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Abstract: In this paper, we propose a robust test of monotonicity in asset returns
that is valid under a general setting. We develop a test that allows for dependent
data and is robust to conditional heteroskedasticity or heavy-tailed distributions
of returndifferentials.Manypostulated theories in economics andfinanceassume
monotonic relationships between expected asset returns and certain underlying
characteristics of an asset. Existing tests in literature fail to control the prob-
ability of a type 1 error or have low power under heavy-tailed distributions of
return differentials. Monte Carlo simulations illustrate that our test statistic has a
correct empirical size under all data-generating processes together with a similar
power to other tests. Conversely, alternative tests are nonconservative under con-
ditional heteroskedasticity or heavy-taileddistributionsof returndifferentials.We
also present an empirical application on the monotonicity of returns on various
portfolios sorts that highlights the usefulness of our approach.

Keywords: monotonicity tests, expected asset returns, heavy-taileddistributions,
sign test, portfolio sorts
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1 Introduction
Many asset pricing models suggest a monotonic relationship between expected
asset returns and certain underlying characteristics of an asset. For instance,
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some models assume a monotonically increasing relationship between returns
on a bond and time to maturity. A common procedure in the existing literature
was to test for the significance of the difference in returns between the highest and
lowest returncharacteristic.Nevertheless, this significance test is inaccurate since
it ignores the relationship between expected returns and asset characteristics
for intermediate return categories. Therefore, only a test that considers strictly
monotonic relationships for all return characteristics can solve this problem.

Patton and Timmermann (2010) developed a monotonicity test that calcu-
lates individual t-statistics for expected return differentials over the entire range
of return categories, where the alternative hypothesis states that all expected
return differentials are positive. Nevertheless, the test proposed by Patton and
Timmermann (2010) rules out a weakly increasing relationship under the null
hypothesis; since it assumes that the relationship is weakly decreasing if it is
not strictly increasing. As a result, their test does not successfully control the
probability of a type 1 error. Romano and Wolf (2013) proposed monotonicity
tests that also consider a monotonic relationship under the alternative hypothe-
sis and that provide a correct size. However, their test statistic based on expected
return differentials may be misleading when asset returns display conditional
heteroskedasticity or are drawn from heavy-tailed distributions. Monte Carlo
experiments show (on Section 3) that their test statistic has low power and an
incorrect size under heavy-tailed distributions of the return differentials.

This paper proposes a robust test of monotonicity in asset returns that is
valid under a general setting. We develop a test that allows for dependent data
and is robust to conditional heteroskedasticity or heavy-tailed distributions of
return differentials. Monte Carlo simulations illustrate that our test statistic is
conservative for finite samples under all data-generating processes considered.
The tests of Patton and Timmermann (2010) fail to control the type 1 error under
all data-generating processes, while the test of Romano and Wolf (2013) is non-
conservative under conditional heteroskedasticity or heavy-tailed distributions of
the return differentials. Also, our test displays a similar power to other tests when
the sample size is larger than 200 observations. Therefore, our method allows for
testing for monotonicity in a variety of situations by extending the approaches of
Patton and Timmermann (2010) and Romano and Wolf (2013).

It is important to consider heavy-tailed distributions in practice since many
financial series display thick tails (see Cont 2001; Embrechts, Kluppelberg, and
Mikosch 1997; Fama 1965; Gabaix 2009; Ibragimov andWalden 2007; Ibragimov,
Ibragimov, and Kattuman 2013; Loretan and Phillips 1994; Rachev and Mittnik
2000). Mandelbrot (1963) initiated research on thick-tailed distributions, where a
random variable R follows a distribution with tails displaying power-law decay
such that P(|R| > r) ∼ r−𝛼, for r > 0, with a tail parameter 𝛼 > 0. In this instance,
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f (r) ∼ g(r) denotes f (r) = g(r)(1+ o(1)) as r→∞. The tail parameter 𝛼 defines the
greatest order of finite moments of the random variable R. The mean of R is finite
if and only if 𝛼 > 1, and the variance of R is finite if and only if 𝛼 > 2. Finiteness
of first and second moments is crucial for obtaining an optimal diversification
(Ibragimov andWalden 2007) and for implementing standard econometric meth-
ods. In addition, Ibragimov, Jaffee, andWalden (2009) report evidence that gains
of diversification drop remarkably when distributions have thick tails. Scherer,
Harhoff, and Kukies (2000) and Silverberg and Verspagen (2007) also found that
financial returnson technological innovationshave thick-taileddistributionswith
infinite means.

Rachev, Menn, and Fabozzi (2005) provides a review of research papers sup-
porting heavy-tailed distributions for returns on equity and bonds. As considered
in Ibragimov and Walden (2007), many empirical studies found that financial
returns display heavy-tailed distributions (see Gabaix 2009; Gabaix et al. 2003,
2006; Ibragimov, Ibragimov, and Kattuman 2013; Jansen and de Vries 1991; Lore-
tan and Phillips 1994; McCulloch 1996, 1997). In addition, such authors as Lux
(1996), Guillaume et al. (1997), Gabaix et al. (2003), Gabaix (2009), and Ibragimov,
Ibragimov, and Kattuman (2013) reported evidence that these estimates of the tail
parameters are verymuchalike indifferent countries. As a result, financial returns
may display undefined mean, infinite variance, or infinite fourth moments.

We develop a sign-based test that tests a null hypothesis of no systematic
relationship against an alternative hypothesis of strict monotonicity. Sign-based
tests are robust under observations with infinite variance (Capanu, Jones, and
Randles 2006; Delgado and Velasco 2005; Gerard and Schucany 2007). Boldin,
Simonova, and Tyurin (1997) proposed locally optimal nonparametric sign tests
for linearmodels under independent errors. Coudin andDufour (2009) developed
sign-based inference for linear median regression models that allows for non
normally distributed and serially correlated errors. Campbell and Dufour (1991,
1995, 1997) proposed nonparametric tests of conditional independence based on
signed-rank statistics.

