parameters in the Submerged Arc Welding (SAW) process. Based on the results, they concluded 
that the designed neural network was markedly more accurate than the regression equations, but both models have high 
capabilities for SAW parameters optimization and also to predict the bead geometry for a set of input values. Xiong et al. [2] applied 
the neural network and a second-order regression analysis for predicting bead geometry in robotic gas metal arc welding for rapid 
manufacturing. A series of experiments were carried out by applying a central composite rotatable design, the results demonstrate 
that both the proposed models can predict the bead width and height with reasonable accuracy. 
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Many researchers apply the back-propagation neural network (BPNN) with gradient descent momentum or BPNN with Levenberg–
Marquardt (LM) algorithm for artificial neural network (ANN) modelling. BPNN with LM is faster [5] algorithm compared to traditional 
BPNN, but sometimes yield poor prediction capability for noisy datasets [6]. However, a network trained through BPNN with Bayesian 
regularisation (BR) [7] can perform exceptionally well during testing or prediction with small and noisy dataset. Few applications were 
found in literature for this training algorithm [6,8]. Chaki and Ghosal [8] optimized depth of penetration during CO2 laser–MIG hybrid 
welding of 5005 Al–Mg alloy using a hybrid model with an ANN and Genetic Algorithm (GA). The network trained using BPNN with the BR 
method showed the best prediction capability. The results indicated that the GA–ANN model can predict the output with reasonably good 
accuracy. Chaki [6] have employed it to model relationship between CO2 laser–MIG hybrid welding parameters. Input parameters for the 
study included laser power, welding speeds and wire feed rate while tensile strength of the joint was considered as output. Variants of 
BPNN and Radial Basis Function Networks have been used as training algorithm. ANN trained using BPNN with Bayesian regularization 
showed best prediction capability and was considered the best ANN for this case. 

Sarkar et al. [9], performed a comparative study of multiple regression analysis and back propagation neural network 
approaches to predict weld bead geometry and HAZ width in SAW process on plain carbon steel. Design of experiments was 
based on Taguchi’s L16 orthogonal array by varying wire feed rate, transverse speed and stick out. They found that the error 
related to the prediction of bead geometry and HAZ width is smaller in ANN than MRA. Tafarroj and Kolahan [10] employed 
artificial neural networks and regression modelling to establish the relationships between welding input variables and the 
parameters for the Goldak heat source model in GTA welding. The data needed for modelling has been gathered based on full 
factorial design. They showed that these approaches may be used to accurately specify heat source parameters for any given 
set of welding process variables. Both ANN and second order regression functions presented good agreements with the 
experiments. Zhao et al. [11] studied the performances of the regression model and artificial neural network in predicting the 
nugget diameter of TC2 titanium alloy spot welded joints by monitoring the dynamic power signature. The experimental results 
proved that, as compared with the quadratic regression model an artificial neural network, it can provide more accurate results 
of the nugget-diameter-prediction and a better target. Furthermore, the quadratic polynomial-stepwise-regression method may 
not provide precise values of certain points for some highly nonlinear equations. 

In this work it was proposed a comparative study on the performance of artificial neural networks and a second degree 
regression models for prediction of the bead geometry in the pulsed gas metal arc welding (GMAW) process. The pulsed GMAW 
process has received increased attention in the welding industry, owing to its comparatively low heat input and precise control over 
the thermal cycles. This is because the pulsed current gas metal arc welding process spray transfer, or other precisely controlled 
droplet transfer mode, are obtained at a low average current [12]. A series of experiments were carried out by applying a Box-
Behnken experiment design. The backpropagation ANN with the Bayesian–Regulation training algorithm was used to train the 
neural network models. The results obtained from these two models are then compared through a new set of validation data. 

2. Experiments Description 
The pulsed GMAW process was performed on a TransPlus Synergic 4000R power source, a MA1400 Robot was applied to 

control the welding path. Experimental setup used for the present work is shown Figure 1. 

