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ABSTRACT

The increasing informatization of processes involved in our daily lives has generated a

significant increase on the number of software developed to meet these needs. Consider-

ing this, the volume of data generated by applications is increasing, which is generating a

bigger interest in the usage of it for analytical purposes, with the objective of getting in-

sights and extracting valuable information from it. This increase, however, has generated

new challenges related to the storage, organization and processing of the data. In general,

the interest is in obtaining relevant information quickly, consistently and at the lowest

possible cost. In this context, new approaches have emerged to facilitate the organization

and access to data at a massive scale. An already widespread concept is to have a central

repository, known as Data Lake, in which data from different sources, having variable

characteristics, are massively stored, so that they can be explored and processed in order

to obtain new relevant information. These environments have been implemented in object

storages lately, especially in the Cloud, given the rise of this model in recent years. Fre-

quently, the data stored in these environments is often structured as tables, and stored in

files, which can be text files, such as CSVs, or binary files, such as Parquet, Avro or ORC,

that implement specific properties, like data compression, for example. The modeling of

these tables resembles, in some aspects, the structures of Data Warehouses, which are

frequently implemented using Database Management Systems (DBMSs), and are used to

make data available in a structured way, for analytical purposes.

Given these characteristics, new specifications of table formats have emerged, applied

as layers above these files, which aim to implement the support to usual operations and

properties of DBMSs, using object storages as a storage layer. In practice, it is intended

to guarantee the ACID properties during these operations, as well as the ability to per-

form operations that involve mutability, like updates, upserts or merges, in a simpler way.

Thus, this work aims to evaluate and compare the performance of some of these formats,

defined as Data Lake Table Formats: Delta Lake, Apache Hudi and Apache Iceberg, in

order to identify how each format behaves when performing usual operations in these en-

vironments, like: inserting data, updating data and querying data.

Keywords: Data Lake. Big Data File Formats. Data Lake Table Formats.



RESUMO

A crescente informatização dos processos envolvidos em nosso cotidiano gerou um au-

mento significativo no número de softwares desenvolvidos para atender a essas necessida-

des. Diante disso, o volume de dados gerados tem crescido, o que está gerando um maior

interesse na utilização dos mesmos para fins analíticos, com o objetivo de obter insights

e extrair informações valiosas deles. Esse aumento, no entanto, gerou novos desafios

relacionados ao armazenamento, organização e processamento dos dados. Em geral, o in-

teresse está em obter informações relevantes de forma rápida, consistente e com o menor

custo possível. Nesse contexto, surgiram novas abordagens para facilitar a organização

e o acesso a esses dados em grande escala. Um conceito já difundido envolve ter um

repositório central, conhecido como Data Lake, no qual dados de diferentes fontes, com

características variáveis, são armazenados massivamente, para que possam ser explorados

e processados de forma a obter novas informações relevantes a partir deles. Esses ambien-

tes vêm sendo implementados em Object Storages ultimamente, em especial, na Nuvem,

dada a ascensão desse modelo nos últimos anos. Frequentemente, os dados armazenados

nesses ambientes costumam ser estruturados como tabelas e armazenados em arquivos,

que podem ser arquivos de texto, como CSVs, ou arquivos binários, como Apache Par-

quet, Apache Avro ou Apache ORC, que implementam alguma propriedade específica,

como compressão de dados, por exemplo. A modelagem dessas tabelas se assemelha, em

alguns aspectos, às estruturas de Data Warehouses, que são frequentemente implemen-

tados usando Sistemas de Gerenciamento de Banco de Dados (SGBDs), sendo utiizados

para disponibilizar dados de forma estruturada, para fins analíticos.

Diante dessas características, novas especificações de formatos de tabelas, têm surgido,

visando aplicar camadas acima desses arquivos, a fim de implementar o suporte às ope-

rações e propriedades comuns em SGBDs, utilizando Object Storages como camada de

armazenamento. Na prática, pretende-se garantir as propriedades ACID durante essas

operações, bem como a capacidade de realizar operações que envolvam mutabilidade,

como atualizações, upserts ou merges, de forma mais simples. Assim, este trabalho tem

como objetivo avaliar e comparar o desempenho de alguns desses formatos, definidos

como "formatos de tabela de Data Lakes": Delta Lake, Apache Hudi e Apache Iceberg,

a fim de identificar como cada formato se comporta ao realizar operações usuais nesses

ambientes, como: inserção de dados, atualização de dados e consulta aos dados.

Palavras-chave: Data Lake. Big Data File Formats. Data Lake Table Formats.
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1 INTRODUCTION

1.1 Context

The challenges arising from the generation of huge amounts of data by computer

applications, and the need for processing it fast for generating insights, are getting bigger

and more frequent. Nowadays, the information obtained by processing these datasets are

important for a lot of fields, with commercial or academic purposes. Even the computer

applications benefit from this trend, which can be seen as a cycle, as the data, that was

generated by them, is processed, and then, reused by the same applications as a more

valuable information, enabling the implementation of innovative features.

For achieving these objectives, though, the systems need to be scalable enough

to be able to store and process the data, as well as maintain it in a consistent and orga-

nized way. Since the rise of Cloud Computing, many approaches have been implemented

to fit these requirements, many of them involving distributed systems. It is the case of

the Cloud Object Storages, that seek to maintain data in a distributed manner, for a low

cost. These solutions are being commonly used for the implementation of centralized data

repositories, known as Data Lakes. These repositories maintain data of many natures, hav-

ing varied characteristics. Usually, the datasets that are stored in these environments can

be classified as: structured (e.g.: CSV, Parquet), semi-structured (e.g.: JSON, XML) or

unstructured (e.g.: image, video, audio).

Given these tendencies, and the ability to store data in a structured way in envi-

ronments such as Cloud Object Storages, that tend to store large amounts of data for a low

cost, new approaches have emerged, with the objective of facilitating the organization of

datasets in these environments, keeping the data in a tabular format, and supporting some

properties that are usually found in the implementation of DBMSs (such as the support

to ACID properties and operations that involve mutability). The formats, organized as

tables, have been called Data Lake Table Formats.

1.2 Objectives

This project has the objective of measuring and comparing the performance of

the following Data Lake Table Formats: Delta Lake, Apache Hudi and Apache Iceberg,

commonly used for storing and managing structured data in Data Lakes. The idea is to
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measure the performance of these formats when submitted to usual operations, like in-

serting, updating or reading data. The main objective is to try to replicate some analytical

workload scenarios, as experiments, to measure the performance of each format, as well

as comparing them, identifying which format outperforms the others when executing each

set of experiments.

1.3 Motivation

The motivations of this work are centered around trying to obtain better insights on

the performance of different tables formats that support ACID properties and mutability

operations, using Cloud Object Storages as a storage layer. This could be useful, given

the lack of information about the performance comparison of these table formats when

submitted to multiple sets of operations. The work is also relevant to identify the pros and

cons of each format, which can be useful for implementing new formats or identifying

points that can be improved on the existing ones.

1.4 Organization

This project is organized as follows: Chapter 2 gives a background, introducing

concepts that are relevant to the understanding of the work. Chapter 3 summarizes some

works related to this thesis. Chapter 4 describes the methodology used for measuring the

performance and comparing the table formats. Chapter 5 shows the results obtained from

the experiments, and the comparisons among the formats. At the end, Chapter 6 presents

some conclusions, as well as possible improvements and future work.
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2 BACKGROUND

This chapter introduces important concepts to the understanding of the work, as

well as more information about each table format used in the experiments. The concepts

are presented in the sub chapters of this section, organized in a way that more general

concepts are introduced first, before the more specific ones.

2.1 Cloud Computing

The definition of Cloud Computing may vary, depending on each author is being

is being used as reference. The definition adopted to the understanding of this work

is the one from NIST (MELL; GRANCE et al., 2011), that is: “Cloud computing is a

model for enabling ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction”.

This concept is particularly important for the next concepts introduced in this

chapter, since many solutions associated with them are offered as Cloud Computing ven-

dors, given the necessity to adapt and scale rapidly, since the workloads usually involve

large amounts of data.

