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ABSTRACT

The extraction and identification of license plates from images have numerous applica-

tions and can be used to automate and improve various processes in our society. By using

artificial intelligence, we can extract information without human interaction, reducing er-

rors, saving resources, and increasing the number of applicable use cases. In recent years,

several applications and studies have been conducted in this area, and a common problem

is the low resolution of images. In this monograph, we describe the implementation of a

license plate identification pipeline using neural networks for different purposes and ad-

dress this particular problem by introducing a Text Super-Resolution Network (TSRN).

Besides that, we analyze the results by combining different optical character recognition

(OCR) modules aiming to increase the system accuracy and robustness. Our experimental

results indicate that pre-trained OCR approaches perform very poorly for recognizing li-

cense plates, but fine-tuning them with license plate images strongly improves the results.

TSRN performed satisfactorily and produced well-defined high-resolution image, but the

overall OCR accuracy presented a marginal gain. We believe that the low-resolution prob-

lem we were trying to solve with this network was not the critical one in our test dataset.

Keywords: Automatic License Plate Recognition. Super Resolution Neural Network.

Low Resolution Images. Neural Network. Optical Character Recognition. Machine

Learning.



Usando uma rede de super resolução e reconhecimento ótico de caracteres de

propósito geral para reconhecimento de placas veiculares.

RESUMO

Extração e identificação de placas veiculares a partir de imagens têm diversas aplica-

ções e podem ser utilizadas para automatizar e melhorar inúmeros processos na nossa

sociedade. Além disso, usando inteligência artificial, é possível extrair informações sem

interação humana, o que pode reduzir falhas, economizar recursos e aumentar o número

de casos de uso aplicáveis. Nos últimos anos, diversas aplicações e estudos foram con-

duzidos nessa área e um problema frequente está relacionado às imagens de baixa reso-

lução. Dessa forma, neste trabalho, iremos descrever a implementação de um fluxo de

execução para identificar placas veiculares usando redes neurais de diferentes propósi-

tos e endereçar esse problema em particular introduzindo uma Rede de Super Resolução

de Texto. Além disso, analisamos os resultados obtidos combinando diferentes modelos

de reconhecimento óptico de caracteres visando aumentar a acurácia e robusteza do sis-

tema. Nossos resultados experimentais indicam que as abordagens de OCR pré-treinadas

têm um desempenho muito ruim no reconhecimento de placas, mas realizar o fine-tuning

com imagens de placas melhora consideravelmente os resultados. A técnica TSRN teve

um desempenho satisfatório e produziu imagens de alta resolução bem definidas, mas a

precisão geral do OCR apresentou um ganho marginal. Acreditamos que o problema de

baixa resolução que estávamos tentando resolver com essa rede não era o crítico em nosso

conjunto de dados de teste.

Palavras-chave: Reconhecimento de placas veiculares automático, rede neural de super

resolução, imagens de baixa resolução, rede neural, reconhecimento de caracteres óptico,

aprendizagem de máquina .
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1 INTRODUCTION

The license plate (LP) is the most important information about a vehicle from

the point of view of security and authorities since this unique sequence of characters is

able to identify a particular car, motorcycle, or other vehicle traveling on the roads of a

country or region. In Brazil, for example, there were more than 111 million registered

vehicles in 2021, according to the Brazilian Institute of Geography and Statistics (IBGE)
1. The unique LP number can be used for different applications: for security reasons,

surveillance cameras can be used to track the path of a vehicle; in parking lots, the license

plate number can be used to calculate the number of hours a car has spent there; in traffic,

LPs are used to check for violations of the law.

Finding a way to automate the identification of LPs can improve efficiency and

reduce costs in several areas. However, most automatic license plate recognition (ALPR)

solutions on the market require environment specifications in terms of camera placement

or design, which reduces the number of applicable use cases. As an example, Figure 1.1

shows a parking entrance control solution 2 that requires the camera position to be set to

capture frontal vehicle images in order to correctly detect and recognize the LP. According

to the manufacturer, their solution achieves high accuracy, and in this case, taking control

over the scene and the position of the object is not a problem. However, it is not suitable

for all cases where ALPR could be used.

Figure 1.1 – Example of ALPR system available in the market with restrictions related to the
object position for LP recognition.

In this way, solutions that accept images without a predefined camera setup are
1IBGE - Licensed vehicles in Brazil (2021): https://cidades.ibge.gov.br/brasil/pesquisa/22/28120
2Ticketless ANPR solution from Parkxper company: https://parkxper.com/lpr-e.html
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very flexible to adapt to common situations, but the detected license plate may contain

artifacts such as blur, saturation, light variations, or low resolution. In such cases, the

final task of recognizing the LP string can be compromised.

1.1 Goals

This work tackles a particular type of artifact expected to arise in generic cap-

ture setups: low-resolution license plates, which arise when the vehicle is sufficiently

distant from the camera. We will explore the combination of a Text Super-Resolution

Network (TSRN) with Optical Character Recognition (OCR) networks aiming to improve

the recognition rate of low-resolution license plates. As a starting point, we will use the

TSRN proposed in Wang et al. (2020b) to deal with low-resolution images, and evaluate

different training strategies that either aim to maximize the quality of the super-resolved

image or integrate an OCR module and maximize its recognition rate.
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2 RELATED WORK

Automatic License Plate Recognition (ALPR) systems are typically developed as

a pipeline in which each step or module is responsible for a specific task. In an overview

of the ALPR system defined in this work, we can see three main fronts: the license plate

detection module, which is responsible for license plate identification and extraction; the

license plate recognition module, which is responsible for converting the text image into

characters; and, as one of the proposals of this work, the super-resolution module, that

will handle low-resolution images. In the next sections, we will introduce in detail each

of these modules used to build the ALPR pipeline used in this work and the publications

where the modules were originally proposed.

