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Background and aims: Early child interventions focused on the family

prevented neurodevelopmental and behavioral delays and can provide more

knowledge regarding responsive feeding, thus creating learning opportunities

to promote better quality nutrition and preventing failure to thrive. The

aim is to verify the impact of a continuous program of early home-based

intervention on the body composition of preschool infants who were born

preterm with very low birth weight (VLBW).

Methods: This is a longitudinal analysis from a randomized controlled trial,

including VLBW preterm children, born in a tertiary hospital in Southern

Brazil and followed up at the high-risk institutional ambulatory clinic.

Participants were divided into the intervention group (IG): skin-to-skin

care with the mother (kangaroo care), breastfeeding policy, and tactile-

kinesthetic stimulation by mothers until hospital discharge. Subsequently,

they received a program of early intervention with orientation and a

total of 10 home visits, independently from the standard evaluation

and care that was performed following the 18 months after birth;

conventional group (CG): standard care according to the routine of

the newborn intensive care unit (NICU), which includes kangaroo

care, and attending to their needs in the follow-up program. Body

composition estimation was performed using bioelectrical impedance

analyses (BIA), and physical activity and feeding practices questionnaires were

evaluated at preschool age, as well as anthropometric measurements and

biochemical analysis.

Results: Data of 41 children at 4.6 ± 0.5 years old were evaluated (CG

n = 21 and IG n = 20). Body weight, height, body mass index, waist and arm

circumferences, and triceps and subscapular skinfold did not differ between

groups. The IG presented higher segmented fat-free mass (FFM) when

Frontiers in Nutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.981818
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.981818&domain=pdf&date_stamp=2022-10-20
mailto:rolfernandes@hcpa.edu.br
https://doi.org/10.3389/fnut.2022.981818
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2022.981818/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-981818 October 14, 2022 Time: 17:34 # 2

Fernandes et al. 10.3389/fnut.2022.981818

compared to the CG (right arm FFM: 0.74 vs. 0.65 kg, p = 0.040; trunk FFM:

6.86 vs. 6.09 kg, p = 0.04; right leg FFM: 1.91 vs. 1.73 kg, p = 0.063). Interaction

analyses showed that segmented FFM and FFM Index were associated with

higher iron content in the IG. In the CG, interaction analyses showed that

increased visceral fat area was associated with higher insulin resistance index.

Conclusion: An early intervention protocol from NICU to a home-based

program performed by the mothers of VLBW preterm children of low-income

families presents a small effect on FFM.

KEYWORDS

premature birth, very low birth weight (VLBW), early intervention, body composition,
blood chemical analysis, preschool child

Introduction

Preterm birth is considered a health problem worldwide,
with a higher incidence in low-income countries, with an
average of 12%, compared to 9% in high-income countries
(1). Despite preterm birth being the leading cause of death
of children aged under 5 years, the improvement of neonatal
care and follow-up programs to support this population
is increasing survival rates, allowing more children to
enter adulthood (2). Furthermore, preterm infants, mainly
those born extremely preterm, present a higher incidence
of developmental deficits (cognitive, motor, behavioral,
communicative, learning, and sensory disorders) and a higher
risk for delayed neurodevelopment, a condition that demands
early implementation of multidisciplinary actions that may
prevent negative outcomes (3, 4). Moreover, preterm infants
present a higher risk for chronic and metabolic diseases with
aging (5, 6).

Among the factors that increase their vulnerability to
developing growth and developmental issues (5) is body
composition, which has been associated with neurodevelopment
in very low birth weight (VLBW) infants (7, 8). A higher rate
of fat-free mass (FFM) was associated with improved cognitive
and motor scores at 12 months of corrected age (9), and, on the
other hand, a deficit of FFM was associated with neurological
impairment in VLBW infants at 24 months of corrected age
(10). Body composition studies have shown that preterm infants
reach full-term equivalent age with less FFM and a higher
percentage of total body fat (%TBF) when compared to their
full-term equivalent counterparts (11, 12), as well as lower
bone mineral density (13, 14) and increased abdominal adipose
tissue (15). Since body growth and mineral accretion occur
mainly in the last trimester of gestation, reduced muscle mass
and skeletal mineralization could be related to preterm infants
(12). Moreover, body fat and FFM gains in preterm infants are
associated with several areas of cognitive function (16). Thus,

early intervention, follow-up care for preventive action, and
timely detection of possible adverse health outcomes are critical
for preterm infants’ growth health.

The “first 1,000 days,” from conception to 24 months (17),
are characterized as a window of opportunity to stimulate
a child’s developmental domains, such as physical, language,
cognitive, and social–emotional (18, 19). A systematic review
showed that early intervention significantly affects child
development, but it does not affect linear growth, which
is more associated with nutritional intervention (20). The
literature describes that nutritional intervention promotes
short- and long-term health effects after preterm birth (21).
Moreover, early tactile and kinesthetic stimulation in VLBW
preterm children promoted a borderline higher psychomotor
development and increased cognitive development assessed at
2 years corrected age, which did not affect weight, length, and
head circumference (22). Early physical therapy intervention
also presented a positive impact on VLBW preterm, hence
reducing the incidence of motor delay (23). However, it is
still not clear if an early intervention program could affect the
body composition of the preterm population with advanced age.
A single-blind cluster randomized controlled trial showed that
early physical activity in the first months of life in term-born
children promoted a reduced sum of skinfold, when compared
to the non-stimulated group, without any differences in motor
development (24).