Our test has an alternative hypothesis in line with Patton and Timmermann
(2010) and Romano and Wolf (2013). Under the alternative hypothesis, a strictly
increasing monotonic relationship exists. Fama (1984) and Wolak (1987, 1989)
developed the inverse procedure of testing the null hypothesis of a strictly mono-
tonic relationship against the alternative hypothesis of no relationship. However,
the null hypothesis of monotonicity may not be rejected because of the lack of
powerof the test. Therefore, this approachmayprovidepoor statistical support for
the associated hypothesis when the null is not rejected. Hence, we will overlook
these tests in our paper.
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The remainderof thepaper is organizedas follows. Section2explainsour test-
ingprocedure.Section3presentsMonteCarlo simulations results. Section4shows
an application of our test to returns on portfolio sorted on firm characteristics.
Finally, Section 5 concludes.

2 A Robust Test for Monotonicity in Asset Returns
Let (r0,t, r1,t,… , rN,t)′ be a vector of strictly stationary time series returns of dimen-
sionN + 1withT observations.As inPattonandTimmermann (2010) andRomano
and Wolf (2013), we assume that the order of the return categories is predeter-
mined and independent from the data. For each return category i, we define its
expected return as 𝜇i, with an estimator �̂�i ≡ (1∕T)∑T

t=1ri,t. Then, we denote the
expected return vector as 𝝁 ≡ (𝜇0, 𝜇1,… , 𝜇N)′. We define the expected return
differentials between the categories i− 1 and i as Δi ≡ 𝜇i − 𝜇i−1. Following the
notation of Patton and Timmermann (2010) and Romano and Wolf (2013), let the
vector of observed return differentials be dt ≡ (d1,t, d2,t,… , dN,t)′ = (r1,t − r0,t, r2,t
− r1,t,… , rN,t − rN−1,t)′. Then, the associated vector of expected return differen-
tials is 𝚫 ≡ (𝜇1 − 𝜇0, 𝜇2 − 𝜇1,… , 𝜇N − 𝜇N−1)′ = (Δ1,Δ2,… ,ΔN)′. We can
also write𝚫 = E(dt), with an estimator Δ̂i ≡ (1∕T)∑T

t=1di,t. Therefore, we can test
whether the expected returns ri,t are monotonically increasing over the N + 1
categories by verifying whetherΔi > 0 holds for all i = 1,… ,N.

Patton and Timmermann (2010) specify weakly decreasing return differen-
tials under the null hypothesis against strictly increasing return differentials
under the alternative hypothesis:

H0 :Δi ≤ 0 for all i versusHA : min
i=1,…,N

Δi > 0, (1)

since mini=1,…,NΔi > 0 impliesΔi > 0 for all i = 1,… ,N. Nevertheless, the alter-
native hypothesis of strictmonotonicity in (1) is not the rejection of the null, when
the parameter space for 𝚫 is ℝN , the N-dimensional Euclidian space. Romano
and Wolf (2013) suggest partitioning ℝN as ℝN = R1 ∪ R2 ∪ R3, where

R1 ≡ {r ∈ ℝn: ri ≤ 0 for all i},
R2 ≡ {r ∈ ℝn: ri ≤ 0 for some i and r j > 0 for some other j},
R3 ≡ {r ∈ ℝn: ri > 0 for all i}.

(2)

Thus, we can specify the hypotheses in (1) as

H0:Δ ∈ R1 versusHA:Δ ∈ R3.
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Therefore,PattonandTimmermann(2010)excludeapriori thepossibility that
𝚫 ∈ R2, andthenullhypothesis is rejectedunder theassumption that𝚫 ∈ R1 ∪ R3.
Ignoringapriori thepossibility that𝚫 ∈ R2 may lead to a false decision supportive
of a strictly monotonic increasing relationship under the alternative hypothesis.

Romano and Wolf (2013) proposed a monotonicity test of expected asset
returns allowing forΔ ∈ ℝN a priori, where the hypotheses arewritten as follows:

H0 :Δ ∈ R1 ∪ R2 versusHA :Δ ∈ R3. (3)

The hypotheses in (3) can be specified as

H0 : min
i=1,…,N

Δi ≤ 0 versusHA : min
i=1,…,N

Δi > 0. (4)

The testing problem of (4) is composite since the null parameter space con-
tains several parameters Δi. Thus, it is difficult to define the values of Δi for
the sampling distribution under the null hypothesis. Romano and Wolf (2013)
proposed three different methods to calculate their test critical values, but they
recommended for practical purposes the so-called conservative test. Although
the conservative test of Romano and Wolf (2013) has a correct size, it may have
low power and incorrect finite-sample size under conditional heteroskedasticity
or heavy-tailed distributions of the return differentials.

We draw statistical inferences based on sign tests. Let the vec-
tor of signs of return differentials be 𝝎t ≡ (𝜔1,t, 𝜔2,t,… , 𝜔N,t)′ = (sign(d1,t),
sign(d2,t),… , sign(dN,t))′, where sign(r) is equal to 1∕2 if r > 0 and −1∕2 other-
wise.Weassume that𝜔i,t hasnomass at 0, for all i = 1,… ,N. Thus, the associated
vector of expected signs of return differentials is𝛀 ≡ (Ω1,Ω2,… ,ΩN)′ = (E(𝜔1,t),
E(𝜔2,t),… ,E(𝜔N,t))′, with an estimator Ω̂i ≡ (1∕T)∑T

t=1𝜔i,t = �̄�i,t. We can also
write𝛀 ≡ E(𝝎t). Let theminimumof expected signsof returndifferentials beΩ∗

≡

mini=1,…,NΩi. Besides, letm = argmini=1,…,NΩi, and we assumeΩ∗
< Ω∗,−m a.s.

forΩ∗,−m = mini=1,…,N,i≠mΩi. Then, we propose to test the null hypothesis of no
monotonicity of the return differentials as follows:

H0 :Ω∗
≤ 0 versusHA :Ω∗

> 0, (5)

where the hypotheses in (5) are equivalent to the testing problem in (3). The
hypothesis testing in (5) provides a precise definition of the null space since the
sign function restricts the range of values of Δi in the set {−1∕2, 1∕2}, for each
i = 1,… ,N. Following Hansen (2005) and Romano andWolf (2005), we develop a
studentized version ofΩ∗ for testingH0 in (5), which leads to an increased power
of the test statistic. Let Ω̂∗ be the sample analog ofΩ∗, where Ω̂∗ = mini=1,…,NΩ̂i.
Then, we define our test statistic as follows:
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M̂ = Ω̂∗

𝜎∗
, (6)

where 𝜎∗ is a consistent estimator of the standard error of Ω̂∗, 𝜎∗ ≡

√
Var(Ω̂∗).

