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ABSTRACT

Simplicial meshes are used in many fields of Computer Graphics and Engineering, for
instance, in visualization, simulation, prototyping, among other applications. This kind
of mesh is often used as discrete approximations of continuous spaces, where they offer
flexible and efficient representations.

Considerable effort is spent in generating good quality meshes, but in some applica-
tions the meshes can be modified over time. However, this kind of operation is often very
expensive and inflexible, sometimes leading to results very different from the original
meshes.

The ability to handle dynamic scenes reveals itself as one of the most challenging
problems in computer graphics. This work proposes an alternative technique for updating
simplicial meshes that undergo geometric and topological changes. It explores the prop-
erty that a Weighted Delaunay Triangulation (WDT) can be used to implicitly define the
connectivity of a mesh.

Instead of explicitly maintaining connectivity information, this approach simply keeps
a collection of weights associated to each vertex. It consists of an algorithm to compute
a WDT from any given triangulation, which relies on a breadth-first traversal to assign
weights to vertices, and a subdivision strategy to ensure that the reconstructed triangula-
tion conforms with the original one. This technique has many applications and, in par-
ticular, it allows for a very simple method of merging triangulations, which is illustrated
with both 2D and 3d examples.

Keywords: Computer graphics, computational geometry, regular triangulations, mesh
merging, object modeling.





RESUMO

Combinação de Malhas utilizando Triangulações Regulares Dinâmicas

Malhas simpliciais são utilizadas em várias áreas da Computação Gráfica e Engenha-
ria, como por exemplo, em vizualização, simulação, prototipação, além de outras aplica-
ções. Este tipo de malha é, geralmente, utilizada como aproximações discretas de espaços
contínuos, onde eles oferecem representações flexíveis e eficientes.

Muito esforço é gasto visando gerar malhas de boa qualidade, porém, em alguns casos
as malhas acabam sendo modificadas. Entretanto, este tipo de operação é geralmente
custosa e inflexível, o que pode resultar na geraão de malhas bem diferentes das originais.

A habilidade de manipular cenas dinâmicas revela-se um dos problemas mais desafi-
adores da computação gráfica. Este trabalho propõe um método alternativo para atualizar
malhas simpliciais que vai além de mudanças geométricas e topológicas. Tal método
explora uma das propriedade das Tringulações de Delaunay com Pesos, que permite a
usá-las para definir implicitamente as relações de conectividade de uma malha.

Ao contrário de manter as informações de conectividade explicitamente, a atual abor-
dagem simplesmente armazena uma coleção de pesos associados a cada vértice. Além
disso, criamos um algoritmo para calcular uma Tringulação de Delaunay com Pesos a
partir de uma dada triangulação. O algoritmo consiste em uma busca em largura que atri-
bui pesos aos vértices, e uma estratégia de de subdivisão para assegurar que a triangulação
reconstruída será correspondente à original. Este método apresenta diversas aplicações e,
em particular, permite a criação de um sistema simples de realizar combinação entre tri-
angulações, que será ilustrada com exemplos em 2D e 3D.

Palavras-chave: computação gráfica, geometria computacional, triangulações regulares,
combinação de malhas, modelagem.
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1 INTRODUCTION

Simplicial meshes, also known as triangulations, are used in computer graphics, geo-
metric computing, engineering, visualization, simulations, among other areas. They are
preferred due to their ability to represent irregular and adaptive domains.

There are many papers dedicated to the optimization of mesh quality, and generation
of good mesh triangulations (LUEBKE et al., 2002; GARLAND; HECKBERT, 1997;
COHEN et al., 1996; TOURNOIS et al., 2009). Furthermore, several rendering aspects
depend upon good quality meshes. For instance, texture mapping is degraded by topolog-
ical changes, demanding continuous texture coordinates updates to ensure a correct map-
ping. Since much effort is spent in improving mesh triangulations, it is expected of appli-
cations to maintain such properties. In fact, when dealing with static scenes, these prop-
erties are kept. However, some applications demand the use of dynamic scenes, which
can imply the loss of the original mesh quality. For instance, dynamic data structures for
visibility ordering often require partial or total reconstruction of data structures (TOR-
RES, 1990; CHRYSANTHOU; SLATER, 1992; NAYLOR, 1992; LUQUE; COMBA;
FREITAS, 2005), and the capacity to handle these scenes reveals to be one of the most
challenging problems in computer graphics.

A common problem that arises when handling dynamic scenes is that the result of a
mesh processing operation can either require a costly mesh re-computation, thus impair-
ing real-time usage, or it demands constant updates and additional storage to keep several
information needed to perform this task. In particular, the connectivity information is
hard to update, and it is often destroyed or modified during such operations. Often mesh
operations such as merging, morphing, and simplification (among others) alter the num-
ber of vertices in the mesh (either by adding or deleting vertices), which requires that the
connectivity must be changed accordingly.

While updating a mesh triangulation, it is necessary to attempt to maintain both con-
sistence and correctness of adjacency and incidence relations between simplicial ele-
ments. There are works that focus on checking and repairing triangulations using data
structures (e.g., kinetic data structures (GUIBAS, 2004)). Recently, these challenges have
been driving forward development of point-based (hybrid) approaches (GROSS; PFIS-
TER, 2007).

An alternative solution to this problem involves focusing only on triangulations whose
connectivity can be implicitly derived from geometric constraints (TOURNOIS et al.,
2009; CHENG et al., 1999; TOURNOIS; SRINIVASAN; ALLIEZ, 2009), such as De-
launay Triangulations (DT) (EDELSBRUNNER; SEIDEL, 1986). However, these ap-
proaches are rather limited, since in many cases the underlying meshes might not comply
with the required geometric constraints, returning to the case where it is needed to manage
mesh connectivity explicitly (CASTRO et al., 2009).
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Another point to be considered is that the interplay of mesh operations might lead to
different connectivity information depending on the order that operations are performed.
Consider the situation where a set of vertices is removed from a mesh and later rein-
serted. The recovery of the exact original mesh is expected, since, as mentioned before,
improving meshes triangulation demands great effort. While it is easy to enforce for the
geometric coordinates of the vertices, preserving the connectivity is hard, and only a very
restrictive class of surface meshes can be algorithmically reconstructed from the geometry
of its vertices (i.e. disregarding connectivity information).

This work proposes an alternative technique for updating simplicial meshes that un-
dergo geometric and topological changes and explores the property that a Weighted De-
launay Triangulation (WDT) can be used to implicitly define the connectivity of a mesh.
The method naturally supports applications that require dynamic meshes, without the
need for explicit connectivity management. A key contribution of this work is the exten-
sion of Delaunay-based implicit connectivity representations to general triangulations.

The presented proposal is based on a generalization of Delaunay triangulations called
Weighted Delaunay triangulations (WDT), also known as Regular Triangulation (RT).
WDTs are a generalization of DTs where a weight is associated with each vertex in the
mesh. The weights can be modified in such a way to change the connectivity of the mesh,
therefore providing to WDTs the ability to represent a wider collection of meshes. Still,
not every triangulation can be represented as a WDT. A important feature of this work is
to use a subdivision scheme to turn any mesh into a WDT through the addition of extra
vertices (see Section 4.2).

This approach allows mesh operations to be performed by simply manipulating vertex
weights. For instance, to remove a vertex requires only to set the weight to an appropri-
ate value, which causes its automatic elimination from the hull, and therefore from the
triangulation (EDELSBRUNNER; SEIDEL, 1986).

