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ABSTRACT

The process of parameterizing a mesh to the plane is an ongoing research topic. Al-
though there are several works dedicated to parameterization techniques the use of the
resulting parameterizations has received less attention.

This work presents contributions related to the use of the parametric space to improve
the computational efficiency of several algorithms. The main motivation comes from the
fact that some algorithms are more efficiently computed on the parametric version of the
mesh, compared to the 3-D version. For example, shortest distances can be computed,
usually, an order of magnitude faster on the parametric space.

The contributions of this work can be applied to at least three research fields related
to computer graphics: displacement mapping, distance computation on the surface of
triangular meshes and agent path planning.

The contribution related to displacement mapping, presented in chapter 4, is used to
increase the rendering performance and visual quality of terrains in games. The new
method to compute distances, presented in chapter 5, increases the efficiency of several
distance computation algorithms. This new method was also used on a novel agent path
planning algorithm, to navigate agents on the surface of arbitrary meshes. This technique
is presented in chapter 6.

The potential of the new distance computation method is not restricted to the appli-
cations presented in this thesis. In general, any technique that uses distance computation
on the surface of triangular meshes can have the performance improved by the method.
We can cite the following applications: procedural texture generation, surface labeling,
re-meshing, mesh segmentation, etc.

Keywords: Mesh Parameterization, Displacement Mapping, Geodesics, Agent Path Plan-
ning.





RESUMO

Utilizando o espaço paramétrico para computação eficiente

O processo de parametrização de malhas em planos é um tópico de pesquisa bastante
explorado. Apesar do grande esforço despendido no desenvolvimento de técnicas mais
eficientes e robustas, pouco se tem investido no uso das representações paramétricas ger-
adas por estas técnicas.

Este trabalho apresenta contribuições relacionadas ao uso do espaço paramétrico para
computações eficientes. A principal motivação vem do fato de alguns algoritmos serem
mais eficientes quando aplicados sobre a versão paramétrica da malha. Algoritmos para o
cálculo de distância mínima, por exemplo, podem ter um aumento significativo de eficiên-
cia quando aplicados em versões paramétricas de malhas. Nossos resultados demonstram
que esses aumentos de eficiência podem chegar a cerca de uma ordem de magnitude em
alguns casos.

As contribuições deste trabalho possuem aplicação direta em três campos de pesquisa
relacionados à computação gráfica: displacement mapping, cálculo de distâncias sobre
superfícies e movimentação de agentes.

A contribuição relacionada a displacement mapping, apresentada no capítulo 4, é uti-
lizada para aumentar a performance de renderização e a qualidade visual de terrenos em
jogos. O novo método de cálculo de distâncias proposto, apresentado no capítulo 5, au-
menta a eficiência de vários algoritmos de cálculo de distância sobre superfícies de mal-
has. Este novo método também é utilizado em uma nova técnica para cálculo de movi-
mentação de agentes em superfícies de malhas arbitrárias. Esta técnica é apresentada no
capítulo 6.

O potencial da nova técnica de cálculo de distância sobre malhas não está restrito
aos exemplos apresentados. Em geral, qualquer técnica que utilize o cálculo de distância
sobre superfícies de malhas de triângulos se beneficia das contribuições deste trabalho,
podendo-se citar como exemplos a geração de texturas procedurais, rotulamento de su-
perfícies, re-triangulação de malhas e segmentação de malhas, entre outros.

Palavras-chave: Parameterização de Malhas, displacement mapping, Geodesicas, Movi-
mentação de Agentes.
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1 INTRODUCTION

Mapping a 3-D triangular mesh over a 2-D triangular mesh has many applications.
Texture mapping is a well know example (see Figure 1.1). This process establishes a
relationship between points on the 3-D mesh surface and points on the 2-D parametric
space.

(a)                                                                                              (b)

Figure 1.1: Texture mapping. Item (a) illustrates a 3-D triangular mesh. We can see on
(b) the mapping of the mesh over a texture. Based on this mapping it´s possible to define
a color for each point on the 3-D mesh surface as the color mapped in parametric space.

The processing of mapping a 3-D mesh over a 2-D mesh is also known as parameteri-
zation, see (SHEFFER et al., 2007), (HORMANN; LéVY; SHEFFER, 2007) and (SHEF-
FER; PRAUN; ROSE, 2006) for a survey. Most of the parameterization techniques are
designed to generate a 2-D mesh based on a 3-D mesh, preserving geometric character-
istics of the 3-D mesh on the 2-D mesh. For example, preserve the same triangle area in
3-D and 2-D.

This work explores the use of parameterized meshes in two situations to improve the
performance of some existing algorithms. The first situation is related to the technique
known as displacement mapping. We use the size of the mesh triangles in the parametric
space as a level-of-detail metric to improve the technique efficiency. The second situation
is related to computing the shortest distance between points on the surface of triangular
meshes. We use the parametric space to improve the efficiency of the distance computa-
tion.
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1.1 Displacement mapping

The technique known as displacement mapping encodes triangular meshes as textures.
One of the main uses of this technique is in rendering terrains in virtual environments.
Displacement mapping is used to that end, partially, due to the resemblance of the dis-
placement map and a topographic map. Both describe a surface as displacements on
the vertical axis. Figure 1.2 illustrates the displacement mapping technique. The work
of Szirmay-Kalos (SZIRMAY-KALOS; UMENHOFFER, 2008) presents a survey about
displacement mapping.

Displacement Map Reconstruction
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(0,0)

(1,1)

(1,0)

Base Mesh

+ =

Figure 1.2: Displacement mapping overview. This method can decode a triangular mesh
with small computational cost. Basically, the surface details are encoded into a texture
called displacement map. This texture is mapped over a 3-D triangular mesh (base mesh),
which has a small amount of details. The displacing of the base mesh surface, according
to the displacement map, results on a detailed mesh. This process can be applied with
efficiency on current GPUs.

The resulting geometry from displacement mapping has usually a uniform distribution
of vertices, as we can see on Figure 1.3(a). However, this can result in under sampling
of highly detailed regions and oversampling on low detailed regions of the displacement
map. This thesis presents a technique, based on parameterizations, that allows an adaptive
distribution of vertices according to the density of details on the displacement map. The
adaptive approach is based on implicit information of the parameterization used on dis-
placement map. On Figure 1.2 we can see a relationship between the size of the triangles
in the parametric domain with the amount of details in the displacement map. We can use
the size of the triangles, in the parametric domain, to guide the amount of samples over the
displacement map, resulting in an adaptive reconstruction, as illustrated on Figure 1.3(b).

(a)                                                                                                                                                         (b) 

Figure 1.3: Displacement mapping: Uniform (a) vs Adaptive (b). Using an adaptive
approach results in a better use of the computational resource, compared to a uniform
reconstruction.
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There are many variations to the displacement mapping technique; one of the most
efficient is known as geometry clipmaps (LOSASSO; HOPPE, 2004). This technique
is designed to efficiently represent terrains in virtual environments. However, there are
limitations to the visual realism of the rendered terrains. One of such limitations is related
to texture mapping, which is not described in the original work. Figure 1.4 illustrates the
use of geometry clipmaps.

Figure 1.4: Results from the geometry clipmap technique (LOSASSO; HOPPE, 2004).
This technique lacks support for texture mapping, which limits the visual fidelity of the
terrain. The only described method to color the terrain is a simple gradient mapping
according to the height of each point on the terrain. This figures use a gradient formed by
blue, green, red and brown. The green is mapped to the lowest point on the terrain, while
the brown is mapped to the highest.

Another contribution of this thesis is the improvement of geometry clipmaps. We
present a method to map textures over the terrain, allowing an improvement in the visual
fidelity. Figure 1.5 illustrates the results obtained.

The contributions related to displacement mapping are detailed in chapter 4 and in
the following papers (TORCHELSEN; BASTOS; COMBA, 2008) and (TORCHELSEN
et al., 2009).

Figure 1.5: Screenshots from the game Deer Hunter Tournament�. The terrains on this
figure are generated using the technique presented in this thesis.
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1.2 On-surface distance computation on the parametric space

The minimal distance computation between two points on the surface of a triangular
mesh has many applications. The navigation of agents on the surface of triangular meshes,
as illustrated on Figure 1.6, is an example.

Figure 1.6: Results from the path planning algorithm presented in this thesis. There are
512 agents on this surface.

This work presents an efficient method to compute the shortest distance between two
points over the surface of triangular meshes. As illustrated, the number of triangles has an
impact on the computational cost of the distance computation. A reduction on the number
of triangles can improve the algorithm performance. However, a simplification in 3-D can
result in loss of precision during distance computation. On the other hand, reducing the
number of triangles in parametric space has a high accuracy, as illustrated on Figure 1.7.

A B

A B

(a)                                  (b)                                       (c)                                           (d)

A+B
= A+B

Figure 1.7: Difference between simplification in object space and parametric space. (a)
is a simple mesh. The distance between the two bottom vertices is equal to the length of
the edges A and B. If a simplification is applied in object space as removing the vertex
on the center, the resulting mesh is (b). The distance between the two vertices on (b)
is no longer equal to A+B. However, if a parameterization is used, here to 1-D (c), and
the simplification applied in parametric space we have the mesh illustrated on (d). The
distance between the two vertices on (d) is equal to A+B.

We present a novel method to compute approximated distances on a simplified mesh
in the parametric space, as illustrated on Figure 1.8. This novel approach allows a con-
trol between precision and performance. This method is described in chapter 5 and in
(TORCHELSEN et al., 2009). Although our method presents higher performance, on
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most cases, it is best suitable for large meshes due to the mesh segmentation and param-
eterization. On non-smooth meshes with few triangles our mesh simplification method,
presented on chapter 5, can not reduce the number of triangles, which turns the best solu-
tion for this cases the use of distance computation algorithms on the original mesh without
the mesh simplification presented in this work.

(a)                                                                                       (b)                                                                                                                              (c)

Figure 1.8: Distance computation in the parametric space. (a) is the mesh where distance
computation between two points is needed. (b) is the mesh parameterization and (c) is the
simplified version. The method presented in this thesis concerns the distance computation
on a simplified and parametric version of the mesh (c).

Until now, agent path planning on the surface of complex meshes was limited, due to
the high computational cost. A great portion of this cost is due to the distance computa-
tion. Usually, the surface where agents are allowed to move is limited to almost planar
surfaces, which can be represented by few triangles. The ability to control precision and
performance on the distance computation allows the use of more detailed surfaces in in-
teractive applications, as games. Figure 1.9 illustrates this limitation on the complexity of
the mesh in games, while Figure 1.10 illustrates the limitation on scientific publications.

  (a)                                                                                                      (b)                                               

Figure 1.9: Screenshots from the game Command and ConquerTM. This kind of game
requires high performance agent path planning algorithms to sustain interactive frame
rate. In that sense, the surfaces where agents are allowed to navigate are limited, usually
to planar surfaces (a), to reduce the computational cost. This results in a limited use of
the virtual environment. The agents usually can not cross over complex regions, as the
building on (b).
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(a)                                                                                                         (b)                                                                                                                                    (c)

(a)

Figure 1.10: Results from agent path planning algorithms. We can see that the use of
planar surfaces is frequent. The results are respectively from: (SUD et al., 2007), (SUD
et al., 2007) and (BERG et al., 2008a).

To the best of our knowledge, the work (TORCHELSEN et al., 2010) was the first
to present an agent path planning algorithm for arbitrary surfaces. This method is also
parallelizable and is implemented using the GPU. This method is capable to navigate
512 agents on the surface of complex meshes with interactive frame rates. Figure 1.6
illustrates the results. This technique is detailed in chapter 6 and in (TORCHELSEN
et al., 2010).
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1.3 Contributions

This work presents the following contributions:

• Efficient displacement mapping using the parametric space:The improvements
presented to the visual quality of the geometry clipmaps allow the use of this tech-
nique in applications that require high visual fidelity in the rendering of terrains.
Additionally, the level-of-detail technique, for the reconstruction of displacement
map, results in a more efficient use of computational resources compared to tradi-
tional displacement mapping.

• Distance computation in the parametric space: The computation of the shortest
distance between two points on the surface of triangular meshes using the paramet-
ric space is novel. Improving the performance of an operation common to several
applications is one of the main contributions of this thesis. The gain of performance
on average is of one order of magnitude, compared to the exact solution. The ability
to control performance and precision on the distance computation allows the use of
this algorithm to interactive applications.

• Agent path planning on arbitrary surfaces: The novel agent path planning al-
gorithm is capable of navigating a considerable number of agents on the surface of
complex meshes, which until recently was not possible in interactive applications.
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2 INTRODUÇÃO

O mapeamento de malhas de triângulos em 3-D para malhas de triângulos em 2-D
possui várias aplicações. O mapeamento de texturas é um dos exemplos mais conhecidos
(Figura 2.1). Esse processo define uma relação entre um ponto na superfície da malha em
3-D com um ponto no espaço paramétrico em 2-D.

(a)                                                                                              (b)

Figura 2.1: Mapeamento de textura. No item (a) podemos ver uma malha de triângulos
em 3-D. Já no item (b) podemos ver o mapeamento dessa malha sobre uma textura. Com
base nesse mapeamento podemos definir uma cor para cada ponto sobre a superfície da
malha 3-D como sendo a cor correspondente no espaço paramétrico.

O processo de mapear uma malha em 3-D para uma malha em 2-D é conhecido como
parametrização. A maioria das técnicas de parametrização são desenvolvidas para gerar
uma malha em 2-D que compartilhe alguma informação geométrica com a sua versão
em 3-D. Um exemplo são as técnicas de parametrização que procuram manter uma re-
lação de igualdade entre as áreas dos triângulos no espaço 3-D e os seus mapeamentos
correspondentes no espaço 2-D.

Este trabalho explora o uso da parametrização de malhas de triângulos em dois cenários
diferentes, como forma de aumentar a performance de alguns algoritmos existentes. No
primeiro cenário, os tamanhos dos triângulos no espaço paramétrico são utilizados como
indicadores de nível de detalhe da malha. Isso permite uma reconstrução adaptativa da
técnica de displacement mapping. No segundo, o processo de parametrização permite
o cálculo eficiente de distâncias sobre malhas de triângulos arbitrárias, viabilizando este
tipo de cálculo em aplicações de tempo real.
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2.1 Displacement mapping

A técnica conhecida por displacement mapping codifica malhas de triângulos em tex-
turas. Um dos usos mais comuns dessa técnica é a representação de terrenos em ambientes
virtuais. O displacement mapping é utilizado para esse fim em parte pela analogia entre
o displacement map e um mapa topográfico. Ambos descrevem uma superfície com base
em um deslocamento vertical. A Figura 2.2 ilustra a técnica de displacement mapping. O
trabalho de Szirmay-Kalos (SZIRMAY-KALOS; UMENHOFFER, 2008) apresenta uma
revisão sobre técnicas de displacement mapping.

Displacement Map Reconstruction
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Figura 2.2: Visão geral da técnica de displacement mapping. Essa técnica é um método
eficiente, em termos computacionais, de codificação e decodificação de malhas de triân-
gulos. Basicamente os detalhes da superfície são codificados em uma textura chamada
displacement map. Essa textura é então mapeada sobre uma malha que não possui de-
talhes, chamada malha base. A soma da malha base com os detalhes codificados no
displacement map resultam e uma malha detalhada e que pode ser renderizada eficiente-
mente na atual geração de GPUs.