2.2 Object Storage

An object storage, as defined in Object Storage: The Future Building Block for

Storage Systems (FACTOR et al., 2005), is basically an abstraction that defines data as

objects, that can be manipulated by a common interface, to perform operations such as

adding, removing or reading an object (or, simply put, a file). This abstraction is different

from other storage architectures, such as block storages, in which the operations are per-

formed against arrays of logical blocks. The object storage can be seen as an architecture

that implements a higher level of abstraction for manipulating data, resembling key-value

stores, in which the key is an unique identifier of an object, and the object is a file, that

stores the data itself. Typically, this architecture is implemented in a distributed manner,

ensuring replication and easy scalability.
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Nowadays, many Cloud vendors offer this kind of solution, as a managed service,

that implements a common interface for performing operations to manipulate data, as

objects, in their infrastructure. Some of the examples, from different cloud vendors, are:

Amazon S3, Google Cloud Storage and Azure Blob Storage.

2.3 Data Warehouse

The term "Data Warehouse" was coined in the late eighties, by Devlin and Mur-

phy (1988). The concept was introduced, at the time, as a single logical repository to

store data, coming from applications, that could be used for analytical purposes, based

on business needs. The concept was then popularized when the book "Building the Data

Warehouse", authored by Inmon (1990), was published, giving a more practical guide on

the implementation of these systems, defining the concept as follows: “A data warehouse

is a subject-oriented, integrated, nonvolatile, and time-variant collection of data in sup-

port of management’s decisions”. Another possible definition was given later by Kimball

(1996), as follows: “A data warehouse is a copy of transaction data specifically structured

for query and analysis.”. Both defining Data Warehouses as collections (or repositories)

that store data in a suitable way for improving the usage of data for decision making

processes.

More practically, nowadays, the Data Warehouses can be seen as repositories that

store data in a structured way (typically, using tabular formats), facilitating the usage of

data, coming from various systems, for analytical purposes. The implementations of Data

Warehouses vary, storing data in relational databases, for example, or even as structured

files in object storages, using abstraction layers and mechanisms to query the data using

SQL. This is an important information, given that the term is often been used to refer to

structured zones of Data Lakes (concept that is defined in the section 2.4), that can use

Data Lake Table Formats for defining structures that store processed data that can be used

in decision support processes.

2.4 Data Lake

The concept of Data Lake can be a little fuzzy for researchers or practitioners,

given the evolution the term gained since it was introduced, by Dixon (2010). Nowadays,
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Data Lakes are often defined as central repositories that store massive amounts of data,

that has varied characteristics and come from multiples sources, to be used future analysis

or operational purposes (SAWADOGO; DARMONT, 2021). Usually, a Data Lake has a

logical and physical organization, where data is usually separated by zones, associated

with the refinement level of data: the data directly coming from a source is stored in

a "raw" zone, and, after processing steps, that are executed to ensure data quality and

cleansing, storing the data in intermediate zones, the processed data is, eventually, stored

in "consumption" zones. There are, though, other logical organizations that can be used,

depending on the author or practitioner (SAWADOGO; DARMONT, 2021).

Nowadays, Data Lakes are usually implemented using Cloud Object Storages,

although implementations using the Hadoop Distributed File System (HDFS) are still

being used, in conjunction with other tools from the Apache Hadoop ecosystem.

2.5 Distributed Query Engines

When analyzing data stored in Data Lakes, it is important to have a layer that

makes querying data easily possible, specially, when the data can be queried in a declar-

ative way, using SQL (Structured Query Language), for example. For this purpose, dis-

tributed query engines are built. Distributed query engines can be seen, nowadays, basi-

cally, as data virtualization layers, that provide access to data that comes from multiple

sources, in a distributed fashion. They can be seen as what was referred to as SQL-

on-Hadoop systems, that aimed to process SQL queries using Hadoop data processing

frameworks (e.g.: Tez and MapReduce) (FLORATOU; MINHAS; ÖZCAN, 2014).

Since the emergence of this concept, many solutions have been implemented.

Apache Hive and Apache Impala, for example, were the first to gain popularity. In this

chapter, however, only the distributed query engines that support the Data Lake Table

Formats that were evaluated in this work are presented.

2.5.1 Spark SQL

Spark SQL is a Spark (a distributed analytics engine from the Hadoop ecosys-

tem) module for structured data processing that can act as a distributed query engine

(DATABRICKS, 2022). This is the query engine that was chosen for running the ex-
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periments of this work, that evaluated the performance of the data lake table formats. It

uses a query optimizer called Catalyst, that supports multiple data sources and analytics

workloads, using some established DBMS (Database Management System) techniques

(ARMBRUST et al., 2015). The optimizer is extensible, thus, supporting the addition of

custom optimization techniques and features. This is an important information, given the

fact that each of the Data Lake Table Formats analysed in this work provide a specific ex-

tension of the optimizer, what is directly related to the possible impact on the performance

obtained when when executing the experiments for each format.

The figure 2.1 defines the phases of a query planning in Spark SQL. Then, brief

descriptions of each phase of the execution of a SQL query in Spark SQL are presented.

Figure 2.1: Spark SQL Query Planning

Source: Armbrust et al. (2015)

1. Analysis Phase: all the query planning starts at the analysis phase. Initially, an

“unresolved logical plan” tree is built, then, after the construction of the tree, the

unresolved attributes (such as columns with unknown types or unknown table ref-

erences) are resolved. After the execution of the phase, a logical plan of the query

execution is obtained.

2. Logical Optimization Phase: after obtaining the logical plan, some performance

optimizations are done. It involves the application of techniques like partition prun-

ing and predicate pushdown (illustrated in the figure 2.4), generating new plans,

and computing their cost, trying to optimize the logical plan.

3. Physical Planning Phase: the phase when multiple physical plans are generated,

by assigning physical operations, based on information about the engines’ oper-

ators/nodes. The physical operation defines, for example, how a join operation

between two tables is going to be executed. Multiple plans are generated, and only

one is selected by using a cost model.

4. Code Generation Phase: the final phase, when Java byte-code is generated to run
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on each node of the cluster.

2.5.2 Presto/Trino

Presto is an open source distributed query engine, created at Facebook, that sup-

ports ANSI SQL for querying and processing data from multiple sources. Over the years,

the participants of the project created a fork, known as Trino (formerly PrestoSQL). Both

follow the same core design principles. Although these engines were not used for execut-

ing the experiments of this work, they are briefly presented, since they are supported by

Data Lake Table Formats compared in this project.

The Presto/Trino engine’s cluster consists of one single coordinator node and

worker nodes. The coordinator node is responsible for admitting, parsing, planning and

optimizing queries, as well as orchestrating them, while the worker nodes are responsible

for their processing (SETHI et al., 2019). An overview of the architecture is shown in the

figure 2.2.

Figure 2.2: Trino Architecture Overview

Source: Sethi et al. (2019)

Briefly summarizing the execution of a query, the coordinator analyzes the data’s

metadata and creates an execution plan, which is distributed to the cluster’s workers.

When dealing with the connection to external storage systems and formats (like the ones

compared in this work), Presto/Trino has plugins that provide connectors, implementing

an API that is composed of four parts: Metadata API, Data Source API, Data Location
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API and Data Sink API, used to communicate with these sources.

2.6 Big Data File Formats

In Data Lakes, the format used to store the data in it has, usually, a great impact

on the performance of the analytical workloads that process and extract new information

from the data. Given that, formats optimized for this type of workloads, such as binary

formats that implement compression algorithms, are still arising, even with the facilities

that Cloud Computing solutions have provided, such as easy scalability and cheap storage.

When dealing with structured data, there are, mainly, two ways to store it: in text

files, like CSV, JSON and XML, or in binary files. The text files have benefits for the end

user, given that they are easy to read and display, but they impose some constraints related

to performance when processing it, because, generally, more data needs to be read from

the storage medium, thus more I/O time is consumed. The binary formats, on the other

hand, can be implemented using techniques like compression that reduce the physical

amount of data that is stored in the storage mediums. The I/O time, thus, tends to be

lower, and even, the processing time, given that, sometimes, data does not even need to

be uncompressed to compute new information.

Considering the model of these file formats, optimal for analytical purposes, there

are usually two approaches used for storing data: row-oriented and column-oriented. The

row-oriented formats store each row contiguously, whereas column oriented formats store

each column values contiguously. Each one can have its own advantages, that’ll be briefly

presented in the next subsections. The figure 2.3 tries to illustrate these approaches:

Figure 2.3: Storage Formats Illustration

Source: Abadi, Boncz and Harizopoulos (2009)

On each of the next subsections, file formats that are used and supported by the

implementations of the Data Lake Table Formats compared in this work are presented.
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2.6.1 Apache Parquet

Apache Parquet is a binary and column-oriented file format, used to store struc-

tured data. It supports some compression codecs, like Snappy, GZIP, BZIP2 and deflate,

which is essential to achieve its purpose: store more information using less storage and,

consequently, reducing the amount of I/O and CPU resources used to deserialize data

(VOHRA, 2016). The file has also a portion reserved for storing some metadata about its

content, like the name of the columns, the column types, the compression used, and, even

some statistics about the data.