Patton and Timmermann (2010) proposed a block-bootstrap version of their
test statisticwhen the returns followa timeseriesprocess.RomanoandWolf (2013)
recommended applying a suitable bootstrap when current values are correlated
with a set of past values. However, they do not explicitly provide a bootstrap
algorithm for calculating critical values under dependent data.

We estimate 𝜎
2
∗ by applying a consistent subsampling estimator proposed

by Politis and Romano (1993) and Politis, Romano, and Wolf (1999). If the
vector of signs of the return differentials 𝝎t is strictly stationary satisfying∑∞

k=1|Cov(𝜔i,1, 𝜔i,1+k)| < ∞, for all i = 1,… ,N, then

𝜎
2
∗ = Var(𝜔i,1)+ 2

T∑
k=1

(
1− k

T

)
Cov(𝜔i,1, 𝜔i,1+k). (7)

We could estimate 𝜎2
∗ by plugging the estimates of Cov(𝜔i,1, 𝜔i,1+k) in (7), for

all i = 1,… ,N, but the covariance estimates are unreliable for lags close to T
since they rely on a gradually lower sample size. We can just aspire to obtain
good estimates of Cov(𝜔i,1, 𝜔i,1+k) for k = 1,… , b, where b ≪ T (see Politis and
Romano 1993).

Nevertheless, it is possible to estimate 𝜎2
∗ by calculating the sample variabil-

ity of (1∕
√
b)∑ j+b−1

t= j 𝜔i,t, for j = 1,… ,T − b+ 1, which is a subsampling estimator
of𝜎2

∗. Hence,we apply a consistent subsampling schemedeveloped by Politis and
Romano (1993) and Politis, Romano, and Wolf (1999) to estimate 𝜎2

∗. We describe
a subsampling algorithm for estimating 𝜎2

∗ in (6) as follows. For each return cate-
gory, i = 1,… ,N, given a series of signs of return differentials {𝜔i,1,… , 𝜔i,T}, we
define B = T − b+ 1 subsamples with size b as {𝜔i,j,… , 𝜔i,j+b−1}. For each sub-
sample j ≤ B, we calculate the subsampling variability (1∕

√
b)∑ j+b−1

t= j 𝜔i,t. Then,
we estimate 𝜎2

∗ by applying the following subsampling estimator:

𝜎
2
∗,b =

1
T − b+ 1

T−b+1∑
j=1

⎡
⎢
⎢⎣

1√
b

( j+b−1∑
t= j

𝜔∗,t −
√
b�̄�∗,t

)2⎤
⎥
⎥⎦
, (8)

where b is a subsample size that satisfies the restriction 1∕b+ b∕T → 0 as T, b
→∞. Thus, we calculate our test statistic as follows:

M̂b =
Ω̂∗

𝜎∗,b
. (9)
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The choice of the subsample size has a significant effect on the result for finite
samples (Sakov and Bickel 2000). Politis and Romano (1993) suggest applying a
subsample size that satisfies 𝜅T0.3 without providing a guideline for choosing
the value of 𝜅. Although the value of 𝜅 has no asymptotic estimation effect, it
plays an important role in finite samples. Series with strong serial correlation
require high values of 𝜅 to capture its serial correlation, while independent and
identically distributed (IID) seriesneed small values of𝜅.Weaddress this problem
by proposing a functional form for 𝜅. Let 𝜅 = ∑𝜆

j=0|Corr(𝜔i,t, 𝜔i,t− j)|, with 1∕𝜆
+ 𝜆∕T → 0, so that 𝜅 is proportional to the serial correlation of the series, where
𝜅 = 1 for an IID series and 𝜅 > 1 for a serially correlated series.

We need to ensure that certain regularity conditions hold to determine the
asymptotic distribution of the M̂b test in (9). In what follows, let “

p
←←←←←←←←←←→” and “

d
←←←←←←←←←←→”

denote convergence in probability and in distribution, respectively. Theorem 1
below delivers the limit distribution of our M̂b test statistic in (9).

Theorem 1. Suppose that (i) dt = (d1,t, d2,t,… , dN,t)′ is a strictly stationary and
𝛼-mixing process with coefficients satisfying ∑∞

k=1kp−1(𝛼dt (k))
𝛿∕(2p+𝛿)

< ∞, and
𝝎t = (𝜔1,t, 𝜔2,t,… , 𝜔N,t)′ is strictly stationary, (ii) E|𝝎1|2p+𝛿 < C, where p ∈ ℤ

and p > 2, 0 < 𝛿 ≤ 2, and C > 0 are constants, (iii)
√
T(Ω̂ − E(Ω̂))

d
←←←←←←←←←←→N(0,V),

where V is a positive definite N × N covariance matrix with typical element 𝑣i,j, (iv)
Pr

[(
Ω̂∗,−m − Ω̂∗

)
> 0

]
= 1 as t→∞, (v) the subsample size b satisfies b→∞

and b = o(T), and (vi) under H∗
0 , it holds H

∗
0: (Ω1,… ,0,… ,ΩN), with Ωi > 0 for

all i ≠ m. Then,
(i) 𝜎

2
∗

p
←←←←←←←←←←→𝜎

2
∗,

(ii)
√
TM̂b

d
←←←←←←←←←←→N(0, 1).