A geometria construída com técnicas de displacement mapping geralmente apresenta
uma distribuição uniforme de vértices, como pode ser visto na Figura 2.3(a). Entretanto,
uma distribuição uniforme de vértices pode fazer com que regiões com poucos detalhes
sejam super amostradas enquanto regiões com muitos detalhes sejam sub-amostradas.
Esta tese apresenta uma técnica, baseada em parametrização, que permite a distribuição
adaptativa de vértices que automaticamente varia a densidade de vértices de acordo com
o nível de detalhe do displacement map. O cálculo da representação adaptativa é baseado
numa informação implícita da parametrização utilizada na técnica de displacement map-
ping. Na Figura 2.2 podemos ver que existe uma relação entre o tamanho dos triângulos
no espaço paramétrico e a quantidade de detalhes contida no displacement map. Se o
tamanho dos triângulos no espaço paramétrico for utilizado para determinar a quantidade
de detalhes por região da malha, temos uma reconstrução adaptativa do displacement map.
O resultado desta nova técnica, baseada na amostragem adaptativa, é ilustrada na Figura
2.3(b).

Existem muitas variações da técnica de displacement mapping, e uma das mais efi-
cientes é conhecida por geometry clipmaps (LOSASSO; HOPPE, 2004). Essa técnica
foi desenvolvida para representar a superfície de terrenos no ambiente virtual utilizando
uma variação do displacement mapping. Porém, limitações quanto à capacidade de rep-
resentação de detalhes da técnica inviabilizam seu uso em reconstruções que exijam foto-
realismo. Uma de suas limitações está relacionada à impossibilidade de se mapear tex-
turas sobre a malha reconstruída. A Figura 2.4 ilustra o resultado dessa técnica.
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(a)                                                                                                                                                         (b) 

Figura 2.3: Displacement mapping uniforme vs adaptativo. Utilizando uma abordagem
adaptativa temos uma economia no número de primitivas geométricas, dessa forma au-
mentado o desempenho da técnica.

Figura 2.4: Resultados da técnica descrita em (LOSASSO; HOPPE, 2004). As represen-
tações virtuais geradas por essa técnica não são capazes de representar elementos naturais
sobre a superfície do terreno, como por exemplo, grama. O único mapeamento de cores
existente é uma variação de cor com base em um gradiente em relação à altura da super-
fície. Nesses exemplos as cores são definidas como azul para as áreas mais baixas, verde
e vermelho para intermediarias e marrom para as mais altas.

Outra contribuição desta tese refere-se ao aprimoramento dessa técnica para a utiliza-
ção de texturas. A Figura 2.5 ilustra os resultados desse aprimoramento.

As contribuições relacionadas a técnica de displacement mapping são detalhadas no
capítulo 4 e nos seguintes artigos (TORCHELSEN; BASTOS; COMBA, 2008) e (TORCHELSEN
et al., 2009).

2.2 Cálculo de distâncias no espaço paramétrico

O cálculo da distância mínima entre dois pontos sobre a superfície descrita por malhas
de triângulos possui várias aplicações. A movimentação de agentes sobre uma superfície,
como ilustrado na Figura 2.6, é um exemplo.

Este trabalho apresenta um método eficiente de cálculo de distância mínima entre dois
pontos sobre uma superfície descrita por malha de triângulos. Como apresentado anteri-
ormente, o número de triângulos tem impacto direto no custo computacional do cálculo
de distância. A redução no numero de triângulos pode, então, aumentar sua performance.
Uma simples redução no numero de triângulos da malha pode afetar gravemente a quali-
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Figura 2.5: Captura de telas do jogo Deer Hunter Tournament�. Os terrenos ilustrados
nessas figuras foram gerados com a técnica descrita nesta tese.

Figura 2.6: Essa figura ilustra o resultado do método de movimentação de agentes apre-
sentado nesta tese. Existem 512 agentes sobre essa superfície.

dade do cálculo da distância. Por outro lado, reduzindo o número de triângulos no espaço
paramétrico a perda de precisão é menor, como ilustrado na Figura 2.7.

Desta forma, é apresentado neste trabalho um novo método de cálculo aproximado
de distâncias sobre malhas de triângulos que se baseia numa representação paramétrica e
simplificada da malha, como ilustrado na Figura 2.8. Esta nova abordagem permite adi-
cionalmente o controle da relação entre performance e precisão. Esse método é descrito
no capítulo 5 e também é discutido em (TORCHELSEN et al., 2009).

Até então a utilização de algoritmos de movimentação de agentes, sobre superfícies
arbitrarias, em aplicações interativas era limitada devido ao seu alto custo computacional,
em parte devido ao custo do cálculo de distâncias. Normalmente o espaço de movi-
mentação dos agentes ficava restrito a superfícies planas onde a complexidade da malha
é baixa. A possibilidade de se poder controlar a relação entre performance e precisão
nos cálculos de distância sobre malhas torna possível o seu uso em superfícies de maior
complexidade e aplicações que demandem interatividade, como por exemplo os jogos de
computador. A Figura 2.9 mostra essa limitação na complexidade das malhas em jogos,
enquanto a Figura 2.10 ilustra essa limitação em artigos científicos.
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A B

A B

(a)                                  (b)                                       (c)                                           (d)

A+B
= A+B

Figura 2.7: Diferença entre simplificar uma malha em espaço de objeto e espaço
paramétrico. (a) ilustra uma malha simples. A distância entre os dois vértices inferi-
ores dessa malha é igual à soma das arestas A e B. Se uma simplificação for aplicada em
espaço de objeto removendo-se o vértice do centro temos como resultado a malha (b).
A distância entre os mesmos dois vértices na malha (b) não é igual a A+B. Porém, se
parametrizarmos a malha, para 1-D nesse caso (c), e depois removermos o vértice temos
a malha (d). Nesse caso a distância entre os vértices é igual a A+B.

(a)                                                                                       (b)                                                                                                                              (c)

Figura 2.8: Cálculo de distância mínima sobre superfícies em espaço paramétrico. (a) é a
malha onde gostaríamos de calcular a distância entre dois pontos. (b) é a parametrização
da malha e (c) é a simplificação da malha no espaço paramétrico. O método apresentado
nesta tese define como distâncias podem ser calculadas no espaço paramétrico (c).

  (a)                                                                                                      (b)                                               

Figura 2.9: Captura de telas do jogo Command and ConquerTM. Esse tipo de jogo usual-
mente necessita de técnicas de movimentação de agentes que possuam alto desempenho
dado o número de agentes que precisam caminhar em tempo real. Dessa forma, as super-
fícies onde os agentes podem caminhar são limitadas, e geralmente são muito similares
a superfícies planas como em (a). O resultado é um menor aproveitamento do ambiente
virtual, por exemplo, os agentes não podem caminhar sobre o prédio do item (b).
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(a)                                                                                                         (b)                                                                                                                                    (c)

(a)

Figura 2.10: Essa figura ilustra o resultado de diversos trabalhos que calculam caminhos
para agentes. Veja que superfícies planares aparecem com freqüência. Os resultados são
respectivamente dos seguintes trabalhos: (SUD et al., 2007), (SUD et al., 2007) e (BERG
et al., 2008a).

Até o momento da escrita desta tese, não se tinha notícia sobre métodos de cál-
culo de colisão entre agentes que se movimentam sobre superfícies arbitrárias, exceto
(TORCHELSEN et al., 2010). Esse método é paralelizável e foi implementado em GPU,
sendo capaz de mover em tempo real 512 agentes sobre uma superfície complexa, como
a ilustrada na Figura 2.6. Essa técnica é detalhada no capítulo 6 e também discutida em
(TORCHELSEN et al., 2010).
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2.3 Contribuições

Este trabalho apresenta as seguintes contribuições:

• Displacement mapping eficiente utilizando o espaço paramétrico: O aprimora-
mento do resultado visual da técnica de geometry clipmaps possibilitou a sua uti-
lização em aplicações que necessitam de fidelidade visual. Já o cálculo de nível
de detalhes utilizando o espaço paramétrico possibilita uma reconstrução adapta-
tiva do displacement map, resultando em um melhor aproveitamento dos recursos
computacionais.

• Cálculo de distância no espaço paramétrico: O cálculo de distância mínima entre
pontos sobre a superfície de malhas de triângulo utilizando o espaço paramétrico
é inovador. Resultando no aumento de desempenho de um algoritmo que possui
muitas aplicações. Os ganhos de desempenho são em média de uma ordem de
magnitude. O controle de precisão dos resultados e do desempenho possibilita a
utilização dessa técnica em aplicações interativas, as quais eram limitadas dado o
custo computacional dessa operação.

• Movimentação de agentes sobre superfícies complexas: A nova técnica de plane-
jamento de caminhos para agentes é capaz de mover um número considerável de
agentes sobre superfícies com complexidade nunca antes utilizadas em aplicações
interativas.
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3 RELATED CONCEPTS

This chapter introduces concepts relevant for understanding the topics discussed in
this thesis. Other concepts related to a specific chapter are discussed in that chapter.

3.1 Displacement Mapping

The displacement mapping technique was introduced by Cook (COOK, 1984). The
main idea is to describe surface details as elevations, which are encoded as a map, in much
the same way as the surface of a terrain is encoded as a topographical map. In the context
of displacement mapping, a topographical map is called a height map, whem the surface
represented by the map is a terrain, for any other surface the map is called a displacement
map. Given a displacement map (or a height map) and a surface without fine grained
details, those details can be applied to the surface by disturbing the surface according to
the displacement map. For example, figure 3.1 illustrates the process of reconstructing
the surface of a terrain based on a displacement map. The displacement map representing
a terrain can be constructed in an image editor or acquired by satellite scan, for example.

Base Mesh Displacement Mapping Reconstruction

(0,0)

(0,1) (1,1)

(1,0)(0,0)

(0,1) (1,1)

(1,0)

Figure 3.1: Reconstruction of a terrain encoded in a displacement map. The surface where
the displacement map is mapped is usually called the base mesh. This mapping defines
for each point on the surface of the base mesh a corresponding displacement value from
the displacement map. Applying all the displacements to the base mesh results in the
reconstruction of the terrain surface that was encoded as the displacement map.

Each point on the base mesh is displaced in the direction defined by the normal vector
of the triangle where the point is located. However, before the base mesh can be dis-
turbed it must have enough vertices to represent the displacement map. The ideal number
of vertices is equal to the number of pixels of the displacement map. Without at least a
1:1 relationship between pixels (displacements) and vertices of the base mesh, the recon-
struction of the terrain may lack resolution. Figure 3.2 illustrates three base meshes with
increasing levels of resolution and the resulting reconstruction of the same displacement
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map. We can see that base meshes with different resolutions can result in different levels
of reconstruction. This characteristic is one of the many advantages of the displacement
mapping technique, which is explored in several works to generate different levels of re-
construction based on the content of the displacement map or position of the camera, for
example.

+ =

+ =

+ =

     Base Mesh           Displacement Map         Reconstruction

Figure 3.2: Three displacement map reconstructions based on three base meshes. We can
see that increasing the resolution of the base mesh results in a closer approximation of the
displacement map.

                                        (a)                                                                             (b)                                                                                              (c)

Figure 3.3: Reconstruction of a terrain from a displacement map on a rectangular base
mesh, as in the work of Lindstrom and Pascucci (LINDSTROM; PASCUCCI, 2001).
Item (a) illustrates the top view of the reconstruction, where the blue region denotes the
view frustum of a camera located on the ground. We can see the larger density of ver-
tices near the mountains valleys, where the differences between displacements (pixels on
the displacement map) are larger (high signal frequency). Item (b) illustrates the same
viewpoint, however, the resolution is not only determined by the signal frequency, but
also considers the view frustum. The blue rectangle on item (c) illustrates the view of the
camera denoted on the blue region of item (b).

The work of Lindstrom and Pascucci (LINDSTROM; PASCUCCI, 2001) introduced
a technique to control the resolution of the displacement map reconstruction by inserting
more vertices in the base mesh following two strategies. A strategy that inserts more ver-
tices in regions of the base mesh that map to high frequency portions of the displacement
map. The other strategy only subdivides the base mesh in regions inside the view frus-
tum. Those two strategies can be combined, resulting in a multi-resolution reconstruction
that is also view-dependent, optimizing the rendering efficiency. Figure 3.3 illustrates
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the reconstruction of a terrain as presented by Lindstrom and Pascucci (LINDSTROM;
PASCUCCI, 2001). Other works that follow similar strategies to reconstruct displace-
ment maps include Duchaineau et al. (DUCHAINEAU et al., 1997) and Hoppe (HOPPE,
1998).

The practical applications of an adaptive displacement mapping reconstruction, as in
figure 3.3, have been limited due to the better performance of reconstructing a displace-
ment map using pre-defined resolutions, in contrast to to a local analysis of the displace-
ment map signal frequency. In most techniques that use a pre-defined resolution, the base
mesh is subdivided according to the position of the camera, as in the work of Losasso and
Hoppe (LOSASSO; HOPPE, 2004). In that work, the base mesh is subdivided in several
rings around the camera, each ring with the same number of vertices. At each ring, from
the camera to the horizon, the distance between vertices, on the rectangular base mesh,
is increased. Figure 3.4 illustrates such mesh rings. The result is a constant resolution,
which is higher near the camera, but is the same on low and high frequency regions of the
displacement map. The advantage comes from the constant amount of data processed per
frame, resulting in a smooth frame-rate, and a reduced amount of data sent from the CPU
to the GPU, which is a common performance bottleneck. The work of Clasen and Hege
(CLASEN; HEGE, 2006) and Livny et al. (LIVNY et al., 2008) follow similar strategies.
A broader survey about interactive terrain rendering is presented by Pajarola and Gobbetti
(PAJAROLA; GOBBETTI, 2007).

(a) Top View of the Base Mesh                                      (b) Reconstruction

Figure 3.4: Geometry clipmaps technique, presented by Losasso and Hoppe (LOSASSO;
HOPPE, 2004). The main idea is to define several rings surrounding the camera (item
(a)) with fixed resolution, and store the rings on the GPU to avoid the need to transmit
the mesh from CPU to GPU each frame. Item (b) illustrates the view of the resulting
reconstructed mesh. We present more details about this technique in chapter 4, where we
present an extension of the cited work.

The ability to insert details into surfaces with controllable resolution and its GPU-
friendly characteristics are some of the features that make the displacement mapping
technique a common choice to represent terrains in games. Furthermore, the same map-
ping used to place the displacement map over the base mesh can be used to map color
textures onto the reconstructed surface. This is usually done by a combination of color
textures, each representing some features of nature as snow, rocks or grass, for example.
Figure 3.5 illustrates the process of coloring a terrain geometry. The mapping of colors
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Figure 3.5: The displacement mapping technique used on terrain rendering involves a
mapping of a displacement map in to a rectangular region, which is displaced. Using the
same mapping we can color the resulting terrain, using textures, which can represent fea-
tures of nature as snow, rocks and grass, for example. The compact storage of a complex
terrain in the form of a texture, the real-time reconstruction and the reuse of the texture
mapping for color mapping are some of the features that turn the displacement mapping
technique popular in games and other interactive applications.

onto the reconstructed surface is not trivial for all displacement mapping reconstruction
techniques, as in Losasso and Hoppe (LOSASSO; HOPPE, 2004). We present, in chapter
4, an extension to the work of Losasso and Hoppe (LOSASSO; HOPPE, 2004) to allow
its practical uses including an efficient technique to map color textures.

Usually the base mesh used in terrain rendering is a rectangle in 3-D, which has a
trivial mapping to a 2-D rectangular displacement map. However, displacement mapping
is not restricted to rectangular base meshes. It can be applied to any mesh with a mapping
from 3-D to 2-D; in other words, texture coordinates are needed to map each vertex of the
base mesh to 2-D, which is the space where the displacement map is defined. In the next
section we discuss the characteristics of such mapping (parameterization).

3.2 Mesh Parameterization

The interest about parameterization techniques has increased considerably in the past
few years, as we can note from the number of surveys: (GRIMM; ZORIN, 2005), (FLOATER;
HORMANN, 2005), (BOTSCH et al., 2006), (SHEFFER; PRAUN; ROSE, 2006), (HOR-
MANN; LéVY; SHEFFER, 2007). Mesh parameterization is the process of establishing a
mapping between two meshes. In this work we are only interested in the mapping between
a mesh defined in �3 and a mesh defined in �2; a process usually called mesh unfolding.
This kind of parameterization is particularly useful in computer graphics and probably the
most notorious usage is texture mapping. Figure 3.6 illustrates texture mapping.

