
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

WILLIAM NIEMIEC

Takere: a no-code platform for the
development of mHealth applications based

on care plans

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Érika Fernandes Cota

Porto Alegre
October 2022

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Prof.a. Patricia Pranke
Pró-Reitor de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Marcelo Walter
Bibliotecário-chefe do Instituto de Informática: Alexsander Borges Ribeiro

“Those who can imagine anything, can create the impossible.”

— ALAN TURING

ACKNOWLEDGEMENTS

I thank God for giving me health and protection to complete the course.

I thank my family for all support provided and for always trying to create the best

conditions possible for supporting my studies.

I thank my advisor Dr. Érika Fernades Cota for being always present in every im-

portant moment of my studies and my work and also for all knowledge and opportunities

provided in my graduation.

I thank the Federal University of Rio Grande do Sul for the opportunity of gradu-

ating in my favorite area (computing and technology).

I thank so much my best friend Laura Galant Speggiorin for being my longest

friendship, for all the provided support in hard moments, for the wonderful walks, for

always being present in my life, and for making me feel good about myself.

I thank Andre Florencio Carini for supporting me in hard moments and for being

a very present friend.

I thank Jeniffer Moreira Borges for showing me that is possible to be happy even

in unimaginable moments, along with all provided support in hard moments.

I thank Maria Flavia Borrajo Tondo for being an inspiration to me, for having

given me several moments of happiness in such a short time, for making college days

so good and unforgettable that made me not want them to end, and for showing me how

strong and amazing a person can be.

I thank Kaline B. F. Mesquita, who I consider a sister for feeling free to talk about

anything, for considering me someone trustworthy, for the various advice given, and also

for the great conversations we have.

I thank Keslley Lima da Silva for the many teachings passed and for always being

a supportive and comprehensive friend.

Finally, I thank my coworkers and friends Nicole da Costa Davila and Rafael Fer-

nandes Borges for being great partners, for the fun and unforgettable moments we had,

and for making the work environment such a good place that it makes me feel sad when I

leave it.

ABSTRACT

People on long-term treatment suffer from two problems: following the treatment cor-

rectly and staying engaged during it. The main cause of this problem is that each person

has a specific engagement along with a lack of clarity in visualizing the progress of the

treatment. In order to deal with this problem, mHealth applications have been developed.

Although mHealth improves patient engagement, the unavailability of developers to de-

velop these applications according to the treatment of each patient reduces its reachability.

This work proposes a no-code platform that allows healthcare professionals to instantiate

mHealth applications for their patients according to their care plan. Our goal is to allow

healthcare professionals to instantiate mobile applications that show treatment progress

and use elements that engage their patients. With this, we hope to contribute so that pa-

tients on long-term treatment do not abandon it over time and follow it correctly.

Keywords: No-code. mHealth. healthcare. cross-platform. care plan.

Mobilex: uma plataforma no-code para o desenvolvimento de aplicações mHealth

baseadas em planos de cuidado

RESUMO

Pessoas em tratamento de longo prazo sofrem com dois problemas: seguir o tratamento

corretamente e permanecer engajados durante ele. A principal causa disso é que cada

pessoa possui um fator de engajamento específico aliada à falta de clareza na visualiza-

ção do andamento do tratamento. Para lidar com este problema, foram desenvolvidas

aplicações mHealth. Embora o uso de aplicações mHealth melhore o engajamento do

paciente, a indisponibilidade dos desenvolvedores para desenvolver esses aplicativos de

acordo com o tratamento de cada paciente reduz sua acessibilidade. Este trabalho propõe

uma plataforma no-code que permite aos profissionais de saúde instanciarem aplicativos

de mHealth para seus pacientes de acordo com seus planos de cuidados. Nosso objetivo

é permitir que profissionais de saúde criem aplicativos móveis que mostrem o progresso

do tratamento e usem elementos que engajem seus pacientes. Com isso, esperamos con-

tribuir para que os pacientes em tratamento contínuo não o abandonem com o tempo e

sigam ele corretamente.

Palavras-chave: No-code. mHealth. healthcare. cross-platform, plano de cuidado.

LIST OF FIGURES

Figure 2.1 NANDA - Sedentary lifestyle ..18
Figure 2.2 NIC - Hypertension management ..19
Figure 2.3 NOC - Patient engagement behavior ...21
Figure 2.4 User dragging an item and dropping it where he/she wants..........................22
Figure 2.5 Connected and disconnected graphs..22
Figure 2.6 Directed and undirected graphs ...23
Figure 2.7 Breadth-first search algorithm ...24
Figure 2.8 HTML structure being parsed by a web browser ..24
Figure 2.9 Parsed HTML with and without CSS ..25
Figure 2.10 Microservice architecture - overview ..27
Figure 2.11 API - overview...28
Figure 2.12 Event-driven architecture - overview...29

Figure 3.1 Approach general overview ...34
Figure 3.2 User inserting the care plan element in the flow..35
Figure 3.3 Card generation from the care plan flow ...35
Figure 3.4 Patient progress generated from the completed card.....................................36
Figure 3.5 Board generation..37
Figure 3.6 The agenda idea is to filter the board and show only care plan elements

close to their deadline ...38
Figure 3.7 General overview of progress generation. Dashed lines represent a card

that is not in the board anymore because it was already finished39
Figure 3.8 A flow composed of two connected digraphs..39

Figure 4.1 Takere systems...46
Figure 4.2 Process of adding a new care plan element (structured as described in

Section 3.4.2) in the back-end system and its propagation to the front-end systems46
Figure 4.3 Takere - HCP: Architecture ...47
Figure 4.4 Drag-and-drop example using Begin element ...48
Figure 4.5 Two elements: X and Y, being Y a child of X...49
Figure 4.6 Begin element - configuration window..49
Figure 4.7 Care plan progress based on a created flow - HCP view50
Figure 4.8 HCP view about one care plan element that has input fields.........................50
Figure 4.9 Takere - API: Architecture...51
Figure 4.10 Takere - Patient: Architecture..56
Figure 4.11 Takere - Patient: board...57
Figure 4.12 Takere - Patient: agenda screen ...59
Figure 4.13 Takere - Patient: progress screen ...60

Figure 6.1 Takere - HCP: Cancer care plan flow ..76
Figure 6.2 Takere - HCP: Urolithiasis care plan flow ...77
Figure 6.3 Takere - Patient: Patient answering a question of the quiz defined in

Table B.6 ...79
Figure 6.4 Takere - HCP: Patients by care plan ..80
Figure 6.5 Takere - HCP: Patient answer for a question of the quiz defined in Table B.680

LIST OF TABLES

Table 3.1 Structure of care plan elements ...41
Table 3.2 Structure of each parameter item from parameters item from care plan

elements..41
Table 3.3 Basic parameters of care plan elements. Note that the slug field was

omitted due to being used only for internal system use ...42
Table 3.4 Specific parameters of care plan elements. Note that the slug field was

omitted due to being used only for internal system use ...42

Table 4.1 Architecture modules of Takere - HCP ...48
Table 4.2 Architecture modules of Takere - API...52
Table 4.3 Specific parameters semantics...53
Table 4.4 Input types ...53
Table 4.5 Takere database. Note that "ObjectId" type is a reference to a record in

another table ...55
Table 4.6 Architecture modules of Takere - Patient ..58

Table 5.1 Selected NICs for each disease ...62

Table 6.1 Cancer disease - activities from "Exercise promotion" NIC64
Table 6.2 Cancer disease - activities from "Self-esteem enhancement" NIC65
Table 6.3 Urolithiasis disease - activities from "Fluid monitoring" NIC (part A)66
Table 6.4 Urolithiasis disease - activities from "Fluid monitoring" NIC - part B...........67
Table 6.5 Urolithiasis disease - activities from "Teaching: Prescribed diet" NIC68
Table 6.6 All possible connections of elements ..70
Table 6.7 Structure of the explanation element...71
Table 6.8 Structure of the medication control element ...72
Table 6.9 Structure of the orientation element ..73
Table 6.10 Structure of the quiz element ..74
Table 6.11 Structure of the reminder element ...75

Table B.1 Care plan for "Exercise promotion" NIC - parameters of EP01, EP02,
EP03 and EP04...91

Table B.2 Care plan for "Exercise promotion" NIC - parameters of EP05.....................91
Table B.3 Care plan for "Exercise promotion" NIC - parameters of EP11.....................92
Table B.4 Care plan for "Exercise promotion" NIC - parameters of EP14.....................92
Table B.5 Care plan for "Exercise promotion" NIC - parameters of EP22.....................92
Table B.6 Care plan for "Fluid monitoring" NIC - parameters of FM06, FM07 and

FM22 ..93
Table B.7 Care plan for "Fluid monitoring" NIC - parameters of FM23........................93
Table B.8 Care plan for "Fluid monitoring" NIC - parameters of FM25........................93
Table B.9 Care plan for "Fluid monitoring" NIC - parameters of FM26........................94
Table B.10 Care plan for "Fluid monitoring" NIC - parameters of FM23......................94

LIST OF ABBREVIATIONS AND ACRONYMS

WHO World Health Organization

HCP Healthcare professionals

IT Information Technology

FBP Flow-Based Programming

NANDA North American Nursing Diagnosis Association

NIC Nursing Interventions Classification

NOC Nursing Outcomes Classification

ANA American Nurses Association

DFS Depth-first search

API Application Programming Interface

POPEP Periodic Of Periodic Element Problem

mHealth Mobile health

HTML Hyper-Text Markup Language

CSS Cascading Style Sheets

VPL Visual programming language

FBP Flow-based programming

REST Representational state transfer

DAO Data Access Object

DTO Data Transfer Object

JSON JavaScript Object Notation

BSON Binary JavaScript Object Notation

CONTENTS

1 INTRODUCTION...12
1.1 mHealth - current challenges ...13
1.1.1 Generality of mHealth solutions ..13
1.1.2 Difficulty for HCP to develop mHealth applications...13
1.2 Goals...14
2 BACKGROUND..16
2.1 Healthcare concepts ..16
2.1.1 mHealth..16
2.1.2 Gamification...16
2.1.3 NANDA-NIC-NOC ...17
2.1.3.1 NANDA ..17
2.1.3.2 NIC..17
2.1.4 NOC ...18
2.2 Computing concepts..20
2.2.1 Drag-and-drop..20
2.2.2 Graph concepts...20
2.2.2.1 Connected graph ...22
2.2.2.2 Digraph ...22
2.2.2.3 Breadth-first Search ..23
2.2.3 Web technologies ...23
2.2.3.1 HTML ...24
2.2.3.2 Rich text ..24
2.2.3.3 CSS ...25
2.2.3.4 JavaScript ..25
2.2.4 Visual programming language ...25
2.2.5 Flow-based programming ..26
2.2.6 Component-Oriented Programming...26
2.2.7 Internationalization in software architectures ..26
2.2.8 Microservice architecture...27
2.2.8.1 Back end..27
2.2.8.2 Front end ...28
2.2.8.3 Application Programming Interface ...28
2.2.9 RESTful API..28
2.2.10 Event-driven architecture ...29
2.2.11 Data modeling..30
2.2.11.1 Models...30
2.2.11.2 DAO ..30
2.2.11.3 DTO ..30
2.2.11.4 JSON...31
2.2.11.5 BSON..31
2.2.12 No-code platform...31
2.2.13 Job scheduler..31
2.2.14 Non-relational databases..32
2.3 Related Work...32
3 PROPOSED APPROACH..34
3.1 Board..36
3.2 Agenda ...37
3.3 Progress..37

3.4 Care plan flow..38
3.4.1 Building a flow...40
3.4.2 Care plan elements...40
3.4.2.1 Begin element ...40
3.4.2.2 Conditional element ..40
3.4.2.3 Periodic care plan elements ..43
3.4.2.4 Non-periodic care plan elements ..43
3.5 Care plan parser ...43
3.5.1 Non-periodic module ...43
3.5.2 Periodic module ...44
3.5.2.1 Periodicity Of The Periodic Element Problem ...44
4 IMPLEMENTATION ...45
4.1 Takere - HCP...45
4.1.1 Architecture..45
4.1.2 Care plan flow ..47
4.1.3 Monitoring patients..50
4.2 Takere - API...51
4.2.1 Architecture..51
4.2.2 Care plan elements...52
4.2.3 Care plan parser ...52
4.2.4 Database...54
4.3 Takere - Patient ...54
4.3.1 Architecture..56
4.3.2 Board..56
4.3.3 Agenda ...58
4.3.4 Progress..60
5 VALIDATION METHODOLOGY ...61
6 RESULTS...63
6.1 Analyzing RQ1 ..63
6.2 Analyzing RQ2 ..69
6.3 Analyzing RQ3 ..69
6.3.1 Care plans planning..73
6.3.2 Building care plans in Takere - HCP ...76
6.3.3 Interacting with care plans in Takere - Patient...78
6.3.4 Monitoring patients progress in Takere - HCP ..78
7 THREATS TO VALIDITY...81
8 CONCLUSION AND FUTURE WORKS..82
REFERENCES...83
APPENDIX A — INTERVIEW QUESTIONS ...90
APPENDIX B — CASE STUDY - PARAMETER DEFINITION91

12

1 INTRODUCTION

Following a prescribed treatment is following a set of recommendations to control

or cure a disease. However, this treatment is frequently interrupted by patients after some

time. Burger et al. (BURGER et al., 2018; PRESTON et al., 2018; SHAH et al., 2019)

showed that long-term treatment interruption ranges from 19.3% to 94%, and, accord-

ing to World Health Organization (WHO), in developed countries only 50% of patients

with chronic conditions follow the prescribed treatment correctly (BROWN; BUSSELL,

2011). There are several reports about treatment discontinuation: (BROWN; BUSSELL,

2011) shows that the number of patients with systemic arterial hypertension that discon-

tinue the treatment can be as high as 80%; (WU et al., 2008) reveals that medication

adherence in patients with heart failure varies widely from 2% and 93%; (DIMATTEO,

2004) analyzed 569 studies of non-psychiatric medication adherence and concluded an

average nonadherence rate of 24.8%.

Nonadherence by patients to their treatment can result in fatal consequences. For

example, heart failure affects 5.7 million people in United States (MOZAFFARIAN et al.,

2016) and may increase the mortality rate if treatment is not correctly followed (GATH-

RIGHT et al., 2017). In the same way, the survival percentage of patients treating heart

attack that discontinue their treatment reduce their survival percentage to 9.2% (HO et al.,

2006). On the other hand, older people who have good adherence to their long-term treat-

ment reduce in 21% the risk of death (WALSH et al., 2019). At last, nonadherence to some

medications also increases mortality risk (FAUGHT et al., 2008). Therefore, treatment

discontinuation negatively impacts patient health, increases the risk of re-hospitalization,

and, sometimes, can result in death.