There are few studies evaluating body composition
in preschool VLBW preterm children subjected to early
intervention and continuous clinical follow-up. Thus, our
main goal is to investigate if a protocol of early home-based
intervention program during the first 18 months of corrected
age in VLBW preterm affected the body composition once they
reach preschool age, comparing them with a group subjected
to conventional care protocol. Also, this study investigated if
the body composition results in response to the intervention
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protocol were related to neonatal, growth, and biochemical
characteristics evaluated during these follow-ups.

Materials and methods

Design and study population

This was a longitudinal analysis from a randomized
controlled trial that investigated preschool VLBW preterm
children that were subjected to an early, continuous, and global
intervention with a parent’s orientation program in the first 12–
18 months of corrected age. This program was a randomized
clinical trial (RCT), performed from 2016 to 2019, previously
described in the study protocol (4), with children born in the
Hospital de Clínicas de Porto Alegre (HCPA), a level-3 referral
center for high-risk neonates in South Brazil, with regular
follow-up until 5 years of age. The study population was preterm
children born at less than 32 weeks of gestational age (GA) or
children of birth weight less than 1,500 g during the 48 h after
childbirth. Newborns with a major congenital malformation or
inborn errors of metabolism, STORCH complex infections, HIV,
or autoimmune conditions were excluded.

For the follow-up study, the parents were invited to
accompany their children, aged 3 and 5 years, to perform a
body composition analysis (Figure 1). Exclusion criteria for this
investigation were children that died before reaching preschool
age, children with severe motor, cognitive, or organic sequelae
that prevented the use of bioimpedance scale (cerebral palsy,
autism spectrum disorder, use of orthoses, tracheostomized
children, and gastrostomy), and children who did not complete
3 years of age during the study period. The recruitment was
performed by phone calls and use of social media to locate the
parents with no updated phone numbers in the medical records.

The preschool children evaluated in this study were
those who were randomized to one of the two groups
from the previous clinical trial (4). The intervention group
(IG) was characterized by skin-to-skin care (kangaroo care),
breastfeeding policy, and massage therapy made by the mothers
until hospital discharge. After discharge, mothers received
orientation for continuous global stimulation at home plus 10
home visits by the research team, regardless of the standard
evaluation and care provided in the follow-up clinic to all
preterm children. The systematic early intervention program
was based on developmental milestones, anticipating by a
month the evolutionary step acquisition of motor and/or
cognitive expected for corrected age. The conventional group
(CG) was characterized as receiving standard care according
to the routine care of the newborn intensive care unit
(NICU) and according to the subject’s needs in the follow-
up program. The follow-up program used in this study is an
extension of neonatal and perinatal care, in which the research
team provides conditions to monitor growth, development,

and common morbidities with a multidisciplinary team who
can fully assess the child and the caregivers, parents, family
members, and the school.

Outcome measures

Physical exam during newborn intensive care
unit and follow-up at an institutional
ambulatory clinic

Physical exams for measurements of weight (kg), height
(cm), head circumference (cm), and body mass index (BMI,
kg/m2) were performed at birth, at NICU discharge, and at
monthly and annual assessments as a routine appointment at
the ambulatory clinic until the appointment for bioelectrical
impedance analysis (BIA). All measurements in the ambulatory
clinic were performed by a Neonatologist, using standard
techniques and calibrated instruments (electronic scale and
stadiometer). Z-scores of weight-for-age (W/A), length-for-
age (L/A), and BMI-for-age (BMI/A) were evaluated using
the Anthro R© software (25), considering overweight: BMI/A
Z-score > + 1, obesity: BMI/A Z-score > + 2, and underweight:
BMI/A Z-score < –2.

At the evaluation appointment for BIA in the preschool-
age children, all anthropometric measurements were performed
in duplicate for which the average results were considered:
waist circumference (cm) measured with an inelastic measuring
tape (in cm) placed at the umbilical scar level at the end of
the child’s exhale in orthostatic position; arm circumference
(cm), measured in the mid-point of the upper arm; triceps
skinfold thickness (mm), measured by the midpoint between
the acromion and the olecranon; and, subscapular skinfold
thickness (mm), measured diagonally below the inferior angle
of the scapula. Skinfold measurements (triceps and subscapular)
were assessed using a skinfold caliper (Lange R©, Ann Arbor,
Michigan, USA).

Socioeconomic status
Data related to the mother’s schooling level (in years) and

household income (in BRL per month) were assessed on the
day of the follow-up appointment when participants reached
preschool age, on the same day of BIA.

Neonatal and follow-up data
Neonatal information from the NICU stay, follow-ups, and

clinical appointments was collected from in-hospital patient
records. During the NICU period, maternal variables were
collected (maternal age, preeclampsia, gestational diabetes, and
use of corticosteroid). The neonatal variables were gestational
age (GA—evaluated by last menstrual period and confirmed by
early obstetrical ultrasound and neonatal clinical examination),
birth weight, gender, the status of small for gestational age (SGA;
defined as birth weight < 10th percentile) (26), 5-min Apgar
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FIGURE 1

Flowchart.

score, length of hospital stay, necrotizing enterocolitis, central
nervous system injury (periventricular hemorrhage and/or
leukomalacia), bronchopulmonary dysplasia as oxygenotherapy
at 36 weeks corrected age, retinopathy of prematurity, and
packed red blood cell transfusion. Anthropometric measures
were collected at NICU discharge.

In addition to physical exams in the follow-up clinic,
information regarding breastfeeding practices was examined
and classified as exclusive breastfeeding, exclusive infant
formula, or combination feeding. Exclusive breastfeeding is the
action of feeding solely with human milk coming from the
mother’s breast, with no other liquids or solids (27).

