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Abstract: Besides neodymium, the chemical composition of Neodymium–Iron–Boron (NdFeB) perma-
nent magnets possibly contains other rare earth elements (REEs) such as praseodymium, dysprosium,
and terbium. Among its applications, NdFeB magnets are essential for Hard Disk Drives (HDDs) in
computers for data storage, in Mobile Phones (MPs), and in acoustic transducers. Because REEs were
classified as critical raw materials by the European Union and the USA, the recycling of them has
become an important strategy to diminish supply risk. Therefore, in this publication, the authors
have uncovered the recycling potential estimate (RPE) of these four REEs from both end-of-life (EoL)
secondary sources. The results were based on the time-step method, using in-use stock and sales
data from Brazil over the last decade (2010–2019). Moreover, the NdFeB magnets were characterized
by content and weight to a more accurate RPE. The EoL generation over the decade studied showed
different scenarios for MPs and HDDs, mainly due to lifespan, social behavior regarding storage
and usage, and resources. Under those circumstances, the RPE revealed 211.30 t of REEs that could
return as raw materials in the last decade, of which approximately 80% is neodymium. Unfortunately,
recycling rates are still too low, even more so in Brazil, which is problematic for the future REE supply
chain and electronic waste figures.
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1. Introduction

Waste Electric and Electronic Equipment (WEEE) contain strategically important
metals, from copper, gold, and platinum to the Rare Earth Elements (REEs). More recently,
WEEE have been considered secondary raw materials due to the possibility of obtaining
the same materials/compounds of ore exploration through recovery. Not only does it
allow for the advantages of environmental conservation, energy savings, and a smaller
carbon footprint, but also the valuable metals stay inserted in the economic circular chain.
The European Commission [1] has classified REEs as critical raw materials considering
the supply risk, assigning a substitution index above 0.9 on a 0–1 scale. Such a high
index emphasizes the difficulty in metal substitution and uncovers an urge to develop
recovery routes for these elements through sustainable recycling processes. Moreover, the
worldwide criticality of REEs is mostly related to the concentration of processing, refining,
and manufacturing solely in one country. The fact that China produces 80–85%, refines
95% of the REE metals, alloys, and magnet powders, and manufactures over 80% of the
Neodymium–Iron–Boron (NdFeB) permanent magnets [2] (one of the main REEs in the
industrial sector, reaching 31% of all metal consumption in 2016 [3]), is determinant for an
unbalanced supply and demand [4]. Since 2011, after the price spike of REEs by 600–3000%
compared to 2009 [5], researchers worldwide have focused their efforts on the recovery of
REEs, mostly from end-of-life products containing NdFeB magnets [2,6].
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The variety of uses for NdFeB magnets includes electric and electronic equipment.
Habib [7] has classified the end-use products containing NdFeB magnets into three levels
based on the mass per product, lifespan, and degree of accessibility for resource recovery.
Level 3 has the smallest lifespan (1–6 years) and the smallest magnet size per product unit
(1–15 g), which includes mobile phones (MPs), hard disk drives (HDDs), etc. As a result,
the short lifespan of level 3 products allows for their rapid appearance in the waste flows
whereas products in the other levels only enter the waste flows in the future, since their
lifespan is extended. Consequently, HDDs and MPs have been the main focus regarding
the recovery of REEs from NdFeB magnets. In 2007, it was estimated that global use of
computers and audio systems accounted for 33.8% and 24.1% of all NdFeB magnet use,
respectively, which in terms of mass corresponded to approximately 62,000 t [8]. Since
then, many years have gone by in which these shares have changed, but unquestionably,
NdFeB magnets from HDDs and MPs today have not yet lost their relevance regarding
in-use stocks and recycling potential.

End-of-Life (EoL) generation estimation is an action to increase worldwide collection
and recycling rates. Article 7 of the WEEE Directive [9] in force in the EU states that the
Member States shall collect annually: (i) the minimum of 65% of the average weight of
electrical and electronic equipment placed on the market (PoM) in the three preceding
years or (ii) 85% of the WEEE generated on their territory. With that in mind, the estimation
of WEEE generated provides the advantage that it should more accurately reflect the
amount of waste arising that can thus be collected [10]. Additionally, WEEE generation
estimation is important for the planning of collection and take-back systems provided
by local governments, developing specific policies in which informal WEEE handling
should be mitigated [11]. In order to keep monitoring WEEE generation, the use of
data reporting with a satisfactory and harmonized methodology is essential [12]. Input–
Output Analysis (IOA) models quantitatively describe the dynamics, magnitude, and
interconnection of product sales (the flow of products into society), stocks (accumulation
in the built environment), and lifespan (end-of-life after a certain period). Moreover, IOA
is the most frequently used method with multiple model variations for estimating WEEE
generation in many regional studies. There are a few models that use at least two of
the previously cited variables, for instance, the time-step model wherein the change of
stock within a period in a system equals the difference between the total inflows and
outflows [13]. However, some limitations emerge when the sales data of the product is not
accurate enough.