Assumptions (i)–(iii) of Theorem 1 provide standard conditions for return dif-
ferentials under time series data. As the sign(⋅) function is a Borel-measurable
function, Assumption (i) implies that 𝝎t = (𝜔1,t, 𝜔2,t,… , 𝜔N,t)′ is also an 𝛼-
mixing process. Assumptions (i)–(ii) are necessary to restrain the dependence of
dt = (d1,t, d2,t,… , dN,t)′ and 𝝎t = (𝜔1,t, 𝜔2,t,… , 𝜔N,t)′; they accommodate com-
monly used models for asset returns such as generalized autoregressive con-
ditional heteroscedasticity (GARCH) and factor models under mild additional
assumptions. Assumption (iv) ensures that theminimum function over𝛀 returns
an independent random variable of 𝛀−m, where 𝛀−m represents the 𝛀 sam-
ple space excluding Ω∗. Hence, it guarantees that asymptotically, for some m,
Ω∗

≡ mini=1,…,NΩi = Ωm always, reducing our multivariate scenario to a uni-
variate case. Assumption (v) imposes restrictions on the subsample sizes, as in
Politis and Romano (1993) and Politis, Romano, and Wolf (1999). Finally, H∗

0 of
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Assumption (vi) refers to the worst-case scenario where all Ωi are greater than
zero except for Ω∗, implying a weakly monotonic relationship that falls into the
R2 region of (2).

The term “worst-case scenario” of Assumption (vi) was coined by Romano
and Wolf (2013) since any other scenario that has more zeros is easier to identify
as nonmonotonic than the worst-case scenario. Theorem 1 shows that our test
statistic has correct size for the worst-case scenario. Therefore, the presence of
more zeros only pushes our test statistic towards the nonrejection of the null
hypothesis of no monotonicity. Unreported simulations corroborate this result,
and they are available upon request to the corresponding author.

Let the power function of a test that rejectsH0 when a test statistic ST belongs
to the critical region K be 𝜋T(𝜃) = P

𝜃
(ST ∈ K). We define the asymptotic relative

efficiency (ARE) of test 1 with respect to test 2, for a given level 𝛼 and power 𝛾, as

ARE ≡ lim
𝜈→∞

T
𝜈,1

T
𝜈,2
,

where T
𝜈,j is the minimal number of observations such that 𝜋T

𝜈, j
(0) ≤ 𝛼 and

𝜋T
𝜈, j
(𝜃

𝜈
) ≥ 𝛾, for j = 1, 2. When testing a location parameter, the sign test has

higher ARE over the t-test if the underlying distribution is heavy-tailed, with an
ARE of 4f 2(0) ∫ r2 f (r)dr (Van der Vaart 2000, Chapter 14). In this instance, f (r) ∼
g(r) denotes f (r) = g(r)(1+ o(1)) as r→∞. This result underscores the advantage
of the sign-based test under thick-tailed distributions. For instance, the ARE of
the sign test over the t-test under Laplace and Cauchy distributions is 2 and∞,
respectively; conversely, the ARE is 2∕𝜋 and 1∕3 under Gaussian and uniform
distributions, respectively.

3 Monte Carlo Study
In this section, we performMonte Carlo simulations to evaluate the finite-sample
performance of our proposed test statistic. We investigate two sets of scenarios.
The first set, Exp.H0, considers the case where H0 in (5) is valid and the relation-
ship between expected returns and portfolio sorts is nonmonotonic. It evaluates
the finite-sample size of various tests in the worst-case scenario, where 𝚫 lies on
theboundarypart ofR2, but never inR3 of (2).Under this scenario, the relationship
is not strictly monotonic, but close to. The test of Patton and Timmermann (2010)
is nonconservative under this scenario since it overlooks the R2 region of (2). The
second set of scenarios, Exp.HA, evaluates the power performance of many tests
under HA in (5). We design these scenarios as follows:

Exp.H0 :Δ = (Δ,Δ,… ,Δ,0)′,
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Exp.HA :Δ = (Δ,Δ,… ,Δ,Δ)′,

where𝚫 is a column-vectorwithN rows (return categories) andΔ ≥ 0.Wepropose
the following data-generating processes (DGPs) for the return differentials:

DGP.1: dt ∼ N (Δ,Σ) ,Σi, j = 0.9|i− j|
,

DGP.2: di,t = Δi + 𝜀i,t, 𝜀i,t = 𝜎i,tui,t, 𝜎2
i,t = 0.1+ 0.9𝜀2i,t−1, ui,t

i.i.d.∼ N(0, 1),

DGP.3: di,t = Δi + 0.7di,t−1 + 0.3ui,t, ui,t
i.i.d.∼ N(0, 1),

DGP.4: di,t = Δi + 𝜀i,t, 𝜀i,t = 𝜎i,tui,t, ui,t
i.i.d.∼ N(0, 1), 𝜂i,t = 𝜀i,t𝜎

−1
i,t ,

log(𝜎2
i,t) = 0.001+

[
0.25(𝜂i,t−1)+ 0.10(|𝜂i,t−1|− E|𝜂i,t−1|)

]

+ 0.99 log(𝜎2
i,t−1),

DGP.5: di,t = Δi + 0.5𝜀i,t, 𝜀i,t
i.i.d.∼ Cauchy(𝛿, c), {𝛿; c} = {0; 1},

DGP.6: di,t = Δi + 𝜀i,t, 𝜀i,t
i.i.d.∼ S(𝛼, 𝛽, c, 𝛿), 𝛼 ∈ [0.2; 1.8],

{𝛽; c; 𝛿} = {0;0.01,0}.

where 𝚫 = (Δ1,… ,ΔN)′, {𝛿, c} are the location and the scale parameter of a
Cauchy distribution, and 𝚺 is a Toeplitz covariance matrix with typical element
Σi,j = 0.9|i−j|. LetS(𝛼, 𝛽, c, 𝛿)be thestabledistributionwith the locationparameter
𝛿, the scale parameter c, the skewness parameter 𝛽, and the stability index
(characteristic exponent) 𝛼. We denote the standard stable distribution (with
c = 1 and 𝛿 = 0) by S(𝛼, 𝛽). The characteristic exponent 𝛼 determines the decay
rate of the tails of stable distributions. When 𝛼 = 2, a normal distribution arises
with variance 2. The variance is infinite for 𝛼 < 2. The mean is defined if 𝛼 > 1,
but it is undefined when 𝛼 ≤ 1.