A biochemical exam was also assessed in the records in
the follow-up consultation at the 24th month of corrected
age. Venous blood sampling (12 h fasting) was collected
for routine blood tests according to the follow-up program
for measuring hemogram; serum iron (µg/dL); total iron
binding capacity (µg/dL); ferritin and transferrin (mg/dL);
total cholesterol; LDL-cholesterol; HDL-cholesterol; non-HDL
cholesterol and triglycerides (mg/dL); glucose (mg/dL); insulin
(µU/mL); and cortisol (µg/dL). Dyslipidemia was determined
when one or more lipid markers presented values, such as total
cholesterol > 200 mg/dl; LDL-cholesterol > 130 mg/dL; HDL-
cholesterol < 40 mg/dL; non-HDL cholesterol > 145 mg/dL;
and triglycerides > 100 mg/dL (28). The insulin resistance
index was calculated as a homeostatic model assessment for
insulin resistance (HOMA-IR) [(glucose (mg/dL) × insulin
(µ U/mL))/405].

Body composition, feeding practices, and
physical activity at preschool age

Body composition was evaluated using a multi-frequency
bioelectrical impedance analysis (BIA) using InBody 770 R©

(Biospace, South Korea), a tetrapolar electrode configuration
system. Parents were instructed to fast their children for at least
3 h before the measurement, and diapers were changed before
children got up on the scale. Each participant was positioned in
an orthostatic position on a platform with lower electrodes for
the feet and the hands holding onto upper electrodes, in which
children were to hold this position for 1 min until completion
of the measurement. This evaluation accurately measures body
weight (BW in kg), the body water content in liters (total
body water (TBW), water inside and outside cells, and water
in the segments), fat mass (FM; in kg), total body fat (%TBF),
fat-free mass (FFM = BW–fat mass, in kg; segmented FFM
of arms, legs, and trunk—the head is not considered in the
segmented measurements), FFM Index (FFMI, in kg/m2), lean
mass (LM = water + proteins + non-osseous mineral; in kg),
skeletal muscle mass (in kg), proteins and minerals (in kg), bone
mineral content (BMC = osseous mineral; in kg), visceral fat area
(in cm2), cellular body mass (in kg), arm circumference (in cm),
and basal metabolic rate (BMR, in kCal).

Physical activity levels were measured using a structured
questionnaire that estimates the sedentary and active time of
children, considering activities on weekdays or weekends and
day shifts (morning, afternoon, and night), presented as total
hours of activity per week. The measure of physical activity
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is expressed by the daily time of participation in games and
outdoor play while the measure of sedentary behavior is based
on the time spent watching television.

Data analysis

Descriptive statistics are shown as mean with standard
deviation (± SD) or median with interquartile range for
continuous variables, according to the Shapiro-Wilk normality
test, and counts with proportions for categorical variables.
Between-group comparisons were performed with Student’s
t-test, Mann-Whitney U-test, Pearson’s Chi-squared test, or
Fisher’s exact test. Cohen’s d was used to measure effect
size for quantitative variables. The power to compare the
FFM segment averages between conventional and intervention
groups was calculated considering a 5% significance level and
the sample size of this study (IG = 20 and CG = 21). First,
the relationship between neonatal data (GA, birth weight,
and head circumference), physical exam results at 12 months
(body weight, height, and BMI/A), and biochemical variables
with body composition were explored (TBW, FM, FFM, and
BMC) by Pearson’ or Spearman’ correlation (a hypothesis-
generating analyses). Analysis of covariance (ANCOVA) was
performed to compare body composition outcomes between
groups and to analyze the relationship between them and the
biochemical variables. They were adjusted for gender due to
literature differences between outcomes by gender (29–31).
P-values under 0.05 were considered statistically significant. All
analyses were performed using the SPSS (Statistical Package for
the Social Science) Program Version 18.0 (IBM SPSS Statistical
for Windows, Armonk, New York, USA).

Results

Our investigation evaluated 41 VLBW preterm children at
preschool age who participated previously in a clinical trial
of an early intervention program developed from February
2016 to December 2019. Briefly, of the 134 children from the
previous clinical trial, 84 were eligible to participate in this
new investigation (Figure 1). For the current study, BIA and
physical exam results were collected from December 2020 to
June 2022 from the children whose guardians have accepted
to participate.

Table 1 shows the characteristics of infants of the general
sample population, as well as their respective groups, CG
(n = 21) and IG (n = 20). The mean age of children when BIA
was performed was 4.7 ± 0.5 years, 17 (41%) girls and 24 (59%)
boys. There were no differences in anthropometric variables,
such as body weight, height, waist and arm circumferences,
and skinfold measurements from the children of both groups.
Overall, 22% of the sample were classified as overweight or obese

and 7% as underweight, without any significant differences
between groups. Maternal schooling level and family income
did not differ between groups. Regarding neonatal data of the
preterm children randomly assigned in each group, the mean
gestational age was 28 ± 2 weeks, birth weight 1,073 ± 318 g,
head circumference 25.5 ± 2.4 cm, and 4 (11%) were SGA
without statistical differences between groups. Also, neonatal
comorbidities were not statistically different between groups. In
both groups, birth weight correlated positively with TBW (IG:
r = 0.462, p = 0.041; CG: r = 0.501, p = 0.021) and with FFM (IG:
r = 0.461, p = 0.041; CG: r = 0.487, p < 0.025). Birth weight also
correlated positively with FM only in CG: r = 0.472, p = 0.031
(IG r = 0.289, p = 0.22), and no significant association with
BMC was observed. GA did not present a correlation with TBW,
FFM, FM, and BMC when analyzed in each group separately
(p > 0.05).