According to Rademaker et al. [14], until the late 2020s the global potential recycling
supply of Nd would mainly come from end-of-life HDDs. Additionally, based on market
growth and criticality towards REEs, pushed by wind generators and motors, scrap NdFeB
magnets have been identified as a priority material for recycling in Europe [15]. The
total amount of Nd accumulated by the in-stock market resulted in about 14,300 t in the
EU in 2016, where voice coil motors (HDDs) represent more than 80% of secondary Nd
reserves [16]. In addition, Material Flow Analysis (MFA) performed in the same study
showed results where 50% of the annual Nd demand in the EU could be met by the
domestic secondary supply during that year. Another study, performed in the EU again
by Reimer et al. [17], showed that between 2018 and 2040, the overall realistic recycling
potential would be 25,675 t NdFeB magnets, corresponding with 7100 t of Nd and 1100 t of
Dy, in contrast to the 232,891 t of NdFeB magnets from the theoretical recycling potential in
the same period, according to their assumptions.

Since there are no reported data in Brazil on the recycling potential of REEs in sec-
ondary sources of the NdFeB magnets from end-of-life MPs and HDDs, this work aims to
estimate the missed REE quantities from WEEE. In-stock and sales data, as well as lifespan
during the last decade (2010–2019), were adopted to calculate EoL generation according
to the time-step method. In addition, the NdFeB magnets were evaluated with regards
to their weight and chemical composition over the years, and the influence from techno-
logical changes that the NdFeB magnets were submitted to was also assessed. Finally, the
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determination of the recycling potential estimate (RPE) of REEs contained in these magnets
according to WEEE generation and NdFeB characteristics in this period were addressed.

2. Materials and Methods

Following the REE recycling potential estimate, firstly the EoL generation of MPs
and HDDs was investigated using the time-step method, mostly due to data availability
and because MPs and HDDs are suitable for non-mature markets, in which technological
changes have a considerable impact on the lifespan of the equipment. Thus, according to
Equation (1) [13,18] the estimation was calculated, in which sales in the evaluation year i
and stock data for two consecutive years (i and i − 1) are factors taken into consideration
and shown in Appendix A for the last decade in Brazil.

EoL generationi= Salesi − (Stock i − Stocki − 1) (1)

Secondly, an exhaustive random collection from final consumers of end-of-life MPs
and HDDs was performed to quantify the weight and composition of NdFeB magnets.
Based on the average lifespan shown in Appendix B provided by a few studies in Brazil,
the dates of the manufacturing years considered for the RPE were 2005 through 2014 for
HDDs and 2007 through 2016 for MPs. These data were collected as follows: for HDDs,
the manufacturing year was observed on the label. If the year was not available, the HDD
was not considered for the work. For MPs, the manufacturing year was researched online
according to the brand and model, which was found printed on the chassis when the battery
was removed. If no information was yielded or a doubt was raised, the MP was also not
considered for the work. The sample size within each year varied from 3 to 29 for both MPs
and HDDs. After manually dismantling each device, the NdFeB magnets were isolated,
weighed, and proceeded to quantification using Optical Emission Spectroscopy Inductive
Coupled Plasma (ICP OES—Agilent Technologies 5110, Santa Clara, CA, USA) through
leaching (solid/liquid ratio of 1/20 g/mL concentrated nitric acid, 175 ◦C, and 20 bar) in a
microwave (Multiwave, Anton Paar). The other parts, such as polymers, metallic chassis,
printed circuit boards, and screws were correctly disposed of.

According to Schulze and Buchert [19], a recycling potential is an amount, in terms
of mass, of REEs which can be supplied from secondary sources. Therefore, to relate the
generation of MPs or HDDs with the mass of REEs (W), Equation (2) was used. Based on
the weight and composition of NdFeB magnets, the final amount, in t, might be estimated.