One important information about the Parquet files is that they are immutable. If

records need to be updated or written, it implies the cost of a complete rewrite of the

file. A common approach, thus, is to create new files when new records need to be stored

(which can be viewed as creating a new partition). When records need to be updated,

new files can be created to write the delta against the base file. These types of approaches

are going to be discussed more explicitly in the sections that define the Data Lake Table

Formats that support mutability operations.

2.6.2 Apache ORC

Apache ORC is a binary and column-oriented file format. It supports the usage of

a technique called predicate push-down (supported by Apache Parquet as well), that con-

sists in using a predicate to read only the portion data that satisfies it (APACHE, 2022c).

In the case of ORC, this behavior can be resumed as the possibility of reading only a

portion of a specific column, given that, for being column-oriented, reading only the data

of a column is supported by default. The idea, thus, is that a full scan in the column’s data

is not always necessary. The behavior can be visualized in the image below:

This behavior is possible because the file is structured to have segments called

stripes. The idea is that the stripes store a subset of rows, where the data of a same

column of these rows are stored adjacently. The file also supports compression codecs

like zlib and Snappy (APACHE, 2022c).
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Figure 2.4: Partition Pruning and Predicate Pushdown Illustration

Source: Vertica (2022)

2.6.3 Apache Avro

Unlike formats such as Apache Parquet and Apache ORC, Apache Avro is a row-

oriented file format. It can also be seen as a serialization framework, given that its serial-

ization techniques can be applied in cases that do not necessarily involve writing data to

a file.

Avro stores a schema, using the JSON format, to define the names of columns of a

dataset, as well as its types. The schema is defined in the file’s header, followed by blocks

that can serialize data as binary or JSON values (VOHRA, 2016). If the binary encoding

is used, some compression algorithms, like Snappy, deflate, and bzip2 can be applied. The

structure can be visualized in more detail in the figure 2.5.

Figure 2.5: Avro Structure Illustration

Source: Ackerman and King (2019)

One of the advantages of the Avro format is that schema evolution can be done
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easily, given that, when a column is modified, added or removed, the schema, specified in

JSON, can be used to deserialize the data properly. It is important to the implementation

of some techniques related to mutability that are going to be presented in the Data Lake

table formats’s section.

2.7 Data Lake Table Formats

Dealing with structured data in Data Lakes is a recurring task. The decision on

how the data is organized and made available to customers is important for performance,

usability and even consistency of the datasets. Considering these aspects, specifications

and implementations of table formats for Data Lakes are becoming popular.

In summary, these formats aim to provide the combination of characteristics found

in Data Warehouses and Data Lakes: standard DBMS features implemented over Object

Storages. This is challenging, given the fact that most Cloud Object Storages are merely

key-value stores, with no cross-key consistency guarantees (ARMBRUST et al., 2020).

The idea of these table formats consist, basically, in enabling mutability and ACID

properties when processing data in these environments. In this section, three of these for-

mats are presented: Delta Lake, Apache Hudi and Apache Iceberg. These are the table

formats are going to have their performance compared when some usual operations, re-

lated to analytical workloads, are performed. It is worth noting that, during the presenta-

tion of each format, some important concepts, that are shared among all the formats, are

presented.

2.7.1 Delta Lake

The Delta format is an open source ACID table storage layer over cloud object

stores (ARMBRUST et al., 2020). Like described previously, it is one of the formats that

was evaluated, in terms of performance, by this work. At its core, the format maintains

logs about which data objects (maintained as Apache Parquet files) are part of a table, and

stores these logs in the Object Storage. The logs, therefore, are used to ensure the ACID

properties of the operations made over the tables (ARMBRUST et al., 2020). The design

of the format also provides other features, like:

• Time travel capability: the ability to query a specific version of a dataset, before the
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execution of operations that updated data, for example.

• UPSERT and MERGE operations: support operations that update or insert rows

based on unique identifiers of tables

• Schema evolution: schema change support (such as adding a column to a table)

without rewriting historical data

Like cited previously, the Delta format implementation uses a set of files, that have

different purposes and are used to construct the table and ensure some properties. These

files are: the data objects, the logs, the log checkpoints. They are going to be described

with more detail right next.

2.7.1.1 Data Objects

The data objects (or files) are Apache Parquet files. They are used to store the

table contents. Each file, usually, is named with a GUID. Thus, when a new version of

a file/partition is created (after a data update operation, for example), a new GUID is

generated. The file, then, is referenced in a transaction log, identifying that it belongs

to the most recent version of the table (after a sequence of operations, defined in the

transaction, was executed).

In figure 2.6, an example of a table named mytable, that is partitioned by date

column. Each Parquet file represents a version of a partition.

2.7.1.2 Logs

All the logs of the Delta format are stored in the _delta_log folder (as shown

in figure 2.6). The folder stores a sequence of JSON files, that are used to register actions

that need to be applied to a specific version of a table, in order to generate the new version.

The actions that can be registered in a log file vary. The main ones are:

• Metadata Changes: used to register changes related to the table’s metadata, like a

modification of the schema, for example;

• Addition of files: used to register the addition of data objects (the Parquet files);

• Removal of files: used to register the removal of data objects (the Parquet files).

A transaction can be viewed as successfully applied when all the actions described

in the logs are applied atomically.
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2.7.1.3 Log Checkpoints

The log checkpoints, as can be seen in the figure 2.6, are, basically, log files that

are compressed periodically. The file stores all information about the actions until a log

ID, removing redundant actions. The periodic compression has the objective of improving

the performance of the client when reading the table’s metadata. The client can find the

ID of the last checkpoint in the _last_checkpoint file (as shown in the figure 2.6),

thus, avoiding LIST operations in the Object Storage, which are usually expensive.

Figure 2.6: An overview of the disposition of the Delta table files

Source: Armbrust et al. (2020)

2.7.2 Apache Hudi

The Apache Hudi table format is another one that brings Data Warehouse capabil-

ities to Data Lakes. At its core, the format aims to support features like transactions, table

upserts/deletions and schema evolution (APACHE, 2022d). The format uses two types

of files for storing data: columnar based files (e.g.: Apache Parquet) and row based files

(e.g.: Apache Avro), having its own purpose depending on the type of the table format

that is being defined.

In the next subsections, some of the properties that are important for this format,

like the types of tables that it has, and the types of queries that can be performed over these

tables are presented. The structure of the files that compose the format are illustrated as

well.
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2.7.2.1 Copy On Write Tables

There are two types of tables in the Apache Hudi format: Copy on Write and

Merge on Read. In this section, the Copy On Write type is presented. This type consists,

basically, in generating a new version of a data file when a operation that modifies the data

(such as an update) is performed. The data stored using this table format uses, exclusively,

the columnar based formats file formats. The default one is the Apache Parquet format.

This approach increases the cost of writes, since it consists in rewriting all the base

file (or partition of a dataset), considering the data modifications made by the user. The

read cost, though, continues almost the same, since only one file (the file with the latest

version of the dataset) is read. This is ideal for analytical workloads, that are usually read-

heavy (APACHE, 2022e). This approach was not mentioned explicitly, but is the one that

is used in the Delta Lake format.

The figure 2.7 illustrates an operation that is performing data insertions and up-

dates in a table, generating new versions of the base data files on each commit (shown

using different colors). In this case, each group of files (fileid 1, 2, 3 and 4) represent a

partition, that store data using columnar based files.

Figure 2.7: Hudi’s Copy On Write Approach Illustration

Source: Apache (2022e)
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2.7.2.2 Merge On Read Tables

The Merge on Read tables use the approach of writing data updates in row based

files (e.g.: Apache Avro), that store the difference (or the delta) between the current ver-

sion of the data file and the next one, considering the insertions/updates/deletions that

were performed in the transaction. As a result, we have a base file, stored using a columnar

based format, and a sequence of row based files, that store the differences from previous

versions.

