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ABSTRACT

The Internet of Things (IoT), personal and wearable devices, and continuous advances

in data-gathering techniques have significantly increased the amount of relevant data that

can be leveraged for innovative real-time, data-driven applications. Digital Twins (DTs)

are virtual representations of physical objects which are fully integrated and in which

the automatic data exchange occurs in a bidirectional way. DTs and big data are mutu-

ally reinforcing technologies since huge volumes of data representing the physical/virtual

worlds are collected, transformed, and generated through models to aggregate value to

the business. Modern DTs follow a five-component architecture, which includes a Data

Management (DM) component that bridges a physical system, a mirrored virtual one, and

services components. However, there is no clarity on the functionality required for the

DM component. This work presents a Systematic Literature Review on DM issues and

proposed solutions in the DT context. We analyzed DM under the big data value chain

activities, highlighting key issues to be addressed: data heterogeneity, interoperability,

integration, data search/discovery, and quality. In addition to surveying existing solutions

for handling these issues, we contextualized them in the domain and function for which

the DT was proposed, the type of data dealt with, and the technical infrastructure. The

compilation of these solutions sheds light on the functionality of the DM component in a

DT, trends, and opportunities. Our main findings revealed that the maturity level assumed

for the DM component is at an early stage. The most mature solutions were proposed for

the industry domain, and many of them assume humans as the ultimate information con-

sumers. Data integration is the prevalent DM issue addressed due to the bridging role of

the DM component, and cloud computing is the key implementation technology. Among

the research opportunities are reference data management architectures, adoption of in-

dustry standards and ontologies, interoperability among distinct DTs, the development of

agnostic standard implementations, and data provenance mechanisms.

Keywords: Digital Twin. Data management. Big Data. Systematic Literature Review.



Gestão de dados em Gêmeos Digitais: uma Revisão Sistemática da Literatura

RESUMO

A Internet das Coisas, dispositivos pessoais e vestíveis e avanços contínuos nas técnicas

de coleta de dados aumentaram significativamente a quantidade de dados relevantes que

podem ser aproveitados para aplicativos inovadores orientados a dados em tempo real. Os

gêmeos digitais (GDs) são representações virtuais de objetos físicos, que são totalmente

integrados e nos quais a troca automática de dados ocorre de maneira bidirecional. GDs e

Big Data são tecnologias que se reforçam mutuamente, uma vez que grandes volumes de

dados que representam os mundos físicos/virtuais são coletados, transformados e gerados

por meio de modelos para agregar valor ao negócio. Os GDs modernos seguem uma ar-

quitetura de cinco componentes, que inclui um componente de gestão de dados que faz a

ponte entre o sistema físico, o componente virtual espelhado, o componente dos serviços

e as conexões. No entanto, não há clareza sobre a funcionalidade necessária para o com-

ponente de gestão de dados. Este trabalho apresenta uma revisão sistemática da literatura

sobre questões de gestão de dados e soluções propostas no contexto do GD. Analisamos

o componente de gestão de dados sob a perspectiva das atividades da cadeia de valor de

Big Data, destacando os principais problemas a serem abordados: heterogeneidade de

dados, interoperabilidade, integração, pesquisa/descoberta de dados e qualidade. Além

de pesquisar soluções existentes para lidar com esses problemas, contextualizamos-os no

domínio e na função para os quais o GD foi proposto, o tipo de dados tratados e a in-

fraestrutura tecnológica. A compilação dessas soluções lança luz sobre a funcionalidade

do componente de gestão de dados em um GD, tendências e oportunidades. Nossas prin-

cipais descobertas revelaram que o nível de maturidade assumido para o componente de

gestão de dados está em um estágio inicial. As soluções mais maduras foram propostas

para o domínio da indústria, e muitas delas assumem os seres humanos como os consum-

idores finais das informações. A integração de dados é o problema de gestão de dados

mais abordado devido à função de ponte do componente de gestão de dados, e a com-

putação em nuvem é a principal tecnologia de implementação. Entre as oportunidades

de pesquisa estão as arquiteturas de gerenciamento de dados de referência, a adoção de

padrões e ontologias do setor, a interoperabilidade entre GDs distintos, o desenvolvimento

de implementações de padrão agnóstico e mecanismos de proveniência de dados.

Palavras-chave: Gêmeo Digital, Gestão de dados, Big Data, Revisão Sistemática da Lit-

eratura.
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1 INTRODUCTION

The increasing popularity of the Internet of Things (IoT), the advent of smart

wearables, and the continuous advances in data-gathering techniques have significantly

increased the amount of relevant data that can be leveraged for innovative real-time, data-

driven applications. By exploiting these devices and various technologies, information

about physical reality is seamlessly transferred into the cyber world, where it is elabo-

rated to adapt cyber applications and services to the physical context, thus possibly mod-

ifying/adapting the physical world itself through actuators (CONTI et al., 2012). Digital

Twins (DTs) are the next step in this cyber-physical convergence. DTs are virtual repre-

sentations of physical objects, which are fully integrated and in which the automatic data

exchange occurs in a bidirectional way (FULLER et al., 2020).

DTs are at the core of disruptive innovations in diverse areas (RAPTIS; PAS-

SARELLA; CONTI, 2019). In Smart Manufacturing (Industry 4.0 - I4.0), DTs can cover

all product life-cycle phases, including design, planning, assembly, and workshop opti-

mization (TAO et al., 2019; FULLER et al., 2020). Companies in the Oil&Gas (O&G)

industry leverage innovation to increase production and maximize profit and have suc-

cessful experiences in smart oilfield and pipelining, predictive maintenance and risk as-

sessment (LU et al., 2019; WANASINGHE et al., 2020). DTs are also expected to change

the concept of digital healthcare, where a virtual replica of a patient could improve health

promotion and control, predict future trends using medical history, and optimize health-

care operations (ELAYAN; ALOQAILY; GUIZANI, 2021). Smart City DTs aim to im-

prove the efficiency and sustainability of logistics, energy consumption, urban planning,

disaster management, among others (DENG; ZHANG; SHEN, 2021).

Big Data and DTs are mutually reinforcing technologies (RAO et al., 2019) since

huge volumes of data representing the physical/virtual worlds are collected, transformed,

and generated through models (e.g., simulation, machine learning) to aggregate value to

the business (TAO et al., 2019; JONES et al., 2020). These opportunities require dealing

with data in a volume, velocity, and variety that exceed the capabilities of traditional data

management systems, delivering value and veracity. In this context, data is a fundamental

resource that needs to be considered in the big data value chain (CURRY, 2016), which

includes activities for data acquisition, analysis, storage, curation, and usage. Data lakes

are a trending topic to address Big Data issues (SAWADOGO; DARMONT, 2021).

Different DT frameworks are proposed in the literature (WANASINGHE et al.,
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2020). Earlier DTs follow a three-component architecture that connects a physical sys-

tem to a mirrored virtual one. While the Physical space represents the physical assets

(e.g., sensors, actuators), the Virtual Space aims to emulate the physical environment

with high fidelity. DTs following this architecture adopt ad hoc solutions for data man-

agement issues such as data extraction and integration of heterogeneous sources, data

sanity, data transformation and enrichment, and data consumption by the virtual envi-

ronment. The existence of data silos, the volume of data, and issues related to handling

multiple, heterogeneous data sources, formats, and data types are often mentioned as sig-

nificant challenges (SUN et al., 2020; VIVI et al., 2019; SINGH et al., 2021; SAHLAB

et al., 2021).

The five-component DT architecture (TAO; ZHANG, 2017) is an evolution that

explicitly includes a Data Management (DM) component. The DM component acts as

a bridge between all subsystems, serving as a point of ingestion of the original data and

return at the right time to direct the interactive optimization process resulting from their

interaction. Existing works provide the functionality to manage different aspects of data,

such as data cleaning, quality assessment, transformation, integration, search, among oth-

ers. These data management functionalities are either explicitly encompassed in a dedi-

cated DM component as proposed by (TAO; ZHANG, 2017), or scattered in other com-

ponents of the DT.

This work presents a Systematic Literature Review (SLR) on the proposed solu-

tions for DM issues within the scope of DTs, which is either implicit within the DT or

explicit as part of a DM component. This SLR was motivated by the absence of a survey

or review focused on data management solutions for DTs and a lack of understanding

of the role and core functionality of the DM component. Existing surveys contribute to

the understanding of the concepts, properties, and primary use cases/applications in DTs

(SEMERARO et al., 2021; BARRICELLI; CASIRAGHI; FOGLI, 2019; FULLER et al.,

2020; JONES et al., 2020). Regarding data management, (RAPTIS; PASSARELLA;

CONTI, 2019) presents a survey from Manufacturing Automation and Networking Com-

puting perspective, outlining architectural designs based on data-related factors (presence,

coordination, and computing). Although (TAO et al., 2019) highlights an explicit com-

ponent in the architecture of a DT to handle data management, it does not detail the sup-

port it must provide. We argue that the DM component can be approximated to the data

and knowledge management functionality in Data Lakes (KRONBERGER et al., 2020;

CORREIA et al., 2022), and aim to reach a better comprehension of the state-of-the-art



15

solutions in a fine-grained analysis.

Our SLR presents a novel perspective by considering selected data management

issues extracted from the value chain of Big key Data activities (CURRY, 2016). An SLR

is defined in (OKOLI, 2015) as “a systematic, explicit, comprehensive, and reproducible

method for identifying, evaluating, and synthesizing the existing body of completed and

recorded work produced by researchers, scholars, and practitioners”. We surveyed exist-

ing works systematically and unbiasedly to shed light on the DM solutions proposed to

deal with data heterogeneity, interoperability, integration, data search/discovery, and qual-

ity in DTs. We defined the following research questions: RQ1) For which domains the DT

solutions were proposed?; RQ2) Under the perspective of data usage, for which functions

were the DTs proposed?; RQ3) What types of data do the proposed solutions consider?;

RQ4) What solutions were proposed for the DM issues addressed?; RQ5) What kind of

technological infrastructure is considered?.

Our SLR complements and innovates the landscape of existing literature reviews

on DTs by investigating DM aspects not yet analyzed, expressed by the research ques-

tions. The main contributions of this SLR are:

• The fine-grained analysis of DM under the activities within the Big Data value

chain, highlighting key issues to be addressed by the DM component in a DT.

• An SLR surveying existing solutions for handling data heterogeneity, interoperabil-

ity, integration, data search/discovery, and quality in DTs. We contextualized these

solutions in the domain and function for which the DT were proposed, the type of

data handled, and leveraged technological infrastructure. The compilation of these

solutions sheds light on the functionality to be provided by a DM component of a

DT, current trends, and opportunities.

The remaining of this document is organized as follows. Chapter 2 describes the

theoretical foundation on types of systematic literature reviews, DT definitions, active do-

mains and summarizes the key DM issues derived from Big Data value chain activities.

Chapter 3 describes the literature reviews in the DT area. Chapter 4 outlines the protocol

developed for the SLR, including the motivation for the selected research questions and

the quality assessment. Chapter 5 details the study selection, the quality assessment pro-

cess and answers each research question defined in the protocol. Chapter 6 summarizes

the main trends and opportunities identified. Finally, Chapter 7 draws conclusions and

outlines future work.
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2 THEORETICAL FOUNDATION

This chapter describes the aspects and compares systematic literature reviews and

systematic mappings. It also describes other relevant subjects to this work related to DT

definitions and application domains. Finally, are described data management aspects,

such as data integration, interoperability, data search, and data quality.

2.1 Types of Systematic Literature Reviews

Literature reviews are an overview of a specific subject (DENNEY; TEWKS-

BURY, 2013). Their aim is to summarize all the main concepts and terminologies related

to a specific topic in a single study, allowing one to identify trends and specific areas of

the topic in question that need further research (ROWLEY; SLACK, 2004). Therefore, a

literature review is very useful in summarizing the state of the art of a specific subject,

making it easier to understand and derive knowledge about it.

In addition to identifying research gaps, a literature review also allows one to

evaluate and compare certain theories by examining relationships between variables. It

provides a conceptual basis for creating new conceptual models or theories, among many

other uses. The method or type of review may vary according to the objective of the

literature review. Kitchenham and Charters (2007) evaluate two types of secondary study:

SLR, and systematic mapping study (also known as scope study).

An SLR is a methodological and formal way to identify, evaluate and analyze pri-

mary studies to answer a specific research question (STAPLES; NIAZI, 2007). According

to Kitchenham and Charters (2007), an SLR is a form of secondary study that has a well-

defined methodology to identify, evaluate and interpret all available evidence related to a

specific research question and that is to some extent repeatable. The following goals can

justify the development of an SLR (KITCHENHAM; CHARTERS, 2007): (i) to summa-

rize the existing evidence on a method, treatment, concept, theory, or approach exposing

limitations and benefits; (ii) to identify any research gaps showing to the academia which

themes need further research and new solutions, and (iii) to provide a basis for new re-

search activities and also to examine to what extent empirical evidence is supported or

contradicted.

Unlike a traditional literature review, an SLR follows an explicit protocol to iden-

tify primary studies and analyze them in a thorough and unbiased manner (MACDONELL
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et al., 2010). The process is typically divided into three main phases: planning, conduct-

ing, and reporting. In a few words, the planning phase involves identifying the need for

the SLR, defining the research questions and developing a review protocol to select the

studies, extract the necessary data to answer the questions, and synthesize the data so

that the questions can be answered. In the conducting phase, the activities are carried

out according to the protocol. The final reporting phase aims at producing a document

to efficiently present and communicate the results. In Section 2.2, we detail the process

outlined in (KITCHENHAM; CHARTERS, 2007).

Another type of secondary study is systematic mapping. It shares in common

with an SLR the adoption of a methodology for the collection and selection of studies

to reduce bias, but differs in the objective (PETERSEN; VAKKALANKA; KUZNIARZ,

2015). A systematic mapping aims to provide a broad view of a research area and iden-

tify which evidence is available, and indicate the number of evidence (KITCHENHAM;

CHARTERS, 2007). Therefore, systematic mapping aims to find the topics covered in the

literature, classify them, and categorize them to structure a research area, resulting in the

visual summary.

The process for a systematic mapping also includes the definition of research ques-

tions, keywords (search string), choice of databases and the collection of studies, the se-

lection of articles based on inclusion and exclusion criteria, data extraction to classify the

articles (thematic analysis), analysis of studies and summarization of results, and finally,

the writing of the report. It is important to highlight that all phases of this process are

performed more broadly. Since the objective is to abstract a high-level overview, there is

no depth in the analysis (KITCHENHAM; CHARTERS, 2007).

Table 2.1 – Comparison between SLR and Systematic Mapping
Features Systematic Literature Review Systematic Mapping

Focus of the Review
Identify, analyze and interpret all available evidence related to a specific RQ Identify and classify what evidence is available (broad review) in a specific topic of area

Identify best practices based on empirical evidence Establish the state of evidence

Research Questions
Narrow RQs Broader RQs

Specific RQs Multiple RQs

Consider population; intervention; comparison, and outcomes (PICO) Consider only population and intervention

Methods for Searching Search string highly focused Search string less highly focused

Methods for Selection
Generally few studies are considered A large number of studies are considered (broad coverage)

The studies are evaluated in details The studies are not evaluated in details

Methods for data extraction
The primary studies are assessed regarding their quality (the main goal is to establish the state of evidence) The primary studies are not assessed regarding their quality

Include data extraction procedures Much broader (classification and categorization stage)

It is a time-consuming task It is not a time-consuming task

Synthesis Include depth analysis techniques, e.g., meta-analysis and narrative synthesis Include no-depth analysis techniques, e.g., total and summaries

Dissemination of the results Higher importance for practitioners (relevant to industry) May be more limited, the aim is to influence the future of the research in a specific topic

Source: (NAPOLEÃO et al., 2017)

Table 3.2 compares the characteristics of these two forms of secondary study.

As we can see, although SLRs and mapping studies have a methodology with the same

phases, they differ in the focus granularity of the review, research issues, research meth-
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ods, selection and extraction of data, as well as in synthesis and dissemination techniques

of results. We chose to develop our literature review as an SLR rather than a system-

atic mapping due to the need to investigate specific aspects of data management in DTs

(integration, data interoperability, quality, and data search) using a methodology that min-

imizes bias and allows this analysis in a fine granular level. Therefore, we consider an

SLR the most appropriate investigation methodology.

2.2 Guidelines for developing an Systematic Literature Review

In this work, we adopted the guidelines for developing an SLR described in

(KITCHENHAM; CHARTERS, 2007). Their method was originally proposed for re-

views in the Software Engineering field, but it has been widely the foundation for SLR in

Computing Science in general. Below, we outline the activities of each phase proposed

for the process.

2.2.1 Planning phase

The five stages associated with planning the review are: identification of the need

for a review, commissioning a review, specification of research questions, development of

review protocol, and its evaluation. We detail each of these stages below:

• Identification of the need for a review: the first stage is to evaluate whether there

is a real need for the development of an SLR. It is important to seek by any sys-

tematic reviews inherent to the subject or phenomenon to be investigated. Khan

et al. (2001) suggest a list of questions that should be answered before starting a

systematic review.

• Commissioning a review: commissioning refers to the development of a formal

document that describes and contextualizes the SLR to be developed. From this

need, organizations can hire a research group to execute this work. This stage is

only necessary when the SLR needs to be performed by an outsourced organization.