Physical examination performed during the first follow-up
appointment after NICU discharge and 12 months corrected
age did not show a statistical difference between groups. The
nutrition offered to the preterm children in the first weeks of
life at home did not vary between groups (Table 2). Biochemical
analyses performed at 24 months of corrected age did not show
statistical differences among groups (Table 3).

Table 4 shows the results of the BIA in preschool age.
FM and %TBF did not differ significantly between CG and IG
groups. Although the IG presented a non-significant increase
in total FFM, FFMI, and skeletal muscle mass when compared
to the GC group, they demonstrated a significant increase in
segmented FFM in the children subjected to early intervention
(right arm (p = 0.040), left arm (p = 0.053), trunk (p = 0.040),
and an overall tendency in right leg (p = 0.063) and left leg
(p = 0.054). The statistical power to test if there were a minimal
difference of 0.09 kg in the mean of right arm FFM between
groups was 57%. For the means of trunk FFM, a power of
53% was calculated, considering a minimal difference of 0.77 kg
between groups. Moreover, the means of left leg FFM yielded a
51% power, considering a minimal difference of 0.19 kg among
groups. These power values were obtained considering a 5%
statistical level. TBW content also showed an increased pattern,
as observed in the FFM from IG, although not significant.
BMC, BMR, and visceral fat area were similar between groups.
Finally, we observed that TBW/FFM ratio in preterm children
was 74.3% (95% CI 74.0–74.5).

Regarding physical activity, total active hours during the
week were significantly higher in CG (median 16 h (14–19.5)
when compared to IG [10 h (6–18); p = 0.015)] (data not shown).

Analyses of interaction were performed to investigate if
the association between body composition and biochemical
analyses differed among groups. Overall, Figure 2 shows that
FFM with iron content differed between IG and CG, even after
adjusting by gender. IG group showed that FFMI increased
by 0.26 kg/m2 (95%CI: 0.002–0.049; p = 0.037) per unit of
increased serum iron, but no increase was observed in CG.
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TABLE 1 Current and neonatal characteristics of preterm children subjected to the early intervention program compared to conventional care.

Characteristic General
(n = 41)

Conventional
(n = 21)

Intervention
(n = 20)

P-value Cohen-d

Current period (preschoolers)

Age at examination, years 4.6 ± 0.5 4.5 ± 0.5 4.7 ± 0.5 0.758 0.40

Female/male, n (%) 17 (41)/24 (58) 9 (43)/12 (57) 8 (40)/12 (60) 0.602 –

Weight, Kg 18.1 ± 4.0 17.4 ± 3.3 18.8 ± 4.6 0.481 0.35

Weight-for-age, Z-score 0.03 ± 1.54 –0.10 ± 1.46 0.17 ± 1.65 0.762 0.17

Height, m 1.05 ± 0.06 1.04 ± 0.06 1.06 ± 0.06 0.522 0.33

Length-for-age, Z-score –0.39 ± 1.25 –0.49 ± 1.35 –0.29 ± 1.16 0.666 0.16

Body mass index (BMI), Kg/m2 15.6 (14.6–17.7) 15.6 (14.5–17.2) 15.2 (14.7–18.9) 0.824 –

BMI-for-age, Z-score 0.43 ± 1.59 0.33 ± 1.18 0.52 ± 1.96 0.946 0.12

Overweight/obesity, n (%) 9 (22) 3 (14) 6 (30) –

Underweight, n (%) 3 (7) 0 (0) 3 (2) –

Waist circumference, cm 51.5 (47–55) 52 (48–53.9) 51.5 (47.5–58.5) 0.686 –

Arm circumference, cm 16.9 ± 2.6 16.3 ± 2.3 17.5 ± 2.7 0.096 0.48

Triceps fold, mm 8.5 (6.8–11.0) 8.0 (6.0–11.3) 9.5 (7.0–10.5) 0.370 –

Subscapular fold, mm 5.6 (4.0–7.2) 5.0 (4.0–6.0) 6.5 (4.3–8.0) 0.212 –

Current socioeconomic status

Maternal education, years 11.1 ± 3.12 10.9 ± 3.1 11.3 ± 2.8 0.719 0.13

Family income, Brazilian R$ (×1000) 2.9 (1.5–3.8) 3.0 (1.2–3.8) 2.5 (1.5–4.6) 0.694 –