Wi,j,k =
EoL generationi,k · xj,k · zi−a,k

106
[ g

t
] (2)

where EoL generation was calculated by (1) (units), x is the composition (wt.%) of REEs, and
z is the weight of the NdFeB magnet (g/unit). Index i corresponds to the year (2010–2019)
analyzed, index j corresponds to Nd, Pr, Dy or Tb, index k corresponds to the EoL device
type (MPs or HDDs), and index a corresponds to 3 or 5, which stands for the lifespan (in
years) of the corresponding end-of-life device (Appendix B).

Other assumptions: (i) the weight of the NdFeB magnet (parameter z) was obtained
for each year throughout the ten-year range except for the HDD in 2014, where the data
was lacking. In this situation, the adjacent immediate year was used for the RPE calculation;
(ii) the REE composition of NdFeB magnet (parameter x) was considered as an average
value throughout the ten-year range for both end-of-life devices’ technology.

3. Results
3.1. End-of-Life Generation

Mobile phones have shown a descending lifespan over the years, which was reported
by a few authors in a Brazilian context (Appendix B), reaching 1.98 years for smartphones.
A Chinese survey [20] also stated that in 2011 approximately 12% of consumers changed
MPs in less than a year and in 2018 this number increased to 26%. In addition, in 2018 only
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10% of consumers kept the same MP for more than three years. The main reason, reported
by 44% of consumers in 2018, was the fashion pursuit. Consequently, Moletsane [21]
projected 41.8 million t of MPs as end-of-life generation in 2014, increasing to 44.7 million
t in 2016 and 48.7 million t in 2017. The study performed by Guo et al. [22] affirms
that in China there were an estimated 800 million units of obsolete MPs in 2017 and, in
comparison, worldwide MP users reached 7.74 billion units. Another report [23] estimated
that 400 million units of MPs were discarded globally each year until 2012, and China alone
contributes to one quarter of these.

In a Brazilian scenario, Araújo et al. [18] estimated 2250 t/year of waste MPs in 2008,
meanwhile, UNEP [24] projected 2200 t/year in 2005. In Figure 1, it is revealed according
to equation (1) and Brazilian data that the EoL generation of MPs initiated the decade in
2010 with 23.76 million units. Then, it reached a peak of 74 million units in 2015 when a
subsequent declining behavior was observed, finishing 2019 with nearly 51 million units of
EoL MPs. Considering that every MP weighs 62.30 g on average [25], the EoL generation
in terms of mass equates to 1480 t, 4610 t, and 3186 t in 2010, 2015, and 2019, respectively,
which is in agreement with the estimations provided in the previously cited studies.
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Moreover, Rodrigues et al. [26] reported that circa 60% of MPs in São Paulo city were
acquired in the last two years and more than 30% within two to five years, comprising
the period from 2014 to 2019. The same survey also showed that 52% of the out-of-use
MPs stored by owners were functional, meaning that substitution is related to damage as
well as programmed obsolescence. In addition, 47.3% of households have reported having
discarded at least one MP up to 2019. Another study performed by Nowakowski [27]
in Poland suggested the same behavior of storing, mostly for probable future use, and
concluded that the tendency to stockpile is increasing due to newer MP models being
offered by telecommunication companies in shorter periods of time. A different study [28]
revealed that the top reason for substituting a MP is function upgrading, driven by fast
technological advances. Although both studies were not based on Brazilian customers,
the generated WEEE numbers revealed here suggest similarities. One of the reasons for
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this is the reported change in mobile technology from 3G (third generation) to 4G (fourth
generation) that began in 2015, according to ANATEL [29], and reached 62% of Brazilian
users in 2019, in contrast with nearly 10% that remained on 3G and the other 10% on 2G
(second generation). With new mobile technology advances, it is reasonable to follow
better quality and velocity in internet connection with new suitable devices [30]. Despite
slow economic growth, Brazil is currently expanding telecommunications (4G technology)
coverage over urban areas but has been mainly focusing on remote areas over the last
few years, where there is an opportunity gap, consequently encouraging dwellers to buy
smartphones suitable for internet broadcast [31]. Overall, 558.58 million units of MPs were
sold over a decade, while 505.88 million units of MPs were generated as waste, representing
a high usage turnover of more than 90%.