Several approaches have been proposed to increase patient engagement through

mobile applications (mHealth). MAO et al. (MAO et al., 2020) shows that using mHealth

with diabetes and hypertension patients helps them to keep adherence to their treatments.

This is possible because smartphones are accessible to almost everyone (77% of American

people (SHEET, 2018)). Also, mHealth helps to improve healthcare in several countries,

especially in low- and middle-income countries (MARCOLINO et al., 2018).

13

1.1 mHealth - current challenges

Although mHealth can increase adherence to long-term treatments (HAMINE et

al., 2015), two challenges limit its reachability: generality of current solutions and diffi-

culty for Healthcare professionals (HCP) to generate mHealth applications. In the follow-

ing subsections, these challenges will be detailed.

1.1.1 Generality of mHealth solutions

First is the generality of current solutions. Current mHealth solutions are static,

i.e., they use a care plan as a template to address as many patients as possible. However,

as this care plan cannot be changed, some patients may not benefit from this solution.

For example, patients who have specific treatment aspects may not have it in current

solutions, as they do not allow to change the care plan used as a template for the solution.

Also, engagement elements that motivate some patients may not engage others, and a

solution that adapts to the needs of each patient is missing. Finally, a patient can have

more than one treatment to follow, and its engagement in one is not necessarily the same

as the other.

1.1.2 Difficulty for HCP to develop mHealth applications

The second challenge is generating specific mHealth applications that fit the needs

of a specific treatment of a patient to keep him/her engaged. To do this, one needs ded-

icated Information Technology (IT) team for developing and evolving mHealth applica-

tions, and, if a new mHealth application needs to be built after developing them, it is

necessary to request them again. There are two problems with this: the high cost of

developing a mHealth application and the strong dependency between HCP and the IT

team. Because of that, when HCP requests an IT team for developing a mHealth appli-

cation, they ask for a generic solution to subsume as many treatments as possible due

to high cost. Consequently, problems mentioned in Section 1.1.1 occur, increasing the

probability of treatment discontinuation by patients.

14

1.2 Goals

The goal of this work is to develop a no-code platform for HCP to develop mHealth

applications. Our objective is to instantiate mHealth applications based on care plan in-

formation and allow the customization of the application according to the needs of each

patient. It is a no-code platform because it is based on Flow-Based Programming (FBP)

(explained in Section 2.2.5) which transforms software systems into a processes network,

modeling them as a directed graph of predefined processes. These processes are executed

in parallel and exchange data through input and output connections (SOUSA, 2012). With

that, we expect to offer an abstract tool in the language of the medical team to develop

specific mHealth applications for their patients (based on their care plan), improving their

engagement.

In order to understand how the care plan works, we contacted around 50 nurses

through social networks along with personal contact. From these nurses, 28% returned our

contact. So we interviewed 14 nurses from different areas (pediatricians, cardiologists,

elderly caregivers, nephrologists, and oncologists). With this research, we learned that the

care plan is structured using a set of standards, called NANDA-NIC-NOC (Section 2.1.3).

The questions used in this interview are shown in Appendix A. From these interviews, we

identified NIC (Section 2.1.3.2) as our target because NANDA (Section 2.1.3.1) is used

for diagnoses and NOC (Section 2.1.4) for evaluating an intervention’s progress.

In this work, we present Takere 1: a no-code platform for HCP to instantiate

mHealth applications for their patients based on their care plan. In this platform, HCP

provides care plan information and a mobile application is instantiated based on it. In

this way, HCP can instantiate mHealth applications specifically for each of its patients

based on their treatment, offering an additional support to patient engagement along its

long-term treatment.

This work presents the following contributions:

• Proposal of a no-code platform for HCP to instantiate mHealth applications;

• Use of patient care plan for generating mobile applications;

• It presents the limitations of the proposed platform and how to extend it to support

new types of treatments.

1https://github.com/takere

15

The work is structured as follows: in Section 2 we review the concepts of no-code

and mobile development platforms and healthcare terms used in this work. It also dis-

cusses the related work. Section 3 presents the overall strategy of the platform. Section 4

details the proposed approach, giving essential knowledge concerning the implementation

and use of the platform. Sections 5, 6 and 7 describe, respectively, the validation strategy,

the experimental results and the threats to validity. Section 8 discusses the limitations of

the proposed solution and possible future works.

16

2 BACKGROUND

This chapter covers the essential concepts used in this work. We first review

healthcare concepts and then present the main computational background.

2.1 Healthcare concepts

In this section, we present the main healthcare concepts used in this work. We

start discussing mHealth and gamification concepts. We end by describing the care plan

structure (NANDA-NIC-NOC), detailing each classification individually.

2.1.1 mHealth

The set of mobile technologies used for health care is called mHealth (MECHAEL,

2009). It is used as an extension of the doctor’s office for helping patients with their treat-

ment. The main criterion of these applications is engagement elements to help patients

to stay engaged during their treatment, avoiding abandoning it (ROWLAND et al., 2020).

These applications are developed to be generic enough to subsume as many treatments

as possible. A study pointed out roughly 50% mHealth users stop using them after some

time due to high data entry burden, loss of interest, and hidden costs (KREBS; DUNCAN

et al., 2015).

2.1.2 Gamification

Gamification is using game concepts in other contexts beyond games. It is used

primarily to increase user adherence to a product, as games are used to keep people enter-

tained and focused (SHERRY et al., 2012; SAILER; HOMNER, 2020). Several studies

have shown that gamification provides positive effects depending on how it is imple-

mented along with the context it is used (HAMARI; KOIVISTO; SARSA, 2014; APARI-

CIO et al., 2012; SARDI; IDRI; FERNÁNDEZ-ALEMÁN, 2017; GAALEN et al., 2021).

17

2.1.3 NANDA-NIC-NOC

In order to improve communication between nurses and to standardize health

care, a language standard has been proposed. A nursing classification system began to

be discussed in the 1970s, and with it, challenges and issues about the nursing process

have appeared (CRUZ, 2008). The main classification systems recognized by Ameri-

can Nurses Association (ANA) are NANDA, NIC, and NOC (ANDERSON; KEENAN;

JONES, 2009; BRITO, 2017). Each of these systems will be detailed in the following

subsections.

2.1.3.1 NANDA

North American Nursing Diagnosis Association (NANDA) is a global nursing

association that standardizes nursing diagnoses (HERDMAN, 2008). A diagnosis is a

clinical judgment about individual, family, or community experiences/responses to actual

or potential health problems/life processes (PERRY et al., 2013). NANDA is composed

of 13 domains, 47 classes, and 201 diagnoses, and its first edition was published in 1982.

Figure 2.1 shows an example of NANDA for a sedentary lifestyle, and it has three

components: definite characteristics, related factors, and risk population. The first are

signs and symptoms that indicate when the diagnosis should be applied. The second

describes possible reasons for the problem, and it is useful for choosing an appropriate

nursing intervention. Finally, the risk population refers to people who are more vulnerable

to the problem.

2.1.3.2 NIC

Nursing Interventions Classification (NIC) standardizes nursing interventions. In-

terventions can be independent or collaborative, direct or indirect, and individual or group

oriented (WAGNER et al., 2016). NIC is composed of seven domains, 30 classes, more

than 500 interventions, and 12000 actions/activities, and it was first published in 1992.

The activities are not standardized because it would defeat the purpose of using them to

individualize care. In this work, we will refer to activities defined in the NIC reference

book (BUTCHER et al., 2018). Finally, we classified actions/activities into two groups:

nurse-dependent and independent. The first includes activities that require nurse partici-

pation (for example catheter replacement). The second group contains activities that the

18

Figure 2.1: NANDA - Sedentary lifestyle

Source: https://www.nandadiagnoses.com

patient can do on his/her own (for example drinking water every 2 hours). In this work,

we focus on the second group.

Figure 2.2 shows an example of NIC. The definition specifies the goal of the in-

tervention. Next, activities are a set of actions that may be selected for being used in

patients to achieve the goal of the intervention. Finally, background reading is a list of

recommendations for HCP if they want to get more details about the intervention.

2.1.4 NOC

Nursing Outcomes Classification (NOC) came to standardize nursing expected

results from an intervention. Results (or outcomes) are the behavior or perception of a

patient in response to nursing interventions (MOORHEAD, 2009). NOC is composed

of 31 classes and 385 results, and it was first published in 1991 (MAAS; MOORHEAD,

2000).

Figure 2.3 shows an example of NOC. The definition specifies the goal of the

outcome. Next, there are indicators along with a measurement scale. Each indicator is

an aspect the patient is being monitored, and the measurement scale is used for HCP

to evaluate the patient’s progress related to this aspect. Finally, references are a list of

19

Figure 2.2: NIC - Hypertension management

Source: https://nursing.uiowa.edu

20

recommendations for HCP if they want to get more details about the outcome.

2.2 Computing concepts

In this section, we present the main computing concepts used in this work. We start

defining the drag-and-drop technique, followed by graph concepts and web technologies.

After that, we describe some software concepts and data modeling. Finally, we present

no-code, job scheduler, and non-relational database concepts.

2.2.1 Drag-and-drop

Drag-and-drop in software engineering is when it is possible to drag an element to

a different location and drop it. It is a technique for improving usability and removing the

need to write text commands (INKPEN, 2001; JALENDER et al., 2011). For example,

suppose there are three items, and an user wants to drag-and-drop the first element (Fig-

ure 2.4a). He/she needs to drag this item (Figure 2.4b) and drop it where the user wants

to put it (Figure 2.4c).

2.2.2 Graph concepts

A graph is a diagram composed of a set of nodes and edges. Nodes are the el-

ements of the graph while edges are lines that can connect them. When a node X is

connected with another node Y, then the node X is a parent of the node Y, and the node

Y is a child of the node X. If a node does not have any children, it is called a leaf node,

while nodes do not have parents are called root nodes.

Graphs can be used for modeling several problems, including flights manage-

ment (KINCAID, 2003; SOUZA, 2008), allocation (DIAS; FREITAS; MACULAN, 2012),

path finding (MENDELZON; WOOD, 1995; MA, 2022), among others. There are several

properties for graphs, and we explain some of them in the following subsections. Finally,

we end by explaining an algorithm for traversing graphs.

21

Figure 2.3: NOC - Patient engagement behavior

Source: https://nursing.uiowa.edu

22

Figure 2.4: User dragging an item and dropping it where he/she wants

(a) Initial state (b) Item being dragged (c) Item after being dropped

Source: The author

Figure 2.5: Connected and disconnected graphs

(a) Connected graph (b) Disconnected graph

Source: The author

2.2.2.1 Connected graph

A graph is connected if there is a path between every pair of nodes. A path is a

sequence of nodes where the first node has an edge connecting it with the next node and so

on. On the other hand, a graph that does not have this property is called an disconnected

graph (Figure 2.5 shows both graphs).

2.2.2.2 Digraph

A directed graph (also called a digraph) is a graph where each edge has a direction.

For example, suppose there is a node X connected with another node Y through an edge.

If it is allowed to have a path traversing X to Y and vice-versa, then it is an undirected

graph. On the other hand, if it is only possible to traverse X to Y, then it is a directed

graph. Figure 2.6 shows better the difference between then.

23

Figure 2.6: Directed and undirected graphs

(a) Directed graph (b) Undirected graph

Source: The author

2.2.2.3 Breadth-first Search

Breadth-first search is an algorithm used for traversing graphs. It starts from a root

node and traverses all nodes at the present depth prior to moving on to the nodes at the

next depth level. The algorithm is shown in Figure 2.7.

2.2.3 Web technologies

In 1991, Tim Berners-Lee proposed a standard language for sharing documents,

called Hyper-Text Markup Language (HTML). However, style and text were developed in

the same language - HTML - reducing maintainability. To solve this problem, a style sheet

language was proposed in 1994, called Cascading Style Sheets (CSS). It was designed

for separating the presentation from the content. CSS also improves accessibility (ZA-

KRAOUI; ZAGLER, 2012; KENNEDY; LEÓN, 2011) along with reusability (COLLI-

SON, 2007). With HTML and CSS, it was only possible to create static websites, i.e.,

sites that do not change after being loaded. In order to allow the creation of dynamic

websites (sites that can change after being loaded), a scripting language was proposed

in 1995, called JavaScript. Besides being created for websites, these technologies are

used in other contexts, such as mobile development (EISENMAN, 2015), and back-end

systems (TILKOV; VINOSKI, 2010), among others. In the following subsections, we

explain more about these three languages.

24

Figure 2.7: Breadth-first search algorithm

1 p r o c e d u r e BFS (t r e e) :
2 r o o t := g e t r o o t e l e m e n t from t r e e
3 add r o o t i n queue
4 w h i l e queue i s n o t empty do
5 node := remove f i r s t e l e m e n t from queue
6 i f node i s n o t marked as t r a v e r s e d t h e n
7 mark node as t r a v e r s e d
8 f o r a l l c h i l d o f node do
9 add c h i l d i n queue

10 end f o r
11 end i f
12 end w h i l e
13 end p r o c e d u r e

Source: The author

Figure 2.8: HTML structure being parsed by a web browser

(a) HTML code (b) Parsed HTML

Source: The author

2.2.3.1 HTML

HTML is a markup language used for defining the structure of an application.

It uses tags where each tag has semantics. Thus, from these tags, a parser (like web

browsers) can read the document and understand the defined structure, as shown in Fig-

ure 2.8.

2.2.3.2 Rich text

Rich text is text formatted using HTML. It provides several formatting commands,

such as different fonts, colors, size, bold, italic, and underlining, among others. On the

other hand, plain text content does not contain formatting, images, colors, or other types

of markup. It also includes single line breaks and spacing. Thus, the rich text should be

used when one wants to stylize a text or to express some feeling without using words for

25

Figure 2.9: Parsed HTML with and without CSS

(a) HTML without CSS (b) HTML with CSS

Source: The author

that (ZHANG et al., 2021; GOFFIN et al., 2016).

2.2.3.3 CSS

CSS is a style language responsible for defining the presentation of an application

based on a structure. It consists of defining a set of properties for tags from HTML, such

as color, size, and border. It also allows several HTML documents to use the same CSS

file without having to duplicate content. Finally, Figure 2.9 shows a comparison between

an HTML document without CSS and another with the same content but using CSS.

2.2.3.4 JavaScript

JavaScript is a scripting language whose original goal was to allow the creation of

interactive websites. With it, it is possible to manipulate page elements along with adding

behavior to websites. JavaScript code can run even after a website has been loaded, mak-

ing it possible to build interactive websites. Besides being created for websites, several

libraries have been released using JavaScript as a basis that is not related to the web.