As the name of the approach suggests, when the user reads this tables using a

query engine, it performs a merge operation during the read phase, using the base file and

the latest version of the "delta" file. This increases the read cost, since more than one

file needs to be read, and the merge process needs to be performed on-the-fly (APACHE,

2022e). The benefit, though, is that, due to its nature, it enables more frequent writes, that

is useful for near real-time workloads.

The figure 2.8 illustrates an example in which a new set of insert and update oper-

ations are performed over a table, generating new row based files (deltas of the previous

versions of a partition’s base file, illustrated in pink), registering a commit over a table.

The figure also illustrates a compaction process, not cited previously, that is performed

periodically, applying the modifications of a delta file to the base file, generating a new

columnar based file, that is used as a new version of the dataset. This is important to im-

prove the merge times, since the delta files become larger after each performed operation.

Figure 2.8: Hudi’s Merge On Read Approach Illustration

Source: Apache (2022e)
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2.7.2.3 Query Types

The Hudi’s table types support different query types. They define how the table’s

underlying data is exposed to read operations. Each query type has its own trade-offs.

A table mapping the table types to the supported query types is shown next. Then, an

overview of each query type is presented.

Table 2.1: Supported Query Types by Table Type

Table Type Supported Query types
Copy On Write Snapshot Queries, Incremental Queries
Merge On Read Snapshot Queries, Incremental Queries, Read Optimized Queries

Source: Apache (2022e)

• Snapshot Queries: Provides the latest version of the dataset when reading/query-

ing a table. In the case of the Merge On Read Tables, it merges the latest delta log

file with the base file, and, in the case of the Copy On Write Tables, it reads the

latest version of the columnar based file.

• Incremental Queries: Allows to query/read only the records that were modified

since a commit, providing a more efficient way to only process the changed records

incrementally.

• Read Optimized Queries: Exposes only columnar based files, generated after a

commit or compaction process (used in the Merge On Read Tables). Guarantees a

better query performance compared to the snapshot queries, since there’s no merge

process involved.

2.7.3 Apache Iceberg

As the other Data Lake Table Formats described in the previous sections, the

Apache Iceberg format aims to support features like transactions, table upserts/deletions

and schema evolution (APACHE, 2022a). In this section, some of the important defini-

tions that are associated with these features are going to be described. The definitions

are based on the second version of the Iceberg’s specification (APACHE, 2022b), that is

the one used to perform the performance experiments of this work. The definitions are

based on the layers, defined by the format’s specification: metadata layer and data layer

(APACHE, 2022b)
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Figure 2.9: Iceberg Format Overview

Source: Apache (2022a)

2.7.3.1 Metadata Layer

Similar to the other formats presented previously, the Iceberg format stores files

that are important to maintain metadata information about the table. The layer is com-

posed by metadata files, manifest list files and manifest files, that can be seen in the figure

2.9.

The metadata files maintain the table’s state (APACHE, 2022b). They store infor-

mation about the table’s schema, partition information, history of snapshots, and which is

the current snapshot. In this case, a snapshot represents the state of a table at a specific

moment, considering its change history. Each snapshot has a manifest list file (described

in the next paragraph) associated to it. If a change happens in the table, a new metadata

file is created and replaces the old one atomically.

The manifest list files and manifest files maintain information about a snapshot,

and are stored as Apache Avro files. The manifest list maintains a list of manifest files

metadata, like their locations, the partitions of the table it belongs and some information

about the data, like the lower and upper bounds of the partition column. The manifest
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files, then, maintains information about the data files (that are described in the Data Layer

section). These files store useful information, like statistics of a columns’ data, record

count and partition membership, that are used for improving query performance while

reading data.

2.7.3.2 Data Layer

The data layer is where the data itself is stored. It is composed by a set of data

files that can belong to more than one snapshot, for storing a table partition’s data. As

default, these files are stored as Apache Parquet files, but other ones, like Apache Avro or

Apache ORC, can be used as well.

Like Apache Hudi, Iceberg has two possible table types: Copy on Write and

Merge on Read, each one with the same trade-offs as the ones presented in the section

2.7.2. Depending on the approach, the files are arranged and referenced in the manifest

files differently. In the figure 2.9, the arrows show how the files reference each other.
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3 RELATED WORK

In this chapter, some work related to the main subjects of this thesis are presented.

Each section presents a summary of a specific work, establishing relationships with the

topics that are relevant to this thesis.

3.1 On Data Lake Architectures and Metadata Management

Sawadogo and Darmont (2021) presents an extensive review of the existent ap-

proaches for designing a Data Lake, focusing on presenting possible architectures and

metadata management approaches.

Part of the work discusses possible methods for combining the implementations

of Data Lakes and Data Warehouses, presenting an approach that define Data Warehouses

as part of a Data Lake, based on the architecture defined by Inmon (2016), that presents

the abstraction of "data ponds" for establishing regions in Data Lakes, which, when used

to maintain structured data, can be viewed as Data Warehouses (INMON, 2016).

These definitions are important to this thesis, given that the purpose of the Data

Lake Table Formats that were compared in this work is to satisfy this type of architecture,

supporting DMBS like operations and properties in Data Lakes, which are important for

the data warehousing processes.

3.2 The impact of columnar file formats on SQL-on-hadoop engine performance: A

study on ORC and Parquet

Ivanov and Pergolesi (2020) propose an approach for evaluating the impact of

different file formats on SQL-on-hadoop engines. More specifically, two columnar file

formats are compared: Parquet and ORC, using Hive and Spark SQL as engines, and

different parameter settings, such as different data compression algorithms. The work

also presents some performance comparisons, using different approaches, that can be

found in the literature.

The approach presented in the work uses, as well one of the experiments of this

thesis (4.3.1), a TPC benchmark (TPCx-BB) as an inspiration for defining the experi-

ments, and then, computing the load time, as well as the query time for the datasets and
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queries defined in the benchmark. It uses an infrastructure that is similar to the one defined

for the experiments of this thesis.

Although the work does not compare Data Lake Table Formats, like this thesis,

it shows some insights on how different query engines and file formats can impact the

performance of analytical workloads. Thus, given the fact that the Data Lake Table For-

mats compared in this thesis rely on different Big Data File Formats, and support multiple

query engines, the choice on which of these formats or engines to use could impact the

overall performance of the table formats.

3.3 A study of SQL-on-Hadoop systems

Chen et al. (2014) gives an overview of some SQL-on-hadoop engines, and then

propose an experiment for comparing the performance of five of this systems. The ex-

periment is based on selected workloads from the TPC-DS benchmark (that served as an

inspiration for one of theset of experiments of this thesis).

Given the time is was written, the work does not use the Spark SQL module (that is

used for the experiments defined in this thesis) as one of the SQL-on-hadoop systems for

performing the experiments and comparisons, but it introduces some interesting aspects

on the evolution of these type of systems, reinforcing the importance of having a SQL

layer over the data stored in HDFS for empowering end users when analysing big volumes

of data.

Some particularities of the SQL engines are also presented, like different tech-

niques each system use for different operations, and how they impact the performance of

the workloads.

3.4 Lakehouse: A New Generation of Open Platforms that Unify Data Warehousing

and Advanced Analytics

Armbrust et al. (2021) overviews the evolution of the architectures used to store

data in OLAP environments. It presents the concepts of Data Warehouse and Data Lake,

and how the usage of these repositories changed throughout the time. It also presents

some challenges imposed by these data architectures, proposing a new architecture, called

"Lakehouse".
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The architecture is defined as a mix of the Data Lake and the Data Warehouse

architectures, ensuring support to DBMS properties and features using a low cost data

storage (like Cloud Object Storages). A suggestion for implementing this type of archi-

tecture is then presented, with the definition of a transactional metadata layer on top of

the data objects, stored as Parquet or ORC files, for example.

This architecture relates directly to the Data Lake Table Formats compared in this

thesis, given their properties and their capability of providing Data Warehouse manage-

ment features in Data Lakes.



31

4 METHODOLOGY

In this chapter, the methodology used for the performance evaluation of the Data

Lake Table Formats, presented in the Background section, is introduced. The ques-

tions posed for this work, as well as the objectives of the experiments proposed, are

overviewed, explaining the motivations for choosing the methods used for evaluating

the performances. Then, the experiments and the datasets used during experiments are

described.