When considering computer wastes, and consequently their HDDs, there are reports
following the same increasing tendency of EoL devices as MPs over the years. An es-
timate in Chile reached a cumulative number of 165,300 t in 2020 [32] accounting for
both notebooks and desktops from all sources (households, businesses, and governments).
Worldwide, the ascending cumulative amount of computer waste started with 4.8 million
units in the 80s, then jumped to 553 million units in 2000, and by 2015 it was estimated
to be an astonishing amount of 2020–2073 million units [33]. In 2012 Brazil and Mexico
generated 0.50 kg and 0.45 kg of computer waste/person/year, respectively [34].

Accordingly, Figure 1 shows that EoL generation of HDDs showed a slight increase
from 2010 through 2019, ranging from 1.93 million units to 5.10 million units.
Rodrigues et al. [26] argued that a Brazilian governmental social program called “Per-
sonal Computers for All” stimulated high volumes of acquisitions until 2011, when the
program was terminated, resulting in 80% of computers from households in São Paulo
city being purchased within this period. This was similar in other major cities across the
country. In addition, the same survey revealed that computers were discarded mostly with
the intention of reuse (73%) and recycling (22%). Henceforth, this is related to the low gen-
eration of EoL computers, which is interesting to observe since the stocks (Appendix A) are
estimated to be high and increasing. The reason for this accumulation is linked to the fact
that people tend to reuse personal computers, which can be upgraded, unlike MPs. Many
governments and private campaigns reinforce the advantages of reusing and rebuilding on
behalf of the economically disadvantaged population [35], even though a piece of research
called PNAD (Pesquisa Nacional de Amostra de Domicílios, in Portuguese) conducted
by IBGE [36] recently revealed that only 48.1% of residences used any computer to access
the world wide web in 2018, a number 4.3% lower than the previous year. Therefore, the
decade showed low usage turnover, approximately 21%, because only 33.82 million units
of EoL HDD were generated in relation to the amount sold in the same period.

3.2. NdFeB Magnet Weight and Content

Because MPs were developed in the late 80s, technological evolution over the years
has resulted in some significant changes. Initially, MPs had small displays and the battery,
buttons, and circuits were a considerable size. In the following years, downsizing was the
main goal until recently, when flat touchable screens became the most important attribute
in smartphones, which today are used for entertainment rather than communication [28,37].
By evaluating the weight of the NdFeB magnets from acoustic transducers in grams, over
the years of manufacturing and device technology (60 feature phones and 74 smartphones),
the data were plotted in Figure 2. The first noticeable aspect was the NdFeB magnet
weight heterogeneity (error bars) within the same year, which is related to different brands
and their manufacturing designs (brands with the most repetitiveness: Motorola, Nokia,
Samsung, Siemens, Sony, LG, and Apple). In fact, design particularities continue to be the
key to selling success but consequently reduce the lifespan [38].
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Secondly, an ascending tendency within the 2007–2016 period was observed, mostly
influenced by a transition in MP technology usage: obsolete feature phones were no longer
observed in the collection waste flow from 2012 onwards in contrast to the opposite trend
with regards to smartphones until 2009. Essentially, once the value of a smartphone had
been highlighted, a feature phone’s value for money seemed far from ideal. In addition,
the attractiveness of smartphones to customers throughout the years was influenced by
many of the new technologies that were being incorporated. Consequently, the weight
of the NdFeB magnet started to increase in 2009; however, due to constant redesign and
advances in technologies, a stagnation yielded to consistency in efficiency. Nonetheless,
the difference between the heavier and lighter NdFeB magnets showed once again that
MP design and features followed no pattern among brands and models. The increase
over the years ranged from an average of approximately 0.4 g to an average of nearly
1.3 g. In comparison, according to Ciacci et al. [16], voice coil motors in MPs account
for 0.05–0.2 g Nd/unit and acoustic transducers account for 0.3–1.4 g Nd/unit, showing
similar results. Likewise, Singh et al. [25] found 1.09 g on average in feature phones and
1.32 g in smartphones.