2.1 License Plate Detection

Deep learning techniques have improved various image processing tasks such as

object detection and optical character recognition. Over the years, several CNN archi-

tectures have been proposed to handle license plate detection (LPD) typically based on

generic object detectors, either in one-stage detection (LP is recognized directly from

the image) or with two-stage detectors (first the vehicle is recognized, then the vehicle

clipping is used for LPD). In both strategies, LPD can be viewed as a specialization of

generic-purpose object detectors trained with LP images.

As an example of generic-purpose object detection that is commonly adapted to

traffic applications, we can mention the YOLO family (REDMON et al., 2016), (RED-

MON; FARHADI, 2017), (REDMON; FARHADI, 2018) (WEN et al., 2022). The core

idea is to treat detection as a regression problem and to associate class probabilities to each

object in a single neural network. By adopting this strategy, YOLO networks provide fast

predictions and are often used in real-time scenarios. Analyzing the YOLO versions over

the years, we can notice several upgrades such as the two-stage detector (LI et al., 2017),

new backbone proposals based on CSPNet (WANG et al., 2020a), new data augmentation

methods (BOCHKOVSKIY; WANG; LIAO, 2020), and different improvements that make

these networks widely used in the field of object detection and customized for ALPR sys-

tems. However, in this work, generic object detectors are not the focus, so we will not

describe the aspects of these models deeply. We recommend Boukerche and Hou (2021)

for more details.
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In camera setups where oblique views of the LP are generated, the use of bounding

box object detectors may result in a very coarse representation of LP. In these cases, OCR

is also more challenging to perform when compared to mostly frontal views since the

LP characters are distorted by perspective projection. The method presented in Silva and

Jung (2018) addresses the entire ALPR pipeline and focuses on detecting distorted LPs.

It consists of three main modules: (i) vehicle detection; (ii) license plate detection and

unwarping; (iii) OCR. These three modules are explained in more detail next:

i) The YOLOv2 (REDMON; FARHADI, 2017) network was used for vehicle de-

tection because it provides fast prediction and acceptable accuracy for the case of

interest here. Since YOLOv2 is already able to classify a significant number of

classes, including vehicles, no modifications were required to adapt the network

for this module. Even though newer techniques for object recognition are available

(PAL et al., 2021), we decided to use YOLOv2 for simplicity, since Silva and Jung

(2018) provide a repository with free access to the code, and because of the ro-

bustness shown in the work mentioned. Besides that, the pipeline has the modules

well defined and decoupled which helped the replacement and adaptation of new

networks.

ii) When YOLOv2 indicates a positive result for a vehicle, the image is processed by

WPOD-NET (Warped Planar Object Detection Network) (SILVA; JUNG, 2018),

whose main goal is to identify the area of interest and represent it as an affine-

transformed rectangle, represented as a quadrilateral. A planar homography trans-

form can then be used to project the LP onto a frontal view. Figure 2.1 shows

examples of LP oblique views, which are the main use cases of WPOD-NET.

Figure 2.1 – Oblique LP examples which are the main target problem that we aim to solve using
WPOD-NET.

To accomplish this task, WPOD-NET uses a CNN (Convolution Neural Network)

architecture with seven residual blocks and 21 convolutional layers. A residual
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block consists of connecting one layer to the next and also to the layers a few steps

away. The convolutional layers, which give their name to this architecture, can be

defined as a kind of hidden layer that applies a filtering function to the input data.

The result of this operation is a feature. The deeper the convolutional layer, the

higher the level of the extracted feature (HE et al., 2016a). Figure 2.2 shows the

WPOD architecture in detail, giving an idea about all operations performed in a car

image until extracting the LP rectangle.

Figure 2.2 – WPOD-NET architecture (SILVA; JUNG, 2018).

iii) After getting the LP in a frontal perspective, the final step is to identify the sequence

of characters on the image. For this purpose, the authors used a modified YOLO

network for OCR (MONTAZZOLLI; JUNG, 2017) trained using a dataset of syn-

thetic LP images. The data was generated by applying random transformations to

add noise, blur, and lighting variation to produce artifacts that might occur in real-

world scenarios. To improve the performance in this type of task, a useful strategy

can be applied that uses heuristics to determine the characters, since we have a

well-defined pattern in license plates (LEE et al., 2010). In Brazil, for example, the

current LP format has three letters, one number, one letter, and two numbers. Using

this condition, we can then optimize the OCR results. Nevertheless, we will not

focus on this strategy in this work.

2.2 Image Super-Resolution

A super-resolution process aims to produce an image with better resolution – a

high-resolution (HR) image – than its low-resolution (LR) version. There are several
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approaches to super-resolution: for example, image processing filters like bicubic inter-

polation were commonly used in the past (LIU; GAN; ZHU, 2013/11), (RUANGSANG;

ARAMVITH, 2017). With the advance in deep learning techniques, CNNs achieved bet-

ter results and led recent works in this area (ZHU et al., 2021; KIM et al., 2021). We can

also see proposals of distinct loss functions to solve reconstruction problems like noise

and lack of details in the generated image (LEDIG et al., 2017). To alleviate training

times with very deep networks, residual blocks can be included to increase convergence

rates, as we can see in Lim et al. (2017), Zhang et al. (2018).