 
Figure 1. Experimental setup (1): welding power source (2), robot (3), shielding gas (4), solid wire (5), current and voltage acquisition system. 
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Deposition was implemented on a AISI 1010 mild steel substrate with 6.35 mm thick, 250 mm length and 150 mm width. 
The AWS ER70S-6 copper-coated solid wire of diameter 0.8 mm was selected as the filler material. The shielding gas was a 
mixture of 90% Ar and 10% CO2. The weld beads were deposited side by side keeping a distance of 20 mm between them, a 
sufficient distance to avoid interference from their isotherms. 

The three process parameters varied during the experiments were the wire feed speed (𝑤𝑤), contact tip to work 
distance (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) and welding speed (𝑠𝑠). The current and voltage was automatically tuned by the welding machine, since 
this was a synergistic process. The other controllable parameters as torch angle and gas flow rate were kept fixed in 
this experiment, set to 0° and 15 L/min, respectively. Initial experiments have been conducted to determine the range 
of input process parameters, in order to obtain weld beads with smooth appearance and free of visual defects. In this 
way, the feasible operating regions for the process parameters were selected. The working limits of the input 
parameters were fixed as 6.0 – 7.5 m/min for wire feed speed, 16.0 – 20.0 mm for contact tip to work distance and 2.0 
– 6.0 mm/s for the welding speed. 

For this number of parameters the amount of experiments for a complete factorial design would be extensive and expensive to 
perform. Therefore, in order to reduce the cost of the experiments while maintaining the significance and sensitivity of the parameters, 
it was decided to use a Box-Behnken design of experiment (DOE) [13], which consists of a class of rotatable or nearly rotatable second-
order (2k) designs based on three-level incomplete factorial designs. In this model, the number of experiments (N) required for your 
development is defined by 𝑁𝑁 = 2𝑘𝑘(𝑘𝑘 − 1) + 𝐶𝐶0, where 𝑘𝑘 is number of factors and 𝐶𝐶0 is the number of central points. 

Due to the large range and the strong influence of this parameter, the welding speed was divided into two groups. Using 
the three proposed factors, the test was carried out with 15 experiments for each group, of which 12 are combinations of factors 
and 3 are the central points. A characteristic of this DOE is that it does not contain points in its vertices maximum and minimum 
values of the variables. Therefore, the three factors will not be at their lower or upper limits in the same experiment at same 
time, which could cause damage to the experiment. The process parameters and their levels are given in Table 1. 

Table 1. Process parameters and their limits. 

Parameters Factor levels 
Level 1 Level 2 Level 3 

Wire feed speed [m/min] 6.0 6.7 7.5 
Contact tip to-work distance [mm] 16.0 18.0 20.0 
Welding speed [mm/s] Group 1 2.0 3.0 4.0 

Group 2 4.0 5.0 6.0 

After setting up the required equipment and designing the matrix for the experiments, the specimens were welded 
together. 30 experiments have been designed and conducted, 15 for each welding speed group. The experiments matrix and 
the outputs are shown in Table 2. 

Table 2. Design matrix and responses. 
 

S. no1 
Design matrix Response 

𝒘𝒘 [m/min] 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 [mm] 𝒔𝒔 [mm/s] 𝒍𝒍 
[mm] 𝒉𝒉 [mm] 𝒑𝒑 

[mm] 
Group 1 1 6.7 20.0 2.0 7.485 3.849 0.727 

2 6.7 18.0 3.0 6.456 3.338 0.721 
3 7.5 20.0 3.0 6.928 3.570 1.047 
4 7.5 16.0 3.0 7.648 3.272 1.040 
5 6.7 18.0 3.0 6.849 3.213 0.877 
6 6.7 20.0 4.0 5.666 2.708 0.850 
7 6.0 16.0 3.0 6.224 3.095 0.606 
8 6,7 18.0 3.0 6.644 3.296 0.879 
9 6.7 16.0 4.0 6.103 2.713 0.855 