• Specifying the research question(s): research questions drive the methodology

of an SLR. Guidelines define some types of questions that are frequently used for

medical studies (GLASZIOU et al., 2000). However, in other areas, such as soft-
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ware engineering or computing science in general, the types of questions are not

yet clear. In the medical area, it is very common to structure research questions

through PICOC (Population, Intervention, Comparison, Outcome, Context) crite-

ria. Population refers to the population affected by the intervention, Intervention

refers to alternative treatments, Comparison refers to the comparison of interven-

tion treatments, Outcomes refer to the clinical and economic factors that will be

used to compare the interventions, and Context refers to the context to which the

intervention is delivered. Kitchenham, Mendes and Travassos (2006) adapted this

structure to the software engineering field and proposed PICO (Population, Inter-

vention, Comparison, Outcome). However, these criteria for structuring research

questions are just an attempt to assist in this process, and depending on the subject

or context of SLR; they are not always suitable (JØRGENSEN, 2007).

• Developing a review protocol: the methods used to perform a particular SLR are

defined at this stage. Defining such a protocol is critical to minimizing the re-

searchers’ bias. The protocol of an SLR consists of all components of a review and

some additions, such as the logic of the research, the questions that the research

aims to answer, and strategies to identify and select relevant studies, and extract

data from them.

The search strategy is defined by the search string, and the sources to be sought for

primary articles, including digital libraries, journals, and conferences. For select-

ing articles, the protocol should define inclusion and exclusion criteria, how these

criteria should be applied, how many researchers should perform this task, and how

the assessment disagreements will be resolved.

The protocol should include a quality assessment, including the criteria to be used

and how to value them based on the goal for such an evaluation. There are dif-

ferent motivations that justify the quality assessment of primary studies, such as

refinement of the study selection process, to investigate whether quality differences

provide an explanation for differences in studies results, as a means of weighing the

individual importance of each study, to interpret discoveries, among others. There

is not a standard set of questions, and the protocol can define its own criteria ac-

cording to the context of the study and goal (FINK, 2019).

Researchers should finally define how and what data will be extracted from the

selected articles, define the synthesis strategy and the techniques to be used, as
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well as define the dissemination strategy by choosing the conference or journal to

which the work will be submitted for publication. It is recommended to establish a

schedule for the execution of each activity.

• Evaluating the review protocol: evaluating the SLR protocol is an important task

that should be discussed between participants and stakeholders. However, this is an

optional task within the SLR process.

2.2.2 Conducting phase

After the planning phase has been defined and agreed upon among all participants,

the conducting phase of the SLR can be started in practice. There are three stages that

consist in executing the protocol, and which are described below:

• Identification of research: the main objective is to find as many primary articles

relevant to the research topic based on an impartial search strategy. Therefore, it

is important that the definite search string contains synonyms, abbreviations, and

alternative spellings connected by logical operators (AND, OR). To minimize a

systematic bias in the search, one can identify non-published results by examining

gray literature and conferences or consulting experts and researchers. Control arti-

cles, identified manually, can help adjust the search string to automatically retrieve

the most relevant articles. In addition, the search for articles should not be per-

formed automatically only. It can be considered a manual search because the most

important is to include the most relevant articles in SLR.

• Selection of primary studies: once potentially relevant primary studies are ob-

tained according to the search string, their actual relevance must be assessed using

the inclusion/exclusion criteria. The selection of studies is a process that can be car-

ried out throughout several iterations, throughout a process of refinement, in order

to handle the volume of articles. For instance, only specific parts of the article can

be considered in an initial screening (e.g., title, abstract), deferring the full reading

to a later moment when there is more evidence about the suitability of the study.

Quality assessment can be used as a further criterion for selection to maintain only

the relevant articles for the research. Interestingly, the selection of studies is per-

formed by more than one person: disagreements must be discussed and resolved in

order to generate more consistency concerning possible uncertainties.
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• Study quality assessment: although the concept of quality can be subjective, qual-

ity assessment is an essential tool to minimize bias and systematic errors regarding

internal and external validity. Each article should be assessed according to the ver-

ification list of the protocol according to the motivation of such an assessment.

• Data extraction and monitoring: at this stage, the data extraction form is created

and accurately filled by researchers. The form is designed to collect all the nec-

essary information that addresses the review issues and the study quality criteria.

Numerical data are essential because meta-analysis (statistical techniques) helps

summarize and integrate the results found in primary studies. The data extraction

form must contain at least the researcher’s name, data extraction date, article data

(title, authors, journal, institution, etc.), and a space for additional notes.

• Data synthesis: data synthesis involves the collection and summary of the results

of selected primary studies. Synthesis may be descriptive (non-quantitative), quan-

titative (meta-analysis), or both. It is usually possible to complement a descriptive

synthesis with a quantitative synthesis. Based on the information extracted from

the primary studies, it is important to identify and tabulate the results to detect pat-

terns or disparities between studies. Quantitative data should also be tabulated and

synthesized comparably.

2.2.3 Reporting phase

The main objective of this phase is to effectively spread the results obtained from

the review. The stages of the report phase are detailed below:

• Specifying dissemination mechanisms: the last phase of SLR involves writing

and disseminating the review results in the communication vehicles defined in the

planning phase. It is crucial to communicate the results of an SLR effectively.

Usually, forms of dissemination are through journals and scientific conferences.

However, it can also occur through non-scientific magazines and newspapers, web

pages, posters, popular and specialized press, and white papers.

• Formatting the main report: usually, SLRs are written in the technical report

format or a section of a doctoral thesis, or the scientific article format of a journal or

conference. SLRs written in the scientific article format may have size restrictions;
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therefore, it is essential to organize the content properly, maintaining the rigor and

validity of the study.

• Evaluating the report: this stage is aimed at evaluating and reviewing the report.

This task becomes necessary when the result of the SLR is in the format of a techni-

cal report, taking into account that it is not common the peer review. Ideally, experts

and researchers with experience should evaluate the report and can use the quality

verification lists for SLRs.

2.3 DT Definitions

There is no consensus on the definition of the term “Digital Twin", and many

works have contributed to a better comprehension of this concept. Barricelli, Casiraghi

and Fogli (2019) compiled 29 different definitions out of 75 systematically collected stud-

ies. These authors concluded that all definitions aim to stress specific key points, where

the most common ones are virtual/mirror/replica, clone/counterpart, and integrated sys-

tems. Semeraro et al. (2021) systematically reviewed 35 works using topic modeling

techniques, concluding that definitions are influenced by five aspects that characterize

DTs: product life-cycle, synchronization of the cyber/physical spaces, integration of real-

time data, behavioral modeling of the physical space and services provided. Details of

these works are presented in Chapter 3.

According to Moyne et al. (2020), a DT must meet the following requirements:

(a) it is some level of a replica of a real thing; (b) it exists in the cyber world (i.e., it is a

software entity); (c) it has a purpose of impacting an aspect of the environment in which

its real counterpart exists, in a positive way; (d) it uses models to achieve its purpose;

(e) it incorporates some level of subject-matter-expertise in the solution, which could be

as simple as defining the problem, or as complex as being an integral part of the model

solution; (f) it uses data to maintain some type of synchronization with its real counterpart,

where typically this data is collected in an operational environment.

Based on the manual/automatic data flows between Physical and Digital objects,

Fuller et al. (2020) distinguish between the terms Digital Models, Digital Shadows and

DTs. A Digital Model is a digital version of an existing or planned physical object,

and no automatic exchange exists between them. A Digital Shadow (DS) is a digital

representation of an object that has a one-way flow between the physical and the digital
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object, such that a change in the physical object leads to a change in the digital one, but

not vice-versus. In a DT, the Digital and Physical objects are fully integrated in both

directions, such that a change in one leads to a change in the other.

Wanasinghe et al. (2020) conceptualize DTs in terms of reference architectures.

Figure 2.1 presents the five-component architecture proposed in (TAO; ZHANG, 2017).

In addition to the DM central component, the Services component expands the Virtual

space with other enterprise software tools (e.g., analytical and predictive resources, visu-

alization, model calibration). The DM component serves as a point of ingestion of the

original data from these systems and of return at the right time to direct the interactive

optimization process resulting from the interaction among them. To that end, it has to

provide different functionalities to handle the collected data and help add value to trans-

form it into knowledge.

In this SLR, we consider digital twins that meet the requirements proposed in

(MOYNE et al., 2020). We also consider both DTs and DSs according to the distinction

introduced in (FULLER et al., 2020), since the closed loop represents a stage of maturity

that has not been reached by related work yet, and does affect the required data manage-

ment functionality for the DM component. We also adopt the five-component architecture

proposed in (TAO; ZHANG, 2017) since it highlights a functional component responsible

for data management.

There are many uncertainties and unawareness about the data management com-

ponent of a DT. Its role and functionalities are issues that need to be delimited, and we

aim to understand more about these issues through this SLR. As a starting point, we un-

derstand that the functions of the DM component can be approximated to the data and

knowledge management functionality in Data Lakes (KRONBERGER et al., 2020). In

the light of Big Data value chain activities (CURRY, 2016), we detail in Section 2.5 the

key DM issues to be handled by the DM component of a DT.

2.4 DTs Application domains

A DT can explore and generate descriptive, diagnostic, predictive, and prescriptive

analyses by transferring behavior from the physical to the virtual world. Organizations

from different domains see benefits in capturing real-time data streams using different

types of sensors (e.g., IoT, wearables), making sense of this raw data in terms of business-

specific data, and leveraging models to add value that enable right-time decisions that
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Figure 2.1 – Five components DT architecture
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positively impact the physical space (RAPTIS; PASSARELLA; CONTI, 2019; SEMER-

ARO et al., 2021; JONES et al., 2020). In this section, we briefly describe the potential

of DT applications in the domains that most exploit their benefits to I4.0, Healthcare, and

Smart Cities. Our goal is to highlight that, despite the idiosyncrasies of each field, the

data management challenges derived from the volume, variety, veracity, speed, and value

are very similar.

2.4.1 Industry 4.0

I4.0 encompasses many industry sectors and is based on three fundamental com-

ponents: the IoT, cloud computing, and cyber-physical systems (CPS) (XU; XU; LI,

2018). Smart manufacturing is a subdomain of I4.0, in which the requirements are di-

rectly related to manufacturing, production, and assembly processes to reduce costs and

manufacturing time. Organizations such as Bridgestone1, Boeing2 and the Change2Twin

European initiative3 report successful use cases.

In the energy and the O&G industry, DTs have the potential to optimize explo-

ration processes, reduce the environmental impact and safety risks, and improve reservoir

simulation models, well drilling, and production processes (SIRCAR et al., 2022). DTs

have become a key technology for anticipating failures, determining maintenance needs,

and minimizing losses. In the electricity production and distribution sector (e.g., Smart

Grid, Power Grid, Wind Farm), DTs play a key role in predictive maintenance, and health

1https://www.bridgestone.com/corporate/news/2019121901.html
2https://www.boeing.com/features/innovation-quarterly/feb2019/btj-global.page
3https://www.change2twin.eu/digital-twin/
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monitoring of the assets (SIVALINGAM et al., 2018), as demonstrated by Siemens4.

2.4.2 Smart cities

The goal of a smart city is to provide better services and infrastructure to its citi-

zens. The concept of DT can help visualize all the city’s aspects and optimize the city’s

planning, management, and services (DEREN; WENBO; ZHENFENG, 2021). Many ele-

ments relevant to the town (e.g., traffic) can be collected using sensors (e.g., IoT, personal

devices). The main challenge is consolidating all gathered data and city infrastructure to

achieve a unified view. The application of DT in a smart city enables planners to collect

data from sensors and use them for creating and simulating scenarios to analyze peo-

ple’s flow, understand how the traffic flows, and suggest alternative ways for the citizens.

Through the socioeconomic and localization data, the city’s leaders can make decisions

efficiently and focus on providing further resources to needy communities. They can

also monitor the quality of services, such as water supply. Concrete examples are Virtual

Singapore5, Seoul S-Map6 and 51World7.

2.4.3 Healthcare

DTs in healthcare can take disease prevention, early detection of diseases, and

patient care improvement to the next level. It can help resolve issues such as lack of

convergence between physical and medical information systems and the absence of inter-

active patient life cycle monitoring (AHMADI-ASSALEMI et al., 2020). It can also bring

new opportunities to the health domain since it can provide decision support for personal-

ized treatments based on the patient’s data, minimizing mistakes and ineffective therapies,

and paving the way to precision medicine. Hospitals can use the DT concept to optimize

their processes, reduce the patient’s wait time for attending, better manage risk cases

and provide further control and knowledge about their resources and processes, enabling

new strategies (AHMADI-ASSALEMI et al., 2020). Some interesting applications are

4https://new.siemens.com/global/en/products/energy/energy-automation-and-smart-grid/electrical-
digital-twin.html

5https://www.nrf.gov.sg/programmes/virtual-singapore/
6https://smartcity.go.kr/en/
7https://www.unrealengine.com/en-US/spotlights/51world-creates-digital-twin-of-the-entire-city-of-

shanghai
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Carestation Insights8 and the HeartModel9. Healthcare data derives from various sources

and representations, such as sensors, wearable devices, monitoring equipment, images

(e.g., x-ray, MRI, CT, ultrasound), texts (e.g., exam results, clinical and biomedical notes)

and corporate systems. This wide heterogeneity of data requires different techniques for

collecting and analyzing large volumes of data and the ability to deal with (near) real-time

data and integration requirements.

2.5 Data Management Issues in Digital Twins

Qi and Tao (2018) compare DT and Big Data and note that both concepts share

the same technologies. However, while the former is more related to technologies on

cyber-physical integration such as simulation, virtual reality, augmented reality, and CPS,

Big Data is more related to data technologies such as cloud computing, data cleaning,

data mining, machine learning and etc. Therefore, DTs and Big Data are complementary

concepts.

The term “Big Data" is used to label data management according to different at-

tributes. Originally it was associated with three key properties (CURRY, 2016): volume,

velocity, and variety. Volume requires dealing with large scales of data within data pro-

cessing. Velocity involves dealing with high-frequency streams of incoming real-time data

(e.g., sensors, IoT). Variety implies handling data using differing syntactic formats (e.g.,

spreadsheets, XML), structured and unstructured data (e.g., tabular data, texts, videos),

schemas, and meanings. As the field matured, other properties were included (AL-

MEKHLAL; KHWAJA, 2019), among them Veracity and Value. Veracity refers to the

truthfulness or reliability of the data, while Value is the measurement of data usefulness

that determines the discovery of hidden values from the collected data.

The Big Data value chain identifies key level activities (CURRY, 2016), shown in

Figure 2.2. Below we detail these activities:

• Data Acquisition: covers the process of gathering, filtering, cleaning, preparing

data, and making it available in some storage solution for further data analysis.

• Data Analysis: is concerned with making the acquired data amenable to use in

decision-making and domain-specific usage. It involves exploring, transforming,

8https://www.gehealthcare.com/products/anesthesia-delivery/carestation-insights
9https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20181112-how-a-virtual-

heart-could-save-your-real-one.html
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Figure 2.2 – Big Data Value Chain.

Source: (CURRY, 2016)

and modeling data to highlight relevant data.

• Data Curation: is the active management of data over its life cycle to ensure the

necessary data quality for its effective usage, and it is in charge of a data curator

expert.

• Data Storage: is the persistence and management of data in a scalable way that

satisfies the needs of applications that require fast access to the data.

• Data Usage: covers the data-driven business activities that need access to data, its

analysis, and the tools required to integrate the data analysis within the business

activity.

In the context of a DT architecture, the functionality of the DM component can

be mapped mostly to the activities encompassed in Data Acquisition, Data Analysis, and

Data Curation, with the technological support of Data Storage. The Data Usage activities

can be mapped into the role of the Services or Virtual Space components in creating value

from data.

Data Lake is a concept that emerged to overcome the challenges related to big

data scenarios (COUTO et al., 2019). According to Sawadogo and Darmont (2021), a

data lake is a scalable storage and analysis system for data of any type, retained in their

native format and used mainly for knowledge extraction. It should support the integration

of any type of data; support for logical and physical organization of data; accessibility

to various kinds of users; metadata catalog to enforce quality; and scalability in terms

of storage and processing. The functions of the DM component can be approximated to

the data and knowledge management functionality in Data Lakes (KRONBERGER et al.,

2020; CORREIA et al., 2022).
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In this work, we survey the DM solutions proposed in DTs under the per-

spective of Data Acquisition, Data Analysis and Data Curation activities, considering

data/knowledge management functionality similar to Data Lakes. According to this view,

we consider the DM component has to address the following issues: heterogeneity, inter-

operability, integration, data discovery/search, and data quality.

2.5.1 Data heterogeneity

Increased computational power and the development of IoT devices have caused a

large-scale data processing change, thus also allowing an explosion in the variety of data

types and sources. Therefore, access to these various types and data sources has become

complex, and the DM component has to be able to deal with this data heterogeneity.

According to Jirkovsky, Obitko and Marik (2017), there are three levels of hetero-

geneity:

• Syntactic heterogeneity: occurs when two data sources do not use the same formal-

ism to represent the same data (e.g., schema).

• Terminological heterogeneity: occurs when two data sources use different termi-

nology to refer to the same entity.

• Semantic heterogeneity: occurs when there is no consensus of meaning or under-

standing about a given entity.

The heterogeneity directly impacts the acquisition, integration, quality, contextu-

alization of data and, consequently, their integrity. Therefore, obtaining a unified view of

all these different types of data sets is an arduous and complex task. Data heterogeneity is

an essential challenge in any application context that needs to deal with different sources

that generate lots of data, such as the application domains mentioned in Section 2.4. One

of the highest expectation of complex systems such as DTs is to achieve transparent in-

tegration, where data can be accessed, recovered, and treated through techniques, tools,

and algorithms in a uniform way.
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2.5.2 Data integration

Data integration aims to combine data from multiple sources, providing a high-

level unified view that makes data amenable to use in Analysis activities (RAHM, 2016a).

The role of data integration is fundamental to an organization’s efficiency (KADADI et

al., 2014). The data themselves do not provide value and need to be processed. The use

of specific techniques and approaches is required to extract relevant information.