There are also some approaches that focus on specific classes of images, such

as those containing text. For example, a Text Super Resolution Network (TSRN) was

proposed in Wang et al. (2020b), and it appears to be a good choice for improving the

quality of low-resolution LP images. The main modules are:

i) use of sequential residual blocks, whose main idea is to take advantage of the se-

quential property of text images. Its implementation is based on the principle of

recurrent neural networks (RNN) (HE et al., 2016b) and uses a residual block with

a bidirectional LSTM mechanism. Figure 2.3 provides a high level description of

this module.

Figure 2.3 – Text Super Resolution Network architecture (WANG et al., 2020b).

To understand these concepts, it is convenient to define the RNN architecture first.

Unlike CNNs, where neurons in layer N − 1 are connected to neurons in a layer

N in a sequential manner, RNN connections can form cycles. Thus, the output of

a particular neuron can influence the subsequent input of the same node, creating

this temporal aspect that is useful in tasks such as speech or text recognition, or

any other context that involves sequential input dependence. However, it has limits:
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in speech recognition, for example, the gap between a pronoun and the subject is

quite large, and the cyclic connections of RNNs are not sufficient to recover this

dependency. For this reason, the Long Short-Term Memory (LSTM) architecture

implements a powerful memory and is a suitable option to solve various problems

where RNNs reach their limits. In addition to LSTM, there is bidirectional LSTM,

which implements a similar mechanism to LSTM, but where information flows

through cells in both directions, improving dependency recognition in sentences

and speeches (HERNáNDEZ et al., 2019).

ii) Focus on the boundary reconstruction, a specific loss was designed to sharpen the

character boundaries. Termed as “gradient profile loss”, it has shown useful to

better distinguish between the characters from the background and to obtain more

evident shapes.

iii) Finally, a central alignment module is used to solve the problem of misalignment

between pairs of LR and HR images. Implemented using a spatial transform net-

work (STN) (JADERBERG et al., 2015) in combination with thin plate splines

transformations (TPS), the alignment module can handle spatial variations in a flex-

ible way and better align the corresponding pixels.

An important contribution of Wang et al. (2020b) was also the dataset used for

training their model. Called TextZoom, the set of images contains pairs of real low- and

high-resolution text scenes captured by cameras with different focal lengths and no spe-

cific environment specification like light intensity or orientation. Some examples can be

seen in Figure 2.4. In this way, TextZoom simulates real cases better than LR datasets cre-

ated from degraded HR images (also called synthetic low-resolution images). Although

this most straightforward technique of creating low-resolution images from the HR ver-

sion has been widely used to train and validate several Super-Resolution (SR) methods,

the results obtained decrease significantly when applied to real scenes due to possible

domain shifts. Nevertheless, datasets of synthetic low-resolution images were crucial for

SR advance and are referenced in several papers demonstrating significant improvements

in SR area using deep learning (DONG et al., 2016; KIM; LEE; LEE, 2016).
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Figure 2.4 – TextZoom dataset samples: low and high resolution pairs of "SERVICE",
"POSTAL", "STATES", "UNITED" words.

2.3 License Plate Recognition

Given the LP image, the final step of ALPR consists of obtaining the LP number,

which is basically a string. Some methods, such as the ones chosen by Silva and Jung

(2018), use object detectors to find individual characters and their respective categories

(i.e., the letter or number) and then form the final string. However, this strategy requires

bounding box annotations for each character which reduce the amount of data available

and inject complexity into the labeling process.

On the other hand, there are several general-purpose OCR approaches that require

only string-level annotations, such as MORAN (LUO; JIN; SUN, 2019) and ASTER (SHI

et al., 2019), which are easier to annotate. In this type of mechanism, OCR usually works

under the text scene using an attention-based method that simulates human cognitive at-

tention: it focuses on a small (but most important) portion of the input data to extract

information. Also in the case of the previously mentioned OCRs, Convolutional Recur-

rent Neural Networks (CRNNs) are used as base architecture and combined with ASRN

(Attention-based sequence recognition network) and LSTM mechanisms to build the text

recognition modules. Thus, MORAN and ASTER can predict an entire string focusing

on each character in a different moment while considering the adjacent area with less at-

tention. To deal with unaligned text, both networks include rectification modules and can,

therefore, successfully recognize challenging text scenes as shown in Figure 2.5.
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Figure 2.5 – Text scene samples used for ASTER and MORAN validation in (SHI et al., 2019;
LUO; JIN; SUN, 2019).
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3 DATASETS

For this work, we used three datasets for training, validation, and cross-dataset

testing, as we will see next in details. Since the main motivation for adding a text super-

resolution module was to adapt the ALPR system to achieve better results in real scenes,

the tests should be performed with real traffic scenes. In this sense, two of the datasets

used for this work contain images taken with traffic cameras under different conditions.

The other is the TextZoom dataset mentioned in Section 2.2, which was used to perform

the initial TSRN training, since the use of pairs of real low and high-resolution images

may be beneficial for the final ALPR system. The datasets are briefly described next.

• RodoSol (Laroca et al., 2022): this dataset contains 20,000 single-shot images of

different cars, motorcycles, trucks and vans captured in pay tolls located in the

Brazilian state of Espírito Santo. The dataset is organized in four categories: car

images with license plates in legacy format, car images with license plate in Mer-

cosul format 1, as well as motorcycles in both the legacy and the Mercosul format.

Nonetheless, focusing on our case of study, a subset of 10,000 images has been

created containing only car images balanced between both LP formats. In Figure

3.1, we can see image samples extracted from the RodoSol dataset.

Figure 3.1 – Image samples from RodoSol dataset.