The parameterization of a mesh may have several properties. The most notorious
are those that sustain some property from the folded mesh into the unfolded mesh, for
example:

1. Bijectivity: Each point on the surface of any of the two domains has only a corre-
sponding point in the other domain;

2. Angle: The internal triangle angles is the same in both domains;
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Figure 3.6: This figure, from the work of Lévy et al (LéVY et al., 2002), illustrates two
texture mappings from the same parameterization.

3. Area: The area of corresponding triangles is the same in both domains;

These properties are used to classify each parameterization. A parameterization that
preserves internal triangle angles is called a conformal parameterization, while a param-
eterization that preserves the triangle area is called authalic. The most difficult to obtain
and most useful of the parameterizations is called isometric, which is both conformal and
authalic. The isometric parameterization is ideal to map a color texture onto a mesh. A
texture has a regular structure, which is a uniform distribution of texels. This means that
a texel has always the same distance to the neighboring texels. Mapping a texture onto
a mesh using an isometric parameterization sustains this characteristic over the mesh, in
other words, there is no distortion in the texture over the mesh.

Other characteristics can be manually defined into the parameterization, according
to the application. For example, mapping a texture onto a mesh usually begins with an
automatic unfolding of a mesh. In some applications as games, coloring a mesh with a
texture is an artistic process that requires manual manipulation of the parameterization.
This is required because an automatic parameterization will map a small triangle in �3 to
a small triangle in �2, resulting in few texels mapped into the triangle which means few
details can be mapped. However, the artist may need more details and it can allocate more
texels by increasing the size of the triangle in �2. This information of how much detail
is allocated to a triangle was explored in this work to develop an efficient displacement
mapping reconstruction technique and is presented in chapter 4.

The difference, or the distortion, between the mapping of a triangle in �3 and a triangle
in �2 can be measured using any of several existing techniques. A common metric to
measure the stretch distortion was defined by Sander et al (SANDER et al., 2001). The
method consists of defining a unit circle on the triangle in �2, that maps to an ellipse on
the same triangle in �3 (Figure 3.7). The length of the principal axes of this ellipse are
called γ and Γ. The principal axis, γ is equal to the smallest radius of the ellipse, while Γ
is the largest radius. Both values are equal to 1 in the parametric domain because we have
a unit circle. However, in the 3-D mesh the corresponding triangle may not have the same
shape or area, compared to the same triangle in 2-D, turning the circle into an ellipse. The
difference between the values of γ and Γ, between domains, gives an initial estimation of
how much distortion is present in the parameterization.

An isometric parameterization corresponds to both, γ and Γ, equal to 1 for all triangles
of the 3-D mesh. In a conformal parameterization both values are equal. However, those
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Surface in 2D Surface in 3D

Figure 3.7: Distortion metric (SANDER et al., 2001). The method consists of defining a
unit circle inside a mesh triangle, in the parametric domain, and mapping the circle back
to the original triangle on the 3-D surface. Note the change from a unit circle to an ellipse,
result of the difference in shape of the triangle between domains. This difference is called
distortion.

values can be arbitrarily large, causing a triangle in �3 to be mapped to a small triangle
in the parametric domain. In an authalic parameterization the product of both values is
1. Still, one of those values can be significantly larger than the other. Therefore, an
equilateral triangle can map to a thin long triangle of the same area. Finally, Sander et
al (SANDER et al., 2001) used two metrics to compute the stretch distortion. The first is
called the L∞, which is equal to the larger of the values. The second metric is called L2,
which corresponds to the root-mean-square of both values. In other words, L∞ = Γ and
L2 =

√
(γ2 + Γ2)/2.

Figure 3.8(a) illustrates a parameterization and the color coding of the distortion
present in the parameterization. Note the hot spots that represent regions with high
amounts of distortion. The distortion can be reduced by increasing the number of charts.
A chart is a group of connected triangles in the parameterization, for example, Figure
3.8(a) has only one chart while 3.8(b) has 3. Note from item (a) to (c) that by increas-
ing the number of charts the distortion tends to decrease. The number of charts can be
increased until each chart surrounds only one triangle, resulting in a parameterization
without distortion. A triangle defined in �3 mapped to �2 would not suffer any distortion.

There are several works dedicated to finding a mesh segmentation that result in a low
distortion parameterization. As mentioned by Julius et al (JULIUS; KRAEVOY; SHEF-
FER, 2005), finding an optimal set of charts is NP-Hard. Most methods use heuristics in
the search for local minima, instead of the optimal solution.

A developable mesh is a mesh that can be unfolded without distortion, while a mesh
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       (a)                                                                    (b)                                                                    (c)

Max L

0

3D Charts               Distortion

2D Charts

∞

Figure 3.8: The distortion present in the parameterization can be reduced by increasing
the number of charts. The maximum and average L∞ present in (a), respectively, is 7.8253
and 1.3189. In (b) 5.3271, 1.0482 and (c) 5.1411, 1.0112.

that is unfolded with low distortion is called a quasi-developable mesh. There isn’t a
specific distortion threshold that determines that a mesh is quasi-developable. It is only
a term to indicate that a mesh can be unfolded with low distortion. As proved by the
Minding’s theorem any two surfaces with the same Gaussian curvature, at corresponding
points, are locally isometric. In other words, mapping one surface into the other results in
a parameterization without distortion. Meshes with zero Gaussian curvature everywhere
are considered developable meshes, because the Gaussian curvature of the plane is zero.
Figure 3.9 illustrates two developable meshes.

A common example of a developable surface is mechanical parts. Those parts are
commonly constructed by folding or welding plane pieces of metal, as illustrated in fig-
ure 3.10. We can see on the figure that printing on paper the parameterization of the
parts and gluing the pieces together results in the same surface of the triangular mesh; no
distortion is present. However, most surfaces are not developable, as a result distortion
will be present in the parameterization. Figure 3.11 illustrates the same process of recon-
struction of the mesh surface, however, those meshes are not developable. Note that the
reconstructed surfaces are distorted in relation to the mesh surface.

Figure 3.9: Examples of developable surfaces, from the work of Julius (JULIUS, 2006).
Note the rectangular shapes mapped over the surfaces. They have the same shape and
area in �3 and �2. This is only possible because those surfaces are developable, which
means they can be unfolded without distortion.
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Figure 3.10: Examples of mechanical parts from the work of Julius et al (JULIUS;
KRAEVOY; SHEFFER, 2005). Note the similarity between the hand-made mechani-
cal part and the virtual counterpart. This level of precision is only possible because the
parameterization of a developable surface preserves distances. This characteristic was
explored in the contribution presented in chapter 5.

Figure 3.11: Examples, from the work of Julius et al (JULIUS; KRAEVOY; SHEFFER,
2005), of triangular meshes that are not developable. However, quasi-developable charts
can be found. Note that the reconstructed models are similar to the virtual models. How-
ever, some distortion in the shape of the models is visible.
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3.3 Graphics Processing Unit - GPU

The Graphics Processing Unit (GPU) was initially designed only to generate images.
Currently the GPU is becoming a general processing unit. However, with a different
philosophy compared to the CPU. The GPU data and processing organization is designed
to maximize the performance of massively parallel algorithms. The current GPU design
implies on each thread executing the same code, but on different data. On the other hand,
the CPU is optimized to execute different algorithms on each thread. This difference in
design is illustrated on Figure 3.12.

Figure 3.12: Difference between CPU/GPU designs. Note the number of arithmetic logic
units (ALU) in each processor. The GPU emphasizes arithmetic operations, while the
CPU emphasizes memory access. This figure is part of the NVIDIA CUDA Programming
Guide (NVIDIA, 2009).

The CPU is optimized to predict data access patterns and pre-cache the data before
it is requested, thus reducing the latency between request and delivery. Note, on Figure
3.12, the large CPU chip area dedicated to Cache compared to the GPU. In contrast, the
GPU emphasizes the number of ALU units. This difference between processors imposes
advantages and limitations to each one of them.

Some limitations of the GPU philosophy guided the development of this work. For
example, in an application where multiple threads can read/write from the same memory
location, atomic operations are necessary. An atomic operation is an operation, or a group
of operations, that block the execution of other operations until the atomic operation is
completed. An atomic operation implies a blocking on the execution of all threads, be-
sides one, while it is accessing the data shared by all threads. In a massively parallel
environment, as the GPU, minimizing the number of atomic operations is crucial; other-
wise, the execution pattern would converge to a serial pattern, which is the best pattern to
be executed on the CPU.

Another limitation imposed by the philosophy of current GPUs is the computational
cost of memory allocation. Due to the GPU massive number of thread and single algo-
rithm in each thread, the only variable on each thread is the data. Before any thread can
execute, data must be distributed to all threads. This means that any new amount of data
must be redistributed across all threads before the processing can continue. Every time
a thread requires more memory all threads must stop while memory is allocated. The
result is a high cost for any memory allocation. Any algorithm implemented on the GPU
should minimize the use of memory allocation during the data processing, and maximize
the allocation before the algorithm execution.

The philosophy of multiple instances of the same algorithm designed on the GPU is
very similar to the agent path planning problem, which motivated the agent path planning
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algorithm presented in chapter 6. Each agent in a crowd can be controlled by the same
algorithm and a crowd implies a massive number of agents, exactly the best pattern to
be implemented on the GPU. However, in a real crowd, agents share information, visual
or verbal, to avoid collision. Note that sharing information across instances (threads)
has a high computational cost in the GPU; due to the concurrent nature of the operation.
Usually, this cost can be reduced by increasing the number of computations and reducing
the number of data accesses. That way, the GPU can execute portions of the algorithm
while it is accessing data for the next portion. This is possible because each operation,
data access and data processing, are implemented in different portions of the GPU chip,
see Figure 3.12.

The algorithm presented in chapter 4 was implemented on the GPU due to another
specific design of the GPU: hardware texture mapping support. The displacement map-
ping technique is based on texture mapping, turning the GPU the ideal processor. This
support is present on current GPUs due to the origin and most notorious application of
GPUs: computer graphics. In computer graphics, triangular meshes and textures are com-
mon techniques used to represent surfaces, resulting in GPU native support. The GPU was
initially designed only for graphical applications, particularly the rasterization pipeline.
The rasterization pipeline, illustrated on Figure 3.13, was until recently the only available
processing pipeline on GPUs.

Input Data
Input 

Assembler
Vertex 
Shader

Geometry 
Shader

Rasterizer
Stage

Pixel
Shader

Output 
Merger Output Data

Fixed Stage

Programmable Stage

Figure 3.13: This figure illustrates the GPU graphics pipeline. The vertex shader operates
on vertices while the geometry shader operates on groups of primitives (i.e. triangles or
quadrilaterals). The rasterizer stage is responsible for the color definition of each pixel
resulting from the discretization of each primitive.

Initially, only some stages of a fixed pipeline (as seen in the rasterization pipeline of
Figure 3.13) were programmable. Currently, though, a complete pipeline can be defined.
However, the rasterization pipeline still is present on current GPUs. A fixed pipeline al-
low the GPU designers to optimize the hardware performance. There are programming
languages for each pipeline. The GLSL and HLSL are some of the most used in the
graphics pipeline, while CUDA and OpenCL are the programming languages for the gen-
eral pipeline. The choice between the programmable pipeline and the graphics pipeline,
when implementing an algorithm, is mostly dependent on the algorithm output. Some
algorithms when implemented in the graphics pipeline achieve higher performance if the
final output is a image. A rendering algorithm implemented in the programmable pipeline
would require a cycle on the programmable pipeline and an additional cycle in the graph-
ics pipeline to render the algorithm result. However, if the entire algorithm can be imple-
mented in the graphics pipeline there is a gain of performance. That is the main reason
for the contributions to displacement mapping presented in this thesis to be implemented
in the graphics pipeline instead of the programmable pipeline.

However, as mentioned, some algorithms are not suitable to be implemented in the
GPU, which is the case of the on-surface distance computation technique presented in
chapter 5. Most of the algorithm is serial and memory allocations are frequent during the
algorithm execution, turning the CPU the ideal processor.
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4 DISPLACEMENT MAPPING ON THE PARAMETRIC DO-
MAIN

In this chapter two contributions are presented, each derived from efficient usage of
the parametric domain. The first is dedicated to efficient rendering of displacement map-
ping, with focus in its practical use in games. The second contribution is a novel level-
of-detail method for the reconstruction of surfaces encoded in displacement maps. A new
refinement criteria was derived from the area of the parameterization dedicated to each
triangle of the base mesh, resulting in efficient level-of-detail reconstruction of displace-
ment maps.

4.1 Efficient Rendering of Displacement Mappping

Rendering terrains with a high degree of realism is an ongoing need of the computer
game community. To render scenes with increasing sizes and complexity, several ter-
rain rendering algorithms have been proposed in the literature. An important approach is
called Geometry Clipmaps (LOSASSO; HOPPE, 2004), and relies on the position of the
viewpoint to create a multi-resolution representation of the terrain using nested meshes.
This approach was further improved and most of the processing computation was trans-
ferred to the GPU (ASIRVATHAM; HOPPE, 2005). Although very efficient and allowing
support for large terrain models, such an approach presents shortcomings when used for
computer games. For instance, there was no support for color texturing, real-time defor-
mations, solutions for older shader models, and a mesh tessellation designed for artistic
editing.

In this section, the geometry clipmaps approach is revisited and several modifications
to the original algorithm are presented. The contributions to geometry clipmaps allow its
use in a wider variety of GPUs and shader models. Speedups and modifications based on
needs of computer games resulted in a technique with high FPS rendering capability, and
in an attractive solution for terrain rendering in games.

4.1.1 Review of Geometry Clipmaps

The geometry clipmaps technique is based on building a set of nested meshes (called
clipmaps) surrounding the viewpoint with varying levels of detail, keeping the higher
resolution clipmap near the viewpoint. One of the main advantages of this technique is
a reduction on the CPU-GPU bandwidth, due to only sending updated heights to vertices
defined on a predefined 2-D mesh already stored in GPU memory. Figure 4.1 illustrates a
top-down view of a terrain using different shades to illustrate each clipmap (lighter shades
are associated with higher mesh resolution), and the resulting rendering of clipmaps that
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Figure 4.1: Top-view representation of three clipmaps (A, B and C) that form a terrain
mesh (left) and rendering of several clipmaps mesh (right). Clipmaps A and B use the
same resolution because they are close to the viewer, and there is no visible distinction
between them in the rendered image, while the following clipmaps use decreasing reso-
lutions to represent the terrain.

represent a terrain mesh.

Each clipmap is formed by grouping rectangular blocks, forming a "ring" surrounding
the viewpoint. Because every clipmap ring must lie inside another ring and present a
smooth transition across different resolutions, certain conditions must be imposed on the
number of vertices in the perimeter of each ring. A more detailed discussion is presented
on (ASIRVATHAM; HOPPE, 2005). Here we simply state that the number of vertices
must be odd and represented by one minus a giving power of 2n − 1.

In figure 4.2 we illustrate how clipmaps are represented by rectangular grids chosen
from a basic set of building blocks (each represented internally as a mesh patch). In order
to keep the same amount of blocks on each clipmap ring, only three different types of
building blocks are used: Block, formed by m x m vertices, Ring Fix-up formed by m
x 3 vertices, and Interior Trim formed by (2m +1) x 2 vertices. The Ring Fix-up exists
because we cannot close the ring only with the m x m Blocks, while the Interior Trim is
used to move the clipmaps over the height field.

