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Mechanisms of Acaricide Resistance in Ticks
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ABSTRACT

Background: In several countries, including Brazil, the livestock industry plays a key role in the country’s 
economy. Brazil has the second largest bovine herd in the world and the biggest commercial herd. Ticks 
are an ongoing problem for both large operation cattle producers and small family farmers. Rhipicephalus 
microplus causes expressive losses in cattle breeding, since it occurs in important beef production zones 
like South America, Africa, and Oceania. Some of the negative consequences of tick infestation to cattle 
breeding are anemia, loss in milk and beef production, and transmission of Babesia bovis and B. bigemina. 
Significant losses are caused by the cattle tick (R. microplus) in several regions of the world, costing around 
US$ 3.3 billion per year to the Brazilian livestock industry alone. The tick control methods are mainly based 
on synthetic acaricides. However, the improvement of current tick control requires the identification of new 
molecular targets in tick physiology and development of molecule compounds to target important physiol-
ogy pathways. The strategies proposed to address this issue are expand the knowledge about the molecules 
involved in the detoxification of chemicals to enhance the efficacy of the acaricides as well as to develop 
new compounds for chemical control. 
Review: Tick control is currently based on chemical acaricides; however, effective control and prevention of 
tick infestation remain distant goals. In recent decades, a progressive decrease in the efficiency of acaricides 
due to drug resistance has been observed. Acaricide resistance is an evolutionary adaptation, which implies 
the existence of behavioral and physiological mechanisms that allow the survival of resistant individuals. Four 
resistance mechanisms are described: behavioral resistance, reduced drug penetration, target site insensitivity 
and increased drug detoxification. Augmented drug detoxification may be due to increased activity of enzymes 
or transporters due to increased gene expression or mutations in some genes. Research focus on mechanisms of 
acaricide resistance in ticks characterized detoxification pathways based on (1) increased activity of enzymes 
(cytochrome p450, esterase and GST) which play a role in biochemically altering acaricides towards decreased 
toxicity and, (2) enhanced excretion of the modified less toxic compounds. To bypass the current problems, 
a better understanding of the biology, physiology, and molecular biology of the mechanisms of resistance to 
acaricides is fundamental to prolong their efficiency in controlling ticks. Moreover, identifying the genes and 
proteins associated with resistance can support in the development of more sensitive diagnostic methods to 
identify acaricide resistance, as well as improving control strategies. 
Discussion: In the last years, many researchers have been studying resistance mechanisms and important advances 
have been made which showed that, in several tick species, ABC transporters, esterases, P-450 cytochromes 
and glutathione-S-transferases participate in acaricide resistance.  The characterization of the alterations in 
the targets in tick physiology and identification of new drugs with potential to tick control are crucial goals to 
increase tick control 
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I. INTRODUCTION

Ticks are ectoparasites worldwide distributed 
that infest a variety of vertebrate hosts, presenting a 
hematophagous behavior and could affect the animal 
and human health [37,38,126]. The parasitism caused 
by the cattle tick, Rhipicephalus microplus, and the 
transmission of Babesia bovis and B. bigemina could 
lead to host anemia and, consequently, decrease in milk 
and meat production, with economic annual losses 
for livestock production reaching US$ 3.2 billion in 
Brazil [59,72].

Currently, there are 7 classes of commercially 
available pesticides to control ticks’ infestation: or-
ganophosphates, synthetic pyrethroids, macrocyclic 
lactones, formamidines, benzoylphenyl ureas, phe-
nylpyrazoles and isoxazolines [110,118]. The main 
targets of pesticides are present in the central nervous 
system of arthropods having neurotoxic activity [99]. 
Most of them have a role on ion channels, like Gamma-
aminobutyric acid gated chloride channel (GABA-Cl), 
glutamate-gated chloride channel (Glu-Cl) [13-15,91] 
and voltage-sensitive sodium channels (Na+) [80], 
acetylcholinesterase enzyme [19,20] and arthropod 
octopamine receptors (AOR) [49,50]. However, there 
is an increasing global concern about tick acaricide 
resistance, since the application of chemical acaricides, 
over the years, has led to an increase in the reports of 
resistant populations to these compounds [71], includ-
ing multiresistant populations to all commercial acari-
cides in different countries [52,61,76,107,110,134]. In 
Brazil, a field population of R. microplus has already 
been identified as resistant to 6 acaricides (cyperme-
thrin, chlorpyriphos, fipronil, amitraz, ivermectin and 
fluazuron) that belong to different classes [107], also 

resistance to deltamethrin, fipronil and ivermectin 
was reported in the brown dog tick, Rhipicephalus 
sanguineus [10]. 