For example, React Native 1 is a framework for building mobile applications that uses

JavaScript for that.

2.2.4 Visual programming language

Visual programming language (VPL) makes it possible to create programs graphi-

cally through element manipulation. It is very useful for allowing the creation of programs

without having to write code for that (MORALES; RUSU, 2020). Also, it can be used

1https://reactnative.dev

26

for learning purposes (TSAI, 2019; DASKALOV; PASHEV; GAFTANDZHIEVA, 2021;

RAO; BIHANI; NAIR, 2018).

2.2.5 Flow-based programming

Flow-Based Programming (FBP) is a paradigm that uses directed graph (Sec-

tion 2.2.2.2) of predefined processes for modeling software systems (MORRISON, 1994).

It aims to have a natural way of abstracting logic and an easy way of visualizing each of

its elements.

2.2.6 Component-Oriented Programming

Usually, 50% of software requirements are equal in different domains and sys-

tems (SOMMERVILLE, 2010). Thus, the probability of developing some piece of code

already existent is high. Software reuse improves productivity and, using system pieces

already tested, documented, and approved improves software quality (KRUEGER, 1992;

FRAKES; TERRY, 1996). Based on that, component-oriented programming proposes to

develop software applications by combining components already developed along with

new components.

2.2.7 Internationalization in software architectures

Internationalization is the strategy of designing software to be compatible with

new languages without having to change the code already produced (KERSTEN; KER-

STEN; RAKOWSKI, 2002; LUONG et al., 1995; AYKIN, 2004). We refer to a language

as new when the software does not have compatibility with it. When software has been

designed to be compatible with internationalization, adding compatibility with a new lan-

guage does not require changing the source code. All texts present in the software are

located in one place, and each language has its dictionary. A dictionary is a set of ele-

ments, each with two fields: key and value. The first is an identifier for the second. On the

other hand, the value is the text written in the language the dictionary belongs to. Thus, to

add compatibility with a new language, the only thing to do is to create a new dictionary

with the same keys but with values written in the new language.

27

Figure 2.10: Microservice architecture - overview

Source: The author

2.2.8 Microservice architecture

Microservice architecture aims to build systems as a set of small independent pro-

cesses (Figure 2.10). Each service is developed according to its business logic and is

independent of others. Using this architecture, it is possible to provide services for sev-

eral distinct clients. Also, there are several advantages this architecture produces, includ-

ing cost reduction (VILLAMIZAR et al., 2016), easy maintainability (DRAGONI et al.,

2017), and resiliency (NADAREISHVILI et al., 2016). In the following subsections, we

introduce some concepts related to this architecture.

2.2.8.1 Back end

Back-end systems are responsible for managing data for other systems. It consists

on providing data on request: an application requests some data, the back-end system

parses this request, handles the database to accomplish the request, and, finally, returns to

the application the requested data (ADAM; BESARI; BACHTIAR, 2019).

Back-end systems in the microservice architecture context are API servers (SURY-

OTRISONGKO; JAYANTO; TJAHYANTO, 2017). Each system has a set of endpoints,

which are addresses for each available service. They also deal with database connection

and database management. Note that back-end systems are usually called servers.

28

Figure 2.11: API - overview

Source: The author

2.2.8.2 Front end

Front-end systems are responsible for providing a graphical interface to users.

They request data from back-end systems and use them for building a layout. These

requests can be for getting or writing some data. The front-end system does not need

to know how this will be done, only how it builds a request for both options (HARMS;

ROGOWSKI; IACONO, 2017; PAVLENKO et al., 2020). Note that front-end systems

are usually called clients.

2.2.8.3 Application Programming Interface

Application Programming Interface (API) is a set of definitions used for commu-

nication between systems. It is a layer that specifies what actions are possible to do and

what information is necessary to provide in order to do this action. It aims to inform a

system how how to communicate with another system and what it can do in this system

(Figure 2.11).

2.2.9 RESTful API

RESTful API is an API that implements REST, which is a set of specified rules

about how an API from a back-end system has to be, including stateless, layered, and

code-on-demand. The first rule refers to a communication mode between client and server

29

Figure 2.12: Event-driven architecture - overview

Source: The author

where each client request is completed independently of the previous requests. On the

other hand, the second specifies the system has to use a layered architecture, including

a security layer, a business logic layer, and a request handler layer. Finally, the code-

on-demand rule says the server is who decides what features a client can use, and it can

change them depending on some logic.

2.2.10 Event-driven architecture

Event-driven architecture is a design pattern whose goal is to provide asynchronous

communication between services (MICHELSON, 2006; MARÉCHAUX, 2006; CLARK;

BARN, 2011; TAYLOR et al., 2009). It uses event streams for notifying all interested ap-

plications when the system status changes. This interaction consists of the system send-

ing microservice events to an event bus followed by a broadcast (Figure 2.12). The event

bus handles new events while broadcasting and forward them to the subscribed compo-

nents. Events are published by some components (publishers) and received by others

(subscribers). A subscriber needs to subscribe to each component it wants to receive

events from. Note that publishers and subscribers do not know each other, as this is the

responsibility of the Broker.

30

2.2.11 Data modeling

Information is a set of data related to some subject. To manipulate it in a computer,

it is necessary to define a structure for this information (SIMSION; WITT, 2004). This

process is called data modeling, and there are several approaches for representing a piece

of information. In the following subsections, we introduce some of these techniques.

2.2.11.1 Models

Models are structured elements based on relevant properties of a real-world con-

cept (FLANDERS; JANNIDIS, 2015). The definition of what properties are relevant or

not depends on the context they are used. Also, the real-world concept can be a physical

object (like a chair), or an abstract concept (like a law), among others. For instance, if

one is building a shopping system, models may include stores, products from this store,

and employers, and it is necessary to define which properties each of these models have

(for example, employers can have a name, a genre, birth date, wage, among others). The

definition of what properties a model will have depends on what information is relevant

to keep, and this depends on the context of the system.

2.2.11.2 DAO

The data access object (DAO) is a design pattern that aims to represent data inde-

pendently of its source (text, database, XML file, among others). For that, it encapsulates

data access through an interface, allowing data access mechanisms can be changed inde-

pendently of the code that uses the data (MATIC; BUTORAC; KEGALJ, 2004; NOCK,

2004). Thus, these objects contain the business logic of the data they represent.

2.2.11.3 DTO

The data transfer object (DTO) is a design pattern used for carrying data between

processes. These pattern aims to aggregate data that is expected to be transferred between

several processes in order to reduce the number of calls, and, consequently, make this

process less costly (MONDAY, 2003). Compared with DAO (Section 2.2.11.2), these

objects do not contain any business logic, being more simple than DAO.

31

2.2.11.4 JSON

JavaScript Object Notation (JSON) is a data interchange format used for exchang-

ing data with other systems in a standard way (PEZOA et al., 2016). It is human-readable

data and it is based on a subset of the JavaScript programming language standard. JSON

files are composed of JSON objects, and each object is composed of a key and a value. The

first is a text used for accessing a value from the object, while the second can be a number,

text, boolean, list, empty value, or even another object. Note that, besides being based on

JavaScript programming language, JSON is completely language-independent, and the

structure of JSON files can be mapped to almost any programming language (CROCK-

FORD, 2006).

2.2.11.5 BSON

Binary JSON (BSON) is JSON represented in a binary structure. It aims to man-

age JSON files more efficiently, and also to add new data types, like dates and binary

data (VIOTTI; KINDERKHEDIA, 2022). For that, the BSON structure encodes type and

length information in JSON files, allowing parsing them more quickly along with adding

compatibility with new data types.

2.2.12 No-code platform

No-code software is a software development technique for building applications

without writing code (MCLEAN, 2021; YAN, 2021). It consists on using drag-and-drop

(Section 2.2.1) concept and connecting components, creating a graph (Section 2.2.2). This

approach has some benefits, such as speeding up the development process (PLODER et

al., 2019). It also reduces the dependency on programmers, and, consequently, reduces

costs (WONG; DRIVER; VINCENT, 2019).

2.2.13 Job scheduler

A job is a program running in a system. A job scheduler is a job manager whose

goal is to decide which and when a job should run. Note that operating systems have a

similar concept: a job scheduler is a job manager that handles the removal of a running

32

job and selects another job for run (SILBERSCHATZ; GALVIN; GAGNE, 2018). In our

work, we do not want to stop a job to run another; we are only interested in deciding

which and when a job should run.

2.2.14 Non-relational databases

Non-relational databases are databases that stores data in a non-tabular form. As

data does not have a fixed structure, each document of the database can store data in

different formats. A document is a list of records, and a database can contain several

documents (BHAT; JADHAV, 2010). Compared with relational databases, each document

(called a table) has fixed fields, and, consequently, a fixed structure.

2.3 Related Work

Several approaches have been proposed in the literature for improving patient en-

gagement. DinoApp (SILVEIRA et al., 2021) is a mobile application developed to support

children with cancer. It helps HCP to be closer to children with cancer after they are dis-

charged from the hospital. It does not replace HCP interaction, but helps it, having a

communication channel between them (frequented asked questions), in addition to other

functionalities, such as calendar, glossary, among others. Our approach has a similar goal

but expands it for different treatments beyond children with cancer.

Mussi et al. (MUSSI et al., 2013) showed that home visit by HCP improves the

healthcare of patients with heart failure. In this research, patients who received HCP visits

improved 24.8% their self-care and adhesion to their treatment, in contrast with 9.76% of

those who have not had these visits. Continuing the previous work, (SOUZA et al., 2014)

focuses on HCP monitoring their patients with heart failure by phone calls. This approach

reduced in 27% hospital admissions and deaths by heart failure. Our approach aims to

achieve similar results but without the presence of HCP since there may be insufficient

professionals to attend to the demand.

(GUZZO, 2017) proposes to automate the pre-hospital attendance system. One

of the goals of this automation is to standardize the nursing language - improving their

communication - and to persist this information in a database. Our approach proposes to

develop a similar system, but including a system for patients, and not only for HCP.

33

(CARVALHO, 2021) proposes a no-code platform for HCP to instantiate mHealth

applications to improve patient engagement. No-code elements are generic enough to be

used in different treatments, and he focuses on identifying engagement elements to be

used when generating a flow. A flow represents the order that the elements that should

appear in the mHealth application along with dependencies (for example if an element

should be parsed only after another has finished). Then, this flow is processed, and a

mHealth application is instantiated based on it. In our approach, we extend this work

to use specific no-code elements based on NIC (Section 2.1.3.2). With that, we expect

HCP to instantiate specific mHealth applications that are in accordance with a treatment

specified for each patient.

34

3 PROPOSED APPROACH

We propose a no-code platform for HCP to instantiate specific mHealth applica-

tions based on care plans. As our goal is that non-programmers use our approach, care

plans are built using FBP (Section 2.2.5) and VPL (Section 2.2.4). Our approach (Fig-

ure 3.1) is composed of five components: care plan flow, care plan parser, agenda, board,

and progress. In the following sections, all these components are explained.

For instance, let us assume a patient that has a disease called urolithiasis. Also,

assume that HCP evaluated the patient and prescribed a treatment with the following

restriction: the patient should intake more than two liters of water per day. In that case,

the HCP has to build the flow of this treatment (care plan flow). For that, it is necessary

to choose which care plan elements compose this flow along with how they relate to each

other. In this example, HCP selected an element for asking the patient daily how many

liters of water he/she drinks (Figure 3.8).

After the care plan flow is created, it is necessary to parse this flow. In this analysis,

a card is generated for the patient to interact with (Figure 3.3). Also, as this element is

periodic, this card will be generated periodically, without having to create another flow

for that.

Finally, when the care plan flow is created and analyzed, the patient can interact

with it. For that, a board is generated containing one card. A card is a set of information

and/or inputs provided by care plan elements. In this example, the card has a question,

and the patient should provide some input. After that, the activity is marked as com-

pleted. Also, the patient can check which activities have been completed in progress.

This progress can also be observed by HCP, checking which activities have been com-

pleted along with the inputs provided by the patient. Finally, the patient can see activities

Figure 3.1: Approach general overview

Source: The author

35

Figure 3.2: User inserting the care plan element in the flow

(a) Initial state
(b) Care plan element being
dragged

(c) Item after being dropped
and, consequently, inserted
in the flow

Source: The author

Figure 3.3: Card generation from the care plan flow

Source: The author

36

Figure 3.4: Patient progress generated from the completed card

(a) Patient selecting the card
with the question

(b) Patient answering
the question

(c) Item after be-
ing dropped

Source: The author

close to their deadline by accessing the agenda (Figure 3.4).

3.1 Board

We defined a board as a set of cards ordered by severity (defined in Table 3.3) and

a deadline as a tiebreaker. It is here where patients interact with care plans created by the

HCP. In the board, each card is generated according to a flow, and its content depends

on which care plan element generated it (as shown in Figure 3.5). It is worth mentioning

that the use of a care plan element does not always generate a card, as it depends on its

semantics.

The board contains all care plan elements that are available for being completed

by the patient. They do not need to be completed at once, and the patient can complete

them in his/her time (except for care plan elements with an end date). Consequently, the

patient goal is to keep its board empty (once a card is completed, it is removed from the

board), meaning that the patient’s treatment is up to date.

37

Figure 3.5: Board generation

Source: The author

3.2 Agenda

Agenda (Figure 3.6) helps patients to not lose care plan element deadlines. It is

a simpler version of the board, where only those elements with very close deadlines are

shown. Its purpose is to help patients to prioritize those elements that are more important

(high severity and those that are close to deadline).

3.3 Progress

When a patient completes a card on the board, a progress item is generated (Fig-

ure 3.7). We defined a progress item as a set of information containing the finishing date

and, optionally, patient input data, related to a care plan element. For example, if a ques-

tion has been made, by HCP, to a patient and this patient answered it, his/her answer

would be in a progress item. Another example is when a medication has been taken: in

this case, the progress item would contain only when this element was finished by the

patient.

Patients can see their progress and check how far they are from accomplishing all

possible progress items. Progress is a set of progress items related to some care plan. It

has two purposes: to keep a treatment history and to provide a progress measure, display-

38

Figure 3.6: The agenda idea is to filter the board and show only care plan elements close
to their deadline

Source: The author

ing how many progress items were finished and comparing this with the total of possible

progress items. Finally, HCP also have access to their patient’s progress. HCP can see

not only completed care plan elements, but also ongoing and late care plan elements.

3.4 Care plan flow

A flow (Figure 3.8) is a connected digraph (Section 2.2.2.1 and Section 2.2.2.2). It

is composed of a set of nodes, which can be connected between them depending on their

policy. A node policy defines the types of nodes that can be connected to it. This policy is

created based on syntax, and its purpose is to avoid creating connections between nodes

that do not make sense in a given context.