4.1 Overview

During the idealization of this work, that consists in comparing the Delta Lake,

Apache Hudi and Apache Iceberg table formats (as described in the section 2.7), some

questions were posed. The main ones were:

• What is the overall performance of these table formats during data load operations?

• What is the overall performance of these table formats during data update opera-

tions?

• What is the overall performance of queries made over the data stored in these table

formats?

• How the these table formats compare themselves during these workloads?

Given these questions and the purpose of evaluating and comparing the overall

performance of these table formats, some experiments were conducted, extracting, basi-

cally, the time a given task of the experiment took, for then, evaluating the performance

using a quantitative approach. The experiments also had some parameters, that were used

to vary the possible scenarios during the execution of the operations.

The architecture defined for the experiments, as well as the steps of each of them,

are described in the next sections.

4.2 Architecture

The experiments of this work were conducted in a distributed environment, in the

Cloud. The operations idealized for each experiment were executed using a Apache Spark
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(version 3.2.0) cluster, varying the number of worker nodes used during the execution of

each workload.

All the infrastructure was provisioned in AWS (Amazon Web Services), using the

EMR (Elastic Map Reduce) platform. The platform, in short, provides an easier way to

provision multiple virtual machines with Big Data frameworks, such as Apache Spark,

already installed. Each node provisioned represented a Spark node, with one master and

n worker nodes. An isolated virtual machine was also used to provision a Hive Metastore

instance, that is from the Hadoop ecosystem used to define, virtually, the names of the

databases and tables created by the user, as well mapping with table format and what

location in the Object Storage is associated with the table.

The virtual machine specifications of all the Spark nodes were the same during the

execution of the experiments. The only variation in the infrastructure was associated with

the number of worker nodes. The specification of the nodes is defined in the table 4.1

Table 4.1: Experiments’ Virtual Machines Specification

Instance Type i3.xlarge (Amazon EC2)
Number of vCPUs 4

RAM 30GB
Processor Intel Xeon E5-2686 v4 (Broadwell) (2,3 GHz)

Architecture x86_64
Network Bandwidth 10 Gbps

Storage 950 SSD NVMe

An illustration of the architecture, with the maximum number of nodes used in the

experiments (n = 4), is shown in the figure 4.1. Worth noting that the illustration does

not represent the physical characteristics of the nodes and the cloud storage solution. It

only represents the interactions among nodes and services. Given the infrastructure was

provisioned in a Cloud environment, the underlying management of the computational

resources vary depending on the Cloud vendor. Techniques used for optimizing the per-

formance of the services can be used as well, like the implementation of cache layers, for

example.

For storing the data itself, the Cloud Object Storage solution chosen was the S3

(Simple Object Storage), from AWS.
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Figure 4.1: Experiments’ Architecture Overview

Source: The Author

4.3 Experiments

As placed earlier, the experiments conducted in this work try to obtain data for

evaluating the performance of the table formats during the execution of some usual oper-

ations performed in analytical workloads over data stored in Data Lakes.

For this purpose, two main approaches were chosen: the first one, conducting the

execution of experiments using as inspiration the TPC-DS benchmark (defined by the

Transaction Processing Performance Council), and a second one, using a set of experi-

ments for evaluating, in addition to load and query operations, update operations, that are

not covered by the first set of experiments.

The approaches used, as well as the parameters and datasets used for each experi-

ment, are defined in the next subsections.

4.3.1 TPC-DS Inspired Experiment

The first choice for evaluating the performance of the table formats was executing

a TPC-DS inspired experiment. As a context, the TPC-DS is an industry standard bench-

mark for "general purpose decision support systems" (SPECIFICATION; TPC, 2000). As

the specification states, the benchmark illustrates support systems that:
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• Examine large volumes of data;

• Give answers to real-world business questions;

• Execute queries of various operational requirements and complexities;

• Are characterized by high CPU and IO load;

• Are periodically synchronized with source OLTP databases through database main-

tenance functions;

• Run on “Big Data” solutions, such as RDBMS as well as Hadoop/Spark based

systems.

In order to address the range of query types that belong to OLAP workloads,

ninety nine queries are defined by the benchmark, trying to emulate what the specification

defines as “four broad classes of queries that characterize most decision support queries”

(SPECIFICATION; TPC, 2000):

• Reporting queries

• Ad hoc queries

• Iterative OLAP queries

• Data mining queries

Like stated earlier, the experiments used in this work does not follow all the spec-

ifications defined by the Transactional Performance Council’s benchmark. The TPC-DS

inspired experiment is based on the implementation of an open sourced experiment frame-

work, used by community for evaluating the Delta Lake format performance, measuring

the load performance of the data on the TPC-DS defined tables, as well as the performance

of the queries made on top of data stored in these tables.

The experiment’s dataset is exactly the same as the one defined by the TPC-DS

benchmark. It basically models a Data Warehouse, defining tables that are usually found

in this type of environment. An overview of the dataset is placed in the next subsection.

The benchmark phases are also shown next.

4.3.1.1 Dataset Overview

For performing the experiments, the TPC-DS schema defined in the specification

was used. The schema is designed using an approach that is usual in data warehouses,

called "dimensional modelling", that uses the concepts of facts (or measurements) and

dimensions (or the descriptive contexts associated to the measurements) (KIMBALL;
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ROSS, 2011), that are used to define the tables in the schema, and store data that is useful

for analytical purposes. The fact tables usually have references to dimension tables. In

the case of the TPC-DS’s schema, the dimension tables can also have references to other

dimension tables, creating a multilevel structure, that is defined as a "snowflake schema"

(KIMBALL; ROSS, 2011).

The schema of the benchmark specification models sales and sales returns (when

a customer or client sends a product back to the seller) of a fictitious company, that sells

its products through three channels: stores, catalogs and internet. It has seven fact tables,

that are defined in the table 4.2, and seventeen dimension tables.

Table 4.2: TPC-DS Tables
Table Type Table Name

Fact

Store Sales
Store Returns
Catalog Sales

Catalog Returns
Web Sales

Web Returns
Inventory

Dimension

Store
Call Center

Catalog Page
Web Site
Web Page
Warehouse
Customer

Customer Address
Customer Demographics

Date Dim
Household Demographics

Item
Income Band

Promotion
Reason

Ship Mode
Time Dim

Source: (SPECIFICATION; TPC, 2000)

4.3.1.2 Experiment Phases

Like stated previous, the experiments done in this work do not follow all the spec-

ifications defined by the original TPC-DS benchmark. The TPC-DS inspired experiment,
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Listing 4.1 – Data Load Pseudo-code

CREATE TABLE f u l l _ t a b l e _ n a m e
USING t a b l e _ f o r m a t _ n a m e
LOCATION ’ p a t h / t o / s t o r e / t a b l e / f i l e s ’
SELECT * FROM ’ p a t h / t o / r a w _ d a t a _ f i l e . p a r q u e t ’

defined by this work, consists of two phases, that are defined next:

• Load Phase: the phase when the TPC-DS fact and dimension tables are populated.

The process consists in, basically, reading the raw data from Apache Parquet files,

generated according to the TPC-DS specification, and inserting the records from

these files into the destination tables, that are defined using one of the table formats

compared by this work (Delta Lake, Apache Hudi or Apache Iceberg). A pseudo-

code of load step for each table can be seen in the listing 4.1.

• Query Phase: the phase when the ninety nine queries defined by the original bench-

mark are executed. Al the queries are defined using SQL, trying to emulate usual

query operations used in decision support processes.

It is worth noting that all phases are executed using the Spark SQL module, vary-

ing the number of worker nodes used.

4.3.1.3 Implementation

The implementation of the benchmark was based on an open sourced implementa-

tion made the community of the Delta Lake format project. The original implementation

was extended to support all the formats that were intended to compare and evaluate the

performance. The implementation of the modified version, that supports the Apache Hudi,

the Apache Iceberg and Delta Lake table formats can be found in this url: <https://github.

com/rafaelvargas/delta/tree/add-other-formats-support-benchmark/benchmarks>. During

the experiments, the data that was used to populate the TPC-DS tables was also the one

provided by the same open source implementation. The scale of the dataset was rea-

sonably small, having 1GB, due to cost factors associated with the Cloud Computing

environments that were used to perform the experiments.