Until now, 3 main factors have been identified 
to contribute to resistance selection: cuticle thicken-
ing (reducing or delaying the pesticide penetration) 
[117], target-site insensitivity [22] and detoxification 
pathways [84], but in ticks the studies are focused on 
last two. Thus, knowledge and understanding of tick 
metabolism and the target pathways that contribute 
resistance selection can help in the identification of 
new targets, as well as in the development of novel 
control strategies to overcome increasing resistance 
to pesticides.

II. TARGET-SITE INSENSITIVITY

1. Voltage channels

Voltage-gated Na+ and K+ channels are re-
sponsible for the generation of action potentials in 
neurons and propagation of electrical signals [140]. 
In ticks, the synganglion, a mass of fused nerves, is 
the central nervous system, [108] and is an important 
target of the current acaricides [111]. However, mul-
tiple studies revealed that acaricide resistance occurs 
in many different species of arthropods, including ticks 
[25,61,97,139]. Acaricide resistance can be determined 
by different mechanisms, including the metabolic 
inactivation or degradation of the active molecule. 
However, most of the times, acaricide resistance is 
caused by changes in the drug targets [27,45,113]. The 
concept of drug resistance was first considered when 
mosquitoes and housefly became resistant to DDT in 
Italy in 1946 [62].

Pyrethroids are broad-spectrum acaricides and 
their major mode of action is via interactions with the 
voltage-gated sodium channel [125]. Mutation medi-
ated knockdown resistance (kdr) is the most common 
and a frequent cause of resistance to pyrethroids in 
ticks [22,31]. Several studies on ticks, especially R. 
microplus, have documented several point mutations in 
the sodium channel associated with reduce sensitivity 
to pyrethroids [1,21,31,77,127]. Gamma-aminobutyric 
acid gated chloride channel (GABA-Cl) and glutamate-
gated chloride channels (Glu-Cl) are other essential 
players in the central nervous system functions 
[124,138,145]. GABA-Cl are targets for several pesti-
cides, including fipronil, lindane and cyclodienes and 
the novel acaricide class of isoxazolines [22,142,146]. 
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The hyperexcitation caused by antagonist drugs blocks 
the GABA current leading to arthropod death [142]. In-
terestingly, fipronil and fipronil sulfone were reported 
as inhibitors of both channels, GABA-Cl and Glu-Cl 
[143,144]. The Glu-Cl channel receptors are part of ion 
channel protein superfamily detected in invertebrates, 
but not in vertebrates [26], and appears to be the target 
of macrocyclic lactones in Caenorhabditis elegans, and 
in Drosophila melanogaster, potentiating the glutamate 
activated current [33,34]. On the other hand, it was not 
identified cross-resistance between fipronil and iver-
mectin in R. microplus, suggesting that these acaricides 
do not present the same target-site [23]. 

Resistance to dieldrin gene (rdl) from Dro-
sophila was the first member of GABA-Cl channel 
genes described in invertebrates [53]. In ticks, it was 
shown that GABA current was blocked when fipronil 
was administrated in Xenopus oocytes that expressed 
rdl gene from Dermacentor variabilis, suggesting 
a role of this pesticide as blocking the opening of 
GABA-Cl channels and indicate a potential target to 
tick control [145]. It was identified that ala to glycine 
(gly) substitution in Anopheles gambiae rdl locus for 
GABA receptor conferred resistance to dieldrin [43]. 
Also, mutations in GABA-Cl gene led to dieldrin and 
fipronil resistance in R. microplus [22,70]. However, a 
study showed that no significant association was found 
between presence of rdl mutations and fipronil resistant 
phenotypes in cattle tick isolates from Uruguay and 
Argentina [21,115]. Meanwhile, point mutations in 
Glu-Cl gene which led to the substitution from alanine 
(ala) to valine (val) and from gly to aspartic acid (asp) 
were identified in Plutella xilostella and Tetranychus 
urticae resistant to abamectin, respectively, both modi-
fications promote a change in the channel conforma-
tion interfering with binding of this pesticide to the 
channel receptor [81,137], but in ticks this resistance 
mechanism is still unknown. 