1The Mercosul license plate identification system was implemented in 2020 and it is a unified system
that includes all the countries in the Mercosul economic block
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• UFPR-ALPR (Laroca et al., 2018): this dataset was created using a car-mounted

camera tracking vehicles on Brazilian roads. A total of 150 vehicles were tracked

on different routes, taking 30 photos by car from many perspectives. The vehicles

were cars, motorcycles, trucks, buses, and vans. However, for our study, we selected

only car images creating a subset for testing with 2,815 samples. Figure 3.2 shows

images of three vehicles taken in different positions on the road to illustrate the idea

of the Rodosol dataset.

Some features of this collection were considered to select it as a test dataset, such

as the different distances between the car and the camera, resulting in cropped LPs

at different resolutions. Another aspect was the multiple perspectives we have of

the cars. As can be seen in Figure 3.2, we have different angles and views, which

is perfect to verify that our ALPR system is independent of environment settings or

camera setups. Both attributes are consistent with our proposed goals: dealing with

low-resolution license plate images coming from generic capture setups.

Figure 3.2 – Image samples from UFPR-ALPR dataset.



22

• TextZoom (WANG et al., 2020b): unlike RodoSol and UFPR-ALPR datasets, the

focus of TextZoom is not vehicles or license plates. This dataset was created for

general text recognition purposes and contains text images in several font styles,

sizes, rotation angles, and colors. In total, the dataset contains 21,740 text scene

images organized in a subset for training with 17,367 images (around 80% of the

collection) and a subset for testing with images classified in three different levels of

difficulty: easy, medium and hard. Misalignment, font style and character ambigu-

ity are the aspects used to classify an image in one of these three levels of difficulty.

Besides that, these text scenes are true low- and high-resolution image versions, and

that was our motivation for including this dataset in our training strategy.

Figure 3.3 – Image samples from TextZoom dataset.
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4 THE PROPOSED METHOD

The combination of the two works described in the previous chapters –ALPR (SILVA;

JUNG, 2018) and TSRN (WANG et al., 2020b) – is expected to create an improved ALPR

system that can achieve higher accuracy when compared to the baseline ALPR system

proposed by Silva and Jung (2018), particularly for low-resolution LPs. Since TSRN leads

to better-defined boundaries around the character and other improvements mentioned in

Section 2.3, the idea is to introduce this new component between the rectification and the

OCR module, as illustrated by comparing the high-level architecture proposal by Wang

et al. (2020b) in Figure 4.1 and the architecture containing the SR module in Figure 4.2.

In other words, TSRN will be responsible for refining the LP image produced by the rec-

tification module by alleviating low-resolution degradations and enriching the content to

boost OCR performance.

Figure 4.1 – ALPR high level architecture proposed in Silva and Jung (2018).

Figure 4.2 – High level architecture proposal representing the modified ALPR system including
TSRN module.

Although using a pre-trained TSNR as a black box in the ALPR pipeline might

be a natural choice, there are several related questions that we want to answer. For ex-

ample, regarding the OCR modules, we want to test whether string-level OCR trained
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with generic text performs better than character-level OCR. One of the advantages of us-

ing string-level OCRs is the ability to explore the semantic patterns of words in a given

language. For example, in English, the character “t” is more likely to be followed by

an “h” than any other letter (JONES; MEWHORT, 2004), so the model can learn these

patterns and use them as an advantage. Since there is no semantic dependency between

letters in the LP context to explore, using character-level OCR seems reasonable. How-

ever, given recent advances in string-level models and the ease of dealing with string-level

annotations, testing the performance of these models in the LP context could result in a

feasible option. We also want to test whether fine-tuning a model for the LP context using

a network previously trained with generic-text images works well in our ALPR system.

Regarding the TSRN, we also have some validation points about fine-tuning. The

pre-trained SR network chosen for this work was previously trained with generic-text

images. So, is fine-tuning required to achieve acceptable performance in the context of

LP? Or is the TSRN able to adapt to the LP context using only generic-text images as

the training dataset? The last question we want to answer with our experiments concerns

the loss function used during the TSRN training phase. Since the purpose of TSRN is

our application to produce an increased-resolution image that improves OCR inference,

rather than an image that is visually better, it is logical that OCR performance affects

TSRN loss. To test this assumption, one of our experiments includes training the TSRN

module using a loss resulting from the combination of OCR and TSRN losses.

For evaluation, the dataset UFPR-ALPR was chosen because it contains a large

number of cases that include images of cars at different positions and distances from

the camera. In this way, we were able to analyze ALPR performance not only for low-

resolution LP images, but also in cases where light variations or the presence of shadows

obscuring the LP make character recognition difficult. As for the metrics used in this

work, full OCR accuracy is the one that could guarantee the best usability of our system,

and we consider one case as correct when the OCR output completely matches the LP

alphanumeric sequence. That is, if one or more characters do not match the content of

LP, it is considered an incorrect case penalizing the metric result. We chose this approach

because, in a real-world use case, a single incorrect character is sufficient to invalidate the

entire ALPR result, so the system is only useful when the entire sequence is correct.

On the other hand, the use of accuracy by character rather than by LP sequence

might give a false idea of the actual performance of ALPR. This is because even if the

ALPR output contains one incorrect character in all cases, the overall accuracy is about
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85% (for a LP with seven characters). However, there is not a single case that we can

consider correct from the perspective of real-world application, and this was the reason to

choose accuracy by sequence to evaluate the ALPR proposed in this work, which gives a

better sense of usability when applied in real scenarios.