The way each clipmap is represented by building blocks depends heavily on the po-
sition of the viewpoint, and changes as the viewpoint moves. Figure 4.3 illustrates the
movement of the Interior Trims while the viewpoint moves to the right. Moving the In-
terior Trims changes only the clipmap where it belongs, as well as the inner clipmaps,
but the outer clipmaps are kept unchanged, avoiding an update of its values. Details on
how building blocks change while the viewpoint move can be found in (ASIRVATHAM;
HOPPE, 2005).

In the sections to come several modifications to the geometry clipmap algorithm are
presented to make it amenable for computer games.
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A: m x m  Block       B: m x 3 Ring Fix-up        C: (2m + 1) x 2 Interior Trim
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Figure 4.2: Three Clipmap rings, white, light gray and gray (left) are formed from a basic
set (right) of three different rectangular building blocks.

V V V

Figure 4.3: Moving the viewpoint three consecutive vertices to the right. The Interior
Trim changes sides in different ways on each clipmap ring. In the most internal ring,
the Interior Trim changes sides at every movement, while the next nested ring moves at
intervals every other movement.

4.1.2 Terrain Tessellation

Editing capabilities is a major concern for a game developer. Terrains represented by
a height field are parameterized into a support planar mesh (also known as base mesh),
with each vertex associated a given height that is displaced along the vertex normal vec-
tor. Editing a terrain mesh based on a height field is simple, the artist just increases or
decreases the heights of each vertex; in other words, only the heights of the displacement
map are changed. The impact on adjacent triangles while changing the height of a given
vertex (item A from figure 4.4) depends on the tessellation pattern used. The original
tessellation pattern used in the clipmaps technique is illustrated in figure 4.4 (original
pattern). The drawback of this pattern is that there is a hexagonal region of neighboring
triangles that is affected when displacing vertices, which was found to confuse the artist
in some situations. A modification to a symmetrical pattern is illustrated in figure 4.4
(practical pattern). This simple modification allowed the artists a better estimation on the
impact of each displacement, even to a point where the artist could edit the terrain without
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Original Practical

A A

Figure 4.4: Tessellation used in the original clipmaps work (left) and practical solution
(right). Moving the vertex A changes the surface in the shaded region. The surface result-
ing from the move of the vertex A in the practical tessellation is more easily estimated,
even without wireframe.

m x m Block

m x 3 Ring Fix-up

(2m + 1) x 2 Interior Trim

Figure 4.5: Regular grids triangulations using an artist-friendly tessellation.

using wireframe, which they prefer.
The only issue that needs to be addressed when using this new tessellation is that it

requires pairs of shifted regular grids, so that their combination tessellates the plane. It is
important to observe that using twice the number of tessellations per terrain only doubles
the number of triangle indices, but does not double their coordinate locations. Therefore,
it suffices to have an additional index buffer per regular grid, but we need to identify
which one to use to keep tessellation at the grids frontiers. Figure 4.5 illustrates the final
tessellation of the regular grids.

The choice of which of the two tessellation patterns (figure 4.5) will be used can be
made by checking the parity of the texture (height field) coordinates associated to the
top-leftmost vertex of the grid. By simply checking the parity, we can select a tessellation
based on the predefined solutions above, as illustrated in figure 4.6. The same can be done
for all other configurations, thus enforcing correct match between neighboring grids over
the entire height field.

A final terrain triangulation using this new tessellations is illustrated in figure 4.7.
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(even, even) (odd, even) (odd, odd) (even, odd)

Figure 4.6: Choosing tessellation patterns is based on the parity of the texture (height
field) coordinates associated to the top-leftmost vertex.

T-JunctionT Junction

Figure 4.7: Terrain triangulation, illustrating tessellation matching between regular grids,
from same clipmap ring.
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4.1.3 Height-Field

The original Clipmap work uses a compression scheme for the storage of the height
field that might not be attractive for a game implementation. Since it only decompresses
the height field around the viewpoint, checking for collision of objects in regions away
from the viewpoint requires a local decompression that might be costly when a lot of ob-
jects are present, for example in RTS games. Also, real-time editing updates of the height
field would require a decompression and compression scheme that guarantees frame rate,
which is not present in the original work. Therefore, in this case, it is preferred to avoid
the compression scheme. This solution obviously limits the size of the terrain, but it is
still possible to obtain reasonably large terrains.

The height field in the Clipmap work of (ASIRVATHAM; HOPPE, 2005) was stored
on the GPU using a texture. It requires texture reads in the vertex shader that can only be
accomplished in shader model 3 (SM3) and higher. In addition, handling collisions is also
an issue using this approach. In this work, the height field is manipulated in the CPU, and
the GPU is used to apply the displacements (vertex shader) and lighting (pixel shader).
This way, allowing the technique to be implemented on previous generations of GPUs.

Every clipmap ring has an associated resolution that represents the mapping of their
vertices to the vertices of the original height field. Full mapping (1-to-1 mapping) is
associated to the first and second clipmaps closer to the viewpoint (item A and B from
figure 4.1). The following clipmaps decrease their resolution by a factor of two with
respect to the inner clipmap.

Processing every vertex requires three heights to be accessed from the height field,
one for the level of detail in the clipmap which the vertex belongs and two others used to
generate the vertex height in the outer clipmap. Both are used in the geometry morphing
in the perimeter of the clipmap.

4.1.4 Morphing Between Different Resolutions

Different levels-of-detail might cause T-junction vertices (see figure 4.7), which must
be removed to avoid cracks in the mesh. Similar to the original clipmap work, we use a
morphing area (figure 4.8) to morph between different resolution levels.

This is accomplished by subdividing the work between the CPU and the GPU. Instead
of sending to the GPU just one height associated to each vertex in the mesh, we send
two heights, corresponding to the level-of-detail in the ring where the vertex belongs and
one corresponding to its adjacent ring. Using these two heights we can slowly interpolate
them, producing a smooth transition from one resolution to the next, thus avoiding cracks.
Since the bandwidth is one of the most common bottlenecks the two heights are sent using
16 bits each, resulting in 32 bits per vertex, the minimum data structure that can be used to
create a vertex on the GPU. The height from the ring where the vertex belongs is directly
read from the height field but the height that corresponds to the next ring is generated
on-the-fly.

The size of the morphing area depends on how heights vary in the terrain. For
smoother regions, only a small area might be necessary, but for highly irregular regions a
larger region might be needed. The morphing area is illustrated with different shades in
figure 4.8.

In figure 4.9, we illustrate crack problems that can happen across different rings. Ver-
tices B and E from figure 4.9 can generate a crack in the mesh if they use one of the
heights from the height field. Those vertices must be moved to a position that exists in
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the next ring to avoid cracks. The only directions the vertices can go are up or down with
respect to the supporting plane (base mesh). The only position in the next ring that exists
in those directions is over one of the edges formed by the neighbors of B and E. Figure 4.9
illustrates the four existing neighboring configurations used to identify that edge. Those
configurations exist because all rings use the same tessellation.

Morphing vertices across the frontier of two rings avoid cracks but does not create
a smoother transition between rings, and therefore all vertices inside the morphing area
are required to be morphed. Vertices H and K in Figure 4.9 illustrate the other two con-
figurations of neighbors for vertices inside the ring that must be handled to identify the
morphing target (position of the vertex in the surrounding ring).

The morphing target is the second height sent to the GPU and is generated for all
vertices that do not exist in the level-of-detail from the surrounding ring. The vertices
that exist in both rings like A and C have the same height, which is duplicated in both
channels.

Morphing vertices between rings

Figure 4.8: Morphing area denoted by the gray gradient between the first and second ring
illustrates the smooth morphing of the vertices from one resolution to the next.

4.1.5 Texture Layers

The traditional texturing technique used in terrain rendering is based on texture layers.
A texture layer is a covering of the entire terrain that can represent different materials,
such as grass, rocks, snow, etc. To determine the final color of the pixels, an alpha texture
between every layer defines the contribution of the layer to the final color of the pixel.

The layers are formed by three components:

1. Color Texture: A texture corresponding to grass, rocks, snow, etc;

2. Tiling: Defines how many times the color texture repeats itself between vertices of
the terrain, defined as α;

3. Alpha Texture: Defines the contribution the color texture has to the final color of
the pixel;

Figure 4.10 illustrates an example of a terrain mesh defined over the support plane
with two texture layers. The first layer uses an alpha texture to render the color texture
at regular intervals. The second layer uses the alpha texture in such way that the color
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position of      in the surrounding ring
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Figure 4.9: Smooth transition between rings: vertices of a ring that do not exist in the sur-
rounding ring are morphed to positions in the middle of the edges formed by neighbors
of the vertex (B, E, H and K). Shaded squares illustrate the existing vertices configura-
tions and the pre-defined vertices neighbors that are considered for the morphing target
calculation.

texture appears at regular intervals, but applies gradients to slowly show the color texture.
The gradient can be used to represent smooth changes between layers, such as to simulate
discontinuities on materials in the terrain (e.g. start of grass after a sidewalk).

The size of the alpha texture does not need to match between layers, but using the
same size in all layers allows it to be optimized by concatenating four alpha textures in
one and reading them all at the same time in the pixel shader. Normally the alpha texture
is edited by an artist, but it can be procedurally generated based on the height of the vertex.
Lower regions can be covered by grass, while mountains are covered by snow (see figure
3.5).

The texture coordinates are generated per frame and only in the rendered vertices,
avoiding unnecessary calculations and storage of large amounts of data per vertex (one
texture coordinate per texture layer would be necessary). This process is illustrated in
figure 4.11 by the regular replication of a sample texture (containing a simple shape - an
arrow).

Every regular grid has a default texture coordinate system with its origin at the top left
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Figure 4.10: Application of texture layers to a terrain.
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Terrain Mesh
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Figure 4.11: The texture layer used in the terrain mesh uses a color texture in the shape of
a down arrow with tiling (0.5, 1.5). The layer covers all the terrain (denoted by the "...")
but we are only interested in the shaded region.

most vertex as illustrated in the m x m Block from figure 4.11. Mapping a texture layer
to the grid is a two steps process.

In the first step, the texture coordinates are scaled based on the 2-D texture tiling α
associated to the texture layer, creating a space between vertices to fit the color texture.
The example from figure 4.11 uses a tiling of (0.5, 1.5), creating space for two color
textures between intervals of vertices in the x axis and 1.5 in the y axis. The mapping is
illustrated by the arrow texture that repeats itself two times horizontally and 2/3 vertically
between intervals of vertices.

The second step is adding a translation to the grid sending it to its position in the
height field, based on the viewpoint. The amount of translation is denoted by β in figure
4.11, which is a parameter valid for all vertices of the grid, so it is calculated on the CPU
and sent to the GPU.

Mapping the default coordinate system to the texture layer is a process that must
be done for all texture layers, because they all have unique color textures and tilings.
Therefore, for all texture layers there is a constant in the shader for the color texture, α
and β, but only the latter changes between grid renderings.

4.1.5.1 Hole Layer

Sometimes game objects, like caves, may intersect the terrain, which requires a method
to open holes in the mesh. Instead of modifying the terrain mesh to create holes or using
transparent regions that would require ordered rendering, we use a feature of the raster
operations that avoid the contribution of some pixels, leaving an unpainted region that
resembles a hole in the mesh.
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Figure 4.12: A hole in a terrain is defined as a region of the mesh where there is no output
pixel in the pixel shader, leaving unpainted regions.

Figure 4.13: Visualization of the end of the world with a wall created by vertices outside
the borders. The base of the wall is not rendered, because the hole layer kills the pixels
that sample outside the alpha texture.

The hole layer is composed by an alpha texture that defines regions on the terrain
mesh that must not be taking into account while rendering the terrain. In DirectX 8, holes
are defined setting the render states Alpharef to 1 and Alphafunc to Equal. That way, any
output pixel of the terrain that is mapped to a value different than 1 in the alpha texture
will not be applied to the frame buffer. An example of creating a hole layer is illustrated
in figure 4.12.

Another use for the hole layer is to avoid rendering beyond the height field limits.
This can be done by setting any sample in the alpha texture (hole layer) outside the range
([0.0, 1.0], [0.0, 1.0]) to a value different from 1. The alpha texture may not have the exact
same size of the height field. This results in precision issues that cause problems while
killing pixels at the borders of the height field. We set the height for all vertices outside
the borders to the minimum height possible, resulting in a wall like the one showed in
figure 4.13. Note that this wall is not visualized, because the camera in a game rarely gets
close enough to the limits of the terrain. Actually, the only vertices that are sent to the
minimum height are those that belong to a regular grid with at least some vertex inside
the borders; otherwise, the grid is not rendered.
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4.1.6 Performance

The terrain from figure 4.14 runs at an average of 580 fps, using 6 texture layers.
The height field size is 2048 x 2048 with distance between vertices of 8 meters, resulting
in a terrain with 256 km x 256 km. Performance was measured on the following ma-
chine: AMD Atlhon 64 3500+, 2 GB ram, NVIDIA GeForce 7800 GTX. On a Pentium 4
2.8GHZ, 1 GB ram and a NVIDIA GeForce 6800 GT 256MB, the average fps was 300.

The performance is barely affected by the content of the height field or the color
textures, the main bottleneck is the number of textures accessed in the pixel shader. For
example, a terrain with 4 layers requires 4 color textures, 1 alpha texture (3 channels with
alphas from the texture layer plus an alpha from the hole layer), and a normal map texture.

The performance of the presented technique is appropriated for games where other
tasks besides the rendering are computed per frame and interactive frame rate is required.
An example is the use of the technique in a commercial game called Deer Hunter Tourna-
ment 2008� that is heavily focused in the capabilities of the terrain, see figure 4.15.

Figure 4.14: Technique demonstration, note the scale of the terrain compared to a person.

Figure 4.15: Screenshots from the game Deer Hunter Tournament�, as we can see it is
heavily based on our terrain technique.



64

4.2 Displacement Mapping LOD using the Parametric Domain

One of the reasons that displacement mapping is used in real-time applications is its
level-of-detail (LOD) capabilities. Usually for terrains the level of details of the recon-
structed displacement mapping is defined according to the distance from the viewpoint to
the surface of the base mesh. The closer a region of the base mesh is to the viewpoint
the higher the resolution, resulting in an almost smooth distribution of resolution, as in
previous section. However, in this section a different approach is introduced. Instead of
only modulating the level of detail by the distance between the viewpoint and the surface,
a contribution from the amount of detail defined in the displacement map and mapped to
each region of the base mesh is considered. That way, avoiding a waste of resources in
regions close to the viewpoint but without details associated from the displacement map.

The displacement mapping technique is defined by two elements: a coarser repre-
sentation of a mesh (base mesh) and a map that encodes information to displace the
geometric coordinates of mesh vertices (displacement map). There are several factors
that might be taken into consideration when establishing a correspondence between mesh
vertices and a displacement map. For instance, if the displacement function has a great
change of values in a certain area, this will only be properly applied if there are enough
mesh vertices to sample that area. Re-meshing or subdividing the base mesh to increase
sampling can solve this problem, which can be done in a uniform or adaptive fashion.
A uniform subdivision might be a suitable solution, depending on how the base mesh is
created (SZIRMAY-KALOS; UMENHOFFER, 2008), (ASIRVATHAM; HOPPE, 2005),
but often tends to create unnecessary vertices on regions where they are not needed. Al-
ternatively, adaptive subdivision is more involved, but gives control on where subdivision
should be performed (DYKE; REIMERS; SELAND, 2008), (MOULE; MCCOOL, 2002),
(DOGGETT; HIRCHE, 2000), (AMOR et al., 2005).

These subdivision approaches usually do not guarantee that all information stored in a
displacement map is well sampled by the base mesh. To overcome this sampling problem
a new subdivision algorithm that defines a near one-to-one relationship between the num-
ber of texels of the displacement map and the vertices of the base mesh is presented in this
section. The procedure is also adaptive, and therefore aims to obtain an optimal represen-
tation of the information contained in a displacement map, while avoiding unnecessary
subdivision of uniform-subdivision approaches.