The implementation (and the generation of data) follows the requirements defined

by the original TPC-DS specification, that says “the TPC-DS database must be imple-

mented using commercially available data processing software, and its queries must be

https://github.com/rafaelvargas/delta/tree/add-other-formats-support-benchmark/benchmarks
https://github.com/rafaelvargas/delta/tree/add-other-formats-support-benchmark/benchmarks
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executed via SQL interface” (SPECIFICATION; TPC, 2000). In the case of the imple-

mentation used for this work, the Spark SQL module for Spark was used, as well as the

Hive Metastore for defining the organization of tables virtually (such as defining its names

and associated databases).

Worth noting that, for all the steps of the experiment, the Apache Parquet format

was used as the default format of the tables’ "data layers", using the snappy compression

algorithm. All the tables were defined using the Copy on Write approach (that is described

in the section 2.7.2.1).

4.3.2 Load, Update and Read Performance Experiment

The second experiment for comparing the table formats was defined trying to

cover an use case that was not covered by the first experiment: when the data is updated.

Given that Data Lakes are usually design based on files, this type of operation

is challenging. Considering an usual Data Lake design, users typically tend to read an

entire table (or partitions of them), and then, overwrite the data for updating the datasets.

This process is error prone and hard maintain, thus, the use case related to it is one of the

problems the table formats that are compared in this work try to tackle.

The experiment designed for comparing the performance of the table formats

when submitted to this use case consists of three phases: the load phase, the update phase

and the query phase, that are going to be described in the section 4.3.2.2. To perform

the experiments, a synthetic dataset was generated to populate the tables that were de-

fined to execute the experiments. An overview of the dataset and the schema is shown in

the section 4.3.2.1. At the end, in section 4.3.2.3, an overview of the implementation of

experiment is given.

4.3.2.1 Dataset Overview

The dataset used for this experiment models tables that are used to maintain daily

usage data of a fictitious music streaming app. The schema consists of one fact table and

four dimension tables. The fact table keeps track of daily measures related to the user’s

behavior in the app. The dimension tables have the contexts that are referenced by each

measurement. The list of tables is given next.

The fact table maintains columns with IDs that reference all the dimensions, as
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Table 4.3: Load, Update and Read Performance Experiment Tables

Table Type Table Name
Fact FactDailyUsageByUser

Dimension

DimUser
DimPlan

DimPlatform
DimCountry

DimSoftwareVersion

Source: The Author

well as the date associated with the fact table measurements. The primary key of the table

is composed of six columns: Date, UserID, PlanID, PlatformID, CountryID

and SoftwareVersionID. Each row maintains the following measurements: number

of logins, number of songs played and the usage duration in seconds. The measurement

is associated with each combination of values of the columns of the primary key that are

presented in the table. The table is partitioned by the Date column.

The dataset generation for the fact table consisted in generating random records

for a month. For the update operations, portions of the dataset measurements were regen-

erated randomly, for then, performing the updates.

4.3.2.2 Experiment Phases

The phases of this experiment, as stated earlier, were designed considering three

operations. One of them, focusing on the use case that was not covered by the TPC-DS

Inspired Experiment: the data update phase. Each phase is described next. The variable

factors associated with each phase are defined as well.

1. Data Load Phase: the phase when the generated datasets are loaded in the fact

and dimension tables. The synthetically generated data is read from Apache Par-

quet files and loaded into the tables (like the load phase in the TPC-DS Inspired

Experiment, that has its pseudo code defined in the listing 4.1).

2. Data Update Phase: the phase when the fact table data is updated, by randomly

modifying data of a portion of measurements. The percentage of rows of the fact

table updated during this phase is 16%. A pseudo-code of the update phase is shown

in the listing 4.2.

3. Query Phase: the phase when six queries are executed. The queries are identified

by indexes from one to six. They extract the following metrics, respectively: the

number of daily active users for all the period; the total number of active users for
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Listing 4.2 – Data Update Pseudo-code

MERGE INTO f a c t _ d a i l y _ u s a g e _ b y _ u s e r t
USING (SELECT * FROM p a r q u e t . ‘ upda ted_measuremen t s ‘ ) s

ON t . date = s . date
AND t . u s e r _ i d = s . u s e r _ i d
AND t . p l a n _ i d = s . p l a n _ i d
AND t . s o f t w a r e _ v e r s i o n _ i d = s . s o f t w a r e _ v e r s i o n _ i d
AND t . c o u n t r y _ i d = s . c o u n t r y _ i d
AND t . p l a t f o r m _ i d = s . p l a t f o r m _ i d

WHEN MATCHED THEN UPDATE SET
t . d u r a t i o n _ i n _ s e c o n d s = s . d u r a t i o n _ i n _ s e c o n d s ,
t . n u m b e r _ o f _ s e s s i o n s = s . n u m b e r _ o f _ s e s s i o n s ,
t . number_o f_songs_p l ayed = s . number_o f_songs_p l ayed ;

all the period; the average number of daily active users by plan, for all the period;

the total number of sessions by each software version, for all the period; the top

five countries with the greatest number of active users, for all the period; and the

platform with the greatest number of active users, by each plan, for all the period.

Each of the phases is executed varying the number of nodes used in the Spark

cluster. All the phases were executed using the Spark SQL module.

4.3.2.3 Implementation

The implementation of the experiment used Python as a programming language,

using the PySpark (an interface for Apache Spark in Python). Python was also used to

implement the scripts to submit each PySpark application to the Spark cluster, considering

the parameters and variables that were defined in the experiment by each variation of the

experiments. The variable factors of the experiment were the following:

• Number of Worker Nodes: 1, 2, 3 and 4

• Dataset Scale: 1GB, 2GB, 4GB and 8GB

• Portion of the fact table updated during the update phase: 16%

All the queries and steps were executed via SQL interface. The execution time

for each step was then measured and collected to analyse the results. The Hive Metastore

was used for defining the tables virtually. The implementation of the experiment can be

found in the following url: <https://github.com/rafaelvargas/data-lake-table-formats>.

Like in the previous experiment, the Apache Parquet format was used as the de-

https://github.com/rafaelvargas/data-lake-table-formats
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fault format of the tables’ "data layers", using the snappy compression algorithm. All the

tables were defined using the Copy on Write approach.

4.4 Metrics and Variations

As placed in the previous sections, each experiment considered specific variations,

that were defined in order to analyse and compare the performance of the different Data

Lake Table Formats during the execution of workloads that are usually associated with

decision support processes.

In the table 4.4, an overview of the variations of the experiments, as well as the

metrics computed for each experiment, is presented.

Table 4.4: Experiments’ Metrics and Variations Overview
TPC-DS Inspired Experiment Load, Update and Read Experiment

Data files format Parquet Parquet
Compression Snappy Snappy
Table Type Copy on Write Copy on Write

Operation Types Insert and Read Insert, Update and Read
Number of Workers 1 to 4 1 to 4

Scale 1GB 1GB, 2GB, 4GB, 8GB
Number of Tables 24 6

Number of Queries 99 6
Update portion - 16%

Iterations by Operation 5 5
Metrics Execution time and Speedup Execution time and Speedup

Source: The Author

To analyse the results, the average of the execution times obtained after the execu-

tion of the five iterations planned for each operation was computed. The Speedup, which

aims to show the evolution of the execution time as the number of workers grow, was also

computed. The metric is defined as the division of a base time, which is the execution

time of an operation using one worker (T (1)), by the execution time using n workers

(T (n)). The formula is shown in the equation .

Speedup(n) =
T (1)

T (n)
(4.1)

The results, using the metrics defined in this section, are presented in the next

chapter.
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5 RESULTS

This chapter presents the results obtained from the executions of the experiments

defined in the Methodology section. The results obtained for each table format are, then,

used for comparison purposes.

5.1 TPC-DS Inspired Experiment

In this subsection, the results related to the TPC-DS Inspired Experiment are going

to be presented. First, the results of the load phase are presented and compared, and then,

the results for the query phase are presented and compared.

5.1.1 Load Phase

Like described earlier, the load phase consisted of loading data into the fact and

dimension tables that are defined in the TPC-DS specification. For each table format

compared, and each table that was populated, the execution time of load operation was

measured, repeating it five times, and computing the average of the five executions. The

process, then, was repeated, varying the number of worker nodes in the Spark cluster. The

number of nodes varied from 1 to 4.

The plot, shown in the figure 5.1, presents the sum of the average load execution

time of each table (represented in the Y axis, in milliseconds), for each table format

(represented using different colors, defined in the legend), and each number of worker

nodes used during the process (represented in the X axis). The shorter the execution time,

the better.