A previous work by Cignoni and De Floriani (Cignoni; De Floriani, 1998) proposed
a technique for computing a WDT from a given mesh by modeling the weight constraints
as a linear program. Balaven et al. (BALAVEN et al., 2002) also proposed a linear
programming technique to solve the problem of transitional meshes. Unfortunately, this
solution cannot be generalized, and the linear program might not have a solution in some
cases. Our approach is based on a breadth-first traversal of the mesh that locally enforces
convexity constraints on the lifting construction, together with a subdivision mechanism,
which ensures that the resulting WDT conforms with the original mesh (see Chapter 4 for
details).

The presented method offers a general way to deal with the lifting construction, allow-
ing the definition of different merging techniques. These techniques can be constructed
to produce results customized to particular applications. This work presents and discuss
two ways to merge WDTs based on different ways of combining the lifted polyhedron
of each mesh (see Chapter 5). It is also proposed a new adaptive scheme that maintains
the geometric quality of simplices when merging meshes of distinct refinement levels
(see Section 5.3). This approach generates an adaptive triangulation that varies smoothly
between the meshes that will be merged.

The technique described in this dissertation was implemented and a number of ex-
periments were performed to its validation. In particular, applications that demonstrate
the merging of 2D and 3D meshes are presented at Chapter 6. Despite their simplicity,
the proposed merging approaches automatically ensure that the connectivity between the
meshes being merged remains consistent and well defined at all times, without the need
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for complex data-structures.
In summary, the following contributions are introduced in this work:

� A new approach for computing a WDT from an arbitrary simplicial mesh;

� Two algorithms for merging regular triangulations;

� A simple fringe mechanism that establishes a smooth transition between merged
meshes with different refinement levels;

� Validation of the proposed technique with examples in 2D and 3D

The weight computation and merging schemes are all based on very simple geometric
constructions which do not demand complex data-structures. Besides, the method can
automatically merge multiple triangulations with distinct mesh resolutions and arbitrary
topology, while still ensuring consistent and well-defined connectivity. Those properties
point out the method as simple and general. But it is also preservable, since mesh features
tend to be preserved during the merging process, specifically the mesh anisotropy.

1.1 Structure of this Thesis

The remaining of this thesis is organized as follows: Chapter 2 introduces the WDTs
and basic concepts that are fundamental to the understanding of this work. Chapter 3
reviews related work in comparison to the proposed approach. Chapter 4 describes the
proposed technique to store the mesh triangulation on the vertices weights together with a
subdivision mechanism, which ensures that the resulting WDT conforms with the original
mesh. Chapter 5 presents the two merging methods developed using DRT. Chapter 6 illus-
trates the potential of the proposal in some applications. Chapter 7 summarizes relevant
properties of this work and lists some avenues for future exploration.
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2 WEIGHTED DELAUNAY TRIANGULATION AND CON-
CEPTS

There is a set of mathematical concepts and properties that should be explained be-
fore diving into the proposed approach. The purpose of this chapter is, therefore, to
address these concepts, since they are essential to the understanding of how WDTs can be
employed towards representing any triangulation, and how the merging techniques were
developed.

The Delaunay triangulation was created by Boris Delaunay in 1934 (DELAUNAY,
1934), and is built from the dual graph of the Voronoi Diagram (BERG et al., 2000;
AURENHAMMER, 1991) as shown in Figure 2.1. An inherent property of Delaunay
triangulation is that it maximize the minimum of all the angles of the triangles in the tri-
angulation, thus tending to avoid sliver triangles. Another key property of DTs is the fact
that all their vertices can be lifted onto a convex polyhedron in one extra dimension (also
known as the lifting property (EDELSBRUNNER; SEIDEL, 1986; AURENHAMMER,
1987)). However, this property is not true for non-Delaunay meshes.

(a) (b)

Figure 2.1: Relation between the dual graph of the Voronoi tessellation and the Delau-
nay Triangulation. a) A Voronoi diagram and its corresponding dual graph; b) Delaunay
triangulation and the Voronoi diagram of the same set of points.

A Weighted Delaunay Triangulations (WDT), also called Regular Triangulation (RT),
is a generalization of the Delaunay triangulation, where each vertex has an associated
weight. On a WDT, the weight modifies the height of the lifted vertices, thus moving
them in or out of the lifted polyhedron. Later in this chapter we show how we use this
property to save a mesh connectivity.
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The same way the DT has a duality relationship with the Voronoi Diagram, the WDT
has a corresponding duality with an geometric entity called Power Diagram (PD), also
known as Weighted Voronoi diagram. In this chapter, at first, we show the basic ele-
ments that compose PDs and WDTs, and their relation to the arrangement of planes one
dimension higher. Afterwards we focus on the weights to explain the role they play on
the WDT, and how changing weights affects the mesh connectivity. This is a crucial con-
cept, since the weights are the key elements of this work, used on both methods of saving
connectivity and merging meshes.

For didactical reasons, this chapter firstly defines the WDT for two-dimensional Eu-
clidean space R2, to afterwards generalize it to higher dimensions (Rd).

2.1 Basic Elements of a WDT

A weighted point s 2 R2 � R is mathematically defined by its location p 2 R2 and
weight w 2 R, and can be interpreted as a circle with center p and radius w

1
2 . In this work

we will use the concept of lifted vertice, a point of R3 which can be seen as a specific
weighted point, defined in Rd as:

v = (vx1 , . . . , vxd
, v2

x1
+ � � �+ v2

xd
� w) (2.1)

where fvx1 , ..., vxd
g are the Cartesian coordinates of v and fv2

x1
+ � � � + v2

xd
� wg is

its weight. Section 2.3 shows the role played by the weights and how they change the
triangulation of a mesh. Since the vertices position remain unchanged, all the operations
of our framework are performed over the weights.

Let T be a two-dimensional triangulation in E2, and V = fv1, . . . , vng, T = ft1, . . . , tmg
be the set of vertices and triangles of T . The triangulation T is said to be regular if, and
only if, there exists a set of points V + = fv+

1 , . . . , v
+
n g 2 E3 such that V + is a subset of

the vertices of a convex polyhedron P , where, for all i, v+
i projects orthogonally on vi,

and the projection of downward faces of P is T . In other words, a d-dimensional regular
triangulation is the vertical projection of the “lower side” of some (d + 1)-dimensional
convex polyhedron in Ed+1.

Given a set of weighted points V = fv1, . . . , vng in Ed and, the weighted Delau-
nay triangulation (WDT) is obtained by projecting downward faces of the called lifted
polyhedron (a polytope, to be more precise), defined as the convex hull of lifted vertices.

Now that the concept of a WDT was presented, we will introduce the elements of
PDs, to further present how they are related. The power distance between two circles si

and sj is defined as pow(si, sj) = d2(pi, pj) � wi � wj , where d(�, �) is the Euclidean
distance. In particular, the power distance between si and a point x 2 R2 is given by
pow(si, x) = d2(pi, x)�wi. A chordale of two non concentric circles si and sj , is the set
of points x such that pow(si, x) = pow(sj, x). It is well known that the three chordales
defined by the circles si, sj, and sl (with non-collinear centers) intersect in a common
point p that fulfills w = pow(si, p) = pow(sj, p) = pow(sl, p). Furthermore, the circle
s with center p and radius w

1
2 satisfies pow(si, s) = pow(sj, s) = pow(sl, s) = 0 and is

called the orthocircle of si, sj and sl.
There is a straight relation between a chordale on the PD and an edge of the corre-

sponding RT, since each chordale of two circles, for instance si and sj , gives rise to an
edge connecting the centers of si and sj on the RT. We will show, later in this section,
that this relation between PD and RT comprises many other elements and properties. Fig-
ure 2.2 shows both relations between the PD and the RT, and the chordales and edges.
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Let hsi
(sj) denote the closed half-space bounded by the chordale of si and sj that

contains the points with the smallest power distance to si. The power cell of si is given
by

V (si) =
⋂

j, j 6=i

hsi
(sj) (2.2)

Letting S = fs1, . . . , sng be a set of non-concentric circles, the power cells of the cir-
cles in S comprise a partition of R2 in convex polygons, called Power Diagram (PD(S)).
The Power Diagram coincides with the usual Voronoi Diagram if all circles in S have the
same radius. In other words, in the same way the WDT is a generalization of the DT, the
Power Diagram is an extension of the Voronoi Diagram.