39

Figure 3.7: General overview of progress generation. Dashed lines represent a card that
is not in the board anymore because it was already finished

Source: The author

Figure 3.8: A flow composed of two connected digraphs

Source: The author

40

3.4.1 Building a flow

In our approach, nodes represent care plan elements, and edges represent depen-

dency. For example, let us assume there are two nodes: X and Y. If node X has an edge

pointing to node Y, it means that node Y cannot be executed before node X. As nodes are

care plan elements, an edge represents an ordering of which care plan element must be

executed before another can be executed.

3.4.2 Care plan elements

We defined care plan elements as an element representing some item extracted

from NIC (Section 2.1.3.2). It is composed of a name, description, type, color, icon,

shape, input list, output list, content type and parameters (Tables 3.1 to 3.4). This struc-

ture defines the minimum information needed for the approach to work. The type of an

element can be defined as: begin, conditional, periodic or non-periodic, and each of them

are further explained in the following sub-subsections. Note that there are two parameter

type: basic (that are always present), and specific (defined according to the content type).

Parameters can be classified in two groups: basic, that must be in all periodic and

non-periodic care plan elements, and specific, that are defined according to the content

type field. Basic parameters are shown in Table 3.3, while the specific parameters are

defined in Table 3.4.

3.4.2.1 Begin element

The begin element indicates the beginning of the care plan flow. It is the root of

the flow and contains only two parameters: start and end date. The first indicates when

the care plan starts, and the second when it ends. Note that a care plan element may not

have a defined end, being active indefinitely.

3.4.2.2 Conditional element

The conditional element allows choosing between two flows based on some con-

dition (one if it is true and another if it is false). For example, if the patient is feeling pain,

the conditional element can choose a flow that recommends taking some medication.

41

Table 3.1: Structure of care plan elements
Name Description
Slug Name that should be used in back-end systems for storing the

element.
Name Name that should be displayed in front-end systems when creat-

ing a care plan flow.
Description Summary of what the element does.

Type Indicates if is a begin, conditional, periodic or non-periodic ele-
ment.

Color Specifies a color that should be used in front-end systems when
the element is used.

Icon Specifies an icon that should be used in front-end systems when
the element is used.

Shape Specifies how the element should be displayed in front-end sys-
tems when the element is used (square, diamond, among others).

Input list Indicates entry points of the element (useful when displaying the
element in care plan flow). Should be a list of directions (left, top,
among others).

Output list Indicates output points of the element (useful when displaying the
element in care plan flow). Should be a list of directions (left, top,
among others).

Content type As care plan elements can have different parameters besides the
basic ones, it is necessary to specify the type of content. The
possible types include text, unordered list, ordered list, book and
form.

Parameters Specifies fields that should be provided when a new instance of
the element is created (for example when a HCP puts a begin
element in a care plan flow). Parameter structure is specified in
Table 3.2.

Source: The author

Table 3.2: Structure of each parameter item from parameters item from care plan elements
Name Description
Slug Name that should be used in back-end systems for storing the

parameter.
Name Name that should be displayed in front-end systems.

Description Summary of the parameter.
Required Specifies if parameter must be provided or not.

Type Specifies parameter format (number, date, radio, among others).
Source: The author

42

Table 3.3: Basic parameters of care plan elements. Note that the slug field was omitted
due to being used only for internal system use

Name Description Type
Name Instantiated name. text

Description Short explanation about the instantiated
care plan element.

text

Severity How important the care plan element is. It can be:
• Very low;
• Low;
• Medium;
• Critical;
• Very critical.

Source: The author

Table 3.4: Specific parameters of care plan elements. Note that the slug field was omitted
due to being used only for internal system use

Content type Parameters
text Content

unordered list • Icons;
• Elements.

ordered list • Icons;
• Elements.

book Pages
form Questions

Source: The author

43

3.4.2.3 Periodic care plan elements

Periodic care plan elements are characterized by the necessity to be generated pe-

riodically. These elements contain four additional parameters: frequency field, indicating

the frequency type (like daily, spaced intervals, among others) along with its value, begin

date and end date whose value can be undefined. For example, a medication that must

be taken every 4 hours is a periodic care plan element with frequency type set as spaced

interval and frequency value equal to 4.

3.4.2.4 Non-periodic care plan elements

Non-periodic care plan elements are all elements that do not have a frequency.

They do not contain a frequency field, and, once completed, they are not generated again.

For example, an explanation showing how to follow the treatment does not need to be

repeated after the first time the patient read it.

3.5 Care plan parser

After a flow is created, the resulting care plan digraph (Section 2.2.2.2) is parsed.

In this parsing, each node is parsed using an algorithm for traversing or searching tree data

structures, generating a result according to its semantics. This result may generate a card

insertion on the board, depending on its logic. It is the care plan parser’s responsibility to

know every care plan element that the approach provides support for.

As there are two types of care plan elements (Section 3.4.2), the care plan parser

is composed of two modules: periodic and non-periodic. The first is responsible for

parsing periodic care plan elements (Section 3.4.2.3), and the other non-periodic care

plan elements (Section 3.4.2.4). Both modules are further explained in the following

subsections.

3.5.1 Non-periodic module

Non-periodic module parses non-periodic care plan elements (Section 3.4.2.4). It

is simpler than the periodic module (Section 3.5.2) because it does not need to keep track

of parsed care plan elements due to all elements that this module parses do not repeat after

44

some time.

3.5.2 Periodic module

Periodic module is responsible for handling periodic care plan elements (Sec-

tion 3.4.2.3). This module should keep track of each periodic module in order to repeat

care plan elements on the board appropriately. It will generate two results: one immediate

and another one that will be generated according to the element frequency. To accomplish

this, this module should annotate this element for that it can be generated in the future.

3.5.2.1 Periodicity Of The Periodic Element Problem

The periodic module is more complex than the non-periodic module because it

has to deal with the Periodicity Of Periodic Element Problem (POPEP). This problem

occurs when a periodic element has a periodic element as a child. It occurs because it

is necessary to define with which frequency the child element will be generated: after

the parent is completed for the first time or only when its parent is completed or in a

way that is independent of the parent. Both alternatives are correct, and the decision of

which alternative to use is made during the implementation. For example, consider two

elements: X and Y, where Y is child of X. X has a frequency set as daily while Y has a

frequency set to repeat every 2 hours. POPEP occurs when X is completed for the first

time. Y is generated after X completion and is repeated every 2 hours. But, the next

day, X is generated again (remember it has daily frequency), and the question is: what

to do with Y? Does Y repetition should be canceled, returning to the initial state (where

it is generated only after X completion) or it should continue its frequency generation

independent of X? Again, there is no correct answer, and this is a point that must be

decided in implementation (Section 4).

45

4 IMPLEMENTATION

In this section, we present the implementation of the approach described in Chap-

ter 3, called Takere: a no-code platform for helping patients in their treatment according

to a care plan developed by HCPs. Our approach is based on microservice architecture

(explained in Section 2.2.8), where business logic is concentrated in a back-end system

and it is responsible for providing logic for the front-end systems. Our approach is com-

posed of one API server 1 and two clients (Figure 4.1): HCP 2 and patients 3. Thus, Takere

is divided into three parts: a front-end (Section 2.2.8.2) system for HCP (Takere-HCP),

a front-end system for patients (Takere-Patient) and a back-end system (Section 2.2.8.1)

connecting them (Takere-API), as shown in Figure 4.1. This architecture makes our sys-

tems more flexible for adding new care plan elements: whenever a new care plan element

is added, only the back end needs to be modified and, once the component logic is defined

in the back end, it will be propagated to the front-end systems (Figure 4.2). All these parts

have been developed using internationalization (Section 2.2.7), and they will be explained

in the next three sections.

4.1 Takere - HCP

Takere for HCP is a system that allows the definition of a care plan along with

monitoring patients’ progress. It is developed using React 4, which is a framework for cre-

ating websites using component-oriented programming (Section 2.2.6). In the following

subsections, we explain the system architecture, how the care plan flow is implemented

and how HCP can monitor the progress of his/her patients.

4.1.1 Architecture

This front-end system has no information about the semantics of a care plan ele-

ment and knows only its structure. The business logic is in Takere - API and it is explained

in Section 4.2. This way, we simplify the front-end system - increasing its maintainability

1https://github.com/takere/takere-api
2https://github.com/takere/takere-hcp
3https://github.com/takere/takere-patient
4https://reactjs.org

46

Figure 4.1: Takere systems

Source: The author

Figure 4.2: Process of adding a new care plan element (structured as described in Sec-
tion 3.4.2) in the back-end system and its propagation to the front-end systems

Source: The author

47

Figure 4.3: Takere - HCP: Architecture

Source: The author

while making it more flexible: whenever new care plan elements are added, Takere - API

will handle it, and Takere - HCP does not need to be modified. For that, it is necessary that

Takere - HCP knows how nodes are structured to handle them. This structure is detailed

in Section 4.2.2. Finally, architecture modules (Figure 4.3) are explained in Table 4.1.

Note that the "Assets" module was omitted as it is used by all modules.

4.1.2 Care plan flow

We use drag-and-drop (Section 2.2.1) concept for building a care plan flow. The

system shows care plan elements available for use in the flow. To include an element in the

flow, the user needs to drag it and drop it in the flow (Figure 4.4). After that, it is necessary

to connect these elements. Each connection is an arrow, indicating a dependency relation.

For example, if an element Y should be generated only after an element X was completed,

then the user must connect X with Y (in this order), resulting in the Figure 4.5.

Each flow must begin with the ’Begin’ element, which indicates when the care

plan begins and when it ends (Figure 4.6). If the end date is unknown, it can be marked as

’undefined end’, indicating the flow should stay active without a time to become disabled.

Finally, each flow has a name, a description, and the email of the target patient.

48

Table 4.1: Architecture modules of Takere - HCP
Name Description
Assets Application static files (images, dictionaries,

among others). It has not been placed in the
Figure 4.3 to make the image clearer to under-
stand

Config Environment variables and configuration re-
lated files

Components Collection of user interface components (like
buttons and inputs) that can be used across var-
ious files in the project

Models / Domain / DTO Data and database model files
Pages Files responsible for showing information to

users according to some endpoint
Parts User interface components used for composing

components
Routes Files responsible for defining application end-

points and handling with them
Services Files responsible for business logic

Source: The author

Figure 4.4: Drag-and-drop example using Begin element

(a) Begin element being dragged (b) Begin element after being dropped

49

Figure 4.5: Two elements: X and Y, being Y a child of X

Source: The author

Figure 4.6: Begin element - configuration window

Source: The author

50

Figure 4.7: Care plan progress based on a created flow - HCP view

Source: The author

4.1.3 Monitoring patients

After a care plan flow is created, the target patient of the flow can start his/her

treatment. When care plan elements are completed by him/her, results about this patient

become available. This information can be monitored by HCP, seeing which elements

have been completed, which are ongoing and those that are late (Figure 4.7). It is also

possible to see patient input, if the element has inputs (Figure 4.8).

Figure 4.8: HCP view about one care plan element that has input fields

Source: The author

51

Figure 4.9: Takere - API: Architecture

Source: The author

4.2 Takere - API

This system is a RESTful API (Section 2.2.9). It is responsible for defining

care plan elements logic, parsing care plan flows, and generating boards. It handles

the database and also provides data for the other two Takere systems: HCP and Patient.

Takere - API is built using NodeJS 5 due to its advantages compared to other server frame-

works: its architecture is event-driven (Section 2.2.10) and non-blocking I/O (BANGARE

et al., 2016; DEMASHOV; GOSUDAREV, 2019). In addition, NodeJS works well with

JavaScript, which is the language used in the database. In the following sections, we detail

the architecture and how we implement care plan elements (introduced in Section 3.4.2)

and the care plan parser (Section 3.5). Finally, we describe the Takere database.

4.2.1 Architecture

This system is composed of eight modules. Seven of these modules have their

flow shown in Figure 4.9, and all the eight modules are further explained in Table 4.2.

Note that the "Assets" module was omitted as it is used by all modules.

5https://nodejs.org

52

Table 4.2: Architecture modules of Takere - API
Name Description
Assets Application static files (images, dictionaries,

among others). It has not been placed in the
Figure 4.9 to make the image clearer to under-
stand

Config Environment variables and configuration re-
lated files

Controllers Files responsible for handling with requests and
responses

Filters Files called after the route handler and before a
response goes out

Middlewares Files called only before the route handler is
called. It has access to the response object, but
it does not have the result of the route handler

Models / Domain / DTO Data and database model files
Repositories Files responsible for persisting data

Routes Files responsible for defining application end-
points and handling with them

Services Files responsible for business logic
Source: The author

4.2.2 Care plan elements

Care plan elements are stored in JSON (Section 2.2.11.4) format and are structured

as defined in Section 3.4.2. We chose JSON because the data structure of our database

uses BSON (Section 2.2.11.5). The semantics of specific parameters are defined in Ta-

ble 4.3. Note that we chose MaterialUI 6 library for providing icons when necessary. Also,

icons are part of the care plan structure, and not of parameters, as it is static information.

We considered the parameters as the elements of the list.

4.2.3 Care plan parser

Care plan parser is implemented using BFS (Section 2.2.2.3) algorithm. We chose

this algorithm because it is more suitable to deal with the POPEP (Section 3.5.2.1), as

we chose to continue the frequency generation of a node independently of its children.

When a new care plan is generated, the care plan parser traverses the tree from its root

and parses each node according to its logic. Besides its logic, it is necessary to configure

6mui.com/material-ui/material-icons

53

Table 4.3: Specific parameters semantics
Parameter name Semantics

Content Any text, including numbers and symbols
Pages List of pages, where each page has a structure

(HTML code) and a style (CSS code)
Questions List of questions, where each question has a la-

bel (text), a type (defined in Table 4.4) and -
optionally, a list of options, where each option
has a label (name that is displayed) and a value
(name that is used internally). The last should
be used when type is radio, checkbox or select.

Source: The author

Table 4.4: Input types
Name Description
Radio Selects one option from a set.
Select Selects one option from a list (it is required to

provide the options as parameter, where each
option has a label - name that is displayed - and
a value - name that is used internally).

Checkbox Selects multiple options from a set.
Single-line text Short text.
Multi-line text Long text.

Rich text HTML text.
Book List of pages, where each page has a structure

(HTML code) and a style (CSS code).
Date Selects a date from a calendar.

Source: The author

54

a scheduler if the parsed node is periodic.

Periodic nodes are generated according to some frequency. For that, we use a job

scheduler (explained in Section 2.2.13) and create a job for generating each periodic node

according to its frequency. Each job is stored in the database, and the job scheduler is

responsible for managing these jobs and running them when necessary.