There are several approaches to integrate the data. Physical data integration is

the most popular approach, where the source data is combined within a new dataset or

database (data lake, data warehouse) tailored for analysis activities. In virtual data in-

tegration, the data entities remain in their original data sources and are accessed at run

time.

Other critical approaches for data integration are data transformation, semantic

enrichment, entity resolution (data matching), entity merging, and combining and merg-

ing metadata models such as schemata and ontologies (DOAN; HALEVY; IVES, 2012;

DONG; SRIVASTAVA, 2015). Semantic data enrichment can be achieved by linking

entities or metadata such as attribute names to knowledge resources (e.g., dictionaries,

ontologies, knowledge graphs).

Entity Resolution is a data integration approach that aims to identify different

descriptions or entity profiles that correspond to the same object in the real world and can

be applied to any type of data (structured, unstructured, semi-structured) (PAPADAKIS et

al., 2020). This approach is also known as data fusion, data merging, data consolidation,

or finding representations (BLEIHOLDER; NAUMANN, 2009).

Data transformation is a very useful approach when the goal is mapping schemata

or integrating schemata. For this, the data is transformed according to the global schema

of the integrated information system. Schema mapping assumes a particular destination

schema and, by identifying correspondence with origin schemata, generates a set of ele-

ments to determine how data should be transformed. Schema integration, however, aims

to generate a global scheme from individual schemata creating a new and correct new

schema (BLEIHOLDER; NAUMANN, 2009).

Ontologies and knowledge graphs are approaches that integrate different data and

provide a semantic understanding. According to Studer, Benjamins and Fensel (1998),

"an ontology is the formal and explicit specification of a shared conceptualization", which

is the hierarchical definition of generalization and specialization of concepts. Knowledge
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graphs provide a rich knowledge base for data integration, in which they organize entities

hierarchically, categorically or by classes and interconnect them through various semantic

relationships (RAHM, 2016b).

Integration in the DT scenario should consider data from different application

domains that have significant semantic, terminological, and syntactic heterogeneity, lack

of standards, and low quality. Overcoming these challenges allows the development of a

unified view of different parts of a context and even the different parts of the DT, enabling

the production of actionable and valuable knowledge for the business.

2.5.3 Interoperability

Interoperability is a multidimensional concept comprising multiple perspectives

and approaches from different communities according to the application domain. The

IEEE Glossary defines interoperability as “the ability of two or more systems or com-

ponents to exchange and use the information exchanged in a heterogeneous network"

(GERACI, 1991). A systematic review in cyber-physical systems (GüRDüR; ASPLUND,

2018) identified ten types of interoperability. Due to the focus on the DM component of

a DT, we focused on semantic and data interoperability.

Data interoperability is the ability of data to be accessible, reusable, and under-

standable by all transaction parties by addressing based on a shared understanding regard-

less of different representations, purposes, contexts, and syntax-dependent approaches

(MYKKÄNEN; TUOMAINEN, 2008). In (RENNER, 2001), data interoperability is de-

fined as the ability to correctly interpret data that cross the system or organizational limits.

Semantic interoperability is when the meaning of the information model in the

context of an area or domain is understood, with a common understanding of concepts,

taxonomies and meanings (PLATENIUS-MOHR et al., 2020). Interoperating between

different systems and applications is a problem orthogonal to all domains and becomes

even more relevant within the context of DTs (LEAL; GUÉDRIA; PANETTO, 2019).

Therefore, developing solutions to promote interoperability and shared semantics requires

developing and deploying open standards and ontologies.

Since ontologies have the ability to explicitly represent the semantics of the do-

main, define entities, relationships and their properties, and establish a common under-

standing between data from different data sources, they can be a useful approach to pro-

viding semantic interoperability (OBRST, 2003). DTs deal with data from various sources
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and systems, and ontologies can assist to understand the different types of taxonomies,

identify and solve distortions of meaning, and also provide a pattern of information shar-

ing.

The basis of the operation of DT is the exchange of data and information between

its different layers and between DTs from different domains of application. Therefore,

data interoperability and semantic interoperability are fundamental in the context of DTs

because they allow data sharing in an effective way, unlocking barriers of communica-

tion and understanding, and making dependent activities and processes more fluid. Data

analysis activities can also benefit from data interoperability and semantic interoperabil-

ity since they contribute to more data becoming available. In this way, the analyzes get

richer, generating the most interesting insights.

2.5.4 Data search and discovery

Generating value from data requires the ability to find, access, and make sense of

datasets. Data search and discovery are among the Analysis activities that enable users to

find, understand, and trust the information used to generate value from data.

Broadly speaking, a query is a semantically and syntactically correct expression

of a search, which can be addressed in a range of scenarios, depending on the types

of data and methods used (CHAPMAN et al., 2020). Relevant sub-disciplines include

databases, document and keyword search, entity-centric search, semantic search, tabular

search, among others. The required underlying infrastructure for handling the search

includes query parsers and evaluators, optimizers, indexes for various data types, metadata

and ontologies, reasoners, etc.

A structured query requires the user to know and understand the database schema.

When using a structured query language like SQL or XQuery, the user can create ques-

tions for the database and thus obtain a data set as an answer (YU; JAGADISH, 2007).

The structured query is a powerful way to access data in a database. However, formulating

complex queries is difficult for most users and, in addition, has no support for semantic

data recovery (MUNIR; ANJUM, 2018).

Some approaches use domain ontologies adapted for database modeling to support

the search by the semantics of the data. By taking advantage of the ability of ontologies

to define a semantic data model, we have the advantage of improving search capacity,

including the enrichment of queries in traditional databases, making it possible to query



32

and recover the semantics of the data (MUNIR; ANJUM, 2018).

In the Big Data context, most data are not structured, so the search process, al-

though fundamentally similar to that of structured searches, differs because it has its scope

distributed (GROVER; KAR, 2017). The Apache Lucene10 is a powerful, performative

and scalable full-text search library that provides advanced indexing and search resources

such as phrase queries, wildcard queries, proximity queries, range queries, and others.

Apache Lucene is the basis for famous and widely used search engines like Solr and

Elasticsearch (VENKATESH et al., 2019).

Elasticsearch11 is a distributed search and data analysis mechanism built on

Lucene. It is able to deal with all types of data, including textual, numerical, geospa-

tial, structured, and unstructured. It is the central component of the Elastic Stack, which

is a set of free tools for the ingestion, enrichment, storage, analysis, and visualization of

data.

DTs can exploit helpful search and discovery in analysis activities to filter, trans-

form, model, and extract hidden information from raw or transformed data. Notice that

data search objective is different when considered in the realm of data usage activities

and data usage activities. From a DM component perspective, the goal is to support data

consumption, such that relevant data can be submitted to analysis models (e.g., machine

learning models, what-if scenarios), event managers, or consumed through dashboards,

visualizations or reports.

2.5.5 Data quality

To guarantee quality information from a data curation standpoint, it is necessary

to develop methods, metrics, and tools to manage data quality. The literature has defined

specific characteristics or dimensions to manage data quality, such as timeliness, com-

pleteness, consistency, accuracy, etc (SIDI et al., 2012). Timeliness is related to the age

of the data being adequate for the task at hand. Completeness seeks to measure whether

there are missing or null data. Consistency measures how compatible the data is with

previous data, and accuracy measures how accurate the data is relative to actual values.

Wang and Strong (1996) developed a conceptual data quality framework that has

been divided into four categories intrinsic, contextual, representational, and accessibility

10https://lucene.apache.org/
11https://www.elastic.co/pt/what-is/elasticsearch
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Figure 2.3 – A Conceptual Framework of Data Quality

Source: (WANG; STRONG, 1996)

as shown in Figure 2.3. The intrinsic quality category includes the dimensions of cred-

ibility that indicates whether the accepted data is true, accuracy indicates whether the

data is correct and free of errors, objectivity that indicates whether the data It is impartial

and reputation indicates whether the data is reliable or considered reliable concerning its

origin.

The contextual data quality category includes the dimension of value-added that

indicates whether the data present advantages for the user, relevancy that indicates

whether the data is useful for a given context, timeliness indicates whether the data is

appropriate for a given context, completeness indicates whether the data is complete or

not null and appropriate amount of data shows whether the amount of data available is

adequate.

The representational data quality category includes interpretability that indicates

whether the data is in a clear and clearly defined language, ease of understanding indicates

whether the data is clear and easy to understand, representational consistency indicates

whether the data is always represented in the same format and concise representation

indicates whether the data is compactly represented in a context. And finally, the category

of accessibility indicates whether the data is available and is easily accessible and if a

access security to the data is appropriate.

Data cleaning and preprocessing are examples of operations that improve the data

quality. Besides, they are integral parts of integration activities, such as dealing with

noisy and missing data, duplicated data, outlier detection, normalization, transformation,

etc. Big data has increased the complexity of managing data quality as the heterogeneity
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and volume of data have increased. In addition, there is a high degree of complexity

in identifying events that reveal incorrect data or abnormal conditions in data streams,

requiring advanced solutions (e.g., machine learning).

Machine learning techniques can improve the accuracy and efficiency of data

cleaning algorithms from the statistical perspective to deduplicate data, repair incorrect

and missing values, and remove erroneous or irrelevant data. However, there are some

challenges inherent to data cleaning research for big data. The scalability of data cleaning

techniques is a challenge, given the rapid growth of data sets. Hence the development of

automated and scalable approaches is an important matter. Cleaning techniques focused

on semi-structured and unstructured data are an open field of research, as well as devel-

oping data cleaning approaches from the qualitative perspective for streaming data (CHU

et al., 2016).

High-quality data is essential in any context, whether in business, decision support

systems, machine learning algorithms, or DTs. Being able to rely on data and information

is critical to the success of data-oriented activities and processes. In the context of DTs,

data quality management gains a prominent space when considering the data flow loop

and information that characterizes a DT. Therefore, it is necessary to prioritize data quality

in developing and managing a successful DT.
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3 RELATED WORK

This chapter describes existing reviews in the context of DTs that motivated our

SLR. We also compare them with our work, justifying the need for our SLR.

3.1 Literature Reviews about Digital Twins

The first step in the planning phase of an SLR is to identify the need by comparing

it with existing literature reviews. In this section, we summarize secondary studies (SLR,

surveys, reviews) in the context of DTs that motivated the development of ours. We de-

scribe these secondary studies in chronological order. The goal and the research questions

addressed by each work are summarized in Table 3.1. Table 3.2 summarizes the source

of information, the search string, and the number of selected studies.

The survey described in (RAPTIS; PASSARELLA; CONTI, 2019) investigates

the state of the art of data management at the level of cyber-physical industrial networks.

The motivation behind this survey is to provide researchers coming from both the com-

munications/networking/computation fields and the industrial/manufacturing/automation

fields an overview of data management issues at the intersection of these two large do-

mains. The main contributions are related to evaluating selected studies to identify data

properties (volume, variety, traffic, and criticality) and investigate in different use cases

corresponding data technologies used to handle these properties. The authors also out-

line the architectural design of I4.0 with respect to their data management philosophy,

more specifically, data presence, data coordination, and data computing at the network

level. In addition, they provide a taxonomy that shows the latest technologies at the level

of data-centric networks and services. The authors conclude their survey by discussing

future challenges and open research on data management in cyber-physical industrial en-

vironments. This work discussed data management from a network and manufacturing

interdisciplinary level, and hence in a completely different perspective and granularity

compared to our SLR.

The SLR in (BARRICELLI; CASIRAGHI; FOGLI, 2019) seeks to extract from

the primary studies the characteristics of DTs and the design implications concerning the

DT life cycle. They compile 29 different definitions for the term Digital Twin and argue

that these definitions highlight specific key points (e.g., clone/counterpart, integrated sys-

tem). Another contribution is investigating the most interesting applications of DTs that
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have been published in the scientific literature. They explore beyond the I4.0 domain,

highlighting applications in aviation and healthcare. In addition, the authors identified

DT’s design implications at different stages of their life cycle, detecting two possible

types of life cycles for DTs. The first cycle begins in the design phase of its physical twin,

which does not yet exist, while the second cycle begins when the physical twin already

exists and has been operating for some time. Although it provides a better understand-

ing of the term Digital Twin and its properties, this work does not explicitly address data

management.

The main contribution of the SLR in (JONES et al., 2020) is to extract from pri-

mary studies in an exhaustive way information that characterizes a DT and all its elements.

For the authors, identifying all the characteristics of a DT is fundamental, as it helps the

academy to consolidate knowledge about how to best represent it. This review also iden-

tifies the benefits of DTs, the gaps, and future directions reported in primary studies. This

work also does not explicitly address data management.

The literature review described in (FULLER et al., 2020) also aims to compile

all the characteristics of a DT from existing primary studies. It extends knowledge about

the concept of DT by addressing misconceptions and explicitly defining what a DT is

and what it is not. The authors sought in the primary studies all DTs definitions and,

based on cyber-physical integration level, they distinguished between digital model, digi-

tal shadow, and DT, as already mentioned in Section 2.3. This helps to define a scope and

allows to establish a manner to measure different degrees or levels of cyber-physical in-

tegration maturity to reach a DT. The authors also discuss open challenges from different

perspectives: Data Analytics, IoT/IIoT, and enabling technologies. Among the data data

analytics challenges, the authors mention IT Infrastructure, privacy and security, trust,

and expectations in terms of added value.

The SLR reported in (SEMERARO et al., 2021) is a review with a broader scope

compared to the aforementioned ones. Using a 5W+1H approach1, the authors sought to

collect information from primary studies to define what a DT is, what the technologies

and components are used to implement a DT, what are the possible functions for which

DTs are used, who is developing DTs, and for which stage of the product life cycle. The

authors seek to understand how to design a DT based on the architectures proposed by

selected studies. They highlighted different layers for a DT architecture (physical layer,

network layer, and computing layer) and components (sensors, systems, communication

1What, Where, Who, Why, When, How
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protocols, middleware, APIs, data-driven methods, physical, geometric model, behavior,

fidelity, modularity, etc.). In summary, the main contribution of this SLR is the provision

of an overview of the concept of DT from different aspects.

3.2 Final considerations and comparison

Tables 3.1 and 3.2 summarize the existing surveys and compare them with our

SLR. From Table 3.1, it is possible to identify how different the goal and the research

questions of each work are and how focused they are in understanding the terminology

and DT properties, the existing applications, the domains for which they are built, and the

underlying technology. Two literature reviews (RAPTIS; PASSARELLA; CONTI, 2019;

JONES et al., 2020) did not define specific research questions, as they chose to perform

a thematic analysis in the corpus. Our SLR aims to better understand the role and the

functionality provided by the DM component in a DT, with research questions that have

not been addressed in the literature.

Table 3.1 – Research questions of related literature reviews
Study Research questions Goal

(RAPTIS; PASSARELLA; CONTI, 2019) Thematic analysis
Investigates management at network level,
communication and industrial automation

(BARRICELLI; CASIRAGHI; FOGLI, 2019)

(i) What are the definitions of Digital Twin that have been
published in literature?;
(ii) What are the main characteristics that should be present
in a Digital Twin?;
(iii) What are the domains in which Digital Twin applications
have been developed and described in scientific literature?

Investigates DT definitions, its characteristics,
applications and design implications

(JONES et al., 2020) Thematic analysis Aims to characterize the concept of DT and its parts

(FULLER et al., 2020)

(i) What is a Digital Twin and what are some of its
misconceptions with current and previous definitions?;
(ii) What are the applications, challenges, and enabling
technologies associated with IoT/IIoT, data analytics
and Digital Twins?;
(iii) Is there a link between IoT, IIoT and data analytics with
Digital Twin technology?;
(iv) What are the open research and challenges with Digital Twins?

Investigates the technologies associated with DT
and its applications

(SEMERARO et al., 2021)

(i) What is a Digital Twin?;
(ii) Where is appropriate to use a Digital Twin?;
(iii) Who is doing Digital Twins?;
(iv) When has a Digital Twin to be developed?;
(v) Why should a Digital Twin be used?;
(vi) How to design and implement a Digital Twin?;
(vii) What are the main challenges of implementing a Digital Twin?

Investigates the concept of DT at the level of functions,
components and technologies, context, life cycle
and architecture

Our work

(i) For which domains the DT solutions were proposed?;
(ii) Under the perspective of data usage, for which functions
were the DTs proposed?
(iii) What types of data do the proposed solutions consider?;
(iv) What solutions were proposed for the DM issues addressed?;
(v) What kind of technical infrastructure is considered?

Investigates data management in the context of DTs

Source: The author

Table 3.2 complements the previous one with more details about the literature

reviews: the digital libraries used to search for primary studies, the search strings, and the

number of selected studies. It is possible to see that all studies vary enormously in the

search and selection strategies, resulting in a completely different set of primary studies.