10 7.5 18.0 2.0 9.016 3.935 0.821 
11 6.0 18.0 2.0 7.315 3.673 0.540 
12 7.5 18.0 4.0 6.481 2.927 1.074 
13 6.0 18.0 4.0 5.506 2.732 0.578 
14 6.0 20.0 3.0 5.777 3.156 0.518 
15 6.7 16.0 2.0 8.122 3.726 0.584 
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S. no1 
Design matrix Response 

𝒘𝒘 [m/min] 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 [mm] 𝒔𝒔 [mm/s] 𝒍𝒍 
[mm] 𝒉𝒉 [mm] 𝒑𝒑 

[mm] 
Group 2 1 6.7 20.0 4.0 5.647 2.923 0.780 

2 6.7 18.0 5.0 5.660 2.541 0.663 
3 7.5 20.0 5.0 5.900 2.621 1.054 
4 7.5 16.0 5.0 6.170 2.550 0.970 
5 6.7 18.0 5.0 5.569 2.539 0.706 
6 6.7 20.0 6.0 4.783 2.308 0.808 
7 6.0 16.0 5.0 5.367 2.364 0.662 
8 6.7 18.0 5.0 5.636 2.544 0.773 
9 6.7 16.0 6.0 5.330 2.127 0.607 

10 7.5 18.0 4.0 6.491 2.855 1.018 
11 6.0 18.0 4.0 5.495 2.660 0.553 
12 7.5 18.0 6.0 5.508 2.359 0.812 
13 6.0 18.0 6.0 5.237 2.103 0.525 
14 6.0 20.0 5.0 4.958 2.511 0.520 
15 6.7 16.0 4.0 6.196 2.682 0.893 

In this study, three dimensions of the weld bead were measured, width (l), height (h) and weld penetration depth (p). As 
an example, the image and the measured characteristics of a welded sample are shown in Figure 2. A EZ4 HD magnifying glass 
and the ImageJ image processing software were implemented as the measuring tools. The bead geometries were measured 
using images of the cross sections of the beads, as shown in Figure 2, for this the samples were cut (transversal to the weld bead) 
and metallographic prepared (sanded, polished and chemically attacked). 

 

Figure 2. Cross section of the weld bead showing the geometry. 

2.1. Neural network model 

Initially, an artificial neural network (ANN) was adopted to characterize the complex relationship between input variables 
(welding parameters) and the bead geometry. The structure of the ANN was a multilayer feedforward trained with the back-
propagation error algorithm. The development and training of the network were performed using Matlab® toolbox. A schematic 
representation of the structure of the multilayer feedforward network that performs the mapping between the three input 
process variables and the four output responses is shown in Figure 3. The training data of the neural network were the 30 input 
output pairs shown in Table 2. 

 

Table 2. Continued… 
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Figure 3. A schematic diagram of feedforward neural network. 

To train the network accurately, all training data was normalized into the closed interval [−1, 1]. This ensures that each 
welding parameter has the identical effect on the network. The normalised value (𝑋𝑋𝑖𝑖) for each input and output was calculated 
through Equation 1. 

𝑋𝑋𝑖𝑖 =  2
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

 (𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚) − 1 (1) 

Where 𝑅𝑅𝑖𝑖  is the correspondent input or output value, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum values of the data set, 
respectively. 

The number of neurons in the input and output layers are equal to the number of input and output variables, respectively. 
Neurons in the hidden layers are the computational elements accomplishing nonlinear mapping between process variables and 
output. The number of hidden layers and the number of neurons in each layer has a great influence in the performance of a 
neural network. Determining this number is an important step, excessive hidden neurons result in overfitting and increase 
computational costs. On the contrary, too few hidden neurons can degrade the learning ability of the network and its 
approximation performance [14]. The number of hidden layers and neurons in each layer was obtained numerically, in order to 
find the minimum error between the desired and actual outputs. For this, different feedforward neural networks with 1 and 2 
hidden layers and 1 to 30 neurons in each layer were trained. The least error between the desired and actual outputs was 
obtained for the network with two hidden layers and 23 and 12 neurons in the first and second layers, respectively. Bayesian–
Regulation Back Propagation algorithm was used as the training method. Tangent sigmoid and linear functions were respectively 
selected as the activation functions in neurons of hidden and output layers. 