The main characteristics of the technique are summarized as follows:

1. Adaptability: The subdivision algorithm is guided by the displacement map infor-
mation in such way to establish a near one-to-one mapping between mesh vertices
and texels.

2. GPU-friendly: The algorithm presented here is fully parallel, and was imple-
mented entirely in the geometry shader of the GPU.

3. LOD rendering guided by displacement map information: Details are preserved
based on the frequency of the signal stored in the displacement map.

4. Simplicity: Although the method is based on recent parameterization techniques
(which can be complicated), it is simple to implement.
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4.2.1 Displacement Map

Displacement maps can be manually constructed or extracted automatically by mea-
suring the distance between a base mesh and the original mesh. The purpose of the tech-
nique is to reduce the memory usage of an original mesh by replacing the original mesh
with a base mesh and a displacement map. The latter has a smaller memory footprint than
the original mesh and allows the reconstruction of the original mesh at runtime.

A possible approach to extract displacement information is described in Tewari et al
(TEWARI et al., 2004), where the extraction is guided by the amount of detail in the
original mesh. In regions with higher frequency details, they increase the size of the
area allocated to encode the displacement map. Similarly, they reduce the area in lower
frequency detail regions. Figure 4.16 illustrates how the same information encoded in a
uniform subdivision can be represented in a more compact displacement map using the
approach described above.

Base Mesh

Texture Mapping Reconstruction

(0,0)

(0,1) (1,1)

(1,0)
(0,1)

(0,0)

(1,1)

(1,0)

Figure 4.16: Two reconstructions of the original mesh from the same base mesh: Mapping
between mesh vertices and the displacement is displayed in the Texture Mapping column.
The one on top uses a uniform distribution of displacements, while the one in the bottom
uses an adaptive distribution. The Reconstruction column shows the resulting meshes,
with detail images highlighting the differences between these approaches.

An important point to observe is that the reconstruction step is always performed at the
highest resolution needed, even if an adaptive distribution of samples in the displacement
map were used. Therefore, computation is wasted in regions where a lower resolution
reconstruction would be sufficient (which correspond to the smaller texels in the texture
domain column of figure 4.16). This waste of computations can be reduced using the
technique described as follow.

4.2.2 Adaptive Re-Meshing for Displacement Mapping

The reconstruction step is responsible for constructing a mesh based on the informa-
tion encoded in the base mesh and the displacement map. We generate a mesh with more
detail by subdividing the triangles of the base mesh. The detail encoded in each triangle
of the base mesh is estimated by looking to the area of the displacement map reserved to
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them. Triangles mapped to larger areas of the displacement map encode more informa-
tion than the triangles mapped to smaller areas, and thus should be subdivided accordingly
(figure 4.17).

(b) (c)(a)

Figure 4.17: Relationship between the triangle area in texture space and the levels of
subdivision: In (a), two triangles of the base mesh are mapped to the texture space repre-
sented by the underlying grid. In (b), we show a uniform subdivision for all triangles of
the base mesh. Our approach, illustrated in (c), subdivides each triangle according to the
number of texels mapped to it; avoiding computation waste.

The parameterization illustrated in Figure 4.16, between the base mesh and the tex-
ture, was generated manually. The parameterization was defined according to the amount
of details desired for each region of the terrain. The left side of the terrain encodes re-
gions with few details while the right side is composed by high detailed mountains, which
require a large region of the displacement map. The parameterization could be defined au-
tomatically using the method presented by Teware et al (TEWARI et al., 2004), however,
due to time limitations we choose to use a manual definition of the parameterization.

Central to this proposal is the computation of the triangle area, which can be expensive
and result in different subdivision levels in adjacent triangles. We overcome this problem
by looking at the length of triangle edges in texture space. This guarantees consistency
between subdivisions, needs only local information, is easily parallelizable, and avoids
T-junctions (inconsistent subdivisions between adjacent triangles, see Figure 4.7).

We illustrate this solution with the example in figure 4.18. Suppose we have a horizon-
tal edge crossing from one side to the other of the displacement map. Since the number
of texels crossed by this line is equal to the displacement map width, a simple equation
to calculate the number of vertices that should be inserted in the edge is to divide the
edge length, in object space, by his width in pixels over the texture space. Equation 4.1
represents this where α is the number of subdivisions to be applied to an edge, β is the
width in pixels of the displacement map and φ is the edge length in texture space. This
can be extended to edges with other orientations, and will result in adding more vertices
to better sample long edges.

α =
1

β
φ (4.1)

Once we know how many vertices to insert on each edge, based on the solution given
by Equation 1 according to the edge length, we need a tessellation procedure to generate
the connections inside the triangle. This procedure must be simple, fast, and connect the
new vertices consistently. We use pre-defined subdivision patterns (figure 4.19), store
them directly in GPU memory, and choose which one to apply according to the edges that
have been subdivided and the number of vertices inserted on each edge. For example, if
only two edges require insertion of vertices we choose the middle pattern, while the left
pattern is used when all 3 edges of a triangles had been subdivided, and the right pattern
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Figure 4.18: Subdivision of a triangle edge based on its length.

is used when only one edge is subdivided. The subdivision pattern is applied recursively
until the length of the remaining edges reaches a threshold.

Figure 4.19: Tessellation patterns.

The use of subdivision patterns requires recursive passes when tessellating some tri-
angles. This recursive approach explores the parallelism of current GPUs by distributing
the computation through different geometry shader pipelines, thus avoiding the overload
of a single pipeline with a given subdivision level. In fact, triangles with different subdi-
vision levels are the whole point of adaptive re-meshing. Figure 4.20 illustrates recursive
subdivision applied to adapting the base mesh for displacement mapping.

Figure 4.20: Recursive subdivision of a triangle: Process repeats until the edge length
becomes smaller than a pre-defined threshold. Using the side of a texel as threshold, for
example, we have a near one-to-one mapping between texels and new vertices.
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4.2.3 Level of Detail

One of the main motivations for using displacement mapping is that the base mesh
represents a coarser version of the original mesh. This allows the use of the base mesh
even without a displacement map. The use of the base mesh alone is useful, for instance,
when the model is far away from the camera and the details inserted by the displacement
map would not be perceived. However, if we use the base mesh when the camera is far
away, then we need a level-of-detail approach that smoothly adds detail to the base mesh
when the model gets closer to the camera.

We modulate the amount of detail by changing the level of subdivision. By decreasing
the number of subdivisions in the base mesh, we decrease the amount of displacements
applied to the model, which results in a less detailed representation of the original mesh.
The maximum allowed edge length in texture space (the side of a texel, for instance) is
used to modulate the level of subdivision. Decreasing the maximum allowed length repre-
sents coarser subdivisions, while bigger edge lengths represent more levels of subdivision.

The distance between the model and the camera is used to modulate the maximum
edge length. This provides a level-of-detail technique that increases details near the cam-
era and decreases details as the model moves away from the camera. It is important to
observe that while the model is moving away from the camera, regions of the model
mapped to small portions of the displacement map converge to the base mesh faster than
other regions of the model that map to large areas of the displacement map.

The resulting level-of-detail technique can smoothly insert and remove details, while
avoiding drastic changes in the model. Furthermore, not only we can smoothly insert
details by increasing the subdivision level, but also we can smoothly displace the vertices
using geomorph. Figure 4.21 illustrates the same dataset from figure 4.16 now using our
LOD scheme.

Figure 4.21: Reconstruction of the original mesh using our LOD scheme: From left to
right, the mesh moves closer to the camera (which is perpendicular to the ground). Ob-
serve that we have a finer tessellation in areas with high frequency detail.

Instead of computing the LOD according to the distance between a camera and a
reference point in the base mesh, we also locally modulate the LOD. For this purpose, we
use the middle point of each edge, which defines the subdivision resolution in terms of



69

the proximity to the surface, which is suitable for rendering large surfaces like a terrain.
Figure 4.22 illustrates the local modulation of the LOD using the same terrain of figure
4.21. Observe that closer to the camera we have more resolution, but the high frequency
regions (mountains) always have enough resolution to represent the encoded information,
even when the camera is far away, as depicted by the left image.

Figure 4.22: Distribution of resolution according to the distance of the edges to the camera
(depicted with an icon in the figure): Distance to the camera is not the only factor that
affects base-mesh resolution. High frequency regions remain with enough resolution,
even when they are away from the camera (left).

4.2.4 Results

We measured performance results in a computer with an AMD Athlon(tm) 64 Pro-
cessor 3700+, 2GB RAM and an NVIDIA GeForce 8600 GTS. The first mesh of figure
4.22 has 34,422 vertices and 11,474 triangles, and is rendered in 112 frames-per-second
(FPS). The second mesh has 50,451 vertices and 16,817 triangles running at 108 FPS.
Those times include the re-meshing and the displacement of the base mesh at each frame.
Note that this is a stress test, because the base mesh has only 8 triangles and the output
mesh, on the second mesh, has 2102 times more triangles.

4.3 Conclusion

In this chapter we presented two approaches to improve the efficiency and visual char-
acteristics of the displacement mapping technique. Both have being developed based on
the characteristics of the parameterization between the displacement map and the base
mesh.

The original clipmap work (ASIRVATHAM; HOPPE, 2005) was developed for ren-
dering of large terrain datasets using the GPU. However, some essential features to its
practical application, particularly in games, have being neglected. Our modifications,
presented on section 4.1, improved the clipmap technique to a point where its practical
application on games is possible. The results show high frame rates with a flexible tech-
nique not only in the media creation side but also on the range of GPUs that are capable
of performing it.

The other improvement to the displacement mapping technique was presented on sec-
tion 4.2, and is related to the geometry reconstruction of the displacement map. The
novel multi-resolution displacement-mapping technique presented in this work has many
desirable features, especially for games: multi-resolution, GPU-friendly, LOD-enabled
rendering, simple to implement, and capable of interactive results.
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5 GEODESIC DISTANCE COMPUTATION ON THE PARA-
METRIC DOMAIN

Computing distances on triangular meshes is required in several fields, including pro-
cedural textures (WALTER; FOURNIER; MENEVAUX, 2001), surface labeling (CIPRI-
ANO; GLEICHER, 2008), remeshing (PEYRé; COHEN, 2005), parameterization (PEYRé;
COHEN, 2005) and segmentation (FUNKHOUSER et al., 2004). Distance evaluation for
interactive applications has been limited to poor approximations, due to the computa-
tional cost of exact solutions. Most interactive applications that require on-the-fly dis-
tance calculation, such as path planning (see chapter 6), use variations of the Dijkstra
algorithm. However, resulting paths are not smooth, since they are constrained to pass
through the edges of the triangulation. Recent efforts on computing exact solutions more
efficiently are described in Surazhsky et al. (SURAZHSKY et al., 2005), Liu et al. (LIU;
ZHOU; HU, 2007) and Balasubramanian et al. (BALASUBRAMANIAN; POLIMENI;
SCHWARTZ, 2009). However, due to the greedy nature of these algorithms, their com-
putational time and large memory requirements make them too expensive for interactive
applications.

In this chapter is presented an approximate algorithm that produces distance computa-
tion with minimal precision loss at an order of magnitude faster than an exact algorithm.
The method relies on computing distance in the parametric domain. However, instead of
using manually created parameterizations, an automatic parameterization is used to pa-
rameterize quasi-developable regions, which allow geodesic distance computation to be
performed over a simplified version of the input mesh. Distance computation is performed
over simplified charts, thus reducing the computational cost and memory footprint. In fig-
ure 5.1, we compare distance fields computed on the input mesh (items (a) and (c)) against
results computed over the base mesh using our approach (items (b) and (d)). Colormaps
and isolines in both cases are mapped and displayed over the input mesh, even for the one
computed on the base mesh. Figure 5.1(e) presents an error histogram of the approxima-
tion error. While the distance field using the input mesh required 13 seconds to compute,
the method presented on the following sections took only 0.4 seconds and the memory
footprint was reduced 19 times.

The main contributions of our approach can be summarized as follows:

• Developability as a simplification criteria: The input mesh is divided into quasi-
developable segments that are unfolded into charts and then simplified (remeshed)
with no additional distortion. Distance computation algorithms over simplified
charts lead to better performance with an acceptable loss of accuracy, caused by
distortion in mesh unfolding.
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Figure 5.1: Distance field computed on the input mesh and on the simplified base mesh; all
results mapped on the input mesh, the captions denote where each result was computed.
Distance fields are represented by the color-coded, normalized distance between each
point, on the surface, to the source point (distance 0) - (a) and (b). Isolines extracted from
(a) and (b) are shown in (c) and (d), respectively. Approximation error is presented in a
3-D histogram (e): difference between distances computed on each mesh. The distances
computed on the input mesh are exact. We can control the accuracy of our method.
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• Accuracy control: Most meshes are not developable or quasi-developable, which
causes distortion in the mapping between the input mesh and the base mesh, thus
reducing accuracy. Distortion error is controlled by dividing the input mesh into
regions where the unfolding distortion does not pass a given threshold.

• Improved performance: Memory footprint is reduced, which leads to smaller
computational cost for calculating distances.

• Generic solution: Algorithms for distance computation can be adapted to use our
simplified mesh, such as Dijkstra(DIJKSTRA, 1959), Sethian (SETHIAN, 1999),
Surazhsky et al. (SURAZHSKY et al., 2005) and Martinez et al. (MOREIRA;
VELHO; CARVALHO, 2005).

5.1 Related Work

In this section we review the related work on distance computation on triangular
meshes - which has a good survey in (BALASUBRAMANIAN; POLIMENI; SCHWARTZ,
2009) - and quasi-developable mesh segmentation.

5.1.1 Distance Computation Algorithms

The well-known Dijkstra algorithm (DIJKSTRA, 1959), and its variations, have been
extensively used to compute distances on meshes. Instead of computing geodesic paths,
Disjkstra-like algorithms compute paths over the edges of the mesh, resulting, in most
cases, in poor approximations. Another algorithm that gives approximate results, with
attractive performance, is the Fast Marching (FM) (SETHIAN, 1999). FM uses wave
propagations on the mesh surface to generate a distance field. As in most distance field-
based algorithms, the shortest path on the mesh surface connecting two points can be
found by gradient descent on the distance field.

Martinez et al. (MOREIRA; VELHO; CARVALHO, 2005) computes shortest paths
between two points, but its computational cost is higher than Dijkstra and FM. They
compute the exact solution based on an initial guess, computed using FM. Performance
depends on the accuracy of the initial guess, which motivated the use of FM instead of
the faster Dijkstra algorithm. Mitchell et al. (MITCHELL; MOUNT; PAPADIMITRIOU,
1987) proposal was extended by Surazhsky et al. (SURAZHSKY et al., 2005) to cal-
culate exact distances from a given point on the mesh surface to any other point on the
mesh. They showed that their method has similar performance, however, improved pre-
cision if compared to FM. Recently, Balasubramanian et al. (BALASUBRAMANIAN;
POLIMENI; SCHWARTZ, 2009) proposed an algorithm based on the iterative growth of
triangle strips. The goal is to find the triangle strip that has the shortest path connecting
two points on the mesh surface. According to the authors, their method has approximately
half of the computational cost of (SURAZHSKY et al., 2005).

5.1.2 Quasi-Developable Segmentation

The segmentation of non-developable meshes into quasi-developable charts has at-
tracted considerable attention, due to the practical applications and difficulty of the task.
The work of Julius et al. (JULIUS; KRAEVOY; SHEFFER, 2005) has accomplished
quasi-developable mesh segmentation by computing the angle between each triangle nor-
mal and a common axis and grouping triangles with constant angle variation. Alterna-
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tively, Yamaguchi et al. (YAMAUCHI et al., 2005) introduced a segmentation based
on Gauss area, where the segmentation can be accomplished by grouping regions of
the mesh with zero Gauss area. Recent work of Wang (WANG, 2008) obtained quasi-
developable charts by merging charts generated by the method of Cohen-Steiner et al.
(COHEN-STEINER; ALLIEZ; DESBRUN, 2004). The idea is to identify several small
quasi-developable charts and test if two charts can be merged without generating too much
distortion.