They also do not explicitly address data management issues in their search string.
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Table 3.2 – Literature reviews comparison
Study Source Search string Corpus

(RAPTIS; PASSARELLA; CONTI, 2019)
Selected journals from manufacturing
and network domains Unspecified Unspecified

(BARRICELLI; CASIRAGHI; FOGLI, 2019) Google Scholar (”digital twin artificial intelligence” and ”digital twin model”) 75
(JONES et al., 2020) Google Scholar (”digital twin”) 92

(FULLER et al., 2020)
Google Scholar, ACM,
IEEE, Science Direct

(”Digital-Twin”, ”Digital Twins”, ”Industrial Digital Twin”,
”Healthcare Digital Twin”, ”Smart Cities Digital Twin”) 43

(SEMERARO et al., 2021) Scopus, Elsevier, Science Direct
(”digital twin”, ”factory of future”, ”industry 4.0 technologies”,
”cyber-physical system”, ”predictive manufacturing”) 115

Our work ACM, IEEE, OnePetro, Scopus,
Science Direct, Web of Science

(“digital twin” OR “cyber-physical” OR “CPS” OR “digital model”)
AND (“data management” OR “data integration” OR “data repository” OR
“data transformation” OR “data provenance” OR “data governance” OR
“heterogeneous data” OR “data interoperability” OR “metadata management”
OR “data storage” OR “data quality” OR “data enrichment” OR “data modeling”))

57

Source: The author

Our SLR is the only one that investigates the data management aspects in DTs,

expressing it in the search string, goal, and research questions. This finding justifies the

need for the development of an SLR such as ours, which explicitly examines aspects of

data management such as data integration, data interoperability, data search, and data

quality in the layer closer to applications, i.e., closer to the applications that consume and

use the data produced by different parts of the DT. Therefore, our SLR complements and

innovates this landscape of literature reviews in the context of DTs when investigating

data management aspects not yet analyzed.
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4 SYSTEMATIC LITERATURE REVIEW: PROTOCOL DEFINITION

In this chapter, we discuss the protocol defined for this SLR. The methodology

adopted followed the guidelines of systematic literature reviews proposed by (KITCHEN-

HAM; CHARTERS, 2007), described in Section 2.2.

4.1 Objective and Research Questions

An SLR must summarize all current information about some phenomenon thor-

oughly and unbiasedly. The main objective of this SLR is to systematically examine

works addressing DTs and summarize the solutions proposed for the critical DM issues

identified in Section 2.5. As summarized in Chapter 3, related work has not addressed

this subject.

According to this goal, we defined five research questions (RQ), presented in Ta-

ble 4.1 with the respective motivation.

Table 4.1 – Research questions and respective motivations.

ID Research Question (RQ)
Motivation (M)

RQ1
RQ: For which domains the DT solutions were proposed?
M: In order to identify the most active and mature DT areas for which
DM solutions were proposed, this question identifies the respective do-
main/subdomain.

RQ2
RQ: Under the perspective of data usage, for which functions were the DTs
proposed?
M: This question aims to identify the main functions for which a DT was
proposed, considering data usage under the value chain. It provides a context
on the proposed functionality for acquiring and managing data to be consumed
by other components of the DT.

RQ3
RQ: What types of data the proposed solutions consider?
M: This question aims to characterize the heterogeneity of the data that needs
to be managed in the DT. It indicates the completeness of the solution concern-
ing data types, formats and velocity requirements.

RQ4
RQ: What solutions were proposed for the DM issues addressed?
M: This question aims to survey the DM solutions proposed for the key data
management issues raised in Section 2.5, namely interoperability, integration,
data search and discovery, and data quality. It sheds light on the specific prob-
lems addressed and how encompassing is the scope of the DM component
considered.

RQ5
RQ: What kind of technological infrastructure is considered?
M: This question surveys the technological infrastructure leveraged or sug-
gested for implementing the proposed DM solutions. It aims to identify tech-
nological trends that support data management in DTs.

Source: The author
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4.2 Search Strategy

An SLR focuses on identifying the primary studies that can answer the research

questions. First, we sampled papers by identifying relevant works using different Digital

Libraries (DLs) and by snowballing the references from these works and surveys. We used

these sample studies in three ways: a) to define the terms for an initial search string; b) as

control papers in the refinement and validation of the search string; c) to delimit the search

period. We defined 2014 or later as the search period because we did not identify any

relevant work before 2014 in the snowballing process used to constitute this sample. The

decision on the lower bound of the search period is in line with existing seminal SLRs and

surveys about DTs (JONES et al., 2020; TAO et al., 2019; BARRICELLI; CASIRAGHI;

FOGLI, 2019; FULLER et al., 2020), which identify 2014-2015 as the initial year of

relevant publications about DTs. Note that the pioneering work that proposed a central

DM component (TAO; ZHANG, 2017) dates from 2017, and therefore our sample seems

consistent.

Then we refined the list of keywords iteratively according to the quality and

amount of studies resulting from the DLs search. The search string was composed using

two categories of terms: (i) synonyms for the term Digital Twin and (ii) data management

issues/functionality required to handle data in DTs. We evaluated each search to reach

a suitable set of studies, verifying if the results included the control papers. The final

search string was:

(“digital twin” OR “cyber-physical” OR “CPS” OR “digital model”)

AND

(“data management” OR “data integration” OR “data repository” OR “data transfor-

mation” OR “data provenance” OR “data governance” OR “heterogeneous data” OR

“data interoperability” OR “metadata management” OR “data storage” OR “data qual-

ity” OR “data enrichment” OR “data modeling”))

Table 4.2 summarizes the DLs used. These DLs index the main journals and

conferences on computer science, enable to search papers using expressions combining

keywords and logical expressions, and allow for the search to be performed in the title,

abstract, and keywords.

We developed this review using two online collaborative systems: Parsifal1, a

1<https://parsif.al>

https://parsif.al
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Table 4.2 – Selected digital libraries
ID Digital Library URL

ACM ACM Digital Library <http://dl.acm.org>
IEEE IEEE Digital Library <http://ieeexplore.ieee.org>
OP Onepetro <http://www.onepetro.org>
Sco Scopus <http://www.scopus.com>
S@D Science Direct <http://www.sciencedirect.com>
WoS ISI Web of Science <http://www.isiknowledge.com>

Source: The author

support system for conducting SLRs, Mendeley2, a reference manager system. With the

support of Parsifal, we exported the text files containing the Bibtex references for the

articles and eliminated the duplicates. We retrieved the files for the screened papers and

input them into the Mendeley system. The results reported in this work refer to the last

search performed on November 20th, 2021.

4.3 Study Selection

The search retrieves potentially relevant primary studies, of which the actual rel-

evance needs to be confirmed. The protocol defines inclusion and exclusion criteria to

filter out retrieved studies not aligned with our objectives.

We defined the following inclusion criteria: (1) papers written in English; (2)

papers published in 2014 or later; (3) studies addressing DTs or DSs, according to the

definition in (FULLER et al., 2020); (4) studies that explicitly propose DM solutions for

DTs/DSs, (5) primary studies; (6) papers published in peer-reviewed fori.

To discard studies that are not relevant to this SLR, we defined the following ex-

clusion criteria: (1) type of publication by eliminating materials such as short papers

(3 pages or less), reviews, secondary studies, reports, books, textbooks, theses and dis-

sertations, editorial letters, brief communications, posters, commentaries, unpublished

working papers; (2) non-English papers; (3) papers with full text unavailable; (4) papers

published in non-peer-reviewed fori; (5) studies that do not explicitly address DTs/DSs;

(6) studies that do not explicitly address a DM solution in the context of a DT/DS. Regard-

ing this last criteria, we disregarded all studies describing data pre-processing designed

to prepare/improve an input to a specific model (e.g., predictive model, visualization ser-

vice, simulation), as well as studies focusing on the deployment of middleware or cloud

computing without a specific underlying DM functionality.

2<https://www.mendeley.com/>

http://dl.acm.org
http://ieeexplore.ieee.org
http://www.onepetro.org
http://www.scopus.com
http://www.sciencedirect.com
http://www.isiknowledge.com
https://www.mendeley.com/


42

The selection of studies occurred in three steps: (i) preliminary screening using the

title, abstract, and keywords; (ii) pre-selection of candidate studies considering the intro-

duction and superficial reading of the paper; (iii) final selection based on the full reading

of the paper. Two authors independently performed the screening phase. To align the in-

terpretation of the inclusion/exclusion criteria, these two authors also independently read

all pre-selected papers, discussing all cases in which there was a doubt or disagreement.

In the final selection, the authors discussed all the cases that generated concerns.

4.4 Quality Assessment

Our protocol includes quality assessment motivated by the following goals: iden-

tifying the individual contribution of each study to our research and assessing whether

quality differences help explain the results.

We selected nine criteria to evaluate each study from the perspective of method-

ological quality and contribution level for data management in the context of DTs. The

quality questions are summarized in Table 4.3.

Table 4.3 – Quality assessment criteria
Quality Questions

QQ1. Is there a clear statement of the goals of the research (DERMEVAL et al., 2016)?

QQ2. Is the problem to be solved by the technique/method/approach/framework clearly explained (TIWARI; GUPTA, 2015)?

QQ3. Is there sufficient discussion of related work (TIWARI; GUPTA, 2015)? (Are competing techniques discussed and compared with the present technique?)

QQ4. Is the proposed technique/method/approach/framework clearly described (DERMEVAL et al., 2016)?

QQ5. Is there an adequate description of the context (industry, laboratory setting, products used and so on) in which the research was carried out (DERMEVAL et al., 2016)?

QQ6. Is there a discussion about the results of the study (DERMEVAL et al., 2016)?

QQ7. Are the limitations of this study explicitly discussed (DERMEVAL et al., 2016)?

QQ8. Is the broader relevance of the work discussed (TIWARI; GUPTA, 2015)?

QQ9. Is the study increase the knowledge about data management in DTs research (TIWARI; GUPTA, 2015)?

Source: The author

Each quality question (QQ) was judged against three possible answers: “Yes”

(score = 1), “Partially” (score = 0.5), or “No” (score = 0). Consequently, the quality score

for each particular study is computed by taking the sum of the scores of the answers to

the questions and can reach up to nine points. We defined a minimum quality threshold

(i.e., minimum of five); otherwise, the study should be discarded.

4.5 Data Extraction and Summary

The data extraction strategy aims at helping to answer the research questions by

allowing the researchers to summarize and categorize articles, thus improving the under-
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Table 4.4 – Extraction form
# Study Data Description Relevant RQ

1 Identifier Unique id for each study Study overview

2 Year, Authors, Country
Year of publication, authors’ names, affiliations
and respective country Study overview

3 Scientific venue Journal or Conference Study overview
4 Institution type Academia, Industry, or Both (based on authors’ affiliation) Study overview
5 Domain/subdomain Generic and specific domain of the DT RQ1

6 Function
The DT function according to
data usage perspective (Semeraro et al., 2021) RQ2

7 Type Digital Twin or Digital Shadow (Fuller et al., 2020) RQ2

8 Data type
Data heterogeneity information, including
the types of data handled and file formats RQ3

9 DM issues and solutions
DM issue(s) (interoperability, integration,
quality and/or search/discovery) and the solution proposed RQ4

10 Technological infrastructure
Technical infrastructure used/recommended for implementing
the solution, with a focus on cloud processing and DBMS RQ5

Source: The author

standing of the domain. We extracted the data for each selected paper by filling a form

with the predefined fields described in Table 4.4. We used spreadsheets to tabulate data

extracted from selected studies, summarize the results and generate tables and graphs.
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5 RESULTS

This chapter describes our findings by answering the five research questions we

addressed in our systematic literature review.

5.1 Study Selection

Figure 5.1 depicts the complete flow for selecting studies, highlighting the reasons

for excluding articles at each step. The search in the six DLs identified 1,838 articles,

which was reduced to 1,165 after eliminating duplicates. The screening of articles re-

sulted in 664 candidate studies, of which we pre-selected 180 candidate studies based on

the introduction, figures, tables, and conclusions. From the full reading, we selected 61

studies, which were then submitted for quality assessment.

Figure 5.1 – Study selection and quality assessment
Start

IEEE Digital
Library: 

347
673 duplicated

papers removed

Identification

501 papers
removed based
on title, abstract
and keywords

1165

484 papers
removed based on

introduction,
figures and
conclusion

664
119 papers

removed based
on  full-text
assessment

STEP 3: Selection

57 studies
selected 

Included

STEP 1: Screening STEP 2: Pre-selection

Exclusion criteria:

Exclusion criteria:

Study is not about 
DT
Study is not about 
DM in DT 

Secondary study
Non-English written paper
Short paper (<= 3 pages)
Study is not about  DT
Study is not about  DM in DT

Scopus:
746

One Petro: 
29Manual: 

2
Web of

Science: 
542

Science@Direct: 
160

Search papers in DLs
based on search string

ACM Digital
Library: 

12
180

Full paper not available
Secondary study
Short paper (<= 3 pages)
Grey literature 
Forum not peer-reviewed 
Study is not about  DT
Study is not about  DM in DT

61

Exclusion criteria:

1838
4 papers

removed based
on quality

assessment

STEP 4: Quality
Assessment 

57

Source: The author

5.2 Quality Assessment

We performed the quality assessment on the 61 selected studies, using the ques-

tions in Table 4.3. The quality scores for each study are presented in Appendix A (Table

A.1).

As depicted in Figure 5.1, we additionally removed four studies (SHA;

ZEADALLY, 2015; DAI et al., 2017; JIANG; CHEN; LIU, 2021; HÄNEL et al., 2021)

that obtained a score inferior to five, which in our judgment, denotes irrelevance to our
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SLR. Thus, our final selection includes 57 studies that are aligned with the primary ob-

jective of our SLR.

The average score of the remaining 57 papers is 7.39. Figure 5.2 details the av-

erage score for each QQ. Quality assessment has allowed us to identify that two QQs, 3

and 7, presented the lowest score compared to the others. The average score of QQ3 is

only 0.52, which indicates the immaturity of data management solutions in the context

of DTs, given that through this question, we evaluate if the studies present a discussion

of sufficient related works and if there is a comparison with competing techniques. The

average score of QQ7 is only 0.45. Through this question, we assess if the studies discuss

their limitations explicitly. This result denotes the lack of mastery of the problem and the

impact of the results of the solutions proposed by the studies.

Figure 5.2 – Quality questions average score
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5.3 Data Extraction Results

We extracted data from the 57 selected studies according to the data extraction

form defined in the protocol (Table 4.4). The results are summarized in Table 5.2. Before

we present the results for each research question, we present some statistics from the

selected studies.

Figure 5.3 shows the distribution of publications by year. We can observe that the

number of publications explicitly addressing DM issues significantly increase from 2019

on. We hypothesize that the evolution in the state-of-the-art and state-of-the-practice
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Figure 5.3 – Number of papers per year
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Table 5.1 – Studies grouped based on scientific vehicle and institution type
Scientific vehicle Academia Industry Both
Conference 18 5 10
Journal 20 0 4

Source: The author

in DTs has motivated us to address DM issues explicitly to take this concept to its full

realization (SINGH et al., 2021) and construct the necessary conceptual, methodological,

and technological data management foundations for DT development.

Figure 5.4 displays the countries developing research in this area, which were

summarized based on the involved organizations. We identified contributions from

twenty-five countries in total, where the most active ones are China, Germany, the United

Kingdom (UK), and Italy. These countries have the largest companies in the industry,

manufacturing, supply chain, aviation, and energy, which may explain these results.

Figure 5.4 – Number of institutions per country
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We also categorized studies by type of scientific vehicle and type of institution,
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as shown in Table 5.1. The results show that most studies (66.66%) were carried out by

academia, five studies (8.77%) were developed by industry alone, and fourteen (24.56%)

through partnerships between academia and industry. Given the prevalence of academic

works, we conclude that this is a topic still in its infancy regarding actual implementations.

The interest in practical applications of DTs is revealed by the number of works that

involve the industry alone or in partnerships.

Table 5.2 – Selected studies
ID Study Type Domain Subdomain Function Data type Interop. Integ. Search Qual. Infrastructure

1
(ZHANG et

al., 2017)
DS HC Healthcare Decision support Real-time,

Historical
! ! Cloud

2

(ALHUMUD;

HOSSAIN;

MASUD,

2016)

DS HC Healthcare Decision support Real-time,

Historical
! Cloud

3

(NÚÑEZ-

VALDEZ et

al., 2020)

DS HC Healthcare Decision support Historical ! Unspecified

4
(HUSSAIN;

PARK, 2021)
DS HC Healthcare Decision support,

Asset monitoring

Real-time,

Near real-time
! !

Cloud,

SQL,

NoSQL

5

(HINOJOSA-

PALAFOX et

al., 2019)

DS I4.0 Smart

manufacturing
Anomaly detection Real-time,

Historical
!

Cloud,

SQL,

NoSQL

6
(SINGH et al.,

2021)
DS I4.0

Aviation

industry
Asset monitoring Historical ! ! SQL

7

(PLATENIUS-

MOHR et al.,

2019)

DS I4.0 Industrial Asset monitoring Historical ! Cloud

8

(WANG;

CHENG,

2021)

DS I4.0 Maintenance of

industrial robots
Asset monitoring Historical ! Unspecified

9

(AGARWAL;

MCNEILL,

2019)

DS I4.0 Oil and Gas Asset monitoring Real-time ! Unspecified

10
(KONG et al.,

2021)
DS I4.0 Smart

manufacturing
Asset monitoring Historical

CSV
! ! NoSQL

11
(LANDOLFI

et al., 2018)
DS I4.0 Smart

manufacturing
Asset monitoring Near real-time,

Historical
! Unspecified

12
(OAKES et al.,

2021)
DT I4.0 Smart

manufacturing
Asset monitoring Real-time,

Historical
! Unspecified

13
(ZONZINI et

al., 2020)
DS I4.0 Smart

structures
Asset monitoring Real-time.

JSON
! Cloud,

NoSQL

14
(BRECHER et

al., 2021)
DS I4.0 Automotive

glazing industry
Decision support Real-time !

Cloud,

Edge,

SQL

15

(JIRKOVSKY;

OBITKO;

MARIK,

2017)

DS I4.0 Eletric energy Decision support Historical ! ! NoSQL

16
(SAHLAB et

al., 2021)
DS I4.0 Industrial Decision support Real-time,

Historical
! ! Unspecified

17
(ZHANG; JI,

2019)
DS I4.0 Smart

manufacturing
Decision support

Real-time,

Historical.

XML, JSON

! Cloud,

SQL

18
(YU et al.,

2019)
DS I4.0 Smart

manufacturing
Decision support Real-time ! !