4.2.4 Database

As care plan elements can have different contents (Section 4.2.2), it is more suit-

able to use a non-relational database (explained in Section 2.2.14). We use MongoDB 7

because it works using JavaScript (as our server framework NodeJS) and its structure

is more flexible than relational databases (CHAUHAN; BANSAL, 2017). Also, it has

several advantages, such as storing data using BSON (Section 2.2.11.5) - being very

efficient if data is managed in JSON - and being more efficient than some relational

databases (GYŐRÖDI et al., 2015; PARKER; POE; VRBSKY, 2013). Finally, we created

seven collections, which are further explained in Table 4.5.

4.3 Takere - Patient

Takere for patients is a system that allows patients to have access to their care

plans. They can see its progress along with elements that they have to complete. It

is developed using React Native, which is a mobile development framework for gen-

erating mobile applications using component-oriented programming (Section 2.2.6). It

generates native applications for Android 8 and iOS 9 operating systems. In the follow-

ing subsections we explain the system architecture, how the board (Section 3.1), agenda

(Section 3.2) and progress components (Section 3.3) are implemented.

7https://www.mongodb.com
8www.android.com
9www.apple.com/ios

55

Table 4.5: Takere database. Note that "ObjectId" type is a reference to a record in another
table

Collection Description Fields Required
boards Contains patient boards id: ObjectId(boards) No

name: string Yes
description: string Yes
userEmail: string Yes

flow: ObjectId Yes
node: ObjectId(nodes) Yes

completed: ObjectId(completed) No
edges Contains edges used in id: ObjectId(edges) No

each care plan flow source: ObjectId(nodes) Yes
target: ObjectId(nodes) No

animated: boolean No
flow: ObjectId(flows) Yes

completed Contains completed id: ObjectId(completed) No
care plan elements node: ObjectId(nodes) Yes
of the board result: Object No

flows Contains created id: ObjectId(flows) No
care plan flows author: ObjectId(users) Yes

name: string Yes
description: string Yes
userEmail: string Yes

jobs Contains jobs id: ObjectId(jobs) No
related to periodic name: string Yes
care plan elements data: Object No

type: string No
priority: number No
nextRunAt: Date No

lastModifiedBy: Date No
lastRunAt: Date No

lastFinishedAt: Date No
nodes Contains nodes used id: ObjectId(nodes) No

in each care plan type: string Yes
flow data: Object Yes

position: Object Yes
flow: ObjectId(flows) Yes

users Contains users of id: ObjectId(users) No
the system (patients firstName: string Yes
and HCP) lastName: string No

password: string Yes
role: string Yes

email: string Yes
profileUrl: string No

Source: The author

56

Figure 4.10: Takere - Patient: Architecture

Source: The author

4.3.1 Architecture

Takere for patients system is composed of eight modules. Seven of these modules

have their flow shown in Figure 4.10, and all the eight modules are further explained in

Table 4.6. Note that the "Assets" module was omitted as it is used by all modules.

4.3.2 Board

All care plan elements the patient should complete are grouped on the board. It

is composed of a set of cards, where each card represents a care plan element, and it has

two parts: the front and the back, as shown in Figure 4.11. The first is composed of four

elements: the care plan element name, a title, its description, and an icon. Also, card

color is defined by the care plan element color. The back contains care plan information

(name and description), title of care plan element (Figure 4.11a), the content of the care

plan element (Figure 4.11b), and a finish button.

57

Figure 4.11: Takere - Patient: board

(a) Generated cards based on some care
plan flow

(b) Card content of some care plan ele-
ment from board

Source: The author

58

Table 4.6: Architecture modules of Takere - Patient
Name Description
Assets Application static files (images, dictionaries,

among others). It has not been placed in the
Figure 4.10 to make the image clearer to under-
stand

Config Environment variables and configuration re-
lated files

Components Collection of user interface components (like
buttons and inputs) that can be used across var-
ious files in the project

Models / Domain / DTO Data and database model files
Navigations Files responsible for defining application navi-

gation routes
Parts User interface components used for composing

components
Providers Files responsible for managing local data
Services Files responsible for business logic
Screens Files responsible for showing information to

users according to some navigation route
Source: The author

4.3.3 Agenda

The agenda aims to highlight care plan elements that should be finished as soon

as possible. For that, we use two strategies: grouping these elements by deadline day and

using colors (Figure 4.12). The first approach uses two groups: "today" and "tomorrow",

and each of them contains care plan elements with the deadline for today or tomorrow,

respectively. We have chosen to not include other groups because the agenda goal is to dis-

play urgent care plan elements that should be finished, and showing more than necessary

can reduce its impact and cause unnecessary anxiety to patients. The second approach

use colors to highlight elements closest to the deadline: red for today and yellow for to-

morrow. This approach is based on studies showing that colors can engage people to do

tasks (VALDEZ; MEHRABIAN, 1994; STONE; ENGLISH, 1998; DAREJEH; SINGH,

2013).

59

Figure 4.12: Takere - Patient: agenda screen

Source: The author

60

Figure 4.13: Takere - Patient: progress screen

Source: The author

4.3.4 Progress

Progress screen shows patient progress in his/her care plans. For each care plan,

it is shown a set of items containing progress information about each care plan element.

This information includes the total of care plan elements of each type along with how

many of them were completed, as shown in Figure 4.13.

61

5 VALIDATION METHODOLOGY

Our goal is to provide a no-code platform that makes it possible for HCP to in-

stantiate mHealth applications based on patient care plans. In addition to the typical

verification strategies used during implementation, we performed one internal validation

experiment to evaluate whether the implemented solution fulfills its main objectives. To

this end, we evaluated the following research questions (RQs):

RQ1: Is it possible to generalize actions/activities from NIC?

RQ2: Is it possible to create parameterized computing elements from general-
ized actions/activities from NIC?

RQ3: Is it possible to generate customizable mobile application from parame-
terized computing elements obtained from NIC?

To perform the analysis, we selected two diseases. The chosen diseases were

cancer and urolithiasis because more than half of the nurses we interviewed had many

patients with these diseases. Consequently, we have had more information about cancer

and urolithiasis than other diseases. For each disease, we looked for the most indicated

NIC described in the literature. To do this, we performed a literature review on scientific

work produced in the last twenty years that address cancer and urolithiasis interventions.

Our inclusion criteria for scientific work were the following:

1. the paper addresses cancer or urolithiasis disease;

2. the paper proposes one or more interventions for cancer or urolithiasis disease;

3. the paper has been published in the last twenty years.

On the other hand, our exclusion criteria were the following:

1. it was not possible to read the complete version of the paper;

2. the paper proposes interventions that depend on HCP.

With this search, we obtained 28 papers. After reading their title, abstract, and

conclusion, we applied the inclusion and exclusion criteria, leaving 16 works: ten related

to cancer and six related to urolithiasis. All selected papers were read in full so that we

understand in detail these interventions.

Based on this research, we identified the two most recommended interventions

for each disease. Those interventions are indeed listed as NIC (Table 5.1), for the target

diseases and were used in our experiments. Thus, we selected four NICs: two for each

disease. For each NIC, we considered all activities described in (BUTCHER et al., 2018).

62

Table 5.1: Selected NICs for each disease
Disease NIC
Cancer Exercise promotion

Self-esteem enhancement
Urolithiasis Fluid monitoring

Teaching: Prescribed diet
Source: The author

63

6 RESULTS

In this section, we present and analyze the results with respect to the established

research questions. The analyses are presented in three parts: 1) the results of the analyses

conducted to answer RQ1, 2) the results of the analyses conducted to answer RQ2 and 3)

the results of the analyses conducted to answer RQ3.

6.1 Analyzing RQ1

For each selected NIC (Table 5.1), we analyzed each activity and grouped them

by similarity. We consider an activity similar to another if they have the same purpose

but with different information. For example, consider two activities: one is to monitor

the patient weight and another is to check if the patient is dizzy. These activities are

similar, due to being activities that the patient should provide some information as input

for HCP (in this case, their weight and if they are dizzy or not). From this analysis, we

identified five groups that are defined as care plan elements. Tables 6.1 to 6.5 present the

activities selected to each selected NIC and the identification of the care plan elements

that represent them. Finally, we define the semantics of these elements in Table 6.6. Note

that activities that are nurse-dependent (Section 2.1.3.2) have been ignored since our work

focuses on nurse-independent activities.

From this analysis, we identified five care plan elements:

• Explanation: aims to instruct the patient about something using rich text (Sec-

tion 2.2.3.2);

• Medication control: helps patients to handle medications they need to use;

• Orientation: short message for assisting or motivating the patient about something;

• Quiz: aims to receive some input from the patient;

• Reminder: It is similar to the orientation, but it is a periodic element (Section 3.5.2).

It also can notify the patient in different ways, and HCP can use the most suitable

option according to their patients.

To avoid creating care plans that do not make sense, we defined which element

can be connected to others (Table 6.6). Also, although we used a specific set of NIC, our

64

Table 6.1: Cancer disease - activities from "Exercise promotion" NIC
Activity Care plan

element
Identifier

Appraise individual’s health beliefs about physical exer-
cise

Quiz EP01

Explore prior exercise experiences Quiz EP02
Determine individual’s motivation to begin/continue ex-
ercise program

Quiz EP03

Explore barriers to exercise Quiz EP04
Encourage verbalization of feelings about exercise or
need for exercise

Orientation EP05

Encourage individual to begin or continue exercise Orientation EP06
Assist in identifying a positive role model for maintain-
ing the exercise program

Quiz EP07

Assist individual to develop an appropriate exercise pro-
gram to meet needs

Quiz EP08

Assist individual to set short-term and long-term goals
for the exercise program

Quiz EP09

Assist individual to schedule regular periods for the ex-
ercise program into weekly routine

Quiz EP10

Perform exercise activities with individual, as appropri-
ate

Orientation EP11

Include family/caregivers in planning and maintaining
the exercise program

Ignored EP12

Inform individual about health benefits and physiologi-
cal effects of exercise

Orientation EP13

Instruct individual about appropriate type of exercise for
level of health, in collaboration with physician and/or ex-
ercise physiologist

Explanation EP14

Instruct individual about desired frequency, duration,
and intensity of the exercise program

Explanation EP15

Monitor individual’s adherence to exercise program/ac-
tivity

Ignored EP16

Assist individual to prepare and maintain a progress
graph/chart to motivate adherence with the exercise pro-
gram

Orientation EP17

Instruct individual about conditions warranting cessation
of or alteration in the exercise program

Explanation EP18

Instruct individual on proper warm up and cool down
exercises

Explanation EP19

Instruct individual in techniques to avoid injury when ex-
ercising

Explanation EP20

Instruct individual in proper breathing techniques to
maximize oxygen uptake during physical exercise

Explanation EP21

Provide reinforcement schedule to enhance individual’s
motivation (e.g., increased endurance estimation; weekly
weigh-in)

Reminder EP22

Monitor individual’s response to exercise program Ignored EP23
Provide positive feedback for individual’s efforts Orientation EP24

Source: The author

65

Table 6.2: Cancer disease - activities from "Self-esteem enhancement" NIC
Activity Care plan

element
Identifier

Monitor patient’s statements of self-worth Ignored SEE01
Determine patient’s locus of control Ignored SEE02
Determine patient’s confidence in own judgment Ignored SEE03
Encourage patient to identify strengths Quiz SEE04
Assist patient to find self-acceptance Explanation SEE05
Encourage eye contact in communicating with others Explanation SEE06
Reinforce the personal strengths that patient identifies Reminder SEE07
Encourage patient to engage in self-talk and to verbalize
positive affirmations daily to self

Orientation SEE08

Provide experiences that increase patient’s autonomy, as
appropriate

Ignored SEE09

Assist patient to identify positive responses from others Explanation SEE10
Refrain from negatively criticizing Explanation SEE11
Assist the patient to cope with bullying or teasing Explanation SEE12
Convey confidence in patient’s ability to handle situation Explanation SEE13
Assist in setting realistic goals to achieve higher self-
esteem

Quiz SEE14

Assist patient to accept dependence on others, as appro-
priate

Orientation SEE15

Assist patient to reexamine negative perceptions of self Orientation SEE16
Encourage increased responsibility for self, as appropri-
ate

Quiz SEE17

Assist patient to identify the effect of peer group on feel-
ings of self-worth

Explanation SEE18

Explore previous achievements of success Reminder SEE19
Explore reasons for self-criticism or guilt Quiz SEE20
Encourage the patient to evaluate own behavior Quiz SEE21
Encourage patient to accept new challenges Orientation SEE22
Reward or praise patient’s progress toward reaching
goals

Orientation SEE23

Facilitate an environment and activities that will increase
self-esteem

Explanation SEE24

Assist patient to identify significance of culture, religion,
race, gender, and age on self-esteem

Explanation SEE25

Instruct parents on the importance of their interest and
support in their children’s development of a positive self-
concept

Explanation SEE26

Instruct parents to set clear expectations and to define
limits with their children

Explanation SEE27

Instruct parents to recognize children’s accomplishments Explanation SEE28
Monitor frequency of self-negating verbalizations Ignored SEE29
Monitor lack of follow-through in goal attainment Ignored SEE30
Monitor levels of self-esteem over time, as appropriate Ignored SEE31
Make positive statements about patient Orientation SEE32

Source: The author

66

Table 6.3: Urolithiasis disease - activities from "Fluid monitoring" NIC (part A)
Activity Care plan

element
Identifier

Determine history of amount and type of fluid intake and
elimination habits

Quiz FM01

Determine possible risk factors for fluid imbalance (e.g.,
albumin loss state, burns, malnutrition, sepsis, nephrotic
syndrome, hyperthermia, diuretic therapy, renal patholo-
gies, cardiac failure, diaphoresis, liver dysfunction,
strenuous exercise, heat exposure, infection, postopera-
tive state, polyuria, vomiting, and diarrhea)

Quiz FM02

Determine whether patient is experiencing thirst or
symptoms of fluid changes (e.g., dizziness, change of
mentation, lightheadedness, apprehension, irritability,
nausea, twitching)

Quiz FM03

Examine capillary refill by holding the patient’s hand at
the same level as their heart and pressing on the pad of
their middle finger for 5 seconds, releasing pressure, and
counting time until color returns (i.e., should be less than
2 seconds)

Ignored FM04

Examine skin turgor by grasping tissue over a bony area
such as the hand or shin, pinching the skin gently, hold-
ing it for a second and releasing (i.e., skin will fall back
quickly if patient is well hydrated)

Ignored FM05

Monitor weight Quiz FM06
Monitor intake and output Quiz FM07
Monitor serum and urine electrolyte values, as appropri-
ate