However, the Power Diagram produced by circles with different radius may not satisfy
the containment condition, that is, a circle si may not be contained in its power cell.
Furthermore, depending on the weights, a circle can give rise to an empty power cell. In
this case, such circle is called redundant. According to this property, in order to exclude
a vertex from the PD, and therefore from the RT, it is only necessary to reduce its weight
so that it gives rise to an empty cell. Under the same premise, a vertex can be inserted
into both RT and PD by simply giving it a big enough weight to create a non empty power
cell.

If we assume that the center of the circles in S are not collinear, then the intersection
of three (or more) power cells is either empty or a vertex of PD(S). It is not difficult
to realize that a vertex of PD(S) is the center of the orthocircle defined by at least three
circles whose power cells have non-empty intersection. In a non-degenerate case, each
vertex v of PD(S) is defined by the intersection of exactly three power cells. In such
case, the center of the three circles whose power cells intersect in v define a triangle and
the union of all triangles makes up a simplicial complex, called the RT of the points.

In fact, such a correspondence leads to a duality relationship that associates circles to
power cells, power cell edges to triangle edges and Power Diagram vertices to triangles. In
this last case the Power Diagram vertex is called the orthocircle of the associated triangle.
Note that redundant circles do not have dual power cells, and thus do not appear in the RT.
From the duality property we can obtain the RT from the Power Diagram (and vice versa)
in O(n). In the two-dimensional case there are algorithms that compute both structures in
O(n log n) (EDELSBRUNNER; SHAH, 1996) (expected time). In Chapter 4 we present
ways to use the duality relation mentioned above in order to set weights to the vertices in
such a way their corresponding planes maintain a given triangulation.

The concepts above mentioned have corresponding elements in the three-dimensional
Euclidean space R3. A weighted point can be seen as a sphere with center p and radius
w

1
2 , while the chordales of a PD being a shared face between two adjacent points. In R3

the orthocircle is defined by four distinct weighted points and the power cell is a three-
dimensional volume surrounding the point.

2.2 The Duality between PDs and RTs

An important fact that is deeply explored in this work is the strong relation between
Power Diagrams in R2 and arrangement of planes in R3 (consequently, for a Power Di-
agram in R3 the arrangement of planes are in R4). Such a relationship can be obtained
by associating each circle si 2 S with a non vertical plane in R3, which is defined by the
following function:

πsi
(x) = 2 < x, pi > � < pi, pi > +wi (2.3)
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where < �, � > is the usual dot product in R2. It can be shown that a point x 2 R2 lies
in V (si) iff, at x, πsi

� πsj
, i 6= j. Thus, PD(S) is the vertical projection of the Upper

Envelope of the planes πsi
, which is a convex polyhedron in R3 (for a detailed definition

of Upper Envelope and its relation with the Power Diagram see (EDELSBRUNNER; SEI-
DEL, 1986)). Figure 2.2 illustrates the correspondence between Power Diagram, Regular
Triangulation, and Upper Envelope.

Figure 2.2: Relation between Power Diagram, Regular Triangulation, and Upper Enve-
lope.

2.3 On the interpretation of the Weights

Since the weight are the basis of this work, the understanding of their properties is
fundamental to follow the proposed methods. Our approach does not change the vertices's
positions. All techniques developed were built upon changing the weights of the vertices.
This section intends to explain the role played by the weights on both PD and RT as well
as the interpretation of the consequences on their changing.

Equation (2.3) helps us to understand the behavior of PD(S) when the radius (weight)
of a circle changes. Suppose that both PD(S) and RT (S) have already been computed
from a set of circles S and let si be a circle of S. When the radius of si increases the plane
πsi

moves up, leading to the center of the orthocircles that comprise the vertices of V (si)
to move away from pi (center of si), as illustrated in Figure 2.3.

Figure 2.3: The center of the neighbor orthocircles move away from the center of si when
wi increases.
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Due to the duality relationship, the RT remains unchanged until the increase of wi

gives rise to a degenerate case, that is, two diagram vertices are collapsed into a single
one, causing the intersection of more than three power cells in such vertice. When a
degenerate case occurs, any further increase of wi gives rise to an edge flipping in the RT,
as shown in Figure 2.4. This process has a corresponding event in planes defined by the
circles onto the corresponding arrangement of planes. The inverse phenomenon occurs
when the weight wi is reduced.

(a) (b) (c)

Figure 2.4: Edge flipping after a degenerate case. a) original configuration; b) the increase
in the weight of si gives rise to a degenerate case; c) further increase ofwi causing an edge
flip.

The dynamic process described above allows us to control the weights so as to avoid
edges flipping. Furthermore, the understanding of such a dynamics is the main key to
convert any given triangulation into a WDT, as we shall see in Chapter 4.

2.4 Local Convexity

In this section we present the concept of local convexity, which (in Chapter 4) will be
used to assign weights to the vertices of a mesh in order to encode its original triangula-
tion. Again, for didactical purposes, we show the concepts in R2.

Let ti and tj be two adjacent triangles sharing a common edge rij (in E3 rij will be a
triangle shared by two adjacet tetrahedra) and t+i , t

+
j be the lifted simplices of ti and tj .

The edge r+
ij is said to be locally convex if the (d + 1)-simplex generated from the union

of vertices in t+i and t+j lies on the upper half-space of each hyperplane containing t+i and
t+j (Figure 2.5 shows the lifting process in R2). A polyhedron in Ed+1 is called locally
convex if all edges shared by two triangles are locally convex.

Figure 2.5: Simplices are lifted to ensure local convexity.

Local convexity is a necessary, but not sufficient, condition to ensure global convexity
of a polyhedron (MEHLHORN et al., 1996). However, in the particular case of a polyhe-
dron generated by lifting a convex triangulation, local convexity leads to global convexity
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(see (DEVILLERS et al., 1998) for details) and, as remarked by Balaven et al. (BAL-
AVEN et al., 2002), this property has widely been used as a mechanism to verify whether
a given triangulation is regular. As we show in the next section, the association between
lifting and local convexity comprises the core of our approach.

It is important to highlight that not every triangulation is regular. See, for example,
the classic seven triangle mesh shown in (EDELSBRUNNER; SHAH, 1996). Because
of this, it may be impossible to build a convex polyhedron whose projection matches a
given triangulation, and therefore any lifting of this triangulation will contain at least one
non-locally convex (d� 1)-simplex.

2.5 Summary

This chapter presented a brief overview of the elements that compose a WDT as well
as its duality relation with the arrangement of planes. Such description was intended to
provide just enough information to familiarize the reader with some concepts that will be
used in the next chapters. An in-depth description of these subjects is beyond the scope
of this thesis and can be found in the works mentioned on Chapter 3.
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3 RELATED WORK ON REGULAR TRIANGULATIONS

This chapter summarizes the most important academic efforts concerning Delaunay
Triangulations and connectivity oblivious methodologies in computer graphics. Since the
proposed technique is validated using dynamic meshes, it also reviews the main issues
regarding connectivity reconstruction in this context.

Regular Triangulations and Power Diagrams (EDELSBRUNNER; SEIDEL, 1986;
AURENHAMMER, 1987) are basic geometrical tools that have been often used for prob-
lems related with surface (AMENTA; CHOI; KOLLURI, 2001), quality mesh genera-
tion for numerical simulations (CHENG; DEY; RAMOS, 2007; CHENG; DEY; RAY,
2005; CUADROS-VARGAS et al., 2005), and depth sorting (EDELSBRUNNER, 1989;
Cignoni; De Floriani, 1998). The essential task of assigning weights to points makes RT
and Power Diagram an extremely flexible and dynamic geometrical structure, and its use-
fulness goes beyond mesh generation. Several theoretical and computational frameworks
have been developed towards understanding and exploring such potentiality.