Cloud,

Edge,

SQL,

NoSQL
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Table 5.2 – Selected studies
ID Study Type Domain Subdomain Function Data type Interop. Integ. Search Qual. Infrastructure

19

(HOOS;

HIRMER;

MITSCHANG,

2017)

DS I4.0 Smart

manufacturing
Decision support Historical.

XML, tabular
! SQL,

NoSQL

20

(ANDIA;

ISRAEL,

2018)

DS I4.0 Oil and Gas Event monitoring XML, JSON,

XLSX, PDF
!

Cloud,

SQL,

NoSQL

21
(CARDOSO

et al., 2021)
DS I4.0 Smart grid

Fault detection,

Predictive

maintenance

Real-time ! SQL,

NoSQL

22
(LIU et al.,

2020)
DT I4.0 Smart

manufacturing

Fault diagnosis,

Predictive

maintenance,

Decision support

Real-time.

XML
! Unspecified

23
(KOUSI et al.,

2019)
DS I4.0 Automotive

manufacturing

Optimization

of assembly

Real-time,

Historical
! Unspecified

24

(ZHUANG;

GONG; LIU,

2021)

DS I4.0 Aviation

industry

Optimization

of assembly

Real-time.

CIM/XML
! NoSQL

25
(LV et al.,

2021)
DS I4.0 Smart

manufacturing

Optimization

of assembly

Real-time.

XML
! SQL

26
(SUN et al.,

2020)
DS I4.0 Steel rebars

manufacturing

Optimization

of logistics

Historical.

JSON, CSV
! !

Cloud,

Edge,

SQL,

NoSQL

27
(PERNICI et

al., 2020)
DS I4.0 Supply chain Optimization

of process

Real-time,

Historical
! SQL,

NoSQL

28
(BRACKEL et

al., 2018)
DS I4.0 Oil and Gas Optimization

of production
Real-time ! Cloud,

Edge

29

(BLUM;

SCHUH,

2017)

DS I4.0 Smart

manufacturing

Optimization

of production

Real-time.

Tabular
! Unspecified

30

(GÓMEZ-

BERBÍS;

AMESCUA-

SECO, 2019)

DS I4.0 Smart

manufacturing

Optimization

of production

Historical.

XML
! Unspecified

31
(LIU et al.,

2021)
DS I4.0 Smart

manufacturing

Optimization

of production

Real-time,

Historical.

XML

! SQL,

NoSQL

32
(LIU et al.,

2022)
DS I4.0 Metal Additive

Industry

Optimization

of production,

Decision support

Real-time,

Historical.

XML

! Cloud,

Edge

33
(CHEN et al.,

2020)
DS I4.0 Smart

manufacturing

Optimization

of production,

Decision support

Real-time,

Historical
! Unspecified

34
(SUHAIL et

al., 2021)
DS I4.0 Aviation

industry

Predictive

maintenance

Real-time,

Historical
! Blockchain

storage

35

(ANSARI;

GLAWAR;

NEMETH,

2019)

DS I4.0 Smart

manufacturing

Prescritive

maintenance,

Decision support

Real-time,

Historical
! SQL

36
(KIRCHEN et

al., 2017)
DS I4.0 Chemical

industry

Quality assessment,

decision support
Historical ! Unspecified

37

(AL-

ISMAEL; AL-

TURKI; AL-

DARRAB,

2020)

DS I4.0 Oil and Gas Simulation

improvement
Historical ! ! Unspecified

38
(ZHANG et

al., 2021)
DT I4.0 Smart

manufacturing

Simulation

improvement

Real-time,

Historical
! ! Cloud,

SQL

39
(LU et al.,

2020b)
DS SC Smart

buildings
Anomaly detection Historical.

XML
! ! ! NoSQL
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Table 5.2 – Selected studies
ID Study Type Domain Subdomain Function Data type Interop. Integ. Search Qual. Infrastructure

40
(LU et al.,

2020a)
DS SC Smart city Anomaly detection,

Asset monitoring

Real-time,

Historical
! Cloud,

NoSQL

41
(ALWAN et

al., 2020)
DS SC Smart city Anomaly detection,

Asset monitoring

Real-time,

Historical
! ! SQL

42

(JOUAN;

HALLOT,

2020)

DS SC Smart

buildings
Asset monitoring

Real-time,

Historical.

CSV, XLSX

! SQL,

NoSQL

43

(CHEVALLIER;

FINANCE;

BOULAKIA,

2020)

DS SC Smart

buildings
Asset monitoring Historical.

JSON
! NoSQL

44
(ACQUAVIVA

et al., 2019)
DS SC Smart

buildings
Asset monitoring

Near real-time,

Historical.

JSON

! Cloud,

NoSQL

45
(VIVI et al.,

2019)
DS SC Smart

buildings
Asset monitoring Real-time ! Cloud

46
(WU; WANG;

SEIDU, 2020)
DS SC Urban water

supply

Asset monitoring,

Decision support

Real-time,

Historical
! Cloud,

Edge

47
(RYBNYTSKA

et al., 2020)
DS SC Smart house Decision support Real-time. CSV ! ! ! Unspecified

48
(KIOURTIS et

al., 2018)
DS SC Traffic

management
Decision support Historical. XML ! ! SQL

49
(BUJARI et

al., 2021)
DS SC Urban

planning
Decision support Near real-time,

Historical
! ! Cloud,

NoSQL

50
(FAN et al.,

2021)
DS SC Disaster

management

Event monitoring,

Decision support
Real-time ! Unspecified

51
(AZZAM et

al., 2019)
DS SC Smart city Event monitoring,

Decision support

Real-time,

Historical
! ! ! Unspecified

52
(KASRIN et

al., 2021)
DS SC

Urban mobil-

ity
Event monitoring,

Decision support
Unspecified ! ! ! Unspecified

53
(HUANG;

DAI, 2017)
DS Unspecified Decision support Unspecified ! NoSQL

54
(DAO et al.,

2014)
DS General Event monitoring Real-time. XML ! Cloud

55
(WANG;

ZHOU, 2014)
DS Unspecified Event monitoring Real-time ! Unspecified

56

(GIFTY;

BHARATHI;

KRISH-

NAKUMAR,

2020)

DS Unspecified Fault detection Unspecified ! Unspecified

57

(PROPER;

BORK;

POELS, 2021)

DS Unspecified Optimization

of process
Historical !

Unspecified

Source: The author

5.4 RQ1: For which domains the DT solutions were proposed?

This question aims at identifying the most active and mature areas of DT research

for which the DM solutions were devised. According to Table 5.2 (column Domain), most

selected studies address the domains of I4.0 (59.64%), followed by smart cities (24.56%)

and healthcare (7.01%). Five studies (8.77%) do not detail the domain/subdomain, and

one study is a domain-agnostic proof-of-concept (POC) (DAO et al., 2014).
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• I4.0: this is the most active domain for which DM solutions were proposed. It

indicates the evolution from ad hoc data management to the proposal of explicit

DM solutions. Considering specific areas within I4.0, smart manufacturing is the

predominant one (44.11%), followed by O&G (11.76%), aviation (8.82%), auto-

motive industry (5.88%), and the electric energy industry (2.94%). Some studies

(PLATENIUS-MOHR et al., 2019; SAHLAB et al., 2021) have not defined a spe-

cific I4.0 sub-area.

Studies in the specific area of smart manufacturing are aimed at different pur-

poses, ranging from custom manufacturing (LANDOLFI et al., 2018) to meth-

ods for building DTs for manufacturing factories (OAKES et al., 2021), monitor-

ing and predicting the carbon emission of a factory (ZHANG; JI, 2019), optimiz-

ing hot lamination schedule (CHEN et al., 2020), among others. In the specific

area of O&G, the DTs address asset management (AGARWAL; MCNEILL, 2019),

improvement of drilling operations (ANDIA; ISRAEL, 2018; BRACKEL et al.,

2018), and improvement of digital reservoir simulation (AL-ISMAEL; AL-TURKI;

AL-DARRAB, 2020).

• Smart cities (SC): we identified DM solutions for DTs targeted at different levels

of the urban environment, ranging from residential housing (smart house), build-

ing management (smart building) to city level (smart city). The proposals aimed

at the smart city level (57.14%) either encompass the city as a whole (LU et al.,

2020a; ALWAN et al., 2020; AZZAM et al., 2019), or a specific aspect, such as

urban planning (BUJARI et al., 2021), disaster management (FAN et al., 2021),

traffic management (KIOURTIS et al., 2018), urban water supply (WU; WANG;

SEIDU, 2020) and mobility (KASRIN et al., 2021). The second most prevalent

level is smart building (35.71%), where the objective is monitoring the building’s

energy consumption (ACQUAVIVA et al., 2019), controlling the internal tempera-

ture (VIVI et al., 2019), detecting faults and anomalies (LU et al., 2020b), as well

as monitoring the building’s infrastructure (JOUAN; HALLOT, 2020). Two studies

(LU et al., 2020a; ALWAN et al., 2020) did not define a specific city scenario for

which the solution was proposed.

• Healthcare (HC): we identified two groups of applications in this area, namely

health data management and treatment of patients. In the former group, (ZHANG

et al., 2017) proposes the integration of data from different stakeholders (e.g., hos-
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pitals, pharmaceuticals, patients) to leverage the creation of new services and ap-

plications, and (ALHUMUD; HOSSAIN; MASUD, 2016) proposes a solution for

managing the hospital and patient data based on the easier data exchange among

different systems. As for the studies focused on the treatment of patients, there are

POCs targeted at analyzing data on heart disease and diabetes (NÚÑEZ-VALDEZ

et al., 2020) and predicting the risk of stroke (HUSSAIN; PARK, 2021).

5.5 RQ2: Under the perspective of data usage, for which functions were the DTs

proposed?

The surveyed literature revealed different purposes for the proposed DTs. From

the data usage perspective for adding value to the business through the DT, we classified

these purposes as the primary DT function (SEMERARO et al., 2021). The functions

identified are summarized in Table 5.2 (column Function). The function in most studies

was classified as decision support (38.59%) since the DT allows the analysis of multi-

ple variables and hence, supports data-driven decision-making. In addition, we identified

more specific functions, namely optimization of production/process/logistics (21.05%),

asset monitoring (24.56%), event monitoring (10.52%), anomaly detection (7.01%), fail-

ure detection/diagnosis (5.26%), quality assessment (1.75%), simulation improvement

(3.50%), and predictive/prescriptive maintenance (7.01%).

The subdomains are related to varied functions, but we noticed a few patterns: all

DTs in the healthcare domain are focused on decision support; most smart manufacturing

DTs are concerned with asset monitoring and optimization in general; and smart buildings

tend to monitor the asset.

From Table 5.2 (column Type), it is possible to observe that only three studies

(OAKES et al., 2021; LIU et al., 2020; ZHANG et al., 2021) are classified as DTs ac-

cording to the definition in (FULLER et al., 2020), i.e., there is a closed feedback loop

(bidirectional) from the Virtual Space into the Physical Space. All the other studies are

classified as DSs.

We examined the consumers of the data managed by the DT, which can be part

of either the Service component or Virtual Space. Table 5.3 presents the data consumers

identified in the selected studies, using the Study Ids specified in Table 5.2. The most

frequent type of data consumer is visualization tools (35.08%) (e.g., dashboards, graphs,

maps, and diagrams). Other studies enable users to formulate queries using customized
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Table 5.3 – Data consumption methods
Method Study ID %
Visualization (diagrams, graphics, maps, dash-
boards)

4, 5, 12, 13, 18, 20, 21, 22, 29, 30, 32, 34, 35, 39, 41, 45, 49, 50, 51, 57 35.08%

Other applications and services 2, 7, 14, 16, 19, 24, 26, 27, 34, 40, 45, 50 21.05%
Models (simulation, ML, 3D) 23, 25, 28, 29, 37, 40, 41, 43, 44, 45, 52 19.29%
People (data specialists, decision-makers,
stakeholders)

1, 3, 14, 33, 36, 40, 47, 48, 53 15.78%

Database query 4, 6, 12, 15, 16, 47, 49, 51, 53 15.78%
Unspecified 8, 9, 10, 11, 17, 42, 55, 56 14.03%
GUI for data query 2, 31, 38, 39, 46, 54 10.52%

Source: The author

Graphical User Interface - GUI (10.52%) and database query languages (15.78%). Many

studies (15.78%) merely indicate that the consumers are humans (e.g., data specialists,

decision-makers, stakeholders) without detailing the specific tools/services used. When

data usage is ultimately targeted at humans, the prevalent DT function categories are

decision support (50%) and asset monitoring (20.8%).

The data managed by the DT are input to models (e.g., simulation, ML, 3D vi-

sualization) or other applications/services in 40.34% of the studies. The prevalent DT

function categories related to this type of consumers are asset monitoring (30.76%) and

optimization in equal proportions (26.92%) and decision support (23.07%). Some studies

(14.03%) did not explicitly mention any method for data consumption in the DT.

5.6 RQ3: What types of data the proposed solutions consider?

The heterogeneity of data that needs to be handled in DTs in all domains is clear

from Section 2.4, which includes sensors/actuators, information systems (e.g., ERP, MES,

CRM, SCADA), and data silos (data repositories), social networks, among others. This re-

search question aims at characterizing the heterogeneity in the selected studies in terms of

sources of information, formats, sensor technology, and data collection/processing meth-

ods according to velocity requirements. Table 5.2 (column Data Type) summarizes the

type of data and formats.

• Sources: considering the sources for the data acquisition activities, we identified

that most studies (40.35%) consider both (near) real-time data streams generated

by sensors/actuators and historical data related to all sorts of information systems

and file specifications. About 24.56% of the selected studies are restricted to data

streams. While the former provides support for integrated data that reflects a more

complete view of the whole (e.g., different types of expertise, processes, or orga-
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nization sectors), the latter, which only mentions data from sensors and actuators,

typically consists of more closed-scope analyses with a specific focus.

• Formats: about 35.08% of the selected studies explicitly mention the data format

used in the proposed solution, ranging from structured data (typically tabular data),

semi-structured data (XML, JSON, CSV, XLSX) to unstructured data (e.g., PDF).

Among the mentioned issues is the dependency of the data format concerning the

software that generated it, transformations required, and integration with other data.

• Sensor technology: while the specific sensor technology is not detailed in most

studies, the mentioned ones are RFID, Quick Response Code (QRcode), Global

Positioning System (GPS), pipe flow meters, temperature and pressure sensors, and

personal/wearable devices (e.g., smartwatches). While in some applications, the

sensors are static (e.g., temperature sensors in buildings or production wells), in

others, it is necessary to identify the location where the data was produced. The

latter was identified in smart cities (e.g., traffic, public transportation) and produc-

tion/logistics (e.g., product tracking).

• Data Analysis latency: applications vary in the requirements of freshness of the

data for the analysis, impacting the way in which needs to be collected and pro-

cessed. We identified three groups: real-time and historical, real-time only, and

historical only. Figure 5.5 displays the distribution of data latency analysis per do-

main. DTs whose functionality is to monitor and manage events require low data

latency. Examples are event monitoring in general (DAO et al., 2014; WANG;

ZHOU, 2014), management of disasters and city events (FAN et al., 2021; AZ-

ZAM et al., 2019), faults in the power grid (CARDOSO et al., 2021), and pro-

duction/assembly lines optimization (BRACKEL et al., 2018; BLUM; SCHUH,

2017; LV et al., 2021). In these cases, dealing with real-time data in terms of data

gathering and processing is critical, given that the data availability and processing

for data analysis need to happen within a small time window. However, the data

analysis latency requirements from DTs with functionalities to improve simula-

tion (AL-ISMAEL; AL-TURKI; AL-DARRAB, 2020), decision support (NÚÑEZ-

VALDEZ et al., 2020; JIRKOVSKY; OBITKO; MARIK, 2017; HOOS; HIRMER;

MITSCHANG, 2017; KIOURTIS et al., 2018) or optimization (PROPER; BORK;

POELS, 2021; SUN et al., 2020) are more flexible and less time-dependent, char-

acterizing the use of historical data and also allowing the availability and analysis
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Figure 5.5 – Data collection and processing methods
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of data to take place over a longer time window and more detailed analysis. The

combination of historical and real-time data in general, allows for a deeper analy-

sis of the data and a better understanding between the past and the present, using

historical data as a baseline to create models for assessing real-time data. This com-

bination identified in DTs with functionalities such as decision support (ZHANG

et al., 2017; ALHUMUD; HOSSAIN; MASUD, 2016; HUSSAIN; PARK, 2021;

SAHLAB et al., 2021; ZHANG; JI, 2019), anomaly detection (LU et al., 2020a;

ALWAN et al., 2020; HINOJOSA-PALAFOX et al., 2019), predictive and prescrip-

tive maintenance (SUHAIL et al., 2021; ANSARI; GLAWAR; NEMETH, 2019),

asset monitoring (OAKES et al., 2021; JOUAN; HALLOT, 2020; WU; WANG;

SEIDU, 2020).

5.7 RQ4:What solutions were proposed for the DM issues addressed?

In this question, we summarize the DM solutions proposed by the selected studies

according to the issues raised in Section 2.5, namely Interoperability, Data Integration,

Data Search and Discovery, and Data Quality. Selected studies may propose solutions

that cover more than one issue. The remaining of this section details our finding with

regard to each of these issues.