2. Acetylcholinesterase

The acetylcholinesterase is a serine hydrolase 
that degrade acetylcholine and terminate neurotrans-
mission [93]. However, tick exposition to organophos-
phate acaricides result in inhibition of cholinesterase, 
so acetylcholine accumulates at the cholinergic syn-
apse, keeping the receptors activated causing paralysis 
and death of tick [54]. 

In R. microplus, single nucleotide polymor-
phism in 2 acetylcholinesterase genes (AchE1 and 

AchE3) has been associate to organophosphates resis-
tance [11,133] since the mutation is present in R. micro-
plus resistant strains [132]. Interesting, it was observed 
that in insects and ticks multiple simultaneous muta-
tions can occur in the same acetylcholinesterase gene 
increasing the level of resistance [54,75,88,92,104].

Amitraz belongs to another class of acaricides 
that is extensively used for tick control, but resistance 
to this pesticide have been detected since the 1990’s 
[73]. In the same way of organophosphates, there 
are still questions about the mechanisms involved in 
amitraz resistance. 

3. Octopamine receptors 

Formamidines are a class of acaricides that act 
as agonists by stimulating the octopamine receptors 
(AOR), the consequence is a decrease in intracellular 
Ca2+ and activation of K+ efflux leading to interruption 
of nervous transmission and death [7,49,96].  These 
pesticides have a role mainly against the βAOR, de-
spite the arthropods have 3 AOR: α-adrenergic-like 
octopamine receptors (αAOR), octopamine/tyramine 
receptors (OCT/TYR) and β-adrenergic-like octopa-
mine receptors (βAOR) [29,50,63,95]. In addition, 
formamidines have also been shown to interfere in 
octopamine / tyramine receptors activated [60]. 

Therefore, although OCT/TYR gene has 
been sequenced in Rhipicephalus australis from 
Australia, mutations in these sequences from sus-
ceptible and resistant strains to amitraz were not 
initially identified in that country, suggesting that 
other pathways could be involved in this pesticide 
resistance [9]. However, posteriorly, point muta-
tions in OCT/TYR sequences related to amitraz 
resistance were detected in resistant ticks from 
Brazil, Mexico, South Africa, Zimbabwe and India 
[4,22,24,109,129]. Also, the intragenic recombina-
tion of OCT/TYR could be suggested as important in 
the emergence of resistant populations [8]. Another 
work associated non-synonymous mutations (from 
ile to phe) in βAOR sequence from R. microplus to 
amitraz resistance, but not all resistant populations 
presented this genotype, suggesting the involvement 
of other mechanisms in resistance pathway [28,73], 
but this mutation was confirmed to reduce the effect 
of N2–(2,4-dimethylphenyl)-N1-methyformami-
dine, an amitraz metabolite, in Bombyx mori and 
their resistance potential needs to be confirmed in 
ticks [130].
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III. DETOXIFYING PROTEINS AND DETOXIFICATION 

PATHWAYS

The best-known mechanism in acaricide-resis-
tant ticks is the metabolic detoxification [30,39,113]. 
This pathway is characterized by increased activity 
of enzymes, such as esterase (phase I), cytochrome 
P450 (CYP450) (phase I) and glutathione S-transferase 
(GST) (phase II) [2], playing a role in modifying 
acaricides toward decreased toxicity, forming more 
hydrophilic molecules and enhancing excretion of the 
less toxic compounds out of the cells (phase III) [103]. 