The Bayesian regularization neural network is an artificial neural network training algorithm which corrects the weight 
values based on the Levenberg-Marquardt optimization. This algorithm minimizes the combination of error squares and weights 
(introducing network weights into the objective function of training) and then determine the correct combination so as to 
produce a good network. Thus, the objective function of the training is noted as shown in Equation 2 [15,16]. 

𝐹𝐹(𝜔𝜔) = 𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽 (2) 

where 𝐸𝐸𝐸𝐸 is the sum of squares of the network weight, and 𝐸𝐸𝐸𝐸 the sum of squares of network errors. The values 𝛼𝛼 and 𝛽𝛽 are 
parameters of the objective function.  

In the Bayesian process flow, network weights are seen as random variables, then the previous distribution of network 
weights and training is considered a Gaussian distribution follows [15,16]. The principle of Bayesian Regularization artificial 
neural network training algorithm is shown in Figure 4.  
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Figure 4. Principles of Bayesian regularization algorithm [15,16]. 

2.2. Regression model 

For the problem at hand, a second degree regression model has been selected. The objective is to establish the relations 
between process variables (wire feed speed, contact tip to work distance and welding speed) and the bead geometry. The 
response function representing any of the controllable process parameters can be expressed by Equation 3 [17]. 

𝑌𝑌 = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) (3) 

where 𝑌𝑌 is the response, (𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑛𝑛) the controllable process variables. A second-order (quadratic) polynomial for 𝑛𝑛 factors 
is formulated as (Equation 4): 

𝑌𝑌 = 𝑎𝑎0 + ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖2𝑛𝑛

𝑖𝑖=1 + ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑛𝑛
𝑖𝑖=1,𝑖𝑖<𝑗𝑗  (4) 

where, ∝0 is the constant value; ∝𝑖𝑖, ∝𝑖𝑖𝑖𝑖 and ∝𝑖𝑖𝑖𝑖  are the coefficients to be calculated, which are usually obtained via the least 
square method. 

The same datasets, as used in neural network model, were used to develop the regression models, showed in Table 2. The 
values of the regression coefficients were calculated using the MINITAB® statistical analysis software. 

3. Results and Discussion 

3.1. Investigating the parameters effect 

The effects of the input parameters in the weld bead dimensions are detailed in Figure 5. It can be seen that for the welding 
conditions used in this work, increasing the wire feed speed lead to the increase of all dimensions, this effect is more significant 
in weld width and penetration depth and smoother in weld height. The contact tip to work distance, which is associated to arc 
length, showed lower influence on weld bead geometry. 

An increase in welding speed caused a decrease in weld width and weld height. Regarding the bead penetration, it 
presented a low value for the minimum welding speed of 2 mm/s and started to increase reaching the maximum at 4 mm/s. 
Then, it decreased again for higher speeds. For high welding speeds, weld bead penetration reduces with the increases of 
welding speed due to low heat content of the weld pool [18]. 
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Figure 5. Effect of parameters in the bead geometry. 

3.2. Neural network model 

Figure 6 shows the scatter plots of the datasets, the three plots represent the training, testing, and overall dataset. The 
dashed line in each plot represents the perfect result – outputs = targets. The solid line represents the best fit linear regression 
line between outputs and targets. The R value is an indication of the relationship between the outputs and targets. If R = 1, there 
is an exact linear relationship between outputs and targets. If R is close to zero, then there is no linear relationship between 
outputs and targets. 

The results shown in Figure 6 indicate a high efficiency of the neural network. All R’s have high values, which demonstrates 
a good performance of the built model. Hence, it can be noted that the developed neural network is appropriate and can predict 
the weld bead geometry accurately. Besides, the results of the test data (Figure 5b) indicate a good generalization capability 
between input and output data. 

 

Figure 6. Regression plots of datasets: (a) training; (b) testing and (c) overall dataset. 

The artificial neural network predicted versus actual values for the three outputs are plotted in Figure 7. In this figure, the 
dashed line represents the perfect fit between the experimental data (measured weld bead geometry) and those calculated by 
the ANN. 
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Figure 7. Comparison between calculated with ANN and measured weld bead geometry. 