In regard to techniques that handles connectivity automatically, their use for manipula-
tion of simplicial meshes can be divided into two main categories: methods that reproduce
an existing triangulation from geometric information, and methods that build a triangu-
lation based on the constraints given by curves and/or surfaces defined in the domain of
interest. In both cases, the vast majority of approaches relies on the properties of DTs
and WDTs to avoid explicitly handling the mesh connectivity. These methods have solid
foundations on both theoretical (AURENHAMMER, 1987; AURENHAMMER; IMAI,
1987; EDELSBRUNNER; SEIDEL, 1986) and computational (VIGO; PLA; COTRINA,
2002; EDELSBRUNNER; SHAH, 1996; EDELSBRUNNER, 2001) sides.

3.1 Theoretical works

Theoretical techniques construct a WDT corresponding to a given mesh by comput-
ing a valid set of weights for its vertices. The advantage of this approach is that, once
the weights are computed, connectivity information can be discarded. The original tri-
angulation can then be rebuilt algorithmically from vertex coordinates and weights. This
technique has great advantages over connectivity dependent approaches, since many mesh
processing operations have to create versions of input meshes with different connectivity
information. For instance, morphing between meshes requires generating an intermediate
mesh that combines the geometric and topological aspects of the input meshes.

Common to all methods discussed in the literature is the definition of a correspondence
between vertices and connectivity information. This is often done by first creating a
mapping into an unified space for the geometry and connectivity of both meshes, and by
a synthesis algorithm that generates an intermediate mesh from this space.
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Several papers discuss aspects that range from how and when such mappings are de-
fined (FLOATER; C.GOTSMAN, 1999; SURAZHSKY; GOTSMAN, 2001; DANCIGER;
DEVADOSS; SHEEHY, 2006), to how mesh information can be mapped to a parametric
space, such as the inter-surface mapping described in (SCHREINER et al., 2004). There
are several variations on how the connectivity information is generated for intermediate
meshes (AHN; LEE, 2002; AHN; LEE; SEIDEL, 2004; PARUS; KOLINGEROVá, 2004;
LEE et al., 1999; ZORIN; SCHRöDER; SWELDENS, 1996; BREEN et al., 2001). This
work offers an implicit way to reconstruct connectivity information that can be used in
conjunction with several of the methods proposed.

A well explored way for computing a valid set of weights is to reduce the problem to a
linear programming problem, looking for an optimal weight distribution (PIRES, 2008).
Edelsbrunner (EDELSBRUNNER, 1999) explored the equivalence between RTs (Power
Diagrams) and the boundary of convex polyhedra one dimension higher (also called
the lifting property (EDELSBRUNNER; SEIDEL, 1986; AURENHAMMER, 1987)) as
shown in Figure 3.1. From this relations, Edelsbrunner derived an algebra of spheres to
formulate a new paradigm for designing smooth surfaces.

The relationship between RT and convex polyhedra has also been investigated by
Massada et al (MASADA; IMAI; IMAI, 1996), who proposed an output-size sensitive
algorithm to enumerate all RTs. From a theoretical point of view, it has been shown a
close connection to well established algebraic concepts, such as the relation of RTs and
convex polyhedra to Gröbner bases (DELOERA; STURMFELS; THOMAS, 1995).

Figure 3.1: Relation between vertices and its projections onto the upper envelope as pre-
sented in (BALAVEN et al., 2002).

Cignoni and De Floriani (Cignoni; De Floriani, 1998) use this formulation to perform
depth sorting of unstructured simplicial meshes, without having to store connectivity in-
formation. They explore the lifting property of RTs to compute a convex polyhedron in a
(d+ 1)-dimensional space whose projection on the d-dimensional space is the simplicial
complex one wished to depth sorting.

Balaven et al. (BALAVEN et al., 2002) used linear programming to generate transi-
tional meshes for oil reservoir simulations. However, their solution has the limitation of
only dealing with meshes that can be represented as WDTs. When this is not the case,
they have to fall back to explicit management of connectivity information. As far as we
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know, no satisfactory alternative has been proposed to overcome these limitations, and
our approach addresses the problem of weight computation in a different way, avoiding
the linear programming formulation altogether.

3.2 Computational works

Computational techniques are much more numerous, and in general these methods
are concerned with either object modeling or domain decomposition for numerical sim-
ulation. While for object modeling, the focus is on generating a triangulation that ap-
proximates a given model, using geometric certificates to filter undesirable simplices, for
domain decomposition methods, the focus is on ensuring that output meshes comply with
constraints given by curves and/or surfaces defined inside the domain of interest. Despite
their different focus, both branch of approaches aim at enforcing the quality for simplicial
elements.

Amenta et al. (AMENTA; CHOI; KOLLURI, 2001) created a Delaunay-based surface
reconstruction from point clouds. They first approximate the medial axis transformation
of the object, and from it they apply an inverse transformation to produce the surface.
Their approach is based on (AMENTA; BERN, 1998; AMENTA; BERN; KAMVYS-
SELIS, 1998) and uses the vertices farthest of its Voronoi cell of a surface, which were
defined as poles, to be selected as an approximation of the medial axis.

Delaunay triangulations were also used on isosurfacing methods, for instance Cheng
et al. (CHENG et al., 2004) maintained the restricted Delaunay of a set of points sampled
on the surface by using a height function on the surface to generate more sample points
dictated by certain conditions while updating the triangulation. Boissonnat and Oudot
(BOISSONNAT; OUDOT, 2005) introduced the concept of Lipschitz radius which was
used to determine a sampling condition to be used on surface reconstruction.

(a) (b) (c)

Figure 3.2: Delaunay refinement comparison (RUPPERT, 1993). a) Sample input planar
straightline graph (PSLG); b) typical (non-Steiner) triangulation of PSLG and bounding
box; c) Delaunay refinement algorithm's output.

Many studies were conducted on mesh refinement making use of Delaunay Triangu-
lations. For example, Chew (CHEW, 1987) proposed an O(n log n) time algorithm to
construct a constrained Delaunay Triangulation using a divide-and-conqueror approach.
Thereafter, Ruppert (RUPPERT, 1993) created a technique based upon Chew's work
which consisted in a successive refinement algorithm (see Figure 3.2). Later on, Shewchuk
(SHEWCHUK, 2002) improved both Chew's and Ruppert's techniques and helped to
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solve a weakness their approaches presented when handling meshing of non-manifold
domains with small angles.

(a) (b) (c) (d)

Figure 3.3: Examples of poor quality tetrahedra (LABELLE, 2006) eliminated by Sliver
Exudation.

Another mesh refinement technique using Delaunay Triangulations is the work of
Cheng et al. (CHENG et al., 1999) named Sliver Exudation. Slivers can be defined as
tetrahedra whose four vertices lie close to a plane and whose projection to that plane
is a convex quadrilateral with no edge (CHENG et al., 1999). In his work, Cheng ex-
plored Weighted Delaunay Triangulations properties and proposed an algorithm to com-
pute weights for vertices of a triangulation in such a way to eliminate slivers (see Fig-
ure 3.3). Furthermore Edelsbrunner and Guoy (EDELSBRUNNER; GUOY, 2001) con-
ducted an experimental study of sliver exudation to prove its effectiveness. Section 5.3 of
this work introduces the fringe, which is an approach used to adapt meshes of different
granularity during the merging process. It also has the advantage of avoiding the insertion
of slivers when reconstructing the triangulation.