Neonatal period

Gestational age (GA), weeks 28.1 ± 2.0 28.0 ± 1.8 28.2 ± 2.2 0.701 0.10

Birth weight, g 1,073 ± 318 1,175 ± 308 1,172 ± 335 1.000 0.00

Birth length, cm 36.0 (33.5–39.7) 35.5 (33–39.7) 37.0 (34–39.7) 0.551 –

Birth head circumference, cm 25.5 ± 2.4 25.7 ± 2.2 25.4 ± 2.6 0.739 0.12

Small for GA (SGA), n (%) 4 (10.8) 2 (10) 2 (11) 0.298 –

Apgar score 5 min 8 (7–9) 8 (6–8) 8 (7–9) 0.312 –

Maternal age, years 31 (23–35) 33 (29–36) 28.5 (19–31) 0.009 –

Pre-eclampsia, n (%) 16 (39) 8 (38) 8 (40) 0.901 –

Gestational DM (GDM), n (%) 2 (5) 1 (5) 1 (5) 0.972 –

Antenatal corticosteroids, n (%) 37 (90) 21 (100) 16 (80) 0.031 –

Use of surfactant, n (%) 25 (61) 14 (67) 11 (55) 0.444 –

BPD, n (%) 13 (32) 5 (24) 8 (42) 0.217 –

Parenteral nutrition (PTN), days 15 (11–23) 14 (11–25) 15 (10–18) 0.539 –

Full enteral feeding, days 23 (12–30) 16 (12–28) 18 (15–30) 0.428 –

Necrotizing enterocolitis, n (%) 5 (12) 2 (9) 3 (15) 0.881 –

Lesion CNS, n (%) 18 (44) 9 (42) 9 (45) 0.890 –

PIVH, n (%) 16 (39) 8 (38) 8 (40) 0.901 –

Leukomalacia, n (%) 3 (5.6) 2 (9) 1 (5) 0.935 –

Ductus arteriosus, n (%) 19 (46) 10 (47) 9 (39) 0.867 –

Ibuprofen, n (%) 16 (39) 10 (42) 6 (30) 0.248 –

ROP, n (%) 11 (27) 5 (24) 6 (30) 0.655 –

Packed RBC transfusion 2 (0–4) 1 (0–4) 2 (0–4) 0.894 –

NICU stay, days 64 (52–99) 64 (55–100) 59 (49–100) 0.382 –

Body weight at discharge, g 2,691 ± 544 2,764 ± 660 2,615 ± 390 0.387 0.27

Length at discharge, cm 45.5 ± 2.8 46.0 ± 3.0 45.0 ± 2.4 0.402 0.36

Head circumference at discharge, cm 33.4 ± 1.6 33.4 ± 2.0 33.3 ± 1.1 0.810 0.06

Data presented as mean ± SD, Median (P25–75), or absolute number (n) and proportion (%).
Parametric variables: independent sample t-test.
Non-parametric variables: Mann-Whitney U-test. Categorical variable: Chi-square test.
BMI, Body Mass Index; GDM, Gestational diabetes Mellitus; BPD, bronchopulmonary dysplasia; CNS, Central Nervous System; PIVH, peri intraventricular hemorrhage; ROP, Retinopathy
of prematurity; RBC, red blood cells; NICU, neonatal intensive care unit.
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TABLE 2 Physical exam in the first ambulatory follow-up visit after NICU discharge and 12 months corrected age of preterm children subjected to
early intervention program compared to conventional care.

Characteristic General Conventional Intervention P-value Cohen-d

First ambulatory appointment after discharge n = 39 n = 20 n = 19

Chronological age, weeks 13 ± 5 15 ± 5 12 ± 4 0.133 –

Body weight, kg 3.06 (2.74–3.86) 3.55 (2.65–4.53) 2.96 (2.74–3.45) 0.175 –

Length, cm 48 (46–51) 50 (47–54) 47 (46–5,149) 0.063 –

Cephalic perimeter, cm 35.9 ± 2.4 36.7 ± 2.8 35.2 ± 1.7 0.058 0.65

Body Mass Index, kg/m2 13.7 ± 2.0 14.0 ± 2.2 13.5 ± 1.8 0.429 0.25

Breast milk, n (%) 4 (10) 2 (10) 2 (10) –

Combination feeding, n (%) 19 (46) 12 (60) 7 (37)

Infant formula, n (%) 16 (39) 6 (30) 10 (53) 0.319*

Ambulatory appointment at 12 months of corrected age n = 37 n = 20 n = 17

Chronological age, months 15 ± 1 15 ± 1 15 ± 1 0.361 –

Body weight, kg 9.03 ± 1.68 9.29 ± 1.59 8.73 ± 1.64 0.304 0.34

Length, cm 74 ± 4 75 ± 4 73 ± 4 0.357 0.50

Cephalic perimeter, cim 45.7 ± 1.9 46.1 ± 1.7 45.4 ± 2.1 0.266 0.37

Body mass index, kg/m2 16.1 ± 1.5 16.3 ± 1.5 15.9 ± 1.5 0.374 0.27

Data presented as mean ± SD, Median (P25–75), or absolute number (n) and proportion (%).
Parametric variables: independent sample t-test. Non-parametric variables: Mann-Whitney U-test. Categorical variable: Chi-square or Fisher’s exact test*.

TABLE 3 Biochemical analysis in the follow-up ambulatory care at 24 months corrected the age of preterm infants subjected to an early
intervention program compared to conventional care.

Biochemical parameter General (n = 31) Conventional (n = 15) Intervention (n = 16) P-value Cohen-d

Hemoglobin, g/dL 12.6 ± 1.1 12.4 ± 1.0 12.7 ± 1.2 0.615 0.27

Hematocrit,% 36.8 ± 3.2 36.6 ± 3.1 37.0 ± 3.5 0.792 0.12

Serum iron, µg/dL 83.4 ± 25.1 77.3 ± 24.8 89.2 ± 24.8 0.192 0.48

Ferritin, mg/dL 33.2 (23.4–55.8) 25 (21.4–50.7) 37.5 (24.0–54.4) 0.257 –

Transferrin, mg/dL 282 ± 45 287 ± 52 278 ± 40 0.644 0.19

Transferrin saturation, % 24.1 ± 8.1 23.0 ± 8.3 25.3 ± 8.17 0.459 0.28

Total iron binding capacity, µg/dL 252 (226–305) 258 (222–309) 251 (226–312) 0.949 –