As can be seen in the figure 5.1, the Apache Iceberg format outperformed the other

formats during the load phase, for all the possible number of worker nodes. The Apache

Hudi format had the worst performance, having an execution time greater than the double

of the execution time of the second best format (Delta Lake).

For each table format, the Speedup for the load phase was also computed. The

definition used for computing the metric is defined in the equation 4.1.

The figure 5.2, plots the speedup for each number of worker nodes used in the

experiments. As can be seen in the results, the Apache Iceberg format also outperformed
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Figure 5.1: Total Load Phase Duration

the other formats, executing the load phase almost 3 times faster using four worker nodes

(when comparing the execution time to its base time, using one worker node).

Figure 5.2: Speedup - Load Phase

When comparing the average execution time for loading each table, using 4 worker

nodes, the Apache Iceberg format also outperforms the other formats for all the tables.

The Apache Hudi format, was outperformed by the Delta Lake format in almost all the

tables, except one: the Call Center table.

The plots of average execution times, for each table and table format can be seen

in the figure 5.3. The plots for the results considering different numbers of worker nodes

can be found in the appendix A.
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Figure 5.3: Average Load Duration for each table (using 4 worker nodes)
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5.1.2 Query Phase

The query phase was executed after the load phase. It consisted of executing

ninety nine queries defined by the TPC-DS benchmark, computing the execution time for

each query.

Like the load phase, each step (or query) of the phase was executed five times.

Then, the average of each execution time was computed. These averages were then used

to compute the metrics that are shown next. Also worth noting that the execution of the

phase was repeated varying the number of worker nodes in the Spark cluster. The number

of nodes varied from 1 to 4 as well.

In the figure 5.4, a plot shows the sum of all the average query execution times of

each query (represented in the Y axis, in milliseconds), for each table format (represented

using different colors, defined in the legend) and each number of worker nodes used in

the experiments (represented in the X axis).

Figure 5.4: Total Query Phase Duration

The results (plotted in the figure 5.4), show that the Apache Hudi format outper-

formed all the other formats during the query phase, for all the possible number of worker

nodes. Using 4 worker nodes, the difference between the Apache Hudi format and the

Delta Lake format execution time was, approximately, four minutes, while the difference

of execution time between the Apache Hudi and the Apache Iceberg format was, approx-

imately, fifteen minutes.

The speedup, as defined in the equation 4.1, was also computed for the query

phase. The results, considering the sum of all the average execution times by query are



45

presented in the figure 5.5.

Figure 5.5: Speedup - Query Phase

As can be seen, the Apache Iceberg format was the one that demonstrated the

greatest improvement when the number of workers grew, followed by the Apache Hudi

format, which had the second best performance in terms of speedup. The Delta Lake

format was the one that improved the least.

Worth noting that the Apache Hudi format was the one that had the best perfor-

mance in terms of execution time and the second best performance in terms of speedup,

which may indicate that the format would perform even better than the others as new

worker nodes were added to the cluster.

The average execution time for each query, using 4 worker nodes, can be seen in

the figure 5.6. The results show that the Apache Hudi format outperformed the other table

formats in almost all the queries, only being outperformed in five of them. There were

only three queries that the Apache Hudi format had the worst performance among all the

formats.
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Figure 5.6: Average Query Duration (using 4 worker nodes)
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5.2 Load, Update and Read Performance Experiment

In this subsection, the results of the second experiment defined for this work are

presented. The results are presented in the following order: load phase, update phase and

query phase, each one presented in its own subsection.

5.2.1 Load Phase

In the load phase, as placed in the section 4.3.2.1, data was loaded into six tables:

one fact table and five dimension tables. The execution time of each operation was com-

puted. Each plot, shown in the figure 5.7, presents the sum of the average load duration

for all the tables, (represented in the Y axis, in seconds), for each scale (represented in

the X axis, in Gigabytes), considering each variation of the number of worker nodes, all

grouped by the table formats (represented using different colors, defined in the legend).

Figure 5.7: Total Load Phase Duration by Scale

As can be seen in the results shown in the figure 5.7, the load phase showed sim-

ilar performance results when comparing with the ones obtained in the TPC-DS Inspired

Experiment. The Apache Iceberg format performed the best, for all the possible varia-

tions of number of worker nodes, followed by the Delta Lake format. The Apache Hudi

showed the worst performance, like in the TPC-DS Inspired Experiment.
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5.2.2 Update Phase

During the update phase, 16% of the measurements of fact table data were up-

dated. This process was executed for each variation of the dataset scale, number of worker

nodes and table format. The plots, shown in the figure 5.8, uses the same axes and legends

definitions of the figure 5.7.

Figure 5.8: Total Update Phase Duration by Scale

The results presented in the figure 5.8 show that the Delta Lake format outper-

formed the other formats, executing the update phase faster in all the possible variations

of the experiment. The Apache Iceberg format had the second best performance, and the

Apache Hudi, the worst (as well as in the Load Phase).

After obtaining the results, the Speedup for each dataset scale was computed for

each table format. Then, the average of the Speedups obtained for each table format was

computed. The results are presented in the figure 5.9.

The results (plotted in the figure 5.9) show that the Apache Iceberg format per-

formed the best as the number of worker nodes grew. The Delta Lake format, despite

having the best execution times for all the possible variations of the update phase, had the

worst Speedup results.
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Figure 5.9: Average Speedup - Update Phase

5.2.2.1 Query Phase

The query phase, as placed in the section 4.3.2.2, consisted in executing six queries

using the fact table and the dimension tables defined for the experiment. The results are

shown next.

Considering the sum of the execution times for all the queries, the figure 5.10

shows the overall performance of each table format, using four workers nodes for execut-

ing the queries. The data plotted in the figure 5.10 shows that the Apache Hudi format

outperformed the other table formats. The results are similar to those of the TPC-DS In-

spired Experiment, in which the Delta Lake format had the second best performance, and

the Apache Iceberg format, the worst. This behavior can be seen analysing the execution

times by query, as well.

The results obtained for each query, using four worker nodes, are shown in the

figure 5.11. For all the queries, the Apache Hudi format performed the best. For all

the formats, the query that computes the number of daily active users (q1) has the worst

performance. The second worst performance was obtained for the query that computed

the average number of daily active users by plan (q3). The query that computed the

software version with the greatest number of sessions performed the best for all the table

formats. The results obtained using different numbers of worker nodes can be found in the

appendix B, in which can be seen that the Apache Iceberg format performed significantly

worse than the other formats when executing the queries using only one worker node.
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Figure 5.10: Total Query Phase Duration by Scale (using 4 worker nodes)

Figure 5.11: Average Execution Duration by Query (using 4 worker nodes)

5.3 Overall Analysis

As presented in the previous sections, each set of experiments provided results

that can be used to better understand the behavior of each table format when submitted

to read, insert and update operations. Thus, a brief analysis is presented, reviewing the

results of both set of experiments.

The phases of each set of experiments contemplated different types of operations.

For each type of operation, a brief summary of the results is shown next.

• Insert: the results obtained for both set of experiments were consistent. The

Apache Iceberg stood out, presenting the best performance when comparing it to
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the results of other table formats.

• Update: for different variations of the second set of experiments during the update

phase, the Delta Lake format showed the best results.

• Read: the results obtained for both set of experiments were also consistent. The

Apache Hudi stood out, presenting the best performance when comparing it to the

results of other table formats.

Worth noting that, on average, the Delta Lake format was the most consistent one,

in terms of performance, for all the possible variations of the experiments. The results

of performance evolution as the number of workers grew, however, showed that the table

formats could behave more similarly, in terms of performance, with a larger number of

workers. This is discussed, as an improvement of this work, in the chapter 6.

Given the characteristics of analytical workloads, that involve more frequent data

reads, the format Apache Iceberg showed the worst performance for this scenario. The

costs for insert and update operations, however, cannot be neglected, given these type

of operations are important to maintain data freshness (with more frequent writes) and

consistency/quality (with more frequent updates).
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6 CONCLUSION

This work provided a set of results based on the experiments idealized for com-

paring the performance of Data Lake Table Formats, when some usual operations over

these tables are performed. The results obtained, thus, can be used for getting insights

on which one is the most appropriate format for a specific set of requirements. The re-

sults of this work could also be used for identifying points of improvements, that could

be implemented in new versions of these formats.