4.1 Training and Evaluation Strategies

One of the goals of this work is the creation of an ALPR system that is independent

of environment settings, i.e., a generic ALPR system capable of identifying LPs in several

capture setups, including views that were not used during the training. To validate this

capability, we performed a cross-dataset testing using the UFPR dataset only for testing,

while RodoSol was used to train and validate both the OCR and TSRN. Since UFPR

dataset contains different vehicle categories and our focus is on car images, we selected

only the images of interest with a total of 2,815 captures, some of them related to the

same vehicle but with a different view. This collection served as a test dataset used to

check the impacts of our enhancements and it was not used to train the TSRN or any of

the mentioned OCRs.

The experiments performed in this work are mainly related to two ALPR modules:

the new super-resolution module and OCR. TSRN training and fine-tuning were necessary

because our first tests after the introduction of the SR module did not reflect a significant

enhancement of the ALPR system, which led us to think about the use of fine-tuning

techniques to obtain better results. On the other hand, the widespread use of ASTER and

Moran OCRs was a motivation to evaluate these OCRs in our new ALPR version.

Regarding the vehicle detection module, we note that most object detectors pro-

vide pre-trained weights in datasets that contain vehicles (such as VOC 2012 and COCO

2017), and any of them (such as Gao et al. (2019), Wen et al. (2022)) can be used. How-

ever, we decided to keep using the YOLOv2 implementation for simplicity. Therefore, as

a suggestion for future works, we can replace the vehicle detection module with a more

recent object detection network. Next, we present the training setup related to different

modules of the ALPR pipeline.
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4.2 TSRN

With respect to the datasets used to train TSRN, we continue to use TextZoom

since the authors mentioned that using real low- and high-resolution image pairs instead

of synthetic LR images was one of the main reasons to achieve better results in real scenes.

Since such a dataset contains text images related to general-purpose applications, we ex-

plored transfer learning with LP images to direct our network to the area of interest with-

out losing the advantage of the TextZoom dataset.

The TSRN training used the same hyperparameters provided in the original paper:

learning rate of 0.001, downsampling scale of 2, 500 epochs and Mean Squared Error

(MSE) as loss function. With this configuration and using pre-trained ASTER as OCR, we

got an accuracy of 73.4% / 54.93% / 38.72% against the TextZoom (easy/medium/hard)

collection.

Unfortunately, after some experiments described in more detail in Chapter 5, we

found that fine-tuning is needed and that a collection of low- and high-resolution LP

pairs is required for us to proceed. The lack of available datasets for this purpose led

us to create our own set using the RodoSol dataset, the WPOD network, and simple

downsampling algorithms. First, we extracted all LP images from the RodoSol dataset

using WPOD net, assigning the rectangular area to each LP image. This allowed us to

determine the best options for high-resolution LP images. The next step was to obtain

the low-resolution pair by reducing the images by a factor of 2 and adding noise. The

method used for the downscaling was interpolation, and we also added Gaussian noise

and randomly changed the value of some pixels to simulate a degration like salt and

pepper. The parameters such as the number of pixels to change and the noise standard

deviation σ to calculate the Gaussian blur were also randomly generated, allowing us to

create multiple low-resolution versions for each high-resolution image. In the end of this

process, we had two datasets: the first one with the 1,000 and the second one with the

5,000 highest resolution images of LP extracted from RodoSol.

In Figure 4.3 we can see some examples of images used as high-resolution and

one of the possible low-resolution versions. Since this synthetic dataset was used only to

fine-tune our net, we hope that the weights do not suffer extreme changes and lose the

benefits of TextZoom.
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Figure 4.3 – RodoSol image examples used as high and low resolution pairs to fine-tune TSRN.

4.3 OCR

In Silva and Jung (2018), the OCR task was performed by training an object detec-

tor for each character, as mentioned in Section 2.3. However, since MORAN and ASTER

achieved remarkable results on general text scene images even in cases of oblique per-

spectives, it would be an interesting test to evaluate these networks in LP recognition

scenarios, and this was the motivation for some of experiments described in Chapter 5.

In addition, string-level annotations are easier to obtain than annotating each individual

character allowing us to build a dataset of LPs to fine-tune string-level OCR models for

this context.

Since ASTER achieved the highest performance among the OCR models tested,

we selected this model to specialize using transfer learning techniques to recognize LP

and replace the OCR module in the final ALPR version. The details of this and the

previously mentioned experiments are presented in Chapter 5.
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5 EXPERIMENTS AND RESULTS

In order to analyze each of our proposals, we have defined a series of experiments

to modify and test the new modules in an incremental and controlled way. For each

experiment, we also compute the accuracy over the test dataset as a method to evaluate

whether the change resulted in a better ALPR version.

5.1 Experiment 0

The first experiment was to define our starting point, which was the original ALPR

presented in Silva and Jung (2018) without the SR module and using the character-level

OCR. With the baseline approach, we achieved 53.57% of accuracy (a result is considered

correct when all characters in the LP are correctly recognized), which presents potential

to improve. Some examples where the actual ALPR did not perform well are shown in

Figure 5.1, where the ground truth and the OCR output are shown in the bottom right of

each image.

Figure 5.1 – Result samples from experiment 0 with expected and predicted OCR result.