Glucose, mg/dL 86.5 ± 8.6 86.9 ± 9.6 86.0 ± 7.8 0.789 0.10

Insulin, µU/mL 2.9 (2.3–4.1) 2.6 (1.8–3.6) 3.9 (2.5–5.0) 0.101 –

HOMA-IR 0.74 ± 0.45 0.59 ± 0.24 0.89 ± 0.56 0.107 0.69

Cortisol, µg/dL 9.8 ± 4.6 9.5 ± 5.8 10.0 ± 3.2 0.775 0.11

Total cholesterol, mg/dL 143 ± 26 141 ± 23 145 ± 30 0.709 0.15

LDL-cholesterol, mg/dL 85 ± 30 85 ± 22 85 ± 37 0.995 0.00

HDL-cholesterol, mg/dL 43 ± 11 39 ± 8 46 ± 12 0.084 0.68

Triglycerides, mg/dL 89 (66–133) 71 (61–99) 114 (86–170) 0.074 –

Dyslipidemia, n (%) 19 (65) 10 (71) 9 (60) 0.782 –

Data presented as mean ± S.D., Median (P25–75), or absolute number (n) and proportion (%).
Parametric variables: independent sample t-test. Non-parametric variables: Mann-Whitney U-test.
HOMA-IR, homeostatic model assessment for insulin resistance.

Moreover, IG showed an increase of segmented FFM per unit
of iron content (adjusted by gender): right arm: 0.004 kg
(95%CI: 0.000–0.008; p = 0.036), left arm 0.004 kg (95%CI:
0.000–0.008; p = 0.051), trunk 0.025 kg (95%CI: 0.008–0.058;
p = 0.132), right leg 0.009 kg (95%CI: 001–0.017; p = 0.037),
and left leg 0.009 kg (95%CI: 0.00–0.017; p = 0.043) per
unit of iron content. Visceral fat area interaction significantly
decreased to 37 cm2 (95%CI: –50 to –25; p < 0.001) per unit

of HOMA-IR in IG, an opposite response when compared to

CG (Figure 2E) (removing the two outliers, interaction is still

significant, p = 0.005∗∗).

There was no significant interaction between the FFMI and

segmented FFM with physical activity when adjusted by gender.

Also, no association was established between feeding practices

and FFM (data not shown).
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TABLE 4 Body composition in preterm infants subjected to early intervention program compared to conventional care.

Body composition analysis General
(n = 41)

Conventional
(n = 21)

Intervention
(n = 20)