Collection from final consumers provided 106 desktop HDDs and only 10 notebook
HDDs, resulting in over 200 NdFeB magnets, which were generally found in pairs attached
to the voice coil system, generating the movement that allows reading and writing data in
disks. The average weights of the NdFeB magnets in the HDDs were evaluated over the
years of manufacturing and the data were compiled in Figure 2. The error bars represent
the heterogeneity of each sampling year, in which a significant variation ranging up to
20 g between the lightest and the heaviest NdFeB magnet was observed. This behavior is
mostly related to the different constructive details and designs resulting from differences
in companies’ engineering (Samsung, IBM, Seagate, Western Digital, and Maxtor were the
brands mostly found), requiring either more or less magnetic power from the magnets to
fulfill the demands of storage or reading/writing speed. However, there is a noticeable
decline in heterogeneity over the years, reaching less than ±0.48 g in 2013. Another
observation made was that the average weight shows oscillatory behavior over the years,
for mostly the same reasons. According to Ciacci et al. [16], these permanent magnets
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contain, in general, 0.6–2.1 g Nd/notebook unit and 3.7–7.8 g Nd/desktop unit, which was
also verified here.

The influence of the NdFeB magnet weight in the HDDs was also evaluated with
regards to the storage capacity in Gigabytes, showing increasing ratios (Gb/g) driven
mainly by the drastically increased storage capacity, reaching up to 1000 Gb for both
desktop and notebook HDDs, whereas the NdFeB magnet weight showed no proportional
increase. Upon investigation, it was clear that the HDD technology developed by each
company dictated how heavy their NdFeB magnet would have to be in order to perform
as demanded.

The REEs content in NdFeB magnets from MPs within the period between 2005 and
2016 is shown in Figure 3. Since the error bars express heterogeneity lower than 1.26%
(for Nd), it is affirmed that both feature phones and smartphones have had similar NdFeB
magnet content throughout the ten-year range. In addition, it is well known that Nd and Pr
can replace each other in the alloy without the depletion of major magnetic properties [39],
thus these were possibly used interchangeably over the years, most probably due to
price fluctuations. Tb-composition, which is related to Curie temperature, has remained
practically constant and at low levels, although prices have also suffered the same peaks
in 2011 and 2012. In recent years, the Dy-price (as oxide) reached high peaks [40] and
consequently, the amount of Dy in the NdFeB alloy was reduced from 2007 to 2016. In
2017, Siemens AG stated their aims to eliminate Dy from the NdFeB magnet used for wind
power due to price volatility [41].
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Figure 3. Rare earth element content (wt.%) in both HDD and MP NdFeB magnets within the
2005–2016 period according to the device lifespan.

Figure 3 also shows the chemical content of NdFeB magnets in HDDs following the
same tendency. It was observed that again, possibly throughout the years 2005 to 2014,
Nd and Pr showed balanced opposite composition variations among each other for the
reasons discussed previously. The error bars showed ±2.27% content variation for the Pr,
which was the highest among the REEs, possibly mostly driven by price fluctuations. The
Tb- and Dy-contents varied less intensely. Moreover, the prices of the NdFeB magnets are
difficult to track over the years since they are not a commodity [42].
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3.3. Recycling Potential Estimate (RPE)

The WEEE situation in Brazil is poorly controlled, mostly guided by the informal
recycling sector and the mixing of municipal solid waste destined to landfills or open
dumpsites. As a result, an adequate WEEE recycling rate is estimated to be only 2% [11],
whereas in Europe this number reaches 25–40% [43]. Brazil is still considered to be an
emerging economy, which means the consumption of technology is continuously increasing,
consequently demanding high REE rates and other important critical metals. A survey
performed on Brazilian recycling facilities concluded that the complex components of
WEEE are only sorted, dismantled, ground, and shipped abroad for foreign downstream
companies to overtake the recycling process, which includes printed circuit boards (PCB)
and HDDs [44]. Notably, the REE recycling rate in 2013 was estimated at 1% worldwide [45]
and 8% was reported in 2017 in Europe [1]. Considering these facts, the RPE is not based on
the collected WEEE, but on what could be achieved if a 100% collection rate was possible.

Figure 4 shows the recycling potential estimate in t, from hard disk drives (a) and
mobile phones (b) for each REE, separately, for every year during the period of 2010–2019.
Notably, MPs provide a higher RPE of REEs on average than HDDs (160.85 t and 50.45 t
(Table 1), respectively), mostly due to the significant difference in EoL generation since
each REE content varied less than 5% from one device to the other (seen in Figure 3), and
the weight of the NdFeB magnets also showed up to 10 g of difference (seen in Figure 2).
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Table 1. RPE (in t) from HDDs and MPs for each REEs and the sum within the period of 2010–2019.