As we can see, the original ALPR achieves reasonable accuracy, but there are still

a considerable number of cases that we need to work on and try to improve. In the next

experiments, we will apply the previously proposed changes aiming to achieve higher

accuracy over the same testing data.
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5.2 Experiment 1 and 2

The next two experiments were related to the OCR module. In this step, we mod-

ified the original OCR, which is based on object detection using the YOLO architecture,

and replaced it with ASTER (SHI et al., 2019) and MORAN (LUO; JIN; SUN, 2019) net-

works. Both works provide a pre-trained network that can be easily used – just to have an

idea about the previous results of these networks, ASTER achieved an accuracy of 89.5%

in the SVT dataset1, while Moran was able to get an accuracy of 88.3% in the same data

collection. In other words, both networks excel when we are dealing with generic text

recognition. In that way, since we are using the pre-trained networks for generic text

recognition, we will analyze if these models are able to have a similar performance when

applied in LP context, in which text images have different aspects than the generic text

scenes used to train these networks.

However, against the UFPR dataset, the ALPR using pre-trained ASTER and

MORAN as the OCR module achieved 23.26% and 1.42% accuracy, respectively, indi-

cating that the pre-trained model adapted poorly to the LP domain. As mentioned before,

these models were trained for generic text recognition where we have several differences

when compared to LP context, especially regarding the presence of digits between alpha-

betic characters, which is a very rare case in generic text datasets. Some examples of

ASTER and MORAN outputs are shown in Figure 5.2.

Although both pre-trained models did not achieve good results, we selected ASTER

to fine-tune and test whether it could be considered as a replacement for the original OCR

module. The dataset used in this phase was created using the car images from the RodoSol

collection and the WPOD network for LP extraction. The result was a set of cropped LP

images that can be used as input for ASTER fine-tuning.

After this process, we got 18,464 LPs images (some examples are shown in Figure

5.3), which were split using a rate of 80% for training and 20% for validation. Table 5.1

shows the accuracy progress in the validation set over epochs starting from 321 (the last

pre-trained epoch) to epoch 351, when the accuracy reaches the saturation level over

validation dataset. The same data is shown as a plot in Figure 5.4, which makes clear the

saturation pattern.

1The Street View Text Dataset (SVT) is a collection of images extracted from Google Street View
containing outdoors and storefronts with general text. Repository: <http://vision.ucsd.edu/~kai/svt/>

http://vision.ucsd.edu/~kai/svt/
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Figure 5.2 – Result samples from experiments 1 and 2 using ASTER and MORAN in the OCR
module.

Figure 5.3 – LP images obtained from RodoSol dataset.

5.3 Experiment 3

Once using the ASTER pre-trained with generic text scenes did not result in ac-

ceptable performance, in this experiment, we tried the fine-tuned ASTER model in the

OCR module. In that way, we will be able to answer if a string-level character is a suit-

able option to recognize LPs or if the lack of semantic aspects of this context makes hard

OCRs of this type adapt.

Running the experiment with ASTER fine-tuned, we can see that ALPR achieves

88.34% accuracy. This is 34.77% higher than the value obtained using the original OCR

and 65.08% compared to the pre-trained ASTER, which means that the fine-tuning pro-

cess worked very well. Also, it makes clear how important OCR performance is in this
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Table 5.1 – ASTER training - Epochs versus Accuracy.

Epoch Accuracy
321 0.1140
325 0.9190
329 0.9430
334 0.9550
338 0.9660
342 0.9590
347 0.9620
351 0.9660

Figure 5.4 – ASTER training - Epochs versus Accuracy

system because even with a high-quality image, a less than optimal OCR drastically af-

fects the overall result.

In Figure 5.5, we can see some error cases produced by ASTER, where the char-

acter marked in red is the incorrect value produced by the network.

5.4 Experiment 4

In this experiment, the super resolution module was introduced in the ALPR

pipeline for the first time, allowing us to get an impression about its performance on

LP context. The TSRN model used was trained only with the TextZoom dataset, so no

specialization for our interested context was done at this moment. In that way, the goal of

this experiment is also to analyze whether a fine-tuning is also required to TSRN as such

it was for ASTER.
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Figure 5.5 – Result samples from experiment 3.

As mentioned, we will use TSRN when the LP image is in low-resolution, so the

metric used to identify when we are dealing with this particular case is the LP area. Our

OCR was trained expecting an LP size of 240 × 80, which is set as the target output

resolution in WPOD in the final rectification process regardless of the original resolution

of the unwarped LP. In this experiment, we first identify if the unwarped LP presents a

low resolution, and in this case we set the target resolution for the unwarping process in

WPOD to 120 × 40. This is done to avoid introducing artifacts in the interpolation done

by WPOD, and then use TSRN to reach the desired resolution for OCR. In the other cases

where TSRN is not required (i.e., the detected LP is already large enough), the WPOD

output will be already in the size of 240× 80.

To classify an LP as a low resolution case, we selected three different values to

test: 120× 40 (area of 4,800 pixels), 96× 32 (area of 3,072 pixels) and 72× 24 (area of

1,728 pixels). To reach these values, we reduced each dimension of our first experimented

value (120 × 40) by 20% and 40%, so no scale disruption was introduced to the images.

In that way, in our first test, all LP imagens with an area lower than or equal to 4,800

pixels will be resized to an image of 120× 40 and classified as a low resolution case that

needs to be processed by SR module. The same approach was used to test the other area

thresholds.

For this first experiment with TSRN, no fine-tuning was used and the parameters

for the training were presented in Section 4.2. In Table 5.2, we can see the accuracy and

the number of low resolution cases for each LP area value. As we can see, the ALPR

accuracy did not increase significantly when applying TSRN and OCR . In the best case,

we had an increase of 0.22%, which represents a very small improvement. Figure 5.6

shows some cases where the SR module helped the OCR, and, in the right column, the
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output value provided by the version without the TSRN. On the other hand, Figure 5.7

shows cases where the SR module worsened the OCR performance, which means cases

where the OCR missed the LP string after SR was introduced (right column shows the

OCR output after TSRN introduction).