P-value Cohen-d

Total body water (TBW), liters 10.7 ± 1.6 10.4 ± 1.3 11.1 ± 1.7 0.125 0.47

Intracellular water, liters 6.6 ± 1.01 6.4 ± 0.8 6.9 ± 1.1 0.110 0.52

Extracellular water, liters 4.1 ± 0.6 3.9 ± 0.5 4.2 ± 0.6 0.166 0.54

Fat mass (FM), Kg 2.7 (1.9–5.4) 2.7 (2.0–4.7) 3.0 (1.5–5.7) 0.938 –

Total body fat (TBF%) 16.3 (12.4–26.7) 16.3 (13.1–25.1) 17.6 (9.2–17.5) 0.657 –

Fat mass Index (FMI), kg/m2 2.6 (1.8–4.8) 2.4 (1.9–4.2) 2.6 (1.3–5.2) 0.804 –

Fat-free mass (FFM), Kg 14.5 ± 2.1 14.0 ± 1.9 15.0 ± 2.3 0.146 0.48

FFM Index (FFMI), Kg/m2 12.9 ± 0.8 12.8 ± 0.6 13.1 ± 0.9 0.156 0.39

Bone mineral content, Kg 0.68 ± 0.15 0.67 ± 0.15 0.69 ± 0.14 0.741 0.14

Lean mass, Kg 13.8 ± 2.0 13.3 ± 1.7 14.3 ± 2.2 0.126 0.51

Skeletal muscle mass, Kg 6.7 ± 1.3 6.3 ± 1.1 7.0 ± 1.4 0.098 0.56

Protein, Kg 2.86 ± 0.43 2.75 ± 0.36 2.98 ± 0.48 0.096 0.55

Minerals, Kg 0.87 ± 0.18 0.86 ± 0.19 0.87 ± 0.18 0.954 0.05

Segmented FFM

FFM of right arm, Kg 0.70 ± 0.13 0.65 ± 0.09 0.74 ± 0.16 0.040 0.70

FFM of left arm, Kg 0.68 ± 0.14 0.66 ± 0.10 0.74 ± 0.16 0.053 0.61

FFM of trunk, Kg 6.46 ± 1.21 6.09 ± 0.90 6.86 ± 1.39 0.040 0.67

FFM of right leg, Kg 1.82 ± 0.30 1.73 ± 0.23 1.91 ± 0.35 0.063 0.61

FFM of left leg, Kg 1.81 ± 0.31 1.72 ± 0.24 1.91 ± 0.35 0.054 0.64

Segmented water content

Right arm water, liters 0.54 ± 0.10 0.51 ± 0.07 0.58 ± 0.12 0.062 0.72

Left arm water, liters 0.54 ± 0.11 0.51 ± 0.08 0.58 ± 0.13 0.066 0.67

Trunk water, liters 5.04 ± 0.94 4.75 ± 0.72 5.33 ± 1.06 0.053 0.65

Right leg water, liters 1.41 ± 0.24 1.35 ± 0.18 1.48 ± 0.27 0.075 0.57

Left leg water, liters 1.41 ± 0.24 1.34 ± 0.19 1.49 ± 0.27 0.066 0.65

Additional data

TBW/FFM, % 74.3 (73.9–74.5) 74.1 (73.8–74.6) 74.2 (74.1–74.5) 0.440 –

Basal metabolic rate, Kcal 686 ± 49 677 ± 47 695 ± 51 0.255 0.37

Visceral fat area, cm2 13.7 (9–17.1) 13.4 (9.3–16.0) 13.9 (8.6–18.7) 0.705 –

Cellular body mass, Kg 9.5 ± 1.4 9.2 ± 1.2 9.9 ± 1.5 0.098 0.52

Arm circumference, cm 19.2 ± 2.6 18.8 ± 2.06 19.7 ± 3.1 0.322 0.35

Arm muscle circumference, cm 15.2 ± 1.9 14.9 ± 1.4 15.6 ± 2.3 0.281 0.37

Full body phase angle (50 kHz) 4.6 (4.3–4.8) 4.4 (4.1–4.6) 4.7 (4.4–5.3) 0.111 –

Data presented as mean ± S.D., Median (P25–75), or absolute number (n) and proportion (%).
Parametric variable: independent sample t-test. Non-parametric variable: Mann-Whitney U-test.
TBW/FFM ratio, Total Body Water/Fat-free mass.

Discussion

For this study, we investigated the body composition of
preterm VLBW children at preschool age who were subjected to
a protocol of skin-to-skin care and global stimulation in a home-
based program for 18 months. This investigation observed that
early intervention may increase FFM in the body segments.
On the other hand, despite stimulation implementation and
closer family monitoring, no change in fat mass was observed.
Nonetheless, this protocol may present a positive effect on
reducing the relationship between visceral fat mass and
insulin resistance.

Early life exposures to certain environmental factors during

critical periods of development and growth may have significant

short- and long-term consequences on an individual’s health:

for that reason, early intervention is a strategy to improve

growth and developmental outcomes (32, 33). In preterm

infants, studies have shown that early intervention can improve

cognition, increases growth and global development (34, 35),

and attenuate the decrease in bone strength that may reduce

the risk of osteopenia (36). Moreover, it presents a positive

effect on motor skills through environmental enrichment (37).

However, there are few early interventions implemented in the
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FIGURE 2

Comparison of body composition analysis at preschool age between interventional group (IG) and conventional group (CG), analyzing the
interaction with biochemical blood results (blood exam at 24 months of corrected age), adjusted by gender. Association of (A) FFM Index and
serum iron, (B) right arm FFM and serum iron, (C) trunk FFM and serum iron, (D) right leg FFM and serum iron, and (E) visceral fat area and
HOMA-IR. Data were analyzed using ANCOVA, presenting interaction significant with a p-value < 0.05. FFM, fat-free mass; HOMA-IR,
homeostatic model assessment for insulin resistance. ∗∗Removing the two outliers, interaction is still significant (p = 0.005).

“first 1,000 days” and limited data on these effects in VLBW
children regarding body composition across childhood.

Growth assessment is generally based on anthropometric
measurements, which gives insufficient attention to growth
quality. Thus, the assessment of body composition through BIA

provides additional information on the relationship between
growth and development (12). In a cohort study that compared
extremely preterm children with full-term, in whose body
composition was measured by DEXA, it was observed that
preterm children presented the same height and weight as
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full-term. However, the preterm group presented lower values
for muscle mass [0.9 kg (95%CI: 0.3–1.5)], total bone mineral
density z-score [0.30 units (95%CI: 0.13–0.52)] and fat mass
ratio [0.14 units (95%CI 0.06–0.21)] (13). In our study, the early
stimulation protocol was performed anticipating, by a month,
the motor and cognitive acquisition steps expected for corrected
age, approaching near-term development; the usual growth
evaluations (BMI, body circumferences, and skinfolds) did not
present differences over the first year between intervention and
conventional groups. Nonetheless, BIA showed that the early
intervention program caused a small, but significant increase
of segmented FFM, a body component comprised of skeletal
muscle mass, body cell mass, total body water, connective
tissue, and bone mineral mass. The use of a multi-frequency
BIA provides a more direct portrayal of water compartments,
increasing results reliability (38). Skeletal muscle accounts for
a large proportion of the FFM, and it is known that physical
activity positively affects FFM accretion from birth onward (39).
Loss of muscle mass is associated with poor prognosis, reduced
quality of life, and increased mortality, thus highlighting the
muscle as an important component of whole-body metabolism,
glucose homeostasis, as well as overall health and wellbeing (40).
A systematic review showed that preterm infants present less
lean tissue but a similar fat mass than full-term infants (11).
Muscle growth can be activated by mechanical, oxidative, and
energetic distress, and influenced by the availability of nutrients,
growth factors, and cytokines (41). Moreover, an experimental
study showed that mechano-signaling pathways stimulated by
passive movements can control myofibrillar protein synthesis
(42). Our finding showed that early intervention increased
FFM, corroborating a previous investigation in which motor
physical therapy in preterm in NICU increased lean mass (43).
The preterm infants from the intervention group presented
more FFM, despite performing less physical activity during
the week compared to CG. The evaluation was done by
physical questionnaire and supported our hypothesis that early
intervention may contribute to an increase in the components
of FFM. Moreover, an observational study showed that the
gain of FFM in the first 4 years of the life of preterm
children was associated with higher full-scale IQ and processing
speed performance, which may enhance preschool cognitive
performance (16).