Romano andWolf (2013) examinedDGP.1, where the return differentials close
to each other are strongly dependent, whereas the return differentials far from
each other are weakly dependent. DGP.2 considers return differentials that follow
an autoregressive conditional heteroskedasticity (ARCH) process of order one.
DGP.3 evaluates the performance of the tests under short-term dependence for
return differentials.

Under DGP.4, the return differentials follow an exponential GARCH, E-
GARCH(1,1), process of Nelson (1991). In the E-GARCH model, a negative return
change increases volatility more than an equivalent positive return increase. This
model is useful for estimating asymmetries on the volatility of financial assets
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(Brandt and Jones 2006). DGP.5 considers errors following a heavy-tailed distri-
bution with an undefined mean. The Cauchy distribution is a special case of the
stable distribution. The Cauchy distribution is a symmetric standard stable distri-
bution (𝛽 = 0) with 𝛼 = 1. Hence, DGP.5 assesses the finite-sample performance
of various tests under a return differentials distribution with undefined mean
and heavy tails. Finally, DGP.6 determines the finite-sample behavior of various
tests under heavy-tailed distributions for different degrees of the characteristic
exponent 𝛼 = {0.2,0.4,… , 1.8} that determines the thickness of the distribution
tails.

We use an empirical rejection frequency of 5% in all experiments and
10,000 Monte Carlo simulations to calculate the empirical rejection probabili-
ties. We calculate our test statistic with a subsample size of b = 𝜅T0.3, where
𝜅 = ∑𝜆

j=0|Corr(𝜔i,t, 𝜔i,t− j)| and 𝜆 = T0.15. We compare our findings with the MR
and MRall tests of Patton and Timmermann (2010) calculated on the minimal
set of possible inequalities (MR) and on all possible inequalities implied by
monotonicity (MRall), and the conservative test of Romano and Wolf (2013) (RW).

We employ a block-bootstrap approach to calculate the MR and MRall test
statisticsand thecritical valuesof theRWtest,withB = 999bootstrap replications
and a block length of b = ⌊T1∕3⌋, where ⌊⋅⌋ is the floor function, following the
suggestion of Künsch (1989) for the choice of the block length.

Wepresent twosetsof simulationexperiments.Thefirst setverifies theempiri-
cal rejection rates for different values ofΔ = {0.00,0.05,… ,0.50},with a sample
of size T = 120. We consider N = 10 return categories. Figure 1 displays the rejec-
tion frequencies of the various tests under H0 in (5). The empirical size of the M̂b
test is almost always correct underH0 in (5). On the other hand, bothMRandMRall
tests present size distortions for all DGPs. Thus, for clarity, we only report these
test results for DGP.1. Although the RW test is conservative for DGP.1 and DGP.2, it
tends to under-reject under DGPs 4–5; besides, it presents size distortions under
short-term dependence (DGP.3).

Figure 2 displays the empirical rejection probabilities of the various tests
under the alternative hypothesis. Due to size distortions underH0, we only report
the empirical power of the MR and MRall tests for DGP.1. In general, these tests
present the highest rejection rate among all tests. The RW test has the highest
rejectionrate forDGP.1andDGP3.Nevertheless, this test isnon-conservativeunder
DGP.3. The M̂b test outperforms the RW test under DGP.2, DGP.4, and DGP.5. The
presence of conditional heteroskedasticity, under DGP.2 and DGP.4, affects the
finite-sample behavior of the RW test. Conversely, our test ismore powerful under
conditional heteroskedasticity and thick-tailed distributions with an undefined
mean (DGP.5) due to the robustness of the sign test.
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Figure 1: Empirical rejection frequencies under H0 (Exp. H0) for many tests with N = 10 return
categories and different values ofΔ. We perform 10,000 Monte Carlo repetitions.
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Figure 2: Empirical rejection frequencies under HA (Exp. HA) for many tests with N = 10 return
categories and different values ofΔ. We perform 10,000 Monte Carlo repetitions.
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For comparison, we also consider the case of N = 5 return characteristics as
the testpower is inversely related to theamountof returndifferentialsN. The larger
the amount of categories, the more difficult it is to verify positive expected return
differentials over the entire range of categories. Figure 3 shows the frequency
rejection rates for N = 5 return categories. Consistent with the results presented
in Romano and Wolf (2013), the power of all tests increase when N is decreased.
In addition, the discrepancies in power are smaller when N = 5. The RW test still
outperforms the M̂b test for DGP.1 and DGP.3; on the other hand, our M̂b test
presents the highest power under DGP.2, DGP.4, and DGP.5.

Figure 4 reports the simulated rejection probabilities of the M̂b and RW tests
under DGP.6, with T = 120 and Δ = 0.50. We assess the finite-sample behavior
of these tests under heavy-tailed distributions for several rates of decay of the
distribution tails. The M̂b test delivers a correct finite-sample size and maximum
power for all heavy-tailed characteristic exponents 𝛼 ∈ [0.2; 1.8]. Conversely, the
RW test is non-conservative for 𝛼 < 1.2. The RW test statistic has a power close
to zero for 𝛼 ≤ 0.6. Thus, the M̂b test presents reliable finite-sample performance
under heavy-tailed distributions.

Next, we report another set of simulations, where we present the empiri-
cal rejection frequencies for five sample sizes T = {100, 200, 300, 400, 500}with
N = 10 return categories and Δ = 0.50. We also calculate our test statistic of (9)
for three subsample sizes of bk = 𝜅kT0.3, where 𝜅k =

∑𝜆k
j=0|Corr(𝜔i,t, 𝜔i,t− j)| and

𝜆k ∈ {T0.05
,T0.10

,T0.15} for k = 1, 2, 3. We denote our test statistic of (9) by M̂
𝜆k

depending on the 𝜆k applied. To save space, we omit the results obtained for
DGP.6.