Table 5.2 – Experiment results for different low resolution thresholds.

LP area threshold # LR cases LR cases % ASTER accuracy
120× 40 2051 72.85% 88.56%
96× 32 1419 50.40% 88.24%
72× 24 589 20.92% 88.41%

Figure 5.6 – Cases in which the introduction of SR affected positively.



34

Figure 5.7 – Cases in which the introduction of SR affected negatively.

Since testing different thresholds for classifying an image as a case to be processed

by the SR module showed no significant effect on accuracy, we will use the value of

120× 40 for the next experiments.

5.5 Experiment 5

Once the fine-tuning worked satisfactorily for ASTER network, we performed the

same for TSRN aiming the SR module to result in a more relevant gain over the overall

accuracy. Also, it will allow us to answer if the lack of LP images in the training dataset

used in 5.4 was the reason for the low gain after the introduction of the SR module. For the

fine-tuning process, the synthetic LP dataset described in Section 4.2 was used running

two experiments with the subsets of 1,000 and 5,000 LR and HR image pairs. Each of

the subsets were split in training and validation parts using a rate of 80%/20%. The loss

function keeps the same presented in the TSRN paper: the MSE over the target and output

images, defined by

L1 =
1

n

n∑
i=1

(Yi − Ŷi)
2, (5.1)

where Yi is the high-resolution version of an image in the training set and Ŷi is the super-

resolved image produced by the network.

As for fine-tuning, we did not freeze the weights of any layer allowing all values to
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be adjusted to fit this new dataset, and we monitored the training by measuring the ASTER

accuracy across epochs. The result can be seen in Figure 5.8, where the best ASTER

accuracy in validation image collection was 69.85% and 78.54% for training using 1,000

and 5,000 images, respectively, while the MSE average for each group was 0.01045 and

0.0080. Visually, the TSRN did a good job removing the synthetically added noise, as

we can see in Figure 5.9, but it does not seem to be sufficient to boost the accuracy of

the ASTER module, which did not change as expected. Testing this version of ALPR

on our test dataset (UFPR-ALPR), we obtained an accuracy of 88.04% with the TSRN

fine-tuned with 1,000 images and 88.48% with the version fine-tuned with 5,000 images

which is not a relevant change compared to the non-fine-tuned TSRN from Experiment 4.

Figure 5.8 – ASTER fine-tuned: Epochs versus ASTER accuracy versus image MSE.

5.6 Experiment 6

An explanation for the stagnant accuracy even after TSRN fine-tuning could be

related to subtle or even non-human visible image attributes that are actually explored by

the OCR module. An image consists of a set of features such as shapes, colors, bound-

aries, curves, and patterns from which humans can infer some information. As we can see

in Figure 5.9, TSRN does a good job recovering these features in a way that is visually

comfortable to us. However, the features that are important for OCR might be quite dif-

ferent from those needed for human perception, and this might be the reason why OCR

does not perform better even at a low MSE.



36

Figure 5.9 – TSRN processing results.

With this in mind, this experiment will test a new loss function that takes into

account both the MSE between the target image and the TSRN output and also the ASTER

loss function called Sequence Cross Entropy proposed in (SHI et al., 2019), which directly

relates to the OCR task. If the component yt is the ground truth text represented by a

character sequence and ρltr, ρrtl are the predicted distributions of the left-to-right and

right-to-left decoders, respectively, the loss is given by

L2 = −1

2

T∑
t=1

(log ρltr(yt|I) + (log ρrtl(yt|I)). (5.2)

By combining both loss components (MSE and Sequence Cross Entropy), we aim

to simultaneously keep the visual quality of super-resolved images (MSE term) and in-

crease the accuracy of OCR (cross entropy). For this, normalized values were used and

the combination was performed via weighted averages through

L = tL1 + (1− t)L2, (5.3)

where t ∈ [0, 1] denotes the mixing weight. Using this combined loss, we re-trained the

TSRN model using subsets of 1,000 and 5,000 images and obtained the results shown in

Figure 5.10.

The last step of this experiment consisted of testing the TSRN models in the test

dataset (UFPR dataset), but the obtained results indicated a marginal gain. The best ac-

curacy was obtained using the weighting of 20% for MSE and 80% for Sequence Cross
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Entropy (ASTER loss) (t = 0.2), and it was 88.63%, only 0.29% more than the ALPR

without the SR module, which represents a very small increase.

Figure 5.10 – ASTER fine tuned using MSE and Sequence Cross Entropy loss function.
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5.7 Summary of the results

Table 5.3 summarizes the experiments with the accuracy achieved at the end of

each process for the test data set. It is worth highlighting the considerable gain obtained

in Experiment 3 with the fine-tuned model ASTER, which exceeds our expectations, and

the result of Experiment 6, which is the final ALPR version of this work.

Table 5.3 – Experiments summary

Experiment TSRN OCR module Accuracy
over test
dataset
(UFPR)

0 No super resolution network YOLO OCR presented in
(SILVA; JUNG, 2018).

53.57%

1 No super resolution network ASTER available pre-treined
network.

23.26%

2 No super resolution network MORAN available pre-
treined network.

1.42%

3 No super resolution network ASTER fine tuned network
using synthetic low resolu-
tion LP images built from Ro-
doSol dataset.

88.34%

4 TSRN trained using the de-
fault parameters over 500
epochs and using TextZoom
dataset

ASTER fine-tuned network
using LPs extracted from Ro-
doSol dataset.