Based on the results shown in Figure 7, it can be observed that there is a good relationship between the actual and 
predicted values. The mean of the relative error between the measured values and the neural network predicted values was 
0.031 for weld width, 0.052 for weld width and 0.196 for penetration depth. 

3.3. Regression model 

As mentioned previously, second order polynomial regression model was selected to determine the bead geometry 
parameters using MINITAB® software. In all regression models the α − level (significance level) was assumed to be 0.05. The 
constituted models for weld width, height and penetration depth are listed in the following (Equations 5-7). 

• Weld width 

𝐥𝐥 = −𝟎𝟎.𝟔𝟔𝟔𝟔 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘 + 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪− 𝟎𝟎.𝟖𝟖𝟖𝟖𝟖𝟖. 𝒔𝒔 + 𝟎𝟎.𝟏𝟏𝟏𝟏.𝒘𝒘𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟐𝟐 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏. 𝒔𝒔𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫− 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐.𝒘𝒘. 𝒔𝒔 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪. 𝒔𝒔 (5) 

• Weld height 

𝒉𝒉 = 𝟑𝟑.𝟐𝟐𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘 + 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪− 𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔. 𝒔𝒔 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟐𝟐 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. 𝒔𝒔𝟐𝟐 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪− 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘. 𝒔𝒔 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪. 𝒔𝒔 (6) 

• Penetration depth 

𝒑𝒑 = 𝟐𝟐.𝟗𝟗𝟗𝟗 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘− 𝟎𝟎.𝟒𝟒𝟒𝟒.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 + 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐. 𝒔𝒔 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘𝟐𝟐 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝟐𝟐 − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎. 𝒔𝒔𝟐𝟐 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪− 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝒘𝒘. 𝒔𝒔 + 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎.𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪. 𝒔𝒔 (7) 

The statistical characteristics of the models are presented in Table 3. Regarding to the F-distribution tables, it can be seen 
that for the selected α − level, the F-values are greater than the critical values of F. Therefore, it can be concluded that all models 
are well suited. The high values of 𝑅𝑅2, 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 , and 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  prove that in all cases the models fit very well with the data. 

Table 3. The statistical characteristics of the constructed models. 

Regression model  F-value 𝑹𝑹𝟐𝟐 [%] 𝑹𝑹𝒂𝒂𝒂𝒂𝒂𝒂𝟐𝟐  [%] 𝑹𝑹𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟐𝟐  [%] 
Weld width  111.90 98.05 97.18 94.56 
Weld height  170.56 98.71 98.14 97.20 

Penetration depth  15.96 87.78 82.28 67.01 

The regression values versus actual values for the three outputs are plotted in Figure 8. In this figure, the dashed line in 
this plot represents the perfect fit between the experimental data (measured weld bead geometry) and those calculated by the 
regression model. 
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Figure 8. Comparison between calculated with regression models and measured weld bead geometry. 

Based on the results shown in Figure 8, it can be observed that there is a good relationship between the actual and 
predicted values. The mean of the relative error between the measured values and the regression values is 0.055 for weld width, 
0.060 for weld width and 0.204 for penetration depth. 

3.4. Validation tests 
To check the accuracy of the established models, the validation of developed models from the neural network and 

regression is presented. The model has been validated using three samples that were welded with different values of process 
variables within the limits that were performed in Table 2, as can be observed in Table 4. 

Table 4. Dataset of input parameters and results for the validation model. 

S. no Parameter 
𝒘𝒘 [m/min] 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂[mm] 𝒔𝒔 [mm/s] 

#1 6.7 18.0 6.0 
#2 7.5 20.0 6.0 
#3 6.0 20.0 6.0 

The performance of the designed ANN was evaluated via the test samples which were presented in Table 4. Also, are show 
the relative error between the numerical and experimental results. These values are calculated according to Equation 8. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒−𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒

� ∙ 100 (8) 

Where 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒 represents the experimental value and 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜  the corresponding outputs of ANN and regression models. 
The results of the network validation tests are shown in Table 5. According to the results, the maximum number of relative 

errors is 31.734, 13.657 and 25.326 for the test numbers 1, 2 and 3, respectively. Furthermore, the average of all errors is 9.847, 
7.191 and 15.490 for weld width, height and penetration depth, respectively. The average error of all tests and output 
parameters was 10.843. 