5.7.1 Interoperability

We identified solutions addressing data and semantic interoperability within a DT

and between DTs:
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• Data interoperability: studies in this category propose data format conversions

and mappings to allow seamless data exchange between data layers or components

within a DT. (ZHANG et al., 2021) proposes data mappings to handle data in dif-

ferent formats and interoperate with the other parts of the DT, and (LV et al., 2021;

SUN et al., 2020; ALHUMUD; HOSSAIN; MASUD, 2016) propose the conversion

of the original data format into a common structure. (AL-ISMAEL; AL-TURKI;

AL-DARRAB, 2020) presents an architecture with built-in conversions to promote

seamless data exchange between simulation tools. (ZHANG et al., 2017) discusses

a middleware for converting files into standard formats with corresponding meta-

data (e.g., source, attributes and domains, security tag). Blockchain technology is

leveraged in (SUHAIL et al., 2021) to maintain data traceability after cleaning and

conversion/transformation operations to a unified format, enabling the exchange of

information between the DT parties.

• Semantic interoperability: this group of studies uses domain concepts, patterns,

and ontologies to describe data in terms of the respective domain. (ALHUMUD;

HOSSAIN; MASUD, 2016) develops a conceptual framework for a health CPS

which includes an interoperability manager that converts data into a standardized

format using domain terminology, resulting in a more meaningful semantic struc-

ture. (KASRIN et al., 2021) proposes the concept of a Data Sharing Market as an

information exchange model, where each market is a cloud node with agents that

describe the data they provide for sharing, with the respective pipeline of clean-

ing and transformations to prepare data for consumption. (BRACKEL et al., 2018)

uses the OPC UA protocol, an industry automation standard, to provide seman-

tic interoperability through data tag descriptions for the DT components. (LU et

al., 2020b) created an integrated and semantically interoperable data layer, which

includes a model for exchanging data with other data sources.

• Interoperability between DTs: Some works assume that DTs will be widely

adopted within sectors of the same organization or that different organizations will

collaborate, and hence their DTs must interoperate. (PLATENIUS-MOHR et al.,

2019) proposes rules for mapping a DT source information model into a destina-

tion DT information model (data interoperability) and using domain standard data

dictionaries for a common understanding of the concepts (semantic interoperabil-

ity). Considering semantic interoperability, (KIOURTIS et al., 2018) leverages on-
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Table 5.4 – Integration approaches
Integration approach Study ID %
Centralized repository 5, 18, 21, 35, 41, 49, 54 16.27%
Ad hoc modeling 11, 11, 23, 32, 38, 48, 50, 52 18.60%
Modeling with standards 24, 31, 39, 40, 45 11.62%
Modeling with an ontological layer 6, 10, 15, 16, 22, 26, 30, 33, 42, 43, 51, 57 27.90%
Integration Method 8, 19, 27, 44, 55 11.62%
Semantic enrichment 3, 4, 13, 14, 35, 47 13.95%

Source: The author

tologies to relate data to domain metadata and develop a framework for exchanging

data between DTs belonging to different domains.

5.7.2 Integration

We divided the studies addressing integration into six approaches, summarized in

Table 5.4 using the Study Ids of Table 5.2, and described below:

• Centralized repository: the solution proposed by the studies in this category is

limited to gathering all heterogeneous data from different sources in a single, cen-

tralized repository. Some studies do not provide details, only mentioning the adop-

tion of a data warehouse (ANSARI; GLAWAR; NEMETH, 2019; ALWAN et al.,

2020; DAO et al., 2014). (YU et al., 2019; HINOJOSA-PALAFOX et al., 2019;

BUJARI et al., 2021) relied on the support of open-source tools such as Apache

Spark and Apache Sedona for the logical integration of data sets. In addition to the

use of a central repository, (CARDOSO et al., 2021) also proposes the development

of a data virtualization layer on top of the data lake to provide a unified view of data

coming from heterogeneous sources.

• Ad hoc modeling: studies in this category integrated heterogeneous data by

proposing a unified data model, representing and interrelating different data. These

works are referred to ad hoc as they have a modeling solution targeted at the scope

of a specific DT function and domain. Data models were proposed to support a

machine learning pipeline (KIOURTIS et al., 2018; FAN et al., 2021; KASRIN

et al., 2021); a 3D constructor component to provide a unified view of assembly

lines (KOUSI et al., 2019); a Human Body Avatar Data Model that integrates the

description of all data and provides customized assistive healthcare devices (LAN-

DOLFI et al., 2018); the identification of the critical product life-cycle data that
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influences the quality of the final product (LIU et al., 2022); the increase of the

transparency and automation level of a blade test workshop (ZHANG et al., 2021);

and a data management layer that provides a basic data model for the data from

different sources (ZHANG et al., 2017).

• Modeling with standards: studies in this category used standards as a support for

the creation of an integration data model. In the domain of smart cities, (LU et

al., 2020a; LU et al., 2020b; VIVI et al., 2019) leveraged the Build Information

Modeling (BIM) standard, and in the I4.0 field, (ZHUANG; GONG; LIU, 2021)

adopted the Bill of Materials (BOM) standard and (LIU et al., 2021) explored the

ISO STandard for the Exchange of Product model data (STEP) standard for product

information exchange. In addition, (LIU et al., 2021; ZHUANG; GONG; LIU,

2021) also proposed a method of data association to support quality traceability.

To create a data model based on standards, Lu et al. (2020a) used a centralized

non-relational repository (DynamoDB).

• Modeling with an ontological layer: the solution proposed by the studies in this

category rely on an ontological layer to represent and relate the information with

domain knowledge, so as to create a shareable knowledge base. Several works

(PROPER; BORK; POELS, 2021; GÓMEZ-BERBÍS; AMESCUA-SECO, 2019;

SAHLAB et al., 2021; AZZAM et al., 2019; JIRKOVSKY; OBITKO; MARIK,

2017) proposed an ontology, and the use of a RDF graph to relate the conceptual

data model and domain data. Based on three ontologies, (CHEN et al., 2020) pro-

posed a data model based on an ontological layer and a method addressing data fu-

sion and entity resolution. We also found four studies (CHEVALLIER; FINANCE;

BOULAKIA, 2020; SUN et al., 2020; LIU et al., 2020; JOUAN; HALLOT, 2020;

SINGH et al., 2021) that combine the use of ontologies and standard domain models

to integrate the information and semantic models. In addition to an ontology-based

data model, (KONG et al., 2021) proposed a module for cleaning and reducing data.

• Integration method: this group gathers the studies that propose methods or mech-

anisms addressing specific data integration issues. These works address the spec-

ification of mapping and entity resolution (PERNICI et al., 2020); data synchro-

nization (ACQUAVIVA et al., 2019); the automatic mapping of entities (HOOS;

HIRMER; MITSCHANG, 2017); the integration of two complex event models us-

ing an adapter (WANG; ZHOU, 2014) and association mappings and data fusion
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(WANG; CHENG, 2021).

• Semantic enrichment: studies in this category assume an existing data/information

model, and through metadata annotation methods or semantic knowledge bases,

they add the semantic level to the current data model to facilitate data integration.

(ANSARI; GLAWAR; NEMETH, 2019; HUSSAIN; PARK, 2021) created a se-

mantic knowledge base based on domain ontologies to enrich already processed

data with more domain meaning, enabling data integration. (BRECHER et al.,

2021; NÚÑEZ-VALDEZ et al., 2020; RYBNYTSKA et al., 2020; ZONZINI et al.,

2020) used semantic metadata annotation methods to optimize data integration by

identifying new classes, relationships, or domain descriptions.

5.7.3 Data Search and Discovery

A more limited number of works address functionality enabling users to find, un-

derstand and trust the value of data used to generate value from data. We divided the works

addressing data search as structural and semantic search. We disregard in this section

all the works that provided specific GUI interfaces for accessing data using pre-defined

queries listed in Table 5.3, detailing only those which provided query functionality.

• Structural data search: the studies in this group have developed strategies to fa-

cilitate syntactic data queries, i.e., based on the structural properties of the data.

The use of Elasticsearch for indexing and discovering data is leveraged in (HUS-

SAIN; PARK, 2021; BUJARI et al., 2021). (RYBNYTSKA et al., 2020) developed

an extension that integrates the standard Functional Mockup Unit (FMU) model

into the relational model so that data scientists can more easily find the data use-

ful for machine learning models. A few works address issues related to Ontology

Web Language (OWL) representation of data that were included in the data model.

(HUANG; DAI, 2017) addressed the efficiency of information retrieval by trans-

forming and storing the original OWL data representation in a NoSQL database.

(SINGH et al., 2021) claims that the industry is more familiar with relational struc-

tures and proposes the conversion to a relational database to enable SQL queries.

• Semantic data search: the studies in this category leverage the semantic layer

included in the data representation for enhanced semantic queries, which in all
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works are knowledge graphs. (JIRKOVSKY; OBITKO; MARIK, 2017; HUSSAIN;

PARK, 2021; AZZAM et al., 2019) deployed knowledge graphs in their data mod-

eling solutions, arguing that one of the advantages is that queries can be performed

using SPARQL, which enables to formulate queries as logical conditions over the

structure of a triple (Subject→Predicate→Object). (OAKES et al., 2021) recom-

mends using knowledge graphs for semantic queries through the GraphQL query

language and APIs that allow queries in JSON format. (SAHLAB et al., 2021)

makes a case for knowledge graphs and semantic queries, without referring to any

specific query language.

5.7.4 Data Quality

We divided the works proposing solutions for guaranteeing/improving the quality

of data into the following categories:

• Statistic-based methods: works in this category deal with quality issues of stream-

ing data, for instance, due to sensor malfunctioning, communication issues, mali-

cious data insertion, etc. Most techniques are grounded on statistical properties of

data streams/time series and are used to clean raw sensor streams. (AGARWAL;

MCNEILL, 2019) proposes data checking and cleaning algorithms based on sta-

tistical properties of the data. To improve the input of simulation tools, (ANDIA;

ISRAEL, 2018) proposes methods for aligning time series in different time scales.

A data quality model fitted to the specific properties of signal data of industrial

processes is proposed in (KIRCHEN et al., 2017).

• Deviation/anomaly-detection methods: works in this class propose solutions that

assess the quality of data according to specifications, rules, models or thresh-

olds derived from the information model that contextualize data streams raw data.

To seamlessly transfer simulation data to other applications, (AL-ISMAEL; AL-

TURKI; AL-DARRAB, 2020) proposes a two-layer comparison (specification and

threshold/rules). HADES (ALWAN et al., 2020) assumes two levels of cleaning:

comparison of real-time data with historical data and assessment by predictive

anomaly detection models. In addition to cleaning, (ZHANG; JI, 2019) and (LU

et al., 2020b) also propose the use of models to compare deviations from expected

data. (GIFTY; BHARATHI; KRISHNAKUMAR, 2020) proposes a quality assess-
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ment method with the respective techniques to assess input data, out data generated

by models, and feedback data from the CPS.

• Pipeline/reference architecture: works grouped into this category address a

pipeline of operations to clean the data, which can be part of a reference archi-

tecture or framework. Examples of cleaning operations over raw data handle miss-

ing data, duplicate data, and outliers (KONG et al., 2021)(KIOURTIS et al., 2018)

(AZZAM et al., 2019)(YU et al., 2019)(BLUM; SCHUH, 2017). The pipeline in

(YU et al., 2019) and (BLUM; SCHUH, 2017) are part of an Extract, Transform,

Load (ETL) process designed to insert cleaned and transformed data in a data ware-

house, while the one in (AZZAM et al., 2019) cleans data before transforming data

into RDF triples. These operations may be inserted in a reference architecture or

framework as layers or functional components with a specific quality-checking or

pre-processing role. The reference architecture in (KONG et al., 2021) proposes

two levels of cleaning (raw data and customized), while the one in (WU; WANG;

SEIDU, 2020) organizes operations and models to clean raw data, assess data prop-

erties, and add value into four data management layers. The architecture in (KAS-

RIN et al., 2021) leverages data quality agents to perform well-known cleaning

patterns.

5.8 RQ5: What kind of technological infrastructure is considered?

Our last research question aims to identify the technological infrastructure used

or suggested by the studies selected for the data management component of the DT. We

considered only the studies that explicitly describe the IT infrastructure for data process-

ing and storage, grouping them into three categories: cloud computing, hybrid computing

(cloud, edge, fog), and database management systems (DBMS).

• Cloud computing: This category groups the studies that used or recommended the

use of cloud data processing and/or storage resources. Some justify this adoption

due to processing requirements (ZHANG; JI, 2019; DAO et al., 2014). Most studies

adopt both processing and storage (ZHANG et al., 2017; ALHUMUD; HOSSAIN;

MASUD, 2016; PLATENIUS-MOHR et al., 2019; SUN et al., 2020; ZHANG et

al., 2021; HINOJOSA-PALAFOX et al., 2019; CARDOSO et al., 2021; LU et al.,

2020a; VIVI et al., 2019; HUSSAIN; PARK, 2021; ZONZINI et al., 2020; AC-
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QUAVIVA et al., 2019; BUJARI et al., 2021). Some studies adopted open-source

tools and databases (HINOJOSA-PALAFOX et al., 2019; HUSSAIN; PARK, 2021;

ZONZINI et al., 2020), such as Spark, Kafka, and Hadoop for data processing, and

Elasticsearch, Hive, InfluxDB, MongoDB, Hadoop, and MariaDB for data storage.

Others (LU et al., 2020a; VIVI et al., 2019; CARDOSO et al., 2021) have used or

recommended services from commercial cloud providers, such as DynamoDB, S3

and Redshift from AWS.

• Hybrid computing (cloud, edge, fog): studies in this category distinguished be-

tween the concepts of cloud, edge and fog computing. In terms of cloud and edge

computing, we have identified three studies (BRECHER et al., 2021; BRACKEL

et al., 2018; WU; WANG; SEIDU, 2020). Typically, cloud resources perform more

complex computational processing and global tasks, while edge resources serve for

faster computing and as a local server. Only one study (KASRIN et al., 2021) has

mentioned the importance of the cloud, edge, and fog combination, mainly due

to real-time data processing requirements. Lastly, we found three studies (YU et

al., 2019; SUN et al., 2020; LIU et al., 2022) that have mentioned cloud and edge

computing and cloud storage infrastructure.

• DBMS: works in this category discussed only storage requirements in terms of

a DBMS, which we divided into relational, non-relational, and a combination

of those. In terms of relational DBMSs, two conceptual proposals have recom-

mended using a data warehouse (ANSARI; GLAWAR; NEMETH, 2019; ZHANG;

JI, 2019), (BRECHER et al., 2021; ALWAN et al., 2020; LV et al., 2021) men-

tioned the support of a non-specified relational database, and (SINGH et al., 2021;

ZHANG et al., 2021; RYBNYTSKA et al., 2020) adopted specific ones (MySQL,

SQL Server). Regarding non-relational approaches, most studies adopt open-

source databases, such as InfluxDB (ZONZINI et al., 2020), Hadoop and Jena

(JIRKOVSKY; OBITKO; MARIK, 2017), MongoDB (ACQUAVIVA et al., 2019),

Elasticsearch (BUJARI et al., 2021), and Cassandra (CHEVALLIER; FINANCE;

BOULAKIA, 2020). Others adopted AWS storage systems such as DynamoDB

(LU et al., 2020a; LU et al., 2020b). Some studies have recommended non-

tabular storage systems, without specifying the specific DBMS, such as spatial

databases (JOUAN; HALLOT, 2020). Finally, some studies propose the combi-

nation of storage systems, such as data warehouse and data lakes (PERNICI et al.,
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2020), and SQL and New SQL databases (LIU et al., 2021). Others mentioned

a combination of specific databases, such as AWS S3 and Redshift (CARDOSO

et al., 2021) to implement a data lake, MariaDB and Elasticsearch (HUSSAIN;

PARK, 2021), data warehouse and Hadoop (HINOJOSA-PALAFOX et al., 2019),

Hive/Hadoop and data lake (YU et al., 2019), SQLite and MongoDB (HOOS;

HIRMER; MITSCHANG, 2017), SQL Server and MongoDB (SUN et al., 2020),

and MySQL, Oracle, Hadoop and MongoDB (LIU et al., 2020).
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6 DISCUSSIONS

In the previous chapter, we summarized the contributions of the systematically

selected works that handle data heterogeneity and explicitly propose solutions for one

or more identified data management issues: interoperability, integration, data search and

discovery, and data quality. This chapter summarizes findings concerning these issues and

discusses the trends and opportunities identified in our investigation.

6.1 Data Management Issues

No single work proposes an encompassing solution addressing all the data man-

agement issues considered in our survey. Integration is the most discussed one (75.43%),

which is an expected result due to the central role of the DM component, acting as a bridge

between the other DT components. Data integration with the centralized repository ap-

proach was reported in 16.27% of the studies, ad hoc modeling in 18.60%, modeling with

standards and integration method in (11.67% each), modeling with an ontological layer

in 27.90%, and semantic enrichment as part of data integration was reported in 13.95% of

the studies.

The smart city domain is the one for which the most encompassing solutions were

identified, where (KASRIN et al., 2021; KIOURTIS et al., 2018) address integration,

interoperability, and data quality, and (AZZAM et al., 2019) involves integration, data

search, and data quality.

Most of the selected studies address Digital Shadows according to the definition by

(FULLER et al., 2020) since they consider the automatic flow of data from the physical to

the virtual space only. In addition, we observed that most studies assume that knowledge

workers, stakeholders, and decision-makers are the ultimate consumers of the managed

data. In our opinion, this represents an initial maturity level concerning data manage-

ment as a specific concern in DTs. All surveyed works proposed valuable functionality,

methods, data models, and processes for the DM component of a DT.

The next steps in the maturity level of data management in DTs are to understand

the role it plays in the closed feedback loop and the impact the changes reflected in the

real space or insights gained from the models and tools in the other components have in

the data managed by DM component. Another issue that needs to evolve is the data flow

in/out of the DM component. Current DTs typically assume the data flows from the Phys-



64

ical Space into the DM component and from there to the Services/Virtual Space model;

however, changes and decisions made within the realm of these other components can

impact the data managed. Hence, the flow from the consumers into the DM component

and from the DM component back into the Physical world also needs to be assessed for

the full implementation of the five-component reference architecture (Figure 2.1).