Evidence from the classical birth cohorts from Pelotas,
South Brazil showed that prematurity was associated with
decreased total body fat and FFM, but with higher fat mass
in adulthood (in male) (44). Higher fat mass is associated
with an increased risk for metabolic syndrome in the preterm
population (45). The early intervention protocol did not impact
fat mass or bone mineral content within our intervention group.
The metabolic bone mineral disease of prematurity is highly
prevalent in VLBW preterm as it may occur due to loss of
mineral transfer from the placental in the latest trimester and
the reduced mechanical stimulation from the fetus against the

uterine wall. This deficiency could be prevented by minerals and
vitamin D intake, as well as physical activity (46–48). We did not
observe changes in bone mineral content in response to early
intervention protocol. However, a study with motor stimulation
in preterm infants (26–34 weeks), with birth weight < 1,600 g,
was able to increase bone mineral content evaluated by DEXA
(43). A clinical study with extreme preterm-born young adults
presented reduced area bone mineral density when compared to
sex- and age-matched full-term controls, showing the long-term
consequences of bone health (14).

Biochemical analysis performed in the follow-up clinic,
at 24 months of corrected age, may support the structural
findings observed in response to the early stimulation protocol.
A significant relationship between iron content and FFM was
observed only in IG, suggesting that the mechanical and
global stimulus positively affects the components of FFM,
such as the skeletal muscle which is increased by 700 g
on average when compared to the CG group. Iron is an
essential component of hemoglobin and myoglobin, in which
iron supports muscle metabolism and healthy connective
tissue, and is essential for physical growth, neurological
development, and cellular function (49). Since iron is a
micronutrient necessary for early development, it could be
postulated that implementing an early intervention protocol
of 18 months could improve muscle function, thus promoting
iron homeostasis in the muscle system (50). Although no
difference was observed in iron content between groups, a recent
experimental study of a neurological disease demonstrated that
regular physical exercise modulates iron homeostasis, in which
dysregulation of iron metabolism leads to pathophysiological
pathways (51).

Clinical studies indicate that preterm individuals have
physiological disease pathways that differ from those born at
full-term (52). In this same context of different mechanisms
between preterm and full-term individuals, we observed that
the hydration factor (TBW/FFM) in our preschool preterm
children was 74.3%, a higher percentage than the assumed
value for euhydrated individuals, which is set as 73.2%.
A systematic review showed that preterm newborns present
a higher TBW percentage compared to full-term individuals
(73.8%). TBW of preterm reached up to 90% at 26 weeks
of gestation, dropping to 75% at 36 weeks of gestation, and
dropping 1.44% per week after birth (53). Estimation of
total body water by the 2H2O dilution method from healthy
individuals (children to adults) showed that prepubescent
children have a higher aqueous fraction of their fat-free body
mass when compared to young adults (72.7 ± 1.6% vs.
70.8 ± 1.2%; p < 0.01) (54). Lohman et al. described the
chemical composition of FFM changes during childhood and
they were both ages- and sex-specific (55). Therefore, our data
contribute to characterizing the TBW/FFM in VLBW preterm,
since there is still a paucity of data in this population during
growth ex utero (53).
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Another interesting finding of early stimulation in the
VLBW preterm population was the relationship between
visceral fat area and insulin resistance, showing that CG
presented higher insulin resistance with more visceral fat,
a relation not observed in the IG group. Prematurity has
been considered a risk factor for cardiovascular and metabolic
diseases (5, 56), in which preterm-born individuals presented
a higher incidence of hypertension (57), glucose intolerance
(52, 58), as well as metabolic syndromes (59, 60). The inverse
association observed in our study agrees with the observation
that young adults born extremely preterm present a higher
number of risk factors for cardiometabolic disorders unrelated
to each other as observed in the control term group (52).
Although our results are not strong enough to infer many
interpretations, we believe that the protective response observed
in IG could be related to the light increase of FFM components,
such as skeletal muscle mass, which is insulin sensitive and
regulates glucose metabolism, and contributes in the prevention
of cardiometabolic disorders (61). Since early stimulation can
positively affect the central nervous system, thus improving
neurodevelopment, it can also positively affect the other
systems, as is observed in exercising: it can improve whole-
body glucose tolerance, lipid handling, and insulin sensitivity in
humans (62), as well as in rodents (63).

Our follow-up study presents limitations. Although we
have been using in our cohort of children born preterm
the research grade InBody 770 R©, a multi-frequency BIA that
presents more reliable results of water compartments (38),
we should be careful with the data interpretation. However,
many studies have shown that BIA results correlate well
with the gold standard method DEXA scan. This implies
that BIA demonstrated a strong accuracy and reliability when
compared to DEXA (64, 65) which has been recently used
in children of preschool age (66–68). Moreover, the use of
this equipment is advantageous for clinical use and large-
scale epidemiological studies since it is simple, rapid, non-
invasive, accessible, reliable, and requires little training. This
will allow an appropriate follow-up of the preterm population
growth and development from our cohort (69). A study with
the purpose to examine the validity of body composition
showed that skeletal muscle mass was reliably measured using
a multi-frequency BIA method in preschool children (70).
Using BIA in preschool-aged children can be difficult due
to the child’s movement during measurement; the evaluation
was considered complete if the child was able to stay still
for 60 s over the scale holding the electrodes. Further studies
from our preterm cohort population and additional follow-up
evaluations, at both preschool and school ages, will contribute
to confirming these preliminary results. Another limitation
of this study was the small sample size due to unreachable
subjects, as well as the disinterest of the legal guardians (parents)
to participate in the study due to the pandemic and socio-
economic-related factors.

Conclusion

This study was developed to investigate if an early
intervention program could positively affect body composition
in VLBW preterm children. The intervention indicates that
it can probably increase FFM and modify the relationship
between fat and the endocrine system, which may contribute
to better health with advancing age in VLBW preterm children.
Nonetheless, further longitudinal studies and follow-ups of
these preterm children are required to establish the clinical
significance and prolonged impact of early intervention in
this population.
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