Tables 1 and 2 present the rejection frequencies of the various tests under
H0 and HA in (5), respectively. Consistent with the results presented in Figure 1,
the M̂b test displays a finite-sample size close to the nominal level for DGPs 1–5;
on the other hand, the MR and MRall tests present size distortions for all DGPs,
while the RW test is conservative only for DGPs 1–2. These findings are robust to
different numbers of observations and subsample sizes of the M̂b test. Further,
Table 2 suggests that there are no significant differences in power for sample sizes
larger than T = 200.

Our findings from the Monte Carlo experiments indicate that the M̂b test
should be selected for practical use since it is robust to heavy-tailed distributions
and to conditional heteroskedasticity. The RW test provides a zero rejection rate
under some heavy-tailed distributions with undefined means, and it is anticon-
servative in the presence of conditional heteroskedasticity and autocorrelated
data. The MR and MRall tests fail to control the probability of a type 1 error
for all DGPs. Conversely, our proposed test statistic presents a correct finite-
sample size under all DGPs together with similar power to alternative approaches
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Figure 3: Empirical rejection frequencies under HA (Exp. HA) for many tests with N = 5 return
categories and different values ofΔ. We perform 10,000 Monte Carlo repetitions.
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Figure 4: Empirical rejection frequencies for many tests under DGP.6 withΔ = 0.50 and
different values of the stability index 𝛼. We perform 10,000 Monte Carlo repetitions.

when the sample size is larger than T = 200. Our test also outperforms other
tests when T < 200 under conditional heteroskedasticity (DGP 2) or heavy-tailed
distributions with undefined mean (DGP 5). Overall, our test presents a proper
finite-sample performance.

4 Empirical Application: Portfolio Sorts
To highlight the usefulness of our procedure, we revisit one of the empirical
applications of Patton and Timmermann (2010). We analyze returns on portfo-
lios ranked by firm characteristics such as market equity (ME), book-to-market
value (B-M), cashflow-price ratio (CF-P), earnings-price ratio (E-P), dividend-price
ratio (D-P), investment (INV), short-term reversal (STR), and long-term reversal
(LTR). Monotonicity tests for returns on these categories are important to verify
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Table 1: Empirical rejection frequencies under H0 (Exp. H0).

DGP T M̂𝝀1
M̂𝝀2

M̂𝝀3
RW MR MRall

DGP.1

100 0.049 0.050 0.050 0.049 1.000 0.257
200 0.048 0.048 0.048 0.048 1.000 0.253
300 0.045 0.048 0.048 0.054 1.000 0.256
400 0.046 0.048 0.048 0.053 1.000 0.268
500 0.047 0.044 0.044 0.048 1.000 0.247

DGP.2

100 0.051 0.051 0.051 0.046 1.000 0.710
200 0.052 0.052 0.052 0.051 1.000 0.727
300 0.047 0.047 0.047 0.048 1.000 0.720
400 0.043 0.043 0.043 0.047 1.000 0.717
500 0.048 0.048 0.048 0.049 1.000 0.725

DGP.3

100 0.132 0.093 0.093 0.289 1.000 0.637
200 0.109 0.083 0.083 0.287 1.000 0.660
300 0.096 0.061 0.061 0.292 1.000 0.665
400 0.086 0.043 0.043 0.295 1.000 0.685
500 0.090 0.054 0.031 0.295 1.000 0.684

DGP.4

100 0.045 0.044 0.044 0.011 1.000 0.603
200 0.047 0.047 0.047 0.012 1.000 0.587
300 0.043 0.043 0.043 0.011 1.000 0.598
400 0.046 0.046 0.046 0.010 1.000 0.573
500 0.046 0.046 0.045 0.010 1.000 0.617

DGP.5

100 0.052 0.052 0.052 0.000 0.539 0.148
200 0.051 0.049 0.049 0.000 0.527 0.152
300 0.046 0.045 0.045 0.000 0.523 0.152
400 0.047 0.046 0.046 0.000 0.519 0.151
500 0.048 0.050 0.050 0.000 0.526 0.154

This table displays the empirical rejection frequencies under H0 (Exp. H0) for many tests with N
= 10 return categories and Δ = 0.50. M̂

𝜆k
denotes our test statistic in (9) with three different

subsample sizes bk = 𝜅 iT0.3, where 𝜅k =
∑𝜆k

j=0|Corr(𝜔i,t , 𝜔i,t− j)| and 𝜆k ∈{T0.05, T0.10, T0.15}
for k = 1, 2, 3. RW is the conservative test of Romano and Wolf (2013). MR and MRall are
the proposed tests of Patton and Timmermann (2010) based on the minimal set of possible
inequalities and on all possible inequalities implied by monotonicity, respectively. We applied
B= 999 bootstrap replications and a block length of b= ⌊T1/3⌋ for the MR, MRall, and RW tests.
We performed 10,000 Monte Carlo simulations.
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Table 2: Empirical rejection frequencies under HA (Exp. HA).

DGP T M̂𝝀1
M̂𝝀2

M̂𝝀3
RW MR MRall

DGP.1

100 0.933 0.933 0.933 0.998 1.000 1.000
200 0.999 0.999 0.999 1.000 1.000 1.000
300 1.000 1.000 1.000 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000

DGP.2

100 1.000 1.000 1.000 0.895 1.000 0.987
200 1.000 1.000 1.000 0.959 1.000 0.997
300 1.000 1.000 1.000 0.978 1.000 0.998
400 1.000 1.000 1.000 0.984 1.000 0.997
500 1.000 1.000 1.000 0.988 1.000 1.000

DGP.3

100 0.834 0.720 0.725 0.980 1.000 0.999
200 0.994 0.980 0.981 1.000 1.000 1.000
300 1.000 0.990 0.999 1.000 1.000 1.000
400 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 0.999 1.000 1.000 1.000