Table 5. Validation of the neural network model. 

S. no   𝒍𝒍 [mm] 𝒉𝒉 [mm] 𝒑𝒑 [mm] 
1 Outputs of ANN model  5.283 2.242 0.642 

Experimental result  5.260 2.340 0.940 
Relative Error  0.437 4.176 31.734 

2 Outputs of ANN model  5.324 2.392 0.997 
Experimental result  5.130 2.770 1.080 

Relative Error  3.777 13.657 7.646 
3 Outputs of ANN model  4.742 2.243 0.576 

Experimental result  6.350 2.330 0.620 
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Relative Error  25.326 3.737 7.091 

Then, the corresponding geometry of test samples presented in Table 4 was obtained using Equations 5-7. The results of 
validation tests are presented in Table 6. According to the results, the maximum number of relative errors is 30.682, 13.016 and 
25.439 for the test numbers 1, 2 and 3, respectively. Furthermore, the average of all errors is 9.293, 7.301 and 23.046 for weld 
width, height and penetration depth, respectively. The average error of all tests and output parameters was 13.213. 

Table 6. Validation of the regression model. 

S. no   𝒍𝒍 [mm] 𝒉𝒉 [mm] 𝒑𝒑 [mm] 
1 Outputs of regression model  5.354 2.253 0.652 

Experimental result  5.260 2.340 0.940 
Relative Error  1.795 3.717 30.682 

2 Outputs of regression model  5.323 2.415 0.939 
Experimental result  5.130 2.770 1.080 

Relative Error  3.754 12.812 13.016 
3 Outputs of regression model  4.932 2.205 0.462 

Experimental result  6.350 2.330 0.620 
Relative Error  22.331 5.373 25.439 

Figure 9 shows the scatter diagram of predicted versus actual bead geometry from the neural network and regression 
models. It can be seen that both models produce good fit to the experimental results and give accurate prediction of the width, 
height and penetration depth weld. 

 
Figure 9. Comparison between the measured dimensions, estimated by the neural network and calculated with the regression models. 

With regard to Table 5 and Table 6 and Figure 9, it can be concluded that both ANN and regression models are capable to 
predict the bead geometry very well. In general, the ANN model has lower error values. It can be concluded that owing to the 
lower mean value of the relative error, it performs slightly better than the second-order regression model. One of the principal 
reasons for the superior performance of the BP neural network model is that it displays a better predictive capability than the 
regression model in actual application, owing to its random non-linear mapping ability [19]. But, on the other hand, the 
construction and execution of regression models is easier than the neural networks. If the regression model is constructed well, 
it is recommended to use this method due to the simplicity. Otherwise, the ANN is highly recommended. 

4. Conclusions 
This article aimed to compare different methods to predict the weld bead geometry of Pulsed GMAW bead on a steel plate. 

The relationships between process variables and bead geometry were investigated by a neural network trained with Bayesian–
Regulation Back Propagation algorithm and a second degree regression model. A series of experiments were carried out by 
applying a Box-Behnken experiment design. 

After training different structures of neural networks, it was found that a four-layer feed-forward back propagation neural 
network model with two hidden layer and 23 and 12 neurons in these layers was more accurate. Then a second-order regression 
model was established to predict the bead geometry from the process variables. The significance and adequacy of the regression 
model were verified. 
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The results indicated that the geometry can be well predicted by both models. The overall mean error was 10.843 for the 
neural network and 13.213 for the regression model. In general, the neural network model presented an improved performance 
than the second-order regression model. But, on the other hand, the construction and execution of regression models is easier 
than the neural networks. If the regression model is constructed well, it is recommended to use this method due to its simplicity. 
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