Given the objectives of this work, that was centered around the comparison of the

table formats when submitted to insert, update and query operations, it was identified that

each table format outperformed the others when submitted to one of these operations.

The Iceberg format surpassed the others in the insert phases, the Delta Lake format, in

the update phase, and the Hudi format, in the query phases. Thus, based on the type of

workload that is most frequent in the user’s data environment, one format can be cho-

sen over another based on these results. Given that, usually, the analytical workloads are

composed by read heavy operations, the natural choice would be choosing the one that

has the best read performance, but, if there are some peculiarities in the workloads, that

require more frequent writes or updates, with the objective of maintaining the data con-

sistent or updated, for example, other format could be chosen over the one with the best

read performance.

The available infrastructure is also a constraint that could impact the performance

of one format over another, specially, when the number of worker nodes vary. The results

showed that the speedup during some operations were significantly better for one format

over another, what could indicate that, if the where more workers, a format could surpass

another in terms of performance.

Although this work defined a set of experiments that were idealized based on

the characteristics of usual scenarios related to the usage of data for analytical purposes,

there are variations and improvements that still can be explored in future work. One of the

possible variations for the experiments could be related to which query engine to use, for

example. Engines such as Presto or Trino could be used, analyzing what is the impact of

using different implementations of the APIs that manipulate the table formats on different

engines, obtaining more information on how they behave in terms of performance.

Another possible variation could be related to volume of data that was used in

the experiments. Once the scale of the datasets grows significantly, some formats could
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demonstrate a different behavior when comparing the performance. The same applies to

the number of workers used in the experiments, as stated earlier.

The evaluation of performance using different Cloud Object Storage could be a

possible improvement as well, given that the object storage features of one cloud vendor

could benefit one table format over another, in terms of performance.

Variations and adjustments on the table formats’ properties and configurations are

also relevant, given that this work only compares the performance of tables defined using

the copy on write approach, and Apache Parquet files in the "data layer". The merge

on read table types could be appropriate for streaming ingestion workloads, for example,

which could be another possible scenario to replicate in an experiment.

There still is a lot to explore when comparing the performance of these table for-

mats, which could benefit from robust analysis for implementing improvements. New

work could also be important for the idealization of new formats, that could implement

new approaches for improving the performance of the existent ones.



54

REFERENCES

ABADI, D. J.; BONCZ, P. A.; HARIZOPOULOS, S. Column-Oriented Database
Systems. 2009. Available from Internet: <https://www.cs.umd.edu/~abadi/talks/
Column_Store_Tutorial_VLDB09.pdf>.

ACKERMAN, H.; KING, J. Operationalizing the Data Lake. [S.l.]: O’Reilly Media,
Inc., 2019.

APACHE. Apache Iceberg Documentation. Apache Software Foundation, 2022.
Available from Internet: <https://iceberg.apache.org/docs/>.

APACHE. Apache Iceberg Specification. Apache Software Foundation, 2022. Available
from Internet: <https://iceberg.apache.org/spec/>.

APACHE. Apache ORC Specification. Apache Software Foundation, 2022. Available
from Internet: <https://orc.apache.org/docs/index.html>.

APACHE. Overview: Apache hudi. Apache Software Foundation, 2022. Available from
Internet: <https://hudi.apache.org/docs/overview/>.

APACHE. Table & Query Types | Apache Hudi. Apache Software Foundation, 2022.
Available from Internet: <https://hudi.apache.org/docs/next/table_types/>.

ARMBRUST, M. et al. Delta lake: high-performance acid table storage over cloud object
stores. Proceedings of the VLDB Endowment, VLDB Endowment, v. 13, n. 12, p.
3411–3424, 2020.

ARMBRUST, M. et al. Lakehouse: a new generation of open platforms that unify data
warehousing and advanced analytics. In: Proceedings of CIDR. [S.l.: s.n.], 2021.

ARMBRUST, M. et al. Spark sql: Relational data processing in spark. In: Proceedings
of the 2015 ACM SIGMOD international conference on management of data. [S.l.:
s.n.], 2015. p. 1383–1394.

CHEN, Y. et al. A study of sql-on-hadoop systems. In: SPRINGER. Workshop on big
data benchmarks, performance optimization, and emerging hardware. [S.l.], 2014.
p. 154–166.

DATABRICKS. What is SPARK SQL? Databricks, 2022. Available from Internet:
<https://databricks.com/glossary/what-is-spark-sql>.

DEVLIN, B. A.; MURPHY, P. T. An architecture for a business and information system.
IBM systems Journal, IBM, v. 27, n. 1, p. 60–80, 1988.

DIXON, J. Pentaho, Hadoop, and Data Lakes. 2010. Available from Internet:
<https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/>.

FACTOR, M. et al. Object storage: The future building block for storage systems.
In: IEEE. 2005 IEEE International Symposium on Mass Storage Systems and
Technology. [S.l.], 2005. p. 119–123.

https://www.cs.umd.edu/~abadi/talks/Column_Store_Tutorial_VLDB09.pdf
https://www.cs.umd.edu/~abadi/talks/Column_Store_Tutorial_VLDB09.pdf
https://iceberg.apache.org/docs/
https://iceberg.apache.org/spec/
https://orc.apache.org/docs/index.html
https://hudi.apache.org/docs/overview/
https://hudi.apache.org/docs/next/table_types/
https://databricks.com/glossary/what-is-spark-sql
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/


55

FLORATOU, A.; MINHAS, U. F.; ÖZCAN, F. Sql-on-hadoop: Full circle back to
shared-nothing database architectures. Proceedings of the VLDB Endowment, VLDB
Endowment, v. 7, n. 12, p. 1295–1306, 2014.

INMON, B. Data Lake Architecture: Designing the Data Lake and avoiding the
garbage dump. [S.l.]: Technics publications, 2016.

INMON, W. H. Building the data warehouse. [S.l.: s.n.], 1990.

IVANOV, T.; PERGOLESI, M. The impact of columnar file formats on sql-on-hadoop
engine performance: A study on orc and parquet. Concurrency and Computation:
Practice and Experience, Wiley Online Library, v. 32, n. 5, p. e5523, 2020.

KIMBALL, R. The Data Warehouse Toolkit (1st edition). [S.l.: s.n.], 1996.

KIMBALL, R.; ROSS, M. The data warehouse toolkit: the complete guide to
dimensional modeling. [S.l.]: John Wiley & Sons, 2011.

MELL, P.; GRANCE, T. et al. The nist definition of cloud computing. Computer Security
Division, Information Technology Laboratory, National . . . , 2011.

SAWADOGO, P.; DARMONT, J. On data lake architectures and metadata management.
Journal of Intelligent Information Systems, Springer, v. 56, n. 1, p. 97–120, 2021.

SETHI, R. et al. Presto: Sql on everything. In: IEEE. 2019 IEEE 35th International
Conference on Data Engineering (ICDE). [S.l.], 2019. p. 1802–1813.

SPECIFICATION, S.; TPC, T. P. P. C. Tpc benchmark™ ds. 2000.

VERTICA. Improving Query Performance. Micro Focus, 2022. Available
from Internet: <https://www.vertica.com/docs/10.0.x/HTML/Content/Authoring/
ExternalTables/QueryPerformance.htm>.

VOHRA, D. Practical Hadoop ecosystem: a definitive guide to hadoop-related
frameworks and tools. [S.l.]: Apress, 2016.

https://www.vertica.com/docs/10.0.x/HTML/Content/Authoring/ExternalTables/QueryPerformance.htm
https://www.vertica.com/docs/10.0.x/HTML/Content/Authoring/ExternalTables/QueryPerformance.htm


56

APPENDIX A — RESULT PLOTS - TPC-DS INSPIRED

Figure A.1: Average Load Duration for each table (using 1 worker node)
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Figure A.2: Average Load Duration for each table (using 2 worker nodes)
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Figure A.3: Average Load Duration for each table (using 3 worker nodes)
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Figure A.4: Average Query Duration (using 1 worker node)
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Figure A.5: Average Query Duration (using 2 worker nodes)
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Figure A.6: Average Query Duration (using 3 worker nodes)
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APPENDIX B — RESULT PLOTS - LOAD, UPDATE AND READ

Figure B.1: Average Execution Duration by Query (using 1 worker node)

Figure B.2: Average Execution Duration by Query (using 2 worker nodes)
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Figure B.3: Average Execution Duration by Query (using 3 worker nodes)
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