1. Esterases

Two beta-carboxylesterases (serine hydrolases) 
sequences were identified in R. microplus and a point 
mutation (G1120A) was found in one of these genes 
from pyrethroid resistant Mexican strains [64,68]. 
Carboxylesterases have a role in pesticide detoxifica-
tion and besides the presence of mutations in their 
sequence, an overexpression of these enzymes has 
also been described in other arthropods, like Musca 
domestica [51]. In ticks, an increased hydrolysis capac-
ity of carboxylesterase was detected in R. microplus 
resistant to the organophosphate coumaphos, which is 
possibly associated to resistance to this pesticide [135]. 
Increased activity of alpha- and beta-carboxylesterases 
was also shown in R. microplus larvae resistant to 
fluazuron [56]. Meanwhile, another study analyzed the 
transcription level of an esterase gene in 2 pyrethroid 
resistant tick strains. In 1 strain, a higher number of 
transcripts was observed in larvae and in the hemo-
lymph collected from resistant engorged females, in 
comparison to pyrethroid-susceptible ticks. However, 
in the second strain no differences were observed in the 
expression of the esterase encoding gene in relation to 
susceptible ticks. Therefore, these results suggest that 
different pathways can contribute to resistance to the 
same acaricide [67]. 

2. Cytochromes P450

Cytochromes P450 metabolize xenobiotics, 
being a common detoxification mechanism in sev-
eral arthropod species, and has also been linked to 
pyrethroid resistance in insects and other arthropods 
[69]. In several arthropods, CYP450-mediated resis-
tance is characterized by the gene overtranscription, 
resulting from alterations in the factors that regulate 
its expression [86,116]. In the red flour beetle, Tribo-
lium castaneum, populations resistant to phosphine 

showed increased susceptibility to this pesticide when 
a CYP450 inhibitor (piperonyl butoxide - PBO) was 
used. Also, a significant up-regulation of CYP346B 
subfamily genes was described in this resistant insect 
species [136]. In Drosophila melanogaster lineages 
over-expressing CYP6G1, CYP6G2 and CYP12D1, 
increased survival to insecticides DDT, nitenpyram, 
dicyclanil and diazonin was detected [35]. In A. gam-
biae a CYP450 enzyme was located in oenocytes and 
it is related to hydrocarbon production, which leads to 
the thickening of the cuticle of pyrethroids-resistant 
mosquitoes and consequently insecticide uptake 
reduction [6]. Also, in R. microplus, a proportional 
increase in transcription of CYP450 was identified in 
pyrethroids-resistant populations [30]. Similar results 
were described in R. sanguineus sensu lato, since when 
PBO was used in synergist bioassay, an increase in tick 
mortality was shown, restoring the permethrin toxic-
ity in pyrethroid-resistant isolates, indicating a role 
of CYP450 in metabolic detoxification. However, the 
same pattern has not been described in fipronil-resistant 
populations, suggesting that another mechanism may 
be involved in this resistance pathway [46]. In contrast, 
some CYP450-encoding genes presented decreased 
transcripts levels, while other CYP450 genes were over 
transcribed when R. microplus resistant to pyrethroids 
were exposed to deltamethrin. This could be explained 
by the need of the high transcription of genes necessary 
for survival post-acaricide treatment [94].

The exposure to PBO slightly increased (1.4-
fold) amitraz toxicity in susceptible R. microplus, how-
ever, the synergistic effect of PBO was significantly 
increased (2.9-fold) in an amitraz-resistant isolate, sug-
gesting a role of P450s in resistance to the formamidine 
in cattle ticks [82]. 

Besides their detoxification role, CYP450 can 
also act in metabolization and consequent activation 
and enhancement of the pesticide toxicity, like or-
ganophosphates. It was observed that CYP450 activ-
ity was reduced in organophosphate-resistant tobacco 
budworm (Heliothis virescens) [78]. The use of PBO 
decreased the coumaphos toxicity in acaricide-suscep-
tible R. microplus, while synergistic effect was shown 
in resistant isolates, however, the same synergic activity 
with diazinon was not identified when PBO was used 
in resistant isolates [85]. On the other hand, it was not 
detected significantly differences in the CYP450 gene 
expression levels in organophosphate-resistant and 
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susceptible R. microplus, suggesting a multifactorial 
resistance mechanism to this acaricide [32]. 