DGP.4

100 0.829 0.827 0.827 0.753 1.000 1.000
200 0.989 0.989 0.989 0.921 1.000 1.000
300 1.000 1.000 1.000 0.978 1.000 1.000
400 1.000 1.000 1.000 0.992 1.000 1.000
500 1.000 1.000 1.000 0.998 1.000 1.000

DGP.5

100 0.999 0.999 0.999 0.000 0.312 0.155
200 1.000 1.000 1.000 0.000 0.311 0.164
300 1.000 1.000 1.000 0.000 0.303 0.154
400 1.000 1.000 1.000 0.000 0.297 0.154
500 1.000 1.000 1.000 0.000 0.306 0.160

This table reports the empirical rejection frequencies under HA (Exp. HA) for many tests with N
= 10 return categories andΔ= 0.50. We used the same specifications of Table 1.

their validity as unobserved risk factors. Thus, we test whether there is a strictly
increasing relationship between portfolio rank and returns for portfolios ranked
onB-M,CF-P, E-P, andD-P. Inaddition,we test for a strictlydecreasing relationship
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for returns on portfolios sorted on ME, INV, STR, and LTR. Since we are testing
whether these relationships are strictly decreasing, we reorder the asset returns
as in Patton and Timmermann (2010).

Our data consist ofmonthly stock returns on value-weighted decile portfolios
obtained from Kenneth French’s website, made up of common stocks listed on
NYSE, AMEX, and NASDAQ. The data cover the earliest starting date for each
sorting variable: ME from 1926.07 to 2018.09, B-M from 1926.07 to 2018.09, CF-P
from 1951.07 to 2018.09, E-P from 1951.07 to 2018.09, D-P from 1927.07 to 2018.09,
INV from 1963.07 to 2018.09, STR from 1926.02 to 2018.09, and LTR from 1931.07
to 2018.09. Figure 5 displays the returns on decile portfolios ranked by each one
of the eight characteristics.

We first verify whether the returns on portfolio sorts have heavy-tailed dis-
tributions. We estimate the kurtosis of the returns for each decile of the portfolio
sorts. If we reject normality, we may apply the maximum likelihood method
proposed by DuMouchel (1973) to estimate the index of stability (𝛼) of a stable
distribution. We apply this procedure since Nolan (2001) demonstrated that the

Figure 5: Monthly average returns on decile portfolios ranked by firm characteristics.



A Robust Test for Monotonicity in Asset Returns | 19

estimator of DuMouchel (1973) is the most efficient estimator of 𝛼 when the true
distribution is not normal.

Table 3presents the estimatedkurtosis and indexof stability (𝛼) of the returns
on decile portfolios for all sorts and for each decile. The kurtosis values of the
returns on each decile suggest that their distributions are leptokurtic. In addition,
unreported Jarque–Bera normality tests indicate that all decile portfolios’ returns

Table 3: Estimated kurtosis and index of stability (𝛼): Decile portfolios.

ME B-M CF-P E-P D-P INV STR LTR

Kurtosis

Low 44.782 9.144 4.526 4.518 6.523 5.348 9.371 23.931
2 25.653 7.194 5.052 5.104 7.676 4.806 9.440 33.324
3 21.671 9.946 4.937 4.890 7.206 4.792 9.834 25.351
4 19.415 18.426 5.050 5.190 11.202 4.970 8.288 22.334
5 14.800 16.366 6.141 5.109 14.162 4.892 22.598 27.623
6 16.789 23.521 4.786 5.079 14.622 5.124 9.883 17.732
7 13.706 19.966 5.350 5.070 11.021 5.410 19.605 21.808
8 14.731 21.873 4.948 5.084 20.839 5.128 24.612 12.742
9 13.501 24.969 5.508 5.475 25.983 4.720 26.855 10.153
High 9.987 25.454 5.187 5.273 32.679 4.607 15.942 6.731

Index of stability (𝛼)

Low 1.535 1.740 1.868 1.837 1.722 1.857 1.538 1.578
2 1.619 1.749 1.876 1.837 1.768 1.830 1.596 1.563
3 1.644 1.738 1.805 1.835 1.657 1.847 1.623 1.578
4 1.692 1.653 1.832 1.862 1.744 1.829 1.650 1.644
5 1.677 1.641 1.828 1.845 1.689 1.802 1.663 1.598
6 1.692 1.637 1.880 1.922 1.683 1.779 1.673 1.650
7 1.683 1.613 1.859 1.856 1.703 1.837 1.674 1.668
8 1.693 1.617 1.868 1.842 1.645 1.851 1.724 1.696
9 1.680 1.567 1.845 1.789 1.639 1.796 1.662 1.747
High 1.695 1.525 1.835 1.867 1.556 1.855 1.701 1.758

This table displays the estimated kurtosis and index of stability (𝛼) of monthly returns on
decile portfolios sorted on firm characteristics. We estimated the index of stability (𝛼) of a
stable distribution by applying themaximum likelihoodmethod proposed byDuMouchel (1973)
and Nolan (2001). We obtained the data from Kenneth French’s website. The data cover the
earliest starting date for each sorting variable: market equity (ME) from 1926.07 to 2018.09,
book-to-market value (B-M) from 1926.07 to 2018.09, cashflow-price ratio (CF-P) from 1951.07
to 2018.09, earnings-price ratio (E-P) from 1951.07 to 2018.09, dividend-price ratio (D-P) from
1927.07 to 2018.09, investment (INV) from 1963.07 to 2018.09, short-term reversal (STR) from
1926.02 to 2018.09, and long-term reversal (LTR) from 1931.07 to 2018.09.
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do not follow a normal distribution. Finally, all estimated indices of stability (𝛼)
lie in the interval 𝛼 ∈ (1.53; 1.93), indicating that the distributions of returns on
decile portfolios are heavy-tailed.

Table 4 presents the results of monotonicity tests. The M̂b test does not reject
the null hypothesis of no systematic relationship, at the 5% significance level,
for all portfolio sorts. The RW test also fails to reject the null hypothesis for each
one of the portfolio sorts at the 5% significance level. Both MR and MRall tests
do not reject the null hypothesis for returns on portfolios ranked by B-M, E-P,
D-P, and INV at the 5% significance level. Conversely, the MR and MRall tests are
supportive of monotonicity in expected returns on the portfolios ranked by ME,
CF-P, and STR. The MR p-value also reports evidence of monotonicity in returns
on portfolios ranked by LTRs.