EoL Device RPE Nd Pr Dy Tb REEs Sum

HDD 40.12 5.88 3.05 1.40 50.45
MP 130.76 21.01 6.59 2.49 160.85

Throughout the decade, a contrast between the two main factors in consideration was
observed for HDDs: despite the EoL slightly increasing, the weight of the NdFeB magnet
is reportedly decreasing over the years, resulting in a stagnation in RPE for all REEs, as
shown in Figure 4. The highest peak was observed in 2012, with approximately 6 t of Nd,
1 t of Pr, 0.5 t of Dy, and 0.2 t of Tb, mainly due to the second highest NdFeB magnet weight
being recorded in 2012, having been manufactured in 2007 (taking into account the lifespan
of 5 years). The lowest peak in 2013 was due to the lowest EoL generation.

Conversely, the RPE from MPs for all REEs behaved in an ascending trajectory follow-
ing the EoL generation, in which the lowest peak was in 2010 with approximately 5 t of Nd,
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0.7 t of Pr, 0.2 t of Dy, and 0.1 t of Tb, and the highest peak was obtained in 2015. From 2016
onward, because the weight of the NdFeB magnets slightly increased and the EoL genera-
tion decreased, the RPE for all REEs remained constant in elevated amounts. Although
reverse logistics is increasing as a common practice among Brazilian consumers and should
be applied according to the Brazilian law, a survey reports that 31.6% of households contain
out-of-use MPs, something characterized as the “treasure effect”, a cultural act of keeping
items with value for future usage [26]. Furthermore, around 18% of Brazilians discard
MPs in the regular municipal solid waste [46]. In addition, a survey revealed that 24% of
Brazilians are still not aware of the environmentally correct method of disposal for electric
and electronic equipment such as computers and MPs, while at the same time 17.9% of
household respondents affirmed to have discarded a computer recently [26].

According to Table 1, the lowest difference between RPE in MPs and HDDs is in
terbium: 78.23%, meaning that this is the most stable REE in terms of content throughout
years, brands, and devices. In contrast, Pr presented the highest difference, 257.29%,
reinforcing the heterogeneity in the observed content.

Regarding these heterogeneities in the weight and REEs content of the NdFeB magnets,
low and high scenarios can be practiced according to the low and high values obtained in
this research for both MPs and HDDs. For instance, the RPE from MPs and HDDs may be
43% and 81% higher, respectively. On the other hand, in a pessimistic scenario, the RPE from
MPs and HDDs could also be 61% and 161% lower than the average amounts, respectively.

4. Discussion and Conclusions

Detailed research that collects data from WEEE, which is the source of multiple critical
raw materials, is important in shedding light on RPE, not only in terms of correct disposal
but also to prevent metals with market value from going to waste. Through revealing
how many t of REEs could return to the production chain, for instance, RPE allows future
policies to be developed in Brazil since the country is still outdated regarding their WEEE
management. In addition, estimates are highly necessary in supporting the planning of
take-back schemes in the country, which must be progressive and start at cities [47]. Despite
having REE mining resources, the supply risk concern regarding these metals is neglected
and not examined the way it should be.

Recently, Ciacci et al. [16] have reported, based on an MFA performed for Nd from
secondary sources, that roughly 50% of the annual metal demand in the EU could be
met by the domestic secondary supply at current levels, indicating that these secondary
sources could partly close the metal cycle in the EU if the potentials were turned into
actual capacity. Additionally, voice coil motors from HDDs are one of the devices that the
same authors identified to likely have the most decisive effect on ensuring supplement to
primary neodymium production in virtue of the relevant neodymium in-use stock, and
considerable annual outflows from use if efficient strategies for recovery and recycling are
to be implemented.

Moreover, according to the scenario results reported by Schulze and Buchert [19], the
overall worldwide demand for NdFeB magnets in 2015 and 2030 was estimated at around
80–112 kt and 240–633 kt, respectively, for both low and high demand scenarios. Most of
these amounts would be used in motors for industrial and small automotive parts, followed
by wind generators. In a Brazilian context, a study performed by Ocharán et al. [48]
evaluated that from 2018 to 2030, only considering the wind energy sector, there will be a
demand of 1815 t of NdFeB magnets, in contrast to a production of only 824 t, following an
increasing tendency in this type of clean energy.