5.2 Triangular Mesh Simplification for on-Surface Distance Compu-
tation

5.2.1 Distance Computation on Developable Surfaces

Developable surfaces (such as cylinders and conical sur-
faces) are surfaces with zero Gaussian curvature everywhere.
Such surfaces admit isometric parameterization to the plane
(see section 3.2). The distance-preserving property of such
parameterizations is the characteristic that motivates our ap-
proach. Consider, for instance, the computation of the short-
est path between two points on a cylinder. The shortest path
curve over the cylinder becomes a line when the cylinder is
unfolded. The resulting path is a line, because the distance
variation is constant inside unfolded developable surfaces.
However, the shortest path connecting both points is not the
only possible path connecting them. Finding the shortest
path among all possible paths is the goal of most distance
computation algorithms.

A common way to compute distances on the surface of triangular meshes is using
wave propagation. To determine the shortest path, between two points, wave propagation
from an origin point is started. Consider the example show in figure 5.2, where color
represents the distance to each point inside the wave to the origin point. When the wave
collides with itself, the front closer to the origin pushes the other front until both fronts
have the same distance to the origin. The process continues until the entire surface is
covered. Finding the shortest path is a matter of descending the gradient of the distance
field from destination to origin.

Figure 5.2: Wave propagation on developable meshes.

Wave propagation, on triangular meshes, is performed by walking over the triangles in
steps equal to the triangles adjacent to the wave front (see figure 5.3), thus the number of
triangles greatly affects the performance of this process. If the distance varies constantly
and isotropically over the unfolded triangular mesh surface, the number of triangles does
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not alter the resulting distance field (i. e., the size of the propagation step does not change
the result). In this sense, for computing distances on a developable mesh, we can find a
simplified triangulation (base mesh) that does not alter the borders of the unfolded mesh
(input mesh) and compute distances on this simplified triangulation, thus optimizing the
process.

(a) 1 Step (b) 2 Steps (c) 6 Steps (d) 1 Step

Figure 5.3: Wave propagation on two triangular meshes with same area. (a)-(c) represents
the propagation on an unfolded mesh (input mesh), while (d) represents the propagation
on a simplified version of the mesh (base mesh). Resulting distance fields are the same
but more efficiently computed on the simpler mesh (base mesh).

Figure 5.4 illustrates a path computed on the base mesh and mapped to the input mesh.
We can map a point from one mesh into the other because the base mesh has the same area
and borders of the unfolded input mesh. The dashed rectangle, in figure 5.4, illustrates
the border of the input mesh, which is the same on the base mesh.

(a) Base Mesh + Distance Field (b) Unfolded Input Mesh

Figure 5.4: Shortest path. Path computed on the base mesh is mapped to the input mesh,
and reconstructed by computing intersections against the triangles (yellow arrows).

This method applied on developable meshes computes distances without loss of pre-
cision or generality. However, on non-developable meshes, a global unfolding may result
in high amounts of distortion, which leads to loss of accuracy on distance computation.
To overcome this problem, we first segment the input mesh in charts that can be unfolded
with limited and controlled distortion. Next, we simplify each chart independently, and
the collection of all simplified charts results in our base mesh.

5.2.2 Quasi-Developable Mesh Segmentation

The mesh segmentation technique we use is based on the work of Wang (WANG,
2008), which merges the charts generated using the Cohen-Steiner et al. (COHEN-
STEINER; ALLIEZ; DESBRUN, 2004) algorithm. This choice was based on the fea-
tures of the method: distortion control and reduced number of charts. We can control the
distortion by defining the initial number of charts generated with (COHEN-STEINER;
ALLIEZ; DESBRUN, 2004). The merging of charts, as presented by Wang (WANG,
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(a) Input Mesh (b)

(c) (d) Base Mesh

Figure 5.5: Base mesh construction pipeline. Given an input mesh, the first step is to iden-
tify quasi-developable regions on the mesh (a); followed by the unfolding of those regions
(b). Chart simplification removes interior vertices without changing the boundary (simple
polygon) (c). Finally, charts are re-triangulated (d). In this example, the input mesh was
formed by 20,180 triangles, while the base mesh is composed by 1,148 triangles. Notice
the reduction in number of triangles from (b) to (d).

2008), reduces the final number of charts, controlled by a pre-defined threshold on the
maximum distortion allowed. Figure 5.5(a) illustrates a mesh segmentation. The parame-
terization method used is the one described in Sheffer et al. (SHEFFER et al., 2005), and
an example of charts that we obtain can be seen on figure 5.5(b). Although the method of
Sheffer et al. (SHEFFER et al., 2005) results on parameterizations which low distortions
it isn’t the state-of-the-art according to Ligang Liu (LIU et al., 2008), which appears to
be the best method for quasi-developable mesh parameterization in terms of performance
and quality. Due to the limitations of time we used the work of Sheffer et al. (SHEFFER
et al., 2005) which provides an implementation of the method.

5.2.3 Chart Simplification

After the mesh segmentation and parameterization we have the regions of the input
mesh that are quasi-developable. We simplify each chart, first by removing all interior
vertices. The result is a simple polygon: the chart border. Figure 5.5(c) depicts the region
of the charts that are not modified during the simplification process. We do not modify the
vertices and edges in the borders to enforce the connection between neighboring charts,
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allowing us to navigate between charts. In other words, we have a bijective mapping
between the borders of neighboring charts.

We assume that the distance variation inside the red polygons in figure 5.5 is con-
stant in any direction, as a result of the quasi-developable mesh segmentation. In or-
der to use existing distance computation algorithms we need a triangular mesh. In that
sense, we re-triangulate the interior of the polygons. Figure 5.5(d) illustrates the charts re-
triangulation, showing a considerable reduction in the number of triangles to the original
shown in 5.5(b).

The re-triangulation method used is based on the constrained delaunay triangulations
presented by Chew (CHEW, 1987), however any other polygon triangulation method can
be used. Our choose was intended to minimize numerical problems resulting from han-
dling almost degenerated triangles which may appear on simple triangulation techniques.

After each chart has been simplified, we have the base mesh. We use this flat mesh as
input for distance computation algorithms. Note that the charts are logically connected by
shared edges (red polygons). However, as a result of the independent chart parameteriza-
tion shared edges do not share the same length; in other words, the connection between
charts is implicit and not explicit. This logical connection and the difference in length
between shared edges guide the necessary modifications on distance computation algo-
rithms to apply them to the base mesh. The next section describes how one can adapt a
distance computation algorithm designed for usual triangular meshes.

5.2.4 Adapting a Distance Computation Algorithm

For calculating distances on the base mesh, we adapted the algorithm from Surazhsky
et al. (SURAZHSKY et al., 2005), which calculates exact geodesic distances on trian-
gular meshes. We generated our results with this algorithm to avoid contaminating the
approximated distances obtained through our approach with any other source of inaccu-
racies. We used the robust implementation from Liu et al. (LIU; ZHOU; HU, 2007), with
the adaptation described in this subsection.

In the algorithm of Surazhsky et al., the source point, from which geodesic distances
are calculated, casts windows (figure 5.6(a)) that are successively propagated across adja-
cent triangles. Windows represent regions of the mesh for which a shortest path candidate
to the source point is already defined. Therefore, windows shapes must not be changed
when they are propagated across triangles; however, in the base mesh, a window may be
propagated across the frontier between two charts, where the shared edges (red polygons
on figure 5.5) usually do not have the same length on both charts, due to the parameter-
ization non-uniform distortion. For handling this peculiarity, with minimum changes on
the original algorithm, we added to the window representation a scale factor β, which
changes when the window is propagated across the frontier. The original parameters for
the window representation are depicted in figure 5.6(a).

The scale factor β is initially set to one for every created window. When a window
is propagated across the frontier between two charts, its width may change, as shown in
figure 5.6(b) due to the difference in edge length between both sides of the frontier. In this
transition, the shape of the window can be kept unchanged by scaling b1, b2, d1, d2 and
σ by the same scale factor that changed the window width. This scale factor is the ratio
between the length of the frontier edges on each chart (see figure 5.6(b)). The scale factor
is also accumulated in β at successive window propagations. This way, the scale of the
window may be removed by dividing b1, b2, d1, d2 and σ by β. Removing the window
scaling is necessary when the actual length of the shortest path candidate encoded by the
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S

W = (d1, d2, b1, b2, σ, τ) W = (d1, d2, b1, b2, σ, τ, β)

S

β = β’ * (Edge / Edge’)

(a) Window as in Surazhsky et al.    (b) Window adapted to include a scale factor

Figure 5.6: Modified window representation. The scale factor β is the ratio between the
frontier edges crossed by the window. In this case, each triangle in (b) is a chart.

window must be known. Finding shortest paths and resolving windows superpositions
are examples of such situation.

Note that this modification is related to the distance computation algorithm presented
by Surazhsky et al. (SURAZHSKY et al., 2005). Another solution may be required for a
different distance computation algorithm.

5.3 Results

The algorithm was tested on an Intel� CoreTM2 1.86GHz PC with 4GB RAM. We
used, as segmentation method, the approach presented by Wang (WANG, 2008), while
the following unfolding of the segments was done using the method of Sheffer et al.
(SHEFFER et al., 2005). Both mesh segmentation and parameterization can be accom-
plished with several different methods, see (SHAMIR, 2008) for a survey about mesh
segmentation and (SHEFFER; PRAUN; ROSE, 2006) for a survey about mesh parame-
terization. The constraints which must be considered during the construction of the base
mesh are the parameterization distortion and the number of charts. Distortion controls the
accuracy of the computed distances, and the number of charts controls the mesh simplifi-
cation. We use the metric presented by Sander et al. (SANDER et al., 2001) to measure
the parametric distortion.

Table 5.1 presents the results for the models depicted in figures 5.1, 5.7 and 5.10.
Figure 5.1 illustrates the distance field computed for the Moai model, using the segmen-
tation from figure 5.5(a), parameterization from 5.5(b) and base mesh from 5.5(d). Dis-
tance computation in the base mesh compared to using the original input mesh leads to a
speedup of 28 times, with an average error of 0.017. Using the input mesh, the method of
Surazhsky et al. (SURAZHSKY et al., 2005) requires 299000windows, while on the base
mesh it requires only 13096 - a reduction of 22 times. Using the original window descrip-
tion (b1, b2, d1, d2, σ, τ ) and double precision, we need 11679 KB to store the windows
necessary to compute the distance field represented in figure 5.1(a) and (c). Including the
scale factor β, into the window representation, and computing the distances on the base
mesh, we need 613 KB to store the windows necessary to generate the distance field of
figure 5.1(b) and 5.1(c). Figure 5.1(e) presents the error histogram of the distance field
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computed using our method.
The distance field and isolines for the models Ramesses and Dancer (genus non-zero

meshes) are presented in figure 5.7 and figure 5.8. Two results are presented for the
Dancer, each using different base mesh resolutions (see Table 5.1). Note that in our mesh
simplification scheme higher distortion thresholds imply lower base mesh resolutions,
which allow us to indirectly control distance computation accuracy and performance.
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Figure 5.7: Distance field, isolines and zoomed details for the Ramesses model computed
on the input mesh (a-d) and on the base mesh (e-h). Following we have the error histogram
which shows small distance error for nearly all vertices (observe near zero concentration
on the Error axis). The average L∞ and L2 distortion is of 1.006 and 1.003, respectively.
Due to the low average distortion, error is also low. In highly distorted regions (max
L∞ of 4.944) some error is introduced, which is not localized (as in the parametrization
distortion) since the error is propagated.

Figure 5.9 illustrates how our method can be used on meshes that are far from de-
velopable. This mesh was created applying random noise to a planar mesh, where the
amplitude of the noise is low at the lower-left corner of the mesh and increases towards
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(a) Dancer Mesh Level 1
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(b) Dancer Mesh Level 2

Figure 5.8: This figure show the results for the Dancer: input mesh (a-b) and from base
meshes with different resolutions (c-d and e-f). Zoomed versions appear in the middle
row: input mesh (g), base mesh resolution 1 (h) and resolution 2 (i), note the difference
in accuracy. The last row shows the error histograms for the base meshes. Both his-
tograms have the same upper bound error, but only level 2 reaches this limit, illustrating
the tradeoff between accuracy and mesh simplification.

the upper-right corner. Note the self-intersections in the region with high noise ampli-
tude. The Gaussian curvature of that noisy mesh computed as presented in Meyer et al.
(MEYER et al., 2002) ranges from -4640.19 to 20994.02, while the plane, which is the
surface where the input mesh is parameterized, has Gaussian curvature equal to 0. The
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(a) Input Mesh (b) Base Mesh

(c) Segmented Input Mesh (d) Gaussian Curvature

0

Figure 5.9: Distance computation on meshes with high Gaussian curvatures. Our method
can handle meshes which are far from developable, however, the amount of simplification
becomes limited. Note, on item (c), the concentration of charts in the regions where the
Gaussian curvature frequency is higher, see (d). However, in low frequency regions the
charts are larger.

colormap in figure 5.9(d) illustrates the Gaussian curvature of the input mesh. To declut-
ter the figure we clamped the curvature range, removing the 5% higher and lower vertices
to generate the colormap. Note that in regions with higher peaks the number of charts is
larger, compared to flatter regions (colored in green shades - closer to 0 Gaussian curva-
ture in the color scale). Regions with higher peaks are farther away from a plane (and thus
not as developable), and require more and smaller charts, which reduces the amount of
simplification. Those small charts, after the chart re-triangulation, remain with the same
number of triangles, as in the input mesh. However, in most cases, meshes are not formed
only by regions with high Gaussian curvature, in that sense, most cases present some
room for simplification. Therefore, we reached a maximum error of 0.05 and a speedup
of 1.65 times by computing distances in a base mesh resulting from a 43% simplification
of the input mesh.

Figure 5.10 illustrates the isolines computed on a terrain model. This particular model
is an example of surface where distance computation is frequently required. For exam-
ple, in games where performance has priority over precision, our method can be used to
compute paths for agents with high performance as we present in chapter 6. Figure 5.11
illustrates the effect of introducing noise in the input mesh before simplification.
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(a) Input Mesh (b) Base Mesh (c) Base Mesh (Input Mesh +
Noise)

Figure 5.10: Kilimangiaro terrain. Item (a) represents isolines of the distance field com-
puted on the input mesh. Item (b) illustrates the isolines computed on the base mesh. This
base mesh was constructed from a global parameterization of the input mesh. While the
base mesh, from item (c), was too constructed from a global parameterization, noise was
introduced on the input mesh (only the result computed on the base mesh is illustrated).
See figure 5.11 for the histograms of item (b) and (c).

(a) L2 from figure 5.10(b) (b) L2 from figure 5.10(c)
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(c) Kilimangiaro Mesh
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(d) Kilimangiaro Mesh + Noise

Figure 5.11: Relation between parametric distortion and error on the distance computa-
tion. (a) and (b) depict the L2 distortion present in the parameterizations that constructed
the base meshes used on (b) and (c) from figure 5.10, respectively. The uniform distribu-
tion of distortion, due to the introduction of noise, results in an almost linear increase of
error, see (d). This is the result of the wave front continually passing over distortion. As a
result, the error, created due the distortion, is continuously added to the distance that the
wave front encode. Note that the upper bound error in (c) and (d) is different.
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5.4 Discussion

Our approach is based on quasi-developable mesh segmentation and parameteriza-
tion. In that sense, meshes with high Gaussian curvature require small charts to avoid
distortion, limiting the amount of simplification. While parameterizing the mesh in charts
reduces global distortion, this approach tends to concentrate distortion in the boundary
between charts. As a result, chart boundaries can present discontinuities, see figure 5.12.
Note the discontinuity in the isoline that is crossing a frontier between charts. This may
not be suitable for applications where the distance field must be smooth. A possible so-
lution is to use a global smooth parameterization, as in the work of Khodakovsky et al.
(KHODAKOVSKY; LITKE; SCHRöDER, 2003). The use of such approach would allow
us to remove the scale factor used to transmit the windows between charts frontiers. This
would further reduce the memory footprint, of our method, and would allow the direct
use of distance computation algorithms developed for triangular meshes, without modifi-
cations such the one presented in section 5.2.4. However, such global parameterizations
tend to have a larger total distortion, compared to independent charts.