Figure 3.4: The region A is the safe region of the point placed on the center of B, while B
is its tolerance region (CASTRO et al., 2009).

Castro et al. (CASTRO et al., 2009) explored the problem of updating Delaunay Tri-
angulations when its vertices move. They developed a set of filters based upon the concept
of vertex tolerance to determine whether it is better to update the whole triangulation from
scratch or only reallocate the vertices. From these filters, Castro was able to determine
a safe region and a tolerance region within a vertex could move without the need of up-
dating the triangulation. Figure 3.4 illustrates the concepts of safe region and tolerance
region.
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The majority of the works referred before are examples of connectivity oblivious ob-
ject modeling. Within this context, the proposed methodology can be seen as an alterna-
tive mechanism to encode connectivity information on vertices weights and a WDT based
merging approach. The proposed merging technique proves that many object modeling
methods can be implemented by extending this framework.
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4 COMPUTING WEIGHTS

In the previous chapter we presented the main concepts upon which RT and PD stand,
as well as the notion of local convexity and the importance of weights on changing the
structure of the triangulation on a WDT. This chapter introduces the approach we devel-
oped to create a conformal mesh from a original triangulation by computing and assigning
weights to vertices. We also present a method to handle special cases when the weight
assignment procedure does not ensure a complete match between the original and the
conformal mesh.

We start from a given triangulation T in Ed, and our goal is to compute a set of weights
for its vertices to represent T as a weighted Delaunay Triangulation (see Figure 4.1). We
rely on a geometric construction in Ed+1 that explores the lifting and local convexity
properties previously mentioned in Section 2.4 to compute the weights. A triangulation
conforming to the original mesh can be reconstructed by an algorithm that computes a
weighted Delaunay triangulation from vertex coordinates and associated weights (see, for
example, (EDELSBRUNNER; SHAH, 1996)). Hence, incidence and adjacency rela-
tions between simplices can be recovered from weighted vertices, and therefore we can
disregard the mesh connectivity.

Original!
Triangulation!

Weighted!
Vertices!

Conformal!
Weighted!

Mesh!

Weighted Delaunay Triangulation!

Lifting! Subdivision!

Figure 4.1: WDT computation: the original triangulation is traversed in a breadth-first
manner to assign weights to vertices using the lifting construction. A following subdivi-
sion step ensures that the resulting weighted mesh conforms with the original triangula-
tion.

4.1 The Proposed Algorithm

The proposed algorithm starts by an elected d-simplex (a triangle in R2 or a tetrahe-
dron in R3) which is called seed. If no seed is specified we chose the d-simplex closest to
the centroid, thus the lifted polyhedron is prone to be balanced.

For a better understanding of the method we will start to explain the algorithm using
the two-dimensional case and further move to higher dimensional cases. Take ti and tj
as triangles of a triangulation T sharing a common edge rij . Suppose that weights have
already been assigned to vertices of ti, thus it becomes t+i . We can compute the hyperplane
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πi containing t+i , that is, πi is the support hyperplane of t+i . Let v be the vertex of tj
opposite to rij and ṽ be the vertical projection of v onto πi, as illustrated in Figure 2.5.
Notice that a small vertical perturbation of ṽ toward the positive half-space of πi, denoted
as v+, makes r+

ij locally convex with respect to t+i , and t+j = r+
ij [ v+. Therefore, moving

to the generic case (in Ed) the coordinates of ṽ are (vx1 , . . . , vxd
, ṽxd+1

), and we can use
equation ( 2.1) to define the weight wv of the vertex v as:

wv = v2
x1

+ . . .+ v2
xd
� (ṽxd+1

+ ε) (4.1)

where ε is a small vertical perturbation of ṽ that makes r+
ij locally convex with regard to

t+i and t+j .
The same formulation was used for the three-dimensional case where two adjacent

tetrahedra share a common face and the computed hyperplane πi is in E4. In the Chapter 6
of this work we show results of the proposed technique along with the merging approach
presented in Chapter 5 illustrated with examples in 2D and 3D.

Figure 4.2: Simplices are lifted using a breadth first scheme, red simplices are lifted
ensuring local convexity, but local convexity can not be ensured for edges of the yellow
triangle.

By repeating the construction above for all neighbor simplices of each lifted d-simplex
(red triangles in Figure 4.2), we can ensure that each lifted (d�1)-simplex is locally con-
vex. Although weights are assigned consistently to vertices of T , some (d� 1)-simplices
(an edge in R2 or a face in R3) of the original triangulation are not handled during the
weight computation process described above (see the yellow triangle in Figure 4.2). How-
ever, most of these cases are locally convex naturally and do appear in the reconstructed
triangulation.

In Section 4.2 we describe how to handle the simplices that do not automatically fit
this criterion by employing a subdivision process to handle these simplices, thus ensuring
that a convex polyhedron is generated as output. As a result, the original triangulation
can be rebuilt from the weighted vertices, even though a few simplices of T may appear
subdivided after the reconstruction.

4.2 Enforcing Conformal Meshes

Absent simplices can be forced to appear in the weighted triangulation by using a
subdivision process, which is usually employed in many Delaunay-based mesh generation
and modeling techniques (NONATO et al., 2005). These subdivision strategies ensure that
the reconstructed weighted triangulation conforms to the original triangulation. We will
present the formulation used to fix this issue on the n-dimensional case, to further exhibit
a two-dimensional example of the method.
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Formally, given a triangulation T in Ed, the subdivision process ensures that for each
k-simplex r of T there exists a set of k-simplices rw1 , . . . , rws , s � 1 in Tw (the re-
constructed weighted triangulation) such that jrj = jrw1 [ � � � [ rwsj, where jrj is the
underlying space of r.

Figure 4.3: A red edge is absent from the final triangulation (first). Absent edges are
included by a recursive subdivision process that generate new vertices with proper weight
assignments (second and third).

Suppose that an edge e 2 T is absent from Tw, where Tw is the weighted triangulation
obtained as described before. The subdivision step consists of splitting e at its midpoint
ve, and assigning a weight to ve to ensure that it appears in the weighted triangulation. As
illustrated on the left of Figure 4.3, the absent edge e intersects a set Twe of d-simplices
in Tw. To keep changes as local as possible, we ensure that the weight of ve only alters
the simplices of Twe , and maintains the remaining triangulation unchanged. This property
can be satisfied by computing the weight of ve as follows: let tve be the d-simplex of Tw

containing ve and t+ve
be the lifting of tve in Ed+1. We call lve the vertical line through

ve, and compute the intersection point ṽe1 between lve and the support hyperplane of t+ve
,

as well as the highest intersection ṽe2 of lve with the hyperplanes supporting the lifted
d-simplices in T̃w − Twe .

It is easy to see that any choice of weight assignment that places v+
e strictly between

ṽe1 and ṽe2 ensures that ve will appear in the weighted triangulation (v+
e will be under-

neath the lifted convex hull). This approach only modifies the simplices in Twe , since
v+

e is above the hyperplanes supporting the simplices in T̃w − Twe . In our current imple-
mentation, we set a weight that places v+

e halfway between ṽe1 and ṽe2 . Although this
procedure adds ve to the weighted triangulation, it does not ensure that each sub-segment
of e will appear in the triangulation. If a sub-segment still does not appear, we recursively
apply the same procedure. Since the lifting of each new vertex is placed below existing
simplices, the subdivision process finishes in a finite number of steps. In practice, very
few absent simplices demand more than one or two iterations.