Ignored FM08

Monitor serum albumin and total protein levels Ignored FM09
Monitor serum and urine osmolality levels Ignored FM10
Monitor BP, heart rate, and respiratory status Ignored FM11
Monitor orthostatic blood pressure and change in cardiac
rhythm, as appropriate

Ignored FM12

Monitor invasive hemodynamic parameters, as appropri-
ate

Ignored FM13

Keep an accurate record of intake and output (e.g., oral
intake, enteral intake, IV intake, antibiotics, fluids given
with medications, NG tubes, drains, vomit, rectal tubes,
colostomy drainage, and urine)

Ignored FM14

Insure to measure all intake and output on all patients
with intravenous therapy, subcutaneous infusions, en-
teral feedings, NG tubes, urinary catheters, vomiting, di-
arrhea, wound drains, chest drains, and medical condi-
tions that affect fluid balance (e.g., heart failure, renal
failure, malnutrition, burns, sepsis)

Ignored FM15

Source: The author

67

Table 6.4: Urolithiasis disease - activities from "Fluid monitoring" NIC - part B
Activity Care plan

element
Identifier

Record incontinence episodes in patients requiring accu-
rate intake and output

Quiz FM16

Correct mechanical problems (e.g., kinked or blocked
catheter) in patients experiencing sudden cessation of
urine output

Ignored FM17

Monitor mucous membranes, skin turgor, and thirst Ignored FM18
Monitor color, quantity, and specific gravity of urine Ignored FM19
Monitor for distended neck veins, crackles in the lungs,
peripheral edema, and weight gain

Ignored FM20

Monitor for signs and symptoms of ascites Ignored FM21
Note presence or absence of vertigo on rising Quiz FM22
Administer fluids, as appropriate Medication

control
FM23

Assure that all IV and enteral intake devices are operat-
ing at the correct rates, especially if not regulated by a
pump

Ignored FM24

Restrict and allocate fluid intake, as appropriate Orientation FM25
Consult physician for urine output less than 0.5 mL/kg/hr
or adult fluid intake less than 2000 in 24 hours, as appro-
priate

Reminder FM26

Administer pharmacological agents to increase urinary
output, as appropriate

Medication
control

FM27

Administer dialysis noting patient response, as appropri-
ate

Ignored FM28

Maintain accurate fluid container reference charts to as-
sure standardization of container measurements

Ignored FM29

Audit intake and output graphs periodically to ensure
good practice patterns

Orientation FM30

Source: The author

68

Table 6.5: Urolithiasis disease - activities from "Teaching: Prescribed diet" NIC
Activity Care plan

element
Identifier

Appraise the patient’s current level of knowledge about
prescribed diet

Quizz TMD01

Appraise the patient’s current and past eating patterns as
well as preferred foods and current eating habits

Quizz TMD02

Determine the patient’s and family’s perspectives, cul-
tural backgrounds, and other factors that may affect the
patient’s willingness to follow prescribed diet

Ignored TMD03

Determine any financial limitations that may affect food
purchases

Ignored TMD04

Instruct the patient on the proper name of the prescribed
diet

Explanation TMD05

Explain the purpose of diet adherence to overall health Explanation TMD06
Inform the patient about how long the diet should be fol-
lowed

Explanation TMD07

Instruct the patient about how to keep a food diary, as
appropriate

Explanation TMD08

Instruct the patient on allowed and prohibited foods Explanation TMD09
Inform the patient of possible drug and food interactions,
as appropriate

Explanation TMD10

Assist the patient to accommodate food preferences into
the prescribed diet

Explanation TMD11

Assist the patient in substituting ingredients to conform
favorite recipes to the prescribed diet

Explanation TMD12

Instruct the patient about how to read labels and select
appropriate foods

Explanation TMD13

Observe the patient’s selection of foods appropriate to
prescribed diet

Quiz TMD14

Instruct the patient about how to plan appropriate meals Explanation TMD15
Provide written meal plans, as appropriate Orientation TMD16
Recommend a cookbook that includes recipes consistent
with the diet, as appropriate

Orientation TMD17

Reinforce information provided by other health care
team members, as appropriate

Ignored TMD18

Reinforce the importance of continued monitoring and
changing needs that may require further alteration of di-
etary plan of care

Orientation TMD19

Refer patient to dietitian, as appropriate Ignored TMD20
Include the family, as appropriate Orientation TMD21

Source: The author

69

analysis can be used for other sets. For that, the first step is to discard those activities

whose performance depends on the participation of HCP. After that, it is necessary to

group activities by similarity, i.e., those who have the same goal.

6.2 Analyzing RQ2

Once we identified care plan elements, we analyzed if it is possible to specify pa-

rameters for them. For that, we analyzed activities mapped to the same care plan element

and identified which parameters can be extracted in order to subsume these activities into

the care plan element. Using the structure defined in Section 3.4.2, we describe the struc-

ture of each care plan element identified in Section 6.1. We start describing explanation

(Table 6.7) and medication control elements (Table 6.8). Next we describe orientation ele-

ment (Table 6.9). After that we show how quiz element is structured (Table 6.10). Finally,

we describe the structure of the reminder element (Table 6.11). Note that we omitted the

"slug" field because it is only important for the internal handling of the data. We also

omitted the following parameters as they are present in all periodic elements: frequency,

begin, and end date. It is worth mentioning that we omitted the severity parameter too, as

it is present in all elements.

To parameterize a new care plan element, it is necessary to analyze the activities

that it refers to (as seen in Section 6.1). Next, we need to identify what is the difference

between them, i.e., what is necessary for one to be equal to the other. After that, we

have to typify the identified parameters as text, number, or another type. Finally, we need

to define the remaining fields that a care plan element has (as defined in Section 3.4.2),

including a name, description, type (periodic or non-periodic), icon, color, shape, input

list, output list, and content type.

Thus, we parameterized all five care plan elements defined in RQ1. Tables 6.7

to 6.11 show the identified parameters. This information is structured in JSON and stored

in Takere - API, following the structure previously described in Section 3.1.

6.3 Analyzing RQ3

In this section, we build a case study using the care plan elements defined in Sec-

tion 6.1 and Section 6.2. First, we define the personas of our case study and build a care

70

Table 6.6: All possible connections of elements
Element Can be connected to

Begin Explanation
Medication control

Orientation
Quiz

Reminder
Conditional Conditional

Explanation
Medication control

Orientation
Quiz

Reminder
Explanation Explanation

Medication control
Orientation

Quiz
Medication control Conditional

Explanation
Medication control

Orientation
Quiz

Reminder
Orientation Conditional

Explanation
Medication control

Orientation
Quiz

Reminder
Quiz Conditional

Explanation
Medication control

Orientation
Quiz

Reminder
Reminder Conditional

Explanation
Medication control

Orientation
Quiz

Reminder
Source: The author

71

Table 6.7: Structure of the explanation element
Name Value
Name Explanation
Description Guide / e-book for explaining something.
Type non-periodic
Color #46bdc6
Icon school
Shape square
Input list top
Output list bottom
Content type book
Parameters

Name Description Required Type
Name What’s the

subject?
true text

Description This expla-
nation is
about...

true text

Pages Explanation
content.

true List of:
• Structure: page con-

tent in HTML;
• Style: page style in

CSS (it is optional).

Source: The author

72

Table 6.8: Structure of the medication control element
Name Value
Name Medication control
Description Instruct about some medication and how to use it correctly.
Type periodic
Color #db594f
Icon healing
Shape square
Input list top
Output list bottom
Content type unordered list
Parameters

Name Description Required Type
Name Medication

name.
true text

Description This med-
ication is
about...

true text

Why This med-
ication is
important
because...

true text

Notes Extra infor-
mation.

false text

Dosage Dosage
along with
its unit (ml,
mg...)

true text

Icons Icons dis-
played
for each
parameter

false list of MaterialUI icon
names

Source: The author

73

Table 6.9: Structure of the orientation element
Name Value
Name Orientation
Description Instruct about something.
Type non-periodic
Color #49a9ff
Icon info
Shape square
Input list top
Output list bottom
Content type text
Parameters

Name Description Required Type
Name What’s the

subject?
true text

Description This ori-
entation is
about..

true text

Content Orientation
content

true text

Source: The author

plan for them (Section 6.3.1). Next, we build a care plan flow of these care plans using

Takere - HCP (Section 6.3.2). After that, we use Takere - Patient and complete a care

plan element that has inputs and the patient provides some input to it (Section 6.3.3). Fi-

nally, we use Takere - HCP again and check the patient progress, showing ihis/her input

(Section 6.3.4).

6.3.1 Care plans planning

For building care plans for our case study, we first need to describe the target

patients (hereafter called personas). We create two personas: one with cancer and another

with urolithiasis, and both feel engaged with pop-up messages along with daily reminders.

We call P1 the persona with cancer and P2 the persona with urolithiasis. We assume

that a nurse selected the intervention "Exercise promotion" for persona P1 and "Fluid

monitoring" for persona P2.

Also, this nurse analyzed the P1 profile and selected the following activities: EP01,

EP02, EP03, EP04, EP05, EP11, EP14, and EP22. In the same way, another nurse did

the same with P2, selecting the following activities: FM06, FM07, FM22, FM23, FM25,

74

Table 6.10: Structure of the quiz element
Name Value
Name Quiz
Description Ask about something.
Type periodic
Color #be96fb
Icon help
Shape square
Input list top
Output list bottom
Content type form
Parameters

Name Description Required Type
Name What’s the

subject?
true text

Description This/these
questions
are about...

true text

Questions Questions to
be asked

true List of:
• Label: question to be

asked;
• Type: answer type

(same of Table 4.4);
• Options: it is optional,

and each answer op-
tion is composed of a
label (information that
is displayed) and a
value (information that
is stored).

Source: The author

75

Table 6.11: Structure of the reminder element
Name Value
Name Reminder
Description Remember about something.
Type periodic
Color #f974bc
Icon textsms
Shape square
Input list top
Output list bottom
Content type text
Parameters

Name Description Required Type
Name Medication

name.
true text

Description This re-
minder is
about...

true text

Content Reminder
content

true text

Notification
type

How this
reminder
should be
displayed?

true List of options (pop-
up message, email, text
message or alert)

Source: The author

76

Figure 6.1: Takere - HCP: Cancer care plan flow

Source: The author

FM26, and FM27. The parameter definition for each of these activities are in Appendix B.

6.3.2 Building care plans in Takere - HCP

We build a flow for each care plan defined in Section 6.3.1. Activities EP01 to

EP04 along with FM06, FM07, and FM22 are mapped to the quiz element. On the other

hand, EP05, EP11, and FM25 are mapped to the orientation element. Also, the activity

EP14 is mapped to the explanation element, FM26 to the reminder element, and the re-

maining to the medication control element. So, we build a care plan flow for the persona

P1 (Figure 6.1) and another flow for the persona P2 (Figure 6.2).

77

Figure 6.2: Takere - HCP: Urolithiasis care plan flow

Source: The author

78

6.3.3 Interacting with care plans in Takere - Patient

After a care plan flow is created, the target patient of the flow can interact with

it through its board (as explained in Section 3.1). Depending on the care plan elements

used in the flow, the patient can interact with them in different ways. Figure 6.3 shows the

persona P2 answering the quiz defined in Table B.6. After that, the persona can see the

care plan progress, checking which elements have been finished and how many remain to

be finished.

6.3.4 Monitoring patients progress in Takere - HCP

After a patient finishes the interaction with some element, it is marked as finished,

and both the persona and the HCP can see his/her progress. HCP can see the progress of

his/her patients per care plan (Figure 6.4). If a care plan element has been finished and

it has inputs, it is possible to see the patient’s answer, as shown in Figure 6.5. With this

information, HCP can change patient care plans according to their progress, adapting the

care plan according to each patient.

Thus, our approach can instantiate customized mobile applications from care plan

elements. For that, care plan elements must be defined according to the structure defined

in Section 3.4.2. After that, a care plan flow has to be created, it is necessary to choose

which care plan elements will be used along with how they relate to each other. Finally, a

flow is generated, and our approach instantiates a mobile application according to selected

care plan elements along with how they are connected.

79

Figure 6.3: Takere - Patient: Patient answering a question of the quiz defined in Table B.6

Source: The author

80

Figure 6.4: Takere - HCP: Patients by care plan

Source: The author

Figure 6.5: Takere - HCP: Patient answer for a question of the quiz defined in Table B.6

Source: The author

81

7 THREATS TO VALIDITY

In this section, we discuss the threats to validity and describe strategies used to

mitigate them. We interviewed 14 nurses from different specializations and identified

NANDA-NIC-NOC - a standard for care plan creation - and used it in our approach.

However, it may be possible there are other standards or other elements we do not ad-

dress in this work. To mitigate this risk, we developed front-end and back-end systems

independent of NANDA-NIC-NOC. These systems were projected based on the care plan

concept, and adding compatibility with other standards will only change care plan ele-

ments. This is not a problem, as the business logic of care plan elements is centralized

in only one system: Takere - API. Consequently, adding new care plan elements in this

system will reflect in all front-end systems, and it is not necessary to do any changes in

those systems (Figure 4.2).

Next, we use a reduced set of NICs in our validation experiments. From this set,

we derived seven care plan elements, as shown in Section 6.1. To these elements may not

be enough to subsume all possible care plans. This risk is mitigated with microservice

architecture (Section 2.2.8). Whenever a new care plan element needs to be created,

the only system that must concern about it is Takere - API (the back-end system of our

approach), while the remaining front-end systems do not need to be changed.

After that, our validation is internal, i.e., we do not validate our approach with

users. Our solution is constructed based on interviews with HCP, but we do not know if it

is suitable to be used for HCP. To mitigate this risk, we intend to do an external validation

with HCP applied in a real case. With that, we expect to obtain feedback from HCP and

evaluate our approach from the user perspective.

Finally, care plan element semantics defined in Table 6.6 was not validated. Con-

sequently, the defined semantics may not subsumes some care plans. We mitigate this risk

by centralizing semantics in one place: a single file in Takere - API system. So, changing

care plan element semantics is a simple task: the only thing to do is to change this file and

all front-end systems will be updated with the new semantics.

82

8 CONCLUSION AND FUTURE WORKS

This work proposes an approach to implement a no-code platform for HCP pro-

duce customized mHealth applications. The main goals of the proposed platform is in-

stantiating mHealth applications for their patients according to their specificities. As HCP

currently use a standard for building patient care plan (called NANDA-NIC-NOC), our

approach uses this concept to define the basic components and to reduce learning time

when using it. We expect to reduce non-adherence or partial adherence to treatments by

patients, as mHealth applications are built based on their necessities. Also, we want to

allow the creation of mHealth applications by HCP, reducing the dependency between

HCP and IT teams, and, consequently, costs.