(a) Chart boundary (b) Isoline

Figure 5.12: Chart boundary between two charts (a) and isoline visualization (b). Note
the discontinuity in (b) due to edges having different sizes in each chart.

A limitation of our method is related to the base mesh construction, which cannot
be done in real-time, limiting its use to static meshes. Considering memory footprint,
our method requires more static memory, due to requiring two meshes (input mesh and
base mesh) and the mapping between them. However, only the static memory footprint is
increased, which is not the bottleneck of state-of-the-art distance computation algorithms.
On the other hand, the same parameterization, used in the mapping between both meshes,
can be used to map textures on the input mesh. Mapping textures is required in several
applications, and reusing the parameterization for this task can be explored, for example,
to improve the performance of procedural texture techniques.

5.5 Conclusion and Future Work

In this chapter we presented a mesh simplification method for accelerating on-surface
distance computation. The results show that our method can improve the performance of
distance computation algorithms with controllable accuracy. The method is particularly
useful for real-time applications, such as games, where several agents must navigate on
the surface of meshes, as we show on the next chapter. A possible modification to further
improve the efficiency of our method is to compute the distances on the GPU.
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6 MULTI-AGENT NAVIGATION GUIDED BY DISTANCES
COMPUTED ON THE PARAMETRIC DOMAIN

In this chapter we explore the gains of performance of computing on-surface distances
in the parametric version of the mesh. Due to the gains of performance of such approach
we present in this chapter a new path planning algorithm intended to navigate agents in
the surface of arbitrary meshes.

Path planning for multiple agents is an open research topic that has been increasingly
explored in the literature, especially in the game development community. Issues like
navigation and interaction between multiple agents, as well as scalability with respect to
scene size and agent number, have been recently addressed to provide increased realism
in dynamic and complex scenes.

Recent research efforts can be divided into two main approaches: those based on au-
tonomous interaction between agents and those dealing with directing whole crowds to a
given destination. Algorithms that address both approaches are, as a rule, computationally
expensive and unsuitable for real-time simulations.

Furthermore, most solutions to date limit the movement of agents to the Euclidean
plane. This restriction is unsuitable for scenes where agents need to move over curved
surfaces. In this chapter, we propose a method for navigation of multiple individuals
on non-planar surfaces, allowing multiple destinations and collision avoidance between
agents. Our technique imposes no limitations on the nature of the underlying mesh, which
can have any genus (see Figure 6.1), as well as arbitrary shape. To the best of our knowl-
edge, the work (TORCHELSEN et al., 2010) is the first to propose a completely general
approach to non-planar path planning.

Figure 6.1: Four different views of a scene where agents navigate on the surface of a
complex triangular mesh. Agents are color-coded by their different objectives. The sys-
tem supports path planning of multiple agents on non-planar surfaces, and imposes no
limitation on the domain mesh, such as this mesh with more than one genus.
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The main contributions presented in this chapter can be summarized as follows:

• A method for multi-agent navigation on non-planar triangular meshes using geodesics

• A multi-resolution technique that allows new destinations for agents to be defined
at runtime, while maintaining interactive frame rates

• An efficient GPU-based approach for collision avoidance between agents with min-
imal synchronization, which maximizes performance by exploring the massively
parallel architecture of modern GPUs

• A hybrid CPU/GPU path planning pipeline that explores the best qualities of each
processor

This chapter is structured as follows. Section 6.1 discuss previous work relevant to
the contributions presented in this chapter. We address the issue of global navigation in
Section 6.2, presenting our approach for distance computation and our parallel pipeline,
used to obtain interactive frame rates. In Section 6.3, we focus on the local movement
of agents and collision avoidance. Section 6.4 presents results obtained with our method,
as well as the implementation and performance data. Finally, in Sections 6.5 and 6.6, we
discuss limitations, conclusions and avenues for future work.

6.1 Related Work

Path planning of multiple agents can be summarized in terms of two main concerns:
global and local navigation. Global navigation simply deals with the path an agent must
follow to its destination, while local navigation ensures that agents will avoid obstacles
and other agents, while minimizing deviation from the original path.

The proposed path planning method computes geodesic distances over a mesh to de-
fine the global path, while using a novel local navigation method. This new approach
is a parallel algorithm with very few synchronization points, which makes it particularly
suitable for GPU implementation. In what follows, we discuss previous work concerning
global and local navigation.

6.1.1 Global Navigation: Distance Computation

Agents moving in a virtual environment typically have to navigate towards a set of
objectives. The global path that each agent follows to its goal can be defined by several
techniques. The agents can walk directly towards their targets (BERG; LIN; MANOCHA,
2008) or they can move following precomputed roadmaps, as is the case of van den Berg
et al. (BERG et al., 2008b). Other approaches for defining the global path of an agent also
avoid sharp turns due to obstacles along the way. Thus, the path chosen is a compromise
between the shortest possible path and a solution that smoothly dodges static obstacles.
This approach is discussed in the work of Silveira et al. (SILVEIRA; PRESTES; NEDEL,
2008).

These techniques, however, are restricted to planar domains. More general approaches
that can deal with non-planar surfaces usually involve computing distances on the surface
of a triangular mesh. This can be done using several algorithms, such as Dijkstra’s algo-
rithm (DIJKSTRA, 1959) (and its variations), Fast Marching (FM) Methods (SETHIAN,
1999) and Window Propagation (SURAZHSKY et al., 2005). Dijkstra’s algorithm and the
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FM methods give approximations of the geodesic distance on a mesh, while the Window
Propagation technique gives exact results.

Because of its relatively low cost most applications that require interactivity use Dijk-
stra’s algorithm to compute approximations to geodesics. However, our distance compu-
tation method is more accurate than Dijkstra’s methods and is still capable of maintaining
interactive frame rates. Furthermore, Moreira et al. (MOREIRA; VELHO; CARVALHO,
2005) demonstrate that using Dijkstra’s algorithm to approximate geodesic paths can lead
to poor results when compared to FM methods.

6.1.2 Local Navigation: Collision Avoidance

Collision between agents becomes an important concern when agents are moving in
a sufficiently crowded environment, as demonstrated by Thalmann and Musse (THAL-
MANN; MUSSE, 2007). Local navigation techniques exist to avoid collision while min-
imizing deviation from the globally optimal path. Local navigation methods have been
proposed in the literature, as in van den Berg et al. (BERG; LIN; MANOCHA, 2008)
and Guy et al. (GUY et al., 2009), who extended the concept of Velocity Objects (FIOR-
INI; SHILLER, 1998) from robotics to scenarios densely populated with agents. Van den
Berg et al. assume similar collision avoidance reasoning for every agent, which results in
collision-free and oscillation-free motion.

Fulgenzi et al. (FULGENZI; SPALANZANI; LAUGIER, 2007) apply the concept
of Probabilistic Velocity Obstacles (PVO) (KLUGE; PRASSLER, 2004) to a dynamic
occupancy grid, to estimate the probability of collision when there is uncertainty in the
position, shape and velocity of the obstacles. Lamarche and Donikian (LAMARCHE;
DONIKIAN, 2004) propose a method for real-time navigation on complex scenarios us-
ing topological structuring on the geometry of the environment. Finally, Paris et al. (PARIS;
PETTRE; DONIKIAN, 2007) present a predictive agent-based approach where the agents
react to possible collisions by sampling their surroundings and extrapolating their trajec-
tories.

Some authors also focus on crowd behavior. Yeh et al. (YEH et al., 2008) introduce
the concept of Composite Agents to model complex interaction among individuals. Their
technique is based on emergent behavior among agents, such as aggression and priority.
Foudil and Noureddine (FOUDIL; NOUREDDINE, 2006) address collision avoidance by
introducing priority rules and social behavior to the individuals. Other authors, such as
Silveira et al. (SILVEIRA; PRESTES; NEDEL, 2008), propose hybrid algorithms that
combine global paths and collision avoidance in their techniques.

It is important to note that, in most prior work, local navigation relies heavily on dis-
tance measurements between agents and obstacles. This makes such techniques unsuit-
able for use in non-planar surfaces, where computing distances is typically an expensive
operation. Our work addresses this problem and enables a fast and reliable local naviga-
tion technique over non-planar surfaces.

In the next section, we discuss how the method performs global navigation. We
demonstrate how to compute a hierarchical distance field over the domain mesh, and how
the path planning pipeline employs separate, parallel threads to construct this distance
field efficiently while maintaining interactive frame-rates.
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6.2 Global Navigation

In our path planning technique, each agent moves toward one of n different objectives
on the mesh. Each of these objectives is defined by a point pi over the surface S of the
domain, and for each pi we construct a distance field fi : S → R. As can be seen in
Figure 6.2, given any point on the mesh, the field fi determines the shortest distance to
the objective pi. The gradient ∇fi of a distance field gives the direction of the shortest
path (also known as the direction of steepest descent) from any point on the domain to its
corresponding objective. Therefore it is this direction that agents follow in our method.
Using distance field gradients as the direction of the agents’ movement has the advantage
that any single individual deviating from the optimal route to avoid obstacles can easily
return to the shortest path once it has moved around the obstruction. Also, this technique
causes fewer collisions than roadmaps, since roadmaps tend to group agents close together
on the same path.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Distance Field Each objective pi defines a distance field fi over the domain
mesh. In this figure, the surface is colored by distance, and all values are normalized
to the interval [0, 1]. Agents follow paths of steepest descent along ∇fi to reach their
destination.

Most path planning techniques to date have used Dijkstra’s algorithm or its variations
to compute distance fields over a mesh due to its low computational overhead. However,
distance fields created in this way are very rough approximations of the correct, geodesic
distance field, and their paths of steepest descent are not very smooth. Our distance com-
putation method (chapter 5) addresses the computational cost of algorithms that compute
distance fields over irregular triangular meshes.

Irregular triangular meshes are the most common form of surface representation in
computer graphics, due to the irregular structure being optimal for multi-resolution; for
example, we can have more vertices in regions that need more information, but avoid
wasting memory and computation in flat regions. We can see an example of an irregular
mesh in figure 6.3.
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(a) (b)

Figure 6.3: Illustration of an irregular mesh and two paths computed over it. The orange
and yellow paths were computed on a search space defined as an irregular graph. The
graph of the orange path was formed by the vertices of the mesh as nodes, while the
graph of the yellow path was formed by triangles as nodes.

Most graphic applications use irregular meshes as the method to represent surfaces;
however, irregular meshes are not optimized for surface navigation, mainly due to the
irregular neighborhood between vertices and its irregular size of triangles.

The A* (HART; NILSSON; RAPHAEL, 1968) is one of the most well know search
algorithms used when the search space is an irregular mesh. The A* is based on the
Dijkstra’s graph-search algorithm, which is intended to identify the shortest path between
two nodes of a graph (single-source shortest problem). The mesh connectivity between
vertices or triangles can be interpreted as a graph, and a path on the surface can then be
computed as a graph-search problem. Figure 6.3 illustrates two paths computed using a
graph search algorithm.

The orange path in figure 6.3 was computed in a search space defined as a graph
formed by vertices’ connectivity. This means we can only navigate on mesh edges. We
can cite two problems with this type of search space: irregular neighborhood and irreg-
ular edge lengths. The irregular neighborhood implies that we cannot predict the neigh-
borhood of vertices and we must explicitly store the vertex connections. In addition, the
irregular length of edges makes it hard to define a minimal geodesic path. Furthermore, it
is difficult to define a smooth path on a multi-resolution mesh as the one from figure 6.3.

The yellow path from figure 6.3 illustrates the use of another search space, which
is also defined as a graph. In this case, we use the mesh triangles as nodes, and the
connectivity is defined by triangles sharing an edge. The main issue here is the irregular
size of the mesh triangles; in general, the path is defined by connecting the center of the
triangles, which, again, turns a minimal geodesic path difficult to establish.

Eventhough our distance computation algorithm can reach high performances on dis-
tance field computation in general, simultaneously computing many different distance
fields over a mesh is still a costly operation. Since this is a requirement for a system
that supports multiple goals, we have designed a hybrid CPU/GPU pipeline that can sus-
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tain interactive frame-rates by scheduling different threads to gradually compute distance
fields in increasing resolutions.

6.2.1 Hierarchical Computation of Geodesics

The first step in our path planning pipeline involves computing the distance fields over
the mesh on the CPU, as can be seen in Figure 6.4. We use the CPU for this task due to
the nature of distance field computation. Distance field algorithms typically employ a
variable advancing front over the mesh, which is hard to implement on classical GPU
programming models.
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Figure 6.4: Path planning pipeline. Path planning system architecture. On the left,
the CPU side is responsible for computing the hierarchical geodesic distance fields. The
GPU, on the other hand, reads the available distance fields to guide the agents, and imple-
ments our grid-based collision avoidance technique. Note that since our system computes
distance field of progressively finer resolution, there may be different versions of the same
field in the pipeline.

Naturally, an agent bound to objective pi requires that ∇fi, and hence fi, be computed
before it can start moving. In order to maximize interactivity, we compute a hierarchy of
distance fields for each objective. This computation proceeds from a coarse version of
the mesh all the way to the original domain, and is done in parallel threads that do not
block the simulation. Thus, agents can start moving almost immediately, and will follow
a progressively more accurate path as higher-resolution distance fields become available.
Whenever an agent receives a new goal pi it immediately sends a message to the system
requesting ∇fi. If no version of ∇fi is available, this request is added to a queue of
distance fields that need to be computed. This queue is always traversed from lowest to
highest resolution, to ensure that agents can start moving as soon as possible.

Distance fields and their gradients are transferred to the GPU as soon as they are com-
pleted by the CPU threads, and the system tells agents to update their distance fields every
time higher resolutions become available for use. Due to a limitation on the architecture
of current GPUs, we must preallocate memory for all versions of the distance fields at
start-up. This is due to the fact that current GPUs do not allow dynamic memory alloca-
tion during code execution. The system limit to the number of distance fields, usually, is
the number of agents because the worst case, in terms of computational cost, is each agent
walking toward a unique goal which requires a distance field for each agent. However,
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the limitation on the amount of memory, usually, is the limiting factor on the number of
distance fields available per instant.

Although this system efficiently provides smooth shortest-paths for agents to traverse,
it does not in any way avoid collisions between agents and obstacles. To address this,
we propose a simple grid-based obstacle detection and avoidance approach, which we
describe in the next section.

6.3 Local Navigation

Even though steepest descent lines along a single distance field will never cross, when
dealing with multiple objectives in a single scene it is entirely plausible that the path of
different agents will intersect, potentially leading to collision between them. We propose a
simple grid-based method that deals with collision avoidance while minimizing deviation
from the optimal path. In the following sections, we describe the collision avoidance
grid and the procedure to determine a new moving direction for agents that must round
obstacles.