The procedure described above for recovering absent edges can be extended to en-
force triangular faces in three-dimensional triangulations. The centroid of each missing
triangular face is inserted and positioned exactly as was done for absent edges. In fact,
in the three-dimensional case, we first recover all missing edges before splitting absent
faces, since most missing triangles naturally appear after the edges are recovered.
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4.3 Summary

Conventional approaches to weight computation try to solve a linear programming
problem (BALAVEN et al., 2002), which may not have a solution. On the other hand, we
use a deterministic procedure that builds an approximation of a locally convex polyhedron
in Ed+1. However, this step generates a preliminary weight assignment that might not
enforce local convexity to some (d � 1)-simplices. The proposed subdivision method
solves this issue.

A major advantage of using WDT to process meshes is that it automatically ensures
that the connectivity of the meshes remains consistent without the need to handle com-
plex data-structures. Besides, there are numerous possible applications that can be built
on top of this approach by using the weights to manipulate the conformal mesh. Chap-
ter 3 showed many works developed using linear systems, and some of those applications
could make use of this method. Mesh simplification, morphing, and merging, as we will
show in Chapter 5, are some examples of applications that can be performed by simple
manipulation of the lifted polyhedron created by our algorithm. In this work we focused
on developing two merging approaches which testify the effectiveness of the developed
method.
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5 MERGING WEIGHTED DELAUNAY TRIANGULATIONS

Now that we presented how weights can be used on a WDT to create a conformal
triangulation from a given mesh, we will introduce two merging methods developed ex-
ploring the properties of WDTs. The procedure of assigning weights to vertices of a mesh
ends up building a lifted polyhedron, and the triangulation of the mesh can be recovered
from the lower side of its convex hull.

Based on the property mentioned above, we realized that the merging of meshes could
be performed by simple manipulation of their lifted polyhedra. For instance, Figure 5.1
shows where the smaller lifted polyhedron will be projected (at left), and how it can
be translated in relation to the other one to generate the merged triangulation (at right).
Notice that, after the merging process (at right), the overlapped mesh (the big one) has
some edges added in order to create a consistent triangulation with the small one.

Figure 5.1: The merging of meshes can be performed by simple manipulation of the lifted
polyhedra. At left is shown a preview of where the small mesh will be merged, and at
right the resulting mesh is created by translating and joining the lifted polyhedron.

This chapter describes two techniques that use a lifted polyhedron construction for
merging of WDTs. Those approaches were designed to keep changes as local as possi-
ble and only modify a small neighborhood of the merged region. Since meshes are often
represented with different levels of detail or refinement, merging results are prone to gen-
erate badly shaped simplicial elements. We address this issue by introducing the concept
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of fringe, which will be explained in Section 5.3.

One of the main advantages of a WDT is the fact that incidence and adjacency rela-
tions among simplices are automatically resolved, thus avoiding the need for connectivity
manipulation. This benefit can be greatly explored in applications involving the interac-
tion between two or more meshes, where the guarantee of consistent connectivity between
the meshes is usually a complex and painful task.

In summary, the two merging approaches differs in the number of flips on the merged
mesh and the number of local changes they cause on the merged region. The convexification-
based merging is introduced in Section 5.1, and it works by changing the lifted polyhedron
construction as to fit it into the merged area, thus tempting some flips at expense of af-
fecting a small area of the merged region. In Section 5.2 the translation-based merging
is introduced as an alternative method that keeps the mesh triangulation unchanged, and
woks by adjusting the vertical position of the lifted polyhedron construction. Since the
lifted polyhedron construction is not changed, it may cause some vertices to be over-
lapped, thus affecting more neighbors of the merged area.

5.1 Convexi�cation-based Merging

The first proposal is called convexification-based merging, and is illustrated in Fig-
ure 5.2. Let T1 and T2 be two triangulations and suppose that T2 must be merged with T1
while keeping T1 as unchanged as possible (i.e. we only want to affect a neighborhood
surrounding T2). We position T2 inside T1 and lift the polyhedron T2 in such a way that
T +

2 is squeezed up between the lifted polyhedron T +
1 and the supporting hyperplanes for

those simplices of T +
1 are not affected by the merging.

The squeezing process is composed of three steps. First, the d-simplices of S �
T1 that do not intersect T2 are identified (Figure 5.2.a) and their supporting hyperplanes
computed (Figure 5.2.b). In the second step, we set the weight of each vertex v of T2 in
such way that the vertex is placed at the highest intersection ṽ between the vertical line
passing through v and the supporting hyperplanes of the d-simplices in S (Figure 5.2.b).
This construction results in a polyhedron in Ed+1 that we denote by T̃2 (Figure 5.2.c).
The final step makes the (d � 1)-simplices of T̃2 locally convex, using a subdivision
procedure as before. Starting from the d-simplices t̃+i 2 T̃2 with at least one face on
the boundary of T2, we apply a small vertical perturbation on each vertex opposite to
t̃+i , to position it above the supporting hyperplane of t̃+i and bellow T +

1 . We repeat this
procedure recursively, moving vertices towards the interior of T̃2 (Figure 5.2.d). Finally,
we subdivide absent simplices to force them to appear. Observe that the vertices of T1
inside T2 become internal to the convex hull of T +

1 [ T +
2 , hence they become redundant

and do not appear in the merged triangulation.

Although this approach ensures that only the simplices of T1 affected by the merging
are the ones in S, it is also prone to discard more elements of T2. As opposed to the
breadth-first scheme described in Section 4.1 that propagates a single front while comput-
ing weights, the squeezing process lifts T2 by propagating different fronts simultaneously
from the elements at the boundary of the merging region. Therefore, no guarantee can be
given with respect to the local convexity for simplices at the union of two or more fronts,
and more non-locally convex faces can appear.
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(a) merging region (b) lift to supporting hyperplanes

(c) lift polyhedron (d) local convexity perturbation

Figure 5.2: Steps taken to perform the convexification-based merging.

5.2 Translation-based Merging

While the convexification-based merging does not ensure the local convexity for all
simplices, the second method was developed aiming to fix this issue and therefore reduce
the number of missing elements in T2. The translation-based merging works by translat-
ing vertically the lifted polyhedron of the mesh in such a way that it overlaps the merged
region (see Figure 5.3).

Figure 5.3: The translation-based merging translates T2 vertically so as to position it
below T1.

The first step of the method is to apply the lifting scheme described in Section 4.1 to
T1 and T2 independently, but using a vertical displacement for T1 twice as large as the one
used for T2. More specifically, the value of ε in equation (4.1) is halved when lifting T2,
thus making the lifted polyhedron T +

2 less curved than T +
1 .

The reason why T +
2 must not be less curved than T +

1 is that the convex hull of T +
1 [T +

2

can overlap vertices of T +
2 , therefore removing them from the resulting triangulation.

Figure 5.4 illustrates this issue by showing the removed vertices (in green).

Convex Hull

Figure 5.4: Vertices removed (in green) by the convex hull when T +
2 is more curved than

T +
1 .
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Once weights have been assigned to vertices in T1 and T2, we displace T +
2 vertically

(adding a constant to all weights) until it approaches T +
1 from below, as illustrated in

Figure 5.3. As T +
2 is less curved than T +

1 , their support hyperplanes tend to be below
T +

1 , thus keeping T2 unchanged after the merging process (including simplices subdivided
during the weight assignment step).

The main drawback of the translation-based method is that it affects more the neigh-
borhood of the merged mesh in comparison to the convexification-based method. While
in the first approach the lifted polyhedron is changed to not affect the neighbors of the
merged area, the second one only translates the mesh aiming to overlap the merged area,
therefore the convex hull of T +

1 [T +
2 end up removing more vertices of T +

1 . Despite this
issue, the vertical translation of T +

2 behaves well in practice, as we show in Chapter 6.