We identified four threats to validity. The first refers to the results obtained from

our initial interviews. Next, we use a subset of NICs in our validation experiments, which

may not be enough to subsume all possible care plans. After that, our validation is inter-

nal, and we do not evaluate our approach from the user perspective. Finally, the definition

of how the care plan elements can interact one with another may not reflect reality. We

have discussed in Chapter 7 strategies for dealing with each of these threats.

Future work include offline support, allowing the platform to be used when there

is no internet connection, and gamification (Section 2.1.2), as studies have shown they in-

crease engagement (MILLER; CAFAZZO; SETO, 2016; EL-HILLY et al., 2016; WANG

et al., 2021). Another important aspect to be included is accessibility, as there may be

patients with some disabilities, and our approach aims to be as inclusive as possible. Fi-

nally, we intend to allow that HCP to update care plans already created and also to include

a wizard for assisting HCP to create care plans faster. Finally, we intend to validate our

approach with HCP along with patients in order to obtain feedback and improve the solu-

tion.

83

REFERENCES

ADAM, B. M.; BESARI, A. R. A.; BACHTIAR, M. M. Backend server system design
based on rest api for cashless payment system on retail community. In: IEEE. 2019
International Electronics Symposium (IES). [S.l.], 2019. p. 208–213.

ANDERSON, C. A.; KEENAN, G.; JONES, J. Using bibliometrics to support your
selection of a nursing terminology set. CIN: Computers, Informatics, Nursing, LWW,
v. 27, n. 2, p. 82–90, 2009.

APARICIO, A. F. et al. Analysis and application of gamification. In: Proceedings of the
13th International Conference on Interacción Persona-Ordenador. [S.l.: s.n.], 2012.
p. 1–2.

AYKIN, N. Usability and internationalization of information technology. [S.l.]: CRC
press, 2004.

BANGARE, S. et al. Using node. js to build high speed and scalable backend database
server. In: Proc. NCPCI. Conf. [S.l.: s.n.], 2016. v. 2016, p. 19.

BHAT, U.; JADHAV, S. Moving towards non-relational databases. International
Journal of Computer Applications, Citeseer, v. 1, n. 13, p. 40–47, 2010.

BRITO, N. M. R. Conjunto de dados mínimos de enfermagem para unidade de internação
clínica. Universidade Estadual Paulista (UNESP), 2017.

BROWN, M. T.; BUSSELL, J. K. Medication adherence: Who cares? In: ELSEVIER.
Mayo clinic proceedings. [S.l.], 2011. v. 86, n. 4, p. 304–314.

BURGER, C. D. et al. Treatment patterns and associated health care costs before and
after treatment initiation among pulmonary arterial hypertension patients in the united
states. Journal of Managed Care & Specialty Pharmacy, Academy of Managed Care
Pharmacy, v. 24, n. 8, p. 834–842, 2018.

BUTCHER, H. K. et al. Nursing interventions classification (NIC)-E-Book. [S.l.]:
Elsevier Health Sciences, 2018.

CARVALHO, R. V. Proposta de uma plataforma codeless para implementação de apps
de promoção da saúde. 2021.

CHAUHAN, D.; BANSAL, K. Using the advantages of nosql: a case study on
mongodb. International Journal on Recent and Innovation Trends in Computing
and Communication, v. 5, n. 2, p. 90–93, 2017.

CLARK, T.; BARN, B. S. Event driven architecture modelling and simulation. In:
IEEE. Proceedings of 2011 IEEE 6th International Symposium on Service Oriented
System (SOSE). [S.l.], 2011. p. 43–54.

COLLISON, S. Beginning CSS web development: from novice to professional. [S.l.]:
Apress, 2007.

CROCKFORD, D. The application/json media type for javascript object notation
(json). [S.l.], 2006.

84

CRUZ, D. Processo de enfermagem e classificações. Gaidzinski RR, Soares AVN, Lima
AFC, Gutierrez BAO, Cruz DALM, Rogenski NMB, organizadores. Diagnóstico de
Enfermagem na prática clínica. Porto Alegre: Artmed, p. p25–37, 2008.

DAREJEH, A.; SINGH, D. A review on user interface design principles to increase
software usability for users with less computer literacy. Journal of computer science,
Science Publications, v. 9, n. 11, p. 1443, 2013.

DASKALOV, R.; PASHEV, G.; GAFTANDZHIEVA, S. Hybrid visual programming
language environment for programming training. TEM Journal, v. 10, n. 2, p. 981–986,
2021.

DEMASHOV, D.; GOSUDAREV, I. Efficiency evaluation of node. js web-server
frameworks. In: MICSECS. [S.l.: s.n.], 2019.

DIAS, B.; FREITAS, R.; MACULAN, N. Alocação de canais em redes celulares sem fio:
algoritmos e modelos teóricos em grafos e escalonamento. Anais do XLIV Simpósio
Brasileiro de Pesquisa Operacional. Sociedade Brasileira de Pesquisa Operacional
(SOBRAPO), 2012.

DIMATTEO, M. R. Variations in patients’ adherence to medical recommendations: a
quantitative review of 50 years of research. Medical care, JSTOR, p. 200–209, 2004.

DRAGONI, N. et al. Microservices: yesterday, today, and tomorrow. Present and
ulterior software engineering, Springer, p. 195–216, 2017.

EISENMAN, B. Learning react native: Building native mobile apps with JavaScript.
[S.l.]: " O’Reilly Media, Inc.", 2015.

EL-HILLY, A. A. et al. Game on? smoking cessation through the gamification of
mhealth: A longitudinal qualitative study. JMIR serious games, JMIR Publications Inc.,
Toronto, Canada, v. 4, n. 2, p. e5678, 2016.

FAUGHT, E. et al. Nonadherence to antiepileptic drugs and increased mortality.
Neurology, Wolters Kluwer Health, Inc. on behalf of the American Academy of
Neurology, v. 71, n. 20, p. 1572–1578, 2008. ISSN 0028-3878. Available from Internet:
<https://n.neurology.org/content/71/20/1572>.

FLANDERS, J.; JANNIDIS, F. Data modeling. A new companion to digital
humanities, Wiley Online Library, p. 229–237, 2015.

FRAKES, W.; TERRY, C. Software reuse: Metrics and models. Association for
Computing Machinery, New York, NY, USA, v. 28, n. 2, p. 415–435, jun 1996. ISSN
0360-0300. Available from Internet: <https://doi.org/10.1145/234528.234531>.

GAALEN, A. E. van et al. Gamification of health professions education: a systematic
review. Advances in Health Sciences Education, Springer, v. 26, n. 2, p. 683–711,
2021.

GATHRIGHT, E. C. et al. The impact of medication nonadherence on the relationship
between mortality risk and depression in heart failure. Health Psychology, American
Psychological Association, v. 36, n. 9, p. 839, 2017.

https://n.neurology.org/content/71/20/1572
https://doi.org/10.1145/234528.234531

85

GOFFIN, P. et al. An exploratory study of word-scale graphics in data-rich text
documents. IEEE transactions on visualization and computer graphics, IEEE, v. 23,
n. 10, p. 2275–2287, 2016.

GUZZO, D. A. Desenvolvimento de solução informatizada para o registro de atendimento
pré-hospitalar. 2017.

GYŐRÖDI, C. et al. A comparative study: Mongodb vs. mysql. In: IEEE. 2015 13th
International Conference on Engineering of Modern Electric Systems (EMES).
[S.l.], 2015. p. 1–6.

HAMARI, J.; KOIVISTO, J.; SARSA, H. Does gamification work?–a literature review
of empirical studies on gamification. In: IEEE. 2014 47th Hawaii international
conference on system sciences. [S.l.], 2014. p. 3025–3034.

HAMINE, S. et al. Impact of mhealth chronic disease management on treatment
adherence and patient outcomes: a systematic review. Journal of medical Internet
research, JMIR Publications Inc., Toronto, Canada, v. 17, n. 2, p. e3951, 2015.

HARMS, H.; ROGOWSKI, C.; IACONO, L. L. Guidelines for adopting frontend
architectures and patterns in microservices-based systems. In: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering. [S.l.: s.n.], 2017. p.
902–907.

HERDMAN, T. H. North American Nursing Diagnosis Association. Nursing
Diagnoses: definitions & classification, 2009-2011. [S.l.]: Oxford: Wiley-Blackwell,
2008.

HO, P. M. et al. Impact of Medication Therapy Discontinuation on Mortality
After Myocardial Infarction. Archives of Internal Medicine, v. 166, n. 17,
p. 1842–1847, 09 2006. ISSN 0003-9926. Available from Internet: <https:
//doi.org/10.1001/archinte.166.17.1842>.

INKPEN, K. M. Drag-and-drop versus point-and-click mouse interaction styles for
children. ACM Transactions on Computer-Human Interaction (TOCHI), ACM New
York, NY, USA, v. 8, n. 1, p. 1–33, 2001.

JALENDER, B. et al. Drag and drop: influences on the design of reusable software
components. arXiv preprint arXiv:1103.1497, 2011.

KENNEDY, A.; LEÓN, I. d. Css and accessibility. In: Pro CSS for High Traffic
Websites. [S.l.]: Springer, 2011. p. 165–190.

KERSTEN, G. E.; KERSTEN, M. A.; RAKOWSKI, W. M. Software and culture:
Beyond the internationalization of the interface. Journal of Global Information
Management (JGIM), IGI Global, v. 10, n. 4, p. 86–101, 2002.

KINCAID, R. K. Scale-free graphs for general aviation flight schedules. Citeseer, 2003.

KREBS, P.; DUNCAN, D. T. et al. Health app use among us mobile phone owners: a
national survey. JMIR mHealth and uHealth, JMIR Publications Inc., Toronto, Canada,
v. 3, n. 4, p. e4924, 2015.

https://doi.org/10.1001/archinte.166.17.1842
https://doi.org/10.1001/archinte.166.17.1842

86

KRUEGER, C. W. Software reuse. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 24, n. 2, p. 131–183, jun 1992. ISSN 0360-0300.
Available from Internet: <https://doi.org/10.1145/130844.130856>.

LUONG, T. V. et al. Internationalization: Developing software for global markets.
[S.l.]: John Wiley & Sons, Inc., 1995.

MA, H. Graph-based multi-robot path finding and planning. Current Robotics Reports,
Springer, p. 1–8, 2022.

MAAS, J.; MOORHEAD, S. Nursing Outcomes Classification (NOC). [S.l.]: St Louis:
CV Mosby, 2000.

MAO, Y. et al. Impact and efficacy of mobile health intervention in the management of
diabetes and hypertension: a systematic review and meta-analysis. BMJ Open Diabetes
Research and Care, BMJ Specialist Journals, v. 8, n. 1, p. e001225, 2020.

MARCOLINO, M. S. et al. The impact of mhealth interventions: systematic review of
systematic reviews. JMIR mHealth and uHealth, JMIR Publications Inc., Toronto,
Canada, v. 6, n. 1, p. e8873, 2018.

MARÉCHAUX, J.-L. Combining service-oriented architecture and event-driven
architecture using an enterprise service bus. IBM developer works, v. 12691275, 2006.

MATIC, D.; BUTORAC, D.; KEGALJ, H. Data access architecture in object
oriented applications using design patterns. In: IEEE. Proceedings of the 12th IEEE
Mediterranean Electrotechnical Conference (IEEE Cat. No. 04CH37521). [S.l.],
2004. v. 2, p. 595–598.

MCLEAN, A. Software development trends 2021. Canadian Journal of Nursing
Informatics, Canadian Journal of Nursing Informatics, Editor in Chief June Kaminski,
v. 16, n. 1, 2021.

MECHAEL, P. N. The case for mhealth in developing countries. Innovations:
Technology, Governance, Globalization, MIT Press One Rogers Street, Cambridge,
MA 02142-1209, USA journals-info . . . , v. 4, n. 1, p. 103–118, 2009.

MENDELZON, A. O.; WOOD, P. T. Finding regular simple paths in graph databases.
SIAM Journal on Computing, SIAM, v. 24, n. 6, p. 1235–1258, 1995.

MICHELSON, B. M. Event-driven architecture overview. Patricia Seybold Group, v. 2,
n. 12, p. 10–1571, 2006.

MILLER, A. S.; CAFAZZO, J. A.; SETO, E. A game plan: Gamification design
principles in mhealth applications for chronic disease management. Health informatics
journal, SAGE Publications Sage UK: London, England, v. 22, n. 2, p. 184–193, 2016.

MONDAY, P. B. Implementing the data transfer object pattern. In: Web Services
Patterns: JavaTM Platform Edition. [S.l.]: Springer, 2003. p. 279–295.

MOORHEAD, S. A. The nursing outcomes classification. Acta Paulista de
Enfermagem, SciELO Brasil, v. 22, p. 868–871, 2009.

https://doi.org/10.1145/130844.130856

87

MORALES, J.; RUSU, C. Usability perception of visual programming language: A case
study. In: CEUR Workshop Proceedings. [S.l.: s.n.], 2020. v. 2747, p. 83–88.

MORRISON, J. P. Flow-based programming. In: Proc. 1st International Workshop
on Software Engineering for Parallel and Distributed Systems. [S.l.: s.n.], 1994. p.
25–29.

MOZAFFARIAN, D. et al. Heart disease and stroke statistics—2016 update: a report
from the american heart association. circulation, Am Heart Assoc, v. 133, n. 4, p.
e38–e360, 2016.

MUSSI, C. M. et al. Visita domiciliar melhora conhecimento, autocuidado e adesão na
insuficiência cardíaca: ensaio clínico randomizado helen-i. Revista Latino-Americana
de Enfermagem, SciELO Brasil, v. 21, p. 20–28, 2013.

NADAREISHVILI, I. et al. Microservice architecture: aligning principles, practices,
and culture. [S.l.]: " O’Reilly Media, Inc.", 2016.

NOCK, C. Data access patterns: database interactions in object-oriented
applications. [S.l.]: Addison-Wesley Boston, 2004.

PARKER, Z.; POE, S.; VRBSKY, S. V. Comparing nosql mongodb to an sql db.
In: Proceedings of the 51st ACM Southeast Conference. New York, NY, USA:
Association for Computing Machinery, 2013. (ACMSE ’13). ISBN 9781450319010.
Available from Internet: <https://doi.org/10.1145/2498328.2500047>.

PAVLENKO, A. et al. Micro-frontends: application of microservices to web front-ends.
J. Internet Serv. Inf. Secur., v. 10, n. 2, p. 49–66, 2020.

PERRY, A. G. et al. Canadian fundamentals of nursing. [S.l.]: W. Ross MacDonald
School Resource Services Library, 2013.