By controlling the type 1 error under heavy-tailed distributions, our M̂b test
rejects a monotonic relationship between asset returns and eight portfolio sorts.
Thus, we find no significant evidence of monotonicity in asset returns for these
portfolios.

Table 4:Monotonicity tests in asset returns: Decile portfolios.

ME B-M CF-P E-P D-P INV STR LTR

M̂b p-value 1.000 0.992 0.919 0.848 0.994 0.906 0.795 0.904
MR p-value 0.037 0.298 0.026 0.138 0.893 0.140 0.004 0.032
MRall p-value 0.035 0.234 0.018 0.068 0.761 0.068 0.004 0.064
RW test stat. −0.007 −0.035 −0.019 −0.031 −0.067 −0.035 −0.003 −0.015
RW 5%-c.v. 0.049 0.049 0.058 0.058 0.050 0.064 0.049 0.051

This table reports the results of tests for monotonicity in monthly average returns for stocks
sorted into eight value-weighted decile portfolios. We obtained the data from Kenneth French’s
website. The data cover the earliest starting date for each sorting variable: market equity (ME)
from 1926.07 to 2018.09, book-to-market value (B-M) from 1926.07 to 2018.09, cashflow-
price ratio (CF-P) from 1951.07 to 2018.09, earnings-price ratio (E-P) from 1951.07 to 2018.09,
dividend-price ratio (D-P) from 1927.07 to 2018.09, investment (INV) from 1963.07 to 2018.09,
short-term reversal (STR) from 1926.02 to 2018.09, and long-term reversal (LTR) from 1931.07
to 2018.09. M̂b p-value is the p-value of our test statistic in (9) with subsample of size b =
𝜅T0.3, where 𝜅 = ∑𝜆

j=0|Corr(𝜔i,t , 𝜔i,t− j)| and 𝜆 = T0.15. MR p-value and MRall p-value are the
p-values of the proposed tests of Patton and Timmermann (2010) based on the minimal set
of possible inequalities and on all possible inequalities implied by monotonicity, respectively.
RW test stat. is the conservative test statistic proposed by Romano and Wolf (2013), whose
5%-critical values are displayed in RW 5%-c.v. We applied B = 999 bootstrap replications and
a block length of b = ⌊T1/3⌋ for the MR, MRall, and RW tests.
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5 Conclusions
Many postulated theories in economics and finance assume monotonic relation-
ships between expected asset returns and certain underlying characteristics of
an asset. For instance, certain asset pricing models suggest that expected returns
should increase monotonically with the asset’s book-to-market ratio, cash-flow
price, or earnings-price ratio. Patton and Timmermann (2010) proposed a mono-
tonicity test that postulates a weakly decreasing relationship under the null
hypothesis versus the alternative hypothesis of a strictly increasing relation-
ship. Since their test rules out a weakly increasing relationship under the null
hypothesis, it fails to control the type 1 error. Romano and Wolf (2013) developed
monotonicity tests that also consider a weakly increasing relationship under the
null hypothesis that provide a correct size. However, their tests can have low
power and incorrect finite-sample size under conditional heteroskedasticity or
heavy-tailed distributions of the return differentials.

In this paper, we propose a sign-based test for monotonicity in asset returns
that is valid under a general setting. We develop a test that has correct size
under conditional heteroskedasticity and heavy-tailed distributions of return dif-
ferentials. Monte Carlo simulations illustrate that our test statistic has a correct
finite-sample size under all DGPs, together with similar power to other tests
when the sample size is larger than T = 200. Conversely, the MR and MRall tests
fail to control the probability of a type 1 error for all DGPs, while the RW test
is conservative only for DGPs 1–2. Therefore, our method allows for testing
for monotonicity in a variety of situations, extending the procedures of Patton
and Timmermann (2010) and Romano and Wolf (2013). One can apply our test
as a summary statistic for monotonic relationships in asset returns, controlling
the possibility of falsely addressing strict monotonicity under dependent data,
conditional heteroskedasticity, or heavy-tailed distributions.
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Appendix
Proof of Theorem 1. To prove part (i), we need to show that the conditions of
Theorem 1 of Politis and Romano (1993) (Assumptions A0–A2 and conditions
(i)–(iii)) are satisfied. Under Assumptions (iv) and (vi), we only need to analyze
Ω̂∗ so that these assumptions allow us to consider our test statistic as univariate.
Assumption (vi) establishesH∗

0 of the worst-case scenario where allΩi are greater
than zero except forΩ∗, implying a weakly monotonic relationship that falls into
the R2 region of (2). Besides, Assumptions (ii) and (iii) imply that Ω̂∗ has bounded
moments.

Under Assumption (A2) of Politis and Romano (1993), bothM and L are equal
to 1, and T is a function that in our case is described by Ω̂∗ ≡ mini=1,…,NΩ̂i,
where Ω̂i ≡ (1∕T)∑T

t=1𝜔i,t = �̄�i,t. Moreover, underH∗
0 of Assumption (vi), Ω̂∗ = 0.

Then, Assumption (A0) and condition (iii) of Theorem 1 of Politis and Romano
(1993) are satisfied by our Assumption (i), whereas Assumptions (A1), (A2), and
(A3) follow by our Assumptions (ii), (iii) and (vi), and (iii), respectively. Finally,
condition (i) of Theorem 1 of Politis and Romano (1993) is satisfied since our
framework is univariate, and condition (ii) of Theorem 1 of Politis and Romano
(1993) follows from our Assumption (v). Therefore, part (i) of Theorem 1 follows
from an application of Theorem 1 of Politis and Romano (1993).

Then, by part (i) of Theorem 1, under H∗
0 of Assumption (vi), we have that

√
TM̂b

d
←←←←←←←←←←→N(0, 1). □
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