The maturity level is also reflected in the domains for which these solutions were

proposed. The I4.0 has been the most active field in adopting and developing DT since

the early days. As the interaction between the Physical/Virtual worlds is more understood

in this domain, it is natural to explicitly expand the concerns to DM issues. Our SLR

confirmed that all domains share similar problems concerning velocity, volume, variety,

value, and veracity. As a research opportunity, it is interesting to generalize these solutions

to provide a domain-agnostic framework.

6.2 Trends and Opportunities

Regarding the solutions, we observed some common trends and opportunities:

• Reference architectures for data management: many works (HINOJOSA-

PALAFOX et al., 2019; ALWAN et al., 2020; LU et al., 2020a; VIVI et al.,

2019) suggest a reference architecture that organizes the data/information in dif-

ferent abstraction layers, with components to perform operations that add quality

and value to the raw data at each level (separation of concerns). At the lowest

level, the architecture deals with ingesting raw data of different types, sources, data

formats, and protocols, possibly with components/operators, to deal with noise

and quality issues that are proper to this level. The subsequent layers represent

the information model, as the raw data is successively cleaned, transformed, in-

tegrated, aggregated, and properly stored. The quality assessment components at

this level are often more complex (e.g., models). Many of these architectures ad-

ditionally encompass a semantic layer, in which the information model is enriched

and transformed into a shared knowledge model that represents the characteristics

of the domain. The reference architecture also provides components to access the

data/information/knowledge to enable the usage of the managed data, either by hu-

mans, models, services, or applications. In addition to layered architectures, other

alternative ways of organizing the data/information are proposed, such as the Data
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Shared Market (KASRIN et al., 2021), based on clouds and agents, and the Deci-

sion Information Packages, which organizes information according to the different

stakeholders (LIU et al., 2021). Reference architectures provide patterns, building

blocks, interconnections, and a common vocabulary (CLOUTIER et al., 2010). As

there is an opportunity to approximate the DM component to the data and knowl-

edge management functionality of Data Lakes (CORREIA et al., 2022; KRON-

BERGER et al., 2020), reference architectures can provide a starting point basic

structure and best practices for constructing solutions in specific scenarios. It can

accelerate the development and implementation of the DM component by reusing

existing solutions and providing a basis for governance ensuring their consistency

and applicability. It can also lead to the development of general-purpose data man-

agement platforms.

To ensure the definition of standardized reference architectures and their accep-

tance, it is crucial that such an effort results from the collaboration between

academia and industry. An example is the Digital Twin Capabilities Periodic Ta-

ble (CPT)1, proposed by the Digital Twin Consortium. The CPT is a technology-

agnostic requirements definition framework aimed at organizations who want to

design, develop, deploy and operate DTs based on use case capability requirements

versus the features of technology solutions. It defines Data Management capabili-

ties (referred to as Data Services), and it is an example of collaboration initiatives

capable of guiding the development of reference architectures of DTs, including

data management.

• Industry standards: industry standards were leveraged for different purposes in

the selected works. For data exchange, some studies used standards such as OPC

UA and interoperable file formats (e.g., WITSML, for the O&G industry). Domain

standards also guided data modeling and integration (e.g., BIM, BOM, STEP), pro-

viding basic concepts for organizing the data in an information model or explored

by accompanying process/methods. Some standards can be useful in different do-

mains (e.g., CFIHOS, VID). Leveraging industry standards is an important step to-

ward generalizing the proposed solutions beyond the specific scope for which a DT

is proposed and achieving customizable solutions. It is also important to increase

the industry’s acceptance to facilitate the deployment of the proposed solutions in

real settings.

1https://www.digitaltwinconsortium.org/initiatives/capabilities-periodic-table/
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• Semantic enrichment and ontologies: an ontology formalizes the intended mean-

ing of the terms of a vocabulary according to a certain view of the world (GUAR-

INO, 1998) and has been leveraged in DTs for distinct DM purposes. The use of

standard ontologies representing DT entities (e.g., sensors, power plants, manufac-

turing) can reduce the semantic heterogeneity, such that different/similar concepts

can be understood regardless of the differences in modeling (e.g., (JIRKOVSKY;

OBITKO; MARIK, 2017; CHEVALLIER; FINANCE; BOULAKIA, 2020)). Ex-

isting consolidated ontologies can be leveraged for this purpose, such as SOSA

(Sensor, Observation, Sample, and Actuator) and SSN (Semantic Sensor Network)

for IoT. It can also help establish the correspondence between different industry

standards available (CHEVALLIER; FINANCE; BOULAKIA, 2020; SUN et al.,

2020; LIU et al., 2020; JOUAN; HALLOT, 2020; SINGH et al., 2021). It also

enables a common understanding and interrelation of concepts in different domains

or disciplines, which can support the interoperation of DTs (PLATENIUS-MOHR

et al., 2019) or stakeholders.

In summary, ontologies can provide, in the context of DTs, an organizing view

over the domain that helps professionals with distinct technical profiles to navigate

and integrate data from several provenances. Several functionalities can be based

on semantic enrichment, among them expansion of the search service to seman-

tic characteristics; enrichment of the data transformation and lineage process with

semantic metadata; domain inferences based on prior knowledge; improvement of

quality assessment; etc.

• Data management across DTs: data management between DTs will become a

significant issue since an organization can rely on more than one DT, sharing infor-

mation through them. In domains like smart cities, for instance, the interaction be-

tween DTs from different subdomains (smart buildings, urban planning) highlights

the need for interoperability at all levels (semantic, data, and others) to provide fully

integrated and optimized services for citizens. Initial ideas were proposed for the

smart cities domain (KIOURTIS et al., 2018) and for I4.0 (PLATENIUS-MOHR

et al., 2019). Future work will have to address more complex issues considering

federations of DTs.

• Cloud/hybrid computing and open-source tools: our results have shown that

cloud, edge, and fog computing are a trend in the context of DT. Cloud computing
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assumes a leading role as it provides several services and resources, ranging from

network and communication management to data storage and processing, required

to handle the different, often geographically distributed, spaces of a DT. In addition,

cloud computing offers scalability, availability, agility, and high speed to deal with

data volume issues. (RAPTIS; PASSARELLA; CONTI, 2019) contributed with an

analysis of cloud-based architectural designs considering data presence (localized

vs. ubiquitous), coordination (centralized vs. hierarchical), and computation (con-

centrated vs. distributed).

Another trend is the adoption of open-source tools for processing and storing data

in the cloud (e.g., Apache Spark, Hadoop, Elasticsearch). Compared to proprietary

software, in addition to the low licensing costs, open-source tools promote interop-

erability with a wide range of software and freedom of customization to meet the

needs of the DT infrastructure. Due to community engagement, free software tools

are accompanied by extensive supporting documentation, and updates occur faster

than proprietary software. Therefore, we understand that using open-source tools,

cloud, edge, and fog computing will increasingly present in DT solutions.

• Standard infrastructures and implementations: we identified extensive use of

cloud computing for data processing and storage. This leads to the opportunity of

providing core data management functionality for DTs using standard interfaces.

An interesting example in the O&G domain is the Open Subsurface Data Universe2

(OSDU) data management platform. Based on a micro-service architecture, the

platform provides standard interfaces for a range of functions covering the life-cycle

of the data management, from ingestion to use, and cloud providers supply specific

implementations. Correia et al. (2022) investigated the potential of OSDU function-

ality for developing the DM component in DTs for that industry. The development

and application of standard infrastructures for data management can facilitate the

implementation and use of the DM component of DTs. Standard interfaces can

simplify the management of the various resources required for DT implementation

by providing a unified way for the user.

• Data provenience and blockchain: As raw data follows a big data value chain

transformation in the DT, it is also important to keep track of the original sources of

the data, the changes made over time, and how it was manipulated (HERSCHEL;

2<https://osduforum.org/>

https://osduforum.org/
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DIESTELKÄMPER; LAHMAR, 2017). This contributes to transparency and pro-

vides context for the results/decisions they generate. It must also be possible to

follow the quality and reliability of the data, audit data traces, allow the replication

of procedures, assign properties or responsibilities (e.g., error), or provide infor-

mational context that can be consulted and analyzed (SIMMHAN; PLALE; GAN-

NON, 2005). This is an important gap among the selected studies, as only three of

them addressed the traceability of the data (LIU et al., 2021; ZHUANG; GONG;

LIU, 2021; SUHAIL et al., 2021).

A promising technology for this purpose is blockchain (ZHENG et al., 2018),

which is a shared, immutable ledger that facilitates the process of recording trans-

actions and tracking assets in a business network. Suhail et al. (2021) envisioned a

blockchain-based framework for the I4.0 that enables following the whole product

life cycle events once data collected from trustworthy sources are recorded in the

blockchain, allowing process monitoring, diagnostics, and optimized control. This

could be combined with state-of-the-art in data traceability and lineage.
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7 CONCLUSION AND FUTURE WORKS

This work aimed to investigate state-of-the-art in terms of data management in the

context of DTs through a systematic literature review process. Based on the knowledge

produced by selected primary studies, we answered the five defined research questions,

which allowed us to synthesize knowledge about the domains of DTs application, their

functions and uses, the types of data involved, what solutions were proposed related to

data management and the type of technological infrastructure. In addition, we were able

to identify the challenges and research opportunities.

This SLR was motivated by the absence of a survey or review on data manage-

ment in DTs. Most surveys focus on understanding the concepts, properties, and main

use cases/applications (SEMERARO et al., 2021; BARRICELLI; CASIRAGHI; FOGLI,

2019; FULLER et al., 2020; JONES et al., 2020). In terms of data management, (TAO et

al., 2019) highlights an explicit component in the architecture of a DT to handle data man-

agement, and (RAPTIS; PASSARELLA; CONTI, 2019) outlines architectural designs

considering data-related factors (presence, coordination, and computing). Therefore, our

SLR presents a novel perspective by considering selected data management issues ex-

tracted from the value chain of Big Data activities: data integration, interoperability, data

quality and search for data close to the layer of applications in the context of DTs.

In a nutshell, we summarize the answers to the defined research questions as fol-

lows:

• RQ1: For which domains the DT solutions were proposed? The three major ar-

eas/domains of DTs application are I4.0, smart cities, and healthcare. Most se-

lected primary studies target I4.0 (59.64%), which indicates DTs are a more mature

concept in this area even from a DM standpoint.

• RQ2: Under the perspective of data usage, for which functions were the DTs pro-

posed? The main uses and functions of the studies reported by the studies were

decision support (38.59%), asset monitoring (24.56%), and optimization of pro-

duction/process/logistics (21.05%). The last two functions show that DT is often

used or designed to monitor or optimize functions over time, which deal with real-

time or right-time. Therefore, this also reflects on data management requirements,

and the DM component needs to be able to meet such needs adequately.

In addition, we realized most systems are actually Digital Shadows, considering the

distinction as defined in (FULLER et al., 2020), which means that most proposi-
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tions consume data produced by physical systems without an explicit closed loop

from the virtual system to the physical one.

• RQ3: What types of data the proposed solutions consider? We identified that

40.35% of studies deal with both real-time and historical data, while 24.56% strictly

reported data streams. Although few studies have explained the data types, we

identified the presence of heterogeneous data and heterogeneous sensing technol-

ogy. Therefore, data and source types are a reflection of DT’s functions and usage.

If the DT is designed for asset monitoring, dealing with data streams is a crucial

requirement.

• RQ4: What solutions were proposed for the DM issues addressed? Among the

studies related to interoperability, we find solutions focused on data interoperabil-

ity, semantics, and between DTs. Studies that proposed integration solutions were

categorized as centralized repository, ad hoc modeling, modeling with standards,

modeling with an ontological layer, integration method, and semantic enrichment.

For the issue of data search, we find solutions based on structural data search and se-

mantic search. Finally, we find solutions for data quality using statistical methods,

rules-based methods to detect deviations, and pipeline operations to pre-process and

improve the quality of data.

• RQ5: What kind of technological infrastructure is considered? The types of tech-

nological infrastructure considered by studies were categorized in cloud computing,

hybrid computing (cloud, edge, fog), and DBMS. This categorization was based on

the infrastructure for data processing and storage.

Quality assessment enabled us to refine the selection of the studies and to ex-

plain the results by the quality differences. The selected studies have an average score of

7.39, which is reasonable. However, our expectation was to find more robust solutions

regarding the data management aspects. We concluded that explicitly detailing the data

management functions in DTs is a relatively new subject of study, particularly because the

comparison with the related works and discussion of the limitations of the studies’ propo-

sitions were quality questions with low scores on average. Therefore, more research is

needed in both theoretical and practical terms to advance knowledge about data manage-

ment to leverage the creation of practical and useful solutions for implementing more

functional and effective DTs.
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The selection process was a major challenge for this study. We try to be exhaus-

tive and collect as many relevant articles as possible, but finding all relevant work already

published is impossible (BROCKE et al., 2015). To handle the huge volume of arti-

cles found in the digital libraries (1,838 studies in our case), we proposed a three-step

process for screening and selecting the studies to handle this volume. In this way, the

selection was iteratively refined based on the summary (title, abstract, keywords), then

on the overview of the article (mainly introduction and selected portions/figures of the

studies), and finally, by full-reading the papers. This process enabled minimizing the bias

in screening the papers using two independent readers and consolidating the criteria for

study selection/exclusion later, based on the full reading. Therefore, we are confident that

our strategy and methodological process adopted have been well-defined and executed,

which allowed us to maximize the scope and quality of our review.

The results reported in this work cover studies between 2014 and 2021. As DTs

have become a real trend topic, it is expected that the number of studies will significantly

increase. We attempted to update our search to cover studies published in 2022, but the

volume from the DLs search was so significant (about 2.300 studies) that we realized that

we would not be able to process them in due time. We recognize that collecting new

studies as future work is important, including to measure data management advances in

the context of DTs.

As future work, our SLR could be complemented by considering more recent lit-

erature. However, other aspects could also be investigated, such as data architecture, data

and operations storage, data security and metadata management, content management,

and so on. The data management area is broad and includes various fundamental activi-

ties for a DT’s success; therefore, having an overview of all its aspects is important.

Our research resulted in three publications, detailed below. In addition, an article

summarizing this SLR was submitted to a journal (Knowledge and Information Systems

- KAIS) and is currently under peer review.

1. CORREIA, Jaqueline B. et al. Data Management in Digital Twins for the Oil and

Gas Industry: beyond the OSDU Data Platform. Journal of Information and Data

Management, v. 13, n. 3, 2022.

2. CORREIA, Jaqueline B.; ABEL, Mara; BECKER, Karin. Nucleo de Fusão de

Dados de um Gêmeo Digital da Indústria de Petróleo e Gás. In: Anais do XXXVI

Simpósio Brasileiro de Bancos de Dados. SBC, 2021. p. 343-348.
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3. CORREIA, Jaqueline B. et al. Comparing ARIMA and LSTM models to predict

time series in the oil industry. In: Anais do IX Symposium on Knowledge Discov-

ery, Mining and Learning. SBC, 2021. p. 129-136.

4. CORREIA, Jaqueline B.; ABEL, Mara; BECKER, Karin. Data Management in

Digital Twins: a Systematic Literature Review. Submitted to KAIS.
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APPENDIX A — QUALITY ASSESSMENT TABLE OF SELECTED STUDIES

Table A.1 – Quality assessment score of selected studies

ID Study QQ1 QQ2 QQ3 QQ4 QQ5 QQ6 QQ7 QQ8 QQ9 Total Score

1 1 1 0 1 1 0.5 0 0.5 1 6

2 1 1 0.5 0.5 0.5 0 0 1 0.5 5

3 1 1 1 1 1 1 0 1 1 8

4 1 1 1 1 1 1 0 1 1 8

5 1 1 0.5 1 1 1 0 1 1 7.5

6 1 1 0.5 1 1 1 0.5 1 1 8

7 1 1 0.5 1 1 1 0.5 1 1 8

8 1 1 0 1 1 0.5 0 1 0.5 6

9 1 1 0 1 1 1 1 1 1 8

10 1 1 0.5 1 1 1 0 1 1 7.5

11 1 1 0 1 1 0.5 0 1 1 6.5

12 1 1 0 1 1 0.5 0 1 1 6.5

13 1 1 0.5 1 1 1 0.5 1 1 8

14 1 1 0.5 1 0.5 0.5 0.5 0.5 1 6.5

15 1 1 0 1 1 1 0.5 1 1 7.5

16 1 1 0.5 1 1 1 1 0 1 7.5

17 1 1 0 1 1 0.5 0 0.5 1 6

18 1 1 0 1 1 0.5 0 0.5 1 6

19 1 1 1 1 1 1 0.5 1 1 8.5

20 1 1 0.5 1 1 1 1 1 1 8.5

21 1 1 0 1 1 0.5 0.5 0.5 0.5 6

22 1 1 0 1 1 0.5 0.5 0.5 1 6.5

23 1 1 0 1 1 0.5 0.5 0.5 1 6.5

24 1 1 1 1 1 1 0.5 1 1 8.5

25 1 1 0.5 1 0.5 1 0 1 1 7

26 1 1 0.5 1 1 1 1 1 1 8.5

27 1 1 0.5 1 1 0.5 0 0 1 6

28 1 1 0 1 1 1 0 1 1 7
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29 1 1 0.5 1 0.5 0.5 0.5 0.5 1 6.5

30 1 1 0.5 1 1 1 1 1 1 8.5

31 1 0.5 1 1 1 1 1 0 1 7.5

32 1 1 0.5 1 1 1 0.5 1 0.5 7.5

33 1 1 1 1 1 1 1 1 1 9

34 1 1 0.5 1 1 1 1 1 1 8.5

35 1 1 0.5 1 1 1 1 1 1 8.5

36 1 1 1 1 1 1 0.5 1 0.5 8

37 1 1 1 1 1 0.5 0 1 0.5 7

38 1 1 0.5 1 1 1 0 1 1 7.5

39 1 1 0.5 1 1 1 1 1 1 8.5

40 1 1 0.5 1 1 1 1 1 1 8.5

41 1 1 0.5 1 1 0.5 0 0 1 6

42 1 1 0.5 1 1 1 1 1 1 8.5

43 1 1 0.5 1 1 0 0.5 0.5 1 6.5

44 1 1 1 1 1 1 1 0.5 0.5 8

45 1 1 0.5 1 1 1 0.5 1 1 8

46 1 1 1 1 1 0.5 0 0.5 0.5 6.5

47 1 1 1 1 1 1 1 1 1 9

48 1 1 0.5 1 1 0.5 1 1 1 8

49 1 1 0.5 1 1 1 0 0 1 6.5

50 1 1 0.5 1 1 1 1 1 1 8.5

51 1 1 1 1 1 1 0.5 1 1 8.5

52 1 1 1 1 1 1 0.5 1 1 8.5

53 1 1 0.5 1 0.5 1 1 0.5 0.5 7

54 1 1 1 0.5 0.5 0.5 0 0.5 1 6

55 1 1 1 1 1 1 0 0.5 1 7.5

56 1 1 0.5 1 1 0.5 0 0.5 1 6.5

57 1 1 0 1 1 1 0 1 1 7

Average 1 0.99 0.52 0.98 0.95 0.81 0.45 0.78 0.92 7.39

Source: The author
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APPENDIX B — RESUMO EXPANDIDO

This chapter presents a summary of this master thesis in the Portuguese language,

as required by the PPGC Graduate Program in Computing.