5.3 Fringe

We observed that when merging meshes with different refinement levels the resulting
triangulation often presented badly shaped simplicial elements on the neighborhood of the
merged area. Those simplices are automatically inserted by the RT to create a consistent
connectivity on the triangulation. In this section we address this issue by introducing the
concept of fringe, an intermediate triangulation that makes a smoother transition between
meshes to be merged together. A fringe is mostly necessary when merging meshes with
distinct refinement levels, since they are prone to generate badly shaped simplices.

Figure 5.5: Fringing process. At left, we show the two meshes that will be merged, along
with the regular grid used to compose the local density distribution. The red circles mark
boundary conditions given to the Laplacian solver. On the right, the smaller mesh is
merged to a fringe (in blue) that makes a graceful transition between the resolution of the
internal and external meshes.

The fringing process works as follows: we initially compute an estimate of local den-
sity. We assign an average edge length to each vertice, and normalize these values to
make the largest average equal to 1. We then define a regular grid whose resolution is
given by the smallest edge present in the scene, and place it around the inner mesh. The
density estimated for each vertex serve as boundary conditions on this grid, and we run
a Laplacian solver to smooth the transition between densities on the inside and on the
border of the grid.

The solution given by the Laplacian solver can be seen as the probability that a vertex
on the regular grid should present in a transition mesh. Therefore, we randomly include
vertices of the grid based on their density estimates. Finally, we construct the fringe by
generating a Delaunay triangulation of the points that were maintained. We also apply
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one iteration of Laplacian smoothing to the fringe to make its simplices better shaped.
Once the fringe is constructed, we accomplish the merging in two steps: first, we merge
the internal mesh with the fringe, and then merge this result with the outer mesh, as shown
in Figure 5.5.

As we will show in Chapter 6 the fringe improves the overall quality of simplices gen-
erated by the merging methods, therefore solving the problem of badly shaped simplices
when merging meshes with different refinement level.

5.4 Summary

This chapter presented two merging methods developed using WDT. The convexification-
based merging that changes the original lifted polyhedron, but affects the neighborhood of
the merged area to a lesser extent, and the translation-based merging that keeps the origi-
nal polyhedron unchanged while modifies the neighborhood of the merged area more than
the first one. We also addressed the problem of merging meshes with different refinement
level by introducing an intermediate triangulation called fringe.

In Chapter 6 we show applications of the merging methods with both 2D and 3D
meshes, as well the time required to perform both approaches. The fringe examples will
also be presented, and we show the average quality of triangles to demonstrate its effec-
tiveness.
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6 RESULTS AND APPLICATIONS

In order to demonstrate the potential use of the methods proposed in this work, we
will present 2D and 3D examples of the merging approaches mentioned before, and also
show how the fringe solves issues related to badly shaped simplices.

The applications were developed using CGAL's WDT algorithm (BOISSONNAT et al.,
2000; TEILLAUD, 1999; FABRI, 2007; CGAL, 2010) to generate triangulations from
vertex coordinates and weights computed by our code. Below we show a series of merg-
ing examples containing several triangulations of different characteristics.

The value of ε (see equation 4.1 for details) defines how high a vertex will be raised
in order to create a local convexity of a simplice and one of its neighbors. It is clear that
high values of ε will generate a lifted polyhedron with high concavity. The concavity of
the lifted polyhedron affects the merging method since it has a direct influence over the
convex hull of the meshes. For instance, a highly concave mesh is prone to generate more
cases of redundant vertices in the neighborhood of the merged area. However, if ε is too
small it may cause numerical instabilities.

In our experiments, values for ε ranging from 10−4 to 10−8 presented numerical sta-
bility and the merging methods yielded fine results. In this chapter, all experiments were
conducted using ε = 10−5.

6.1 Merging 2D meshes

We illustrate the flexibility and capability of merging triangulations with our scheme
with a physics-based cartoon animation of 2D meshes. The animation consists of a scene
with several meshes that move inside a background triangulation. The background mesh
performs collision detection and simplifies object placement, since we can compute the
adjacency between distinct objects by analyzing whether edges of the merged triangu-
lation connect them. In our implementation the elastic deformation of each object was
pre-computed. Figures 6.1(a) and 6.1(b) show the meshes used in the animation and the
merging result using the translation-based scheme.

Figure 6.2 shows frames of a simple animation developed to demonstrate the capa-
bility of our technique to handle several meshes simultaneously. To perform an example
with multiple meshes is firstly necessary to define a preference order, since the method
applies the merging for two meshes on each interaction, then the resulting mesh is used
to merge with the next, following the preference order. The order with which objects are
merged naturally solves the problem of front-to-back alignment. Our merging algorithm
priorizes the mesh of the second mesh merged, thus the last object that is merged ends up
in front of all the others.

As algorithms to compute the WDT always generate a triangulation for the convex
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(a) 2D meshes of the cartoon animation

(b) Merging of all meshes in a given frame

(c) Four snapshots of the animation sequence

Figure 6.1: 2D Cartoon Animation illustrating the merging results with several dynamic
meshes.

hull of the weighted points, we have to handle concavities explicitly. Vertices in the
background grid that lie inside a concavity of a merged mesh can be forced to appear by
adjusting their weights. This adjustment makes the vertices lifted counterparts lie below
the convex polyhedron of all merged meshes, above their supporting hyperplanes.

In this example we only handle missing edges that occur at the boundary of objects,
while not forcing missing edges in the interior of objects to appear. Therefore, some flips
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Figure 6.2: Figures showing several meshes being merged.

can be observed in the resultant merge. Nevertheless, this only happened in very few
cases.

6.2 Merging 3D meshes

(a) Convexification-based merging (b) Translation-based merging

Figure 6.3: Merging the aorta artery tetrahedral mesh with a tetrahedral decomposition of
a sphere. a) Convexification-based merging, 4.63% missing edges; b) Translation-based
merging, no absent edges.

This second set of experiments demonstrates the interaction between tetrahedral meshes.
Due to occlusion, screenshots of the merging result in 3D hardly convey the strength of
our connectivity oblivious technique. Therefore, we present renderings of cutaway sec-
tions of the models. In addition, we validate merging results initially without the fringe
strategy, since we want to show the affected tetrahedra closer to the merging region.

The first experiment is composed of a moving tetrahedral sphere passing through
a mesh of the aorta artery. Figures 6.3 show the sphere merged inside the aorta us-
ing both the convexification and translation-based merging schemes. Even though the
convexification-based approach impacts a smaller neighborhood around the merging re-
gion, more absent simplices tend to be generated with this technique.

In Figure 6.3(b) we observe that some vertices in the neighborhood of the sphere
were removed (became redundant) when using the translation-based merging scheme.
However, no missing simplices were identified in the translation-based approach, while
4.63% of missing simplices were found and subdivided using the convexification-based
merging (all inside the sphere).

Table 6.1 lists the number of vertices in each mesh, as well as the time to perform
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Dataset Vertices Weight Computation Triangulation
Aorta 9529 45.05 1259.52
Sphere 58 0.094 12.28
Grid 1 50480 305.15 6633.47
Rocker 10713 53.24 1662.97
Rod 3098 10.24 870.40
Valve 3857 16.38 882.68
Grid 2 8371 30.72 744.14
Buddha 27975 178.17 5230.59

Table 6.1: Mesh data and WDT computation (all times in ms)

Merging Meshes Convexification-based Translation-based
Aorta-Sphere 53.24 63.48

Grid 1-Rocker 33062.91 38082.17
Rocker-Arm 528.38 503.80

Valve-Rod 223.23 196.69
Grid 2-Buddha 61526.01 665647.87

Table 6.2: Merging Times (all times in ms)

weight computation and the triangulation. Table 6.2 shows the merging time using both
approaches (observe that in the second example we use three merges to compute the final
result).