3. Glutathione S-transferase 

The tick GST catalyzes the conjugation of 
reduced glutathione (GSH) with a wide variety of 
endogenous and exogenous electrophilic compounds, 
protecting the cell from oxidative damage [3]. Thus, 
this enzyme could have a role in the tick resistance to 
acaricide. While GST enzyme overexpression is fre-
quently associated with drug resistance [10], reports on 
the participation in acaricide resistant ticks are sparse. 
However, there is data of increased GST transcription 
in acaricide resistant tick populations [55,66]. Excit-
ingly, GST-gene RNAi silencing is shown to induce 
acaricide susceptibility in ticks [44]. Currently, 7 
classes of these enzymes are known in mammals, 
named Alpha, Mu, Pi, Sigma, Theta, Zeta and Omega, 
according to their chromosomal location [119]. In in-
sects, Delta and Epsilon classes are also present, and 
are implicated in Anopheles gambiae detoxification 
pathways [105,106]. GST enzymes are subdivided in 
cytosolic, microsomal, and mitochondrial (Kappa) cat-
egories [120], however the last one was not identified 
in insects so far, but are present in other arthropods, 
like crustaceans [112]. In insects, cytosolic class are 
subdivided in Delta, Epsilon, Omega, Theta, Sigma and 
Zeta [47]. In Tribolium castaneum, 36 putative cyto-
solic GSTs and 5 microsomal GSTs were identified, 
while in Bombyx mori, only 23 cytosolic GSTs were ob-
served, it is interesting to highlight that the class which 
contains the highest number of detected sequences was 
the Epsilon for both insect species [121,141], also in 
Drosophila the main classes are Epsilon followed by 
Delta [58]. These cytosolic enzymes act by catalyzing 
the conjugation to glutathione (GSH), facilitating that 
more hydrophilic substrate to be transported out of the 
cell [120]. In Tenebrio molitor, it was hypothesized 
that cytosolic GSTs act by sequestration and binding 
to the pyrethroids, thus allowing the detoxification 
process. However, no relationship was found between 
GSH concentration and resistance to insecticides [79]. 
High transcript levels of Delta GST were found in D. 
melanogaster chemosensory organs, after isothiocya-
nate exposition. This enzyme was over transcribed, 
suggesting an insecticide protection role [58]. 

Also, in Haemaphysalis longicornis, 2 GSTs-
encoding gene transcripts were identified in several 
organs of larvae, nymph and adults, it is interesting to 

note that during blood feeding, higher transcript levels 
were observed, however protein levels decrease after 
engorgement, moreover location of GST in midgut and 
salivary glands depends on the feeding, and GST may 
be related to oxidative stress [66]. The expression of 
this enzyme is induced by heme, not by iron present 
in the blood, thereby reducing the cytotoxic effects 
caused by blood components [100]. Recombinant 
GSTs (rGSTs) from H. longicornis and Rhipicephalus 
appendiculatus had their activity inhibited by acari-
cides [123]. Similar effects were observed rGST from 
R. microplus using different acaricides. However, cou-
maphos shown to increase rGST activation, suggesting 
different interaction mechanisms between acaricide 
and detoxification enzymes [122]. Furthermore, in-
creasing flumethrin doses led to increase of GST gene 
transcription in tick males, while GST knockdown 
decreased the larval survival rate after acaricide treat-
ment [65], accordingly, permethrin has been shown 
to have more toxic effects on R. sanguineus sensu 
lato knockdown for GST, thus suggesting this protein 
as an alternative control target for ticks [44]. Natural 
compounds [12,89,131] or synthetic molecules [98] 
can alter GST activities and can consequently lead to 
the improvement and development of new acaricides.