Este capítulo apresenta um resumo desta dissertação de mestrado em língua por-

tuguesa, conforme exigido pelo Programa de Pós-Graduação em Computação.

B.1 Introdução e contribuições da dissertação

A crescente popularidade da Internet das Coisas, o advento dos dispositivos

vestíveis inteligentes e os avanços contínuos nas técnicas de coleta de dados aumen-

taram significativamente a quantidade de dados relevantes que podem ser aproveitados

para aplicativos inovadores orientados a dados em tempo real. Ao explorar esses dis-

positivos e várias tecnologias, as informações sobre o mundo físico são transferidas per-

feitamente para o mundo virtual, onde são elaboradas para adaptar aplicações e serviços

virtuais ao contexto físico, possivelmente modificando/adaptando o próprio mundo físico

por meio de atuadores (CONTI et al., 2012). Os gêmeos digitais (GDs) são o próximo

passo dessa convergência ciber-física. Os GDs são representações virtuais de objetos

físicos, que são totalmente integrados e nos quais a troca automática de dados ocorre de

maneira bidirecional (FULLER et al., 2020).

Os GDs estão no centro de inovações disruptivas em diversas áreas (RAPTIS;

PASSARELLA; CONTI, 2019). Na manufatura inteligente (Indústria 4.0 - I4.0), o GDs

podem cobrir todas as fases do ciclo de vida do produto, incluindo projeto, planejamento,

montagem e otimização da fábrica (TAO et al., 2019; FULLER et al., 2020). As empresas

do setor de petróleo e gás (O&G) aproveitam essa a inovação para aumentar a produção

e maximizar o lucro e ter experiências bem-sucedidas nos campos de petróleo e pipelin-

ing inteligente, manutenção preditiva e avaliação de riscos (LU et al., 2019; WANAS-

INGHE et al., 2020). Os GDs também podem mudar o conceito de assistência médica

digital, onde uma réplica virtual de um paciente pode melhorar a promoção e o controle

da saúde, prever tendências futuras usando histórico médico e otimizar as operações de

saúde (ELAYAN; ALOQAILY; GUIZANI, 2021). Os GDs de cidades inteligentes visam

melhorar a eficiência e a sustentabilidade da logística, consumo de energia, planejamento

urbano, gerenciamento de desastres, entre outros (DENG; ZHANG; SHEN, 2021).

Big data e GDs são tecnologias que se reforçam mutuamente (RAO et al., 2019),
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uma vez que grandes volumes de dados que representam os mundos físicos/virtuais são

coletados, transformados e gerados por meio de modelos (por exemplo, simulação, apren-

dizado de máquina) para agregar valor ao negócio (TAO et al., 2019; JONES et al., 2020).

Essas oportunidades exigem lidar com dados em um volume, velocidade e variedade que

excedem os recursos dos sistemas tradicionais de gerenciamento de dados, oferecendo

valor e veracidade. Nesse contexto, os dados são um recurso fundamental que precisa ser

considerado na cadeia de valor de Big Data (CURRY, 2016), que inclui atividades para

aquisição de dados, análise, armazenamento, curadoria e uso. Data Lakes são um tópico

de tendência para resolver problemas de Big Data (SAWADOGO; DARMONT, 2021).

Diferentes arquiteturas de GD são propostas na literatura (WANASINGHE et al.,

2020). Os GDs anteriores seguem uma arquitetura de três componentes que conecta um

sistema físico a um virtual espelhado. Enquanto o espaço físico representa os ativos físi-

cos (e.g., sensores, atuadores), o espaço virtual visa imitar/replicar o ambiente físico com

alta fidelidade. GDs após essa arquitetura adotam soluçõesad hoc para problemas de

gerenciamento de dados, como extração de dados e integração de fontes heterogêneas,

sanidade de dados, transformação e enriquecimento de dados e consumo de dados pelo

ambiente virtual. A existência de silos de dados, o volume de dados e problemas rela-

cionados ao manuseio de múltiplas fontes de dados heterogêneas, formatos e tipos de

dados são frequentemente mencionados como desafios significativos (SUN et al., 2020;

VIVI et al., 2019; SINGH et al., 2021; SAHLAB et al., 2021).

A arquitetura GD de cinco componentes (TAO; ZHANG, 2017) é uma evolução

que inclui explicitamente um componente de gestão de dados. O componente de gestão

de dados atua como uma ponte entre todos os subsistemas, servindo como um ponto de

ingestão dos dados originais e retorno no momento certo para direcionar o processo de

otimização interativa resultante de sua interação. Os trabalhos existentes fornecem a fun-

cionalidade para gerenciar diferentes aspectos dos dados, como limpeza de dados, avali-

ação de qualidade, transformação, integração, pesquisa, entre outros. Essas funcionali-

dades de gerenciamento de dados são explicitamente compreendidas em um componente

gestão de dados dedicado, conforme proposto por (TAO; ZHANG, 2017) ou distribuída

em outros componentes do GD.

Este trabalho apresenta uma Revisão Sistemática da Literatura (RSL) sobre as

soluções propostas para questões de gestão de dados no escopo de GDs, na qual está im-

plícito no GD ou explícito como parte de um componente de gestão de dados. Essa RSL

foi motivada pela ausência de uma RSL ou revisão da literatura focada em soluções de
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gerenciamento de dados para GDs e a falta de entendimento do papel central e da fun-

cionalidade do componente gestão de dados. As pesquisas existentes contribuem para a

compreensão geral dos conceitos, propriedades e casos de uso primário e aplicações de

GDs (SEMERARO et al., 2021; BARRICELLI; CASIRAGHI; FOGLI, 2019; FULLER

et al., 2020; JONES et al., 2020). Em relação ao gerenciamento de dados, (RAPTIS;

PASSARELLA; CONTI, 2019) apresenta uma revisão da literatura a partir da perspectiva

de automação industrial e computação em rede, descrevendo projetos arquitetônicos com

base em fatores relacionados a dados (presença, coordenação e computação). Embora

(TAO et al., 2019) destaque um componente explícito na arquitetura de um GD para li-

dar com a gestão dos dados, ele não detalha suas funcionalidades. Argumentamos que o

componente gestão de dados pode ser aproximado da funcionalidade de dados e gerenci-

amento de conhecimento dos Data Lakes (KRONBERGER et al., 2020; CORREIA et al.,

2022) e visam alcançar uma melhor compreensão das soluções do estado da arte em uma

análise de granularidade fina.

Nossa RSL apresenta uma nova perspectiva, considerando e extraindo problemas

de gestão de dados da cadeia de valor de Big Data (CURRY, 2016). Uma RSL é definida

em (OKOLI, 2015) como “ um método sistemático, explícito, abrangente e reproduzível

para identificar, avaliar e sintetizar o corpo existente do trabalho concluído e registrado

produzido por pesquisadores, estudiosos e praticantes". Pesquisamos e selecionamos es-

tudos primários através de uma abordagem sistemática e imparcial para lançar luz sobre

as soluções gestão de dados propostas para lidar com heterogeneidade de dados, interop-

erabilidade, integração, pesquisa/descoberta de dados e qualidade no contexto de GDs.

Definimos as seguintes perguntas de pesquisa: PP1) Para quais domínios as soluções de

GD foram propostas?; PP2) Sob a perspectiva do uso de dados, para quais funções os

GDs foram propostos?; PP3) Quais tipos de dados as soluções propostas consideram?;

PP4) Quais soluções foram propostas para os problemas de gestão de dados abordados?;

PP5) Que tipo de infraestrutura tecnológica é considerada?.

Nossa RSL complementa e inova o cenário das revisões de literatura existentes

sobre o GDs, investigando aspectos de gestão de dados ainda não analisados, expressos

pelas questões de pesquisa. As principais contribuições deste trabalho são:

• Uma análise de granularidade fina sob as atividades da cadeia de valor de Big Data,

destacando os principais problemas a serem abordados pelo componente de gestão

de dados em um GD.

• Uma RSL examinando soluções existentes para lidar com a heterogeneidade de
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dados, interoperabilidade, integração, pesquisa/descoberta de dados e qualidade no

GDs. Contextualizamos essas soluções no domínio e na função para as quais o GD

foi proposto, o tipo de dados tratados e a infraestrutura tecnológica alavancada. A

compilação dessas soluções lança luz sobre a funcionalidade a ser fornecida por um

componente gestão de dados de um GD, tendências atuais e oportunidades.

B.2 Metodologia

Uma RSL deve resumir todo a informação atual sobre algum fenômeno de maneira

completa e imparpacial. Para isso, neste trabalho foi adotada a metodologia bem definida

de revisão sistemática proposta por (KITCHENHAM; CHARTERS, 2007). A metodolo-

gia adotada teve três fases, a fase de planejamento do protocolo de revisão, execução do

protocolo e escrita do relatório.

Resumidamente o primeiro passo foi identificar a necessidade de uma RSL, a

definição das perguntas de pesquisa, a estratégia de busca dos artigos primários, definição

dos critérios de inclusão e exclusão para a seleção dos artigos, avaliação da qualidade

individual de cada artigo e finalmente a seleção final para a inclusão no estudo.

B.3 Resultados e conclusão

Este trabalho teve como objetivo investigar o estado da arte em termos de gestão

de dados no contexto do GDs através de um processo sistemático de revisão de liter-

atura. Com base no conhecimento produzido pelos estudos primários selecionados, re-

spondemos às cinco perguntas de pesquisa definidas, o que nos permitiu sintetizar o con-

hecimento sobre os domínios da aplicação GDs, suas funções e usos, os tipos de dados

envolvidos, quais soluções foram propostas relacionadas ao gerenciamento de dados e

o tipo de infraestrutura tecnológica. Além disso, conseguimos identificar os desafios e

oportunidades de pesquisa.

Essa RSL foi motivada pela ausência de uma RSL sobre gerenciamento de da-

dos em GDs. A maioria das pesquisas se concentra na compreensão dos conceitos, pro-

priedades e principais casos de uso/aplicações (SEMERARO et al., 2021; BARRICELLI;

CASIRAGHI; FOGLI, 2019; FULLER et al., 2020; JONES et al., 2020). Em termos de

gerenciamento de dados, (TAO et al., 2019) destaca um componente explícito na arquite-
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tura de um GD para lidar com o gerenciamento de dados e (RAPTIS; PASSARELLA;

CONTI, 2019) descreve os projetos arquitetônicos que consideram fatores relacionados

a dados (presença, coordenação e computação). Portanto, nossa RSL apresenta uma

nova perspectiva, considerando problemas como: integração de dados, interoperabilidade,

qualidade dos dados e pesquisa de dados próximos à camada de aplicativos no contexto

do GDs.

Em poucas palavras, resumimos as respostas para as perguntas de pesquisa

definidas da seguinte forma:

• PP1: Para quais domínios as soluções de GD foram propostas? As três principais

áreas/domínios de aplicacão de GDs são I4.0, cidades inteligentes e saúde. A maio-

ria dos estudos primários selecionados são da I4.0 (59,64 %), o que indica que os

GDs são um conceito mais maduro nessa área, mesmo do ponto de vista de gestão

de dados.

• PP2: Sob a perspectiva do uso de dados, para quais funções os GDs foram

propostos? Os principais usos e funções relatados pelos estudos foram apoio

à decisão (38,59%), monitoramento de ativos (24,56%) e otimização de Pro-

dução/Processo/Logística (21,05%). As duas últimas funções mostram que o GD

é frequentemente usado ou projetado para monitorar ou otimizar funções ao longo

do tempo, que lidam com o tempo real ou em tempo correto. Portanto, isso tam-

bém reflete sobre os requisitos de gestão de dados, e os requisitos do componente

específico de gestão de dados, que precisa ser capaz de atender adequadamente a

essas necessidades.

Além disso, percebemos que a maioria dos sistemas são sombras digitais, con-

siderando a distinção conforme definido em (FULLER et al., 2020), o que significa

que a maioria das soluções propostas consomem os dados produzidos pelos sis-

temas físicos sem um loop fechado e explícito do sistema virtual para o físico.

• PP3: Quais tipos de dados as soluções propostas consideram? Identificamos que

40,35% dos estudos lidam com dados em tempo real e histórico, enquanto 24,56%

relataram estritamente streams de dados. Embora poucos estudos tenham explici-

tado os tipos de dados, identificamos a presença de dados heterogêneos e tecnologia

de sensoriamento heterogênea. Portanto, dados e tipos de origem são um reflexo

das funções e uso do GD. Se o GD for projetado para monitoramento de ativos,

lidar com strems de dados é um requisito crucial.
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• PP4: Quais soluções foram propostas para os problemas de gestão de dados abor-

dados? Entre os estudos relacionados à interoperabilidade, encontramos soluções

focadas na interoperabilidade de dados, semântica e entre GDs. Estudos que pro-

puseram soluções de integração foram categorizados como repositório centralizado,

modelagem ad hoc, modelagem com padrões, modelagem com uma camada on-

tológica, método de integração e enriquecimento semântico. Para a questão da

busca de dados, encontramos soluções com base na busca estrutural e busca semân-

tica. Por fim, encontramos soluções para a qualidade dos dados usando métodos es-

tatísticos, métodos baseados em regras para detectar desvios e operações de pipeline

para pré-processar e melhorar a qualidade dos dados.

• PP5: Que tipo de infraestrutura tecnológica é considerada? Os tipos de infraestru-

tura tecnológica considerados pelos estudos foram categorizados em computação

em nuvem, computação híbrida (nuvem, borda, neblina) e sistemas de gerencia-

mento de banco de dados (SGBDs). Essa categorização foi baseada na infraestru-

tura para processamento e armazenamento de dados.

A avaliação da qualidade nos permitiu refinar a seleção dos estudos e explicar os

resultados pelas diferenças de qualidade. Os estudos selecionados têm uma pontuação

média de (7,39), o que é razoável. No entanto, nossa expectativa era encontrar soluções

mais robustas em relação aos aspectos de gerenciamento de dados. Concluímos que detal-

hando explicitamente as funções de gestão de dados nos GDs é um assunto relativamente

novo de estudo, principalmente porque a comparação com os trabalhos relacionados e a

discussão das limitações das proposições dos estudos foram as questões/critérios de qual-

idade com as pontuações médias mais baixas. Portanto, são necessárias mais pesquisas

em termos teóricos e práticos para promover o conhecimento sobre o gerenciamento de

dados para alavancar a criação de soluções práticas e úteis para implementar GDs mais

funcionais e eficazes.

O processo de seleção foi um grande desafio para este estudo. Tentamos ser ex-

austivos e coletar o maior número possível de artigos relevantes, mas encontrar todos os

trabalho relevantes já publicados é impossível (BROCKE et al., 2015). Para lidar com o

enorme volume de artigos encontrados nas bibliotecas digitais (1.838 estudos em nosso

caso), propusemos um processo de três etapas para rastrear e selecionar os estudos para

lidar com este volume. Dessa maneira, a seleção foi refinada iterativamente com base no

resumo (título, resumo, palavras-chave) e, em seguida, na visão geral do artigo (principal-

mente introdução, figuras e conclusão) e, finalmente, lendo os artigos integralmente. Esse
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processo permitiu minimizar o viés na triagem dos trabalhos por meio de dois leitores in-

dependentes e consolidando os critérios para seleção/exclusão do estudo posteriormente,

com base na leitura completa. Portanto, estamos confiantes de que nossa estratégia e

processo metodológico adotados foram bem definidos e executados, o que nos permitiu

maximizar o escopo e a qualidade de nossa revisão.

Como trabalho futuro, nossa RSL pode ser complementada considerando a liter-

atura mais recente. No entanto, outros aspectos também podem ser investigados, como

arquitetura de dados, armazenamento de dados e operações, segurança de dados e geren-

ciamento de metadados, gerenciamento de conteúdo e assim por diante. A área de geren-

ciamento de dados é ampla e inclui várias atividades fundamentais para o sucesso de um

GD. Portanto, é importante ter uma visão geral de todos os seus aspectos.
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