6.3.1 Collision Grid

Agents need to know, with some anticipation, whether there are obstacles in their in-
tended path, so they may change their direction and avoid collisions. Our method uses
a static 3-D grid to store the current position of each agent in the scene. Each cell in
the grid holds a binary flag indicating whether or not there is an agent in that cell. We
chose this simple structure because it minimizes the need for synchronization between
parallel threads controlling multiple agents, turning it ideal for GPU implementation.
Bleiweiss (BLEIWEISS, 2009) uses a hash table for their GPU-based path planning algo-
rithm, but due to the peculiarities of GPU programming this hash table is implemented on
the CPU. We chose a simpler grid data structure precisely to avoid such complications.
Another advantage of using a grid is that it obviates the need for nearest neighbor queries
over the scene domain. While these queries are usually simple for planar domains, nearest
neighbor computation on meshes of arbitrary shape can be a very costly operation.

Our local-navigation scheme begins with each agent tagging, as occupied, the grid cell
that encloses its center of mass. Following, each agent tests its preferred path for collision
against the collision grid. If the path is collision free, the agent can follow it; otherwise,
a new path is defined and again tested for collision. The process is repeated, until a free
path is found.

Since agents are controlled by parallel threads, the grid cell tagging must be done as
an atomic write. It is, however, the only synchronized operation in our algorithm. Even
if agents are larger than the grid cell size they only mark a single cell. This improves
performance by minimizing the number of critical sessions involved. Our grid sampling
strategy ensures that agents will be able to detect one another even when they are larger
than the cell they occupy.

When attempting to move forward agents first sample the grid in a neighborhood
of their current position and intended path, searching for tagged cells. If they find any
obstacles they randomly choose a small amount of time to stop and then select a new
moving direction. The stop is intended to give passage to other agents and reduce the
chance of a deadlock. We explain the process of choosing a new direction in further detail
in section 6.3.2. Figure 6.5 illustrates the collision test process.

In our algorithm, local navigation is affected by three main parameters: the size of
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Figure 6.5: An agent A1 moves to its target p1. At each step through the global path,
the agent checks the grid in its local neighborhood for occupation. The sampling radius
around the agent depends on the ratio between the agent’s radius and the grid resolution.

the sampling neighborhood, the grid resolution and the discrete step r taken by agents for
each time step. The radius of the sampling neighborhood is defined by the ratio between
the agent’s radius and the grid resolution. Thus, if the agent is much larger than a grid
cell, it will accordingly check more cells around its neighborhood. This ensures that
agents will not collide even though they only tag a single cell in the grid. Nevertheless,
the grid resolution should be close to the agent size, striking a balance between memory
usage and accuracy of the results. Finally, r is a discretization parameter that is usually
set as the radius of the agent.

One drawback of our collision avoidance method is that agents only avoid one an-
other when they are relatively close. A more refined approach could be achieved by
making agents modify their distance fields, for example by adding a Gaussian bump to
their local neighborhood. This would make other agents smoothly avoid contact, but at
an increased cost, since the fields would have to be modified dynamically. This would
leave few computational resources available for other parts of an interactive application,
such as rendering and, in the context of games, AI and sound. Our approach is a simple
compromise with small computational overhead.

Another advantage of using a 3-D grid, as opposed to a structure defined directly on
S, is the ability to naturally support external obstacles not on the mesh. Moreover, two
agents can be close enough to collide even though the distance between them on S might
be arbitrarily large. Figure 6.6 depicts an example of these cases. Only a true 3-D data
structure can naturally deal with these situations.

6.3.2 Finding an Unobstructed Direction

In order to simplify our collision avoidance scheme, the result of sampling the grid
is a binary answer. Agents have no knowledge as to where along their path the collision
occurred. Therefore, our collision avoidance mechanism searches for new paths around
the original one, and repeats the grid sampling in these new directions.
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Figure 6.6: Spatial collisions. Our grid-based collision avoidance system is capable of
detecting collisions between agents that are far apart over the surface of the mesh, even
though they are close together in terms of simple Euclidean distance (observe agents A1

and A2). Also, it allows agents such as A3 to avoid obstacles not necessarily on the surface
of the mesh.

The modified path through which an agent will move is defined by following a new
vector constructed by rotating ∇fi. This makes the agent follow a logarithmic spiral that
converges on the objective, as we illustrate in Figure 6.7. By traveling on this spiral,
instead of the original path, agents can smoothly avoid obstacles along the way.

To determine the rotation angle for the spiral, agents progressively test wider rotations
around the original path, as depicted in Figure 6.8. For each candidate rotation, the agent
repeats the collision test described earlier. This process terminates either when the agent
finds a free path, or when the rotation angle reaches a user-defined upper limit. This
upper limit, β, exists to ensure that agents will not curve too sharply. If the agent cannot
find a rotation smaller than β, it stops for a small random amount of time, waiting for
its neighboring agents to move out of the way. Note that a small β may result in an
agent holding forever in front of a static obstacle. However, if the obstacle is static it
can be considered in the gradient generation, that way, the global navigation would give a
collision free route. This can be done by removing, from the surface mesh, the intersection
of the obstacle with the surface.

The agents gradually blend the rotated vector with the original direction. This results
in a smooth transition between the path of steepest descent and the collision-aware route.
A drawback of this approach is that some collisions may still occur in very specific condi-
tions where agents can’t dodge one another quickly enough. In our experiments, however,
this was not the dominant situation.

After an agent has rounded an obstacle, it can safely return to the path of steepest
descent (see Figure 6.9). Therefore, we reset the rotation angle and repeat the collision
test at every time step.
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Figure 6.7: Rotating the Gradient. Rotating the global path by a constant angle results
in progressively wider logarithmic spirals. As long as the rotation angle is less than 90◦,
however, the spirals are guaranteed to converge on the objective, as can be seen in this
illustration. When the angle is exactly 90◦, the path is a circle around the objective, and if
the angle is more than that, the path diverges to infinity. Note that item A is the result over
the simple gradient of item B. However, in a concave surface, instead of a rectangular as
in this case, the resulting paths would be different because the resulting gradient would
be different from item B.

6.4 Results

We have conducted our experiments on an Intel Core 2 Quad running at 2.83GHz,
with 3GB of RAM, and an NVIDIA GeForce GTX260 graphics card. We have tested our
system with three different meshes, the Stanford Bunny, the Fertile dataset and the Moai
Statue. Table 6.1 shows the size of these datasets.

Model Name Vertex Count Face Count
Fertility 4994 10000

Moai Statue 10092 20180
Stanford Bunny 34834 69664

Table 6.1: Test Datasets. This table shows the size of the datasets we used as surfaces for
our path planning algorithm.

As can be seen in Figure 6.10, our method performs at interactive frame rates even
with a large number of agents. It is interesting to observe that the performance of the
system is practically constant when the number of agents is less than 512. This is due to
the fact that, as long as this number is less than the amount of threads supported in the
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Figure 6.8: Collision avoidance. When the steepest descent path is blocked by an obsta-
cle, agents progressively search for wider rotation angles around the original route. This
is done by adding clockwise and counter-clockwise increments kα to the original path,
where k is an integer factor.

graphics card, all the work is parallelizable. Once the number of agents goes beyond this
value, the card must make more than one serial pass to generate the results. Therefore, it
is expected that the performance will decrease gradually as the number of agents increases
by increments of 512. Also, we have included a graph showing the performance without
rendering, to better highlight the computational cost of our path planning technique.

Although Figure 6.10 shows results for only a single mesh (the Fertility model), we
have observed that all meshes have a similar performance behavior, since the query for
the gradient over the mesh can be done in constant time. The only performance figure
that varies with mesh size is the time it takes to compute the distance fields and send
them to the GPU. These were 1.5 seconds for the Stanford Bunny, 0.3 seconds for the
Moai Statue and 0.12 seconds for the Fertility model. We can observe a strong correlation
between these times and the number of triangles of the models.

It is interesting to note that the performance of our local navigation system does not
depend on the size of the datasets. This is due to the fact that our implementation allows
agents to fetch ∇f in constant time. Also, the performance loss that we observe when
increasing the resolution of the grid is probably due to caching behavior on the graphics
card, since the grid is stored in random access memory.

Figures 6.11 and 6.12 show our path planning algorithm running on two different
datasets. In both cases, the agents are color-coded by their objective, which is also ren-
dered as a solid sphere.
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Figure 6.9: Finding a free route. An agent A1 must find a collision-free path to the goal.
The path of steepest descent causes a direct collision between A1 and A2 (a). A1 then
rotates its original direction in search of a free route (b), until it finds a rotation angle
wide enough to avoid A2 (c). Finally, after avoiding A2, the agent again follow the path
of steepest descent to the goal (d).

6.5 Discussion and Limitations

Our global navigation approach is similar to existing techniques in the literature,
where we define agent movement by the gradient of a distance field. However, we found
no existing mechanism of local navigation that could easily be extended to arbitrary sur-
faces. Therefore, we designed a simple grid-based collision avoidance system that strikes
a compromise between collision-free navigation and smooth movement. While our so-
lution does not, in principle, guarantee that no collisions will occur, we have conducted
experiments and concluded that collisions are avoided in most of the situations, which
is acceptable for games given the ability to navigate on arbitrary meshes. One of the
main advantages of tagging only one cell of the grid is the reduced concurrent writing.
However, it assumes a sphere or cube bounding box around the agent. For handling
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Figure 6.10: Performance Graphs. Depicted here are performance results of our algo-
rithm. We measured FPS in an interactive system while varying the number of agents and
the resolution of the collision grid. On the left, we illustrate the results of running our path
planning algorithm with rendering enabled, while on the right we show the performance
of the path planning pipeline running without rendering.

less-regular-shaped agents, we could store shape information, along with the tagging in
the collision grid. The collision test would also have to be enhanced for using irregular
shapes.

We have designed and implemented a solution meant to be practical. Although the
3-D grid has limitations, such as forcing a compromise between memory usage and sim-
ulation accuracy, the simplicity of this data structure makes it very well suited for imple-
mentation on the GPU. The massively parallel nature of this processor is very attractive
to regular data structures, which need no dynamic updates and have a predictable access
pattern. This access pattern naturally improves the performance of our algorithm, due to
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Figure 6.11: The Stanford Bunny. Four time steps of a multi-agent simulation running
on the surface of the Stanford Bunny dataset, observed from two different camera posi-
tions. The agents are colored according to their objectives, which are also rendered as
solid spheres. This simulation was executed with 512 agents over the mesh.

efficient memory caches. Also, our technique imposes an affordable computational over-
head, and can therefore be easily integrated into larger applications, such as games and
VR environments.

Figure 6.6 depicts a situation where two agents that are close together will collide
even though they are far apart on the surface. This is correct and expected behavior, but
our solution might fail in the opposite case, that is, when two agents are on opposite sides
of a positively curved surface, such as a sharp bump on the mesh. This can happen mainly
due to an excessively coarse grid, resulting in an overly conservative collision avoidance
test.

Our approach aimed at avoiding collisions without trying to mimic particular behavior
of the agents (ants, humans, etc.). The motivation for our approach was performance,
which usually limits the design of most path planning algorithms in games. In general,
games use the same path planning algorithm for all kinds of agents, only changing their
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size and speed, due to the computational cost for handling more complex agents.

6.6 Conclusion and Future Work

This chapter presented a novel approach for multi-agent path planning on arbitrary
surfaces. To our knowledge, the work (TORCHELSEN et al., 2010) was the first work
in the literature to address this problem. Our solution makes no assumptions about the
domain mesh, and can handle surfaces of arbitrary shape and genus. We use a hierarchical
computation of geodesic distances on the domain to define a scalar field whose gradient
smoothly guides the agents to their goals. In order to avoid collision between agents
we designed a grid-based local navigation algorithm that can also handle obstacles not
on the mesh. Our collision avoidance technique is approximate, but we have conducted
many experiments and found that few collisions occur. We have also integrated these
techniques into a hybrid CPU/GPU pipeline carefully designed to exploit both processors
particular strengths. We have implemented the hierarchical distance field computation on
the CPU, and the massively parallel collision avoidance algorithm entirely on the GPU,
using CUDA.

Currently, our method requires that the domain mesh be static. To allow dynamic
domains it would be necessary to modify the hierarchical distance field computation to
update its results every time the mesh changes, as well as update the agents position to en-
sure that they are still properly on the mesh. Another challenge for future work is to design
and implement a more refined data structure to deal with collision avoidance. Hierarchical
structures such as kD-trees or Octrees present themselves as attractive alternatives.

Another direction of research is to compute the local navigation entirely in the para-
metric domain, as we do with the distance computation (see chapter 5). This would allow
the use of existing local navigation techniques, because the parameterization is defined in
2-D. However, the local navigation would only consider collisions on the surface of the
mesh and performance might become an issue for real-time applications.
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Figure 6.12: The Moai Statue. Time step of the algorithm viewed from two different
positions, simulating 512 agents on top of the Moai Statue. In this image we can observe
that some collision cases occur, as can be seen on the nose of the model. This is rare, how-
ever, and happened in this case only because there are two objectives very close together
(the green and blue-gray objectives).
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7 CONCLUSION

This work’s contribution to computer graphics comes from using unfolded meshes
to improve the efficiency and visual quality of several techniques, such as displacement
mapping, on-surface distance computation and agent path planning.

The contribution on efficient rendering and reconstruction of surfaces encoded on
displacement maps allows the use of more detailed surfaces in virtual environments. The
visual appeal of such surfaces, particularly terrains, plays a major role in user immersion
in the virtual environment. This contribution allows the use of more detailed surfaces
particularly in games. The contributions to displacement mapping are also discussed in:
(TORCHELSEN; BASTOS; COMBA, 2008) and (TORCHELSEN et al., 2009).

Another important contribution is the efficient computation of on-surface distances,
which is a process used on several applications, including: procedural textures, surface
labeling, remeshing, mesh segmentation, agent path planning, etc. The use of quasi-
developable charts to compute on-surface distances has increased the computational effi-
ciency, in some cases, by more them an order of magnitude.

On-surface distance computation in parametric space, to the best of our knowledge,
was first presented on (TORCHELSEN et al., 2010). The use of parametric space is a
general method, in the sense that it can be used on most existing distance computation
techniques, not being restricted to any specific algorithm. This part of the work is also
discussed in (TORCHELSEN et al., 2009).

The agent path planning algorithm presented in this thesis is an example of a new re-
search line created by the presented on-surface distance computation method. Until now,
the movement of agents in real-time applications was limited to almost-planar surfaces.
The possibility of computing geodesics in real-time allowed for the development of a
method to navigate agents on more generic surfaces. Even though there was a significant
improvement in performance on the distance computation side of the agent path plan-
ning equation, the computational cost of simultaneously calculating several on-surface
distances is prohibitive for real-time applications using only the CPU or the GPU. A path
planning algorithm was thus developed to distribute the computational cost to both pro-
cessors.

An important part of this work is designing the methods to combine the processing of
the CPU and GPU. Using a hybrid approach the agent path planning method is capable
to navigate 512 agents in real-time on the surface of complex meshes. This technique is
also discussed in (TORCHELSEN et al., 2010).
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The applications of this work are many; furthermore, new research lines are possible,
including:

• Distance computation algorithm: The use of quasi-developable charts to compute
distances can be further improved. Currently our method re-triangulates the interior
of the charts to use existing distance computation algorithms. Those algorithms are
designed for triangular meshes. The re-triangulation may be unnecessary, because
the boundary of the charts already defining the region that is quasi-developable.
An algorithm to compute distance fields in the interior of simple polygons, besides
triangles, can be more efficient due to the reduced number of geometric primitives.

• Real-Time Procedural Textures: Procedural coloring of surfaces, as in Walter
et al (WALTER; FOURNIER; MENEVAUX, 2001), requires on-surface distance
computations, which can now be computed more efficiently. Such techniques can
now be extended for interactive simulations.

• Agent path planning in the parametric space: The presented agent path planning
technique uses distances computed on the parametric space, however, the collision
avoidance is computed in object space. Computing the entire process in parametric
space can improve the performance by eliminating one dimension from the space
used in the collision avoidance step.
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