Figure 6.4 illustrates the capability of our technique to handle large and complex tetra-
hedral meshes with arbitrary topology. The topmost left image in Figure 6.4 shows the
tetrahedral meshes (only boundary faces are shown) of three mechanical pieces merged
inside a cubic background grid, as illustrated in the topmost right image. Notice from
the close-ups that the anisotropy of the gray meshes has been preserved after merging.
In fact, no missing simplices (thus no new vertices) have appeared after merging these
models using the translation-based scheme.

Another example with complex tetrahedra shows that our approach is able to handle
meshes with distinct levels of refinement. Figure 6.5 shows the merge of a Buddha dataset
with a background grid, notice that the internal tetrahedra of the buddha have not been
refined, therefore the WDT fills the inner region.

6.3 Fringe

The fringe was developed to ensure a smoother transition between the resolution of the
two meshes merged together, thus minimizing the occurrence of elongated, low-quality
tetrahedra. Besides, in practice it turned out to improve the overall quality of the merged
area. Figure 6.6 illustrates the same merge shown in Figure 6.3, only this time using a
fringe to smooth the transition between the aorta and the sphere.

In Table 6.3 we show the quality of tetrahedra generated by both convexification-based
and translation-based merging method with and without the fringe. The quality measure-
ment indicates an equilateral tetrahedron at value 1, and a hypothetical tetrahedron with
an infinity face at value 0. Observe that the convexification-based merging presents tetra-
hedra with better quality than the translating-based merging, which is expected since the
last method affects more neighbors of the merged area.



47

Figure 6.4: Top left: tetrahedral meshes to be merged (boundary surface is shown); Top
Right: Mechanical pieces merged in the background grid; Bottom: Zoomed views show-
ing that the original meshes of the pieces have been preserved after merging.

Figure 6.5: Merging a buddha tetrahedral mesh with a background grid.

Merge Method Without fringe With fringe
Convexification-based 0.48 0.74

Translation-based 0.44 0.72

Table 6.3: Comparison showing the tetrahedra quality of merging methods with and with-
out fringe.

6.4 Summary

In this chapter we applied the proposed applications on several 2D and 3D examples.
The applications revealed the effectiveness of the methods even when handling complex
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Figure 6.6: Comparison between merging with a fringe (a) and the convexification-based
merging (b).

meshes. The weight computation method revealed to be fast, although the time CGAL
spends to triangulate large datasets prevents real-time execution for large meshes. As ex-
pected, both merging approaches present similar execution times, and for complex meshes
they revealed to be slower than CGAL triangulation algorithm.

Both 2D and 3D merging examples show that the designed approaches are suitable to
handle meshes with different refinement levels, and that the fringe solves the problem of
generating sliver tetrahedra.
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7 CONCLUSIONS AND FUTURE WORK

This dissertation proposed a novel way of calculating weights of vertices to build a
conformal WDT. While numerous approaches use a linear problem (Cignoni; De Flo-
riani, 1998; BALAVEN et al., 2002) to determine the weights, we developed an algo-
rithmical solution based on a breadth-first traversal of the mesh, and using fundamental
mathematical concepts of WDTs. This solution proved to be fast and suitable for several
applications, and opens a field to be further explored.

A remarkable aspect of our approach is that, despite its simplicity, it is able to handle
and merge complex simplicial meshes without managing connectivity explicitly, as it is
usually done with conventional Delaunay methods. However, it is important to point out
that there are significant differences between our approach and Delaunay-based schemes.
Our technique starts from a set of triangulations, whereas Delaunay-based methods build a
triangulation from curves and surfaces constraining the domain of interest. The difference
between the two methodologies becomes more evident when dealing with anisotropic
meshes.

Anisotropic versions of Delaunay triangulations and constrained Delaunay triangula-
tions have been used to handle anisotropic meshes (BOROUCHAKI et al., 1997). How-
ever, such techniques demand either tensor estimation to define the anisotropy or an ex-
plicit manipulation of constraints. This can become as complex as the connectivity man-
agement during merging operations. In fact, our approach can be seen as a first step
toward a new framework for connectivity oblivious mesh representation using the idea of
regular triangulations.

In this work, we also proposed different methods to merge simplicial complexes with-
out the need to explicitly manage connectivity information. The merging schemes pre-
sented gave very satisfactory results, especially regarding algorithm stability and the lo-
cality of mesh updates. While the translation-based merging works by translating verti-
cally the lifted polyhedron of the mesh in such a way that it overlaps the merged region,
the convexification-based merging squeezes up the lifted polyhedron of the mesh between
the lifted polyhedron of the merged area and the supporting hyperplanes of the simplices
on the border.

In some applications, the translation-based merging scheme may affect a wide neigh-
borhood around the merging region, making many vertices redundant. Although one can
always reinstate missing vertices by vertically displacing then beneath the convex hull
of lifted points, checking for redundancy can become costly. Plane projection plus con-
vexification can indeed ensure local mesh updates for the background grid. However,
the number of internal missing simplices exceeded 10% in one of our experiments (our
worst case), which can be unacceptable in applications where internal meshes must be
preserved.
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The large number of absent elements, in many cases, is due to numerical instabilities,
as the cavity between the convex hull and the support planes can become too narrow. This
makes it numerically difficult to convexify the lifted polyhedron with vertical perturba-
tions. If an excessively vertical perturbation is applied to a vertice, numerical predicates
tend to consider adjacent simplices as coplanar, violating what is known as the general
position hypothesis. This makes it difficult to predict which vertices will be seen as copla-
nar.

The convexification-based could be improved with some effort on creating a new way
to squeeze the lifted polyhedra to reduce this issue could reduce the occurrence of this
issue. While the translation-based merging ensures the maintenance of the simplices at
the cost of having a heavier effect on the the neighborhood of the merged area. A study
conducted to define a better convexity of the lifted polyhedron could improve the results,
since when the polyhedron is more concave than the merged area, some of its simplices
become redundant, and when the polyhedron is more convex it impacts on the neighbor-
hood.

We solved the issue with badly shaped simplices inserted when merging meshes with
different refinement levels by introducing the fringe. The fringe worked by improving
the quality of tetrahedra created by both merging approaches. Nevertheless, in practice
to use the fringe requires that the merged area has enough space so that vertices of the
fringe can smooth the transitions, otherwise it will not present satisfactory results and can
even give rise to badly shaped tetrahedra. Therefore, the size a fringe will depend on both
refinement level and size of the meshes being merged.

The examples developed in this work validated the proposed techniques. They clearly
show the merging process working well for several kinds of meshes. Additionally, they
demonstrated that the fringe, in turn, solves problems of meshes with different refinement
levels and improves the quality of simplices. Finally, they made possible to observe that
the computing weights method is both fast and usable with other applications.

Since WDTs generates triangulations with their convex hull, the merging methods are
better suitable to convex meshes. While for convex meshes the result presents triangula-
tions that match the originals, for concave datasets it is necessary a post processing step
to remove simplices created due to the convex hull. In some of our examples we had to
deal with this issue, and depending on the mesh surface it can be a painful task.

Regarding execution time, the weight computation algorithm turned out to be efficient
even with large datasets. It is necessary to use CGAL's WDT method, which prevents
real-time executions. The merging methods proved to be faster than the triangulation for
small datasets, however, for large meshes they become slower. The method used to find
the merged area explains this behavior, since after the area is found our approach consists
of a linear procedure.

In the future, we would like to further explore our weight assignment technique, to
better enforce local convexity of the lifted polyhedron. Also, an interesting avenue for
future research is to combine our framework with numerical simulation applications. Our
merging schemes generate high quality simplices, and we believe it should be possible to
couple it with existing numerical models.

An important study could be conducted to analyze the influence of ε on the method
to assign weights and on the merging techniques. Since there is a trade-off between
numerical stability and better results, this study could point an optimal value of ε that
avoids missing simplices while keeps numerical stability.
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