4. ABC transporters

Lastly, P-glycoproteins (P-gps) are ABC 
transporters that influence drug uptake and excre-
tion, interacting with different agents and have been 
related as a protection mechanism against pesticide in 
mosquitoes, including a multidrug resistance pathway, 
may be the first line of defense of cells [5,17,36,57,74]. 
Nevertheless, ABC transporters are poorly understood 
in arthropods and only some species present a charac-
terization of putative ABC genes. These were grouped 
into 8 families (from ABCA to ABCH), in Tribo-
lium castaneum, Tetranychus urticae, Bombyx mori, 
Anopheles gambiae¸ Daphnia pulex and Drosophila 
melanogaster [16,40,42,87,114,128]. In Anopheles 
stephensi, ABCB and ABCG augmented transcription 
has been associated with permethrin resistance, since 
when mosquitoes were exposed to ABC inhibitors and 
to the insecticide an increase in larval mortality was 
observed. Also, an over-transcription was detected in 
ABCG-encoding genes when the mosquitos were ex-
posed to permethrin alone, but similar results were not 
identified for ABCB-encoding genes [48]. In contrast, 
a D. melanogaster lineage knocked-out to homologous 
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of mammalian ABCB-encoding genes (Mdr65) was 
more susceptible to several insecticides than other 
genes tested, showing synergistic activity with ABC 
transporter inhibitor, whereas flies knocked-out to other 
Mdr genes were resistant to some pesticides [41].

Although little is known about these transport-
ers in insects, in ticks the knowledge is even scarcer. 
The first association between ABC transporters and 
acaricide resistance was demonstrated in R. microplus 
resistant to ivermectin. The exposure of the ticks to 
compounds that interfere with ABC proteins (cyclo-
sporin-A) in association with the acaricide treatment, 
lead to the reduction in oviposition and egg viabil-
ity of treated engorged female ivermectin-resistant 
ticks. In addition, a decrease in ivermectin lethal 
concentration was observed [102]. Similar results 
were observed in R. sanguineus sensu lato (exposed 
to fipronil and ivermectin) [18] and with a multiple 
acaricide resistant strain of R. microplus (exposed to 
ivermectin, abamectin, moxidectin and chlorpyriphos) 
[103], suggesting that ABC transporters could act as 
a multidrug detoxification mechanism, with the ABC 
transporters inhibition as an approach for tick control. 
Interestingly, an up-regulation in the transcription of 
the ABCB-encoding gene was detected for resistant 
population (Juarez) exposed or not to ivermectin, the 
same was not identified for ABCC-encoding gene and 
for susceptible strain (Porto Alegre) [102]. A cell line 
from Ixodes ricinus exposed to 3 acaricides (amitraz, 
permethrin, and fipronil) showed differences in up- 
and down-regulation for ABCB and ABCC-encoding 
genes depending on the pesticide treatment, showing 
different pathways and cell responses according to the 
drugs tested [90]. In vitro assays were also performed 
using ivermectin-resistant R. microplus embryonic 
cell line. An increase in ABCB transcriptional level 
was observed in resistant cells exposed to acaricide, 
while the resistance decreased after treatment with 
ABC transporters inhibitor, demonstrating the role 
of these transporters in resistance to ivermectin, 
however once again similar results were not observed 

to ABCC [101]. Moreover, an association between 
amitraz detoxification and heme transportation 
in midgut was proposed for R. microplus ABCB 
transporters, suggesting that resistance to acaricides 
may be a consequence of endogenous compound 
detoxification pathway [83]. Confirming that several 
physiological mechanisms can act on pesticide re-
sistance, in Rhipicephalus microplus, toxicological 
assays confirmed that esterases and ABC transporters 
contribute to ivermectin resistance, followed by GSTs 
and CYP450 [84].

IV. CONCLUSIONS

Ticks and tick-borne diseases are significant 
impediments to livestock production. Current tick 
control methods are mainly based on chemical acari-
cides; however, effective control and prevention of tick 
infestation remain distant goals. In recent decades, a 
progressive decrease in the efficiency of acaricides 
due to drug resistance has been observed. To bypass 
the current problems, a better understanding of the 
physiology and molecular biology of the mechanisms 
of resistance to acaricides is fundamental to prolong 
their efficiency in controlling ticks, as well as improv-
ing control strategies. 

This includes, expand the knowledge about 
the molecules directly involved in the detoxification 
of chemicals to enhance the efficacy of the acaricides 
as well as to develop new compounds for chemical 
control. 
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