The importance of WEEE quantification and the RPE of REEs allows for planning
enhancements in governmental assistance, guided mostly by Sustainable Development
Goals and public health. Moreover, these kinds of studies boost decision-making in terms
of recyclability, who is involved and who is affected, the economic factors, and legislative
environmental strengthening.
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A decade of data compilation on NdFeB magnets in MPs and HDDs covered techno-
logical changes, such as the dominance of smartphone technology. Moreover, the sampling
of NdFeB magnets among different brands for both WEEE and the ten-year period, pro-
vided a statistically strong representative generalization, mainly regarding the chemical
composition findings of the NdFeB magnets. However, the reduced sampling size for
NdFeB magnets from notebooks and the lack of data for the HDD manufacturing year
of 2014 are considered limitations on the research, mostly because donations were the
only collection source, and the authors therefore had no control. Furthermore, assuming
that manufacturers have total liberty in choosing the size, shape, and composition of their
NdFeB magnets, the heterogeneity in magnet weight in both MPs and HDDs demonstrates
the difficulty of stipulating the exact amount of recycling potential.

The observed heterogeneity in weight among the NdFeB magnets was impressive,
varying from ~25 g to 0.3 g in both MPs and HDDs, which is a significant factor mostly
influenced by the device design, model, and brand. In addition, there seems to be a
tendency to diminish the NdFeB magnet size, and consequently the weight, which entirely
affects the recycling potential of the REEs from these sources. By analyzing their chemical
composition, NdFeB magnets from MPs and HDDs showed similar characteristics. The
factor price in the composition of the NdFeB magnets seemed to be relevant throughout the
years and directly affected companies’ decisions in producing the alloy. In fact, REE content
was not reported to consist of less than 20 wt.% as a sum in this or any other publication,
which is a positive aspect of facilitating recycling.

Overall, within the 2010–2019 period, HDD and MP waste generation in Brazil repre-
sents a recycling potential estimate of 170.88 t of Nd, 26.89 t of Pr, 9.64 t of Dy, and 3.89 t
of Tb. At first glance, these numbers seem insignificant, but considering a wind turbine
with 600 kg of NdFeB magnet/MW [49] and an Nd-content of 20 wt.%, then it would
be possible to install more than a thousand new wind generators, not to mention all the
carbon footprint avoided from ore exploration. When converting t into monetary gross,
according to the REE pure metals (>99%) quotation of December 2020 from the Institür
für Seltere Erden uns Strategische Metalle [50], the RPE would be worth approximately
US$ 22 million from MPs and HDDs combined. However, it is universally well known that
a 100% recycling rate cannot be achieved. This obstacle is well exemplified by the WEEE
treatment plants in Denmark that in the year 2014 alone, received 60 t of HDDs, which
comprised 1.6 t of NdFeB magnets. However, the maximum theoretical amount based
on the research would be 4.5 t of NdFeB magnets, which demonstrates that only 35% of
the end-of-life computers HDDs were successfully collected [51]. In Brazil, overcoming
conflicts between waste picker organizations and the recycling industry is reported as the
main difficulty in integrating these organizations into the reverse logistics process. These
conflicts range from the cooperative’s lack of management capacity and the associations of
waste pickers to the unwillingness of manufacturers, distributors, and retailers to work
cooperatively, especially concerning cost-sharing [52].
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Appendix A

Table A1. HDDs (computers) and MPs sales and stocks from 2009 to 2019 in Brazil (million units).

Sales and
Stocks in Brazil Computers Mobile Phones

Year Sales 1 Stocks 1 Sales 2 Stocks 3

2009 - 55.93 - 173.97
2010 12.00 66.00 52.77 202.97
2011 14.59 78.30 65.42 242.24
2012 16.20 91.60 58.59 261.81
2013 18.99 109.40 65.57 271.10
2014 22.60 128.00 70.30 280.73
2015 20.40 144.80 51.09 257.81
2016 14.20 155.00 48.41 244.07
2017 12.00 162.80 50.78 236.49
2018 12.00 170.20 47.04 229.20
2019 12.40 177.50 48.61 226.67

1 [53]; 2 [54]; 3 [29].

Appendix B

Table A2. The lifespan in years of end-of-life devices according to different authors in Brazil.

Lifespan Smartphone Feature Phone Notebook Desktop

Years

Abbondanza and Souza
(2019) [11] 1.98 2.46 4.54 6.78

Echegaray (2015) [55] 3.0 4.0
UNEP (2009) [24] 4.0 5.0

Araújo et al. (2012) [18] 4.5 5.0
IDEC (2013) [56] 2.6 3.1

Average 3.09 4.74
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