88.56%

5 TSRN trained using the de-
fault parameters over 500
epochs and using TextZoom
dataset + fine tune using syn-
thetic low resolution images
from RodoSol dataset

ASTER fine-tuned network
using LPs extracted from Ro-
doSol dataset.

88.48%

6 TSRN trained using the de-
fault parameters over 500
epochs and using TextZoom
dataset + fine tune using syn-
thetic low resolution images
from RodoSol dataset and a
loss function which consider
the ASTER output

ASTER fine-tuned network
using LPs extracted from Ro-
doSol dataset.

88.63%
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6 CONCLUSIONS

In this work, we tried two different approaches to increase the ALPR accuracy:

adding a super-resolution module (TSRN) and changing the OCR to a generic and widely

used one. During the experiments, we could identify needs and try new strategies aiming

to get higher accuracies. Besides that, aligning with our proposed goals, we implemented

a cross-dataset testing using two totally different image collections to ensure our system’s

flexibility. Regarding TSRN, we also tried a new loss function that considers not only

the visual quality of the produced images, but also the accuracy of an OCR proxy task.

In total, our changes on the ALPR increased 35.06% over the test dataset while OCR

modifications were the most significant for this result as we can see in Table 5.3.

Even though TSRN performs well in the sense of building images with reduced

noise and without resolution disruption, for the tested cases, the focus on the OCR module

was what produced better advances and, probably, the module that needed more adjust-

ments to increase the accuracy over the tested cases. This conclusion was motivated by

analyzing the recognition errors, which frequently involve similar visual characters like

O/Q, S/2, N/W, I/T, B/S, so training the OCR to improve the recognition of these cases

could be a way to increase the final accuracy. A suggestion of strategy to handle these

challenging cases could be adjusting the OCR loss to consider a higher value of gain or

penalization when the case involves similar characters like the mentioned ones. In this

way, the model must pay more attention to these cases over the training and be able to

identify the small details that can be used to differentiate these characters. Besides that,

the possibility of visually identifying these details that make the correct identification pos-

sible is an improvement which is more related to the OCR than the SR module, so, until

this point, it is possible to assume that the goal of TSRN was achieved.

However, even if we bring OCR to the state of the art, we still have ambiguities that

are inherent to Brazilian LPs. As shown in Figure 6.1, the letter “O” and the digit “0” are

visually identical in the legacy layout. The same situation happens with the letter “I” and

the digit “1”. We know the difference because there is a well-defined pattern in Brazilian

LPs1 in the Brazilian LP system based on the position of the characters. So, in addition

to improving OCR performance, a post-processing mechanism that implements the logic

of the LP pattern is needed to achieve higher accuracy. Note that the visual ambiguity

problem exists exclusively in the legacy layout and has been solved for Mercosul LPs.

1Assuming “D” denotes digit and “L” a letter, the Mercosul layout is defined as “LLLDLDD” while
legacy layout is “LLL-DDDD”.
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Figure 6.1 – Ambiguity problem on legacy LP layout.

Another interesting result was the performance obtained with the fine-tuned ver-

sion of ASTER compared to the pre-trained version. According to the authors, the pre-

trained version represents the state-of-the-art when it comes to generic text recognition,

and the results obtained in the SVT dataset confirm that. However, since the nature of

the LP images is completely different, we expected a drop in performance, but not an

accuracy of only 23.26%. Certainly, the SVT images are more complex due to the differ-

ent spatial transformations, font styles and colors, even though the same model achieved

89.5%. The same behavior was observed with MORAN, which achieved lower accuracy

in the well-behaved LP images, but remarkable results in SVT collection.

One explanation for this regards the semantic aspect in both datasets. While the

SVT images relate mainly to English words, the LP cases have no semantic pattern and

present combinations of letters and numbers in a way never seen in the SVT dataset. This

also explains why the fine-tuning worked so well, because, after adding the never seen

cases, the model recovered its performance.

About TSRN, one important comment regards the special LP cases like LPs with

red background and cases with a high lighting variation or shadows (some of these cases

are represented in Figure 5.7). Due to the small representation of these samples in our

dataset when compared to the total image number, it leads us to an unbalancing problem

and their presence becomes frequent between the missed ones.

Besides that, a not expected behavior tackles the TSRN loss function tested in Ex-

periment 6, which combines the MSE between the images and the sequence cross entropy

returned by the ASTER model. This approach was expected to increase accuracy because

the TSRN would be shaped in a way to optimize the prediction of ASTER. However, as

noticed in the experiment, there were no significant changes, which indicates that the low
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resolution is not the main problem that needs to be addressed to increase the achieved

accuracy of 88.63%.

The analysis of the final results suggests that the replacement of the OCR module

by the ASTER generic text recognition network exceeded expectations, as the accuracy

in the validation dataset increased greatly and the TSRN played a supporting role. Nev-

ertheless, this does not mean that the network was able to perform its job well in the

pipeline. As can be seen in Figure 5.9, TSRN achieved good results recovering not only

low-resolution degradations, but also removing noise and missing data. Another impor-

tant point that we were able to confirm concerns the robustness of ALPR. After successful

cross-dataset testing, we can say that the proposed pipeline is flexible enough to adapt

to different environments and is able to detect, extract and recognize LPs even in images

generated with different camera settings and perspectives. Moreover, the fine-tuning tech-

niques applied during the tests proved their efficiency when it came to adapting OCR and

TSRN to our area of interest. As we could see in Figure 5.4, only a few epochs were

needed to saturate the loss.
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