PEZOA, F. et al. Foundations of json schema. In: Proceedings of the 25th International
Conference on World Wide Web. [S.l.: s.n.], 2016. p. 263–273.

PLODER, C. et al. The future use of lowcode/nocode platforms by knowledge workers–
an acceptance study. In: SPRINGER. International Conference on Knowledge
Management in Organizations. [S.l.], 2019. p. 445–454.

PRESTON, I. R. et al. Temporary treatment interruptions with oral selexipag in
pulmonary arterial hypertension: Insights from the prostacyclin (pgi2) receptor agonist
in pulmonary arterial hypertension (griphon) study. The Journal of Heart and Lung
Transplantation, Elsevier, v. 37, n. 3, p. 401–408, 2018.

RAO, A.; BIHANI, A.; NAIR, M. Milo: A visual programming environment for data
science education. In: IEEE. 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). [S.l.], 2018. p. 211–215.

ROWLAND, S. P. et al. What is the clinical value of mhealth for patients? NPJ digital
medicine, Nature Publishing Group, v. 3, n. 1, p. 1–6, 2020.

SAILER, M.; HOMNER, L. The gamification of learning: A meta-analysis. Educational
Psychology Review, Springer, v. 32, n. 1, p. 77–112, 2020.

https://doi.org/10.1145/2498328.2500047

88

SARDI, L.; IDRI, A.; FERNÁNDEZ-ALEMÁN, J. L. A systematic review of
gamification in e-health. Journal of biomedical informatics, Elsevier, v. 71, p. 31–48,
2017.

SHAH, N. B. et al. High rates of medication adherence in patients with pulmonary
arterial hypertension: an integrated specialty pharmacy approach. PLoS One, Public
Library of Science San Francisco, CA USA, v. 14, n. 6, p. e0217798, 2019.

SHEET, M. F. Pew research center: Internet. Science & Tech, v. 5, 2018.

SHERRY, J. L. et al. Video game uses and gratifications as predictors of use and game
preference. In: Playing video games. [S.l.]: Routledge, 2012. p. 248–262.

SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Operating System Concepts, 10e
Abridged Print Companion. [S.l.]: John Wiley & Sons, 2018.

SILVEIRA, J. P. et al. Dinoapp: aplicativo para apoio ao tratamento de crianças com
câncer. In: SBC. Anais da VIII Escola Regional de Computação Aplicada à Saúde.
[S.l.], 2021. p. 22–25.

SIMSION, G.; WITT, G. Data modeling essentials. [S.l.]: Elsevier, 2004.

SOMMERVILLE, I. Software Engineering. 9. ed. Harlow, England: Addison-Wesley,
2010. ISBN 978-0-13-703515-1.

SOUSA, T. B. Dataflow programming concept, languages and applications. In: Doctoral
Symposium on Informatics Engineering. [S.l.: s.n.], 2012. v. 130.

SOUZA, B. B. d. Modelo de balanceamento com multi-fluxos para aplicaçao em
gerenciamento de tráfego aéreo. 2008.

SOUZA, E. N. de et al. A nurse-based strategy reduces heart failure morbidity in patients
admitted for acute decompensated heart failure in brazil: the helen-ii clinical trial.
European Journal of Heart Failure, Wiley Online Library, v. 16, n. 9, p. 1002–1008,
2014.

STONE, N. J.; ENGLISH, A. J. Task type, posters, and workspace color on mood,
satisfaction, and performance. Journal of Environmental Psychology, Elsevier, v. 18,
n. 2, p. 175–185, 1998.

SURYOTRISONGKO, H.; JAYANTO, D. P.; TJAHYANTO, A. Design and development
of backend application for public complaint systems using microservice spring boot.
Procedia Computer Science, Elsevier, v. 124, p. 736–743, 2017.

TAYLOR, H. et al. Event-driven architecture: how SOA enables the real-time
enterprise. [S.l.]: Pearson Education, 2009.

TILKOV, S.; VINOSKI, S. Node. js: Using javascript to build high-performance network
programs. IEEE Internet Computing, IEEE, v. 14, n. 6, p. 80–83, 2010.

TSAI, C.-Y. Improving students’ understanding of basic programming concepts through
visual programming language: The role of self-efficacy. Computers in Human
Behavior, Elsevier, v. 95, p. 224–232, 2019.

89

VALDEZ, P.; MEHRABIAN, A. Effects of color on emotions. Journal of experimental
psychology: General, American Psychological Association, v. 123, n. 4, p. 394, 1994.

VILLAMIZAR, M. et al. Infrastructure cost comparison of running web applications
in the cloud using aws lambda and monolithic and microservice architectures. In:
IEEE. 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). [S.l.], 2016. p. 179–182.

VIOTTI, J. C.; KINDERKHEDIA, M. A survey of json-compatible binary serialization
specifications. arXiv preprint arXiv:2201.02089, 2022.

WAGNER, C. et al. Classificação das intervenções de enfermagem (nic). In:
Classificação das intervenções de enfermagem (nic). [S.l.: s.n.], 2016. p. 610–610.

WALSH, C. A. et al. The association between medication non-adherence and adverse
health outcomes in ageing populations: A systematic review and meta-analysis. British
Journal of Clinical Pharmacology, v. 85, n. 11, p. 2464–2478, 2019. Available from
Internet: <https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.14075>.

WANG, T. et al. The impact of gamification-induced users’ feelings on the continued
use of mhealth apps: A structural equation model with the self-determination theory
approach. Journal of medical Internet research, JMIR Publications Inc., Toronto,
Canada, v. 23, n. 8, p. e24546, 2021.

WONG, J.; DRIVER, M.; VINCENT, P. Low-code development technologies
evaluation guide. [S.l.]: Gartner, Inc, 2019.

WU, J.-R. et al. Medication adherence in patients who have heart failure: a review of the
literature. Nursing Clinics of North America, Elsevier, v. 43, n. 1, p. 133–153, 2008.

YAN, Z. The impacts of low/no-code development on digital transformation and software
development. arXiv preprint arXiv:2112.14073, 2021.

ZAKRAOUI, J.; ZAGLER, W. A method for generating css to improve web accessibility
for old users. In: SPRINGER. International Conference on Computers for
Handicapped Persons. [S.l.], 2012. p. 329–336.

ZHANG, X. et al. Minimally-supervised structure-rich text categorization via learning
on text-rich networks. In: Proceedings of the Web Conference 2021. [S.l.: s.n.], 2021.
p. 3258–3268.

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.14075

90

APPENDIX A — INTERVIEW QUESTIONS

We made 12 questions when interviewing HCP in our initial research. The ques-

tions are listed bellow.

1. What is your name?

2. What do you do for a living? (nurse, psychologist...)

3. What kind of patients do you treat? (related to ongoing treatment)

4. What do patients usually ask about treatment?

5. How do you keep track of patient care? Token? App? Hospital system? online?

6. What kind of information is essential to have from the patient?

7. What kind of information would it be good to have about the patient but not have it

or have it but it is difficult to access?

8. How is patient care set up? What is its structure (in general terms)?

9. How does the patient see the treatment and know what to do? Do you use an app,

prescription, table. . . ?

10. How do you deal with patient engagement? How do you keep them engaged to

continue treatment?

11. What are the main challenges in treating patients?

12. Do you know other nurses who deal with treatments in continuous care? If so, could

you provide their contact details? It will be of great help

91

APPENDIX B — CASE STUDY - PARAMETER DEFINITION

We start defining the parameters of the activities related to P1: EP01, EP02, EP03

and EP04 (Table B.1) followed by the activities EP05 (Table B.2), EP11 (Table B.3), EP14

(Table B.4) and EP22 (Table B.5). After that, we define the activities of the persona P2:

FM06, FM07 and FM22 (Table B.6) followed by FM23 (Table B.10), FM25 (Table B.8),

FM26 (Table B.8) and end with the definition of the activity FM27 (Table B.9).

Table B.1: Care plan for "Exercise promotion" NIC - parameters of EP01, EP02, EP03
and EP04

Parameter Value
Name Tell about you
Description We want to know more about you
Questions

Label Type Options
Have you ever ex-
ercised? Please, tell
about your previous
experience doing
exercise.

Multi-line
text

Cite barriers to you
exercise (if there are
some)

Multi-line
text

What makes you feel
motivate?

Multi-line
text

What do you think
about doing exercises?

Multi-line
text

Severity Medium
Frequency Only once
Begin date September 10th, 2022
End date October 10th, 2022

Source: The author

Table B.2: Care plan for "Exercise promotion" NIC - parameters of EP05
Parameter Value
Name Expressing feelings about exercising
Description How to increase engagement.
Content Try to tell someone about your exercises. Expressing your feelings

increases engagement.
Severity High

Source: The author

92

Table B.3: Care plan for "Exercise promotion" NIC - parameters of EP11
Parameter Value
Name Social exercising
Description One hand helps the other
Content Doing exercises with someone is amazing! Why don’t you try?
Severity Low

Source: The author

Table B.4: Care plan for "Exercise promotion" NIC - parameters of EP14
Parameter Value
Name Social exercising
Description One hand helps the other
Pages

Structure Style
<h1>Why I cannot do whatever exercise I
want?</h1>

Your exercises has selected according
to your health;
Some exercises has not been selected
because they can hurt or to harm you.

Severity Medium
Source: The author

Table B.5: Care plan for "Exercise promotion" NIC - parameters of EP22
Parameter Value
Name Daily exercises
Description A friendly reminder about your treatment
Content Hi! Sorry to disturb you, but I just want to remember you about your

agenda: don’t forget your daily exercises :)
Notification
type

Pop-up message

Begin date September 7th, 2022
End date Undefined
Severity Medium
Frequency Daily

Source: The author

93

Table B.6: Care plan for "Fluid monitoring" NIC - parameters of FM06, FM07 and FM22
Parameter Value
Name Daily review
Description Give us a feedback about you
Questions

Label Type Options
Please, measure your
weight and inform it.

numeric

How much fluid did
you intake in the last 24
hours? (in liters)

numeric

How much urine did
you output in the last 24
hours? (in liters)

numeric

Did you feel vertigo on
rising?

radio • Yes;
• No.

Severity Medium
Frequency Daily
Begin date September 7th, 2022
End date Undefined

Source: The author

Table B.7: Care plan for "Fluid monitoring" NIC - parameters of FM23
Parameter Value
Name Thirsty reducer (FICTIONAL NAME)
Description Reduces the urge to drink liquids
Why To avoid ingesting more than the recommended fluids quantity
Notes Intake this medication just after wake up
Dosage 50 mg
Severity Low
Frequency Daily
Begin date September 7th, 2022
End date Undefined

Source: The author

Table B.8: Care plan for "Fluid monitoring" NIC - parameters of FM25
Parameter Value
Name Fluids restriction
Description You have to avoid some foods
Content Please, avoid the following foods: all drinks and foods that are liquid

at room temperature (like ice cubes gelatin Ice cream, yogurt...)
Severity High

Source: The author

94

Table B.9: Care plan for "Fluid monitoring" NIC - parameters of FM26
Parameter Value
Name Fluids reminder
Description Warning related to fluids intake limit
Content Hi! Do not forget that you cannot intake more than 2L of fluids per

day ;)
Notification
type

Pop-up message

Begin date September 7th, 2022
End date Undefined
Severity Low
Frequency Daily

Source: The author

Table B.10: Care plan for "Fluid monitoring" NIC - parameters of FM23
Parameter Value
Name Urine increaser (FICTIONAL NAME)
Description Increase urine output
Why You need to use this medication because your fluids intake are higher

than the permitted.
Notes Intake this medication after you wake up.
Dosage 50 mg
Severity Very critical
Frequency Daily
Begin date September 7th, 2022
End date September 20th, 2022

Source: The author

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 mHealth - current challenges
	1.1.1 Generality of mHealth solutions
	1.1.2 Difficulty for HCP to develop mHealth applications

	1.2 Goals

	2 Background
	2.1 Healthcare concepts
	2.1.1 mHealth
	2.1.2 Gamification
	2.1.3 NANDA-NIC-NOC
	2.1.3.1 NANDA
	2.1.3.2 NIC

	2.1.4 NOC

	2.2 Computing concepts
	2.2.1 Drag-and-drop
	2.2.2 Graph concepts
	2.2.2.1 Connected graph
	2.2.2.2 Digraph
	2.2.2.3 Breadth-first Search

	2.2.3 Web technologies
	2.2.3.1 HTML
	2.2.3.2 Rich text
	2.2.3.3 CSS
	2.2.3.4 JavaScript

	2.2.4 Visual programming language
	2.2.5 Flow-based programming
	2.2.6 Component-Oriented Programming
	2.2.7 Internationalization in software architectures
	2.2.8 Microservice architecture
	2.2.8.1 Back end
	2.2.8.2 Front end
	2.2.8.3 Application Programming Interface

	2.2.9 RESTful API
	2.2.10 Event-driven architecture
	2.2.11 Data modeling
	2.2.11.1 Models
	2.2.11.2 DAO
	2.2.11.3 DTO
	2.2.11.4 JSON
	2.2.11.5 BSON

	2.2.12 No-code platform
	2.2.13 Job scheduler
	2.2.14 Non-relational databases

	2.3 Related Work

	3 Proposed Approach
	3.1 Board
	3.2 Agenda
	3.3 Progress
	3.4 Care plan flow
	3.4.1 Building a flow
	3.4.2 Care plan elements
	3.4.2.1 Begin element
	3.4.2.2 Conditional element
	3.4.2.3 Periodic care plan elements
	3.4.2.4 Non-periodic care plan elements

	3.5 Care plan parser
	3.5.1 Non-periodic module
	3.5.2 Periodic module
	3.5.2.1 Periodicity Of The Periodic Element Problem

	4 Implementation
	4.1 Takere - HCP
	4.1.1 Architecture
	4.1.2 Care plan flow
	4.1.3 Monitoring patients

	4.2 Takere - API
	4.2.1 Architecture
	4.2.2 Care plan elements
	4.2.3 Care plan parser
	4.2.4 Database

	4.3 Takere - Patient
	4.3.1 Architecture
	4.3.2 Board
	4.3.3 Agenda
	4.3.4 Progress

	5 Validation Methodology
	6 Results
	6.1 Analyzing RQ1
	6.2 Analyzing RQ2
	6.3 Analyzing RQ3
	6.3.1 Care plans planning
	6.3.2 Building care plans in Takere - HCP
	6.3.3 Interacting with care plans in Takere - Patient
	6.3.4 Monitoring patients progress in Takere - HCP

	7 Threats to Validity
	8 Conclusion and future works
	References
	Appendix A — Interview questions
	Appendix B — Case study - parameter definition

